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EFFECT OF LOW-VELOCITY IMPACT DAMAGE ON THE COMPRESSIVE STRENGTH

OF GRAPHITE/EPDXY HAT-STIFFENED PANELS

1

By

Marvin D. Rhodes, Jerry G. Williams

and

James H. Starnes, Jr.

INTRODUCTION

The most efficient hat-stiffened graphite/epoxy compression panels have

been shown to be approximately 50 percent lighter than the most efficient

aluminum compression panels (Refs. 1 and 2). This mass reduction makes

graphite/epoxy panels attractive candidates for aircraft applications, but

before they can be used in commercial service certain operational hazards

must be considered. For example, aircraft can be subjected to impact damage

from runway debris and the effects of such damage must be established. Low

velocity impact damage has been shown to cause significant reductions in the

load carrying capability of some thin honeycomb stabilized graphite/epoxy

laminates (Refs. 3 and 4). Little work, however, has been done to assess the

effect of impact on stiffened compression panels.

This paper presents the results of an exploratory test program to deter-

mine the effect of low velocity impact damage on minimum mass hat-stiffened

panels. The panels were designed for two different compression loads

[0.53 MN/m (3000 lbf/in) and 1.58 MN/m (9000 lbf/in)] with buckling as the

Primary design constraint. The test results presented include data for

undamaged panels, data for a panel with a 1.27 cm diameter cutout and, data

for panels subjected to impact damage. The undamaged panels were used to

verify the design and establish critical strain levels for compression

loading. The panel with the 1.27 cm diameter cutout, which simulated local

damage, provided comparative data for a panel with a well defined flaw. The

impact damaged panels were used to determine the effect of this type of

damage for a range of applied strain. These panels were subjected to impact

damage while under load to evaluate the effect of applied strain on local

damage, and some were subsequently loaded to evaluate residual strength.

1
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DESIGN AND FABRICATION OF TEST SPECIMENS

Hat-stiffened panels with minimum mass proportions of two different

designs ( designated designs A and B) were tested in this investigation.

Design A was critical in buckling at a load of 0.53 MN /m (3000 lbf /in) which

corresponds to an axial strain of 0.0034. Design B was more heavily loaded

[ 1.58 MN/m (9000 lbfjin)] and was critical in buckling at a strain of 0.008.

The basic configuration for both designs is shown schematically in sketch a.

t:

Sketch a.- Hat-stiffened panel.
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Specimen Design

Panels were designed from the material properties given in Table I

using a minimum-mass synthesis computer program that includes buckling and

strength constraints (ref. 5). The buckling constraints accounted for simply

supported wide-column Euler buckling; as well as local buckling, i.e., short

wavelength panel buckling of the skin, stiffener caps and webs. The bending

stiffness required for wide-column Euler-buckling is primarily provided by the

high axial stiffness 0° plies located in the cap of the hat and concentrated

in the skin beneath the hat (Sketch a). The webs and skin between stringers

consist entirely of angle Mies (+@). The critical Euler-buckling design

length for both panel types is 76.2 cm. Specimens tested in this investiga-

tion were 43.7 cm or less in length and, therefore, were only local buckling

critical. Since the test panels are critical in both local and Euler buckling

at the design load, the test length did not significantly affect the panel

strength.

Design A.- Details of the cross-section of the panels designed to carry

a load of 0.53 MI/m, are presented in figure l(a). At this design load the

panels had an imposed axial strain of 0.0034. The angle plies in the webs

and skin were oriented at +52°. The final design mass per unit area was

3.56 kg/m2 (0.73 lbrii/ft`). Both three stiffener wide and four stiffener wide

panels were tested in this investi.,ation. Test panel dimensions (panels Al-A5)

are given in Table II.

Design B.- Details of the cross-section of the panels designed to carry a

load of 1.53 M/m are presented in figure 1(b). At this design load the panels

had an imposed axial strain of 0.0080. The angle plies in the webs and skin

were oriented at +45°. The Panel desi:-n mass per unit area was 6.10 kg/m2

(1.25 lbm/ft 2 ). Both two stiffener wide and three stiffener wide panels were

tested in this investigation. Test panel dimensions (panels B1 - B9) are

given in Table II.

Specimen Fabrication

The specimens tested in this investigation were fabricated from 7.6 cm

wide preimpregnated tape of Thornel 300 graphite in Narmco 5208 epoxy resin.

The resin is a 450 K (350°F) curing system and the tape has a nominal cured

thickness of 0.14 mm (.0055 in) per Uly. The specimens were manufactured
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using an aluminum tool which was machined with the required hat stiffener

design cross-sectional dimensions. The +8 web and 0 0 hat plies were laid in

the mold. Premolded trapezoidal-shaped rubber inserts were positioned in the

mold and the skin plies were laid on top. The panel was covered by an alumi-

num caul plate and the entire assembly was bagged and cured in an autoclave.

The cured specimens were then trimmed; the ends were potted in an epoxy resin

and ground flat and parallel for uniform compression loading. Detail design

considerations, analysis methods and manufacturing; procedures are described in

references 1 and 2.

APPIVRATUC

The test specimens were loaded in axial compression using a hydraulic

test machine with a 1.33 MI capacity. Electrical resistance strain gages were

used to monitor panel strains. A direct-current-differential transformer

WCDT) was used to monitor displacements normal to the surface of the panels.

Strains, displacements, and load were recorded on magnetic tape and selected

gages were monitored during the te.,t on an oscilloscope. The moue' method for

observing lateral displacements was used to monitor buckle patterns and

delamination growth during loading. The basic instrumentation for this pur-

pose included a high-intensity light source, a grid pattern of 20 lines per

cm mounted on a transparent elastic sheet held near the specimen, and a

camera to record photographically the fringe pattern at selected loads.

The equipment used to propel the impact projectile is shown schematically

in figure 2. Air pressure developed in the reservoir ruptures the diaphragm.

The high pressure air passes through an orifice and forces the projectile

down the barrel. An electronic detector located at the muzzle of the barrel

is used to measure the velocity of the projectile. The test panels were

Placed within 25 em of the gun muzzle.

Several panels with impact dama;e were examined with an ultrasonic flaw-

detector. The detector was a focused pulse-echo type high-resolution com-

mercial instrument which used a 15 tSiz piezoelectric transducer. The

transducer and panels were immersed in a tank of water to provide a medium

for the ultrasonic transmission and the transducer was mounted to a

traversing mechanism which automatically scanned the region of interest. The

scan was synchronized with an oscilloscope for purposes of recording; data.

ORMAU PAGE IS
OF POOR QUALM
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Additional information concerning this equipment and procedure can be found

t	 in reference 6.

TI,STS

Control Tests

Undamaged - panels.- Several undamaged panels were tested in compression

to determine the critical load and strain at which local buckling occurred.

Local buckling; was defined using* the load/strain response and strain-reversal

techniques. The strain measurements were complemented by the moire' fringe

method which provided visual definition of the buckled mode-shape.

Panel with a cutout.- A hat-stiffened panel with a 1.27 cm diameter

circular hile was loaded in compression to evaluate the effect of a well

defined damaged area on panel performance. The hole was located in the high

axial stiffness re-,ion beneath the can in the middle of the center stiffener.

It was drilled rising a diamond impregnated core bit. The panel was instru-

mented with approximately 40 strain Cages and loaded to failure. Dis-

placements normal to the surface in the center of the panel were measured with

a DCDT. The moire fringe technigi;e was used to observe the development of

the displacement field associated with deformations normal to the plane of

the panel.

Impact Dama ;e Tests

Several panels were damaged by impact in the high axial stiffness region

while under compression load to evaluate the effect of load on impact

initiated damage. The panels were then taken to higher loads to evaluate the

effect of damage on buckling and residual strength. One panel was also

damaged by impact in the low axial stiffness skin region between stiffeners.

Aluminum spheres 1.27 cm in diameter were used as the impact projectile.

Aluminum was chosen as the Projectile material because it has about the same

density as common rock materials and is therefore representative of runway

debris. The projectile impacts were normal to the panel surface at a velocity

of about 55 m/sec. Loading conditions and impact location for each panel

tested are given in Table II.

VAG51%
Aymo Q^;^
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RESULTS AND DISCUSSION

Control Tests

Undamaged Panels

Three panels of design A and four of design B were tested in the undamaged

condition to evaluate panel behavior due to applied axial compressive load.

The behavior of each panel for the indicated load and strain is presented in

table II. The type A pa-i.els buckled near tine design strain of 0.0034 and

exhibited postbuckling behavior. The type B panels exhibited strength failure

near the design strain of 0.0080 prior to buckling. A photograph of a typical

normal displacement field as indicated by the moire" fringe pattern for each

design configuration is shown in figure 3. Test panel Al (figure 3a) has a

fully developed buckle pattern at an imposed strain of 0.0036. Test panel

B2 (figure 3b) is shown at an imposed axial strain of 0.0079 which is near

the strain at which the panel exhibited failure. The pattern seen at the ends

of the panel is the result of inplane restraints imposed by the flat-end

test condition (ref. 2).

Panel with a Cutout

The panel (B5) with the 1.27 cm diameter cutout was loaded to failure

in axial compression. Far-field axial strains were measured during the test

by five strain gages located on a line across the panel, 6.35 cm from the

cutout center. The location of those gages and the measured strains as a

function of applied load are shown in figure b. These data indicate a
nearly uniform far-field axial strain distribution across the panel and a

linear load-strain relationship to failure. The average of these gages is

subsequently referred to as the applied strain. Panel failure occurred at

an applied strain of 0.0053 (applied load of 496 k::) which is 73 percent of

the 0.0080 design strain.

Several strain gages were located at points along a line across the panel

passing through the cutou t, center to determine the variation in axial strain

in the neighborhood of the cutout. These ;;ages were closely spaced near the

cutout and one gage was located on the cutout free-edge surface. The

distribution of strain as determined by these gages across the right side of

the panel is shown normalized by the Rpnli ,sd strain in figure 5 for several



7

values of applied strain. The origin of all curves on figure 5 is indicated

in the sketch on the figure and the distance y from the cutout edge has been

normalized by the cutout radius. The strains are several times greater near

the cutout edge than those three cutout radii away and there are steep strain -

gradients near the cutout edge. Up to an applied strain of about 0.0034 the

strain at the cutout edge is approximately 4.6 times greater than the far-
field strain. At an applied strain of 0.0034 the strain at the cutout edge

was 0.016 and then dropped suddenly to 0.012. It is suspected that a local

material failure occurred in the zero degree laminae at this very high strain

level. At applied strains between 0.0034 and 0.0049 the strains at the cutout

edge w-'r •e only 2.4 to 2.8 times as great as the far-field strains as indicated

by the results shown on figure 5.

At applied strains near 0.0049 large changes in strain were recorded

near the cutout and noticeable panel displacements began to develop in the

vicinity of the cutout. Moire fringe patterns representing; the normal

displacement-field near the cutout are shown in figure 6 for several values
of applied strain. A representative moire' fringe pattern for an applied strain

of 0.0048 is shown in figure 6a and a close up of the cutout region for this

applied strain is shown in figure 6b. At an applied strain of approximately

0.0049 a local buckling displacement field began to develop at the cutout

edge about 600 counterclockwise from the loading axis. This displacement-

field was about 1.0 cm lon g; for an applied strain of 0.0050 and is shown in

fiCare 6c. As the applied strain was increased, the extent of the

displacement-field increased to a lent-th of about 1.8 cm for an applied strain

of 0.0055 as shown in figure 6d. At an applied strain of 0.0057, the

displacement-field had rotated counterclockwise to a position 900 from the

loading axis (figure 6e) and extended on both sides of the cutout. This

displacement field extended about 2.5 cm on the left side and about 2.4 cm

on the right side of the cutout which makes the total length of this displace-

ment field approximately equal to the width of the 00 "ibers in the skin under

the stiffener. The local displacement-field propagated across the panel

(figure 6f) at an applied strain of 0.0058 which indicates that the local

behavior precipitated panel failure.



Impact Damaged Panels

Impact Damage in the High Axial Stiffness Region

Lov axial.strain at impact.- Test panels A4, A5: an d B6 were damaged by

impact with a small axial load applied at the time of impact (see table II).

A visual examination of the area where impact occurred revealed no apparent

local damage. All three specimens were subsequently loaded in compression

to failure. Several strain gages away from ':he impact region were used to

monitor the applied axial strains. The average of these gages is subsequently

referred to as the applied strain. 'Pile applied strain at failure for all

three test panels is given in table II. 3oth panels A4 and A5 failed ati

applied strain: near their design strain level (0.0034). A photograph of

the moire fringe pattern of panel A4 loaded prior to failure and a photograph

of the failed panel are shown in figure 7. The moire' fringe pattern (figure

7s) is similar to that of the undamaged panel Al (figure 3a). The dark spot

in the center of the panel is the impact location where the paint has been

removed for post impact inspection. Figure 7h indicates that the panel failure

region is extensive and includes the impact location. The panel was inspected

ultrasonically prior to failure anC a photograph of the oscilloscope record

for the region in the vicinity of the impact location is shown in the insert

of figure 7a. The area represented by the insert is outlined on the photo-

graph. The dark. area shown in the insert indicates subsurface damage in the

panel. This area is about 6.35 cm long and about as wide as the region

beneath the hat which contains Oo plies. The results of tests on panels A4

al..d A5 were similar.

PLnel B6 failed during; the residual strength test at an applied strain of

0.0043 which is about 54 percent of the design value. A photograph of the

moire' fringe pattern prior to failure and a photograph of the failed panel

are shown in figure 3. A small circular pattern in the region of impact was

observed with the moire' fringe technique indicating th.; presence of local

damage. The development of this fringe pattern and an examination of the panel

failure indicate that the impact damage precipitated the panel failure.

Two stiffener sections, typical of those of panel B6, were damaged by

impact at zero applied axial strain and ultrasonically inspected. Identical

3
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results wore obtained for these two sections. A photographic record or the

ultrasonic inspect;.on is shown in the insert of figure 8a. The subsurface

damage region is oval shaped and is about 2.54 cm wide by 3.81 cm long. One

of the stiffeners was cross sectioned in the region of impact damage and

examined microscopically. A photomicrogrcph of the cross section at a low

level of magnification is shown in figure q. This photomicrograph reveals

delamination in the cross section with the most severe delamination occurrin3

on the back surface of the laminate. Striations or hairline crack patterns

through the thickness can also be observed. These cracks converge on the point

of impact and are similar to those patterns observed for impact damaged glass

panels. Both the cracking and the delamination are probably the result of

stress waves generated by the projectile impact.

High axial striAin at impart.- Test panels A3, B7 and B8 were damaged

by impact with a high axial load applied ( see table II). Panels A3 and B7

which had an epplied axial strain of 0.0034 and 0.0030, respectively, had a

large region of visually detectable damage in the impact area. Instrumenta-

tion monitoring applied load indicated both panels had significant load

reductions at impact due to loss in panel stiffness (table II). :loth were

subsequently loaded to failure to determine the panel residual strength.

Panel A3, which was loaded to 0.00? )+ and da,mar-ed by intact, was ultrasonically
inspected prior to the residual stren,-th test. An extensive re-ion of sub-
surface damage was detected. A nhotor-raph of the moire frin-e pattern of the

panel loaded prior to failure is shown in figure 10a where the subsurface

damaged region is outlined. given thou-h tr,e da:inje in panel A3 is extensive,

it buckled at an applied strain near the design level and carried additional

load after bucklinr similar to the undamaged panels. The panel failed in the

region of the impact damage (fi,-ure 10b). Comparison of panel A3 with panels

A4 and A5, all of whim were desi,-ned for moderate strains, indicates that the

extent of the subsurface duumu.t-t did riot si nificantly affect the strain level
at which the panel failed.

Panel B7 failed during the residual strength test at an applied strain

of 0.0046 which is about 51 percent of the deli:-n value. Several photo-

graphs of the moire fringc patt ,,rn taken during the residual strength test

are shown in figure 11 alone- with a. photo;-ra.ph o'.' the failed ?panel. The

OFrR)o P^^ Z9
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moire" fringe pattern shows considerable lateral deformation of the panel

center which may be due to impact induced delamination or skin buckling.

When the panel was dammed by impact a reduction in applied load of 28.9 kq

war measured. This is approximately the load which the hir;h axial stiffness

region beneath the center stiffener is cttic ,alated to carry for an imposed

at-rain of 0.0030.

Panel B8 had an applied axial strain of 0.0040 (50 percent of design

strain) and failed catastrophically on impact. The failure was similar to

the ultimate failure of panel 137. After failure the panel was crosb sectioned

and examined with a microscope. This examination revealed considerable

interior damage in the laminate near the impact location. Cracking similar to

that previously discussed was also observed. The combination of applied axial

load and dynL.: - ; ^ stress waves generated by the projectile impact forms a

complicated	 a dimensional stress field in the orthotropic laminates of

these test panels. This sur1rests that a simple criterion may not be adequate

to predict panel failure.

Impact date characterization. A comparison of tF. st results for impact

in the high axial stiffness ref-ion indicates both similarities and differ-

ences in the results for panels of desil-n A and design B. The extent of local

damage induced by impact increas,d with the m;arnitude of alplied axial-

compressive strain for both desi;'ns. The dcsi,n A panels satisfied the

desir,n-strain requirements with impact aa;"l-c and a._so exhibited post buckling

behavior. The design b panels, however, failed due to impact damage at applied

axial :;trains between 50 and 1)6 percent of the design strain level. The impact

test results for bath desi,,ns are sup-trtari -ed in fi,,ure 12 alon;; with the

cutout test data for comparison. Limited local impact damage that was not

noticeable by .-'uual inspection (Panel 41 reduced the ultimate strenfth of

the ucait;z; i3 panels as much as exten::Ivc visible localized aamage (Panel i37).

All three of the desit,n I3 panels dzana:-e.: b- irspa.ct failed at lower applied

strain levels than the control teat	 with the 1.27 cm disneter cutout.

The damaged region caused 1,,, iv,,)act, i:ouever. was lar,er than thy: controlled

cutout. In all cares, the d.una,-c in V ,..- hi -h axial stiffness re,-ion

precipitated failure at au upplied strain well below the design strain level.

AUGINAL PAM 1B
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The resul-%;s of this investigation serest that . impact cEuses considerable
ply delamination, and examination, of the panel cross-section showed that the
delamination occurred primarily at the interface between the 09 and 450

plies (fig. 9). The discrete layers formed by delemi.nation may not be

midplane symmetric and, therefore, exhibit anisotropic coupling effects. The

boundaries of these discrete layers are highly irregular (fig. 10) and are

subjected to high interlaminar normal and shear stresses. Also, delamination

reduces the local cross-sectional bending stiffness and causes locally

eccentric loading which introduces transverse shear forces and moments not

present in the undamaged panel. Thes4 local eccentric forces and anisotropic

effects cause local deformations and strain gradients to occur in the delamin

aced region that could be sufficient to stake local geometric and material

property nonlinearities important factors. Since these eccentrically loaded

layers are thinner and less stiff than the undamaged laminate, they can buckle

locally at a lower load than the undamaged laminate. This could cause a local

load redistribution in the panel that, in turn, could cause the damage to

propagate and the panel to fail. The results of this investigation suggest

that highly efficient graphite/epoxy hat stiffened compression panels designed

for high strain (0.0080) can exhibit serious degradation due to impact damage,

however, efficient damage tolerant designs can be obtained for more moderate

strains.

Impact Damage in the Low Axial Stiffness Region

To evaluate the effect of impact damage in the +45° ply low axial stiff-

ness region, panel B9 was d,-.urged by impact in the skin region between

stiffeners. The panel was loaded to an applied axial strain of 0.0040 when

impact occurred (see table II). No reduction in the applied load was observed

and no increase in axial strain was noted in the gage near the point of impact.

Although some local fiber failure and delamination was observed, the failure

did not propagate. After impact the panel was loaded tc an applied strain of

0.005+ without propagation of local aaiaa e. At this load the panel was

damaged in the remaining undamaged +450 skin region between stiffeners (see

table II). No loss in load or increase in strain near the point of impact

was detected. This panel was subsequently loaded to an applied strain of

0.0062 at which a moire pattern was observed in the end regions (see figure 13)



I I	 I T T
. _T__^._._

12

similar to that observed for the undamaged test panel. A local fringe

pattern can be seen in the figure at each impact location.

Following this test the panel was inspected ultrasonically to evaluate

the extent of the damage region. The subsurface damage region is outlined

on the panel in figure 13. The two damaged regions are about the same size

which indicates that the magnitude of the applied strain had no apparent 	 i

effect on the extent of local damage. These results indicate that impact

damage in the regions having high ax-,al stiffness is signif'cantly more

detrimental than it is iL regions c: low axial stiffness.

CONCLUDING R11,

An exploratory investigation was conducted to determine the effect of low

velocity impact damage on the compression strength of graphite/epoxy hat-

stiffened panels. Fourteen panels were tested in this investigation and the

results indicate i^Lt low velocity impact, typical of that which may be

inflicted by runway debris, can have a significant effect on panel com-

pression strength. Runway debris hazards were simulated in this study by

1.27 em diameter aluminum spheres impacting at velocities around 55 m/s.

Both high and low axial stiffness regions of the panel cross-sections were

subjected to impact. The impacting sphere caused local damage in both regions.

Damage to the low stiffness region was found to have little effect on panel

strength. Impact damage to the high axial stiffness region caused panels

designed for 1.58 M1Q/m at a strain of 0.0080 to fail catastrophically for

applied axial strains above a value between 50 and 58 percent of the design

level. Damage in the high axial stiffness regions of panels designed for

0.53 MtQ/m at a strain of 0.0034 was contained locally and these locally

damaged panels were capable of carrying; the design load.

The extent of local damage induced by impact in regions of high axial

stiffness was found to increase with the magnitude of applied axial com-

pression strain present at impact. The existence of and not necessarily

the extent of local damage was found to be the significant factor in reducing

the strength of panels designed for 1.58 MST/m. Limited local damage that was

not visually detectable {but which could be identifies )y ultrasonic

inspection) reduced the ultimai,Q s'"rength as much as extensive visible damage.

Impact caused considerable ply d plamination and the discrete layers thus formed
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can exhibit anisotropic effects. Such delamination also introduces local

eccentric forces in the panel that develop high normal and shear stresses at

the boundary of the delaminated region, and these delaminated regions can

buckle locally at reduced applied leads. These.effects could contribute to

local load redistribution in the panel and cause the damage to propagate.

A panel designed for 1.58 PLI/m was tested to failure with a 1.27 cm

diameter cutout in the region of high axial stiffness to provide comparative

data for a panel with a well defined flaw. Two types of local failure were

observed near the cutout. first, localized material failure occurred at the

cutout boundary. Second, local buckling in the region of the cutout was

observed prior to failure. The local buckling subsequently precipitated panel

failure at 73 percent of the design strain level. This strength reduction

was not as severe as that caused by impact damage; however, the impact studies

herein caused a damar-ed region that was larger than the 1.27 cm diameter

cutout.

The results of this exploratory investigation suggest that highly

efficient graphite/epoxy hat-stiffened compression panels designed for a

0.0080 strain level can exhibit serious compressive strength degradation due

to impact damage. However, efficient damage tolerant designs can be obtained

for moderate strains, even for cases where re-ions of high axial stiffness

are exposed to impact damat-e hazards.
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TABLE I.- ELASTIC MATERIAL PROPERTIES USED IN PANEL DESIGNS

Longitudinal Modulus	 131 GN/m2 (19.0 x 106 lbf/in2)

Transverse Modulus	 13.0 GPJ/m2 (1.89 x 106 lbf/in2)

Shear Modulus	 6.41 GN/m2 (0.93 x 106 lbf/in2)

Major Poisson's Ratio	 0.38

Density	 1.52 g/m3 (0.055 lbm/in2)

Thickness	 0.14 mm/ply (0.0055 in/ply)

15
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Q52/015/!52 )T

( ±52)S
3.24	 ( ±52/09/±52)T
I.95	 or— (±52/T52)S

3.51	 4.34	 3.51

(a) Design A - Axial strain equals 0.0034 at applied design load of 0.53 IANIM.
Axial stiffness of typical repeating element is 16.5 MN.

3.68

(±45, 03 , ±45, 02)S

( +45, +45)S

5.44	 I
	

(145 9 +45, C41 ±45,03)a

.95	
l— Q45 '+45 )2S

4.72
	

5.33
	

4.72

(b) Design B - Axial strain equals 0.0080 at applied design load of 1.58MI/m.
Axial stiffness of typical repeating element is 31.T M.

Figure 1.- Design details of typical stiffener cross-sections
(dimensions in centimeters).



vCVarW

M
 
N

C
M

J
 
M NL1-)

4
J
 
U

acrJ
 
Lr

da
 
a
u

T
 
f

►
r
0
 
a

.0
 1

0
^
.
 
1
2
.

a
 
N

rO

rLmar•^	
a

4
J
	

V

a
4-

.
n
	

.r.
O
	

^
L
	

O
e
1

4
J
a

V
n
 c

a
 .o

1—
 a

.

ICI\

v
^

r
 
N

4
1
 
4
1
 w

Z
 ♦•► V

M
•r O

•
F
.
r

J
 
G

04
J

	

•^
	

IL;

	

►̂	
O

I
Y

	

.o	
^Ui"Q

O

"
4RI

4
4OUcdV1

NO

	

C
	

t
^

	

O
	

^

s`
ra



dl Al designed for strain c:	 -	 b7
louded to an applied axial rtr--_:,

:.0036•

Figure 3•- Photographz of Lae moire' fring°_ patterns fOr tyyica^-
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Figure 5.- :train mcaoured in the vicinity of the 1.27 cm
diameter cutout on Panel B5. E 	 denotes measured
strain at indicated location at Xan applied axial

panel strain of Ea.
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