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T. TntrMuction

This report summarizes the results of research supported by NASA Langley

Research Center under Grant NSG-1112. Full details of these research efforts

have been reported in references (1-61, and in this report we will overview

the results, conclusions, and suggestions. The personnel involved in this

project have been

Thesis students

Ramon Bueno
Edward Char

Electronic Systems Laboratory Research Staff

Keh-Ping Dunn
Stanley Gershwin

M.I.T. Faculty

Alan Willsky (principal investigator)

In addition to the results described in the following sections, this

project has benefited from interactions with several other research pro-

jects. Specifically, the generalized likelihood ratio (GLR) technique has

been applied with great success to the detection of arrhythmias in electro-

cardiograms [7-11], and a study has just been initiated to apply the GLR

technique to the detection of traffic incidents on freeways. Also, we have

interacted quite closely with the research effort being performed under NASA

Langley Contract W-191-13914, which has been aimed at developing a dual-redundant
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sensor failure detection system to be flight tested on the F8 aircraft

(see (12-141). This effort has completed our research effort, which has been

aimed at a fundamental, analytical examination of one method for failure

detection in dynamic systems.

The Generalized Likelihood Ratio (GLR) technique is a scheme for detec-

ting and identifying abrupt changes in dynamic systems. It attempts to

extract all available information about possible abrupt changes in a system.

Because it is based on some of the key properties of Kalman filtering, it

requires a model of the system being examined. This model allows the GLR

technique to make use of the existing analytical redundancy in the system

rather than requiring the installation of redundant hardware such as sensors

to facilitate fault detection and compensation.

The GLR technique monitors the output of the Kalman filter. If the

output is behaving as expected -- i.e., if the filter model accurately

predicts the state of the system -- no failure is declared. But if the

filter output differs systematically from its predicted behavior a failure

is declared and the output is examined closely to determine the time, type,

and extent of the failure.

The advantages of GLR include:

1. It can reduce the requirements for multiple redundancy by taking maximal

advantage of built-in functional relationships.

2. GLR explicitly searches for the time that the failure occurred, thus

allowing it to be sensitive to new data and conszquently improving the

chances for fast system recovery following detection of a failure.
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3. Considerable analysis has been done on GLR behavior. We have found

that it is analytically tractable and thus is amenable to detailed design

tradeoff studies.

4. A wide range of implementations are available. "Full" GLR looks for

any possible failure (of a finite set of types); constrained GLR (CGLR)

looks only in certain set of directions; and simplified GLR (SGLR) looks

for a certain discrete set of failures. By restricting our attention as in

constrained or simplified GLR, we can sometimes improve performance (if

only certain directions or values are physically possible) and always re-

duce the on-line computational load. In addition, simplified GLR is even

more analytically tractable than the others.

^tt	 The qoals of our work have been: (1) to develop the analytic tools

used to study GLR performance; (2) to test the ability of GLR to distinguish

among different failure modes; and (3) to study the sensitivity of GLR to

modeling and parameter errors. We have chosen to study these problems in a

setting that tests the fundamental limitations of GLR. Specifically, we

have applied GLR to the detection of a variety of abrupt changes in a simpli-

fied model of the FS aircraft. In our formulation, we have assumed no hard-

ware redundancy, and hence all fallure detection must be solely based on

functional redundancy. This clearly accentuates the problems of failure mode

distinguishability and GLR sensitivity, but we feel that this approach has

yielded a great deal of insight into the characteristics and limitations of

GLR.



As mentioned above, a simplified model of the F-S aircraft has been used

as a test bed for our studies. We have used a two dimensional model of the

aircraft flying at condition 11, i.e. Mach .6, 20,000 ft., in cumulus clouds.

This model is given by

x(k+l) = 4P(k)x(k) + B(k)u(k) + w(k) 	 (1)

z 	 = H(k)x(k) + J(k)u(k) + v 
	

(2)

with xT = (q,a) and q=pitch rate, a=anqle of attack. Here, u(k) represents

a known control sequence, and w and v are independent zero mean gaussian

sequences with covariances Q and R respectively. The Kalman filter is given

by

x(k+lIk) = 41 WX̂ (kIk) + 13Wu(k)	 (3)

x(k1k) = x(klk-1) + K(k)y(k)
	

(4)

y(k) = z(k) - H(k)x(klk-1) - J(k)u(k)
	

(5)

where x(ilj) is the estimate of x(i) given the measurements z(1),...,z(j),

K(k) is the filter gain, and 'y(k) is the residual (innovations process) of

the filter, which is a white noise process with covariance VW.  The model

and Kalman filter parameters appear in Table 1 (here the time step for

discretization is 1/32 sec.).

To repeat, in the work reported here, a worst case was considered in

that no hardware redundancy was assumed (i.e. we have assumed only one
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1

actuator and sensor of each type). Also, note that B has been left unspe-

cified and was actually taken to be zero, since deterministic inputs do not

affect the residuals.

In Section II, we review and survey the GLR technique. In Section III,

we focus on the issues of detectability and distinguishability. Questions

addressed here includes assuming that the system is known perfectly, can we

detect that a failure has taken place, can we deduce when it happened, and

can we decide which of a restrict.-d class of failures actually occurred?

We briefly survey analytic and simulation results and conclude that detecta-

bility and distinguishability, like cor.::rollabiiity and observability, depend

on the structure of the system, but can be studied off-line. In Section IV,

we examine the sensitivity of the GLR technique to modeling errors. We find,

by simulation, that the technique is indeed sensitive to such errors, but

analysis and simulation show that the sensitivity is in certain characteristic

ways, and so compensators may be designed for these difficulties.

II. The Generalized Likelihood Ratio Techniques

The Generalized Likelihood Ratio technique is designed to detect the onset

of abrupt changes in linear systems. Devices based on this method determine

simultaneously whether a change has taken place, the time that the change

occurred, and an estimate of the extent of the change. In the air-craft problem

the abn=.pt changes considered corresponded to certain types of system failures.

Thus we will refer to all changes as "failures", although their true physical

significance could be quite different (as with an abrupt wind shear).

Four failure modes have been studied intensively:
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Table 1

System and Filter Parameters

	0.93258	 -0.14649

	

0.030587	 0.97193
6.

	0.022596	 0.0
Q1/2 =

	

0.0043276	 0.00022603

	

0.008729834	 0.0

R1/2

	

0.0	 0.06

	

1.0	 0.0
H =

	

0.0	 16.154

T = 0

7.5351 x 10-1	4.6257 x 10-2
K(k) =K=

1.3527 x 10 -1	1.2748 x 10-2

	

5.6311 x 10-4	1.0891 x 10-4
cov(x(kjk-1))	 P(kjk-1) -

	1.0891 x 10-4	2.2130 x 10-5

6.393264579 x 10 4	 1.759328799 x 10-3
V(k) = V =

1.759328799 x 10 3	 9.374701305 x 10-3
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E	
ylw-- 1: state jump

x(k+l) _ f (k)x(k) + B (k)u(k) + w (k) + vd	 (6)
k+1,9

Type 2: state step

x(k+1)	 f(k)x(k) + B(k)u(k) + w(k) + vQk+1,A	 (7)

Type 3: sensor jump

z(k) = H(k ) x(k) + J(k ) u(k) + v(k) + vdk,e	 (8)

Type 4: sensor step

z 	 = H(k ) x(k) + J(k ) u(k) + v 	 + 'k,0	 (9)

where dk e is the Kronecker delta, and ak 6 is the unit step, which is 1

for k>A and 0 for k<8. Here 8 has the meaning of the "failure time" and

v is the failure vector of appropriate dimension. We note that the ori-

ginal GLR method devised by Willsky and Jones [15) was developed for type

1 failures.

Other failure types can also be defined as modifications to (1), (2).

For example, adding M u(k)Q
k+1,

 

8 or &(k)ak+1 g 
to (1) defines the hard-cver

state or increased state noise failures (where M is an appropriate matrix

and ^ W is a zero mean random process). Similarly adding
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[Lx(k)+Nu(k)]cik,8 or &W Ok,B to (2) defines the hardover sensor or increased

sensor noise failures. Detectors for these failures have not been studied in

detail, although in many cases detectors looking for steps and jumps could be

used to detect such changes•

Assume that the Kalman filter (3),(4),(5) has been implemented to estimate

the state of the unfailed system (1),(2). When one of the four types of

failure occurs, equation (5) produces a residual which is no longer white.

In fact,

M

Y 	 = y 	 + Gi(kj8)v
	

(10)

where Y is the residual in the absence of any failure, and G} (ks8) -- the

failure signature matrix -- determines the effect of the ype i failure v

that occurred at time 8 on the residual at time k. We can establish a set

of hypotheses:

no failure has occurred

Hi : a failure of type i (v and 8 unknown) has occurred.

Then the generalized 1 4 -,elihood ratio (GLR) is defined by

	

p(Y(1),...,y(k)IHi, 8 - 6(k), v 	 )(k))
L, (k) =	 (11)
1	 p(Y(1),...,y(k)IF0)

Some work on developing GI,R for these hard-over models has been done and
s discussed in [1].	 1



-9-

where p denotes probability density functions 9(k) and V(k) are the maximum

likelihood estimates (MLE) of v and 0 assuming H i to be true.

Given Hi is true, the residual is given by (10) for some unknown 0 and

V. When 1
0
 is true, the residual is eimply Y (k) .

To choose between H C and Hi we use the decision rule:

H.

Z. (k)
0
 21ln(Li (k))>1 C	 (12)

Hp

where a is some predetermined threshold. The estimate V(k) can be solved as

an explicit function of 6(k):

V(k) = Ci1(k;@(k)) di (k;6(k))	 (13)

where Ci (k;6) is the matrix

k

C i (k;0) _	 GiT(m ;A)V 1 (m)Gi (m;e`	 (14)

M-0

and d i (k ;6) is a linear combination of the residuals:

k

d i (k;e; _ I GiT (m;8)v 1 (m)Y(m)	 (15)
m=0

Then O(k) is the value of 0 < k that maximizes ii(k;0):
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St i (k; P ) = d i T (k ;O)C l (k;O)d i (k;P)
	

(lb)

Therefore, the (full) GLR system will declare a type i Ldlure v occurring

at 6 if 
Z  

(0)> E and Xi
 (
k;6)> k j (k;6) for 1 < 6 < k and j-1,2,3,4. As

time progress.-4, the number of possible values of 8 increases. Hence, the
implementations of this scheme involves a ,growing bank of filters to imple-

ment (15) for each P.

A number of simplifications of the approach have been suggested by

wiilsky and Jones (15) such as thr : j lte window assumption where P is res-

A
tricted to a range, k-M < P < k-N. fhe physical assumptions made here are:

1) no decision can be made with less than N observations (an otservability

constraint), 2) failures before time k-M should have been detected at an

earlier time and compensated for already. The result=ng "sliding window"

reduces the computational burden imposed by the growing bank of filters.

when the system under consideration is time invariant and the associated

Kalman-Bucy filter (KBF) has reached a steady state, the G and C matrices

become dependent on k-P only. Thus, these matrices may be computed once and

stored, qreatly simplifying the rP-+ l imn calculations. To reduce required

calculations even further, G and C can be approximated by polynomials, or x

sequence of ramp and step functions. Also, (15) may be viewed as a convolut'.on

(it is a correlation calculation, as in a matched filter) and may then be

calculated very rapidly using the Fast Fourier Transform.

Another simplification is constrained GLR (CLLR) which involves the

assumption that v - af. where a is a scalar and f. is one of a finite set
3

me-



-11-

,E	 of directions. The CM,R detector (for a single fai.ore type) takes the

t form:

aW = b(k;6(k), 7(k))	 (17)A1^1a(k;0(k), j(k))

where 6(k) and j(k) are the quantities that maximize

2
AM; 0, j) = b (k; 0 , j)	 (18)

a(k; 0, j)

a(k; ?, j) = f!C(k;0)f j , b(k; 0, j) = f!d(k,0)	 (19)

H.
1

9,(k;6W, j(k) H C	 (20)
0

Clearly we can use CGLR when ve have several failure types.

If v is further restricted to be some constant V 0 , one has simplified

GLR (SGLR). We note that SGLR does not require maximization over V and

hence Q(1;6) becomes

k

ENO) _	 [2y(m) - G(m;0)V0)'V 1 (m)G(m;0)V0 	(21)
m=1

Here we simply choose 0 (k) to maximize ( 21) and declare a failure if

M;0) is over a threshold. Note that ( 21) is linear in Y and therefore

M;0) is a gaussian random variable. This makes SGLR more amenable to
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analysis than full or constrained GLR.

Both CGLR and SGLR require less computation than full GLR. They are

directionalized, i.e., most sensitive to certain directions. This can be

of qreat practical value where only certain kinds of failures are physically

.r
meaningful. Such knowledge can greatly decrease sensitiv4ty problems and

can vastly improve our ability to distinguish among tli:! various failure types.

It is clear that the GLR method offers a range of °Implementations from

the point of view of computational complexity. In order to develop a useful

detector design methodology, one must study much more carefully the properties

of the GLR method and the tradeoffs in% •7ved in the design. our research has

inten(lod to provide some quidelines for the use of the GLR technique. Our aim

provided some guidelines for the use of the GLR technique. Our aim has

been to develop a framework in which one can systematically study the various

tradeoffs that arise in detecting failures by this approach.

Ili. Detectability and Distinguishability

In this section, we discuss certain characteristics of GLR when the

system parameters - except for the failure terms - are known perfectly.

Here, the major issues are detectability (can the system find that a failure

has occurred without great risk of false alarms, and without great delay?)

and distinguishability (can the system properly identify the type of failure,

the failure vectors, and (perhaps) the failure time?).

A. Performance Probabilities

The probability of correct detection (P D) is the probability that Qi

is above the threshold a at time k if a failure of t, ,pe i (with failure
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vector v) occurred at time 8 < k. The probability of false alarm (P F) is

the probability that 9, i (k;8) is above E when no failure actually occurred.

The cumulative distribution function PTD is the probability that the detec-

tion time (i.e. the first time k>8 that R.(k;8) >6 when we have a type i

failure at time 8 with vector v) k is less than a given time T. The proba-

bility of choosing the wrong time P Wr is the probability of Q i (k,8) being

above the threshold when the failure actually occurred at 8 t # 8. The cross

detection probability PCD is the probability of k  being above the threshold

when the failure was actually of type j#i. PCW is the probability that both

these events have taken place, and is the wrong time-cross detection proba-

bility.

PD(k,i,8,v) = Prob (k i (k;8)> cjH i , B,v) 	(22)

PF(k,i,8) 
n
 Prob U (k;8)> EIHQ )	 (23)

PTD(T,i,e,v) 
4 

Prob (ki (k;8)> C for some

8 < k < TIIIi3O,v)	
(24)

rWT(k,i,8t,v,O) 
G 

Prob (Q i (k;8)> EIH i ,Br ,v) 	 (25)

PCD (k,i,j,8,v)	 Prob (ki (k,8)> cjH j ,e,v)	 (26)

PCW (k,i,j,8,8t ,v) = Prob (9,i (k,e)> E,Hj ,Bt ,v) 	 (27)
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To calculate these probabilities, we closely examine the GLR equations.

It can be shown (3] that ki (k,A) is a noncentral x 2 random variab'e with n

degrees of freedom  when the true failure is of type j, magnitude V, time 8t.

The non-centrality parameter is given by

d2 = V Cii j (k;818t ) Ci 1i (k ;818)Cilj (ki818t)v	 (28)

where

k

C	 (k;618 ) =	 I	 GT(m;8)V 1 (m)G.(m;8 )	 (29)
i 1 j	 t	 m=max (e, 8t) i	 t

Note that the expected value of k(k;8) is n+62.

Figure 1 shows d 2 as a function of k-8 where a=14(so PF=.000912),

T-(.0226, 0) in the curves marked q, and V TV	 =(0,.000431 in the curves marked

a. These curves are for state step failures in the F-8 model described in

Section I. Figure 2 plots 6 2^2 (k,e) and 62 (k,8) for wrong time and correct

and (wrong time) cross detection. Here a state step failure with vector

VT=(.00226,0) occurred at 8=k-30.

This plot displays some of the cross detection and wrong time difficulties

that may arise. Note that 62/2 (k,e)> 62/2(k,8)(i.e., the wrong detector is
more likely to trigger than the correct one) for all 6 except the correct

failure time. Furthermore, the curvature of 82/2 (k,A) is very shallow near
A=k-30. Thus, the system may have great difficulty in choosing the correct 8.

1The dimension of V is n.



N0O00p
w

afl4)3abcro

N
t
oGOlorbvbC
^

G+

p
M

0NO

0
0

-
1
5
-^11119`dBC

bd

o
	

^0

Io
 
N

O
o
!^

1	
•
`
.O

v
r
 so

•
•\
«

O
	

M
^

t	
•
\

i
	

O
\

	

}
	

O
\

	

J_	
\

	

m
	

•

	

m
	

\
N
 
O

	0
0
 
a
	

•

•
 
O

0
0

O	
^

O
	

O
	

'O

77
O
 
O

O
N

N
	

00

0



.7
a

h
FNNi

Y
1.i
roa-4ro41ca^UOOzO

ON,
m

aOMVHHO
NRO

O
^

1

NO
+

W

-
i
V
-

O
	

O
	

O
N
	

N
6
0



-17-

riqure 3 displays PD (
6
2 ,E) for various values of d 2 and PF (E) as func-

tions of e, the threshold. Note that these curves depend only on the non-

central X 2 distribution with 2 degrees of freedom and not at all on any other

information about the system or its failures. All other such information is

summarized in d2 . Note that for a given P  ,E is determined, and that among

PF , Pp , and d 2 , any two determine the third. In general, to increase the

spread between PF and PD
 6

2 must be in--reased.

B. The Information Matrix

The C matrices are indicators of sensitivity and distinguishability of

failures in the GLR technique. In particular, the inverse of

Ci (k;8) = C i , iM 010) is equal to the covaraince of the estimate v(k)

(assuming we correctly determine 8). Under conditions of correct detection

at the correct time,

d 2 = vT C. (k; A) v
	

(30)1

Thus C indicates directions (in failure space) of greater or lesser sensitivity

to failures, and thus gives us a measure of signal-to-noise ratio. The

greater d 2 , the larger the mean of k(k,6) and the greater the likelihood of

exceeding the threshold.

Note that (13) requires the inversion of C i (k;8). If this matrix is not

invertible, failures in some ?irection cannot be detected. Thus, the requirement

for universal detectability is that C is invertible. This condition is analogous



140
0	 2	 4	 6	 8	 10	 12

THRESHOLD E

FIG, 3 PD( 62 , E ) FOR A VARIABLE WITH 2 DEGREE OF FREEDOM

-18-

1;0 F

0.8 E

0.6 F

J_
m
acc
O 0.4
ced

0.2

ft



-19-

to observability in linear systems and can be verified in advance. we note

that sensor failures are always observable, while the observability of dy-

namics failures is directly related to the observability of the original

system (3I.

Equation (28), in general, shows how errors of failure type or failure

time affect the detector. If C i1i M 0 18)v is large for some v, then the

system is likely to erroneously declare a failure type i at time 8, when,

in fact, a failure of type j occurred at time 6t.

From (29), VTCi1j (k;ele)v can be thought of as an inner product between

Gi (•;0)u and G1 (•;6t )v, i.e. the inner product of the signature of a type i

failure at time 8 and a type j failure at time A t. When this is large, the

failures are likely to be nearly indistinguishable, but when they art. nearly

orthogonal, we expect no difficulty in distinguishing between these failure

modes. we note that the analysis for CGLR is quite similar, but in that case

the directions U and v are restricted to fixed finite sets (although their

magnitudes are free). The analysis for SGLR is even simpler.

C. Behavior of the Log Likelihood Ratios

One reason that analysis of GLR performance is nontrivial is that the log

likelihood ratios, in full or constrained GLR, are noncentral X2 random

variables. However, in simplified GLR, k i (k;6) is given by (21) and is a

gaussian random variable. The mean of R i (k;e) and the covariance of

4i (k 1 ,6 1 ) and Zi (k2 ,82 ) can be easily calculated [6].
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These quantities are important because the probabilities calculated in

Section II.A are all static (except for the distribution PTD ) in the they

consider the probability of k(k,©) >E for a given k and 6. By considering R

as a (correlated) random process, we can calculate the probability of events

such as (k(k,8)>E, k-k l , ... ,k 2 }. Thus we can create more sophisticated detec-

tion rules which look at sequences of ratios and which can decrease the false

alarm rate, cross detection difficulties, etc. (See also the sensitivity pro-

blem discussed in the next section).

D. Simulation Experience

Numerous computer simulations have been performed using the F-8 model

described in Section I. It was found that for any of the four failure types

described in Section II, detection occurs within two seconds if the failure

size is on the order of the standard deviation of the noise. Thus detectabi-

lity is not a problem.

Distinguishability, however, can lead to difficulties. Figure 4 shows

a plot of L(k,6) for a simulation run in which a step failure in the state

occurred (type 2). The detector was based on that failure. Figure 5 shows a

plot of M,8) from a run in which a step failure in the q-sensor (type 4)

occurred but where the detector was looking for a step failure in the state

(type 2). Notice how similar these plots are. This implies that it would be

very difficult to distinguish between these failures by looking at A.(k,e).
i

The reason for this is that full GLR allows the estimate v(k) to be any

point in space. In thia case v2/2 (k) an6 v2/4 (k i have been found such that
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R(k,8)
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Jt (k, e)
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z2 (k,8) - R 2/2 (k,8) - v2WC2(k;Olot)v2(k)

and

f2/4(k,A) - v2
/4

WC2
/4

M1010t)C 4/4(k;elet)C2/4M010tjv2/4(k)

take on approximately equal values for all k,e.

There are two ways out of this difficulty. One is to use constrained

or simplified GLR. It is likely that the wrong estimate,v 2/4 W in this

case, is not physically meaningful. If we had restricted our attention only

to meaningful failure directions and, perhaps, magnitudes, much ambiguity

would have been eliminated. Another point to note is that the wrong estima-

tes of v and 6 are likely to change much more with k than the correct esti-

mates, and t is can help in choosing the correct failure type. Research in-

vestiqatinq performance improvements using these ideas is continuing.

Finally, it should be noted that the magnituc.e of the state failure that

leads to Figure 4 is on the same order as the noise in the dynamics. However,

to qet Figure 5 with likelihood ratios approximately the same as in Figure 4

requires a q-sensor failure on the order of more than 10 times the magnitude

of the noise in the sensor. Hence, if we used a threshold to detect step fai-

lures of (say) 100, it would take a 1000 q-sensor failure to confuse us.

Issues such as this, involving notions of signal to noise ratios, can be ana-

lyzed by detailed examination of the C 	 together with knowledge concerning

reasonable expected magnitudes for the various failure modes.

It should be pointed out that we have demonstrated a particularly nasty

example. Figure 6 displays 1(k,8) for a run in which a step failure in the

1
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n-sensor (trxi 4) took pl.aco, and where the detector, again, was de g igne!d for

a step failure in the state (type 2). The marked difference between Fiqu-e 6

and Fiqure 4 indicates that while there may be distinguishability difficulties

between state step and q-sensor step failures, there are no such difficulties

between state step and a-sensor step failures in the F-8 (if one can utilize

the full information in £(k,8) as a function of both k and 8).

F. Conclusions

usinq a combination of analytic and simulation approaches, the GLR tech-

pique has bEen extensively studied under the assumption that the system is

perfectly modeled. The four failure types investigated are satisfactorily

detectable but can lead to problems in distinguishability. The key issues in

this problem have been isolated. Further research should resolve this dif-

ficulty.

N. Sensitivity 	 Errors

In designinq GLR failure detectors, it is necessary to hypothesize a

certain unfailed system (1),(2). In this section, we examine the behavior

of this technique when the model parameters used in calculating the Kalman

filter qains and the detector matrices C i (k,e), Gi (k,e) do not correspond

with those of the true system. Not surprisingly, performance is somewhat

degraded. However, in view of the large modeling errors assumed, and in the

manner in which performance is affected, there is hope that such errors can

be compensated for. In any event, one can use these results to determine

the size of failures that can be detected. That is, if we view these

r. a
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modeling errors as unavoidable, we may decide to set detector thresholds

higher to avoid false alarms. This in turn increases the magnitude of

each failure type that is needed to achieve a given probabilitv of detection.

A. Description of Mismatch

In the mismatches we consider, the true system is the simplified model

of the longitudinal dynamics of the F-8 at either flight condition 10 or 12,

i.e., at Mach .4 or .8, 20,000ft., with cumulus clouds. The system on which

the Kalman filter and detector were based was at condition 11, i.e. Mach .6

with the same altitude and weather conditions. These systems differ in two

important ways. Although in all systems the sensor H matrix is diagonal,

the If term, which depends on the dynamic pressure, changes by a factor of

2 from condition 10 to 11 and again from 11 to 12. In addition, while the

aircraft oscillates under all three conditionsi, its period drops sharply from

condition 10 to 11 and from 11 to 12.

These changes affect the behavior of the quantities of interest in the

GLR technique: y, R, 8, v. However, they affect them in very specific ways,

and by studying this, some compensation is possible.

B. Behavior of GLR Random Variable

Because the Kalman filter no longer matches the system, it is no longer

true that the unfailed residuals form a white noise process. However, it can

easily be shown that y(k) is the output of a process which oscillates with the

same period as that of tle true system, i.e. flight condition 10 or 12 here.
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Because y(k) is oscillatory, and because k is a quadratic function of

y, k(k,0) is also oscillatory: both as a function of k for fixed 6 and as a

function of 0 for fixed k. Figure 7 shows k2 (k,0) (i.e., the likelihood ratios

of the full GLR state step detector) when the true system is at condition 12,

and where no failure has taken place. The maximum value of k here is over

1000, so that this will surely precipitate a false alarm. It should be poin-

ted out that under mismatch conditions (but not under matched conditions) the

value of the system vector is important. Here, at k=0, q=0 and a=5 0 , which

is quite large. Under more quiescent conditions, the mismatch will be far

less apparent.

This shows that we cannot simply as if k is greater than a threshold, but

we Must look also at the behavior of k and other quantities. For instance,

as long as the first peak of k is the highest k in the window (Figure 6), 0(k)

will correspond to that peak. If the first peak leaves and the second peak

enters, then at some k there will be an abrupt shift in 0(k). This oscillatory

behavior of k and the shift in 0 are characteristic of mismatches and are

important indicators. In addition, v(k), which may be time-varying as discussed

earlier, }sere jumps abruptly with 0(k).

Figures 8 and 9 show the behavior of k2 (k,0) when a state step (type 2)

failure and a sensor step (type 4) failure take place. In both cases k is

well over the threshold discussed in Section III, but the maximum value of k

in Figure 8 is slightly less than of Figure 6, while that in Figure 8 is

nearly 4000. (However, it is not always true that the correct detector has
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higher M,6) than the wrong detectors, especially under mismatch conditions).

Thus we see that although the mismatch is severe, the detector for state

steps yields a far larger likelihood ratio under failure conditions (Figure 8)

than when here is no failure (Figure 7). This indicates that by simply raising

detector threshold, we can minimize the effect of system mismatch. Of course,

one would haope to utilize more information about the shape of the M,8)

contours in these figures to do even more. This awaits further work.

C. Compensation for Mismatch

It was pointed out that one of the major effects of mismatch is the

change in the Haa which is related to dynamic pressure. We have considered

t	

the possibility that we may be able to measure dynamic pressure directly

i	 so thatwe can effectively correct the mismatch in the a sensor. In Figure

10 Q(k,0) is displayed for a state step detector constructed in this way.

The maximum value of i is now only 25. Therefore, we can expect far

fewer false alarms. Further studies are required to determine if this

improves cross detection and mismatch performance.

It would appear that some mismatch difficulties can be resolved by

designing GLR to be operated in conjunction with an adaptive estimation con-

trol system such as the multiple model method [16]. ^'he latter would be res-

ponsible for detecting shifts in parameters (possibly including hard-over

failures),and the former would search for abrupt additive changes.

i
r
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V. Conclusions and Suggestions

The Generalized Likelihood Ratio (GLR) method for failure detection

has been intensively studied. Many of the basic issues such as detectability,

distinquishability, and parameter sensitivity have been identified and

analyzed. The F-8 model has proved to be a useful setting in which to for-

mulate problems and test ideas. We have performed these tests under most

severe conditions in order to determine the characteristics and fundamental

of GLR.

Our basic conclusions are that GLR is an extremely promising method

for the detection of abrupt changes in dynamic systems. The method has

been successfully applied in several applications [7-14), it is amenable to

detailed performance analysis, and it offers a range of implementations of

varying levels of complexity. Failure mode distinguishability and parameter

sensitivity do cause problems, as one might expect, but we have seen that one

can analyze these issues in great detail. Specifically, the information matrix

allows one to determine the absolute limits on one's ability to distinguish

amonq several failure modes. In addition, we have seen that detector response

in the presence of parameter errors differs markedly from the consistent

response due to a failure.

Issues that should be examined in the future include:

(A) Failure Mode Distinguishability

(1) The orthogonalization of failure modes in order to improve

distinguishability should be considered. This includes the

r
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possibility of a dual-mode procedure, in which one first

detects failures with a "universal" signature and then

uses orthogonal signatures to determine the actual failure

mode.

(2) The implementation and study of the performance of CGLR.

(3) The study of the correlation behavior of the ki(k,8)

under various failure hypotheses in order to determine

"smart" detection rules that make decisions based on

patterns of likelihood ratios.

(4) The study of other failure modes (hard-over, added noise,

etc.). Can we find useful signatures (perhaps the same

as for the basic four modes) to use in detecting these

failures? What about combinations of failure modes

(e.g., bias + hard-over, noise + bias, multiple failures)?

GLR is general enough to deal with all of these. Our

aim here is to define some useful groundrules for

choosing an appropriate set of failure signatures

(perhaps modulated by x or u, as in the hard-over cases).

(3) GLR Robustness -- The results obtained so far indicate that parameter

uncertainties can lead to difficulties in correctly detecting system

failures. However, our results also indicate that such parameter uncer-

tainties lead to very distinctive likelihood ratio patterns. Several

issues must be considered.
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(1) The statistics of the residuals in the presence of

parameter errors are somewhat complex but should be

examined.

(2) Parameter errors lead to residual signatures much like

failures. These should be examined in order to under-

stand how they can confuse GLR and how to avoid such

confusion.

(3) As mentioned in the preceding section, the likelihood

ratio patterns when parameter errors are present have

very distinctive forms. Thus we are interested in

determining smart detection rules. One appealing as-

pect of smart rules is the use of provisional decisions.

That is, based on initial information we may make a

decision to pull out a particular instrument or activate

a back-up. We can then continue to monitor residuals

to obtain corroboratory information concerning the failure

(see [12-14) for an approach along these lines in a dual-

redundant system). In this way we avoid catastrophic

delays when a large failure really is there.

(4) It is felt that CGLR and SGLR will be less sensitive to

parameter errors. This should be examined via simulation.

(5) In many problems there are system nonlinearities, as well

as parameter errors, that must be dealt with. One should

examine modifications of GLR that can deal with this.
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For example, one can develop extended GLR (i (7l.R) ,

the analog of the extended Kalman filter.

(6) Another important area that can be studied is the ef-

fect of discrepancies in system state dimension. For

example, if a GLR system is based on the 2-dimensional

F-8 model, how well will it behave on a real F-8,

which is much more complex?

(C) Complexity and Performance -- All of the results up to this point have

been aimed at understanding the qualitative features of GLR and in developing

a set of analytical tools. This insight and these techniques are essential

to the development of a GLR design methodology. This methodology clearly

must come to grips with a number of tradeoff issues: 	 i

(1) We need to develop several measures of performance, such

as delay time in detection, false alarm rai:e, etc. Such

measures may be of more importance in some problems than

in others -- e.g. false alarms may be more tolerable in

highly redundant systems. Also, one must develop methods

of evaluating such measures. We have done that in some

cases, but if we develop detection rules dealing with

patterns of likelihood ratios, we will have to develop

new analytical techniques.

(2) In many cases -- e.g. when several identical sensors are

available -- one can use much simpler detection systems

than GLR, such as voting. In addition, redundancy can
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q-eatly reduce distinguishability and sensitivity

Problems. For example, GLR detectors looking for

failures in identical instruments would register

similar responses to parameter errors, and this si-

milarity could be exploited to avoid declaring a

failure. The tradeoffs involved in determining what

redundant design is most appropriate is a problem

worthy of further study.

our research efforts have been extremely worthwhile in developing GLR

and in extracting the key issues involved in implementing a GLR- based

detection system. This method has been successfully applied in several

applications, and it is our feeling that the GLR approach has the potential

to be a useful design tool in future aerospace applications.

t
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