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A COMPARISRN OF SPACECRAFT PENETRATION HAZARDS

I^	 DUE TO METEOROIDS AND MANMADE EldiTH-ORBITING OBJECTS

David R. Brooks

Langley Research Center

SUIVARY
I

A recent analysis of the probability of Earth=orbiting spacecraft collid-

ing with manmade objects in space is re-examined in terms of spacecraft pene-

trations.	 A typical double-wall spacecraft structure is utilized to compare

the penetration hazard from. naturally occurring meteoro i ds with that of manmade

,I	 objects.	 It is shown that the structure is very effective in preventing

meteoroid penetrations.	 For incident objects having a mass of more than about

^.l Vin, the penetration probability due to r,?anmade objects is about equal

:{	 !	 -,^c Uhat from meteoroids, being on the or,ier of 1-10 percent for s: 100-m

 ^_ =teeter sphere in orbit at 500- 800 ksn for 1 000 days.	 Whereas additional pro-` r 	,	 y	 "	 P
I

L,
I

y	
tection can reasonably be provided against meteoroids, the size distribution

Î
r	 of manmade objects, ranging from entire spacecraft to small explosion fragments,

^

is such that an equivalent increase in protection is difficult to achieve. 	 For
1

j

fexample, the penetration probability for meteoroids of mass greater than or

e q ual to 1 gm incident against a 100-m sphere is only about 0.6 uercent, but

for manmade objects, it is still in the range of 1-10 percent. 	 The present

level of orbiting manmade objects does not constitute a-hazard to current space
.I

activities, including the space transportation system planned for operational

f status in the 1980's. 	 However, the historically documented growth trend in

fthe orbiting population will eventually lead to future restrictions on large

1 permanent space facilities unless steps are taken to prevent growth in the

orbiting population from continuing at its present rate.
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The probability of impact with manmade object--	 in space has been treated

recently (ref. 1) in a parametric fashion for a variety of Earth orbits.	 A

principal result is that there are already orbits 'or which the probability of

collision exceeds 10 percent for a 100-m diameter sphere during a 1,000-day

period.	 While this impact probability level does not now pose an unacceptable

risk for manned operations in much smaller spacecraft, the historical record

of -continuous growth in the orbiting population foreshadows a future with

severe restrictions on our use of near-Earth space.	 Current 1:nowledge of

:unmade objects in orbit is based on that part of the total population which

can be consistently monitored by current radar systems--objects typically no

smaller than about 0.1 m	 The history of this part of the population pion i s	 I

given in figure 1, which shows a current growth rate of about 280 trackable

I
objects per year.	 _ total of more than -he trackable objects at 	 start of

t:

1975 should be equivalent to a total population of about 10,000 objects (in-

cluding those too small to be tracked) according to the orbiting population model y

developed in reference 1.

The matter of actual spacecraft penetrations, as opposed to impacts,

was not treated in reference 1	 In the case of meteoroids, it is well
a

known that double-wall spacecraft structures are quite effective against the

expected incident flux of naturally occurring particles, and that penetrations

of spacecraft with such protection are rare coripared to impacts.	 This

memorandum will review the effectiveness of a typical manned spacecraft

structure as protection against treteoroids, aiFl compare the resul't's with those

of a similar analysis for the manmade orbiting population.
3
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SYT WLS

A Area of a spacecraft structure, m2

F. Fraction of the total orbiting manmade population having a speed
Z

V. + 05 km/sec
,. 1

m Mass, gm

N. Fraction of the total orbiting manmade population hav=_ig sufficient
1,

mass to penetrate a spacecraft structure on impact at relative

speed	 v.
i

P Probability

V .speed, relative to _a spacecraft structure, km/sec

t Time, sec

P tensity, gm/cm3

(P Flux against a spacecraft structure, impacts per m2 per sec

unit
A unit incident flux, one impact per m2 per sec

I
Number

I	 Subscripts:
I

3

Coll Collision or impact y

p Penetration

T Total

i A summation index, see equation (3) and table 3

i

a
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'	 I EFFECTIVENESS OF A DOUBLE-WALL SPACECRAFT STRUCTURE ITT. PREVEKBIG

METEOROID PENETRATION

A cross section of a typical double-wall spacecraft structure is shown

in sketch (1) below. Such structures have'beeii used for manned spacecraft in

the past; unpublished work at NASA Langley Research Center shows that the

dimensions assumed yield a structure equivalent to a Si>ylab wall.

l

j	 127 mm
i

	

Outside	 Inside
i

3

	

0.635 mm	 6. 6 mmJ

a

Sketch (1)- Diouble-wall aluminum spacecraft structure (not to scale)

The thin outer wall is separated from the priman, structural wall and serves	 a

to fragment incoming meteoroids so that their energy is dispersed over a

large area, making it more difficult to penetrate the inner wall. 1eteoroids

are assumed to have an average density of about 0.5 gm/cm, and unpublished

impa..,A tests with lightweight glass and resin projectiles (P 0.7 gm1cn3)	
I

show that the minimum mass which will penetrate the inner wall of "he above

structure is

irr
474 92 	 `1 )
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(the units of mp -and v are gm and km/sec, respectively.)

Meteoroid speeds relative to the Earth range from about 10 to 70 km/sec, with
4

an average of about 20 km/sec; the distribution :function is given in reference 2.

For a speed of 20 km/sec, the minimum penetration mass would be 0.1198 gm

according to equation (1).

The number-mass distribution of meteoroids up to 1 gm at 1 astronomical

unit (the -Earth's orbit) has ` also been modeled in reference 2, and the results

are shown in figure 2, where number densities (particles/m3) have been multi

plied by a constant average speed of 20 ,1-:m/sec to compute incident flux

T.4 s flux is assumed to be isotropic, on the average, with respect to a ran-

doray oriented object., For spacecraft inorbit around the Earth, the flux

values in figure 2 for any given cumulative mass (that is, the flux for all

meteoroids greater than or equal to a given mass) must be multiplied by a de-

rocussing factor and a shielding factor to account for the Earth's gravitational

focussing of meteoroids and alsofor the shielding provided by the Earth

( ref. 2) . For a typical Skylab orbit at 425 km, the product of these two factors

is about 0.65. Thus, the average cumulative penetration 	 flux against ap
spacecraft in a 425-km orbit is 3.6 x 10 -14 

impacts/m2-sec. The corresponding

probability of penetration (assuming that this number is much less than 1) is

related to flux through a Poisson distribution:

-	 -^pAtp2A2t2
P
P 

- ^pAte	 c^pAt (l - c PAt +	 2	 -	 . }	 (2)

Using the Skylab area of 145 m2 and a time of 1 year (At 4.573 x 109 Z, -sec)

gives P	 0.000166, showing that a typical manned spacecraft provides
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extremely good protection against penetration by naturally occurring

objects.

THE PENETRATION FLUX OF 14ANMADE OBJECTS

Analogously to studies involving meteoroids, calculation of the perietra-

tion flux of manmade objects incident on a particular structure involves a

knowledge of the mass and speed distributions of the incident objects as well

1

as details of the structure itself.	 Number versus apparent radar cross-section

' data given in reference 1 for various classes of orbiting objects (table 5

and fig. 10-15) have been used as the basis for a normalized number-versus-

mass relationship by assuming a flat-plate shape and a density of 2.7 gm/cm

(aluminum).	 The results are listed in table 1 and plotted in figure 3:t
a

According to these calculations, the smallest assumed orbiting fragment has a,

4. mass of 8.29 x 10	 gm.	 A normalized number-mass relationship has been chosen 	 Ig

because the total number of manmade orbiting objects cannot be determined

4i
Ff

directly due to the large percentage of objects which cannot be tracked from

the ground.	 Based on the observed history of known objects,-the..total

population is thought to be constantly increasing and has been extrapolated to
.I

: I the future in reference 1.	 A total level of 10,000 objects is appropriate for

early 1975; the analysis in reference 1 can be used to extrapolate the assumed

rl j
I

total of 'orbiting objects to future dates. 	 Note, that whereas the meteoroid

nuuioer-mass relationship is a linear log'-log relationship in the mass range
-6

from 10	 to l gm, (see fig. 2), the distribution for manmade objects levels

off at a ass, of about 10g (fig. i) as  result of the depletion of smaller

objects through orbital decay._	 (A similar leveling off,- although for totally

(
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different physical reasons, can be seen (fig. 2) in the meteoroid population

for masses nine orders of magnitude smaller.)
i

For manmade objects, it is not sufficient to treat the incident speed as

a constant average value, as can be done to good approximation for meteoroids.

Also, the relative speed distribution cannot be assumed isotropic, and is in-

fi	 stead strongly dependent on the target orbit parameters. In table 2, 'the

probability distribution for 'incident speeds is given for several representa-

tive orbits, including ones which give nominal and "worst-case" collision prob -

abilities according to reference 1. As the calculations required for this analy -

sis can be made easily from these data in their present form, no attempt' has

been made to model the speed distributions or to represent them analytically.

Note that for some of the target orbits at low altitudes and low inclinations

the distributions are fairly uniform compared` to higher altitudes and inclina-

tions which show strongly the effect of encountering most objects in a retro-

grade orientation (high relative velocity).

It remains now to determine the relationship between penetration mass and

velocity appropriate to manmade objects, corresponding to equation (1) for

meteoroids. An obvious expected difference arises; from the fact that, whereas

meteoroids are of low density, manmade objects tend to be metallic and of

accordingly higher density. Another difference is the speed range of incident

particles, which for the manmade population is expected to range from 0 to about

r	 16 or 17 km/sec (twice the orbital speed). In figure 4 a penetration threshold

..n`model for aluminum-projectiles (p 2.7 gm/cm 3) is given, based on unpublished

high-velocity impact tests against the structure shown in sketch (1). The

i C^RICIN
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i

breaks in the curve approximate experimental results and illustrate beliav:ior

k	 f which is typical of double-wall structures. As the relative speed increases,

some fragmentation of incoming projectiles starts to occur at the first break

(3 km/sec). Then, as the.incident speed increases beyond 3 km/sec, the rr!ass of

the incoming projectile must be increased before the fragments .can penetrate

the inner wall. At speeds higher than 6 km/sec, the penetration behavior of

projectile fragments returns to a negative slope. The performance of double-

wall structures has been reported extensively in the literature (ref. 3) •
,.F

The preceding data are sufficient to calculate the penetration flux
r^

resulting from a unit incident flux 
unit* 

Table 2 gives 16 speed increments

and the fraction Fi(v) of the total population associated with the increment

vi ¢ 0.5-km/sec for selected orbits. Figare 4 gives the mass mp reauired to

penetrate at each speed increment and figljre 3 (or ir_Lerrolation between the

values an table 1) gives' the fra6t4.on of the total population iii (m ) which is
p

capab:ef of penetration. It is reasonable to assume that the relative speed and

	

I	 mass distribution of manmade objects are mutualindependent so that the

penetrating flux for a unit incident flux is:

r
16

^p =	 Fi(v)Ni( P)	 (3)<

As an example, consider a 500-km orbit at 28 1/2 0 inclination (due east

	

I	 launch from Cape Canaveral). The speed distribution of manmade objects ;inci-

dent on a spacecraft in°this, orbit is given in table 2. Details of the

	

"r	 8	 {
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penetration_ flux calculations can be followed by reference to table 3; which
i

lists the 16 relative speed increments, vi , with the speed distribution, Fi(v),

mass required for penetration, P(v), fraction of the population which will

j	 penetrate, N( p), and fraction of a unit incident 
flux,unit which becomes a

penetrating fluxgyp.	 The -sum of the entries in the last column shows that_

82 percent of the incident flux results in a, penetration. 	 The penetration flux
r

is given for a'unit incident flux in table 4 for several representative
p

orbits. ° Clearly,- the penetration flux is nearly independent of orbit, parameters

for the range of orbits considered.

COMPARISON, OF PENETRATION HAZARDS DUE TO

NIETEOROIDS AND MANNIADE OBJECTS	 -

The determination of actual levels of penetrating flux, or the
`i

probability of penetration, for manmade objects requires P knowledge of

the levels of incident flux associated with manmade objects. 	 Since the

equivalence between flux and probability has been established in equation

(2), the impact probability analysis in reference 1 may be applied equally

well to specifying the incident flux so that spacecraft hazards associated

with both natural and manmade objects may be compared on an equivalent

basis.- i	 Reprograming of the probability analysis described in reference -1

and new calculations of probability ` have yielded revised impact data for 500

and 800 km circular:-_o bitsiwhich are given in figure 5. 	 These results

indicate that the probability datafor some target inclinations were

underestimated by about an order of magnitude in figure 17 of reference 1.

9
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This numerical error in no way affects the qualitative argument'} r roposed in

reference 1 to explain the shape of the probability curves, nor does it affect

the population model which represents a substantial portion of the work docu-

mented in reference 1.
1

The impact and penetration comparisons between natural and manmade i

objects encountered in Earth orbit are contained in table 5.	 The first line

shows the total incident flux of meteoroids greater than or equal to 10 -1
2 gm,

wit

at 500 and 800 km. 	 The slight differences are due to correction for shielding

-	 and gravitational focussing, which are dependent on altitude (ref. 2).

Against the 100-m diameter sphere used as a standard target in reference 1,

the flux produces about 7 x 10 7 impacts in 1000 days.	 There is no equivalent

data for unmade objects, as the size of these has been limited to massEls
t	 _

greater than or equal to about 8 x 10	 gm as previously discussed (fig. 3).
i

d..

,

Accordingly , the second line compares the flux of meteoroids having a mass equal

to or greater than the assumed smallest orbiting manmade object with the £lux

from the assumed total manmade orbiting population, 	 Note that more than 40

:meteoroid impacts are expected during the 1,000-day 'period.	 The flux of manmade

objects is computed from equation (2), using the corresponding probability range
^

F	 of 0.018 - 0.157; it is 3 orders of magnitude less than the meteoroid flux.
a

At this point, it is;tempting to conclude that the hazard from manmade

r	 objects is negligible compared to meteoroids. 	 However, the relative situation' j

f	 changes dramatically on the next line. 	 Here, consideration shifts to the

flux of penetrating objects- against the standard target.	 Recalling that the
E ,

t do-ii le-wall structure protects against meteoroids of less than 0.12 gm, the
i x

ORIG
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meteoroid penetration flux is 9' orders of magnitude sinaller than the

total flux and 3 orders of magnitude smaller than the meteoroid flux

corresponding to the mass of the smallest orbiting manmade object.	 However,

i
the probability of meteoroids penetrating the standard target is still about

10 percent over 1,000 days. 	 The corresponding flux of penetrating manmade

objects has dropped very little, remaining at 82 to 86 percent of the total

' according to table 4. ; As a result `, the corresponding penetration probability

has dropped from 0.018-0.15.7 to 0.015-0.135, using the 82-percent level at

low inclination and 86 percent at the higher inclinations.	 IJow the penetration

hazard from manmade objects is about the same as the meteoroid hazard.

The last line of data in table 5 carries the comparison between

meteoroids and manmade objects one ste_ further. 	 It assn -es.,that a
i

Hypothetical structure has been developed which increases penetration

i protection by an order of magnitude over the double-walled structure shown in

sketch 1.	 Specifically, it is assumed that equation (1) reads 
P 

= 479.2/v2

and that the vertical scale of figure 4 is multiplied by 10 for equivalent added
'i

protection against manmade objects.- For - meteoroid protection, this is apparently

' a reasonable step to take because the meteoroid distribution is 	 : ;.> that the

penetration flux (or probability) is consequently decreased by rz,-c 	 _ ,in an

j order of magnitude.	 The distribution of manmade objects results In nri

parable decrease; a-repeat of the calculations described above foi tho new

penetration requirements shows that a large percentage of objects can still

i	
} penetrate--from 72 to 78 percent of the total, for "low and high inclinations.,

respectively.	 Now the penetration ha:,ard from meteoroids is approaching w afe

r
11
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"	 levels even for the large standard target, while the hazard due to manmade
++'

objects is still in the range from 1 to 10 percent. 	 This property of the

stribution of manmade objects is evident from figure 3, Which shows that \1

"	 mor'eAhan half of the population is larger than 100 gm.

.	 An important point regarding the data in table 5 is that the impact and

penetration levels shown do not indicatethe existence of a hazardous environ-

ment for present levels of space operations.	 Recall that on the basis, of

calculations presented earlier, the penetration probability for Skylab was less

than 0.0002 for its year in orbit.	 For the space shuttle; orbiter, the sarfa.ce

area( oc1000 a	 is roughly 30 times smaller than the standard target ar,i so

for ,a year in orbit, the penetration probabilities in table 5 (for a 1,000-day

period) are decreased by a factor of 100 at the altitudes considered. 	 The

population distributions in reference 1 show that at 400 km the probability

should be decreased by another factor of 2 and at 200 km by an order of

magnitude.
s

CONCLUDING REMARKS

Using models of the Meteoroid and orbiting` manmade object environments,
1

it is possible to compare the relative collision and penetration hazards due

to both types of objects.	 Qualitatively, `the conclusions follow from the

functional form of each model, and they are not very sensitive to the precise
3

numerical values of the model parameters.	 The log-log relationship between
9

meteoroid number and mass results in very low penetration ,probabilities for

current spacecraft structures and missions, with clearly; defined requirements a
R

for increased protection, if required, for large space facilities in the future.

12
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The average total meteoroid flux is constant with time and can be considered

predictable to the extent that meteoroid models have been and continue to be

j
-verified by experimental data. 	 The present hazard due to manmade objects is

also negligible, but prospects for the future are uncertain. 	 The number-size

-distribution is such that an order-of-magnitude increase in structural resis-

tance to penetration does not produce a-corresponding decrease in,per_etration

probability.	 Historical evidence suggests a continuing increase in the

orbiting population with no direct way'"to monitor the actual total level in the

foreseeable future. 	 Thus, the estimated penetration probability for manmade

objects of 1-10 percent for a 100-m sphere in orbit for 1,000 days, which now

exists, is expected to increase between now and the time when permanent space

facilities of this size become a reality, with no accurate means of ascertain-
,,

i
ing the actual magnitude of the problem.	 (ReTerence 1 predicts a level of

25,000 objects before 1995 • )	 Furthermore, there is no reason to expect that

the future average distribution of manmade objects will differ substantially

from the present, so that the difficulty in providing increased protection will

remain.

"	
I

Conceptually, it is easy to offer solutions to a dangerous space

environment of the future (ref. 4).	 Space facilities could have automatic

onboard detection and maneuvering capability to prevent collisions. 	 An

4

a

alternative could involve "garbage collection" missions to rid space of

hazardous material.	 As a practical matter, both of these solutions are tasks 	 3

which could consume sizeable technical resources which should be available

for more constructive endeavors. 	 A better solution is to.halt the growth of

i
13
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I	 TABLE 1

NORMALIZED NUMBER-VERSUS-MASS RELATIONSHIP FOR THE
j	 EARTH-ORBITING POPULATION OF MANMADE OBJECTS

(a)
Mass Normalized - number
(gm) (Cumulative

percentage)

—4 (b
8.29x10 100

10 3 d99.5

—2
10

^
93.8

I

10-1 86 . 7

10° 70.3

101
67.7

2
10	 -

L
_55,7

10 3 42.9

10 4 29.4
a

(	 10 5
17 .0

106 9.0'I
7(c)2.56x10 2.1

(a)
p=2.7 gm/cm

(b)
apparent radar cross section of 10-6 m2

(c)
apparent radar cross section of 10 1 m2

}

I,
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TABLE 2

RELATIVE-SPEED PROBABILITY DIS 'RIBUTION FUNCTIONS FOR
COLLISIONS WITHn

MAX-IMADE OBJECTS IN SELECTED EARTH ORBITS

a)
Orbit Parameter's - altitude and inclination

v 500 km 800 km

(km/sec) 28 1/2 0 820 1180 28 1/2 0 80 1/2 0 1130 1

Fi(v)

0.5 0.0116 0.0026 0 0.0135 0.000 8 0

1.5 0.0390 0.0076 0 0.0328 0.0113 0.0007

2.5 0.0444 0.0252 0.0009 0.0416 0.0257 0.0009

3. 5 0.0394 0.0248 0.0009 0.0562 0.0136 0.0009

4.5 0.0738 o. o166 0.0010 0.0852 0.0o94 0.0015

5 .5 o.o864 0.0107 0.0018 0.1299 0.0076 0.0057

6.5 0.0925 0..0155 0.0021 0.1154 o.ol45 0.0107

-17 .5 o.16og o.o164 0.0074 o.i427 0.0155 0.0074

8.,5 0.0787 0.0224 0.0o46 0.0899 0.0154 0.0o62

9.5 0.0954 0.0185 o.004o 0.0768 0.0171 0.0058

10.5 0.1068 0.0237 0,0039 0.1123 0.0228 o.o064

11.5 0.0663 0.0329' 0.0039; 0.0384 0.0259 0.0076

12.5 0.0226 o.o430 0. 0043 0.0208 0.0367 0.0087

13.5 0.0301- o. o472_ 0.0056` 0.0270 0.0528 0.0117

14.5 0.0109 0.1355 0.0139 0.0027 0.7093 0.5811
a

t	 15.5(b)
-

0.0412 0.5574 0.9457	 L o.ol48 0.0216 0.3447
a

i	 - (a) includes nominal (28 1/2°) and worst caso (118° or 1130 ) orbits
defined in reference 1.	 28 1/2 0 corres,0onds to a due East launch
from Cape Canaveral. S

(b)includes'r	 i
all relative speeds >_ 15 km/sec.
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TABLE 3

PENETRATION FLUX CALCULATIONS FOR A-SPACECRAFT IN ,A
28 1/2 0 500 km ORBIT SUBJECTED TO A UNIT ,INCIDENT FLUX

v (km/sec) i 1F.(v)'	 mF(V)
Nib p)

(gm)

0.5 o.oli6	 24.48 o.6349 0.008

1,.5 0.0390	 1.59 0.7618 0.030

2.5 o.o444	 o.448 0.3138 0.036

3. 5 ;;11

o.0 39.4	 x.. 344 0.8-232 0 .032

4.5 0.0733	 0. 472 0.3-720 0.064

- 5.5 0.0364	 o.6o8 0. 030 0.069

'	
i

6.5 0.0925	 - .5 EC 0.80'7 0.074

7.5 0.160q	 0.	 ^e 0.3143 C.l l
8.5 0.07571 	 C. 339 0.8237 0.065

t 9.5 0.0954	 2.271 x,.3317 0.079

10.5 5.1068	 0.222 0.8387 0.090

E{
11.5 0. 0663	 ;.135 0.8,452 0.056

i

{
12.5 0.0226	 0.157 0.8510 0.09

13.`5 0.0301	 0.134 0.8566 0.026

t
E 14:`5 0.0109	 0.117 0.8615 0.009

t o 15.5(b) 0.0412	 0.102 0.8663 0.0;6

cl
c¢
n

0. 820

I 3(a) aluminum projectile, n=2.7 gm/cm

{	
I

(b) includes all relative speeds >_ 15 km/sec
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TABLE 4

PENETRATION FLUX IN SELECTED ORBITS,
FOR A UNIT INCIDENT FLUX

Orbit parameters
altitude inclination

¢p(km)	 (deg)

500	 28 1/2 0.820
i	

500	 82 o.854

500	 118 o.865	
1

i

800	 28 2./2 0.817

800	 30 1/2 0.853

Y

800	 113 0.361

i

9
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Figure 1.- Population history of trackable Earth-orbiting objects (effective radar cross`
'	

section .01 m2).
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Figure 4.- Penetration threshold for aluminum projectiles (p = 2.7 gm/cm3 ) "incident
on a Skylab-equivalent ` double-wall spacecraft structure (from` unpublished
impact 'tests), i
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