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CHAPTER I 

INTRODUCTION AND STATEMENT OF THE PROBLEM . 

The study of atmospheric flow over buildings or 

other man-made surface obstructions has gained momentum in 

'recent years due to the possibility of the operation of 

short take-off and landing (STOL) aircraft in addition to 

helicopters from within the heart of a city. Unsteady flow 

phenomena such as induced vortex fields, cross-winds, and 

separated flows near these obstructions pose a danger to the 

operation of low-speed aircraft, especially in a strong 

turbulent wind. In fact, some accidents involving small 

aircraft while taking off from or landing in around airport 

terminal buildings have been traced to these flow phenomena. 

In structural design of buildings or bridges the civil 

engineer has always been concerned about the dynamical loads 

induced by these complex flow phenomena on such structures, 

for the lack of understanding of which, a conservative 

factor of safety has been used in their design. Even then, 

occasional incidents of glass panes being shattered out of 

buildings in strong winds have been reported. Aero-elastic 

phenomena such as buffeting and stalling arise primarily out 

of the separation phenomenon. Vibration problems involved 

with the collapse of the Tacoma Narrows bridge stemmed from 

these flow phenomena in a strong turbulent wind. There have 



also been reports of severely unpleasant situations around 

downtown shopping centers due to strong recirculating flow 

behind the buildings. 

These flow phenomena are so complex that they have 

to be dealt with separately. In this study the problem of 

flow separation behind an obstruction, its reattachment to 

the ground, and the recirculating flow in the cavity or the 

wake zone thus formed has been investigated and solved by 

considering the simple configuration of a rearward-facing 

step. Some experimental data are available for such an 

obstruction and permit computational solutions to be 

compared with experimental findings. To simplify the 

problem further only two-dimensional flow is considered. 

The problem has been attacked two ways. While the 

first method is the solution of general Navier-Stokes 

equations as applicable to turbulent atmospheric flow, the 

second approach is an integral technique to predict the 

velocity profiles in the recirculation region by making use 

of the experimentally known pressure fields. From the 

former approach vorticity and stream function are obtained 

as a solution without taking recourse to the knowledge of 

pressure. However, once the solution is obtained, pressure 

field can readily be achieved. 



CHAPTER II 

THEORETICAL REVIEW 

In this chapter major theories that have been put 

forward to predict the separation phenomenon of laminar and 

turbulent flows over an obstacle are discussed. Results 

from experiments conducted by various authors are reviewed 

to furnish appropriate empirical data in terms of constants 

and parameters which are used in both approaches to the 

numerical solution of the problem presented herein. 

This chapter is divided into three sections. In 

the first section an introductory paragraph about the 

phenomenon of separation is given. In the second section 

the mechanics of the flow region between separation and 

reattachment and that downstream of reattachment is reviewed. 

In the third section various analytical models as proposed 

by different authors to predict the parameters associated 

with the laminar and turbulent separation, for example, 

velocity, eddy viscosity and turbulence intensity in the 

free shear layer, and base pressure are discussed. 

I. SEPARATION 

The phenomenon of separation occurs due to the 

presence of either viscosity and a pressure gradient or of 

an abrupt change of geometry. In the latter case, on most 

3 



j structures, it occurs from the sharp edges. Separated flows 

are formed, for example, upstream of a forward-facing step, 

downstream of a backward-facing step, within a cutout in a 

body surface, and on the upper surface of an airfoil at high 

angle of attack. 

When a two-dimensional flow separates due to 

viscosity in an adverse pressure gradient, retardation of 

the fluid close to the surface causes a rapid thickening of 

the boundary layer. The point where the velocity gradient 

at the surface in the direction normal to the wall decreases 

to zero is defined as the point of separation. Downstream 

of this point flow reversal takes place near the surface 

(Figure 2-l). At the separation point the shear stress is 

reduced to zero. Experimentally, the occurrence of zero 

shear stress and the flow reversal near the surface has been 

found for strictly a steady, two-dimensional, incompressible 

laminar flow. When turbulence and three-dimensional effects, 

as in the case of a building, are introduced, this 

phenomenon is not well defined. 

Rearward-facing step-flpw separation is charac- 

terized by a relatively small angle of incidence between the 

streamline and the body at the point of separation and at 

the pojnt of reattachment; but in the case of bluff-body- 

flow separation, the streamline at separation and 

reattachment points is inclined almost perpendicularly to 

the body and the reattaching surface. The step-flow and 

4 



(a) Flow past a body with separation 
(S = point of separation) 

(b) Shape of streamlines near point 
of separation 

1 4im!iL ‘F’ b;- PI 

S 
I 

(%I >o; g, =o; (S, co 
0 0 0 

(c) Velocity distribution near the 
point of separation 
(PI = point of inflection) 

Figure 2-l. Separation of the boundary layer 1221. 



bluff-body-flow types of separation arise due to an abrupt 

geometrical change in configuration of the body. Separation 

bubbles on airfoils occur due to the dynamical interactions 

of viscosity and an adverse pressure gradient which sets up 

recirculating motion on the airfoil surface. 

The flow separation depends heavily on whether the 

flow is laminar, turbulent, or transitional. In subsonic 

flow pure laminar separated flow does not hold any practical 

importance [ll;l but for compressible flow, and especially 

at higher Mach number, laminar separation is important, 

since it is very stable and may persist to high Reynolds 

numbers. In this study, however, only low Mach number 

incompressible flow is considered. 

II. MECHANICS OF THE FLOW REGION 

Flow Hetween Separation and Reattachment 

Shear and turbulence in the incident flow are two 

important features of flow separation around a surface 

obstruction, The distorted flow over a block geometry 

building consists of a displacement zone, a wake region 

which encloses the rear separation bubble, and an upstream 

separation bubble (Figure 2-2). Shear generates a swirling 

flow in the wake or cavity zone, which can be interpreted as 

the accumulation of vortex lines in the wake region by the 

1 Numbers in brackets refer to similarly numbered 
references in the bibliography. 

6 



Up&ream ncparr t ion 
bubble or durn .a.sn 
IcOIl. 

Rear saparation bubble 
or cavity cone 

Figure 2-2. Definition of flow zones near a sharp- 
edged building [2]. 
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passing flow. Turbulence thickens the shear layer which 

encloses the wake region. For some distance over the 

obstruction, and in the wake zone, turbulence is very large. 

The fluctuating component can be as high as 40% of the 

steady component 121 and is generally largest on the edge of 

the shear layer. In most cases the vortices of the sepa- 

rated flow are unsteady, and their experimental study is 

difficult. 

Wind tunnel studies of separation over rearward- 

facing steps and bluff geometries [l through 111 provide 

some insight into the physical aspects of flow separation 

and recirculating flow formation in the cavity zone. When a 

two-dimensional turbulent flow separates from'the sharp 

corner of a back step, a shear layer with high vorticity and 

low static pressure is formed which spreads linearly down- 

stream (for steady, two-dimensional laminar flow the 

spreading is parabolic)G Momentum diffuses from this 

turbulent mixing layer into the cavity zone which sets the 

wake fluid into motion, and thus the sharp velocity 

discontinuity at the wake boundary is smoothed out. In the 

'reattachment zone the pressure increase arising out of the 

compression creates a steep pressure gradient near the 

surface such that part of the flow near the surface returns 

upstream to feed the recirculation zone. Due to this 

entrainment process the velocity and pressure variations are 

large, and the wake boundary is not well defined. For 



,theoretical analyses, however, this boundary, also called 

the dividing mean streamline, is chosen as the streamline, 

J, = ,o. This line separates the mixing layer, which 

comprises the original and part of the new shear layer, and 

the outer (undisturbed) flow from the recirculation region 

(Figure 2-3) where the fluid recirculates as a large eddy. 

The corner ,eddy is formed as a result of a shear-layer 

separation which is induced by the reverse flow now 

approaching the step as a forward-facing step. Alternately, 

for theoretical analyses the steady state shape of the 

recirculation bubble may be assumed to arise from the 

balance of the rate of entrainment from the bubble into the 

turbulent mixing layer along the bubble boundary and the 

rate of reversal of fluid back into the bubble [2]. 

Tani, et ali 181, used the model shown in Figure 

2-4 for turbulent flow separation behind a back step, 

measuring surface pressure coefficients averaged over a set 

of measurements, 

C 
P-P, 

P= lj2 pu: ' 

where p and p, are the local and undisturbed static 

pressures, respectively. These are plotted versus the 

nondimensional distance, x/h, in Figure 2-5, where x is the 

horizontal distance downstream from ..the step of height h. 

Except for steps of very small heights, the base pressure 
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was found to be insensitive to the step height and to the 

initial boundary layer thickness, the reason apparently 

being that the cavity flow is chiefly maintained by the 

turbulent shear stress, which is almost independent of the 

step height and the approaching boundary layer. It was seen 

(Figure 2-6) that turbulence and shear stress increase down- 

stream in the mixing region and that the distribution across 

the mixing region of mean velocity, turbulence intensity, 

and shear stress is also insensitive to the step height and 

initial boundary layer thickness. The reattachment length 

was found to be equal to about seven step heights downstream 

of the step. 

Experiments conducted by Bradshaw and Wong [4] 

show that for a wind tunnel speed of 25 meters per second, 

the recirculation zone is about six step heights long for a 

step height of 2.5 ems. It was found that after reattach- 

ment the turbulent shear layer splits up, part of which 

proceeds downstream with the eddy length scale considerably 

reduced, and the other part of which turns back upstream 

toward the recirculating region to supply the entrainment. 

Large eddies in the shear layer are virtually split in two 

if the fraction of the shear-layer mass flow that is 

deflected upstream at reattachment is -appreciable, which is 

the case with a large initial boundary layer thickness and 

hence the atmospheric boundary layer. As a consequence, 

the turbulence structure is drastically different from that 
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found in any conventional shear flow. It had been argued 

earlier that large eddies are deflected alternately upstream 

and downstream rather than split as proposed by Bradshaw and 

Wong [41. This would lead to a stronger unsteadiness in the 

wake than is normally found. At reattachment the thickness 

of the new shear layer is of the order of a step height 

(Figure 2-3, page 10). Curvature of the mean streamlines 

and a rapid distortion due to the pressure field near 

reattachment are the factors causing the initial shear layer 

to split roughly in half at reattachment (Figure 2-3). 

As measured by Tani, et al. [81, and Mueller and 

Robertson [9], the shear stress in the free shear layer is 

much-higher than the value of 0.01 pU12 (Ul is the free 

stream velocity) found in a plane mixing layer. This is 

true even though the curvature of the streamlines associated 

with a free shear layer tends to decrease the shear stress 

and turbulence intensity. The reason for higher stress is a 
that the effective velocity difference across the shear 

layer is more than Ul due to the reversed flow in the 

separated region. Although the reverse flow velocity does 

not seem to exceed 0.2 Ul , the shear stress exceeds 

(1 + 0.2P times the plane shear layer value. Shear stress 

in the reversed flow region is not negligible [7, 10, 111, 

and it seems that the shear stress in the shear layer is 

increased by the "feedback" or the re-entrainment of 
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stress-bearing fluid from the separated-flow region. Such a 

mechanism needs further experimental investigation. 

The mean velocity gradient, g , on a given stream- 

line will be nearly the same before and after the region of 

rapid distortion at reattachment [4], that is to say, the 

mean vorticity is nearly conserved along a streamline; but 

despite this the decrease in Reynolds stress, -u'vlmax , 

accounts for a sudden drop in the value of maximum shear 

stress near reattachment (Figure 2-7). Evidently large 

changes in turbulence structure occur when the shear layer 

bifurcates at reattachment. 

As has been reported by many authors, for a thick 

initial boundary layer the maximum shear stress occurs near 

the dividing streamline throughout most of the separated 

shear layer except near reattachment where the Reynolds 

stress, -u'v', decreases rapidly to a value of zero. The 

turbulence intensity on the dividing streamline also 

decreases, but less rapidly, Although the measurements of 

shear stress near reattachment are not completely reliable 

141, it is fairly well known that the surface shear stress 

rises rapidly after reattachment. 

Flow Downstream of Reattachment 

On the basis of experimental evidence, Bradshaw 

and Wong [41 define and classify the perturbation in the 

initially thin shear layer with the value of the parameter, 
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h/6 o (step-height/boundary layer thickness measured at the 

separation point), as follows: 

1. Weak perturbation : h/60 << 1. 

2. Strong perturbation : h/60 = O(1). 

3. Overwhelming perturbation: h/60 >> 1. 

(This parameter has .also been found useful for classifying 

the flow downstream of reattachment.) An example of an 

overwhelming perturbation is the mutation of a boundary 

layer to a wake or a mixing layer. The flow of a thin 

boundary layer over a downstream-facing step involves two 

such perturbations, boundary layer to mixing layer and 

mixing layer back to boundary layer. The first perturbation 

can be ignored, and the flow can be treated as if a fully 

developed mixing layer appeared at the separation point. 

Since the atmospheric shear -layer is generally large 

relative to any step height, that is, h/60 << 1, a building 

in atmosphere could be classified as a weak perturbation. 

An equilibrium boundary layer is defined as one 

for which the turbulence structure is not strongly disturbed. 

The relaxation of the boundary layer after reattachment, a 

process where the disturbed boundary layer returns to its 

equilibrium state, has been found to be very slow [4, 12, 

151. It is generally assumed that the distribution of the 

average velocity can be described by universal laws applied 

to two layers in the turbulent boundary layer, the "Law of 

the Wall" and the "Law of the Wake." If this average 
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velocity distribution follows these universal laws, it will 

be assumed that the turbulent boundary layer is in an 

equilibrium state [121. 

The "Law of the Wall" and the "Law of the Wake," 

for instance, as defined by Coles [131 are written as 

follows: 

u zu -,=- 
U 

i Rn + 
T 

+ c + % sin2($ $1 . 

ii: average velocity with respect to z, 

z : perpendicular distance from the wall, 

U Tf qF, shear stress velocity, 

v : kinematic viscosity, 

Tr : a function of pressure, 

K : 0.4 (von Karman's constant). 

Townsend [14] has an alternate approach to the 

definition of an equilibrium turbulent boundary layer. 

Townsend defines the state of equilibrium to exist between 

the production of Reynolds shear stress and the dissipation 

of turbulence energy which introduces gradient terms such as 

g and g in the analysis. Obviously, the law of the wall 

and wake is a simpler approach. 

The characteristic lengths that describe the 

average velocity in a turbulent boundary layer are V/U~ in 

the range of the Law of the Wall and 6 in the range of the 

Law of the Wake. It is reasonable to assume that the 
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relaxation process could as well be characterized by any two 

lengths 1131. However, in the author's belief [12], 

additional parameters seem necessary to determine the 

process of relaxation completely. Once experimentally 

determined, they could be incorporated into the calculation 

procedures. However, these parameters are yet unknown. 

The relaxation of the shear layer after reattach- 

ment to the ordinary boundary layer has been found to be 

very slow and non-monotonic 141. Earlier reports suggested 

that the relaxation was monotonic [8, 101. However, the 

results of [41 show that the surface shear stress does not 

return monotonically to the constant pressure equilibrium 

value and that it takes more than 50 step heights to return 

to its equilibrium value. These results correspond to an 

almost overwhelming perturbation, [h/b o = Q(lO)l. But even 

for just a strong perturbation, [h/A0 = O(l)], Wauschkuhn 

and Ram [12] found that more than 20 step heights downstream 

were required to reach the equilibrium state. The results 

of.Wu, et al. 1151, from experiments to investigate different 

features of flow separation over a back step (a strong 

perturbation) also indicate that this relaxation distance is 

very large: and it was observed that static pressure takes a 

shorter distance to return to its equilibrium value than the 

velocity in the shear layer. These results indicate that 

the earlier belief which considered the mean velocity as 



following the logarithmic law of the wall close to the 

surface in the relaxation region is wrong. 

The recovery of the boundary layer after reattach- 

ment depends appreciably on the obstacle shape, even when 

the separation occurs from a sharp edge. In other words, 

obstacle shape affects the strength of the recirculation in 

the cavity zone. Relaxation behavior of the boundary layer 

after experiencing an adverse pressure gradient, for example, 

on a flat plate, which is monotonic in nature, is different 

from that of the boundary layer after reattachment, in the 

case of a step-flow, the primary reason being the rapid 

distortion of the flow in the reattachment region. The 

relaxing boundary layer in the case of a strong perturbation 

experiences more severe disturbance than in that of an 

overwhelming perturbation, although recovery from the former 

is quicker for a given initial boundary layer thickness, 15~. 

After reattachment, the turbulent length scales, 

especially the dissipation length parameter, L (for ordinary 

boundary layer, L = KZ), are almost independent of z except 8 

for a sudden drop to a value of zero at the surface [43. 

This reduces the velocity gradient and hence the velocity in 

the inner layer below the value predicted by the logarithmic 

law, 

au hW/P) l’* -= az KZ 
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which demonstrates that the Law of the Wall is inapplicable 

under these conditions. Alternatively, the local-equilibrium 

form of the mixing-length formula 1141, 

au (T/P) l’* 
E= KZ 

gives even higher values of the velocity gradient. The 

failure of this formula can be traced to the fact that 

turbulence is not in local (energy) equilibrium, but changes 

rapidly in the streamwise direction, and that the length 

scale of turbulence is not proportional to z, but increases 

much more rapidly with z near the wall. 

The outer layer, defined as one which retains the 

characteristics of the mixing layer, may take longer to 

return to the normal boundary layer state, since the outer- 

layer eddies, being larger, have longer lifetime than the 

inner-layer eddies. The effects of rapid distortion in the 

reattachment region propagate to the outer layer and change 

its mixing-length characteristics. Due to bifurcation of 

the mixing layer in the reattachment zone, the central 

region of the mixing layer comes into close contact with the 

surface; and hence there is a sudden jump in the value of 

apparent mixing length or true length scale of turbulence, 

L=r (-u'v' ) 3'2 
lssrpatron rate 

above the local equilibrium value with increasing z. 
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Mueller and Robertson [lo] conducted experiments 

,on wedge-type roughness elements in air for the element- 

height Reynolds numbers such that the shear layer was 

turbulent downstream of the element. Turbulence was kept 

low by using mesh screens. The reattachment point was 

determined as the location where the shear stress value was 

zero, which was roughly seven element heights downstream. 

The mean velocity profiles behind the elements are shown in 

Figure 2-8. Boundary layer thickness is seen to increase 

slowly with distance downstream. Local skin friction 

coefficients, Cf , were obtained from the profiles near the 

wall from the Law of the Wall given below: 

w 
U cf ZU 

- = 5*6(+ cf 
U [l + log(+) + + log($l 

r 

The results are shown in Figure 2-9. With the assumptions 

of a fully developed mixing region for the largest element, 

shear stress at the edge of the separation bubble, the 

dividing streamline, was calculated from the error function 

curve [161. The calculated and the measured shear-stress 

profiles are compared in Figure 2-10. The width of this 

mixing region was found to increase linearly with distance 

from the roughness element. 

The authors [lOI classify the turbulence structure 

behind an obstacle into two stages. The first, one of 

excitation, from separation to the reattachment and the 
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second, one of decay, after reattachment to the equilibrium 

state downstream. These two regions are clearly defined in 

Figure 2-11. From Figure 2-12 it can be seen that the shear 

stress has an initially high value in the excitation region. 

It decays downstream to the normal boundary layer value. 

For smaller elements there is"a different maximum shear 

stress curve for the excitation regionwhich indicates that 
., : 

the mixing layer did not reach the fully developed stage. 

Also, interference from the base could affect the shear 

stress curve for smaller elements. For the smallest element 

the boundary layer was seen to have -achieved the equilibrium 

state 40 element heights downstream of the element (Figure 

2-8). At this location the boundary layer was approximately 

three times the element heights thick. Also, the sequence 

of profile shapes downstream of reattachment is just the 

opposite to that found in the case of approaching separation 

in a boundary layer flow. These experimental results were 

obtained for a strong or overwhelming perturbation, 

MO/h <i 11, and the initial boundary layer had no influence 

on the results. 

Good and Joubert [51 experimentally obtained the 

static pressure variations across the separated region 

behind a bluff plate at various stations (Figure 2-13). An 
I 

important feature of these profiles is. that the locus of 

their minimums is approximately parallel to the ground and 

that it traces the region of high turbulence which initially 
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Figure 2-11. Turbulence profiles behind roughness elements [lo]. 
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coincides with the dividing mean streamline but continues to 

remain constant in height from the‘ground towards the end of 

the wake. The pressure losses associated with these minimums 

in the profile are believed to balance'the large gradients 

in the transverse Reynolds stresses. 

III. REVIEW OF ANALYTICAL MODELS 

There is literature available regarding the 

determination of base pressure for two-dimensional steady 

(without vortex shedding) base flow. Tanner [171 has 

compared the theories of Chapman, Korst, Nash, and Kirk. 

The theory of Tanner has been discussed in comparison to 

these theories [171. 

Most of these models assume very thin boundary 

layer at separation so that the assumption of similar 

velocity profiles is valid. In order to take the effects of 

boundary layer thickness into account, Kirk assumes that the 

shear or the mixing layer behaves as if it started some 

distance ahead of the base instead of starting at the 

separation point. It was seen that the base pressure calcu- 

lated thus will be higher than that for vanishing boundary 

layer thickness. Also, neglecting the curvature of stream- 

lines at separation (true for an "ideal" jet boundary), the 

pressure of the uniform stream ahead of separation and the 

pressure at the outer edge of the mixing zone are the same. 

In particular, in the calculation of, base pressure Chapman 
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assumes that a balance exists between mass flow drawn from 

the base region by the mixing layer and mass flow reversed 

back into the base region by the pressure rise through the 

reattachment zone, and also that the compression through the 

reattachment zone is isentropic along the dividing stream- 

line. Owing to the former assumption, for steady flow 

without bleeding into the wake region, the dividing stream- 

line, as calculated from the mixing layer theory, must also 

be a dividing streamline at reattachment. Nash improved the 

reattachment criterion by taking into account the fact that 

the pressure at the reattachment point, p, , is not equal to 

the final recovery pressure, pl , far downstream as had 

previously been assumed, but is actually less than pl. 

Nash's reattachment parameter, 

N= pr-pB 
Pl-P, ' 

where pB is base pressure, was determined experimentally for 

a back step for Mach number equal to zero to be equal to 1.6, 

and not equal to unity. 

The integral theory of Tanner predicts base 

pressure for subsonic flows and could be extended to apply 

in supersonic flow also, The main interest in Tanner's 

model as far as this investigation is concerned is not in 

how the base pressure is calculated, but in the way the wake 

region is modeled. Referring to Figures 2-14 and 2-15, a 

mixing process is assumed to occur in the region from the 
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separationpoint A to the section I which corresponds to 

constant pressure mixing between a uniform external stream 

and fluid at rest. Due to this mixing, fluid is withdrawn 

from the dead-air region, This phenomenon will be called 

"outflow from the dead-air region." The dividing.or 

reattachment streamline 0 3 separates the outer flow fluid 

from that withdrawn from the dead-air region. Experimental 

results [18] show that the velocity and hence the pressure 

at the boundary 1 , 0 which separates the external flow from 

the mixing region, tend to remain constant approximately up 

to a section midway between the separation and the reattach- 

ment points. At section I the mass flow between the 

boundary @ through which the mass outflow from the dead- 

air region takes place and the dividing streamline @ has 

its maximum value because then the backflow into the dead- 

air region begins. This maximum value is given by 

= IZt 
Z r 

pudz (2.1) 

Tanner relates ma to the pressure drag and hence the base 

pressure and proposes the following expression for the 

velocity profile in the mixing region (Figure 2-16): 

U - = +[l + sin 1 
T (z-q 

u2 h -$I1 , 

where U2 is the outer-flow velocity. This profile is an 
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Figure 2-16. Velocity profile in the mixing 
region at the end of the outflow region [171. 
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approximation to the error function profile which is 

generally valid in a mixing layer. 

Considering the static pressure throughout the 

control volume ADCA in Figure 2-15, page 32 (the flow 

approximates the flow in a free-jet boundary), as constant, 

the momentum equation reduces to 

zzg pU2dz - u2 z zg pudz = 0 o 
Z r Z r 

(2.2) 

Making use of Equations (2,1), (2.21, and some 

empirical parameters such as h/d, Tanner calculates what is 

called the second outflow function, Considering the region 

between I and R, Tanner then calculates the first outflow 

function, The intersection of thes_e two functions gives the 

base pressure coefficient, HoweverY the parameter, h/d, 

which is closely related to the spread rate parameter, c 

[19 through 251, as used in other theories, cannot be 

determined theoretically, As the spreading of the turbulent 

mixing zone is linear, 0 will be constant at constant Mach 

number. Different values of 0 have been used in the 

literature. For incompressible flow, 0 as a function of the 

wedge angle, I$ (for flat plate perpendicular to the air 

stream, $ = 18OO; for flow past a back step, $I = OO), is 

shown plotted in Figure 2-17 (experiments conducted by 

Tanner [171) n To account for compressibility, CT is given by 

the relation, a/o0 = 1 + 0,23 M2 , where a0 is the value of 
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the spreading rate parameter corresponding to incompressible 

flow, and where M2 is the Mach number at the outer edge of 

the mixing layer, 

The two-dimensional problem of constant pressure 

mixing of laminar two-parallel streams has been considered 

by Yen [261. The interface velocity and the location of the 

interface in the mixing region has been determined by 

considering the conservation of z-direction momentum through 

a control volume analysis. Due to mixing, there arises a 

transverse force acting on the dividing wall. For a free 

stream velocity ratio of 0.5 and 0, the interface deflects 

towards the higher and the lower velocity streams, 

respectively. 

Kubota and Dewey [271 used a momentum integral 

technique to find the velocity profiles in the constant 

pressure laminar free shear layer. The shear layer was 

divided into two parts, one above and the other below the 

zero streamline; and separate polynomial and exponential 

expressions were used to describe the velocity profiles in 

these two regions. Closed form solutions of the momentum 

equations were obtained. 

The constant pressure laminar mixing problem was 

solved assuming the boundary layer approximations to be 

valid for the free shear layers with finite initial 

thickness. The continuity, momentum, and energy equations 

were reduced to the incompressible form by using Howarth 
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transformation, By using suitable matching conditions the 

.momentum equation is decoupled from the energy equation.. In 

the transformed coordinate, 

and the streamwise coordinate, s, the equations to be solved 

are of the incompressible form, 

u$+v++ a2u -t 
e a2i2 

where s and 'i;' are the distances measured along and normal to 

the dividing streamline, and p, and ve are the values of 

density and kinematic viscosity in the undisturbed stream. 

The velocity profile is represented by an analytic 

function containing several parameters as functions of s. 

The total number of boundary conditions applied at the 

extremities of the shear layer, at z = 0, and the moment 

equations obtained by multiplying the streamwise momentum 

equation by u3(j = 0,1,2 ,a... ) must equal the number of 

parameters appearing in the velocity profile. As the down- 

stream velocity profile is quite different from the initial 

profile due to the non-similar growth of the free shear 

layers with a finite initial thickness, it is difficult to 

38 



represent the profile as a whole by a single expression. 

Hence the layer is divided into two regions, one above the 

zero streamline and the other below it. The profiles for 

these two regions are assumed to be of the form, 

U -= 
U f 

e 
= A0 + e-'n y aknk f n = $ 

k=O 1 

and 

U -= g =Bo+e ah 
U e 

y bkhk , h = +- , 
k=O 2 

respectively: 61 and 62 are the upper and lower shear layer 

thicknesses, respectively: m and n are so chosen that the 

profile is realistically approximated. The profile 

parameters, A0 , ak , B. , bk , 61 , and 62 are determined 

by the boundary conditions at the lower and upper 

extremities of the shear layer, the continuity of the 

velocity and its derivatives at z = 0, and the moment 

equations. The possible boundary conditions for the outer 

and inner boundaries are, respectively, 

u =o l-j=1 
) f = 1 , f’ = f” = . . . . = 0 

u cl q-f03 

and 

u =(-j h=-1 
} g = 0 , g’ = g” = ..** = 0 , 

u ~1 h-t-m 
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where the primes denote derivatives of f and g with respect. 

to n and h, respectively. The matching conditions at z = 0 

are given by 

For a quadratic profile, CI = 0 and m = n = 2; 

letting j = (O,l), it was shown that (u/ue)zZO was 0.596, 

which is very close to the exact value of 0.587 found by 

Chapman 1281. Using an exponential profile, (a = l), 

letting m = n = 0, and j = (O,l), (u/ue)zZo was found to be 

0.618. 

At the s.eparation point, s = 0, (u/ue)zZO = 0, 

&2 = 0, and 61 is equal to the initial shear layer thickness, 

60' In the quadratic and the exponential profiles only one 

parameter, (z/6o), specifies the initial profile. If two or 

more such parameters were available, the effect of the 

initial profile on the rate of growth of (u)~=;~ would be 

known. Figure 2-18 shows the effect of the shear-layer 

profile on velocity along the zero streamline. 

The Karman-Pohlhausen method for two-dimensional 

laminar flows does not give reasonable results in the region 

of adverse pressure gradient, and particularly when 

separation occurs, Between the separation and reattachment 

points this method fails to represent any real situation. 
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Where the pressure gradient is zero, the Karman-Pohlhausen 

method must yield an attached Blasius-type velocity profile. 

In Figure 2-19 reattachment will be predicted upstream of B, 

the region of zero pressure gradient, where in actual fact 

reattachment occurs downstream of B. An integral method 

first proposed by Walz [291 and modified by Tani [30] has 

been demonstrated by Lees and Reeves [31] to produce 

profiles with reverse flow even for zero pressure gradient 

and, therefore, could predict the behavior of separated flows. 

Also, this method does not require the empirical data which 

other methods require, for example, modified Crocco-Lees 

theory [321. 

Modeling the flow separating from the sharp edge 

of a back step as a free-jet boundary between the outer flow 

with initial velocity, ur , and a lower stream with a 

velocity of zero, and assuming zero initial boundary layer 

thickness, similar velocity profiles are given by the 

expression for the velocity profile in the region of a jet 

interaction [221 as 

U 
u=- 2r (1 + 

where the transverse coordinate, 

erf 5) , 
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Figure 2-19. Typical static pressure variation 
on a flat plate in supersonic flow with 
separation induced by an incident shock wave. 
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and 

5 
erf 5 = 2 1 e -t2 dt 

Jii 0 
. I  

The spreading parameter, u, is an empirical 

constant. Various values of u ranging from 9 to 15 have 

been used for back steps for incompressible flow. Plate 

1231 used u = 14.5; and the x-axis was taken as the locus of 

points where u/ur = 0.5, and the z-axis as perpendicular to 

X. Comparison of Plate's solutions with the experimental 

data (Figure 2-20) shows some disagreement at the negative 

value of 5 where the lower boundary begins to influence the 
. 

data. This is attributed to the theoretical model which 

assumes that the lower velocity stream extends to minus 

infinity. The theory of free-jet boundary yields a Gaussian 

shear stress distribution, which is in good-agreement with 

the experimentally measured shear stress distribution [33]. 

To make use of the error function profile, the 

curve given by u/ur = 0.5 must be known either experimentally 

or theoretically. A theoretical prediction (work in progress 

by Bitte and Frost at The University of Tennessee Space 

Institute) can be made on the basis of free streamline 

theory, which is based on the velocity distribution in the 

undisturbed boundary layer, the shape of the obstacle, and 

some empirical input related to pressures on the obstacle 

and the reattachment length. 
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Camarata [211 correlates the velocity profiles 

obtained from experimental data in the similarity region 

close to separation with the power law profiles, 

U l/n 
- = $4 , U e 0 

with n varying from 6 to 9. The correlation parameter is 

g (u/u, = 0.5) , 

where 

and 

9 = u/ue 

u : e free stream velocity, 

(So: initial boundary layer thickness. 

With this correlation and the two-layer (outer and 

inner mixing zones) model for the velocity profile in the 

shear layer, an integral procedure [21] which does not need 

any specification of the shear stress distributions is 

readily applied to calculate the profiles. 

The pre-asymptotic region of the free shear layer 

is divided into an upstream segment and a downstream segment 
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(Figure 2-21). 

stream segment 

The profile in the shear layer in the down- 

is an error function profile, 

U 
U erf = 9 (1 + erf %) 

Xn the upstream segment, the shear layer is partly a 

truncated error function profile for the inner mixing zone 

and partly a power law profile for the outer mixing zone, 

the free-stream edge of which does not appreciably change in 

height above the separation point at any x-location. The 

reason for this is that the initial boundary layer has a 

very slow growth relative to the rate of spreading of the 

mixing layer. Thus 6. ," constant for all x stations. Since 

the whole initial boundary layer cannot be affected 

immediately by the abrupt removal of the wall, it is 

physically realistic to subdivide the shear layer as 

mentioned above. 

Referring to Figures 2-22 and 2-23, an empirical 

correlation curve specifies the slope of the velocity 

profile in the pre-asymptotic region at the point, AZ, where 

u/u, = 0.5. Therefore, 

l-n 
du = 0.5) = ;,& 

-ii 
E (u/u e (AZ) (2.3) 

6O 

The left-hand side of this equation is known; and for a 

given x, n is known. Hence Equation (2.3) will yield AZ. 

47 



4 

I Y 

Figure 2-21. Flow model for pre-asymptotic kegion [21]. 
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- 

Also, 

uhz 2 
d"erf r(Az) = 2 f e-(,) = $(u/ue = 0.5) . (2.4) 

For a given x, u can be iteratively calculated from 

Equation (2.4). Therefore, the error function profile is 

known. 

Conservation of momentum equation yields 

Z Z 2 m 
/ 
0 

u; (mo) 
z/n0 mu 

dz = / +(l + erf $)' dz , (2.5) 
-co 

where n o (the value at separation) has been taken as 7 1211. 

The preceding equation can be solved for zm 

iteratively. Hence the velocity profile is completely known. 

Comparison of experimental data with the solutions is shown 

in Figure 2-24. 

Far downstream from the asymptotic region, which 

is not a similarity region, no correlation is available; and 

hence u has to be specified. From the theoretical estimates 

of earlier authors [21] u in this region is approximated by 

the relations, u = 12 + 0.8 Me , Me being the free-stream 

Mach number. Hence the transition between the asymptotic 

and the pre-asymptotic regions occurs at the point where the 

values of u obtained from the two criteria are equal. 
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Korst and Chow [191 have compared various 

analytical and experimental constant-pressure free shear 

layer similarity profiles by the use of spread rate 

parameters. It was found that in addition to the flow 

conditions, u also depends on the analytical model, the way 

matching is done with the experimental data, and the 

viscosity model of turbulence employed. Although matching 

along the dividing streamline could be done, matching at the 

half-free-stream-velocity point, u/ue = 0.5, was observed to 

be more realistic; as shown by Figures 2-25 and 2-26. 

Various profiles agree very closely at this point. 

The initial conditions like the initial boundary 

layer thickness, the initial velocity profile, and the 

initial distribution'of turbulence intensity influence the 

flow downstream in the free shear layer. As long as the 

change in,the pressure gradient is small, the turbulent flow 

equations can be laminarized to some accuracy through the 

use of an eddy transport coefficient concept. Turbulence 

shear, stressi in analogy to laminar shear stress, iswritten 

as 

where E is the eddy viscosity. Various eddy viscosity 

models have been examined [2Ol. These viscosity models as 

applicable to incompressible flow are as follows: 
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E = k19u., 

E = k2(x + xO)ue I 

E = k u2/@) 3 e a2 D ' 

E = k4(x + xoJ2 e , 
I I 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

where kl , k2 , .k3 , and k4 are 

constant x o is the shift of the 

presence of an. initial boundary 

initial thickness. Subscript D 

streamline, and e indicates the 

layer (Figure 2-27). 

empirical constants. The 

virtual origin due to the 

layer. It accounts for the 

refers to the dividing 

outer edge of the mixing 

'In Equation (2.9) Prandtl's mixing length, 

expressed by 5(x + x0), is assumed proportional to the 

streamwise distance, x. Equations (2.6) and (2.7) are 

similar to Prandtl's simplified hypothesis [22] in which E 

is assumed proportional to the width of the mixing layer. 

Nash [24] used Equation (2.8) in his study of the pre- 

asymptotic shear layer. 

At the separation point a singularity exists, and 

there is a small neighborhood where a discontinuity in shear 

stress occurs. This neighborhood for flat plate has been 

found to be O(LR'3'4), where L is the length of the plate and 

R is the Reynolds number based on L. Neglecting this 

extremely small region, laminarized boundary layer equations 
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describe sufficiently accurately the similar and nonsimilar 

flow regions in a free shear layer. The effect of the sharp 

turn of the attached boundary layer flow on the initial 

velocity profile is neglected. Therefore, the attached 

.boundary layer profiles are the initial conditions for the 

separated shear layer. 

Values of the empirical constants evaluated after 

comparing the experimental data with the calculated velocity 

profiles [20] were found to be as follows: kl = 0.6; 

k2 - 0.002; k3 = 0.015; k4 = 0.0575; x 0 = 30 e. , where e. 

is the momentum thickness at the shifted origin. The 

similarity parameter, Q, was taken as 9.42. 

The model as described in Equation (2.9) does not 

give results in agreement with the other three. This is 

because it yields a different viscosity distribution. 

Viscosity increases from zero to a maximum inside the shear 

layer and then decreases to a value of zero at the upper 

edge of the mixing layer. But in the other three models the 

viscosity is constant across the layer. For the sake of 

simplicity these three models are well suited for calculating 

the mean quantities in turbulent free shear layers. However, 

although the empirically determined values of the k's give 

good correlation in one region, they may fail in other 

regions of the same flow field. Hence they are not universal 

constants for the whole flow region. 
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r 
In the case of mixing in a free-jet boundary, 

streamlines have a curvature which becomes important and 

should be taken into account. Uchida and Watanabe [341 

defined streamline coordinates in a curved flow field by 

OL and 6 and their extension parameters by hc - g and 

hB 
an 

=Tiv where s and n represent arc lengths along and 

normal to the streamline, respectively (Figure 2-28):': 

hc and hs satisfy Gauss' orthogonality equation, 

with f3 = constant chosen as streamlines: 

iaq i --=- 
u = hB 38 hB ' 

The concentration of the mass flow in the mixing 

zone expressed by 6 is lower than that expressed by JI in the 

Cartesian coordinates, and hence 

au , au 
ai az* 
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Applying boundary layer approximations to the Navier-Stokes 

equations in the streamline coordinates, two important facts 

become apparent [341. Firstly, the nondimensional pressure 

gradient, 

secondly, 

is of the 

i!E a8 r counterbalances the centrifugal force; and 

the effect of curvature becomes important when it 

order of R1'2. In making the boundary layer 

approximations, orders of magnitude for various quantities 

are assumed to be 

O(B) = R-1'2 

O(ha , hB , u , p , a) = 1 l 

At i3 -f 00, the solution is matched with the outer flow of 

velocity, ue. Defining the variable [351, 

x ha = Ue(h 1) I 
a 

l/ha becomes equal to ue on the outer boundary where h = 1. 

Thus the boundary conditions can be expressed as 

at 8 + +co ; x = 1 and g = 0 , 

atB+-m;X=O. 

In deriving similar solutions, a similarity 

variable is defined as 
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which takes into account the fact that the width of the 

laminar mixing zone increases as a l/2 corresponding to x l/2 

in the usual case. 

Assuming no pressure gradient along the zero 

streamline for incompressible laminar mixing in free-jet 

boundary, the authors theoretically generate shear stress 

along $ = 0 as a function of the curvature parameter, C, 

along J, = 0 (Figure 2-29), where 

C = (%)1/2 1 3 H. 
R hahs af3 ' 

H is a function of integration. 
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CHAPTER III 

SOLUTION OF GENERAL NAVIER-STOKES EQUATIONS AS 

APPLICABLE TO ATMOSPHERIC FLOW 

Governing Equations for the Turbulent Atmospheric‘Flow 

Equations of motion for a steady, two-dimensional, 

incompressible Newtonian flow in the Cartesian coordinates, 

x and z (Figure 3-l), are 

av 2+-o, az 

au ug + v= = - - ia~+i a 
P ax p +lJeff (23 1 

+ &Peff (g + g, 1 , 

i a ug+vgy-g+ $ &heff (23 I 

+ ?k[U,ff(g + %]] I 

(3.1) 

(3.2) 

(3.3) 

where u and v are the ensemble averaged components of 

velocity along the x and z directions. 

In this study these equations are assumed to 

govern the neutral atmospheric boundary layer flow. The 

Coriolis forces induced by the rotation of the earth [36] 
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are considered negligible in the lower regions of the 

atmosphere to which the present problem is confined. 

Boundary Conditions for the Atmospheric Shear Flow 

The thickness of the atmospheric boundary layer is 

of the order of 1,000 meters. Thus the outer boundary 

condition for the problem under consideration is specified 

from within this shear layer. At the ground no-slip 

condition must be satisfied. In an equilibrium turbulent 

boundary layer the logarithmic velocity profile is given 

by [=I 

* z+z 
u=u F!?nL. 

zO 
(3.4) 

The introduction of the surface roughness parameter, z. , 

ensures that the mixing length does not vanish at the 

surface; and hence the turbulence is not zero at the surface 

(z = 0). The friction velocity, u*, is taken to be constant 

from the assumption that the boundary layer is a constant 

stress layer (TXz = -cw). 

Eddy Viscosity Model 

For a laminar incompressible flow molecular 

viscosity, P, can be assumed constant; but in a turbulent 

flow the effective viscosity, peff , comprised of turbulent 

and laminar parts, is given by 

'eff = lJ + I$ I (3.5) 
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where it , also called the eddy viscosity, is a function of 

the velocity gradients. From Prandtl's mixing-length 

hypothesis, 

with the mixing length, 

a = K(Z + zo) . 

(3.6) 

(3.7) 

Equation (3.7) is valid in the immediate vicinity 

of the wall. Away from the wall the mixing length distri- 

bution depends on the flow situation. Equation (3.61, 

applicable to boundary layer type of flow, gives a zero 

viscosity for e = 0 which is not necessarily true for 

recirculating flows where the velocity gradients, av g and ax I 

may be comparable in magnitude. Hence the eddy viscosity 

model used in the present study is taken as 

= pa2i (S, 
2 2 l/2 

% + & I (3.8) 

Essentially, the turbulent flow has been treated as one with 

turbulent viscosity as its transport property which is a 

function of the location of the flow region. For recircu- 

lating flows, however, where the relations between stresses 

and velocity gradients are complicated and not yet known 

[37], the eddy viscosity model is unsatisfactory. Therefore, 
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/.“’ I 
one is lead to a more detailed model of turbulence developed .:! 
by Prandtl and Kolmogorov. 

Prandtl-Kolmogorov 14odel of Turbulence A 

According to the Prandtl-Kolmogorov rno-del, here- 

after referred to as the TKL model, the turbulence kinetic 

energy, k, and turbulence length scale, II, characterize the 

state of local turbulence. This model provides a better 

formula for determining the turbulent viscosity since for 

recirculating flows where the mean velocity gradient 

vanishes, the turbulence energy is not necessarily zero. 

Algebraic equations for the transport properties. 

The TKL model relates k and II to the effective viscosity by 

the relationship, 

C I-leff = p pkl'2 R I (3.9) 

where k and R are the local values, and C 
IJ is a function of 

turbulence Reynolds number which is defined as 

% 
Rt = T I (3;.10) 

where the Prandtl-Kolmogorov formula for turbulent viscosity 

[37] is given by 

% 
= pkl'2 R , 

it can be argued that when Rt is small, turbulence is 
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negligible and the function, C u t tends to l/Rt. On the 

other hand, when R t is large, it takes on a constant 

asymptotic value, C 
1-I,* 

Researchers have used different 

asymptotic values for C Fc for different flow situations, but 

no- "universality" in its value has been found so far. The 

knowledge of the behavior of C,, as a function of Rt in its 

intermediate range is also not satisfactory [381. 

From Equations (3.5), (3.9), (3.10), and (3.111, 

the following relation emerges: 

C lJ = 1 + l/Rt , (3.12) 

which implies that C = 1. 
WC0 

This value has been used in 

different flow situations [381, but in recirculating flows 

it is different from 1. Further discussion on C 
KG 

will 

appear in the sections on selection of constants and their 

parametric study, In general, 

C 
iJ 

= c 
%o 

+ l/Rt . (3.12a) 

Equations to be Solved 

Differential equations for the vorticity, w, and 

the stream function, $, are obtained from Equations (3.11, 

(3.21, and (3.3) by making use of the following transfor- 

mations. 
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Define a two-dimensional vorticity about the, 

y-axis, 

w av au =ax-az, 

and a stream function, $, such that 

1 w u=p=t 

1 w v=-- pax* 

(3.13) 

(3.14) 

(3.15) 

Introducing $ into Equation (3.13), eliminating 

pressure from Equations (3.2) and (3.31, and introducing w 

and J, into the resultant equation gives the Poisson equation 

for the stream function and the transport equation for 

vorticity, respectively. Both of these equations can be 

expressed in the following general form of the elliptic 

equation [381, 

[aIa($%) - &($-$j)Jl ax az 

- &b&co) 1 + &b&(m#))l + d = 0 , (3.16) 

where the coefficient functions, a, b, c, and d, and the 

dependent variable, 9, are given in Tables 3-1 and 3-2. In 

Equation (3.16) the terms in the first pair of brackets are 
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TABLE 3-1 

COEFFICIENT FUNCTIONS OF EQUATION (3.16) 

b- ~~~~ a b C -a- 

@ 0 l/P 1 -ul 

W 1 1 I-leff -sw 

k 1 'eff 
rk,eff = ak eff I 

1 -'k 

II 1 rll,eff 1 -3 
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TABLE 3-2 

EXPRESSIONS FOR THE SOURCE TER!4, -d 

W 

k 

R 

2[- 
a2u eff ax az 

a2u eff 
-7- 

+ au az 
a2p eff 

--?- 
+ av ax 

a21-1 eff 
az 1 

W skt 

pk1'2C 
2 

+ (YE) av 2l + I.& + i$2, cb 

W skt 
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the convection terms, those in the second one are the 

diffusion terms, and the last one is the source term. 

Gosman, et al. [381, derived a differential 

equation for k, and Rotta [391 proposed a differential 

equation for 8, both of which can be expressed in the form 

of Equation (3.16). 

Referring to Tables 3-1 and -3-2, the term in . 
.,brackets multiplying Pt in the source term for the 

k-equation is the production term; the second term repre- 

sents energy dissipation. The term containing Cs in the 

R-equation represents the rate of increase or "stretching" 

of the length scale, and the second one represents the 

decrease or "breaking" of the length scale. The coefficients, 

cd and. cs I are believed to behave with Rt like CU given in 

Equation (3.12a) 1381. 

Solutions for laminar flow were determined at 

different Reynolds numbers solving the two partial differ- 

ential equations (pde) for w and I). Turbulent flows were 

solved using the eddy viscosity model introduced into these 

equations for intermediate values of Reynolds number. For 

i. higher Reynolds-number turbulent flow, the TKL model was 

employed which introduces the two additional partial differ- 

ential equations for k and R in the analysis. 

Derivation of the Finite-Difference Equation '.. 
The finite-difference equation (fde) has been 

derived by integrating the general pde given by Equation 
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(3.16) over a finite area, assuming that the distribution of 

the variables between the nodes of the grid is known. 

Integration of Equation (3.16) over the rectangular 

domain (sides of the rectangle lie midway between the 

neighboring grid lines) shown by dotted lines in Figure 

page 65, will give 

x z e n 
a/ / 

x z 
r.&g) - &&, 1 dx dz 

w s 

3-1, 

-r / [&b++N + &{b&(c$) )ldx dz 
X Z w s 

X Z 
+JeJnddxdz=O 

X Z w s 

To illustrate the principles involved in inte- 

grating the convection terms, one of the four integrals, 

namely, 

a Jn 9, (%I dz , 
S e 

is integrated as follows: 

Assuming that 4 and $ are well-behaved functions 

and that an average value of $e exists, which can be given 

bY 
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rzn $J,(+$ dz Fe = zsz e 

/ 
Z 

n (i$, dz , 
S 

e 

the integral takes the finite difference form 

aTe($,, - @,,I . 

Assuming that 4 within each rectangle in Figure 

3-1, page 65, has a constant value equivalent to that at the 

centrally enclosed node, P, and that the 5, takes on the 

$-value possessed by the fluid upstream of the e-face of the 

rectangle, the upwind differencing effect is introduced into 

the integral by the following finite difference form: 

($ne -~se)-lQne-~sel ($ne -9,,)+ldJ -$,,I 
a[+,(,-1 + $,C-211 l 

If the flow direction is from P to E, then Q,, - $,, is 

positive and hence 

If the flow direction is from E to P, then 
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Also, assuming that the $-value at a particular 

corner of the rectangle is equal.to the average of the four 

neighboring node values, I/I,, , for examp'le, can be given by 

ne 'i2 .p . 

The remaining convection terms are integrated similarly. 

Considering the first term in the set of four 

diffusion terms, namely, 

Z n 
r 
Z 

be{&b$)le dz , 
S 

it is assumed that b and (C(I) can be approximated as varying 

linearly with x so that 

and 

'E'E - cP@P . 
XE - xP 

Thus the finite difference form of the first diffusion term 

is 

'E'E - cP4P 
XE - xP 

(z n - Q I 
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with the other diffusion terms having similar expressions. 

Finally, the last term, 

x z 
I el n.d dx dz , 
x z w s 

is integrated by assuming that the value of d is constant 

over the area of integration and isequal to that at the 

centrally enclosed node, P; thus the source term becomes 

dP(Xe - xw' (Zn - zs) . 

On rearrangement and simplification the following 

fde is obtained from integration of Equation (3.16) [38]: 

- BS ksOs - cpop) + dpVp = 0 I 

where the A'S, the coefficients in the convective terms, aEd 

given by 

aP s = ‘g[ ($sE+QS-QNE-+N)+ -9 II I N 



(3.17a) 

and the B'S, the coefficients in the diffusion terms, are 

given by 

bEtbp zN-zS 
BE = 7 xE-xP- ' 

btitbp zN-sS 
Bw=--Z-w, 

bNtbP xE-xW 
BN=--T--~t 

bS+bp xE-xW 
BS=--Z--~t 

and 

VP = (xE-% ‘NoZS 
2 )(---+ l 

(3.17b) 

(3.17c) 

The first order derivatives, for example, 2 of 

the dependent variable, 9, are approximated as follows: 

zP-zs 
(@$J-@,) z 

‘NoZS 
NoZP 

+ (4p-4s) z 
2L POZS -- 
az ‘N - ‘S 

(3.17d) 

It may be noted that in deriving the coefficients 

in the convective terms, use was made of "upwind 
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differencing" for first order terms so that the A's are 

always positive. This implies that the transportive 

property is advected in the direction of velocity which is 

realistic. The stability of the solution procedure improves 

considerably using upwind differencing. The coefficients in 

the diffusion terms, the B'S, are dependent on the grid 

spacing and are also all positive. One of the assumptions 

made in reducing the diffusion terms to their finite 

difference form is that b and (~4) vary linearly with x over 

the domain of integration (Figure 3-1, page 65). 

Complete Successive Substitution Formula 

Equation (3.17) can be written as 

$P = CE$E + cw$W + cN$, + '&. + D , (3.18) 

where 

cE = (AE + BEcE)/C AB , 

cw = '% + BWcW)/C AB , 

CN = ‘AN + BNcN)/C A.B I 

cS = (As + BScS)/C AB , 

D =- d,v,/c AB I 

and 

CAB= AE+~+~+AS+cp(BE+BW+BN+BS) , 

. 
where the C's are all positive. 
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This substitution formula can be applied at every 

interior node in the flow field. The simultaneous nonlinear 

equations for w, $, k, and R given by the general equation 

(Equation (3.18)) are solved by a Gauss-Seidel iterative 

procedure. 

Equation (3.18) for k can be written as 

kp = CEkE + CWkw + CNkN + CSkS + Sk pvp/c AB I I 

where the source term, Sk p , is given in Table 3-2, page 72. 
I 

This formula has been modified [38] by rearrangement to give 

(refer to Table 3-2) 

'EkE + 'WkW + 'NkN + 'SkS + 'skt,P P v /c AB 
kp = 

1 + & (Cdpkl'2/fi)p ' 
(3.18a) 

For R, Equation (3.18) becomes 

RP = CERE + cwIlw + CNllN + Cs% 

+ (pkl'2 Cs - vP 
; WsktCb)P m , 

which can be rearranged to yield 

c,a,+c,~,+c,~,+csRs+Vp(pk l/2 

Rp = 
Cslp/C AB 

vP 
. (3.18b) 

1 + &WsktCb'k)P 
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. The advantages in using Equations (3.18a), 

(3.18b), and the implicit substitution formula for w 

(Equation (3.31)), which is given in the section on boundary 

conditions, will be discussed in the section on convergence 

of the solution procedure. 

Setting,Up and Discussion of the Boundary Conditions 

Referring to Figure 3-2 and considering the flow 

field enclosed in a control volume 1-2-3-4-5-6-1 with a unit 

depth perpendicular to the plane of the paper, flow enters 

dt l-6, the inlet, and passes over the back-step l-2-3 and 

leaves at 4-5, the outlet. The lower boundary l-2-3-4 

comprises the top face of the step l-2, the base 2-3, and 

the ground 3-4. Surface 5-6 is referred to as the upper 

boundary. The Cartesian coordinate system is shown in 

Figure 3-2 with the origin at station 3. 

The boundary conditions (b.c.) prescribed on 0 are 

either of flux-type or of normal-gradient-type, except at 

the inlet and the outlet where the Q values prescribed are 

also related to the values of the horizontal component of 

velocity for all locations on the boundary. The normal- 

gradiento'type boundary conditions retard the rate of 

convergence in comparison with the flux-type boundary 

conditions. 
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enclosed by the control volume 1-2-3-4-5-6-1. 



Algebraic equations for and substitution formulae 

derived from the boundary conditions. At the inlet and 

outlet, logarithmic velocity profile (Equation (3.4)) 

typical to an equilibrium atmospheric boundary layer is 

prescribed with different shear stress velocities. At the 

outlet, the reference velocity, ur , is prescribed at the 

right-hand.corner of the upper boundary so that II: is given 

bY 

* KU 
u. = 

r 
h+zo ' 

Rn - 
=0 

(3.19) 

Considering the upper boundary to be in the undisturbed flow 

and applying the continuity equation, 

ho u: Z+Z ho * 
Ldz=/ uO 

2+2 
/ + Rn K !in Ldz, 
h zO 0 zO 

so that the friction velocity at the outlet becomes 

u* [ho+zO 
zO 

(an ho+ZO 
* 0 zO 

- 1) + 11 
u. = 1 [ho-h+zo (an ho-h+zo 

. (3.20) 

zO zO 
- 1) + 11 

Equations (3.19) and (3.20) imply that $ is constant along 

5-6. 
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Boundary conditions for the stream function. The 

des.cription of the boundary.conditions on $ that were used 

“in.the numerical solution of the problem is as follows:' 

The boundary conditions on different boundaries 

are: 

Inlet 

9 z aJ, Pu;zo 
; az dz = K [ 

z-h+zo z-h+z 0 = z. (an z. -1) +11 . (3.21) 

Outlet 

* 
= 

9 ii 
z a$ PU(fo z+zo(a, z+zo 

=dz= K C- 
zO 

- -1)‘ +ll . 
zO 

(3.22) 

Lower Boundary 

Q = 0 (no-slip condition) . 

Upper Boundary 

$ = 
'6 = constant . 

Unless the outlet is sufficiently far downstream, 

fixing J, there through the logarithmic velocity profile may 

cause the solution to be rather unrealistic. In the present 

problem the outlet has been taken far enough downstream that 

the logarithmic velocity profile is a reasonable approxi- 

mation to the real flow situation. In order that the outlet 
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r 
b.c. could exactly represent the true physical situation 

which theoretically occurs at infinity, use would have to be 

made of a transformation like TJ = & which maps the semi- 

infinite axis, 0 2 x < 00, into 0 < n < 1 [40]. As the 

asymptotic behavior of the outlet velocity profile is that 

of the logarithmic velocity profile, this transformation 

could hold promise; but care would have to be taken.in 

choosing the proper grid distribution, especially in the 

recirculation region. Using this mapping also introduces 

some more gradient terms in the source term of Equation 

(3.16), which can influence the behavior of the iterative 

process as far as convergence is concerned. 

Roache and Mueller 1411 used a floating b.c. on $ 

at the outlet: 

with (3.23) 

which amounts to extrapolating $ linearly as 

VJ IN = 2JIINM - 'IN,1 ' 

The preceding relation is valid for a uniform grid near the 

outlet in the x-direction. The authors [41] report that 

Equation (3.23) failed for low Reynolds numbers as it gives 
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an abrupt variation of w near the outlet. However, for high 

Reynolds numbers it gives good results. To use these 

boundary conditions at the outlet, ur is taken as the 

reference velocity at the inlet at the upper boundary so 

that 

* KU 

u. = 
r 

1 h -h+zo ' 
Rn O 

zO 

(3.24) 

This specifies the inflow b.c, on J, given by Equation (3.21). 

The b.c. for the outlet given by Equation (3.23) along with 

Equations (3,24) and (3.21) have also been investigated for 

the problem under consideration. Further discussion of 

these boundary conditions appears in the section on 

discussion of results. 

Boundary conditions for the vorticity. The 

vorticity boundary conditions as prescribed on the various 

boundaries are given below, 

Inlet 

At the inlet the following equation for u was used 

with Equation (3.21) for $ with either of the equations, 

Equation (3,20) or Equation (3,24): 

av au w ==-z, 
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or 

w = -2 
* 

U. 1 
K(Z+ZOJ- l 

(3.25) 

The expression for g in the above equation 

follows from the second order Taylor expansion neglecting 
a3e 3 and higher order terms, whence 
ax 

2 
+o. (3.26) 

Equation (3.25) allows g to develop as a part of the 

solution, The flow is thus not completely specified at the 

inlet lest the elliptic nature of the problem be restricted 

1421 a 

Outlet 

With the b.c. on I) given by Equation (3.221, the 

following b.c. on w was employed: 

VJ IN-%NM- _ 'INM-%NM-1 * 

bl= -2 [ XIN-XINM XINM-XINM-l 
P(XIN-XINM-l) 

l- uO 
K(Z+Z* (3.27) 

0 

Upper Boundary 

av au w z--v* 
ax a~ 

As fi 

ax2 
at the upper boundary is zero, it follows that 
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Extrapolating u'linearly to the upper boundary requires 

-2 au QJ = 0 , i.e., az = 0 , 

which gives the relation, 

%N = ?NM ' (3.28) 

as used by Roache and Mueller [41]. 

Lower Boundary 

Using the no-slip condition, the continuity 

equation, and the fact that v = 0 along the lower boundary, 

and by retaining the third order terms in the Taylor 

expansion for JI,, (see Figure 3-2, page 82), Woods [43] 

arrived at the second order form for vorticity at the solid 

wall, 

0 = 0 
S '2 + F, + O(As2) , (3.29) 

which assumes that w varies linearly with the normal 

distance from the wall, Gosman, et al. [38], have achieved 

more accurate predictions with Equation (3.29) than with the 

first order explicit form, 

w 2'NP 5 - 
S '-2 + O(An) , 

P (An) 
(3.30) 
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where n is the normal distance from the wall, andV,Xws,isJ the 
.,. . . ,, 

value of vorticity at the solid wall. These two forms are 

valid for a uniform grid near the.wall. Referring to 

Figure 3-2, p g a e 82,, Equation (3.29.) can be used implicitly 

in the substitution formula (Equation (3.18)): and the 
.  ..,' 

modified substitution formula for vorticity for the'.corner 

node NP, for example, can be written as 

If the explicit boundary condition g,iven by Equat$on.,.(3,30) 

WNP = 
'EWE + 'NUN + ,=2] +'D 

1 + cw;cs - f: ,,.. 

- : 

(3.31) 

is used, the appropriate boundary condition a,t the sharp 

corner 2 is not well defined,? and a number o-f fomulae.have 

been proposed [221. Two of those are- I . ', 

1. w2=o, . d : 

2. Discontinuous values of vorticity, 

-2@,,/p(A~)~ and -2$Np/~(Ax)2 are used, 

depending on whether the vorticity at the node 

immediately above 2 or at. the.one immediately 

downstream of 2 is being calculated, : 

respectively. I L ., ". 

With the implicit scheme, (Equation -(3.2Q)),.it is 

unnecessary to specify any b.c. at 2 because the discon- 

tinuous nature of vorticity at 2 has already entered the 

substitution formula (Equation (3.31)). Comparisons of 
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these explicit and implicit forms were made in the beginning. 

No appreciable difference was observed although the latter 

bee&d to yield more realistic results. 

Boundary conditions for the turbulence kinetic 

energy. Deriving boundary conditions on k necessitates 

finding a simple expression for it. Differentiating 

Equation (3.4) with respect to z will give 

(3.32) 

Referring to Figure 3-2, page 82, the wall velocity gradient 
au near the ground and the top face of the step will be az and 

that near the base will be g . Restricting attention for a 

moment to the regions where e >> g , Equation (3.6) and an 

expression originally suggested by Boussinesq in analogy to 

the expression for laminar shear stress, namely, 

give the following relation: 

2 r au au 
zx = pa 

t I I ziaz' (3.33) 

Also, 

‘leff = -ct + ‘t . 
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Using Equation (3.32), laminar shear stress will 

be given by 

Therefore, 

'eff = p"* &g+- + u] . iqzq- 0 0 
(3.33a) 

By definition, 

*2 
T 

W 
=pu . 

Assuming that the magnitude of the shear stress is constant 

near the walls and throughout the undisturbed layer, 

17effI = ITeffwl = p"*2 l 

Equating Equations (3.33a) and (3.33b) gives 

l/2 
11 = [K (Z+Zo) {K(Z+zo) - &I] e 

U 

Since ~(z+z~) >> & , it follows 
U 

a ” K(Z+Zo) . 

Also, 

'eff 
au 

= PVeff 7Z ' 
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:I'. .From Equation :(a6 9) , ;' 

-. 'eff = Cuk1/2n. . 

Using Equations (3.32) and (3.34), Equation (3.35) becomes 

. 
'eff A pCPk1'2u* . (3.35a) 

Equating Equations (3.33b) and (3.35a), 

: -k. = tu*/cll) 2 . (3.36) 

_ : av Near'the base, ax >> g ; it is assumed that the 

velocity variation in v with x is also governed by the 

logarithmic velocity profile, 

-L <’ 
. . 

so that 

* x+z 0 ~=+gn-, 
zO 

2V VX 
ax=-" 

Writing the analog of Equation (3. 3 3) I 

2 av T xz t 
=pR a* 

I I 
av 
ax’ 

(3.37) 

(3.38) 
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and following the same reasoning as before, it can be seen 

that near the base 

and 

II = K(X+ZO) , (3.39) 

*2 
k = (F) . 

lJ 
(3.40) 

Equations (3.10), (3.11), (3.12a), (3.34), and (3.36) give 

k = [{u* - 
plc (z+zoT1 a2 l 

p 
b 

(3.41) 

Similarly, Equations (3.10), (3.11), (3.12a), (3.39), and 

(3.40) yield 

k = [Iv* - PK ;+z ) +I2 . 
O hl 

(3.42) 

au >.> z For the inlet and outlet, E ax : therefore, at the inlet, 

k = [Ill; - 

and at the outlet, 

k = [{II;; - 

(3.43) 

(3.044) 
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With these boundary conditions, k is fixed at the 

inlet and the outlet. But, corresponding to Equation (3.231, 

a floating b.c., 

2 
y=ot 

was used at the outlet, which gives 

kIN = 2kINM - 'INM-1 ' (3.44a) 

At the upper boundary the b.c. is g = 0, which in finite 

difference form is 

kJN = kJNM l 

(3.45) 

At the lower boundary the b.c. on k can be derived as 

follows. From Equations (3.32) and (3.381, respectively, 

* 
U = 

K (Z+Zg) a2$ 

p 2 

and 

* v =- 
K (x+zo) a2$ 

P 
-8 
ax2 

where the following expressions for 



and 

2 

3 

at the respective walls, obtained by using Taylor series in 

which third and higher order terms are.neglected, are 

2$,,/ (AZ) 2 and WJ,,/(A*)~, respectively (see Figure 3-2, 

page 82). Therefore, the preceding two equations at the 

respective walls become 

* 
u = 2KZO'NP 

P (AZ) 2 
(3.46) 

and 

* v =- 2KZOICINP 
pUM2 l 

(3.47) 

Referring to the corner node NP (Figure 3-c Equations 

(3.41) and (3.46) give 

2 
-&+I . 

0 

Similarly, 

[ 1 2KZO'NP 2 
kW= pd-- I- 

PcrJ (A*) 
2 -++I . 

0 

(3.48) 

(3.49) 
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At the sharp corner 2, discontinuous values of k, 

and the one given by Equation (3.49) are used depending on 

whether the turbulence kinetic energy, k, at the node 

immediately above 2 or at the one immediately downstream of 

2 is being calculated, respectively. 

Boundary conditions on R. Referring to Figure 3-2, 

page 82, the distribution of the mixing length is shown 

which is based on the normal distance from the nearest wall. 

The lines 22' and 33' are inclined at 45' from the positive 

x-axis. This distribution fixes the mixing length (1) on 

all the boundaries for the TKL model and (2) everywhere for 

the eddy viscosity model, 

Numerical Solution of the Finite Difference Equation 

The nonlinear system of simultaneous algebraic 

equations given by Equation (3,18) has been solved by the 

Gauss-Seidel successive substitution technique. The 

numerical scheme and the computer code developed by 

Gosman, et al. [38], has been modified for the back-step 

problem. Successive over-relaxation or under-relaxation on 

the dependent variable, 4, in Equation (3.18) can be readily 

employed, Both relaxation techniques were used and are 

discussed later in this chapter. 
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Equation (3.18) is solved for the vorticity, 

stream function, turbulence kinetic energy, and the 

turbulence length scale in that order. Referring to Figure 

3-3, the whole flow field is swept row by row in the 

direction 5 to 4 from the upper boundary to lower boundary, 

updating $ values at the interior nodes using Equation 

(3.18) and at the wall nodes by the substitution formulae 

for the boundary conditions. One iteration cycle is 

complete when all the four equations have been solved and 

the Q-values at the boundary nodes have been updated. This 

iteration process is carried on till either of the following 

two convergence criteria has been satisfied: 

(dhy 
fP 

d 0,Ol , 
max - 

(P-P) 
n-l 2 0.00001 . 

9 max 
ItMX 

(3.50) 

(3.51) 

The second criterion is necessary because when the 

magnitude of the $-value at a particular node becomes very 

small, the variation, $1~-4~-', at that node can still be 

larger since it depends on the values at the surrounding 

nodes: and thus the first criterion is difficult to satisfy 

even though the rest of the field has converged. 
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After the convergence is achieved, the u and v 

components of the velocity are calculated. The stream 

function and the velocity profiles are plotted as the final 

results. 

Grid Distribution 

The variable grid spacing is smaller near the 

walls where large gradients in $ are expected. Moving 

farther away from the walls, the ratio of the intervals 

between the nodes has been kept constant and equal to 1.3, 

that is, the grid spacing increases in geometric progression 

away from the walls (see Figure 3-3). 

Selection of Constants 

The selection of the so-called constants, C IJ r 
appearing in Equation (3,9), and Cd , Cs , and Cb shown in 

Table 3-2, page 72, is of prime concern in the current 

turbulence research 137, 38, 44, 45, 46, 47, 48, 491 in the 

two-equation modeling of turbulence such as the TKL model or 

the (k-k&) model, In the latter model, first proposed by 

Rotta [50], the dependent variable, kR, has replaced 11 in 

the TKL model because it does not diffuse at a rate propor- 

tional to g . In some models, eddy viscosity, vt , is 

treated as a dependent variable. These models have been 

used to predict the turbulent flow situations different from 

that of the rearward-facing step considered herein, and the 

constants have been evaluated by comparing the predictions 
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of the models with, the,experimental data available :for .' 

various flow situations. For instance, -Ng and Spalding ,[443 

predict boundary layer flows near ,walls' from.the (k-k&)..-. 

model by using the experimental results .for homogeneous : 

shear flows in local equilibrium, A value for Cd equal'to 

0.1 was obtained thus. The turbulent Prandtl number, uk;, 

was taken as unity. Using the (k-kg) model, Rodi and. 

Spalding [47] obtained Cd = 0.,09 for free shear flows while 

ak was taken as 2.0. Launder, et al. [48], used the 

turbulence kinetic energy dissipation rate, E = k 3/2/!4, as 

the dependent variable instead of li, In the (k-s) model., 

C P 
= 0,09 and ak = 1,O were found to produce satisfactory 

results for various turbulent flows [48]. To treat low 

Reynolds number flows, Jones and Launder (491 used 

5-l = 0.09 x exp[-2.5/(1+Rtj50)] and dk = 1.0. 

A three-equation model [48] was used where the 

third dependent variable considered was the turbulent shear 

stress, pm. In this model, which was also used to 

predict two-dimensional axlsymmetric jets and wakes, CV was 

taken as 0.09. Wolfshtein [45] used C P = 0.22, Cd = 0.416, 

and ak = 1.53 for the Couette flow case. 

The incompressible, two-dimensional wake flow is 

one of the most difficult to predict properly [46]. 

Apparently, the main difficulty is in predicting the 

asymptotic rate of decay of the wake, which is a weak-shear 

problem. Due to the paucity of knowledge regarding these 
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"constants" for recirculating flows, resort has been taken 

.:to, the previous information and the computational experi- 

ments which are. conducted in this study to furnish a 

reasonable set of constants for the TKL model. Unfortu- 

nately, however,. these constants are not only different for 

different flow situations, but vary from one region to the 

other in the same flow situation as a function of Rt when 

Rt is small- As Rt becomes very large, (Jk eff and ua,eff I 
take on constant asymptotic values , provided the hypothesis 

that k and R are adequate to characterize the state'of 

turbulence is valid. However, the 0's are normally, as in 

this study also, taken as unity [38], The following 

relations define the various constants used for the present 

investigation. 

cb = cb ’ l/Rt I 

aa 

where 

cboa = 1,o : 

cd = cdm + l/Rt 8 

where 

Cdco = 1.0 . 

cS 
= cs + Wt 8 

w 

(3.52) 

(3.53) 

(3.54) 
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where 

cS 
3-0.35 . 

co 

Corresponding to Equation (3.12a), 

C 
PC0 

= 0.1 l 

The above set of constants seems to be a reasonably 

good selection to begin with. Further discussion on these 

constants will appear in the parametric study reported later 

in this study. Efforts to establish some kind of a 

universal set of constants for recirculating flows are still 

being carried on. 

Discussion on Convergence, Accuracy, and Economy of 

the Solution Procedure 

Convergence, It has been experienced [38] that if 

a nonuniform grid spacing is used near the walls, both the 

vorticity b.c. (Equations (3.29) and (3.30)), when used 

explicitly for updating the vorticity at the wall, may,cause 

divergence due to the coupling of the vorticity and the 

stream function equations through the vorticity b.c. 

Gosman, et al, [381, suggested as remedial measures (1) to 

hold the ratio of the intervals between the nodes (Figure 

3-3, page 98) less than 1.5 especially near the wall, where 
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this ratio should be as close to unity as possible and (2) 

to use the modified substitution formula for w (Equation 

(3.31)). 

In calculations carried out in this investigation, 

convergence seemed to be impaired when a coarse grid with 

the ratio of the intervals between the nodes was 2 and above, 

especially in the z-direction. 

The coefficients, C's and D, in Equation (3.18) 

vary from one iteration to the next, and hence this is a 

nonlinear algebraic equation. However, from experience, 

Gosman, et al., point out that the convergence criteria for 

a linear set of algebraic equations to converge are often 

sufficient for equations such as Equation (3.18) also. As 

there is no such criteria for the nonlinear equations, the 

convergence of the solution procedure can be based on the 

following three criteria for a linear system of algebraic 

equations: 

1. Zlcl, 2 1 I on every grid node. 

2. lIclp < 1 I on at least one node. 

..I, 3. The variation in the C's and D from one 

iteration to the next is small. 

The third criterion restricts the nonlinearity of 

the coefficients to an extent that they could be treated as 

linear in the whole iteration procedure, thus making the 

first two criteria meaningful. 
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It can be seen that ClClP = 1 on every node in the 

field if c = 1 (Table 3-1, page 65), which is true for all 

but the vorticity equation where c = peff . For low 

Reynolds number R, the value of veff at the node P is close 

to those at the surrounding nodes because the gradients are 

small (refer to the section on discussion of results), and 

hence ClCl, is close to unity. But for higher R when the 

gradients in velocity are large, especially in the 

recirculating region, this criterion fails to be satisfied 

for the vorticity equation when using the eddy viscosity 

model (Equation (3.8)) because of the large variations in 

ueff between the neighboring nodes. That is why in the 

computation at high R, using the eddy viscosity model to 

describe turbulence, divergence was encountered. The remedy 

for this lies in under-relaxing the variable, w, or the C's 

and D coefficients in the vorticity equation. (Further 

discussion on this will appear later.) To carry on the 

computation at higher R, the TKL model was used for which no 

such difficulty was encountered. 

If the central-difference schemes for the first 

order convective terms were used instead of the upwind 

differencing, the AE coefficient could become negative [381; 

and this could cause CE to become negative, especially at 

high R when the stream function values are correspondingly 

large and hence lAEl > cBE . Owing to this fact, the 
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r 

central-difference schemes fail to achieve convergence at 

high R due to their inability to satisfy the first 

convergence criterion, 

Comparing a flux-type b.c., $I = constant, with 

Equation (3.18), it can be seen that 11~1 = 0; hence the 
I 
second criterion is satisfied for all but the w equation, in 

which case no flux-type b.c, is used anywhere on the 

boundaries except for the case when a zero vorticity is 

used at the sharp corner 2, corresponding to the b.c. given 

by Equation (3.30). However, a comparison of the solution 

corresponding to the b.c. given by Equation (3.29) to the 1 

solutions corresponding to the discontinuous b.c. and zero 

b.c, given by Equation (3,30) showed no marked change in the 

rate of convergence0 This indicates that either the second 

criterion is satisfied somewhere at an interior node in the 

field or else the criterion for Equation (3.18) is generally 

sufficient and not necessary for convergence; otherwise, 

divergence should have been encountered. 

The third criterion can be satisfied by under- 

relaxing the dependent variable, $I. As a better alternative, 

the C's and D coefficients should be under-relaxed as they 

are functions of quantities like'peff as well as I$= In the 

present computations with the eddy viscosity model 

incorporated at high values of R, large variations in the 

source term for the stream function equation (Table 3-2, 

page 72) were found to occurB and hence the third criterion 
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was not satisfied, This was detected from the solutions 

which diverged. Although the strong variations in the 

source term were first seen as the cause for divergence, it 

is interesting to note that the failure to satisfy the first 

and the third criterion is really coupled through the strong 

velocity gradients and hence through strong variations in 

'eff 
The source terms in the k and R equations were 

under-relaxed in the sense of reducing the iteration-to- 

iteration variations by recasting Equation (3.18) into 

Equations (3,18a) and (3,18b) i respectively. 

In the original form of Equation (3.18) for k, 

the 3/2 power of kp induces large variations in the source 

term and could cause divergence. In the present computa- 

tions, using Equation (3.18) for R, it was observed that R 

became negative early in the iteration process due to the 

comparatively large magnitude of the term, 

VP ( ‘~&Cb) /k,Z AB , 
P 

which in turn made k negative In Equation (3,18a). To stop 

R and k from becoming negative, Equation (3.18) for R was 

rearranged to give Equation (3.18b). Also, in Equations 

(3.18a) and (3.18b) the denominator is always greater than 

unity, and hence the first and second criteria are 

unconditionally satisfied. The third criterion is satisfied 

as the source term variations are small for the 11 and k 
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equations. Obedience to these convergence criteria resulted 

in a very rapid rate of convergence of the solution for the 

fi and k equations, which testifies to the meaningfulness of 

the above convergence criteria. 

Accuracy and economy. The accuracy and economy of 

the solution procedure are opposed to one another. The 

finer the grid size and hence the more the computing time, 

the better the accuracy or the lesser the truncation error. 

Wherever one-sided difference, that is, first-order 

approximation to the first order derivatives has been used, 

steep gradients are "smeared" especially near the walls. 

Therefore, it 1s necessary to use a very fine grid size near 

the walls and wherever else the gradients are expected to be 

large. Finer mesh size also satisfies the assumption of 

linear vorticity near the walls. Wolfshtein [45] found by 

comparing the exact and the finite-difference solutions f;jr 

simple cases of Couette flow, impinging jet flow, and 

uniform velocity flow that a finer grid away from the walls 

does not make the vorticity solution any better; but the 

stream function in the middle of the flow field, perhaps due 

to the strong nonlinearity of its distribution, is sensitive 

to the grid size. However, by experience it was found that 

the stream function solution behaved better than the 

vorticity solution in general; and hence a reasonable 

distance away from the walls, coarser grids were used to cut 

down the computing time. 
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The effect of smearing is to introduce an addi- 

tional "false" diffusion of C#I into Equation (3.18), which 

can be assumed to be represented- approximately by the 

magnitude of the "false exchange coefficient" by the 

following relation for all types of flows [45]: 

r false 
Te;f ' o*36 Reff ceff h k sin(2a) , (3.56) 

where An is the square mesh size; 01 is the angle which the 

streamlines make with the coordinate system (the mesh lines): 

R eff = urWef f is the local effective Reynolds number based 

on the step height, h; and aeff = peff/reff‘is the effective 

Prandtl or Schmidt number. 

As the smearing is associated with the first order 

derivatives in the convective terms, it becomes important 

when the viscosity is very small. Hence Equation (3.56) is 

very demonstrative of how the false diffusion effect can 

influence the solution in laminar flows as u r' An, or a 

(from zero to 45O) increase. For laminar flows Equation 

(3.56) reduces to 

r false _ W 0,36 purAn sin(2cl) . (3.56a) 

Defining cell Reynolds number, Rcell = purAn/u, Equation 

(3,56a) becomes 

rfalse 2 0.36 Rcell ti sin(2ol) a (3.5633) 
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Therefore, for laminar flows the importance of the two 

important parameters, Rcell and CY, becomes clear. In the 

literature, for laminar flows the cell Reynolds number has 

been used as a parameter to control the accuracy 

(truncation error) of the method used. As a increases from 

0 to 45O, the false diffusion effect increases from zero to 

a maximum, which shows that the curvature of the streamlines 

is responsible for magnifying this effect. Thus for higher 

values of R the remedy lies in (1) choosing the correct 

streamline coordinate, a = O", and (2) reducing the mesh 

size, An. 

From (2) it can be seen that a given accuracy, 

that is, the truncation error within a reasonable tolerance, 

can be achieved at the cost of the computing time. 

For turbulent flows, however, as reff is usually 

much larger than r (for example, for the w equation, 

'eff .> IL), and aeff is close to unity, false diffusion is 

not very important. 

The criterion for convergence has been determined 

from experience by observing that the solution obtained 

after a definite number of iterations remains essentially 

the same for further iterations. It has been experienced 

that the number of iterations required for convergence 

increases with an increase in the number of grid nodes; and 

hence, contrary to what one might expect, the computing time 

increases more than proportionally to the number of grid 
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nodes. The number of grid nodes should therefore be kept as 

low as possible, It is a good practice to provide the 

initial conditions discreetly in order to quicken the rate 

of convergence. It has also been experienced that the flux- 

type boundary conditions are better than the gradient-type 

boundary conditions as the latter slacken the rate of 

convergence. So wherever possible the flux-type boundary 

conditions have been prescribed. 

Discussion of Results 

The results obtained in the present study corre- 

spond to two models of turbulence, the eddy viscosity model 

(Equation (3.8)) and the TKL model (Equation (3.9)). In the 

former,. a parametric study of Reynolds number was carried 

out; and in the latter, the influence of variations in the 

constants defined by Equations (3.12a), (3.52), (3.53), and 

(3.,54) was investigated. While in the eddy viscosity 

the emplrrcism involved is that of the mixing length 

distribution throughout the flow field, the TKL model 

dependent on the value of the constants chosen in the 

model 

is 

modeled terms, It has been noted [37] that the mixing- 

length theorem is not adequate to define the turbulence 

associated with the recirculating flows and that the two- 

equation turbulence modelp like the TKL model, is better 

suited for such a flow situation. That this is true has 

been confirmed in this investigation. 
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With Reynolds number, R, as a parameter the 

results corresponding to the laminar solutions are discussed 

first. The results corresponding to the turbulent case with 

the eddy viscosity model introduced into the governing 

equations are discussed next. This is followed by a 

discussion of the results of the TKL model. 

Laminar solution (Reynolds number as a parameter). 

Results for laminar flows were achieved for step-height 

Reynolds number, urh/u, equal to 6.9, 69, and 6,900 corre- 

sponding to the step height, h = 1 cm. The outlet stream 

function boundary condition given by Equation (3.22) and the 

implicit substitution formula (Equation (3.31)) for 

vorticity were used in these computations, Figures 3-4, 

3-5, and 3-6 are the streamline plots> On comparing these 

figures it 1s seen that the recirculation bubb.le length 

becomes larger as the Reynolds number is increased, which is 

reallstlc From Figures 3-7, 3-8, and 3-9, which show the 

direction of flow (-Indicated by arrows), it can be seen that 

there are two contra-rotating eddies in the cavity zone. 

The corner eddy is smaller than the recirculation eddy. For 

R= 69; the length of the corner eddy is about 2.5 step 

heights along the ground and the recirculation eddy is 

spread over a length of seven step heights. One can observe 

from the data of Tanl, et al. 181, that for a recirculation 

length of seven step heights, a region of negative surface 

pressure gradient which corresponds to the corner eddy was 
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Figure 3-5. Streamlines over a back step in laminar flow 
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(Reynolds number = 6.9x103). 
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found to be about 2,5 step heights long (see,Chapter IV). 

Thust although the results for such a low Reynolds number 

laminar flow cannot be compared with these experimental 

findings which correspond to a turbulent flow, one can 

observe that the ratio of the length scales of the two 

eddies is in agreement with that obtained from the experi- 

mental data, which gives one a qualitative feel of the 

relative size of the corner eddy with respect to that of the 

recirculation eddy, 

Also, with the decrease in R the flow seems to 

separate from a lower location down the base, which is 

meaningful because at R + 0 the flow would not separate and 

remain attached to the base right down to the ground. This 

shift of the separation point down the back side of the step 

has also been found computationally by Roache and Xueller 

[41.1. As it is not known from what point the flow separates 

on the base, the plot of the zero streamline is started from 

the interior point immediately next to the base. At the 

inlet for R = 6n9. and 69, the upshoot rn the streamlines can 

be attributed to the fact that the logarithmic velocity 

profile used is not a realistic boundary condition for such 

low Reynolds numbers, But for R = 6,900, the inflow b.c. 

is more meaningful as can be seen from Figure 3-6. 

It may be pointed out that at R = 6,900 the 

central-difference schemes used for the first order 

derivatives in the x-direction will render the method 
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unstable as discussed earlier. Hung and Macagno [521, in 

spite of the use of unsteady equations which are believed to 

be more stable than the steady ones, could not obtain 

results for.Reynolds numbers higher than 333 (using the 

three-point central-differencing formula in the analysis). 

With the upwind-differencing used in this study laminar 

solutions for R still higher than 6,900 could have been 

achieved. The present study, being primarily concerned with 

turbulent flow, was, however, at this point directed towards 

turbulent solutions. Toward this goal the eddy viscosity 

model was introduced into the governing equations. 

Eddy viscosity model (Reynolds number as a 

parameter), For Reynolds number equal to 6.9, the eddy 

viscosity model yielded a "turbulent" solution which was 

more or less like the laminar counterpart. The reason for 

this can be explained as follows: The maximum velocity 

gradient, g o at the ground, z = 0, for a surface 

roughness, z. = 0.01 cm corresponding to the step height, 

h= 1 cm, is of the order of 2.0 (see Equation (3.57)). 

Intuitively it can be seen that the order of magnitude of 

0 ax max at the base should not be very much different from 

that of (Elmax at the ground. Thus it follows from 

Equation (3.8) that pt << u, which explains why the solution 

remains practically unchanged with the introduction of the 

eddy viscosity model. 
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For the turbulent flow calculations the laminar 

solution was taken. as the initial conditions which resulted 

in rapid convergencea Turbulent solutions obtained, 

beginning with the same initial conditions as used for the 

laminar solutions, took much longer to converge. 

Next, the eddy viscosity model was introduced into 

the laminar solution for R = 6,900. The turbulent solution 

in this case diverged. The cause for divergence was traced 

to the following: 

Considering ur as the reference velocity at the 

upper right-hand corner of the control volume (point 5 in 

Figure 3-2, page 821, Equations (3.4) and (3.38) give 

au = 
U r 

Tz 
(z+zo)&n ho+ZO ' 

zO 

(3.57) 

which shows that the velocity gradient, e , will be steeper 

for higher values of ur : thus ut from Equation (3.8) will 

be large and correspondingly its variation from node to node 

will be large. Thus, as discussed earlier in the section on 

convergence of the solution procedure, divergence was 

encountered in the vorticity equation and eventually in the 

stream function equation also, 

To overcome this difficulty two remedies are 

possible: 
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1, 

2. 

As 

Reducing the mesh size such that-,the peff 

variation from node to node is sufficiently 

small. 

Using under-relaxation on the- C's and,D : 

coefficients in the vorticity equation or on 

the vorticity, w, itself, 

the criterion for se1ecting.a proper mesh size 

is not known, it is easier to make use of the under- 

relaxation technique, Under-relaxation was tried.on,the 

w-equation for the case of a higher Reynolds number, 

R= 6.9x106, corresponding to the step height, h = l-meter. 

The under-relaxation parameter, p = O-01, was found suitable 

to use after experimenting with different values* With 

P = O,Ol, vorticity, w, was calculated at the end of each 

iteration as follows: 

n-l w = pun + w (1-p) l 

The turbulent solution for R = 6.9x106 was thus obtained 

(Figure 3-101, In this solution it was observed that 

although the rest of the flow field had converged according 

to the convergence criterion of Equation (3.50);at the 

point half-way down and next to the base the value of 

vorticity was vanishingly small, and hence the above 

convergence criterion was not acceptable, Instead, the 

convergence criterion given by Equation (3.51) was used -as 

discussed earlier in this chapter. The solution gave a 
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Figure 3-10. Streamlines over a back step in turbulent flow using 
the eddy viscosity model (Reynolds number = 6.9x106). 



recirculation length which is too large, This is due to the 

eddy viscosity model being inadequate to correctly predict 

the turbulent recirculating flows, Thus a better model was 

sought, 

Over-relaxation on the stream function'was also 

used [381, but it did not seem to produce appreciable' 

increase in convergence rate. 

TKL model. In this model the values of the 

constants, C 
ho 

, Cd , Cs , as discussed earlier, 
m 30 

, and Cb 
03 

must be determined by comparing the predicted results of the 

present model with the experimentally known results. 

Experimental results such as the length of the recirculation 

zone, the location of the dividing streamline, and the 

variation of turbulence intensity in the cavity zone, 

obtained for a back step in a wind tunnel for laboratory 

flows and for wind towers in atmospheric flows are the 

measured quantities of interest for comparison purposes. 

Referring to the modified substitution formulae 

for k and V, Equations 13.18a) and (3.18b), an increase in 

cdm 
in the "dissipation" term reduces the turbulence kinetic 

energy, k, which in turn induces a decrease in the length 

scale, R, Thus from Equation 13,9), it is observed that 

ueff decreases with an increase In Cd Q Similarly, an 
OD 

increase in Cb appearing in the "eddy breaking" term and a 
m 

decrease in Cs in the "eddy stretching" term of the length- 
cc 

scale equation induce a decrease in ueff , which means the 
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turbulence is decreased0 This can be interpreted as the 

tendency of the floti-to behave more like a laminar flow,, It 

has*already been observed that the higher the R, the larger 

-..the bubble in.laminar flow. Thus changes in C, , Cc , and 

53 '.can be made to control 

bubble ,'and also the level 

The effect of-C 
UC0 

, on the 

uco =w 
the size of the recirculation 

of turbulence kinetic energy. 

other hand, is not so obvious. 

It-would seem.on a casual inspection of Equation (3.9) that 

an.increase inC 
VW 

will increase ueff proportionally, but 

this'is'not the case. In the present problem the turbulent 

Reynolds number, Rt >> 1, in general, hence C lJ 2 c 
c 

From 

Equations (3,431, (3.441, (3-48)' and (3.49) it can be seen 

that on all the boundaries an increase in CF1 results in a 

decrease in the value of k by the factor, w2 l/C,, ., Looking at 
co 

Equation (3,18a2, it is observed that kp values at the 

interior nodes will not decrease as much as the k values at 

the boundaries because of the k l/2 term in the denominator,. 

From Equation C3.18b) R also decreases slowly compared with 

the increase in C 
k0 

Therefore, from Equation (3,9), 

although the value of ueff on the boundaries does not change 

with C' , the value of ueff at the interior nodes will 
pal 

'increase slowly; this has been found in the computation 

carried out in the present study. 

Knowing approximately the influence of these 

constants on the solution, the next step is to vary them 

judiciously to achieve results in agreement with experi- 

mental data, 
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The boundary conditions on k at the outlet, 

Equations (3.44) and (3.44a), have both been investigated. 

The latter folating b.c. with the corresponding boundary 

condition for J, at the outlet, Equation (3.23)' did not seem 

to affect the rate of convergence over that of the former, 

and it yielded more parallel and horizontal streamlines; 

therefore, it was used for most of the results shown. The 

reason the gradient-type b.c. did not slacken the rate of 

convergence is that the outlet has been taken sufficiently 

far downstream so that the gradient effects are negligible. 

At the upper boundary a floating (gradient-type) b.c. on 

R at 
‘3-z = 0, was tried, which worsened the rate of convergence, 

and hence was dropped in favor of the fixed b.c. there. 

Initially, all the constants were set equal to 

unity. This gave an unstable solution with the stream 

function becoming negative over most of the flow field. 

Different values of the constants were tried, based on the 

discussion of their influence on the k and R equations. 

Figures 3-11, 3-12, 3-13, 3-14, 3-15, and 3-16 show the 

stream function plots for various combinations of these 

constants. It can be seen that for the range of values of 

C chosen (0,05 to 1.0)' the recirculation bubble does not 
bo 

change appreciably. On the other hand, the constant, C, , 
w 

appearing in the "stretching" term for the length scale 

equation, has a very marked influence on the size of the 

bubble. For Cs = 0.5 the recirculation zone length is 
w 
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using the TKL model (Reynolds number = 6.9x1061, 
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Figure Z-13. Streamlines over a back step in turbulent flow 
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Figure 3-14. Streamlines over a back step in turbulent flow 
using the TKL model (Reynolds number = 6.9x106), 
5.l = 0.05, Cb = Cd = 0.1, c, = 1.0. 

03 m m QD 



Floating boundary conditions used at the outlet: 

= 0 with g = 0 

1 --P 
3 ‘r .--_- 

-- -----.-_ __ - --_.- - --.-- __._ --- ---_-- - __---- 
2-1 ---- ---_ 

.- -_ --.----_-p.p ---_ -----_ - ---------A___ --- 

k 
-2 -1 0 5 2 3 4 5 6 7 g 9 10 11 

Figure 3-15. Streamlines over a back step in turbulent flow 
using the TKL mode1 (Reynolds number = 6.9x1061r 
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Figure 3-16. Streamlines over a back step in turbulent flow 
using the TKL model (Reynolds number = 6.9x106), 
C = 0.4. 
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about 2,l step heights (Figure 3-15), for Cs = 0.4 the 

length is 2.5 step heights (Figure 3-16), an: for Cs = 0.35 
OD 

it increases to 4.2 step heights (Figure 3-17). In the 

computations carried out with lower values of C, than 0.35 
00 

it was observed that the boundary condition on k at the 

outlet (Equation (3.44a)) tended to impair the stability of 

the solution; ak and hence an alternative b.c., ax = 0, was 

used at the outlet to investigate the effect of further 

decrease in Cs on the solution, which appreciably increased 
OD 

the size of the recirculation zone downstream. 

The value of 0,l for C 
PC0 

was found more'suitable 

than the values of 0.08 and 0.05 as far as the rate of 

convergence of k and R equations is concerned. Also, this 

value of C u has been used by other authors in various 
00 

turbulent flow situations (see the section on selection of 

constants), The value of 1,O for Cd and Cb has been 
aa co 

chosen out of the experience gained by carrying on the 

computational experiments. Thus with the following set of 

constants, 

C 
1-I, 

= 0.1 , 

cS 
= 0.35 , 

01 

and 

Cbm = Cdm = 1.0 , 
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the recirculating flow be,hind a back step has been well 

predicted; and they could be used. for recirculating flows in 

different flow situations also. These asymptotic values for 

the functions, C , Cs , Cd , and Cb , as,Rt * =,,may be the IJ 
"universal" constants for recirculating fiows. _, 

Conclusions and Summary 

The present approach of solving the two-dimensional, 

incompressible turbulent Navier-Stokes equations in their 

steady form as applicable to atmospheric boundary layer flow 

has been shown to yield results for recirculating flows 

behind a backward-facing step in agreement with the experi- 

mental findings. Whereas for low and intermediate Reynolds 

numbers the eddy viscosity model of turbulence introduced 

into the governing equations has proved satisfactory, it has 

failed to predict the real flow situation at high Reynolds 

numbers when the magnitude of the velocity gradients in the 

flow field is correspondingly large. This is attributed to 

the fact that in recirculating flows the relation between 

stresses and the velocity gradients is unknown and more 

complicated than that assumed by the eddy viscosity model, 

and that where the velocity gradients vanish in recirculating 

flOWS# turbulence does not necessarily become zero. On the 

other hand, the TKL model of turbulence has been demon- 

strated to produce realistic results at high Reynolds 

numbers, The influence of the coefficients in the modeled 

source terms in the turbulence kinetic energy and turbulence 
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length scale equations on the predicted results has been 

computationally investigated, and a set of constants has 

thus been found for the problem under study, 

It is felt that even more accurate predictions can 

be made with a three-equation model of turbulence in which 

the third dependent variable can be taken as the turbulent 

shear stressp pu'v'. 

For laminar flows the recirculation bubble was 

seen to increase in length with Reynolds number, which is 

physically true, The two contra-rotating eddies resulted in 

the solution, the corner eddy being the smaller one and 

rotating in the opposite sense to that of the larger one, 

the recirculation eddy. 
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CHAPTER IV 

APPROXIMATE INTEGRAL TECHNIQUE 

Empirical Information 

The approximate integral method to predict the 

velocity profile in the recirculation region behind a 

rearward-facing step is based on the experimental infor- 

mation given in [.4, 8, 10, 211. The available data 

correspond to a "strong perturbation" (see Chapter I) and 

have been obtained from experiments conducted in wind 

tunnels at controlled turbulence levels, The results from 

these investigations correlate well, and the present 

mathematical model has been shown to reproduce the different 

features of the flow. In addition, a surface eddy viscosity 

distribution has resulted in the model which follows the 

empirically known surface pressure gradient distribution 

curvea Figure 4-l shows the surface pressure coefficient 

plotted against the nondimensional distance, x/h [81, where 

h is the height of the step, ur is the velocity in the 

undisturbed flow, 6. is the boundary layer thickness at the 

separation point, and xR is the reattachment length. 

Figure 2-6, page 13, shows the location of the reattachment 

point (CR = x,) and the location of the dividing streamline, 

The error function profile which is known to 

approximate the fully developed shear layer profile in the 
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mixing region is given by 

Uerf = B (1 + erf y, I 

where u e is the undisturbed velocity which is asymptotically 
u2 approached as the transverse coordinate, - ,-, a, and u is X 

the spreading rate parameter; also, uerf -* 0 as % + -00. 

Governing Boundary Conditions for the Problem 

To develop the governing equations consider a two- 

dimensional, steady, incompressible turbulent flow over a 

rearward-facing step, ABC (Figure 4-21, The separated flow 

is modeled as shown. 

The initial boundary layer at the separation point, 

B, is considered to be represented by the simple power law 

profile, 

U l/n 
- = ($4 , U r 0 

where u r is a reference velocity, the index n = 7, and So is 

the initial boundary layer thickness. As the flow separates 

at B, a new shear layer originating there develops and 

spreads linearly downstream so that its upper boundary is 

represented by BB'- The dividing streamline BER coincides 

with Bx' up to some point, E (refer to Figures 2-3, page 10, 

2-6, page 13, and 2-8, page 23). BER encloses the sepa- 

ration bubble in which there are two contra-rotating eddies, 
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the small corner eddy and the large recirculation eddy. bD1 

represents the boundary of the slowly growing initial 

boundary layer of almost constant height (see Figures 2-3, 

page i0, and 2-21, page 48). Camarata [211 has successfully 

correlated the error function profiles with the experimental 

turbulent free shear layer profiles (see Figure 2-24, page 

52) by making use of the conservation of momentum principle. 

Also, the error function profile is shown to match with the 

outer boundary layer power law profile smoothly except for 

the upstream segment of the pre-asymptotic region where the 

Slope-matching is discontinuous. 

As a first approximation, Bx' is considered as the 

locus of the u/ue = 0,5 points, Taking Cx and Cz as the 

abcissa and the ordinate of the Cartesian coordinate system, 

respectively, the velocity in the new shear layer will be 

represented by the error function profile, 

U 

e 11 + erf a(z-h)) . Uerf = T X 

Referring to Figure 4-3 (EF is a control surface 

with a unit depth perpendicular to the plane of paper), 

momentum is conserved between station x = 0 and any other 

x-station, Assuming that static pressure variations have 

negligible influence on the momentum balance and that the 

net momentum in the recirculating region is small, the 

momentum equation becomes 
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x=0 0 
z X m 

o(:-h)l,2 dz + / 
z U 

2 

($7) 

2 m 
z2i7dz = 

u2 'm 

/ (1 + erf U (;+I j2dz . (4.1) 

h 

For a continuous velocity profile, 

U'U erf ' at z = zm I 

or 

2) 
l/7 

Ur(6 11 + erf 
a(zm-h) 

X 1 I 
0 

or 

23 $1 
l/7 

h 
U U 5 . 

e a(z -h) 
1 + erf z 

(4.2) 

For a given o'r Equations (4-l) and (4.2) yield zm 

and u e' Thus the error function profile is completely 

specified. 

Referring to Figure 4-4, it is assumed that the 

recirculation zone velocity profile is expressed by a fifth 
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Figure 4-4. Velocity profiles in the recirculation zone, 
the new shear layer and the initial boundary layer. 



degree polynomial as follows: 

= e(x)z + f(x)z2 + g(x)z 3 + h(x)z 4 5 
U rz + k(x)z , (4.3) 

where for a given x the coefficients, e, f, g, h, and k, are 

constant. This profile should match with the new shear 

layer profile at a point, z1 , on the dividing streamline. 

From experience it was found that for a continuous matching, 

the following three conditions should be satisfied at z = zl: 

1. U rz = Uerf ' 

2. 

3. 

aUrz aUerf 
TT=---EE- 

Mechanics of the flow in the recirculation region 

suggests that the equation of continuity should be satisfied 

there which provides the following condition: 

4. IZ1 u rz dz = 0 o 
0 

Also, Equation (4.3) automatically satisfies the no-slip 

condition at the ground, z = 0, 

Introducing the x-direction Navier-Stokes equation 

(Equation (3.2)) at the ground gives. 
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erz aUrz 
P dx =,& ru eff -8X-l ' 

where uef f is given by Equations (3,5), (3,6), and (3.7). 

From Equation (4.3) at z = 0, 

.: 

_I’ 

aUrz 
-Tz-= e . 

Therefore, at a given x-location8 Equations (3.6) and (3.7) 

yield the following expression fo,r eddy viscosity: 

Vt = KZ 0 2e 
I I I (4.4) 

and thus the momentum equation yields an additional 

condition in the following form: 

?C * = {kz 2 e 

I I 

a2u 
5. P dx 0 

The aforementioned five conditions along with 

Equations (4,l) and (4,2) constitute the governing boundary 

conditions for the solution of the recirculation zone 

velocity profile, and upon simplification take the following 

fbrm,'respectively. 

I  1 + fz12: 3 + hzl 4 ez + 91 + kzl 5 =u erf I I (4.5) 
Izl 
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where 

U 
= + (1 + erf 

Q byh) 
Uerf X 18 

Zl 

e + 2fzl + ml2 
au 

+ 4hzl 3 + 5kzl 4 h$$.c , i4.6) 
z1 

where 

where 

where 

aUerf 
--ET 

2f + 

a2u erf 
-z- 

Uea 
= ix Iexp - { 

a(zl-h) 2 
X I 1 I 

z1 

6gzl + 12hzl 2 + 20kzl 3 a2Uerf = - 
a7- ' 

(4.7) 

z1 

203(zl-h)u, a(zl-h) 2 
= - 

X3fi 
[exp - t x I I 8 

z1 

30e + 20fzl + 15gz12 + 12hzl 3 + 10kz14 = 0 , (4.8) 

22 
f r .x-. . = 

4{vt+vI ' 
(4.9) 

d ;sE X 
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Solution of Equations (4.5) through (4.8) lead8 to the 

expression for the coefficients of Equation (4.3) given in 

Table 4-1, 

Normalized Form of the Equations to be Solved 

Nondimensionalizing the velocities, u, urz , ue , 

and uerf I with respect to the reference velocity, ur , and 

the distances, x, XR , z, zO , and do , with respect to the 

step height, h, gives 

U 
u* = r i x* = 

r 
it 

U 
U rz 

=ii- t z* =- 
rz* r E 

Uerf, 
Uerf &O z---i U r &o* = -Ii- 

U 
U e zO 

e* =iq z% 
=-fy 

Therefore, Equations (4,1), (4,2), and (4.3), respectively, 

take the following fOrmS: 

u2 =m* 

= + / (1 + erf 
a(z,-1) 2 

x* 
1 dz, , (4.la) 

0 
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TABLE 4-1 

EXPRESSIONS FOR THE COEFFICIENTS OF EQUATION (4.3) 

Coefficient 'Expression far' the Coefficient 

k 

h 

g 

3 2 a2uerf! au j I 
q '1 rlz - 6z1 '+I, + 21uerfl -;z;f 

1 1 izl 
5 

z1 

1 2 aLuerfl au 
3 z1 71, - z1 --F 

'1 
1. 

I I 
jZ 

+ Uerfl 
lzl 

; ki; 
1 

4 
z1 

z1 
+ Uerf I 

Izl 
- 3hz; - 6kz; 

3 
z1 

e 

U erfl 
lZl 

- fzz, - gz; - hz; - kz; 

z1 



r 
2(zm*/Ao F7 

f u = e* a(z 
m* 

-1) , 
1 + erf 

X* 

(4.2a) 

and 

2 
U = e, (x,) z* + f, (x,) z, + g, (x,)z, 4 

rz* 3 + h,(x,)z, 

5 
+ k, (x,.1 z* c (4.3a) 

Equation (4.4) in the nondimensional form is 

le,! = Vt/(KZ 
0, 

2 hu,) . (4.4a) 

Equation (4.9) becomes 

(4.9a) 

The expressions for the coefficients, e, , g, , h,, 

and k, , remain the same as given in Table 4-1 except that 

all the quantities used therein are nondimensional. 

Thus the problem is reduced to solving Equations 

(4.la), (4,2aI, and (4,3aI with Equations (4.4a) and (4.9aI 

and the coefficients of Table 4-l in the nondimensional form. 

Correlation of the Spreading Rate Parameter with the 

Experimental Data 

The error function velocity profile which would 

approximate the free shear layer velocity profile is assumed 
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to tend to minus infinity in the negative z-direction [2, 3, 

21, 231. This imposes a restrictive condition on the 

selection of u as the transverse coordinate in the error 

function velocity profile should approximately follow the 

relation, 

dz*-1) > -2 
x* - 8 

at the ground, z, = 0, and for a given x, [erf(-2): -1.01, 

that is, 

u > 2x* . (4.10) 

Also, as c determines the rate of spreading of the new shear 

layer, the development of the line BB' in Figure 4-3, page 

141, depends upon the value of a chosen, Figure 2-3, page 

10, shows that the upper boundary of the new shear layer has 

a dip near the region of sudden pressure rise (Figure 4-1, 

page 1371, that is, the region of rapid distortion as 

defined by Bradshaw and Wong [4]. The line BB' thus has a 

downward-going trend until the reattachment point, when the 

effects of the distortion die out; and it rises again into 

the initial boundary layer downstream, 

It may be noted that a smaller c gives a larger 

spreading, and vice versa, Thus either a constant value or 

a very slowly increasing or decreasing value of CI may be 

used up to the region of maximum pressure rise subject to 

the condition of Equation (4,101. Beyond this point, an 
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increasing value of CI subject to the condition of Equation 

(4.10) should be used. In Chapter II it has been discussed 

that varying values of u have been used for the case of 

back steps in incompressible flow (range of variation from 

9 to 15 for a). 

Solution Procedure 

With this information available for the spreading 

rate parameter, (5, one can proceed to solve the system of 

the integral equation (Equation (4.la)) and Equations (4.2a), 

(4.3a), (4.4a), (4.9a), and those given in Table 4-1, page 

148, in the nondimensional form. 

For a given 0, Equation (4.la) with Equation 

(4.2a) is solved using Simpson's fifth order quadrature 

formula for integration. The value of z 
m* 

is calculated 

iteratively. The solution of these two equations gives 

Z 
m* 

and u , 
e* 

and hence the error function velocity profile 

is completely known. The coefficients in Table 4-l in the 

nondimensional form are calculated next and then the 

recirculation zone velocity profile is determined by 

Equation (4.3a). 

The coefficient, e, , as calculated from Table 4-l 

is compared with Equation (4.4a) as follows: Denoting e, 

from Table 4-l by El, for compatibility the following should 

be true: 
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. . 

IEIl - v: = 0 . 
(KZ 

0, h ur) 
(4.11) 

The nonlinear equation (Equation (4.11)) is a monotonically 

decreasing function of vt , and it can be solved for v t 
iteratively. A simple secant method is sufficient to find 

the zero of this function. Thus the solution results in the 

value of the eddy viscosity. 

The computer code which has been developed to 

solve the present problem is explained by means of a flow 

chart as shown in the appendix. 

Comments on Convergence, Accuracy, and Economy of the 

Integral Method 

The approximate technique as discussed above is a 

very fast method of predicting the velocity profiles and the 

surface eddy viscosity distribution in the recirculation 

zone behind a back step. The average time for a single 

x-station computation on an IBM 360/65 computer is about 

two seconds. 

Equation (4.la) has two solutions for z 
m* I as 

shown in Figure 2-22, page 49. The matching is discontinuous 

at the lower value of z 
m* 

; but at the higher value, which 

is taken as the true solution, it is smooth. However, in 

the region close to the base of the step, the matching is 

not smooth (see Figure 4-5). This has been experimentally 

verified 1211, and the reason could be ascribed to the 

152 



A Error function velocity 

0 Power law velocity 

u/u =o 
. -' 

r u/upo. 5 u/u,=l.O 

I 0 
0 I 

o- 

I .’ 

I 

I 

I 
I 

4b 
I tl 

I 
-lo--- 
.-- . . -_--. -. ..-_ . 

I 

d 
: ‘,. 

:.., . 

Figure 46. Illustration of the matching of the 
error function and power law profiles in,the 
base region. 
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interference from the base. Farther downstream, the 
, .' 

matching is smooth. Due to the non-uniqueness of the 

solution for Eqwtion (4.la) no standard iteration technique, 

for example, Newton's method, was used; and hence the 

solutions were determined by regularly incrementing the z, 

value from 1.0 upwards. The incremental value chosen was 

such that the magnitude of the function given by Equation 

(4.la) at the root, zm, , was less than 0.001. This is a 

satisfactory convergence criterion as is evident from the 

smooth matching between the error function and the power law 

profiles shown in Figure 4-6. The convergence of the 

solution of Equation (4.11) was based on the relative error 

criterion, 

< 0.001 , 
vt2 - vtl 

vtl 

where vt and vt are the two successive eddy viscosity 
1 2 

values at any stage in the iteration process. 

Discussion of Results 

Referring to Figure 4-7(a) and (b), various values 

of u were used in the computation discussed in the section 

on its correlation with the experimental data. An eddy 

viscosity distribution along the surface was faired as shown 

in Oh which follows the magnitude of the surface pressure 

gradient distribution shown in (a). A constant value of CJ 

equal to 8 was used up to x* = 4.0, and u = 2x, was used up 
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Figure 4-6. Velocity profiles behind a back step. 
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(a) Magnitude of surface pressure gradient distribution 
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(b) Surface eddy viscosity distribution 
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Figure 4-7. Variation of surface pressure gradient 
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to x* = 6.9. This variation of (5 gives the spreading in the 

region of rapid distortion as shown in Figure 2-3, page 10. 

Also, the eddy viscosity, ut , follows 

dC I i 3 X* 

very realistically. The peak values of vt in the region of 

dC 
h;e x* 

I 
,I max 

defined as the reattachment zone, confirms the high 

turbulence and hence the high heat transfer rates in this 

zone. Near the base and very near the reattachment point, 

however@ vt does not follow the magnitude of the pressure 

gradient, which are the regions where no measurements of 

velocity or of turbulence intensity have been made (see 

Figure 2-6, page 13), and in which regions the measurements 

of shear stress are scanty and unreliable. However, it is 

well documented that the surface shear stress and hence the 

surface eddy viscosity should increase after the reattach- 

ment point, If the reattachment point is located upstream 

of the point where 

dC 
SE = 

X* 0 I 
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then the eddy viscosity distribution as shown in Figure 4-7 

is quite realistic, However, due to the lack of experi- 

mental evidence, no improvements in the present model have 

been suggested as far as the eddy viscosity distribution is 

concerned. 

The velocity profiles are shown plotted at various 

x-stations in Figure 4-6, page 155. The recirculation zone 

velocity profile matches very smoothly with the error 

function velocity profile at the dividing streamline. In the 

region of the negative surface pressure gradient, the 

presence of the corner eddy with a reversed recirculating 

flow is confirmed. The large magnitude of the velocity in 

this region alludes to the presence of a very strong corner 

eddy near the base, The magnitude of the reversed velocity 

in the region of the recirculation eddy is of the order of 

0,l ur (Figure 4-61, and it does not exceed 0.2 ur at any 

station, Thisis in agreement with the experimental results 

of Bradshaw and Wong [4]. 

At the dividing streamline, the turbulent shear 

stress, which is also the maximum shear stress in the shear 

layer, is given by 

au, 2 
?t 

= PK (Z1 +Zo U2 

* * 
I2 IT& 

* 
r l 

zl* 

(4.12) 
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Nondimensionalizing -rt with respect to puz , 

au, 2 
Tt* = K(Z1 +zo I2 I& . * * * z l (4.12a) 

The normalized shear stress, ~~ , has been 
* 

plotted against x* in Figure 4-8. Although the validity of 

the momentum transfer theory and hence the Prandtl mixing- 

length theorem (Equation (4,12)) is not quite valid in 

nonequilibrium layers, especially in the recirculation zone, 

on comparing Figure 2-7, page 16, and Figure 2-12, page 27, 

with Figure 4-8, it can be seen that the general trend in 

the value of shear stress along the 'dividing streamline to 

decrease downstream towards the reattachment point, as 

exhibited by Figure 4-8, is physically correct. 

Suggestions to Improve the Model 

The fact that the static pressure behind a bluff 

plate (see Figure 2-13, page 28) varies in the transverse 

direction entails an improvement in the application of the 

z-direction momentum theorem in the case of the back step 

behind which the static pressure variations at different 

x-stations follow closely those behind a bluff plate. Thus 

Equation (4.1) will be modified as follows: 
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2 
$1 

0 

z m 
/ z2dz + pr p (su-h) 
h 

+pb 
u2 'rn 

p h=+/ 11 + erf u (;+I l2 & 

+ $ rzu pdz I 
0 

(4.lb) 

where pb and pr are the base and reference (undisturbed) 

pressures, respectively. 

Solution of the problem under study is strongly 

dependent upon the value of u chosen; and therefore, the 

development of line BB' in Figure 4-3, page 141 (spreading 

of the upper shear layer), to approximate that shown in 

Figure 2-3, page 10, would require a different distribution 

of u values when Equation (4.lb) is used in place of 

Equation (4,1), hence giving a more realistic surface eddy 

viscosity distribution. Equation (4.lb) also takes into 

account the interfering effect of the base for x-stations 

close to it, and thus velocity profiles in the region of 

the corner eddy could be computed to a greater reliability. 

Also, near the reattachment point where the transverse 

pressure gradient close to the surface is appreciable, 

Equation (4,lb) would yield more meaningful results. 
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APPENDIX 

The numbers appearing on the left side of the 

subroutine blocks in the flow chart will be used to describe 

the function of each subroutine in sequencea 

c--J t/ Subroutine CFIT uses the IBM standard sub- 

routines DATSG and DALI. DATSG rearranges the input matrix 

of x, and C 
P 

values (see Figure 4-1, page 137) in an 

ascending order of x*. DALI interpolates function values of 

Cp for given argument values of x* using Lagrangian interpo- 

lation with Aitken's Scheme [5410 CFIT returns the 

interpolated vector, C P 8 
to the calling program. 

0 2 Subroutine CALCUE calculates the value of u 
e* 

by solving Equations (4.la) and (4,2a). It calls the sub- 

routine INTEG which uses Simpson fifth-order quadrature 

formula for integration to calculate the integral on the 

right-hand side of Equation (4,la) D The function sub- 

programs, DEF and F, are employed by INTEG and CALCUE to 

calculate uerf and u* , respectively, The value of u 
* e* 

is 

returned to the calling program. 

0 3 Subroutine CALVAR calculates the values of 

i3U erf, a2Uerf * 
U erf, ' T ' and 

azz 
at z 

1, 

using the equations associated with Equations (4.51, (4.61, 
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and (4.7), respectively, in the nondimensional form, and 

returns them to the calling program. 

0 4 Subroutine FUN calls the subroutine CALCOF to 

calculate the coefficients, k, , h, , g* , and e, , in that 

sequence each time FUN is called from the calling program. 

Also, it calculates the function value given by Equation 

(4.11), and returns it to the calling program. 
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0 1 Call CFIT 
c 

4 

Calculate 

I Read two initial values 
of vt to bracket the 
root of Equation (4.11) 

Find the root to 
desired accuracy 

using 
1 Secant M&hod 1 I 

c 

Calculate the coef- 
ficients, e*, f+, g*, 
h*, and k*; calculate 
U rz 

* 
profile and ~~ * 

along the dividing 
streamline from 
Equation (4.12a) 

3 

4 No 

0, 
4 Call FUN 

4 
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