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NOMENCLATURE

Horizontal and vertical Cartesian coordinates,
respectively

Local pressure

Reference pressure in the undisturbed flow
Density

von Karman universal constant (= 0.4)

Friction or shear stress velocity, ('cw/p)l/2
Surface roughness length

Laminar absolute viscosity of the fluid
Laminar kinematic viscosity of the fluid
Shear stress

Reference velocity in the undisturbed flow
Coefficient of pressure defined as (p-pr)/% pu,
Height of the step

Height of the control volume (Figure 3-2)

Local Reynolds number

Reynolds number of turbulence, pkl/zl/u

Prandtl mixing length or local turbulence length
scale

Turbulence kinetic energy

Two-dimensional fluid vorticity (Equation (3.13))

Stream function (Equations (3.14) and (3.15))

Function in the expression for effective viscosity -

(Equation (3.9))



Ca " Function in the source term for turbulence kinetic
energy (Table 3-2)

CpiCq . Functions in the source term for turbulence length
scale (Table 3-2)

a,b,c Coefficients in the general elliptic equation
(Equation (3.16))

d Source term in the general elliptic equation

(Equation (3.16))

$ Dependent variable of the general elliptic
equation

Uk,eff Effective Schmidt number for turbulence energy

oz,eff Effective Schmidt number for turbulence length
scale

Pfalse False exchange coefficient (Equation (3.56))

Pk,eff Effective exchange coefficient for turbulence
kinetic energy, “eff/ck,eff

rl,eff Effective exchange coefficient for turbulence
length scale

Ax,Az Numerical step sizes in the x- and z-directions,
respectively

WSkt Rate of generation of turbulence kinetic energy by
turbulent shear stresses (Table 3-2)

Subscripts

i,0 Pertain to the inlet and outlet of the control

volume (Figure 3-2)

w,s Pertain to the solid wall
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P Pertains to the node at which the dependent
variable is being calculated currently

NP Refers to a node lying adjacent to a boundary node

E,W,N,S Refer to the neighboring nodes which lie east,

| west, north, and south of the node P, respectiveiy

t Denotes a turbulent flow guantity

eff Denotes an effective transport property comprising
both turbulent and laminar parts

© Refers to a quantity when turbulence Reynolds
number tends to infinity

r Pertains to a reference quantity in the
undisturbed flow

* Denotes a dimensionless quantity

1,2,3 Finite difference indices (Figure 3-3)

IN,JN, Finite difference indices (Figure 3-3)

.INM,JNM Finite difference indices (Figure 3-3)

Superscripts

*

Refers to shear stress (friction) velocity
Denotes fluctuations in the mean velocity
components, u and v

Time averaging

Index of iteration
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CHAPTER I
INTRODUCTION AND STATEMENT OF THE PROBLEM

The study of atmospheric flow over'buildihgé or
other man-made surface obstructions has gained momentum in
‘recent years due to the possibility of the.operation of
short take-off and landing (STOL) aircraft in addition.to
helicopters from within the heart of a dity. Unsteady flow
phenomena such as induced vortex fields, cross-winds, and
separated flows near these obstructions pose a danger to the
operation of low-speed aircraft, especially in a strong
turbulent wind. In fact, some accidents involving small
aircraft while taking off from or landing in around airport
terminal buildings have been traced to these flow phenomena.
In structural design of buildings or bridges the civil
engineer has always been concerned about the dynamical loads
induced by these complex flow phenomena on such structures,
for the lack of understanding of which, a conservative
factor of safety has been used in their design. Even then,
occasional incidents of glass panes being shattered out of
buildings in strong winds have been reported. Aero-elastic
phenomena such as buffeting and stalling arise primarily out
of the separation phenomenon. Vibration problems involved
with the collapse of the Tacoma Narrows bridge stemmed from

these flow phenomena in a strong turbulent wind. There have
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also been reports of severely unpleasant situations around
downtown shopping centers due to strong recirculating flow
behind the buildings.

These flow phenomena are so complex that they have
to be dealt with separately. In this study the problem of
flow separation behind an obstruction, its reattachment to
the ground, and the recirculating flow in the cavity or the
wake zone thus formed has been investigated and solved by
considering the simple configuration of a.rearward—facing
step. Some experimental data are available for such an
obstruction and permit computational solutions to be
compared with experimental findings. To simplify the
problem further only two~dimensional flow is considered.

The problem has been attacked two ways. While the
first method is the solution of general Navier-Stokes
equations as applicable to turbulent atmospheric flow, the
second approach is an integral technique to predict the
velocity profiles in the recirculation region by making use
of the experimentally known pressure fields. From the
former approach vorticity and stream function are obtained
as a solution without taking recourse to the knowledge of
pressure. However, once the solution is obtained, pressure

field can readily be achieved.



CHAPTER II

THEORETICAL REVIEW

In this chapter major theories that have been put
forward to predict the separation phenomenon of laminar and
turbulent flows over an obstacle are discussed. Results
from experiments conducted by various authors are reviewed
to furnish appropriate empirical data in terms of constants
and parameters which are used in both approaches to the
numerical solution of the problem presented herein.

This chapter is divided into three sections. In
the first section an introductory paragraph about the
phenomenon of separation is given. In the second section
the mechanics of the flow region between separation and
reattachment and that downstream of reattachment is reviewed.
In the third section various analytical models as proposed
by different authors to predict the parameters associated
with the laminar and turbulent separation, for example,
velocity, eddy viscosity and turbulence intensity in the

free shear layer, and base pressure are discussed.

I. SEPARATION

The phenomenon of separation occurs due to the
presence of either viscosity and a pressure gradient or of

an abrupt change of geometry. In the latter case, on most



| structures, it occurs from the sharp edges. Separatéd flows
are formed, for example, upstream of a forward-facing step,
\

downstream of a backward-facing step, within a cutout in a

{
J

Ibody surface, and on the upper surface of an airfoil at high
angle of attack.

When a two-dimensional flbw separates due to
viscosity in an adverse pressure gradient, retardation of
the fluid close to the surface causes a rapid thickening of
the boundary layer. The point where the velocity gradient
at the surface in the direction normal to the wall decreases
to zero is defined as the point of separation. Downstream
of this point flow reversal takes place near the surface
(Figure 2-1). At the separation point the shear stress is
reduced to zero. Experimentally, the occurrence of zero
shear stress and the flow reversal near the surface has been
found for strictly a steady, two-dimensional, incompressible
laminar flow. When turbulence and three-dimensional effects,
as in the case of a building, are introduced, this
phenomenon is not well defined.

Rearward-facing step-flow separation is charac-
terized by a relatively small angle of incidence between the
streamline and the body at the point of separation and at
the point of reattachment; but in the case of bluff-body-
flow separation, the streamline at separation and
reattachment points is inclined almost perpendicularly to

the body and the reattaching surface. The step-flow and
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(a) Flow past a body with separation
(S = point of separation)

(b) Shape of streamlines near point
of separation

(c) Velocity distribution near the
point of separation
(PI = point of inflection)

Figure 2-1. Separation of the boundary layer [22].



bluff-body-flow types of separation arise due to an'abrupt
geometrical change in configuration of the body. Separation
bubbles on airfoils occur due to the dynamical interaétions
of viscosity and an adverse pressure gradient which sets up
recirculating motion on the airfoil sufface.

The flow separation depends heavily on whether the
flow is laminar, turbulent, or transitional. In subsonic
flow pure laminar separated flow does not hold any practical
importancé [1];l but for compressible flow, and especially
at higher Mach number, laminar separation is important,
since it is very stable and may persist to high Reynolds
numbers. In this study, however, only low Mach number

incompressible flow is considered.
II. MECHANICS OF THE FLOW REGION

Flow Between Separation and Reattachment

Shear and turbulence in the incident flow are two
important features of flow separation around a surface
obstruction. The distorted flow over a block geometry
building consists of a displacement zone, a wake region
which encloses the rear separation bubble, and an upstream
separation bubble (Figure 2-2)., Shear generates a swirling
flow in the wake or cavity zone, which can be interpreted as

the accumulation of vortex lines in the wake region by the

lNumbers in brackets refer to similarly numbered
references in the bibliography.
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- passing flow. Turbulence thickens the shear layer which

encloses the wake region. For some distance over the
obstruction, and in the wake zone, turbulence is very large.
The fluctuating component can be as high as 40% of the
steady component [2] and is generally largest on the edge of
the shear layer. 1In most cases the vortices of the sepa-
rated flow are unsteady, and their experimental study is
difficult.

Wind tunnel studies of separation over rearward-
facing steps and bluff geometries [l through 1l1] provide
some insight into the physical aspects of flow separation
and recirculating flow formation in the cavity zone. When a
two-dimensional turbulent flow separates from 'the sharp
corner of a back step, a shear layer with high vorticity and
low static pressure is formed which spreads linearly down-
stream (for steady, two-dimensional laminar flow the
spreading is parabolic). Momentum diffuses from this
turbulent mixing layer into the cavity zone which sets the
wake fluid into motion, and thus the sharp velocity
discontinuity at the wake boundary is smoothed out. In the
"reattachment zone the pressure increase arising out of the
compression creates a steep pressure gradient near the
surface such that part of the flow near the surface returns
upstream to feed the recirculation zone. Due to this
entrainment process the velocity and pressure variations are

large, and the wake boundary is not well defined. For



‘theoretical analyses, however, this boundary, also called
the dividing mean streamline, is chosen as the streamline,
Yy =-0, This line separates the mixing layer, which

comprises the original and part of the new shear layer, and

. the outer (undisturbed) flow from the recirculation region

- (Figure 2-3) where the fluid recirculates as a large eddy.
The corner -eddy is formed as a result of a shear-layer
separation which is induced by the reverse flow now
approaching the step as a forward-facing step. Alternately,
for theoretical analyses the steady state shape of the
recirculation bubble may be assumed to arise from the
balance of the rate of entrainment from the bubble into the
turbulent mixing layer along the bubble boundary and the
rate of reversal of fluid back into the bubble [2].

Tani, et al. [8], used the model shown in Figure
2-4 for turbulent flow separation behind a back step,
measuring surface pressure coefficients averaged over a set
of measurements,

pP=P,

.C="'"*"""'Zt
P 1/2 pu_

where p and p, are the local and undisturbed static
pressures, respectively. These are plotted versus the
nondimensional distance, x/h, in Figure 2-5, where x is the
horizontal distance downstream from the step of height h.

Except for steps of very small heights, the base pressure
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was found to be insensitive to the step height and to the
initial boundary layer thickness, the feason apparently
being that the cavity flow is chiefly maintained by the
turbulent shear stress, which is almost independent of the
step height and the approaching boundary layer. It was seen
(Figure 2-6) that turbulence and shear stress increase down-
stream in the mixing region and that the distribution across
the mixing region of mean velocity, turbulence intensity,
and shear stress is also insensitive to the step height and
initial boundary layer thickness. The reattachment length
was found to be equal to about seven step heights downstream
of the step.

Experiments conducted by Bradshaw and Wong [4]
show that for a wind tunnel speed of 25 meters per second,
the recirculation zone is about six step heights long for a
step height of 2.5 cms. It was found that after reattach-
ment the turbulent shear layer splits up, part of which
proceeds downstream with the eddy length scale considerably
reduced, and the other part of which turns back upstream
toward the recirculating region to supply the entrainment.
Large eddies in the shear layer are virtually split in two
if the fraction of the shear-layer mass flow that is
deflected upstream at reattachment is appreciable, which is
the case with a large initial boundary layer thickness and
hence the atmospheric boundary layer. As a consequence,

the turbulencé structure is drastically different from that
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Figure 2-6. Distribution of streamwise mean
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shear stress behind a backward-facing step [8].
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found in any conventional shear flow. It had been argued
earlier that large eddies are deflected alternately upstream
and downstream rather than split as proposed by Bradshaw and
Wong [4]. This would lead to a stronger unsteadiness in the
wake than is normally found. At reattachment the thickness
of the new shear layer is of the order of a step height
(Figure 2-3, page 10). Curvature of the mean streamlines
and a rapid distortion due to the pressure field near
reattachment are the factors causing the initial shear layer
to split roughly in half at reattachment (Figure 2-3).

As measured by Tani, et al. [8], and Mueller and
Robertson [9], the shear stress in the free shear layer is
muéh_higher than the value of 0.01 pUl2 (Ul is the free
stream velocity) found in a plane mixing layer. This is
true even though the curvature of the streamlines associated
with a free shear layer tends to decrease the shear stress
and turbulence intensity. The reason for higher stress is\
that the effective velocity difference across the sheaf S
layer is more than Uy due to the reversed flow in the
separated region. Although the reverse flow velocity does
not seem to exceed 0.2 Ul r the shear stress exceeds
(1 + 0.2)2 times the plane shear layer value. Shear stress
in the reversed flow region is not negligible [7, 10, 11],
and it seems that the shear stress in the shear layer is

increased by the "feedback" or the re-entrainment of
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stress-bearing fluid from the separated—flow.region. .Such a
mechanism needs further éxperimental investigation.

The mean velocity gradient, %g ’ on.a.given stream-
line will be nearly the same before and after the regioh of
rapid distorfion at reattachment [4], that is to Say, the
mean vorticity is nearly conserved along a streamliné; but
despite this the decrease in Reyndlds stress, -ETvrmax ’
accounts for a sudden drop in the value of maximum éhear
stress near reattachment (Figure 2-7), Evidently la;gé
changes in turbulence structure occur when the shear layer
bifurcates at reattachment.

As has been reported by many authors, for a thick
initial boundary layer the maximum shear stress occurs near
the dividing streamline throughout most of the separated
shear layer except near reattachment where the Reynolds
stress, 0'v', decreases rapidly to a value of zero. The
tﬁrbulence intensity on the dividing streamline also
decreases, but less rapidly. Although the measurements of
shear stress near reattachment are not completely reliable

[4], it is fairly well known that the surface shear stress

rises rapidly after reattachment.

Flow Downstream of Reattachment

On the basis of experimental evidence, Bradshaw
and Wong [4] define and classify the perturbation in the

initially thin shear layer with the value of the parameter,
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h/60 (step-height/boundary layer thickness measured at the

separation point), as follows:

1. Weak perturbation : h/60 << 1,
2, Strong perturbation : h/60 = 0(1).
3. oOverwhelming perturbation: h/§, >> 1.

0
(This parameter has also been fopnd'dseful for classifying

the flow downstream of reattachment.) An example of an
overwhelming perturbation is_the mutation of a boundary
layer to a wake or a mixing layer. The flow of a thin
boundary layer over a downstream-facing step involves two
such perturbations, boundary layer to mixing layer and
mixing layer.back to boundary layer. The first perturbation
can be ignored, and the flow can be treated as if a fully
developed mixing layer appeared at the separation point.
Since the atmospheric shear layer is generally large
relative to any step height, that is, h/cS0 << 1, a building
in atmosphere could be classified as a weak perturbation.

An equilibrium boundary layer is defined as one
for which the turbulence structure is not strongly disturbed.
The relaxation of the boundary layer after reattachment, a
process where the disturbed boundary layer returns to its
equilibrium state, has been found to be very slow [4, 12,
15]. It is generally assumed that the distribution of the
average velocity can be described by universal laws applied
to two layers in the turbulent boundary layer, the "Law of

the Wall" and the "Law of the Wake." If this average

17



velocity distribution follows these universal laws, it will
be assumed that the turbulent boundary layer is in an
equilibrium state [12].

The "Law of the Wall" and the "Law of the Wake,"
for instance, as defined by Coles [13] are written as

follows:

- zu
u _ 1 T m 2,m =2
TRy et osin(zy) o

u : average velocity with respect to z,

2z : perpendicular distance from the wall,
u_: %?;73 , shear stress velocity,

v ¢ kinematic viscosity,

m ¢ a function of pressure,
k ¢+ 0,4 (von Karman's constant).

Townsend [l14] has an alternate approach to the
definition of an equilibrium turbulent boundary layer.
Townsend defines the state of equilibrium to exist between
the production of Reynolds shear stress and the dissipation
of turbulence energy which introduces gradient terms such as
%g and %% in the analysis. Obviously, the law of the wall
and wake is a simpler approach.

The characteristic lengths that describe the
average velocity in a turbulent boundary layer are \)/uT in

the range of the Law of the Wall and § in the range of the

Law of the Wake. It is reasonable to assume that the
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relaxation process could as well be characterized by any two
- lengths [13]. However, in the author's belief [12],
additional parameters seem necessary to determine the

| process of relaxation completely. Once experimentally
determined, they could be incorporated into the calculation
procedures. However, these parameters are yet unknown.

The relaxation of the shear layer after reattach-
ment to the ordinary boundary layer has been found to be
very slow and non-monotonic [4]. Earlier reports suggested
that the relaxation was monotonic [8, 10]. However, the
results of [4] show that the surface shear stress does not
return monotonically to the constant pressure equilibrium
value and that it takes more than 50 step heights to return
to its equilibrium value. These results correspond to an
almost overwhelming perturbation, [h/G0 = 0(10)]. But even
for just a strong perturbation, [h/50 = 0(1)], Wauschkuhn
and Ram [12] found that more than 20 step heights downstream
were required to reach the equilibrium state. The results
of Wu, et _al. [15], from experiments to investigate different
features of flow separation over a back step (a strong
perturbation) also ipdicate that this relaxation distance is
very large; and it was observed that static pressure takes a
shorter distance to return to its equilibrium value than the
velocity in the shear layer. These results indicate that

the earlier belief which considered the mean velocity as



_vwfoLléwing the logarithmic law of the wall close to the
| surface.in the relaxation region is wrong. -

The recovery of the boundary layer after reattach-
ment depends appreciably on the obstacle shapé, even when
the separation occurs from a sharp edge. In other words,
obstacle shape affects the strength of the recirculation in
the cavity zone. Relaxation behavior of the boundary layer
after experiencing an adverse pressure gradient, for example,
on a flat plate, which is monotonic in nature, is different
from that of the boundary layer after reattachment, in the
cése of a step-flow, the primary reason being the rapid
distortion of the flow in the reattachment region. The
relaxing bouhdary layer in the case of a strong perturbation
experiences more severe disturbance than in that of an
overwhelming perturbation, although recovery from the former
is quicker for a given initial boundary layer thickness, 60.

After reattachment, the turbulent length scales,
especially the dissipation length parameter, L (for ordinary
boundary layer, L = kz), are almost independent of 2z except
for a sudden drop to a value of zero at the surface [41.
This reduces the velocity gradient and hence the velocity in
the inner layer below the value predicted by the logarithmic

law,

AU _ ('rw/p)l/2

0Z KZ

Qo
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which demonstrates that the Law of the Wall is inapplicable
under these conditions. Alternatively, the local—é@uilibrium

form of the mixing-length formula [14],

ou _ (1/p) /2

9z KZ

giveé even higher values of the velocity gradient. The
failure of this fdrmula can be traced to the fact that
turbulence is not in local (energy) equilibrium, but chénges
rapidly in the streamwise direction, ahd that the length
scale of turbulence is not proportional to z, but increases
much more rapidly with z near the wall.

The outer layer, defined as one which retains the
- characteristics of the mixing layer, may take longer to
return to the normal boundary layer state, since the outer-
layer eddies, being larger, have longer lifetime than the
inner-layer eddies. The effects of rapid distortion in the
reattachment region propagate to the outer layer and change
its mixing-length characteristics. Due to bifurcation of
the mixing layer in the reattachment zone, the central
region of the mixing layer comes into close contact with the
surface; and hence there is a sudden jump in the value of

apparent mixing length or true length scale of turbulence,

(-GTVT)3/2

dissipation rate

above the local equilibrium value with increasing z.
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Mueller and Robertson [10] conducted experiments
on wedge-type rdughness elements in air for the elemenf-
height Reynolds numbers such that the shear layer was
turbulent downstream of the element. Turbulence was kept
low by using mesh screens. The reattachment point was
determined as the location where the shear stress value was
zero, which was roughly seven element heights downstream.
The mean velocity profiles behind the elements are shown in
Figure 2-8. Boundary layer thickness is seen to increase
slowly with distance downstream. Local skin friction
coefficients, Cf , were obtained from the profiles near the

wall from the Law of the Wall given below:

1/2
zZu 1 C

ul = 56 (—==) (L + log(—v;-) + 5 1og(-§£)]

H

The results are shown in Figure 2-9. With the assumptions
of a fully developed mixing region for the largest element,
shear stress at the edge of the separation bubble, the
dividing streamline, was calculated from the error function
curve [l16]. The calculated and the measured shear-stress
profiles are compared in Figure 2-10. The width of this
mixing region was found to increase linearly with distance
from the roughness element.

The authors [10] classify the turbulence structure
behind an obstacle into two stages. The first, one of

excitation, from separation to the reattachment and the
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second, one of decay, after reattachment to the equilibrium
state downstream. These two regions are clearly defined in
Figure 2-1l1l. From Figure 2-12 it can be seen that the shear
stress has an initially high value in the excitation region.
It decays downstream to the normal boundary\iayer value.

For smaller elements there is"a differenﬁlﬁaiimum shear
stress curve.fof the excitation region;ﬁhiéﬁ.iﬂdicates that
the mixing layer did not reach the fﬁilfldeveloped stage.
Also, interference from the base could affect the shear
stress curve for smaller elements. For the smallest element
the boundary layer was seen to have-ééhieVed the equilibrium
state 40 element heights downstream of the element (Figure
2-8). At this location the boundary layer was approximately
three times the element heights thick. Also, the sequence
of profile shapes ddwnstream 6f reattachment is just the
opposite to that found in the case of approaching separation
in a boundary layer flow. These expefimental results were
obtained for a strong or overwhelming perturbation,

(GO/h << 1), and the initial boundary layer had no influence
on the results.

Good and Joubert [5] experimentally obtained the
static pressure variations across the separated region
behind a bluff plate at various stations (Figure 2-13). An
important feature of these pfofiles is,th;t the locus of
their minimums is approximately parallel to the ground and

that it traces the region of high turbulence which initially
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coincides with the dividing mean streamline but continues to
remain constant in height from the ground towards thé end of
the wake. The pressure losses associated with these minimums
in the profile are believed to balance the large gradients

in the transverse Reynolds stresses.
IIT. REVIEW OF ANALYTICAL MODELS

There is literature available regarding the
determination of base pressure for two-dimensional steady
(without vortex shedding) base flow. Tanner [17] has
compared the theories of Chapman, Korst, Nash, and Kirk.

The theory of Tanner has been discussed in compérisoh to
these theories [17].

Most of these models assume very thin boundary
layer at separation so that the assumption of similar
velocity profiles is valid. 1In order to take the effects of
boundary layer thickness into account, Kirk assumes that the
shear or the mixing layer behaves as if it started some
distance ahead of the base instead of starting at the
separation point. It was seen that the base pressure calcu-
lated thus will be higher than that for vanishing boundéry
layer thickness. Also, neglecting the curvature of stream-
lines at separation (true for an "ideal" jet boundary), the
pressure of the uniform stream ahead of separation and the
pressure at the outer edge of the mixing zone are the same.

In particular, in the calculation of base pressure Chapman
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assumes that a balance exists between mass flow drawn from
the base region by the mixing layer and mass flow reversed
back into the base region by the pressure rise through the
reattachment zone, and also that the compression through the
reattachment zone is isentropic along the dividing stream-
line. Owing to the former assumption, for steady flow
without bleeding into the wake region, the dividing stream=-
line, as calculated from the mixing layer theory, must also
be a dividing streamline at reattachment. Nash improved the
reattachment criterion by taking into account the fact that
the pressure at the reattachment point, P, ¢ is not equal to
the final recovery pressure, Py ¢ far downstream as had
previously been assumed, but is actually less than Py-
Nash's reattachment parameter,

_ Py7Pg

N =
pl-pB

where Py is base pressure, was determined experimentally for
a back step for Mach number equal to zero to be equal to 1.6,
and not equal to unity.

The integral theory of Tanner predicts base
pressure for subsonic flows and could be extended to apply
in supersonic flow also. The main interest in Tanner's
model as far as this investigation is concerned is not in
how the base pressure is calculated, but in the way the wake
region is modeled. Referring to Figures 2-14 and 2-15, a

mixing process is assumed to occur in the region from the
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separation point A to the section I which corresponds to
constant pressure mixing between a uniform external stream
and fluid at rest., Due to this mixing, fluid is withdrawn
from the dead~air region. This phenomenon will be called
"outflow from the dead=-air region." The dividing or
reattachment streamline (:) separates tbe outer flow fiuid
from that withdrawn from the dead-air region. Experimental
results [18] show that the velocity and hence the preséure
at the boundary <:> , which separates the external flow from
the mixing region, tend to remain constant approximately up
to a section midway between the separation and the reattach-
ment points. At section I the mass flow between the
boundary (:) through which the mass outflow from the dead-
air region takes place and the dividing streamline (:) has
its maximum value because then the backflow into the dead-
air region begins. This maximum value is given by

Z

m = [ t
z

a pUdz (2.1)

r
Tanner relates m, to the pressure drag and hence the base
pressure and proposes the following expression for the

velocity profile in the mixing region (Figure 2-16):

ﬁ; = 2—[1 + sin {—-—-K—_'-' - —2'}] P)
where U, is the outer-flow velocity. This profile is an
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approximation to the error function profile which is
generally valid in a mixing layer.

Considering the static pressure throughout the
control volume ABCA in Figure 2-15, page 32 (the flow
approximates the flow in a free-jet boundary), as constant,

the momentum equation reduces to

4 2 VA
;9 pu“az - u, J 9 ovdz = 0 . (2.2)
Z 2

r r

Making use of Equations (2.1), (2.2), and some
empirical parameters such as h/d, Tanner calculates what is
called the second outflow function. Considering the region
between I and R, Tanner then calculates the first outflow
fuﬁction° The intersection of these two functions gives the
base pressure coefficient. However, the parameter, h/d,
which is closely related to the spread rate parameter, d
[19 through 25}, as used in other theories, cannot be
determined theoretically. As the spreading of the turbulent
mixing zone is linear, o will be constant at constant Mach
number. Different values of o have been used in the
literature. For incompressible flow, ¢ as a function of the
wedge angle, ¢ (for flat plate perpéndicular to the air
stream, ¢ = 180°; for flow past a back step, ¢ = 0°), is
shown plotted in Figure 2-17 (experiments conducted by
Tanner [l17]). To account for compressibility, ¢ is given by

the relation, 0/00 =1+ 0,23 M2 , where 00 is the wvalue of
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the spreading rate parameter corresponding to incompressible
flow, and where M, is the Mach number at the outer edge of
the mixing layer,

The two-dimensional problem of constant pressure
mixing of laminar two-parallel streams has been considered
by Yen [26]. The interface velocity and the location of the
interface in the mixing region has been determined by
considering the conservation df z-direction momentum through
a control volume analysis. Due to mixing, there arises a
transverse force acting on the dividing wall. For a free
stream velocity ratio of 0.5 and 0, the interface deflects
towards the.higher and the lower velocity streamé,
respectively.

Kubota and Dewey [27] used a momentum integral
technique to find the velocity profiles in the constant
pressure laminar free shear layer. The shear layer was
divided into two parts, one above and the other below the
zero streamline; and separate polynomial and exponential
expressions were used to describe the velocity profiles in
these two regions., Closed form solutions of the momentum
equations were obtained.

The constant pressure laminar mixing problem was
solved assuming the boundary layer approximations to be
valid for the free shear layers with finite initial
thickness. The continuity, momentum, and energy equations

were reduced to the incompressible form by using Howarth
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transformation. By using suitable matching conditions the
momentum equation is decoupled from the energy equatioh;_ In

el o~
[ 98—

. z
z = é (p/pe)dE '

and the streamwise coordinate, s, the equations to be solved

are of the incompressible form,

s T35z 0
ou 1 32u
Uas t V52 T Ve 5g2

where s and z are the distances measured along and normal to
the dividing streamline, and Pe and Vg are the values of
density and kinematic viscosity in the undisturbed stream.
The velocity profile is represented by an analytic
function containing several parameters as functions of s.
The total number of boundary conditions applied at the
extremities of the shear layer, at z = 0, and the moment
equations obtained by multiplying the streamwise momentum
equation by uj(j =0,1,2,....) must equal the number of
parameters appearing in the velocity profile. As the down-
stream velocity profile is quite different from the initial
profile due to the non-similar growth of the free shear

layers with a finite initial thickness, it is difficult to
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represent the profile as a whole by a single expression.
Hence the layer is divided into two regions, one above the
zero streamline and the other below it. The profiles for

these two regions are assumed to be of the form,

m
u -on k z
—= f = A 4+ e Ean y N =
ug 0 koo k 3‘1‘
and
u ch n k z
= =g =B, + e y bh" , h= ,
ug 0 k=0 k F;

respectively; Gl and 62 are the upper and lower shear layer
thicknesses, respectively; m and n are so chosen that the
profile is realistically approximated. The profile

parameters, A0 v 3 B0 ' bk , 6, , and 62 are determined

1
by the boundary conditions at the lower and upper

extremities of the shear layer, the continuity of the
velocity and its derivatives at z = 0, and the moment

equations. The possible boundary conditions for the outer

and inner boundaries are, respectively,

} £ £' = £" = eeee = 0

il
[ ]
-

and

}g:O,g'_—_—.g":--ao:O'
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where the primes denote derivatives of f and g with respect
to n and h, respectively. The matching conditions at z = 0

are given by

3¢ 5,7 43 |

= = =D ;3 =0,1,2,000 .
an z=0 2 Sh z=0

For a quadratic profile, ¢ = 0 and m = n = 2;

letting j = (0,1), it was shown that (u/ue)z=0 was 0.596,
which is very close to the exact value of 0.587 found by
Chapman [28]. Using an exponential profile, (o = 1),

lettingm=n =0, and j = (0,1), (u/ue)Z=0 was found to be

0.618.

At the separation point, s = 0, (u/ue)z=0 =0,
62 = 0, and 61 is equal to the initial shear layer thickness,
60. In the quadratic and the exponential profiles only one

parameter, (z/éo), specifies the initial profile. If two or
more such parameters were available, the effect of the
initial profile on the rate of growth of (u)z=0 would be
known. Figure 2-18 shows the effect of the shear-layer
profile on velocity along the zero streamline.

The Karman-Pohlhausen method for two-dimensional
laminar flows does not give reasonable results in the region
of adverse pressure gradient, and particularly when
separation occurs. Between the separation and reattachment

points this method fails to represent any real situation.
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Where the pressure gradient is zero, the Karman-Pohlhausen
method must yield an attached Blasius-type velocity profile.
In Figure 2-19 reattachment will be predicted upstream of B,
the region of zero pressure gradient, where in actual fact
reattachment occurs downstream of B. An integral method
first proposed by Walz [29] and modified by Tani [30] has
been demonstrated by Lees and Reeves [31] to produce
profiles with reverse flow even for zero pressure gradient
and, therefore, could predict the behavior of separated flows.
Also, this method does not require the empirical data which
other methods require, for example, modified Crocco-Lees
theory [32].

Modeling the flow separating from the sharp edge
of a back step as a free-jet boundary between the outer flow
with initial velocity, u. , and a lower stream with a
velocity of zero, and assuming zero initial boundary layer
thickness, similar velocity profiles are given by the
expression for the velocity profile in the region of a jet

interaction [22] as

u=—— (1L + erf &) ,

where the transverse coordinate,
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and

erf § =

Jule

f e
0

. The spreéding parémete?, o, is.an empirical
constant. Various values of o0 ranging from 9 to 15 have
been used for back steps for incompressible flow. Plate
[23] used 0 = 14.5; and the x-axis was taken as the locus of
points where u/ur = 0.5, and the z~axis as perpendicular to
X. Comparison of Plate's solutions with the experimental
data (Figure 2-20) shows some disagreement at the negative
value of £ where the lower boundagy begins to influence the
data. This is attributed to the theoreticai model which
assumes that the lower velocity stream extends to minus
infinity. The theory of free-jet boundary yields a Gaussian
shear stress distribution, which is in good agreement with
the experimentally measured shear stress distribution [33].

To make use of the error function profile, the
curve given by u/ur = 0.5 must be known either experimentally
or theoretically. A theoretical prediction (work in progress
by Bitte and Frost at The University of Tennessee Space
Institute) can be made on the basis of free'streamline
theory, which is based on the velocity distribution in the
undisturbed boundary layer, the shape of the obstacle, and
some empirical input related to pressures on the obstacle

and the reattachment length.
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Camarata [21] correlates the velocity profiles
obtained from experimental data in the similarity region

close to separation with the power law profiles,

== ()

= 14

u_ Y

with n varying from 6 to 9. The correlation parameter is

%-g(u/ue = 0.5) ,

where
b = u/ue
and
£ = z/<S0
u_: free stream velocity,

60: initial boundary layer thickness.

With this correlation and the two-layer (outer and
inner mixing zones) model for the velocity profile in the
shear layer, an integral procedure [21] which does not need
any specification of the shear stress distributions is
readily applied to calculate the profiles.

The pre-asymptotic region of the free shear layer

is divided into an upstream segment and a downstream segment
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(Eigure 2-21). The profile in the shear layer in the down-

stream segment is an error function profile,

uerf = %? (1l + erf %§)
In the upstream segmenf, the shear layer is partly a
truncated error function profile for the inner mixing zone
and partly a power law profile for the outer mixing zone,
the free-stream edge of which does not appreciably change in
height above the separation point at any x-location. The
reason for this is that the initial boundary layer has a
very slow growth relative to the rate of spreading of the
mixing layer. Thus 60 x constant for all x stations. Since
the whole initial boundary layer cannot be affected
immediately by the abrupt removal of the wall, it is
physically realistic to subdivide the shear layer as
mentioned above.

Referring to Figures 2-~22 and 2-23, an empirical
correlation curve specifies the slope of the velocity
prbfile in the pre-asymptotic region at the point, Az, where

u/ue = 0.5. Therefore,

l-n
du _ _ 1 Yo n
a—z- (u/ue = 0-5) = 5*6—173 (AZ) (2.3)
0

The left-hand side of this equation is known; and for a

given x, n is known. Hence Equation (2.3) will yield Az.
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Figure 2-22. Pre-asymptotic velocity profile
description [21].
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Figure 2-23, Variation of velocity profile slope at
the half-free-stream velocity point with
distance from separation (21].
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Also,

erf _ Y q - (=) du
= (Az) = 7% % © = a;(u/ue 0.5) . (2.4)

For a given x, 0 can be iteratively calculated from

Equation (2.4). Therefore, the error function profile is

known.
Conservation of momentum equation yields
% 2 2/n0 %m uz 52 2
é ue(z/60) dz =_£ 7r(1 + erf ??) dz , (2.5)
where n, (the value at separation) has been taken as 7 [21].

0
The preceding equation can be solved for z,

iteratively. Hence the velocity profile is completely known.
Comparison of experimental data with the solutions is shown
in Figure 2-24,

Far downstream from the asymptotic region, which
is not a similarity region, no correlation is available; and
hence ¢ has to be specified. From the theoretical estimates
of earlier authors [21] o in this region is approximated by
the relations, o = 12 + 0,8 Me ’ Me being the free-stream
Mach number. Hence the transition between the asymptotic
and the pre-asymptotic regions occurs at the point where the

values of o obtained from the two criteria are equal.
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Korst and Chow [19] have compared various
analytical and experimental constant-pressure free shear
layer similarity profiles by the use of spread rate
parameters. It was found that in addition to the flow
conditions, o also depends on the analytical model, the way
matching is done with the experimental data, and the
viscosity model of turbulence employed. Although matching
along the dividing streamline could be done, matching at the
half-free-stream—velocity point, u/ue = 0.5, was observed to
be more realistic, as shown by Figures 2-25 and 2-26.
Various pfofiles agree very closely at this point.

The initial conditions like the initial boundary
layer thickness, the initial veiocity profile, and the
initial distribution of turbulence intensity influence the
flow downstream in the free shear layer. As long as the
change in the pressure gradient is small, the turbulent flow
equations can be laminarized to some accuracy through the
use of an eddy transport coefficient concept. Turbulence
shear stress; in analogy to laminar shear stress, is written

as

where ¢ is the eddy viscosity. Various eddy viscosity
models have been examined [20]. These viscosity models as

applicable to incompressible flow are as follows:
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Figure 2-25. Comparison of different
velocity profiles [19].
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Figure 2-26., Illustration of the matching of various
profiles with the common scale as the transverse
coordinate of the error function profile [19].
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€ = kleu'( . (2.6)

£ = kz(x + xo)ue ’ (2.7)
_ 2,,0u

e=k3u/(zx)p (2.8)

e =k, (x + x)° |32, (2.9)

where kl ’ k2 ’ k3 , and k4 are empirical constants. The
constant X is the shift of the virtual origin due to the
presence of an initial boundary layer. It éccounts for the
initial thickness. Subscript D refers to the dividing
streamline, and e indicates the outer edge of the mixing
layer ‘Figure 2-27).

. "In Equation (2.9) Prandtl's mixing length,
expressed by /FZ(X + xo), is assumed proportional to the
streamwise distance, x. Equations (2,.6) and (2.7) are
similar to Prandtl's simplified hypothesis [22] in which €
is assumed proportional to the width of the mixing layer.
Nash [24] used Equation (2.8) in his study of the pre-
asymptotic shear layer.

At the separation point a singularity exists, and
there is a small neighborhood where a discontinuity in shear
stress occurs. This neighborhood for flat plate has been
found to be O(LR-3/4), where L is the length of the plate and
R is the Reynolds number based on L. Neglecting this

extremely small region, laminarized boundary layer equations
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describe sufficiently accurately the similar and nonsimilar
flow regions in a free shear iayer. The effect of the sharp
turn of the attached boundary layer flow on the initial
vélocity profile is neglected. Therefore, the attached
"boundary layer profiles are the initial conditions for the
gseparated shear layer.

Values of the empirical constants evaluated after
comparing the experimental data with the calculated velocity
profiles [20] were found to be as follows: kl = 0.6;

k, = 0.002; k = 30 0

= 0,015; k, = 0.0575; x , where 6

2 3 4 - 0 0
is the momentum thickness at the shifted origin. The

0

similarity parameter, o, was taken as 9.42.

The model as described in Equation (2.9) does not
give results in agreement with the other three. This is
because it yields a different viscosity distribution.
Viscosity increases from zero to a maximum inside the shear
layer and then decreases to a value of zero at the upper
edge of the mixing layer. But in the other three models the
viscosity is constant across the layer. For the sake of
simplicity these three models are well suited for calculating
the mean quantities in turbulent free shear layers. However,
although the empirically determined values of the k's give
good correlation in one region, they may fail in other
regions of the same flow field. Hence they are not universal

constants for the whole flow region.
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In the case of mixing in a free-jet boundary,
streamlines have a curvature which becomes important énd
should be taken into account. Uchida and Watanabe [34]
defined streamline coordinates in a curved flow fieid'by
o and B and their extension parameters by ha - %% and
hB = %% . where s and n represent arc lengths along and

normal to the streamline, respectively (Figure 2-28). .

ha and hB satisfy Gauss' orthogonality equation,

I S N TS S N
20 ha o0 oB hB 9
with B = constant chosen as streamlines;
a = 1 3y _ 1
s n o R"a T T o
hB o8B hB
1 3
T X
o
usp“s
R = v .

The concentration of the mass flow in the mixing
zone expressed by B is lower than that expressed by P in the

Cartesian coordinates, and hence

Su , 3u
98 9z °
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Figure 2-28. Streamline coordinates system [34].
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Applying boundary layer approximations to the Navier-Stokes
equations in the streamline coordinates, two important'facts
become apparent [34]. Firstly, the nondimensional pressure
gradient, %% ’ counterbalances'the centrifugél force; and
secondly, the efféct of curvature becomes important'wﬁeh it
is of the order of Rl/z. In making the boundary layer

approximations, orders of magnitude for various quantities

are assumed to be

o(g) = r°1/2

O(ha ’ hB ’ u 7 p ’ a) = 1 .

At B » =, the solution is matched with the outer flow of

velocity, u,. Defining the variable [35],

1
A:—(E:u(.—.)'
8 e ha
l/ha becomes equal to u, on the outer boundary where A = 1.

Thus the boundary conditions can be expressed as

at B > +» ; XA

oA _
1 and 38 o,

atB-»-oo

~
>
Il
o
.

In deriving similar solutions, a similarity

variable is defined as
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n = VR;QB '

which takes into account the fact that the width of the

1/2 1/2

laminar mixing zone increases as o corresponding to x
in the usual case.

Assuming no pressure gradient along the zero
streamline for incompressible laminar mixing in free-jet

boundary, the authors theoretically generate shear stress

along ¥y = 0 as a function of the curvature parameter, C,

along ¥ = 0 (Figure 2~29), where
R hahB 2B

H is a function of integration.
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CHAPTER IIX

SOLUTION OF GENERAL NAVIER-STOKES EQUATIONS AS

APPLICABLE TO ATMOSPHERIC FLOW

Governing Equations for the Turbulent Atmospheric:flow

Equations of motion for a steady, two-dimensional,
incompressible Newtonian flow in the Cartesian coordinates,

x and z (Figure 3-1), are

ou ou _ _ 1 3p 1l 9 Ju
Uit V32 T T 5 3x T 5 xiMers (%%
9 ou oV
+ gg[ueff(gz + g;)] ’ (3.2)
oV ov. _ _ 139 l 3 oV
ST Y Ve T T 5 7% 5 97 Mers (2570
3 Ju FAY
*oxlbess 3z Y 33, (3.3)
where u and v are the ensemble averaged components of
velocity along the x and z directions.
In this study these equations are assumed to
govern the neutral atmospheric boundary layer flow. The

Coriolis forces induced by the rotation

64

of the earth [36]



S9

nw _1lLn ne Dotted lines
= -0 enclose the
| ! area of
W ; P ! E integration

Figure 3-1. Portion of the finite-difference grid. |



-are considered negligible in the lower regions of the

atmosphere to which the present problem is confined.

Boundary Conditions for the Atmospheric Shear Flow

The thickness of the atmospheric boundary layer is
of the order of 1,000 meters, Thus the outer boundary
condition for the problem under consideration is specified
from within this shear layer. At the ground no-slip
condition must be satisfied. In an equilibrium turbulent
boundary layer the logarithmic velocity profile is given

by [36]

u = u* z+z0
—-K*— in = . (3.4)

The introduction of the surface roughness parameter, 2g »
ensures that the mixing length does not vanish at the
surface; and hence the turbulence is not zero at the surface
(z = 0). The friction velocity, u*, is taken to be constant
from the assumption that the boundary layer is a constant

stress layer (sz = Tw).

Eddy Viscosity Model

For a laminar incompressible flow molecular
viscosity, u, can be assumed constant; but in a turbulent
flow the effective viscosity, Hagg 7 comprised of turbulent

and laminar parts, is given by

Mogg = W + He (3.5)
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where My v also called the eddy viscosity, is a function of
the velocity gradients., From Prandtl's mixing-length

hypothesis,

2

_ Ju
My = PRTIx=10 (3.6)
‘with the mixing length,
L= k(z + 25) . (3.7)

Equation (3.7) is valid in the immediate vicinity
of the wall, Away from the wall the mixing length distri-
bution depends on the flow situation. Equation (3.6),
applicable to boundary layer type of flow, gives a zero
viscosity for %%—= 0 which is not necessarily true for
recirculating flows where the velocity gradients, %% and %% ’
may be comparable in magnitude. Hence the eddy viscosity
model used in the present study is taken as

1/2
= po?( (Y N (3V>2} (3.8)
Hy =P 3z X .

Essentially, the turbulent flow has been treated as one with
turbulent viscosity as its transport property which is a
function of the location of the flow region. For recircu-
lating flows, however, where the relations between stresses
and velocity dgradients are complicated and not yet known

[37], the eddy viscosity model is unsatisfactory. Therefore,
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one is lead to a more detailed model of turbulence developed

by Prandtl and KolmogoreV,

Prandtl-Kolmogorov Model of Turbulence

According to the Prandtl-Kolmogorov model, here-
after referred to as the TKL model, the turbuience kinetic
energy, k, and turbulence length scale, £, characterize the
state of local turbulence. This model provides a better
formula for determining the turbulent viscosity since for
recirculating flows where the mean velocity gradient

vanishes, the turbulence energy is not necessarily zero.

Algebraic equations for the transport properties.

The TKL model relates k and & to the effective viscosity by

the relationship,

- C pk1/2

Ueff u 2‘ ’ (309)

where k and 2 are the local values, and Cu is a function of

turbulence Reynolds number which is defined as

R, = —, (%.10)

where the Prandtl-Kolmogorov formula for turbulent viscosity

[37]) is given by

vz, (3.11)

My pk

it can be argued that when R is small, turbulence is
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.neéligiblé and the fuﬁction, Cu , tends to l/Rt' Oﬁ the
other hand, when Rt is large, it takes on a constant
asymptotic wvalue, Cum. Researchers have used different
asymptotic values for Cu for different flow situations, but
no- "universality" in its value has been found so far. The
" knowledge of the behavior of Cu as a function of Rt in its
intermediate range.is also not satisfactory [38].
From Equations (3.5), (3.9), (3.10), and (3.1l1),

the following relation emerges:
Cu =1+ l/Rt ’ (3.12)

which implies that Cu = 1. This value has been used in
different flow situations [38], but in recirculating flows
it is different from 1. Further discussion on Cu will

o0

appear in the sections on selection of constants and their

parametric study. In general,

Equations to be Solved

Differential equations for the vorticity, w, and
the stream function, Y, are obtained from Equations (3,1),
(3.2), and (3,3) by making use of the following transfor-

mations.
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Define a two-dimensional vorticity about the -

y-axis,
w = 5-}—{ - -5-2- ’ - (3.13)

and a stream function, ¥, such that

u = %%1-’- , (3.14)
v = - %-gg . (3.15)

Introducing ¥ into Equation (3.13), eliminating
pressure from Equations (3.2) and (3.3), and introducing w
and ¥y into the resultant equation gives the Poisson equation
for the stream function and the transport equation for
vorticity, respectively. Both of these equations can be
expressed in the following general form of the elliptic

equation ([38],
3 .9y _ 3 ., 3V
[als=(¢58) = 55 (052) }]
- [lb(cd) } + ={b=(cd)}] + & = 0, (3.16)
9X -~ oxX 9z 03z rA=e
where the coefficient functions, a, b, ¢, and d, and the
dependent variable, ¢, are given in Tables 3-1 and 3-2. 1In

Equation (3.16) the terms in the first pair of brackets are
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TABLE 3-1

COEFFICIENT FUNCTIONS OF EQUATION (3.16)

a b o) d
0 1/p 1l -w
1 1 Hefs -8,
u
£f

1 T = 8xr 1 -3

k,eff ck,eff k
1 Lo, eff 1 5y
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TABLE 3-2

EXPRESSIONS FOR THE SOURCE TERM, =-d

02 Q
3/2
. 2 2 2 pk C
_ au vV ou oV d
ut[2{(-a-§) + (—B-E) } o+ {—3-2 + -3?} L - R
N
Wskt
2 2 2
1/2 _ 4 ou VvV ou oV
pk Cs Elut[Z{(gi) + (EE) } o+ {BZ + EE} ]JCb
Y '
Wskt'
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the convection terms, those in the second one are the
diffusion terms, and the last one is the source term.

Gosman, et al. [38], derived a differential
equation for k, and Rotta ([39] proposed a differential
equation for &, both of which can be expressed in the form
of Equation (3.16).

Referring to Tables 3-1 and 3-2, the term in
_brackets multiplying My in the source term for the
k-equation is the production term; the second term repre-
sents energy dissipation. The term containing CS in the
f-equation represents the rate of increase or "stretching"”
of the lehgth scale, and the second ohe represents the
decrease or "breaking" of the length scale. The coefficients,

Cy and_Cs , are believed to behave with R_ like C  given in

t u
Equation (3.12a) [38].

Solutions for laminar flow were determined at
different Reynolds numbers solving the two partial differ-
ential equations (pde) for w and Y. Turbulent flows were
solved using the eddy viscosity model introduced into these
equations for intermediate values of Reynolds number. For
- higher Reynolds-number turbulent flow, the TKL model was

employed which introduces the two additional partial differ-

ential equations for k and £ in the analysis.

Derivation of the Finite-Difference Eguation

The finite-difference equation (fde) has been

derived by integrating the general pde given by Equation
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(3.16) over a finite area, assuming that the distribution of
the variables between the nodes of the grid is known.
Integration of Equation (3.16) over the rectangular
domain (sides of the rectangle lie midway between the
neighboring grid lines) shown by dotted lines in Figure 3-1,

page 65, will give

X Z
al/l [ {5—(¢aw) - gi ¢32)}dx dz
X 4
w S
X Z
e n 3
- s 3% {b-—-(c¢) + 5—{b-5—(0¢)}]dx dz
X Z
w S
X 2z
+ € r2agaxdz=0
xW ZS

To illustrate the principles involved in inte-
grating the convection terms, one of the four integrals,

namely,

n
a s ¢,(3H az,
s e

is integrated as follows:
Assuming that ¢ and ¢y are well-behaved functions

and that an average value of ¢e exists, which can be given

by
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A 1
z, Yelz) 9
'$e = Z 20 ’
n
/o gg)  dz
ZS e

the integral takes the finite difference form

af, (b o = Vo) -
Assuming that ¢ within each rectangle in Figure
3-1, page 65, has a constant value equivalent to that at the
centrally enclosed node, P, and that the $e takes on the
¢~value possessed by the fluid upstream of the e-face of the
rectangle, the upwind differencing effect is introduced into

the integral by the following finite difference form:

(wne-wse)-lwne-wsel (wne_wse)+lwne-w

l
se

If the flow direction is from P to E, then wne - wse is

positive and hence
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Also, assuming that the y-value at a particular
corner of the réctahgle'is eqdél’to the avérage of-thé four

neighboring node values;'w , for example, can be given by

ne

e T

wne ® ~ 4 *

The remaining convection terms are integrated similarly.
Considering the first term in the set of four

diffusion terms, namely,

z

n d
i be{§§(c¢)}e dz ,
s

it is assumed that b and (c¢) can be approximated as varying

linearly with x so that

- by + by
o 5 —m——
and
C.9.. = c,¢
2(cp) x ZE BB,
X X =X

E P

Thus the finite difference form of the first diffusion term

bg + bp Cpéy - °P¢P(z 2
- K ’
2 Xp Xp n s
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with the other diffusion terms having similar expressions.

Finally, the last term,

is integrated by assuming that the value of d is constant.
over the area of integration and is equal to that at the

centrally enclosed node, P; thus the source term becomes

dP(xe - xw)(zn - zs) .

On rearrangement and simplification the following

fde is obtained from integration of Equation (3.16) [38]:
Ap(dp = dg) + A (d, - b)) + B (dp = o) + Ag (b, = ¢g)
- BE(cE¢E - cP¢P) - BW(cw¢W - cP¢P) - BW(chbN - cP¢P)
- Bglegdg = cpop) + dpV, = 0, (3.17)

where the A's, the coefficients in the convective terms, are

given by

a
P o
Ag = TF[(wSE+ws'WNE"wN)+leE+ws"wNE'wN‘] ’

a
p
Ay = 1T[(?Nw+wu'wsw'ws)+lew+wN'wsw“ws‘] ’
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i |
By = 1 WtV Vi) + | e Ve Y Y| 1

] |
g = gl Wgtb=Veg=Vp) ¥ | Vot Wy Vep—Vg|] ¢ (3:172)

and the B's, the coefficients in the diffusion terms, are

given by
a o bE+bP 2\~ 2g
E 4 X=X !
5 - DwPp ZnSs
- ’
W 4 Xp=Xy
8 - bN+bP Xp~ Xy
N 4 Zy~Zp '
b.,tb, x_-X
By = b4 P ZE_ZW , (3.17b)
and
X~ Z, . =2
v = EZXW)( -5 . (3.17¢)

The first order derivatives, for example, %% of

the dependent variable, ¢, are approximated as follows:

Z_ ~2Z Z. -2
P 7S N S8
(¢N-¢P)z = (¢P‘¢S)z =z
39 _ N_P P S (3.17d)
°Z ZN - zS

It may be noted that in deriving the coefficients

in the convective terms, use was made of "upwind
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differencing” for first order terms so that the A's are
always positive. This implies that the transportive
.property is advected in the direction of velocity which is
réalistic. The stability-of the solution procédure improves
considerably using upwind differencing. " The coefficients in
the diffusion terms, the B's, are dependent on the grid
spacing and are also all positive. One of the assumptions
made in reducing the diffpsion terms to their finite
difference form is that b and (c¢) vary linearly with x over

the domain of integration (Figure 3-1, page 65).

Complete Successive Substitution Formula

Equation (3.17) can be written as

¢p = Cpdp + Cydy *+ Cydy * Cg9g5 * D+ (3.18)
where
CE = (A + B c )/Z AB ,
Cyq = (Aw + BWcW)/Z AB ,
CN=(AN+B )/):AB,
Cg = (Ag + Bgcg)/T AB ,
D = - 4,V,/T AB ,
and |
L AB =.AE + A, + A+ AS + cP(BE + By + By + BS) ;

where the C's are all positive.
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This substitution formula cah'be applied at every
interior node in the flow field. The simultaneous noniinear
'quﬁations for w, w; k, and & giveh by the geﬁeral equation
'(Equation (3.18)) are solved by a Gauss-Seidel itérative
procedure. -

Equation (3.18) for k can be written as

v./L AB ,

kp = Cgkp *+ Cky + Cyky + Cgkg + S b

P
where the source term, Sk p ! is given in Table 3-2, page 72.
’
This formula has been modified [38] by rearrangement to give
(refer to Table 3-2)
e - CEkE + kaw + cNkN + cskS + wskt,PVP/z AB
P

1/2
1+ TAE (Cdpk /2)P

<

For %, Equation (3.,18) becomes

QP = CEzE + CWZW + CNQN + CSRS

% Vp

1/2 -
v PR Cg £ WokeCp)p TEE
which can be rearranged to yield

1/2
L - cE2E+csz+chN+cst+vP(pk cS)P/z AB
P v .

P
1+ 5383 ekt /K p

(3.18b)
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The advantages in using Equations (3.18a),
(3 18b), and the implicit substltutlon formula for w
(Equatlon (3.31)), which is given in the section on boundary
Qonditions, will be discussed in the section an conﬁe:gance

of the solution procedure.

Setting Up and Discussion of the Boundary Conditions

Referring to Figure 3-2 and considering the flow
field enclosed in a control voiﬁme 1-2-3-4-5-6-1 with a unit
depth perpendicular to the plane of the paper, flow enters
at 1-6, the inlet, and passes over the back-step 1-2-3 ahd
leaves at 4-~5, the outlet. The lower boundary 1l=-2-3-4
comprises the top face of the step 1-2, the base 2-3, and
the ground 3-4. Surface 5-6 is referred to as the upper
boundary. The Cartesian coordinate system is shown in
Figure 3-2 with the origin at station 3.

The boundary conditions (b.c.) prescribed on ¢ are
either of flux-type or of normal-gradient-type, except at
the inlet and the outlet where the ¢ values prescribed are
also related to the values of the horizontal component of

velocity for all locations on the boundary. The normal-

gradient-type boundary conditions retard the rate of
convergence in comparison with the flux-type boundary

conditions.
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Algebraic equations for and substitution formulae

derived from the boundary conditions. At the inlet and

outlet, logarithmic velocity profile (EQuation (3.4))
typical to an eqguilibrium atmospheric boundary layer is
prescribed with different shear stress velocities. At the
outlet, the reférénce velocity, u. is'prescribed at the

*
right-hand corner of the upper boundary so that u, is given

by
* Kur
uo = -_1'1—"':'7..; . (3-19)
in >
0

Considering the upper boundary to be in the undisturbed flow

and applying the continuity equation,

so that the friction velocity at the outlet becomes

x Do+2 hytz

uo[0 O (en 0 - 1) + 1]
* z Z
u, = 0 0 (3.20)
i ho-h+z0 ho-h+z0 * °
[——-E-—~(£n — = 1) + 1]
0 0

Equations (3.19) and (3.20) imply that ¢ is constant along

5—65
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Boundary conditions for the stream function. The

”deScriptidn of the boundary conditions on'w that were used
‘in the numerical solution of the problem is as follows:
.The boundary conditions on different boundaries

are:

Inlet
¥ h h
z pu.z, z-h+z z-h+z
— Y _ i®o 0 0
V= f 5 dz = = [ 5 (n > -1) +1] . (3.21)
h 0 0
Outlet
* + +
V4 pu.z. z2+2z Z+2Z
b=t fLaz=-TJ29_Oun L -1y 415 . (3.22)
0 0 0

Lower Boundary

Yy = 0 (no-slip condition) .
Upper Boundary

Y = ¢6 = constant .

Unless the outlet is sufficiently far downstream,
fixing ¥ there through the logarithmic velocity profile may
cause the solution to be rather unrealistic. In the present
problem the outlet has been taken far enough downstream that
the iogarithmic velocity profile is a reasonable approxi-

mation to the real flow situation. In order that the outlet
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b.c. could exactly represent the true physical situation
which theoretically occurs at ihfiniﬁy, use would have to be
made of a transformatiqn like n = ;%T which maps ﬁhe semi-
infinite axis, 0 < X < e, into 0 <n <1 [40]. As the
asymptotic behavior of the outlet velocity profile is that
of the logarithmic velocity profile, this transformation
could hold promise; but care would have to be taken in
choosing the proper grid distribution, especially in the
recirculatién reéion. Using this mapping also introduces
some more gradient terms in the source term of Equation
(3.16), which can influence the behavior of the iterative
process as far as convergence is concerned.

Roache and Mueller [41l] used a floating b.c. on V¥

at the outlet:

?

oxX

with (3.23)

which amounts to extrapolating Y linearly as

Yin = %Yinm T VYinm-1l c

The preceding relation is valid for a uniform grid near the
outlet in the x-direction. The authors [41] report that

Equation (3.23) failed for low Reynolds numbers as it gives
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an abrupt variation of w near the outlet. However, for high
Reynolds numbers it gives good results. To use these
boundary conditions at the outlet, u. is taken as the

reference velocity at the inlet at the upper boundary so

that
. Ku
Yy R -R¥z, ° (3.24)
i 0TP2g
n V4

This specifies the inflow b.c. on ¥y given by Equation (3.21).
The b.c. for the outlet given by Equation (3.23) along with
Equations (3.24) and (3.21) have also been investigated for
the problem under consideration. Further discussion of
these boundary conditions appears in the section on

discussion of results.

Boundary conditions for the vorticity. The

vorticity boundary conditions as prescribed on the wvarious

boundaries are given below,

Inlet
At the inlet the following equation for w was used
with Equation (3.21) for Yy with either of the equations,

Equation (3.20) or Equation (3.24):
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or

V3=V V¥

X=X X=X u
- - 3 72 2 71, _ i
w = 2[ p(x3_xl)- ] -"(——TK z+zo . (3.25)

The expression for %% in the above equation

follows from the second order Taylor expansion neglecting

3
3—% and higher order terms, whence
90X
32v
s =0 . (3.26)
X

Eguation (3.25) allows %% to develop as a part of the
solution. The flow is thus not completely specified at the
inlet lest the elliptic nature of the problem be restricted

[42].

Outlet
With the b.c. on ¥ given by Eguation (3.22), the

following b.c. on w was employed:

Vin"Yivm _ YinmVinm-1 .
X_..—X X -X u
IN TINM-1 0
Upper Boundary
w = 3V 2u
ox oz °
32y
As —3 at the upper boundary is zero, it follows that
9x
_ _ du
w = "B'E L]
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Extrapolatingiuzlinearly to the upper boundary requires

2
a"u _ . oW _
;z—z—o ’ l.en’ Tz-—o ’

which gives the relation,

w (3.28)

iN T “inm
as used by Roache and Mueller [41].

Lower Boundary

Using the no-slip condition, the continuity
equation, and the fact that v = 0 along the lower boundary,
and by retaining the third order terms in the Taylor
expansion for wNP (see Figure 3-2, page 82), Woods [43]
arrived at the second order form for vorticity at the solid
wall,

3y w
N+ 2B+ 0(Az%) , (3.29)

w, == |
s o (bz)°
which assumes that w varies linearly with the normal
distance from the wall. Gosman, et al. [38], have achieved
more accurate predictions with Equation (3.29) than with the
first order explicit form,
szP

w = - E— ¥ + 0(An) (3.30)
s p (An) ’
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where n is the normal dlstance from the wall, and W, %sfthe
value of vorticity at the SOlld wall. These two forms are
valid for a uniform grid near the wall. Referring to
Figure 3-2, page 52, Equatibﬂ'(3.29) can be used implicitly
in the substitution formula (Equation (3. 18)), and the
modified substitution formula for vort101ty for the corner

node NP, for example, can be written as

Cea¥ v .
Cpug + Cyiy -"-%-[‘ W-Ng‘i+ Cs NP] +p - 7
wyp = ()" (42)" (3.31)
NP CrCs — - e
l + L S :

If the explicit boundary condition given by Equation. . (3.30)
is used, the appropriate boundary condition at the sharp
corner 2 is not well defined, and a number of formulae have
been proposed. [22]. Two of these are---e

1. = OD

“2
2, Discontinuous values of vorticity,
-szP/p(Az)2 and -ZIDNP/p(Ax)2 are used,
depending on whether the vorticity at the node
immediately above.2 or at the. one immediately
downstream of 2 is being calculated,
respectively.
With the implicit scheme. (Equation (3.20)), it is
unnecessary to specify any b.c. at 2 because the discon-

tinuous nature of vorticity at 2 has already entered the

substitution formula (Equation (3.31)). Comparisons of

89.



these expliéit and implicit forms were made in the beginning.
No appreciable difference was observed although the latter

‘seemed to yield more realistic results.

Boundarx;conditions for the turbulence kinetic

. energy. Deriving boundary conditions on k necessitates
finding a simple expression for it. Differentiating

Equation (3.4) with respect to z will give

*

u _ u
3z T RlzFgg) (3.32)

Réferring to Figure 3-2, page 82, the wall velocity gradient
near the ground and the top faée of the step will be %% and
that near the base will be %% . Restricting attention for a
moment to the regions where %% >> %% , Equation (3.6) and an

expression originally suggested by Boussinesq in analogy to

the expression for laminar shear stress, namely,

57157 ° (3.33)

Also,
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Using Equation (3.32), laminar shear stress will

be given by
*
T = pV u .
Klz+zoi
Therefore,

-k 2, *
T _ pu [2 u |
eff K(z+zo) KTz+zo

) + v] . ' . (3.33a)

By definition,

Assuming that the magnitude of the shear stress is constant

near the walls and throughout the undisturbed layer,

x2
Teffl = | Taff l = pu . (3.33b)
w
Equating Equations (3.33a) and (3.33b) gives
v .. 1/2
L = [K(Z+Zo){K(Z+zo) - —x}] .
u
Since K(z+zo) >> 3% » it follows
u
L= K(z+z0) . (3.34)
Also,
T au

eff = PVeff 3z ° | - (3.35)
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».-From Equation (3.9), -

Using Equations (3.32) and (3.34), Equation (3.35) becomes

- 1/2 *
Taff = pCuk / u . (3.35a)

Equating Equations (3.33b) and (3.35a),

* 2
k= (u /CU) . (3.36)

\'4 3 sy s
3% 07 33 7 it is assumed that the

velocity variation in v with x is also governed by the

Near the base,

- logarithmic velocity profile,

v = XK._ n o, (3.37)
2y 0
so that
5 *
SV _ v
T = H;{TEEY o (3.38)
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and following the same reasoning as before, it can be seen

that near the base

L = K(x+zo) P (3.39)
_and
* 2
k = (g-) . (3.40)
U

Equations (3.10), (3.11), (3.12a), (3.34), and (3.36) give

2

1y . (3.41)

Heo

*
- - H
k = [Hu pK(Z+ZET} C

Similarly, Egquations (3.10), (3.11), (3.1l2a), (3.39), and

(3.40) yield

2

= * u 1
k = [{V m} cu ] . (3.42)
[+
For the inlet and outlet, %% > %% : therefore, at the inlet,
2
= * H 1
k=Uy - syt e (3.43)
0 He -
and at the outlet,
2
* . i
ko= [Hug = =t} =21 . | (3.44)

p(z+zo) Cu

@®©
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With these boundary conditions, k is fixed at the
inlet and the outlet. But, corresponding to Equation (3.23),

a floating b.c.,

52k

.._..2(=0'

90X

was used at the outlet, which gives

kin = ZRoem T Knw-1 o (3.44a)
At the upper boundary the b.c. is %§-= 0, which in finite

difference form is

kJN = kJNM . (3.45)

At the lower boundary the b.c. on k can be derived as

follows. From Equations (3.32) and (3.38), respectively,

* K(Z+ZO) 32¢

u =
P 822
and
X K(X+ZO) aZw
V = = e 2!
P oX

where the following expressions for

3%y

322
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ahd

Bzw
3

ox

at the respective walls, obtained by using Taylor series in
which third and higher order terms are neglected, are
ZwNP/(Az)2 and 2wNP/(Ax)2, respectively (see Figure 3-2,
page 82). The;efore, the preceding two equations at the
respective walls become

w' = Eﬁﬂ%’. (3.46)

p(B2z)

and

* _ 2ezbyp

—— . (3.47)
o (Ax)

<
Il

Referring to the corner node NP (Figure 3-2), Equations

(3.41) and (3.46) give

. (3.48)

Similarly,

. (3.49)
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At the sharp corner 2, discontinuous values of k,

1 {2K(h+zo)wNP

T - e
U, (Az) SR _

- and the one given by Equation (3.49) are used depending on
whether the turbulence kinetic energy, k, at the node
immediately above 2 or at the one immediately downstream of

2 is being calculated, respectively.

Boundary conditions on 2. Referring to Figure 3-2,

page 82, the distribution of the mixing length is shown
which is based on the normal distance from the nearest wall.
The lines 22' and 33' are inclined at 45° from the positive
x~axis. This distribution fixes the mixing length (1) on
:all the boundaries for the TKL model and (2) everywhere for

the eddy viscosity model.

Numerical Solution of the Finite Difference Egquation

The nonlinear system of simultaneous algebraic
equations given by Equation (3.18) has been solved by the
Gauss-Seidel successive substitution technique. The
numerical scheme and the computer code developed by
Gosman, et al. [38], has been modified for the back—steb
problem. Successive over-relaxation or under-relaxation on
the dependent variable, ¢, in Equation (3.18) can be readily
employed. Both relaxation techniques were used and are

discussed later in this chapter.
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Equation'(3.18) is solved for the vorticify,
streém'function, turbulence kinetic energy, and thé
turbulence length scale in that order. Referring to Figufe
3-3,>the whole flow field is swept row by row in the |
direction 5 to 4 from the upper boundary to lower boundary,
ﬁpdating ¢ values at the interior nodes using Equation .
(3.18) and at the wéll nodes by the substitution formulae
for the boundary conditions. One iteration cycle is
complete when all the four equations have been solved and
the ¢-values at the boundary nodes have been updated. This
iteration process is carried on till either of the foilowing

two convergence criteria has been satisfied:

&=—) < o.01, (3.50)
¢ max
n__n-1
(&-=¢—) < o.00001 . (3.51)
¢ a max

The second criterion is necessary because when the
magnitude of the ¢-value at a particular node becomes very

small, the variation, ¢n_¢n-l

, at that node can still be
larger since it depends on the values at the surrounding
nodes; and thus the first criterion is difficult to satisfy

eﬁen though the rest of the field has converged.

97



86

(<) g )

) ,///’//’ ¥ Node from which the iteration
ol o process starts; the arrows
¥ o|% ol I show the direction in which
il N the process proceeds row by row
®E I JN

S 6 : 5

™ ; :

(I |23 : JINM INDA\’INM IN

" & — $
-
1~ i
I
NP
N Y]

1
+| P
N
ﬂ hsuae ek

[

g o
A O

-

g 4 —
o 1

o N 2

-
=Re]

S0
o N
o 3
g .S J '

D:J 3 +
T
I 3 (Th 4
Uniform grid inl X -X X=X
the x-direction x—Ii'-;I'T—I = 1.3 ;—N-TIX—W—= 1.0 -
I “I-1 INM TINM-1

Figure 3-3. Distribution of the finite-difference grid over the entire flow field.



After the convergence is achieved, the u and v
components of the velocity are calculated. The stream
function and the velocity profiles are plotted as the final

results.

Grid Distribution

The variable grid spacing is smaller near the
walls where large gradients in ¢ are expected. Moving
farther away from the walls, the ratio of the intervals
between the nodes has been kept constant and equal to 1.3,
that is, the grid spacing increases in geometric progression

away from the walls (see Figure 3-3).

Selection of Constants

The selection of the so-called constants, Cu '
appearing in Equation (3.9), and Cq CS , and Cb shown in
Table 3-2, page 72, is of prime concern in the current
turbulence research (37, 38, 44, 45, 46, 47, 48, 49] in the
two-equation modeling of turbulence such as the TKL model or
the (k-k%) model. 1In the latter model, first proposed by
Rotta [50], the dependent variable, k&, has replaced & in
the TKL model because it does not diffuse at a rate propor-

tional to %% . In some models, eddy viscosity, Vv

e ! is
treated as a dependent variable. These models have been
used to predict the turbulent flow situations different from
that of the rearward-facing step considered herein, and the

constants have been evaluated by comparing the predictions
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of the models with the experimental data available for .
Various.flow situgtions. ‘For instance, Ng and Spalding-{44]
predict boundary layer flows near walls from the (k-k%).:
model by using the experimental results for homogeneous -
shear flows in local equilibrium. A value for C4 equal to
0.1 was obtained thus. The turbulent Prandtl number, Oy »
was taken as unity. Using the (k-k%) model, Rodi-and.
Spalding [47] obtained Cq = 0.09 for free shear flows while

was taken as 2.0. Launder, et al. [48], used the
3/2

%%
turbulence kinetic energy dissipation rate, € = k /%, as
the dependent variable instead of &. In the (k-e) model,

Cu = 0.09 and 0, = 1.0 were found to produce satisfactory

k
results for various turbulent flows [48]. To treat low
Reynolds number flows, Jones and Launder [49] used

Cu = 0.09 x exp[—2.5/(l+Rt/50)] and Op = 1.0.

A three~equation model [48] was used where the
third dependent variable considered was the turbulent shear
stress, pu'v'. In this model, which was also used to
predict two-dimensional axisymmetric jets and wakes, Cu was
taken as 0.09. Wolfshtein [45] used Cu = 0,22, Cd = 0.416,
and Op = 1.53 for the Couette flow case.

The incompressible, two-dimensional wake flow is
one of the most difficult to predict properly [46].
Apparently, the main diffiéulty is in predicting the
asymptotic rate of decay of the wake, which is a weak-~shear

problem. Due to the paucity of knowledge regarding these
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"constants" for recirculating flows, resort has been taken
.to the previous information and the computational experi-
ments which are conducted in this study to furnish a
reasonable set of constants for the TKL model. Unfortu~
nately, however, these constants are not only different for
different flow situations, but vary from one region to the
other in the same flow situation as a function of Rt when
Ry is small. As R, becomes very large, Uk,eff and ol,eff
take on constant asymptotic values, provided the hypothesis
that k and % are adequate to characterize the state of
turbulence is valid. However, the ¢'s are normally, as in

this study also, taken as unity [38]. The following

relations define the various constants used for the present

investigation.
Cp = Cb 4 1/Rt ’ {(3.52)
where
Cb = 1,0
20
Cd = Cd + l/Rt ’ (3.53)
where
Cd = 1,0 .
x
Cs = Cs + 1/Rt ’ - (3.54)
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where

C = 0.35 .

sco

Corresponding to Equation (3.12a),

Cuoo = 0.1 .,

The above set of constants seems to be.a reasonably
good selection to begin with. Further discussion on these
constants will appear in the parametric study reported later
in this study. Efforts to establish some kind of a
universal set of constants for recirculating flows are still

being carried on.

Discussion on Convergence, Accuracy, and Economy of

the Solution Procedure

Convergence., It has been experienced [38] that if

a nonuniform grid spacing is used near the walls, both the
vorticity b.c., (Equations (3.29) and (3.30)), when used
explicitly for updating the vorticity at the wall, may cause
divergence due to the coupling of the vorticity and the
stream function equations through the vorticity b.c.

Gosman, et al. [38], suggested as remedial measures (1) to
hold the ratio of the intervals between the nodes (Figure

3-3, page 98) less than 1.5 especially near the wall, where
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this ratio should be as close to unity as possible and (2)
to use the modified substitution formula for w (Equation
(3.31)). -

In calculations carried out in this investigation,
convergence seemed to be impaired when a coarse grid with
the ratio of the intervals between the nodes was 2 and above,
especially in the z~direction.

The coefficients, C's and D, in Equation (3.18)
vary from one iteration to the next, and hence this is a
nonlinear algebraic equation. However, from experience,
Gosman, et al., point out that the convergencé criteria for
a linear set of algebraic equations to converge are often
sufficient for equations such as Equation (3.18) also. As
there is no such criteria for the nonlinear equations, the
convergence of the solution procedure can be based on the
following three criteria for a linear system of algebraic
equations:

1. Z|C|P < 1 , on every grid node.

2. Jlclp <1, on at least one node.

3. The variation in the C's and D from one

iteration to the next is small.

The third criterion restricts the nonlinearity of
the coefficients to an extent that they could be treated as
linear in the whole iteration procedure, thus making the

first two criteria meaningful.
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| It can be seen that 2|C|P = 1 on every node in the
field if c = 1 (Table 3-1, page 65), which is true for all
but the vorticity equation where c = Hopg © For low
Reynolds npmber R, the value of off at the node P is close
to those at the surrounding nodes because the gradients are
small (refer to the section on discussion of results), and
hence ZICIP is close to unity. But for higher R when the
gradients in velocity are large, especially in the
recirculating region, this criterion fails to be satisfied
for the vorticity equation when using the eddy viscosity
model (Equation (3.8)) because of the large variations in
Mags between the neighboring nodes. That is why in the
computation at high R, using the eddy viscoéity model to
describe turbulence, divergence was encountered. The remedy
for this lies in under-relaxing the variable, w, or the C's
and D coefficients in the vorticity equation. (Further
discussion on this will appear later.) To carry on the
computation at higher R, the TKL model was used for which no
such difficulty was encountered.

If the central-difference schemes for the first
order convective terms were used instead of the upwind
differencing, the AE coefficient could become negative [38];
and this could cause Cp to become negative, especially at
high R when the stream function values are correspondingly

large and hence |AE| > CB Owing to this fact, the

E .
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-central—diffefence séhémes fail to achieve convergence at
"high R due to their inébility to satisfy the first
convergence criterion. |

| Comparing a flux-type b.c., ¢ = constant, with
Equatlon (3.18), it can be seen that J|C| = 0; hence the
‘second criterion is satlsfled for all but the w equation, in
whlch case no flux-type b.c. is used anywhere on the
boundaries except for the case when a zero vorticity is
used at the sharp corner 2, corresponding to the b.c. given
by Equation (3.30). However, a comparison of the solution
corresponding to the b.c. given by Equation (3.29) to the
solutions corresponding to the discontinuous b.c. and zero
b.c. given by Equation (3.30) showed no marked change in the
rate of convergence. This indicates that either the second
criterion is satisfied somewhere at an interior node in the
field or else the criterion for Equation (3.18) is generally
sufficient and not necessary for convergence; otherwise,
divergence should have been encountered.

The third criterion can be satisfied by under-
relaxing the dependént variable, ¢. As a better alternative,
the C's and D éoefficients should be under-relaxed as they
are functions of quantities like-ueff as well as ¢. 1In the
present computations with the eddy viscosity model
incorporated at high values of R, large variations in the
sourée term for the stream function equation (Table 3-2,

page 72) were found to occur, and hence the third criterion
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was not satisfied. This was detected from the solutions
which diverged. Although the strong variations in the
source term were first seen as the cause for divergence, it
is interesting to note that the failure to satisfy the first
and the third criterion is really coupled through the strong
velocity gradients and hence through strong variations in
Meff

The source terms in the k and % equations were
under-relaxed in the sense of reducing the iteration-to-
iteration variations by recasting Equation (3.18) into
Equations (3.18a) and (3.18b), respectively.

In the original form of Equation (3.18) for k,
the 3/2 power of kP induces large variations in the source
term and could cause divergence. In the present computa-
tions, using Equation (3.18) for &, it was observed that £
became negative early in the iteration process due to the
comparatively large magnitude of the term,

Vp (AW 1 Oy

)P/sz AB ,

which in turn made k negative in Equation (3.18a). To stop
2 and k from becoming negative, Equation (3.18) for & was
rearranged to give Equation (3.18b). Also, in Equations
(3.18a) and (3.18b) the denominator is always greater than
unity, and hence the first and second criteria are
unconditionally satisfied. The third criterion is satisfied

as the source term variations are small for the £ and k
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equations. Obedience to these convergence criteria resulted
in a very rapid rate of convergence of the solution for the
2 and k equations, which testifies to the meaningfulness of

the above convergence criteria.

Accuracy and economy. The accuracy and economy of

the solution procedure are opposed to one another. The
finer the grid size and hence the more the computing time,
the better the accuracy or the lesser the truncation error.
Wherever one-sided difference, that is, first-order
approximation to the first order derivatives has been used,
steep gradients are "smeared" especially near the walls.
Therefore,; it 1s necessary to use a very fine grid size near
the walls and wherever else the gradients are expected to be
large. Finer mesh size also satisfies the assumption of
linear vorticity near the walls. Wolfshtein [45]) found by
comparing the exact and the finite-difference solutions fur
simple cases of Couette flow, impinging jet flow, and
uniform velocity flow that a finer grid away from the walls
does not make the vorticity solution any better; but the
stream function in the middle of the flow field, perhaps due
to the strong nonlinearity of its distribution, is sensitive
to the grid size., However, by experience it was found that
the stream function solution behaved better than the
vorticity solution in general; and hence a reasonable
distance away from the walls, coarser grids were used to cut

down the computing time,
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The effect of smearing is to introduce an addi-
tional "false" diffusion of ¢ into Equation (3.18), Which
can be assumed to be represented-appfbximately by the
magnitude of the "false exchange coefficienf" by the

following relation for all types of flows [45]:

r

false . 5.36 R A0 sin(2a) , (3.56)

o ——
ef £ eff "eff h

where An is the square mesh size; o is the angle which the
streamlines make with the coordinate system (the mesh lines);

R = urh/\)eff is the local effective Reynolds number based

eff
on the step height, h; and Ocff = ”eff/Feff‘is the effective
Prandtl or Schmidt number,

As the smearing is associated with the first order
derivatives in the convective terms, it becomes important
when the viscosity is very small, Hence Eguation (3.56) is
very demonstrative of how the false diffusion effect can
influence the solution in laminar flows as u. An, or o
(from zero to 45°) increase. For laminar flows Equation
(3.56) reduces to

Ffalse x 0.36 purAn sin(2a) . (3.56a)
Defining cell Reynolds number, Rcell = purAn/p, Equation

(3.56a) becomes

r ~ 0,36 R

false 1 M sin(2a) . (3.56b)

cel
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Therefore, for laminar flows the importance of the two
important parametgrs, Rcell and o, becomes clear. In the
literature, for iaminar flows the cell Reynolds number has
 been used as a parameter to control the accuracy
(truncation error) of the method used. As o increases from
0 to 45°, the false diffusion effect increases from zero to
a maximum, which shows that the curvature of the streamlines
is responsible for magnifying this effect. Thus for higher
values of R the remedy lies in (1) choosing the correct
streamline coordinate, o = 0°, and (2) reducing the mesh
size, An.

From (2) it can be seen that a given accuracy,
that is, the truncation error within a reasonable tolerance,
can be achieved at the cost of the computing time.

For turbulent flows, however, as T is usually

eff
much larger than ' (for example, for the w equation,
Mogg 77 u), and Oufg is close to unity, false diffusion is
not very important.

The criterion for convergence has been determined
from experience by observing that the solution obtained
after a definite number of iterations remains essentially
the same for further iterations. It has been experienced
that the number of iterations required for convergence
increases with an increase in the number of grid nodes; and

hence, contrary to what one might expect, the computing time

increases more than proportionally to the number of grid
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nodes. The number of grid nodes should therefore be kept as
low as possible. It is a good practice to provide the
initial conditions discreetly in order to quicken the rate
of convergence. It has also been experienced that the flux-
type boundary conditions are better than the gradient-type
boundary conditions as the latter slacken the rate of
convergence. So wherever possible the flux-type boundary

conditions have been prescribed.

Discussion of Results

The results obtained in the present study corre-
spond to two models of turbulence, the eddy viscosity model
(Equation (3.8)) and the TKL model (Equation (3.9)). 1In the
former, a parametric study of Reynolds number was carried
out; and in the latter, the influence of variations in the
constants defined by Equations (3.12a), (3.52), (3.53), and
(3,54) was investigated. While in the eddy viscosity model
the empiricism involved is that of the mixing length
distribution throughout the flow field, the TKL model is
dependent on the value of the constants chosen in the
modeled terms. It has been noted [37] that the mixing-
length theorem is not adequate to define the turbulence
associated with the recirculating flows and that the two-
equation turbulence model, like the TKL model, is better
suited for such a flow situation. That this is true has

been confirmed in this investigation.
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| With Reynolds number, R, as a parameter the
results corresponding to the laminar solutions are discussed
first. The results corresponding to the turbulent case with
the eddy'viscosity model introduced into the governing
equations are discussed next. This is followed by a

disdussion of the results of the TKL model.

Laminar solution (Reynolds number as a parameter).

Results for laminar flows were achieved for step-height
Reynolds number, urh/v, equal to 6.9, 69, and 6,900 corre-
sponding to the step height, h = 1 cm. The outlet stream
function boundary condition given by Equation (3.22) and the
implicit substitution formula (Equation (3.31)) for
vorticity were used in these computations. Figures 3-4,
3-5, and 3-6 are the streamlihe plots. On comparing these
figures it i1s seen that the recirculation bubble length
becomes larger as the Reynolds number is increased; which is
realistic From Figures 3-7, 3-8, and 3-9, which show the
direction of flow (indicated by arrows), it can be seen that
therg are two contra-rotating eddies in the cavity zone.

The corner eddy is smaller than the recirculation eddy. For
R = 69, the length of the corner eddy is about 2.5 step
heights along the ground and the recirculation eddy is
spread over a length of seven step heights. One can observe
from the data of Tani, et _al. (8], that for a récirculation
length of seven step heights, a region of negative surface

pressure gradient which corresponds to the corner eddy was

111



AN

Streamlines over a back step in laminar flow
(Reynolds number = 6.9).

Figure 3-4.
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Figure 3-5. Streamlines over a back step in laminar flow
(Reynolds number = 69).
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found to be about 2.5 step heights long (see.Chapter 1IV).
Thus, although the results for such a low Reynoids number
laminar flow cannot be compared.with these expefimenﬁal
findings which correspond to a turbulent flow, §ne cén
observe that the ratio of the length scales of the two
eddies is in agreement.with'that obtained from the experi-
mental data, which gives one a qualitative feel of the
relative size of the corner eddy with respect to thatlof the
recirculation eddy.

Also, with the decrease in R the flow seems to
separate from a lower location down the base, wﬁich is
meaningful because at R » 0 the flow would not separate and
remain attached to the base right down to the ground. This
shift of the separation point down the back side of the step
has also been found computationally by Roache and Mueller
[41]. As it is not known from what point the flow separates
on the base, the plot of the zero streamline is started from
the interior point immediately next to the base. At the
inlet for R = 6.9 and 69, the upshoot in the streamlines can
be attributed to the fact that the logarithmic velocity
profile used is not a realistic boundary condition for such
low Reynolds numbers. But for R = 6,900, the inflow b.c.
is more meaningful as can be seen from Figure 3-6.

It may be pointed out that at R = 6,900 the
central-difference schemes used for the first order

derivatives in the x-direction will render the method
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unstable és discussed earlier. Hung and Macagno [52], in
spite of the use of unsteady equations which are believed to
be more stable than the steady ones, could not obtain
results for Reynolds numbers higher than 333 (using ﬁhe
three-point central-differencing formula in the analysis).
.With the upwind-differencing used in this study laminar
solutions for R still higher than 6,900 could have been
achieved. The present study, being primarily concerned with
turbulent flow, was, however, at this point directed towards
turbulent solutions. Toward this goal the eddy viscosity

model was introduced into the governing equations.

Eddy viscosity model (Reynolds number as a

parameter). For Reynolds number equal to 6.9, the eddy

viscosity model yielded a "turbulent" solution which was
more or less like the laminar counterpart. The reason for

this can be explained as follows: The maximum velocity

gradient, %% , at the ground, z = 0, for a surface
roughness, z, = 0.01 cm corresponding to the step height,

h =1cm, is of the order of 2.0 (see Equation (3.57)).

Intuitively it can be seen that the order of magnitude of

(av

=) at the base should not be very much different from
9x’ max

Ju .
that of (EE)max at the ground. Thus it follows from
Equation (3.8) that He << Wy which explains why the solution
remains practically unchanged with the introduction of the

eddy viscosity model.
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For the turbuieht flow calculations the laminar
solution Was taken as the initiai conditions which resulted
in rapid convergence., Turbulent solutions obtained,
beginning.with éhe same ipitial conditions as used for the
laﬁiﬁér solutioné; took much longer to converge.

Next, the eddy viscosity model was introduced into
the laminar solution for R = 6,900. The turbulent solution
in this case diverged. The cause for divergence was traced
to the following:

Considering u,. as the reference velocity at the
upper right-hand corner of the control volume (point 5 in
Figure 3-2, page 82), Equations (3.4) and (3.38) give

u
Ju r

g . T (3.57)

0 °0
(z+zo)2n >

0

which shows that the velocity gradient, %% ; Will be steeper
for higher values of . thus My from Equation (3.8) will
be large and correspondingly its variation from node to node
will be large. Thus, as discussed earlier in the section on
convergence of the solution procedure, divergence was
encountered in the vorticity equation and eventually in the
stream function equation also.

To overcome this difficulty two remedies are

possible:
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1. Reducing the mesh size such that ' the Maff
variation from node to node is sufficiently
small.

2. Using under-relaxation on the. C's and D
coefficients in the vorticity equation or on
the vorticity, w, itself.

As the criterion for selecting-a proper mesh size
is not known, it is easier to make use of the under-
relaxation technique. Under-relaxation was tried on -the
w—equation for the case of a higher Reynolds numser,

R = 659x106, corresponding to the step height, h = 1 meter.
The under-relaxation parameter, p = 0.01, was found suitable
to use after experimenting with different values. With

p = 0.01, vorticity, w, was galculated at the end of each

iteration as follows:

w = pwl + Mt (1-p) .

The turbulent solution for R = 6._.9x106 was thus obtained
(Figure 3-10). In this solution 1t was observed that
although the rest of the flow field had converged according
to the convergence criterion of Equation (3.50), -at the-
point half-way down and next to the base the value of
vorticity was vanishingly small, and hence the above
convergence criterion was not acceptable. Instead, the
convergence criterion given by Equation (3.51) was used as

discussed earlier in this chapter. The solution gave a
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Figure 3-10. Streamlines over a back step in turbulent flow using
the eddy viscosity model (Reynolds number = 6. 9x106) .
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recirculation length which is too large., This is due'to the
eddy viscosity model being inadequate to correctly predict
the turbulent recirculating flows. Thus a better modél was
sought.

Over-relaxation on the stream function'wasjéiso
used [38], but it did not seem to produce appreciable

increase in convergence rate.

TKL model. In this model the values of the

constants, Cu ’ Cd ’ Cs , and cb , as discussed earlier,

[+ 2] 20 o«

must be determined by comparing the predicted results of the
present model with the experimentally known results.
Experimental results such as the length of the recirculation
zone, the location of the dividing streamline, and the
variation of turbulence intensity in the cavity zone,
obtained for a back step in a wind tunnel for laboratory
flows and for wind towers in atmospheric flows are the
measured quantities of interest for comparison purposes.
Referring to the modified substitution formulae
for k and &, Equations (3.18a) and (3.18b), an inqrease in
Cd in the "dissipation" term reduces the turbulence kinetic
en:rgy, k, which in turn induces a decrease in the length
scale, 2., Thus from Equation (3.9), it is observed that

ueff

increase in C

decreases with an increase in Cd ¢ Similarly, an
Qo

b appearing in the "eddy breaking" term and a

-2}

decrease in CS in the "eddy stretching" term of the'length-

€

scale equation induce a decrease in u

eff ¢ which means the
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turbulence is decreased., This can be interpreted as the
tendency of the flow:to behave more like a laminar flow. It
has ‘already been observed that the higher.the R, the larger

-~.the bubble in laminar flow. Thus changes in Cd ’ Cs , and

@ [= o}

CB can be made to control the size of the recirculation

=]

bubble, and also the level of turbulence kinetic energy.

The effect of.Cu . on the other hand, is not so obvious.

[}

It would seem on a casual inspection of Equation (3.9) that

an. increase in'Cu will increase Hefs proportionally, but

oo

this 'is not the case. 1In the present problem the turbulent

Reynolds number, R, >> 1, in general, hence Cu x Cu « From
00

"Equations (3.43), (3.44), (3.48), and (3.49) it can be seen

that on all the boundaries an increase in Cu results in a

©

decrease in the value of k by the factor, l/Ca . Looking at

[»+]
Equation (3.18a), it is observed that kp values at the
interior nodes will not decrease as much as the k values at

1/2 term in the denominator..

the boundaries because of the k
From Equation (3.18b) & also decreases slowly compared with
the increase in Cucoo Therefore, from Equation (3.9),
although the value of Hggg OR the boundaries does not change
with C. , the value of Heff at the interior nodes will
hincreas: slowly; this has been found in the computation
carried out in the present study.

Knowing approximately the influence of these
constants on the solution, the next step is to vary them

judiciously to achieve results in agreement with experi-

mental data.
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The boundary conditions on k at the outlet,
Equations (3.44) and (3.44a), have both been ihvestigated.
The latter folating b.c. with the correéponding bouhdary
éondition for ¢ at the outlet, Equation (3.23), did not seem
to affect the rate of convergence over that of.thé.former,
and it yielded more parallel and horizontal streamlines;
therefore, it was used for most of the results shown. - The
reason the gradient-type b.c. did not slacken the rate of
convergence is that the outlet has been taken sufficiently
far downstream so that the gradient effects are negligible.
At the upper boundary a floating (gradient-type) b.c. on
L, %% = 0, was tried, which worsened the rate of convergence,
and hence was dropped in favor of the fixed b.c. there.

Initially, all the constants were set equal. to
unity. This gave an unstable solution with the stream
function becoming negative over most of the flow field.
Different values of the constants were tried, based on the
discussion of their influence on the k and % equations.
Figures 3-11, 3-12, 3-13, 3-14, 3-15, and 3-16 show the
stream function plots for various combinations of these
constants. It can be seen that for the range of values of
C chosen (0.05 to 1.0), the recirculation bubble does not

Heo
change appreciably. On the other hand, the constant, Cs ’
oo
appearing in the "stretching" term for the length scale
equation, has a very marked influence on the size of the

bubble. For Cs = 0.5 the recirculation zone length is

o0

125



921

* z2+2z
Logarithmic velocity profile, u = %? n

specified at the outlet

| — - ————
—————— T T e e —_ —
. - T e I - -
- ———— ~——— -

e T S -~ TTm - o
——— L —— ~——— T ———— e e — ——— e ———————————
o — — T — T~ S m——
T — - R L e et e s e e e —
—~—— T — ~—— —— _

Figure 3-11. Streamlines over a back step in turbulent flow
using the TKL model (Reynolds number = 6. 9x106),
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Streamlines over a back step in turbulent flow

Figure 3-12.
using the TKL model (Reynolds number = 6.9x106),
Cb = Cd = Cu = 0.1, Cs = 1.0.
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Figure 3-13. Streamlines over a back step in turbulent flow
using the TKL model (Reynolds number = 6. 9x106) ,
Cu = 0.08, C, = Cq = 0.1, ¢, = 1.0.
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Floating boundary conditions used at the outlet:
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Figure 3-14. Streamlines over a back step in turbulent flow
using the TKL model (Reynolds number = 6. 9x106) ,
c, = 0.05,C =Cd—01c = 1.0.
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Floating boundary conditions used at the outlet:

2
aw=0with-g—;%=0

Figure 3-15, Streamlines over a back step in turbulent flow
using the TKL model (Reynolds number = 6.9x106),
Cu = 0.1' Cb = Cd = 100’ Cs = 0'5.
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Floating boundary conditions used at the outlet:
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Figure 3-16. Streamlines over a back step in turbulent flow
using the TKL model (Reynolds number = 6.9x106),

= 0.1’ Cd = Cb = 1.0' cs = 0.4.
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about 2.1 step heights (Figure 3-15), for CS = 0.4 the

o

length is 2.5 step heights (Figure 3-16), and for Cs = 0.35

it increases to 4.2 step heights (Figure 3-17). 1In the

computations carried out with lower values of Cs than 0.35

-]

it was observed that the boundary condition on k at the

outlet (Equation (3.44a)) tended to impair the stability of

the solution; and hence an alternative b.c., %§ = 0, was

used at the outlet to investigate the effect of further
decrease in Csoo on the solution, which appreciably increased
the size of the recirculation zone downstream.

The value of 0.1 for Cuoo was found more suitable
than the values of 0.08 and 0.05 as far as the rate of
convergence of k and & equations is concerned. Also, this
value of Cuoo has been used by other authors in various
turbulent flow situations (see the section on selection of
constants). The value of 1.0 for Cd and Cb has.been
chosen out of the experience gained ;y carryzng on the
computational experiments. Thus with the following set of

constants,

Cuoo = 0.1 ,
Csoo = 0.35 ,
and
wa = Cdoo = 1.0 ,
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using the TKL model (Reynolds number = 6.9x106),
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the recirculating flow behind a back step has been well
predicted; and they could be used for recirculating flows in
different flow situations also. These asymptotic values for

the functions, C, , Cg » Cd , and ¢, , as R_ + =, may be the

s t
"universal" constants for rec¢irculating flows.

Conclusions and Summary

The present approach of solving the two-dimensional,
incompressible turbulent Navier-Stokes equations in their
steady form as applicable to atmospheric boundary layer flow

has been shown to yield results for recirculating flows

mental findings. Whereas for low and intermediate Reynolds
numbers the eddy viscosity model of turbulence introduced
into the governing equations has proved satisfactory, it has
failed to predict the real flow situation at high Reynolds
numbers when the magnitude of the velocity gradients in the
flow field is correspondingly large. This is attributed to
the fact that in recirculating flows the relation between
stresses and the velocity gradients is unknown and more
complicated than that assumed by the eddy viscosity model,
and that where the velocity gradients vanish in recirculating
flows, turbulence does not necessarily become zero. On the
other hand, the TKL model of turbulence has been demon-
strated to produce realistic results at high Reynolds
numbers. The influence of the coefficients in the modeled

source terms in the turbulence kinetic energy and turbulence
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length scale equations on the predicted results has been

computationally investigated, and a set of constants has
thus been found for the problem under study.

It is felt that even more accurate predictions can
be made with a three-equation model of turbulence in which
the third dependent variable can be taken as the turbulent
shear stress, pu'v'.

For laminar flows the recirculation bubble was

seen to increase in length with Reynolds number, which is

physically true. The two contra-rotating eddies resulted in

rotating in the opposite sense to that of the larger one,

the recirculation eddy.
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CHAPTER IV
APPROXIMATE INTEGRAL TECHNIQUE

Empirical Information

The approximate integral method to predict the
velocity profile in the recirculation region behind a
rearward-facing step is based on the experimental infor-
mation given in (4, 8, 10, 21]. The available data
correspond to a "strong perturbation" (see Chapter I) and
have been obtained from experiments conducted in wind
tunnels at controlled turbulence levels, The results from
these investigations correlate well, and the present
mathematical model has been shown to reproduce the different
features of the flow. 1In addition, a surface eddy viscosity
distribution has resulted in the model which follows the
empirically known surface pressure gradient distribution
curve. Figure 4-1 shows the surface pressure coefficient
plotted against the nondimensional distance, x/h (8], where
h is the height of the step, u. is the velocity in the
undisturbed flow, 60 is the boundary layer thickness at the
separation point, and XR is the reattachment length.
Figure 2-6; page 13, shows the location of the reattachment
point (CR = xR) and the location of the dividing streamline.

The error function profile which is known to

approximate the fully developed shear layer profile in the
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mixing region is given by

where u, is the undisturbed velocity which is asymptotically

. oz .
approached as the transverse coordinate, 5 7 and o is

. z
the spreading rate parameter; also, Usrg 0 as %? > =,

Governing Boundary Conditions for the Problem

To develop the governing equations consider a two-
dimensional, steady, incompressible turbulent flow over a
rearward-facing step, ABC (Figure 4-2). The separated flow
is modeled as shown.

The initial boundary layer at the separation point,
B, is considered to be represented by the simple power law

profile,

u .
ﬁ*—(*or"') ’

=
o

where u. is a reference velocity, the index n = 7, and 60 is
the initial boundary layer thickness. As the flow separates
at B, a new shear layer originating there develops and
spreads linearly downstream so that its upper boundary is
represented by BB'. The dividing streamline BER coincides
with Bx' up to some point, E (refer to Figures 2-3, page 10,
2-6, page 13, and 2-8, page 23). BER encloses the sepa-

ration bubble in which there are two contra-rotating eddies,
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the small corner eddy and the large recirculation eddy. DD'
represents the boundary of the slowly growing initial
boundary layer of almost constant height (see Figures 2-3,
page 10, and 2-21, page 48). Camarata [21] has successfully
correlated the error fﬁnction profiles with the experimental
turbulent free shear layer profiles (see Figure 2-24, page
52) by making use of thg conservation of momentum principle.
Also, the error function profile is shown to match with the
outer boundary layer power law profile smoothly except for
the upstream segment of the pre-asymptotic region where the
slope-matching is discontinuous. |

As a first approximation, Bx' is considered as the
locus of the u/ue = 0,5 points. Taking Cx and Cz as the
abcissa and the ordinate of the Cartesian coordinate system,
respectively, the velocity in the new shear layer will be

represented by the error function profile.

u

_ e
g = > {1 + exf

c(:-h)} .
Referring to Figure 4~3 (EF is a control surface
with a unit depth perpendicular to the plane of paper),
momentum is conserved between station x = 0 and any other
x-station, Assuming that static pressure variations have
negligible influence on the momentum balance and that the

net momentum in the recirculating region is small, the

momentum equation becomes
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2 Z 4
u m u _ 2 u
s wdz = f [7? {1 + erf G(}z{-h)}] dz + f ulaz
h x=0 0 Zm X
or
Z A
Y o 2/17 u:: i o (z-h) ° (4.1
(E—I77) S z dz = - S/ {1 + erf = } dz . (4.1)
0 h 0
For a continuous velocity profile,
u uerf , at z = zm '
or
z Y7 o (z_~h)
ur(gg) = = {1 + erf } o,
or
. L7
Zur (8"6')
u, = O(Zm-hT . (4.2)
1l + exrf -

For a given o, Equations (4.1) and (4.2) yield z.
and u,- Thus the error function profile is completely
specified.

Referring to Figure 4~4, it is assumed that the

recirculation zone velocity profile is expressed by a fifth
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Figure 4-4. Velocity profiles in the recirculation zone,
the new shear layer and the initial boundary layer.



degree polynomial as follows:

u, = ez + £()z° + gz + hmz + k2’ , (4.3
where for a given x the coefficients, e, £, g, h, and k, are
constant. This profile should match with the new shear
layer profile at a point, z, , on the dividing streamline.
From experience it was found that for a continuous matching,

the following three conditions should be satisfied at z = zqt

1. Urz = Yerf !
2. aurz - auerf
92 2z !
2 2
9 Urz _ 9 Yersf
3. 2 - 2 .
9z 92

Mechanics of the flow in the recirculation regidn
suggests that the equation of continuity should be satisfied

there which provides the following condition:

Also, Equation (4.3) automatically satisfies the no-slip
condition at the ground, z = 0,
Introducing the x-direction Navier-Stokes equation

(Equation (3.2)) at the ground gives -
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where Moff is given by Equations (3.5), (3.6), and (3.7).

From Equation (4.3) at z = 0,

Therefore, at a given x-location, Equations (3.6) and (3.7)

yield the following expression for eddy viscosity:

el ' (4.4)

and thus the momentum equation yields an additional

condition in the following form:

2
: 37u
1 dp _ rz
5. E dx = {kZO .e + v} —'8—;'2-— .

The aforementioned five conditions along with
Equations (4.1) and (4.2) constitute the governing boundary
conditions for the solution of the recirculation zone
velocity profile,; and upon simplification take the following

fbrm,kréspeétively.

_ 2 3 4 5 _
ez, + le -+ gz,” o+ hz + kz = u (4.5)

erf| ’
21
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where

u, o(zl-h)
uerf_ = 5 {1 + erf % 1 ’
Z
1
au '
2 3 4 _ erf ,
e + 2le + 3gzl + 4hzl + 5kzl = ——— . ’ (4.6)
1l
where
Ju u_c o(z,-h) 2
erf e { l }
2z = —— lexp - X 1
z xvm
1
2 3 o%u f|
_ er
2f + Gng + thZl + 20kZl = -—-a-;r ’ (4.7)
21
where
2%u | 263 (z.-h)u o (z,~h) 2
erf| _ _ 1 € lexp - { I 3
] = . £ S S ,
T3l R *
z
1
30e + 20fz, + 15gz,2 + 12hz.> + 10kz. % = 0 (4.8)
1 923 1 1 y .
dc
ur2 H-B
f = -—--—-a-—-x. ’ (499)
4{vt+v}
where
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Solution of Equations (4.5) through (4.8) leads to the
expression for the coefficients of Equation (4.3) given in

Table 4-1.

Normalized Form of the Equations to_be Solved

Nondimensionalizing the velocities, u, u PR

rz e !

and Uors ? with respect to the reference velocity, u, o and
the distances, x, Xp 1 Zs 25 and 60 y with respect to the

step height, h, gives

X
R
R, ° ®
u X
u, h
Yrz z
urz* a E;- P2y = h
a - uerf 5. = S0
erf, u~ ' o, W
u z
e _ 0
Ye, ~ T, 20, = R *

Therefore, Equations (4.1), (4.2), and (4.3), respectively,

take the following forms:

z z
Ty w2 T o (z,-1) ?
377 i) zy' dz, = —* [ {1 + erf } az, , (4.1a)
é ' *
0, 1 0
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TABLE 4-1

EXPRESSIONS FOR THE COEFFICIENTS OF EQUATION (4.3)

Coefficient } Expression for the Coefficient
2 .
3°u | du | |
3 .2 erf. erf ; 1l _2
T 2] —5—2-—3 - 62, —32-% + Zluerf! -5z f
. z EN |z, EN »
2
2 ; . :
3%u_ | du__ | |
1l 2 erf erf ! 2 8 ,.5
32— 727wl Uepsl 32 -3k
9z” |z, |2y lzl
b T
%1
2
9%u I ou | i
1 2 erf erf: 5
7% ! 2) =5z~ * Ugpgl - 3hzy - 6kz)
3z° |z |z |z
1 1 1
9 3
%1




; 1/7
2(zm*/60*)
ue* = osz =17 - (4.2a)
*
1 + erf %
*
and
_ ' 2 3 4
4., = e, (%) 2, + £, (%) 2% + gu(x,)z, + h(x,)z,
*

¥k (x)zy . (4.3a)

Equation (4.4) in the nondimensional form is

_ 2
le,| = Vt/(KZO* hur) . (4.4a)
Equation (4.9) becomes
hu_dc _/dx
= X p _*
£, = KTvt+vT . (4.9a)

The expressions for the coefficients, e, , g, , h,.,
and k, , remain the same as given in Table 4-1 except that
all the quantities used therein are nondimensional.

Thus the problem is reduced to solving Equations
(4.1a), (4.2a), and (4.3a) with Equations (4.4a) and (4.9a)

and the coefficients of Table 4-1 in the nondimensional form.

Correlation of the Spreading Rate Parameter with the

Experimental Data

The error function velocity profile which would

approximate the free shear layer velocity profile is assumed
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to tend to minus infinity in the negative z-direction [2, 3,
21, 23]. This imposes a restrictive condition on the
selection of ¢ as the transverse coordinate in the error
function velocity profile should app?oximately.follow'the

relation,

at the ground, z, = 0, and for a given x, {[erf(-2)x -1.0],

that is,

c > 2%, . (4.10)
Also, as o determines the rate of spreading of the new shear
layer, the development of the line BB' in Figure 4-3, page
141, depends upon the value of o chosen. Figure 2-3, page
10, shows that the upper boundary of the new shear layer has
a dip near the region of sudden pressure rise (Figure 4-1,
page 137), that is, the region of rapid distortion as
defined by Bradshaw and Wong [4]. The line BB' thus has a
downward-going trend until the reattachment point, when the
effects of the distortion die out; and it rises again into
the initial boundary layer downstream.

It may be noted that a smaller o gives a larger
spreading, and vice versa. Thus either a constant value or
a very slowly increasing or decreasing value of ¢ may be
used up to the region of maximum pressure rise subject to

the condition of Equation (4.10)., Beyond this point, an
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increasing value of ¢ subject to the condition of Eéuation
(4.10) should be used. In Chapter II it has been discussed
that varying values of o have been used for the case of
back steps in incoﬁpressible flow (range of variation from

9 to 15 for o).

Solution Procedure

With this information available for the spreading
rate parameter, o, one can proceed to solve the system of
the integral equation (Equation (4.la)) and Equations (4.2a),
(4.3a), (4.4a), (4.9a), and those given in Table 4-1, page
148, in the nondimensional form.

For a given o, Equation (4.la) with Equation
(4.2a) is solved using Simpson's fifth order quadrature
formula for integration. The value of Zm* is calculated
iteratively. The solution of these two equations gives
Zm* and ue* , and hence the error function velocity profile
is completely known. The coefficients in Table 4-1 in the
nondimensional form are calculated next and then the
recirculation zone velocity profile is determined by
Equation (4.3a).

The coefficient, e, , as calculated from Table 4-1
is compared with Equation (4.4a) as follows: Denoting e,

from Table 4-1 by E1, for compatibility the following should

be true:
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|E1l| - =g = 0 . C(4.11)

The nonlinear equation (EQuation (4.11)) is a monotonically

£ and it can be solved for Vy

iteratively; A simple secant method is sufficient to find

decreasing function of v

the zero of this function. Thus the solution results in the
value of the eddy viscosity.

The computer code which has been developed to
solve the present problem is explained by means of a flow

chart as shown in the appendix.

Comments on Convergence, Accuracy, and Economy of the

Integral Method

The approximate technique as discussed above is a
very fast method of predicting the velocity profiles and the
surface eddy viscosity distribution in the recirculation
zone behind a back step. The average time for a single
X-station computation on an IBM 360/65 computer is about
two seconds,

Equation (4.la) has two solutions for Zm* , as
shown in Figure 2-22, page 49. The matching is discontinuous
at the lower value of Zm* ; but at the higher value, which
is taken as the true solution,; it is smooth. However, in
the region close to the base of the step, the matching is

not smooth (see Figure 4-5). This has been experimentally

verified [21], and the reason could be ascribed to the
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a Error function velocity
o Power law velocity

u/urao | u/gr=0.5 } | u/ur=1.0

Figure 4-5. 1Illustration of the matching of the
error function and power law profiles in the
base region. ' . -
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iﬁterfg:enbe from the base. Farther downstream, the
'ﬁétchiné is smooth. Due to the non-uniqueness of the
sdlution for Equation (4.la) no standard iteration technique,
fér example, Newton's method, was used; and hence the
solutions were determined by regularly incrementing the z,
v#lue from 1.0 upwards. The incremental value chosen was
such that the magnitude of the function given by Equation
(4.1a) at the root, zm* s was less than 0.001. This is a
satisfactory convergence criterion as is evident from the
smooth matching between the error function and the power law
profiles shown in Figure 4-6. The convergence of the

solution of Equation (4.1l1) was based on the relative error

criterion,

where v, and v¢_ are the two successive eddy viscosity

values at any stage in the iteration process.

Discussion of Results

Referring to Figure 4-7(a) and (b), various values
of 0 were used in the computation discussed in the section
on its correlation with the experimental data. An eddy
viscosity distribution along the surface was faired as shown
in (b), which follows the magnitude of the surface pressure
gradient distribution shown in (a). A constant value of ¢

equal to 8 was used up to x, = 4.0, and 0 = 2x, was used up
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(a) Magnitude of surface pressure gradient distribution
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Figure 4-7. Variation of surface pressure gradient
and surface eddy viscosity behind a back step.
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to x, = 6.9. This variation of o gives the spreading in the
region of rapid distortion as shown in Figure 2-3, page 10.
Also, the eddy viscosity, Ve s follows

dc

X

very realistically. The peak values of v_ in the region of

t

dac_ |

Xy

max

defined as the reattachment zone, confirms the high
turbulence and hence the high heat transfer rates in this
zone. Near the base and very near the reattachment point,
however, Ve does not follow the magnitude of the pressure
gradient, which are the regions where no measurements of
velocity or of turbulence intensity have been made (see
Figure 2-6, page 13), and in which regions the measurements
of shear stress are scanty and unreliable. However, it is
well documented that the surface shear stress and hence the
surface eddy viscosity should increase after the reattach-

ment point, If the reattachment point is located upstream

of the point where
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then the eddy viscosity distribution as shown in Figure 4-7
" is guite realistic. However, due to the lack of experi-
mental evidence, no improvements in the present model have
been suggested as far as the eddy viscosity distribution is
concerned.

The velocity profiles are shown plotted at various
x-stations in Figure 4-6, page 155, The recirculation zone
velocity profile matches very smoothly with the error
function velocity profile at the dividing streamline. 1In the
region of the negative surface pressure gradient, the
presence of the corner eddy with a reversed recirculating
flow is confirmed. The large magnitude of the velocity in
this region alludes to the presence of a very strong corner
eddy near the base. The magnitude of the reversed velocity
in the region of the recirculation eddy is of the order of
0.1 u. (Figure 4-6), and it does not exceed 0.2 u, at any
station. This. is in agreement with the experimental results
of Bradshaw and Wong [4].

At the dividing streamline, the turbulent shear
stress, which is also the maximum shear stress in the shear

layer, is given by

} u? . (4.12)
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Nondimensionalizing 1, with respect to pu,.

t
2 OU, 2
Tt* = K(Zl*+ZO*) {53:} ] . (4.12a)
1,

The normalized shear stress, T has been

_ €. !
plotted against x, in Figure 4-8. Althou;h the validity of
the momentum transfer theory and hence the Prandtl mixing=-
length theorem (Equation (4.12)) is not quite valid in
nonequilibrium layers, especially in the recirculation Zzone,
on comparing Figure 2-7, page 16, and Figure 2-12, page 27,
with Figure 4~-8, it can be seen that the general trend in
the value of shear stress along the dividing streamline to

decrease downstream towards the reattachment point, as

exhibited by Figure 4-8, is physically correct.

Suggestions to Improve the Model

The fact that the static pressure behind a bluff
plate (see Figure 2-13, page 28) varies in the transverse
direction entails an improvement in the application of the
z-direction momentum theorem in the case of the back step
behind which the static pressure variations at different
x-stations follow closely those behind a bluff plate. Thus

Equation (4.1l) will be modified as follows:
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r 2 r
('3'6-) S z dz + T (Zu—h)
~h
2 zm
P u _ 2
__+-§-h=—4-e;f {l+erfﬁ,zE—hl-} az
' 0
z
+ 5 /  pdz , (4.1b)
0

where P and p, are the base and reference (undisturbed)
pressures, respectively.

Solution of the problem under study is strongly
dependent upon the value of o chosen; and therefore, the
development of line BB' in Figure 4-3, page 141 (spreading
of the upper shear layer), to approximate that shown in
Figure 2-3, page 10, would require a different distribution
of o values when Equation (4.1b) is used in place of
Equation (4.1), hence giving a more realistic surface eddy
viscosity distribution. Equation (4.1lb) also takes into
account the interfering effect of the base for x-stations
close to it, and thus velocity profiles in the region of
the corner eddy could be computed to a greater reliability.
Also, near the reattachment point where the transversé
pressure gradient close to the surface is apﬁreciable,

Equation (4.1b) would yield more meaningful results.
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APPENDIX

The numbers appearing on the left side of the
subroutine blocks in the flow chart will be used to describe
the function of each subroutine in sequence.

(E) Subroutine CFIT uses the IBM standard sub-
routines DATSG and DALI. DATSG rearranges the input matrix
of x, and Cp values (see Figure 4-1, page 137) in an
ascending order of x,. DALI interpolates function values of
C_. for given argument values of x, using Lagrangian interpo-
lation with Aitken's Scheme ([54]. CFIT returns the
interpolated vector, Cp , to the calling program.

(:) Subroutine CALCUE calculates the value of ue*
by solving Equations (4.la) and (4.2a). It calls the sub-
routine INTEG which uses Simpson fifth-order quadrature
formula for integration to calculate the integral on the
right-hand side of Equation (4.la). The function sub-
programs, DEF and F, are employed by INTEG and CALCUE to
calculate uerf* and u, , respectively. The value of ue* is
returned to the calling program.

<§> Subroutine CALVAR calculates the values of

2

auerf* 9 uerf*

Yerg, © T3z, + 34 Ty at 7
*

using the equations associated with Equations (4.5), (4.6),
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a0

and (4.7), respectively, in the nondimensional form, and
returns them to the calling program.

<:> Subroutine FUN calls the subroutine CALCOF to
calculate the coefficients, k, , h, , g, , and e, , in that
sequence each time FUN is called from the calling program.
Also, it calculates the function value given by Equation

(4.11), and returns it to the calling program.
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Read x, , z0 ’
. *
o, Vv, u_ , h,

X
So

(;) Call CFIT
S

X r 2

4
Ry * U,

2

Calculate H§E and zl
*

*

Call CALCUE

v

Call CALVAR

!

©

Find the root to
desired accuracy
using
Secant Method

Y

Calculate the coef-
ficients, e, fx, gx,
hx, and ki; calculate

u profile and Te

rz, o

along the dividing
streamline from
Equation (4.l1l2a)

v

Print u, , u

erf,
and u., profiles;
print Ve and Tt*

of v, to bracket the

root of Equation (4.

11)

Call FUN

®

@
G
1//Read two initial values
®

No
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