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ASSUMPTIONS
 

o 	 STIL facility hardware used to maximum extent in lieu of pur
chasing added hardware. 

o 	 Mini's required are procured such that they are built compatible 
with existing STIL interface hardware to accommodate real-time 
simulations for software checkout and verification. 

o 	 DEP mini's are procured that have existing cross support soft
ware (assembler, link editor, Fortran Compiler) that will 
execute on the STIL Host (S360) 

o 	 All DEP mini's are.assumed to be procured from different 
vendors and are not software compatible 

o 	 A centralized group of programmers will develop all software. 
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Cost Element 4.1 Experiment Application Software Development 

Cost Factors 

1. 	 Software Development 

2. 	 Common Software 

3. 	 Host Computer Time 

4. 	 Simulation Computer Time 

5. 	 Host Computer Time DEP Software 

6. 	 Simulation Computer Time DEP Software 

7. 	 Travel 

8. 	 Training 

(1) Software Development 

(A) = ((Number of Statements) (Cost/Statement)) Per 
Flight Per Yr. 

Number of Statements = GDC Estimate = ((New Flights) 

(Previous Yr. Common)) Per Yr. 

Cost/Statement = $45 (Requirements, Code, and Verification) 
$15 Per Statement is Applied to Integrated Verification 
(See 4. 3 (1)) 

(1) Total = ((#10) ($45)) Per Yr. 

(2) Common Software 

(A) 	 ((Number of Statements) (Cost/Statement)) Per Yr. 
for 5 years Starting in FY81. 

Number of Statements = 10% of new Development per 
Flight Per Yr. Reducing 2% Per Yr. to 0% - Yearly 
Totals are Accumulative and Accumulated Total is 
Subtracted from Subsequent Years Required Development. 

Cost/Statement = $5 (Document and Place in Library) 
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(2) Total = ((#5) ($5)) Per Yr. 

(3) Host Computer Time 

(A) = ((Host Time) (Cost/Hr. )) Per New Flight Per
 
Yr.
 

Host Time = ((# Instructions) + ((# Instructions/Module)
 

(Hrs. /Module))
 

= (# of Modules) (Hrs. /Module)
 

Hrs. /Module = 18 Compiles/Module @ 3 Mins. /Compile
 
+ 9 Functional Simulations @ 12 Mins. / 
Run + I Data Reduction for 75% of 
Simulation Runs @ 10 Mins. Each 

= (54 Mins. ) + (108 Mins. ) + (70 Mins.
 

= 3. 87
 

Host Cost/Hr. ='((10% Maintenance) + (Operations)
 
+ (Consumables)) - (2080 Hrs. /Shift) 

= (Z. 43) + (57. 69) + (63. 05) = $123. 22/Hr.
 

# of Modules = #8
 

(3) Total = (3. 87) (#8) ($123. 22)/Yr. 

(4) Simulation Computer Time 

(A) = (# of Hrs. /Module) (Cost/Hr.) (# of Modules) 

I of Hrs. = 4 Simulations at 60 Min. /Simulation 
(Includes Set-Up, Runs, and Run Evaluations) 

Cost/Hr. = (10% (Maintenance (CDMS, CID, 
SIMULATION COMPUTER)) + (Consumables) 
+ (Operations)) - 2080 Hrs. 
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= ($8) + (0) + ((Z) ($40K)) 42080
 

= ($8) + ($38. 46)
 

- $46.46/Hr.
 

(4) # 	of Modules = #8 

(4) Total = (($46. 46) (#8) (4 Hrs. )) Per Yr. 

(5) Host Computer Time DEP Software 

(A) 	= ((Host Time/Module) (#Modules) (Cost/Hr.)) Per 
Flight/Yr. 

Host Time = (# Modules) (Time/Module)
 

Time/Module = 18 Compiles/Module @ 3 Mins. /Compile
 
+ 3 Data Reduction Runs/Module @ 10 Mins. /Run
 

= 84 Mins. /Module
 

Cost/Hr. = $123. 22 (Same as 4.1 (3))
 

If of Modules = #9
 

(5) Total = ((L. 4 Frs. ) (09)($123. ZZ)) /Yr. 

(6) Simulation Computer Time DEP Software 

(A) =((# of Hrs. ) (Cost/Hr.) (# of Modules)) Per Flight/Yr. 

# of Hrs. = 7 Simulations at 60 Mins. /Simulation 
(Includes Set-up, etc. ) 

9 	Functional Simulations = 3 Realtime Simulations. 
Assume no Functional Simulators for DEP, 

Cost/Hr. = $46.46 (Same as 4.1 (4)) 

(6) Total = ((7 Hrs.o) ($46. 46) (#9)) Per Yr. 
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(7) Travel 

(A) = ((Number of Man Yrs.) (Travel Cost/Man Yr. ))/Yr. 

Number of Man Yrs. = Number of Man Yrs. Required 
as Determined by Number of New Instructions. 

Travel/Man Yr. = Number of Trips ((Cost of Ticket) + 
(Number of Days) (Cost Day))
 

Number of Trips = 4/Man Yr.
 

Cost of Ticket = $150
 

Cost/Day = $12. 50 Per Diem + $12.50 for Car = $25
 

Number of Days = 365
 

Travel = 4(($150) + (365) ($25))
 

= $600 + $9, 1Z5 = $9, 7Z5/Man/Yr.
 

(7) Total = 0 for This Option 

(8) Training 

(A) = (Number of Programmers) (Cost/Programmer) 

Number of Programmers = Number of Programmers 
Required by Number of New Instructions. 

Cost of Programmer = Engineering. Estimate $500/Man 

(8) Total = 0 for This Option 
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Cost Element 4. 2 Experiment Application Software Maintenance 

Cost Factors 

1. Experiment Unique Software 

2. Experiment Common Software 

3. Host Computer Time 

4. Simulation Computer Time 

5. Host Computer Time DEP Software 

6. Simulation Computer Time DEP Software 

7. Travel 

(1) Experiment Unique Software 

(A) = (If of Statements) (Rate of Change) (Cost/Statement) 

(Number of Statements) (Rate of Change) = #13 

Rate of Change = Engineering Estimate Based on Past 
Programs = $0% for Ist Re-Fly, 30% for Znd Re-Fly, 
Z0% for 3rd Re-Fly, 10% for all Subsequent Re-Flys. 

Cost/Statement = $45 (See 4.1 for Rationale) 

(1) Total = ((113) ($45)) Per Yr. 

(2) Experiment Common Software 

(A) = ((# of Statements) (Change Rate) (Cost/Statement)) 
Per Yr. 

Rate of Change = Engineering Estimate = 1% 

Cost/Statement = $60 (Due to Verification Necessary for 
Multi-Use) 

(2) Total = ((#16) (1%) ($60)) Per Yr. 
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(3) Host Computer Time 

(A) = (#Modules) (#Hrs. /Module) (Cost/Hr. 

#Modules = Line (#14) 

# Hrs. /Module = 3.87 (See 4.1 for Rationale) 

Cost/Hr. = $123. 22 (See 4.1 for Rationale) 

(3) Total = (( #14) (3. 87) ($123. 22)) Per Yr. 

(4) Simulation Computer Time 

(A) = ((#Modules) ( #of Hrs. /Module) (Cost/Hr.)) Per Yr.
 

# Modules = Line (#14)
 

# Hrs. /Module = 4 Hrs. (See 4.1 for Rationale)
 

(4) Total = ((#14) (4) ($46. 46)) Per Yr.
 

(5) Host Computer Time DEP Software 

(A) ((Host Time/Module) (#Modules) (Cost/Hr.)) Per Yr.
 

Host Time/Module = 1. 4 Hrs. (See 4.1 for Rationale)
 

# Modules = Line (#15)
 

Cost/Hr. = $123. Z2 (See 4.1 for Rationale)
 

(5) Total = ((1. 4) ( #15) ($123. 22)) Per Yr. 

(6) Simulation Computer Time DEP Software 

(A) ((# of Hrs.) (Cost/Hr.) (#Modules)) Per Yr.
 

# of Hrs. = 7 (See 4.1 for Rationale)
 

Cost/Hr. = $46.46 (See 4.1 for Rationale)
 

(6) Total = ((7) ($46.46) (#15)) Per Yr. 
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(7) Travel 

(A) ((Number of Man Yrs.) (Travel Cost/Man Yr. ))/Yr. 

Number of Man Yrs. = Number of Man Yrs. Required as 
Determined by Number of Instructions to be Maintained. 

Travel = $9, 725 Man/Yr. 

(7) Total = 0 for This Option 
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Cost Element 4.3 EAS Software Integrated Verification 

Cost Factors 

1. Integrated Verification 

2. Host Computer Time 

3. Simulation Computer Time 

4. Integrated Verification Simulation Software 

(1) Integrated Verification 

(A) = ((# of Modules) (Cost/Module)) Per Flight/Yr. 

# of Modules = #21 

Cost/Module = (# of Statement) (Cost/Statement) 

# of Statements = 100/Module 

Cost/Statement = $15 ($60 Estimated Total Cost Per 
Statement for Central Development Less $45 for 
Development) 

= $1, 500/Module 

(1) Total = ((#21) ($1, 500))/Yr. 

(2) Host Computer Time 

(A) = (# Hrs. ) (Cost/Hr. 

(2) Total = (0) For This Function (Has Been Included in 
Required Host Runs 4. 1) 

(3) Simulation Hardware Time 

(A) = (# Hrs. /Module) (Cost/Hr.) (# Module) 

# Irs. /Module = 2 Simulations/Module at 60 Min. Per 
Simulation (Includes Set-Up, etc. 

10 



Cost/Hr. = $46.46 (See 4.1 (4) B)
 

# Modules = #Zl
 

(3) Total = ((Z) (#Zl) ($46. 46)) Per Yr. 

(4) Integrated Verification Simulation Software 

(A) = (# of Modules) (Cost/Module)) Per Yr. 

# of Modules = #Z9 

Cost/Module = $1, 500 (See 4. 3 (1) for Rationale 

(4) Total = ((#29) ($1, 500)) Per Yr. 
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Cost Element 4. 4 Preflight Checkout Software Development 

Cost Factors 

1. Software Development 

2. Common Software 

3. Host Computer Time 

4. Simulation Computer Time 

5. Travel. 

(1) Software Development 

(A) = ((Number of HOL Statements) (Cost/Statement)) Yr. 

(1) Total = ((#22) ($30))/Yr. 

(Z) Common Software 

(2) Total = 0 for This Option 

(3) Host Computer Time 

Host Computer Time = ((Host Time)) (Cost/Hr. 
Ref. 4.1 (3) 

(A) = ((3. 87) (# Modules) ($123. ZZ))/Yr. 

(3) Total = ((3. 87) (#22 - 100) ($123. 2Z)) Per Yr. 

(4) Simulation Computer Time 

(A) = (# brs. /Module) (Cost/Hr.) (# Modules) 
Ref. 4.1 (4) 

(4) Total = (4) ($46. 46) (#22 4- 100) Per Yr. 
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NMFS Mean Sea Surface Temperature Map for September, 1978 
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Figure 14 

Sample Output from Program MATCH
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TABLE 3 

Buoys Used in Program LOCATE 

Buoy ID North Latitude. West Longitude 

41001 35.0 72.0 
41002 32.3 75.3 
41004 32.6 78.7 
42001 26.0 90.0 
42002 26.0 93.5 
42003 26.0- 86.0 
44001 38.7 73.6 
44002 40.1 73.0 
44003 40.8 68.5 
44004 39.0 70-0 
46001 56.0 148.0 
46002 42.5 130.0 
46003 52.0 156.0 
46004 51.0 136.0 
46005 46.0 131.0 
46006 41.0 138.0 
46007 59.2 152.7 
46008 57.1 151-.7 
46009 60.2 146.8 

136
 



2 

Figure 13.10. Orbit 1212, 380 N, Nominal and Interim
 

SMMR 37.0 H TB VS LRT]TUDE
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Figure 13.9. Orbit 1212, 38 N, Nomlual and Interim 

SMMR 37.0 V TB VS LRTITUDE
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Figure 13.8. -Orbit 1212, 380 N, Nominal and Interim
 

S'MR 21.0 H TB VS LRTTUDE
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Figure 13.7. Orbit 1212, 38' N, Nominal and Interim
 

SMMR 21.0 V TB VS LRTITUDE
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Figure 13.6. Orbit 1212, 380 N, Nominal and Interim 

SMMR 18.0 H TB VS LRTITUDE 
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Figure 13.5. Orbit 1212, 380 N, Nominal and Interim
 

SMMR 18.0 V TB VS LRITUDE
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Figure 13.4. Orbit 1212, 380 N, Nominal and Interim 

SMMR 10.7 H 7B VS LRTITUDE 
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Figure 13.3. Orbit 1212, 380 N, Nominal and Interim
 

STIMR 10.7 V TB VS LRTITUDE
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Figure 13.2. Orbit 1212, 38O N, Nominal and Interim' 

SNMR 6.6 H TB VS LRTITUDE 
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Figure 13.1. Orbit 1212, 380 N, Nominal and Interim 

SMMR 6.6 V TB VS LRTITUDE 
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Figure 12.10. Orbit 1212, 380 N, Cross and Interim
 

SMMR 37.0 H TB VS LRTITUDE
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Figure 12.9. Orbit 1212, 38' N, Cross and Interim 

SMNR 37.0 V TB VS LRTITUDE 
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Figure 12.8. Orbit 1212, 380 N, Cross and Interim 

SMMR 21.0 H TB VS LRTITUDE 
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Figure 12.7. Orbit 1212, 38* N, Cross and Interim 

SMMR 21.0 V TB VS LRTITUDE 
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Figure 12.6. Orbit 1212, 38' N, Cross and Interim 

SMMR 18.0 H TB VS LRTITUDE 
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Figure 12.5. Orbit 1212, 380 N, Cross and Interim
 

SMMR 18.0 V TB VS LRTITUDE 
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Figure 12.4. Orbit 1212, 38' N, Cross and Interim 

SMMR 10.7 H TB VS LRTITUDE
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Figure 12.3. Orbit 1212, 38 N, Cross and Interim 

SMMR 10.7 V 7B VS LRTITUDE 
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Figure 12.2. Orbit 1212, 380 N, Cross and Interim 

SM.MR 6.6 H TB VS LRTITUDE 
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Figure 12.1. Orbit 1212, 380 N, Cross and Interim 

SMMR 6.6 V TB VS LRTITUDE
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Figure 11.10. Orbit 1212, 380 N, Box and Interim 

SMMR 37.0 H TB VS LRTITUDE
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Figure 11.9. Orbit 1212, 380 N, Box and Interim 

S.NMR 37.0 V TB VS LRTITUDE 
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Figure 11.8. Orbit 1212, 38' N, Box and Interim
 

SMMR 21.0 H TB VS LRTITUDE
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Figure 11.7. Orbit 1212, 380 N, Box and Interim
 

SMNR 21.0 V TB VS LRTITUDE
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Pigure 11.6. Orbit 1212, 350 N, Box and Interim 

SMMR 18.0 H TB VS LRTITUDE
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Figure 11.5. Orbit 1212, 380 N, Box and Interim
 

SMMR 18.0 V TB VS LRTITUWJE
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Figure 11.4. Orbit 1212, 380 N, Box and Interim 

SMMR 10.7 H TB VS LATITUDE
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Figure 11.3. Orbit 1212, 380 N, Box and Interim 
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Figure 11.2. Orbit 1212, 380 N, Box and Interim 

SMMR 6.6 H TB VS LRTiTUDE 
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Figure 11.1. Orbit 1212, 38' N, Box and Interim
 

SIMR 6.6 V TB VS LRTITUDE
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Figure 10.10 Orbit 1212, 550 N, Nominal and Interim 

MMRG 37.0 H T5 V2 LRTITUDE 
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Figure 10.9. Orbit 1212, 55' N, Nominal and Interim 

SMMP 37.0 V TB5 VS LRTITUDE 
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Figure 10.8. Orbit 1212, 550 N, Nominal and Interim 

SMMR 21.0 H T5 VS LRTITUDE 
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Figure 10.7. Orbit 1212, 550 N, Nominal and Interim 

SMMR 21.0 V T5 VS LRTITUDE
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Figure 10.6. Orbit 1212, 550 N, Nominal and Interim 

SMMR 18.0 H TB VS LTITUJE
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Figure 10.5. -Orbit 1212, 550 N, Nominal and Interim
 

SMMR 1a.0 V T5 VS LRTITUDE
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Figure 10.4. Orbit 1212, 55' N, Nominal and Interim
 

SMMR 10.7 H TB VS LRTITUDE
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Figure 10.3. Orbit 1212, 550 N, Nominal and Interim
 

SP-MR 10.7 V TB VS LATITUDE
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Figure 10.2. Orbit 1212, 55' N, Nominal and Interim
 

SMNR 6.6 H TB VS LflTITUDE
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Figure 10.1. Orbit 1212, 550 N, Nominal and Interim 

SMMR 6.6 V TB VS LRTITUOE 
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Figure 9.9. Orbit 1212, 550 N, Cross and Interim
 

SrNR 37.0 V T5 VS LRTITUOE
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Figure 9.8. Orbit 1212, 550 N, Cross and Interim 

SM.MR 21.Q H T5 VS LRTITUBE 
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Figure 9.7. Orbit 1212, 550 N, Cross and Interim 

SMMR 21.0 V 7 VS LRTITUDE 
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Figure 9.6. Orbit 1212, 55' N, Cross and Interim 

SMR 13.0 H TB VS LRTITUDE 
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Figure 9.5. Orbit 1212, 550 N, Cross and Interim 

SrMR £8.0 V TB VS LRTITUDE
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Figure 9.4. orbit 1212, 550 N, Cross and Interim
 

SMNR 10 7 H TB VS LRTITUDE 
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Figure 9.3. Orbit 1212, 55' N, Cross and Interim 

SMMR 10 7 V T VS LRTITUDE 
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Figure 9.2. Orbit 1212, 550 N, Cross and Interim 

S!IMR 6.6 H TB VS LATITUDE 
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Figure 9.1. Orbit 1212, 55' N, Cross and Interim
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Figure 	8.10. Orbit 1212, 550 N, Box and Interim 

SMIR 37.0 H T5 VS LATITUDE 
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Figure 8.9. Orbit 1212, 550 N, Box and Interim 

£MNR 37.0 V TB VS LPTITUDE 
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Figare 8.8. Orbit 1212, 550 N, Box and Interim 

SMMR 21.0 H T5 VS LRTITUDE 
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Figure 8.7. Orbit 1212, 550 N, Box and Interim 

SMRF El C. V T VS LRTTTUQE 
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Figure 8.6. Orbit 1212, 530 N, Box and Interim 

SMMR 18.0 H T5 VS LRTITUDE
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Figure 8.4. Orbit 1212, 550 N, Box and Interim
 

SMMR 10 7 H TB VS LRTITUDE 
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Figure 8.3. Orbit 1212, 55' N, Box and Interim 

SMR 10.7 V TB VS LRTITUDE 
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Figure 8.2. Orbit 1212, 550 N, Box and Interim 

SMMR 6.6 H TS VS LRTITUDE 
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Figure 8.1. Orbit 1212, 550 N, Box and Interim 

SMMR 6-6 V Tf VS LRTITUDE
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Figure 7.5. Orbit 331, Nominal Mode
 

SMMQ 37.0 GHZ TB CROSS TRACK GRRDIENT VS LATITUDE
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Figure 7.4. Orbit 331, Nominal Mode 

SMMR 22 0 GHZ TB CROSS TRqCK GRRDIENT VS LATITUDE 
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Figure 7.3. Orbit 331, Nominal Mode 

GSMR IBa0 GHZ TB CROSS TRqCK GRRDIENT VS LPTITUDE 
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Figure 7.2. Orbit 331, Nominal Mode 

SPIP i0.69 GHZ T5 CROGS TRACK GRRDIENT VS LRTITUDE
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Figure 7.1. Orbit 331, Nominal Mode* 

PMMR 6.6 GHZ TB CROSS TRRCK GRRDIENT VS LPTITUDE 
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Figure 6.5. Orbit, 331, Cross Mode
 

SM.MR 37.0 GHZ TB CROSS 7PRCK GRRD'ENT VS LRTTTUDE 
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Figure 6.4. Orbit 331, Cross Mode 

LIPPH 22.0 GHZ T5 CROGS TPRCK GRDIENT VS LATITUDE 
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Figure 6.3. Orbit 331, Cross Mode
 

SNNP 28.0 GHX T5 CROSS TRRCK GRRDIENT VS LPTITUDE
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Figure 6.2. Orbit 331, Cross Mode
 

SNMR 20.69 GHZ T5 CROSS TRPRCK GRRDIENT VS LPTITUDE
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Figure 6.1. Orbit 331, Cross Mode 

SMMR 6.6 GHZ T5 CROSS TRRCK GRRDTENT VS LRTITUDE
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Figure 5.5. Orbit 331, Box Mode 

SNMIP 37.0 GHZ T5 CROSS TRACK GRRDIENT VS LATITUDE 
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Figure 5.4. Orbit 331, Box Mode 

SMMR 22.0 GHZ TB CROSS TRRCK GRRDENT VS LPTITUDE 
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Figure 5.3. Orbit 331, Box Mode 

SMMR 18.0 GHZ TB CROSS TRRCK GRRDIENT VS LRTITUDE 
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Figure 5.2. Orbit 331, Box Mode 

CROSS TRRCK GRROIENT VS LRTITUDE
£MMR 10.69 GHZ T5 
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Figure 5.1. Orbit 331, Box Mode 

SMMP 6.6 GHZ T5 CROSS TPRCK GRRDIENT VS LPTITUDE 
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Figure 4.5. Orbit 331, Interim Mode
 

S-MPI 37.0 GHZ TS CROSS TPRCK GRADIENT VS LATITUOE
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Figure 4.4. Orbit 331, Interim Mode
 

SMMR 22.0 GHZ TB CROSS TRRCK GRROIENT VS LRTITUDE
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Figure 4.3. Orbit 331, Interim Mode
 

SIMR 18.0 GHZ TS CROSS TRACK GRADIENT VS LATITUDE
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Figure 4.2. Orbit 331, Interim Mode
 

SMMR 10.69 GHZ T5 CROSS TRRCK GRADIENT VS LATITUDE
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Figure 4.1. Orbit 331, Interim Mode 

SMMR 6.6 GHZ T5 CROSS TRRCK GRqD!ENT VS LATITUDE 
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Figure.3.10. Orbit 331, Nominal and Interim 

SMMR 37.0 H T5 VS L:TITUDE
 

300.
 

240. -.
 

2S 2 

60.1.. .. *........ ........ . .. . . . . .
 
. 20. 16. 22. 28
 

LRTITUDE (DEG.)
 

55
 

http:Figure.3.10


Figure 3.9. Orbit 331, Nominal and Interim 

SMMR 37.0 V -T5VS LPTiTUDE 
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Figure 3.8. Orbit 331, Nominal and Interim 

SMMR 21.0 H T5 VS LRTITUDE 
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Figure 3.7. Orbit 331, Nominal and Interim 

S;f-R 21.0 V TB VS LAT]TUDE
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Figure 3.6. Orbit 331, Nominal and Iaterim 

SMR 18.0 H T5 VS LRT]TUDE 
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300 

Figure 3.5. Orbit 331, Nominal and Interim
 

SMMR 18.0 V T, VS LRTITUDE
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Figure 3.4. Orbit '331, Nominal and Interim 

SMMR 10.7 H T51 VS LRT]TUDE
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Figure 3.3. Orbit 331, Nominal and Interim 

SMMR 10.7 V TB VS LRTITUDE 
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Figure 3.2. Orbit 331, Nominal and Interim 

SMMR 6.6 H TB5 VS LPT]TUDE 
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Figure 3.1. Orbit 331, Nominal and Interim 

SMMR 6-6 V T5 VS LRTITUDE 
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Figure 2.10. Orbit 331, Cross and Interim 
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Figure 2.9. Orbit 331, Cross and Interim
 

SC-MR 37.0 V TB VS LqTITUDE. 
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Figure 2.8. Orbit 331, Cross and Interim
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Figure 2.7. Orbit 331, Cross and Interim
 

SMMR 21.0 V T- VS LRTITUDE 
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Figure 2.6. Orbit 331, Cross and Interim
 

SMMR 1.0 H T5B VS LRTITUDE
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Figure 2.5. Orbit 331, Cross and Interim
 

Sr-IMR 18.0 V TB VS LRTITUDE
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Figure 2.4. Orbit 331, Cross and Interim 

SMMR 10.7 H TB VS LRT]TUDE 
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Figure 2.3. Orbit 331, Cross and Interim 

SMMP 10.7 V T5 VS LRTITUDE 
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Figure 2.2. Orbit 331, Cross and Interim 

SMMR 6.6 H T- VS -LRTITUDE 
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Figure 1.10. Orbit 331, Box and Interim
 

SMMR 37.0 H TB VS LPTITUDE
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Figure 1.9. Orbit 331, Box and Interim
 

SNMR 57.0 V TB VS LRTITUDE
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Figure 1.8. Orbit 331, Box and Interim
 

SMMR 21.0 H T5 VS LRTITUDE
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40 

Figure 1.7. Orbit 331, Box and Interim 

SNMR 21.0 V T5 VS LRTITUDE
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Figure 1.6. Orbit 331, Box and Interim
 

SMR-IR 18.0 H TB VS LATITUDE
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rigure 1.5. Orbit 331, Box and Interim 

SMMR 1a.0 V T5 VS LRTITUDE 
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300. 

Figure 1.4. Orbit 331, Box and Interim 

SMMR 10.7 H TB VS LTITUDE 
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Figure 1.3. Orbit 331, Box and Interim 
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Figure 1.2. Orbit 331, Box and Interim
 

£MMR 6.6 H T5 VS LRTITUDE
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Figure 1.1. Orbit 331, Box and Interim
 

SMNR 6.6 V T- VS LRTITUDE
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Table 2. Land Sidelobe Effects Orbit 1212, 510N to 590N, Column 1
 

TL - BOX INTERIM - CROSS INTERIM -_NOMINAL 

Open Near Open Near Open Near
 
Channel Ocean N* Land± Ocean N* Land- Ocean Land'
 

6.6V 4.50 7 6.50 4.50 7 8.50 4.50 15 ** 
6.6H" 3.25 7 5.00 3.25 7 6.75 2.75: 18 ** 

10.7V 3.00 8 5.00 3.00 8 7.00 3.75 18 ** 
10.7H 4.00 8 6.00 4.00 10 9.00*** 4.00 >20 ** 

1BV 3.00 4 4.00 3.50 4 5.50*** 5.00 9 
18H 4.50 6 5.50 4.50 6 8.00 5.00 >28 ** 
21V 3.50 0 3.50 3.50 0 3.50 3.50 14 
21H 3.75 5 5.00 3.75 5 5.50 4.00 22 ** 
37V 3.00 0 3.00 3.00 3 4.00 4.00 24 *
 
37H 4.00 4 5.00 4.00 4 7.00 4.00 >20 ** 

t 	Near Land refers to cell adjacent to land.
 
* 	N is the number of cells from land at which the difference first equals 

the "open ocean difference". 
** The near land values for the nominal mode exhibit ringing effects. 

*** CROSS mode appears to be overcorrecting for nearby land. 

(Box and Cross appear to be identical except for the cell adjacent to land). 
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Table 1.3. Orbit 331, 330N to 430N Interim Minus Nominal Mode (Continued)
 

CHANNEL 


37o Y 


37.0 H 


COLUMN 


1 

2 

3 


5 


6 

7 

8 

9 


10 


11 

12 

13 

Iq 

is 

16 

17 

is 

19 

20 

21 

22 


1 


2 

3 

q 
S 

6 

7 

8 

9 


10 

11 

12 

13 

14 

1s 

16 

17 

18 

19 

20 

21 

22 


HEAN 

3,50 

3.69 

3.61 

2.73 

2o43 


2.24 

2.24 

2,23 

1,79 

2.64 

2.13 

1.97 

2.6 

2.03 

1.96 

2.32 

1.71 

2.11 

2.02 

2.16 

1.96 

2,65 


3.34 


3,01 

2,85 

2.93 

4,43 

3.07 

3,80 

2.55 

3,20 

3,06 

2,57 

2,90 

2.92 

2,87 

3.01 

3,O 

2,58 

3,56 

3.48 

3.01 

',63 

2.54 


24
 

STD. DEVI
 

2.36
 
2.81
 
3.79
 
3.10
 
2.27
 

1,53
 
1.74
 
2.18
 
2,49
 
2,91
 

2#75
 
1.50
 
2,74
 
2.71
 
29,47
 
2.11
 
1.93
 
i,46
 
1.85
 
2.27
 
1.39
 
3.29
 

2.63
 
q,7s
 
2,96
 
4,08.
 
1,93
 
2.'5
 
2,77
 
3,68
 
3,28
 
2.14
 
3,55
 
2.76
 
3.55
 
3,05
 
2.04
 
3.65
 
2,24
 
1.99
 
5,15
 
11,90
 
6,38
 

13,71
 



Table 1.3. Orbit 331, 330N to 430-NInterim Minus Nominal Mode (Continued)
 

CHANNEL 


18.0 H 


21.0 V 


210 H 


COLUMN 


1 

2 

3 

14 

5 

6 

7 

8 

9 


10 

11 


I 


2 

3 

4 

5 

6 

7 


8 

.9 


10 

11 


I 

2 

3 

'4 


- 5 
6 

7 

8 

9 


10 

11 


MEAN 


'4,43 

3o38 

3.09 

3,08 

2.98 

2.86 

3.06 

3.15 

3.11 

3.35 

3193 


1.99 


3.60 

3,70 

3.69 

3.50 

3;50 

3.qf3 


3.86 

3.55 


3.66 

',37 


4.25 

3.34 


9,1. 

3.70 

3a3 4 

3.05 

3.19 

3.60 


3.26 

3.93 

3.17 


STD. DEV.
 

1.16
 
1902
 
1.25
 
1.29
 
Ivq8
 
1.32
 
loss
 
1.22
 
,86
 
.83
 

1.12
 

1.62
 

.96
 
,83
 
.89
 

1.06
 
.88
 

1,'
 

,92

*63
 

.77
 
'95

1.57
 

l.11
 
j,58
 
1,37
 
t1lq
 
1458
 
1.19
 
096
 

.87
 
- ,O1 

1,69
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Table 1.3. Orbit 331, 330N to 430N Interim Minus Nominal Mode
 

CHANNEL COLUMN MEAN STD. 0EV
 

696 V 1 1.59 135
 
2 1-87 .47
 
3 1.85 .29
 
9 3.78 ,40
 

6.6 H 1 .20 .29 

2 
3 

-,39 
-. 19 

.41 

.34 
4 -. 9 31 

10,7 V 1 1.50 .51
 
2 1,90 .q3
 
3 2.02 .48
 
4 214 75
 

5 2,34 .60
 
6 1.85 ..S1
 
7 q.76 q'4
 

10.7 	H i 3,31 .52
 
2 2,3q .70
 
3 2.01 .56 
'4 1.97 .62 
5 2.11 
 -49
 

6 2.21 ,92
 
7 1. 6 q!
 

18.0 V I 	 ,06 I$.Oq
 
2 2.80 .89
 
3 3,12 1*09
 
4 2.86 1.72
 
5 3,06 1.74
 
6 2,91 .95
 
7 2.89 .9q
 
8 3.18 1,11
 
9 2,86 1.06
 

10 2,73 .73
 
11 3,67 
 .89
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Table 1.2. Orbit 331, 330N to 430N Interim Minus Cross Mode (Continued)
 

CHANNEL 


37eO V 


3790 H 


COLUMN 


1 

2 

3 

14 

5 

6 

7 

8 

9 

I0 

11 

12 

13 

14 

is 

16 

17 

18 

19 

20 

21 


* 22 


I 

2 

3 


'4 

5 

6 


7 

8 

9 

I0 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 


MEAN 


2.94 

2,26 

2.52 

1.98 

1.91 

2.22 

2,13 

2.08 

2,08 

2,18 

2.10 

1.97 

2.09 

1.93 

1.94 

1,96 

1.90 

1.96 

1.81 

2,07 

2.08 

2,20 


3.54 

3#71 

311 


3.69 

'4.25 

3.34 


3.49 

3.10 

3,17 

3.14 

2,90 

2.94 

2.93 

3.04 

2.99 

3,19 

2.87 

3.36 

3,61 

3.33 

3.88 

3,47 


STO, DEV.
 

.63
 
,43
 
*l8
 
48
 
,44
 
,41
 
*q2
 
.35
 
.q1
 
#q8
 
*47
 
.43
 
,43
 
943
 
.38
 
,39
 
.38
 
,31
 
141
 
.37
 
,40
 
.58
 

.71
 

.66
 

.50
 

.57
 
046.
 

-51
 

.5q
 

.51
 

.52
 

.50
 

.58
 

.55
 

.53
 
,51
 
.99
 
.49
 
.54
 
.43
 
.69
 

1,43
 
1,12
 
1490
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Orbit 331, 330N to 430N Interim Minus Cross Mode (Continued)
Table 1.2. 


CHANNEL 


180 H 


21.0 V 


21.0 H 


COLUMN 


1 

2 

3 

J4 

5 

6 

7 

8 

9 


10 

11 


1 

2 

3 

Ai 
5 

6 

7 

8 

9 

10 

11 


1 

2 

3 

4370 

5 

6 

7 

8 

9 


10 

11 


MEAN 


30 

3.48 

3.15 

3.10 

3.03 

3,00 

3.04 
3.12 

3.21 

3.94 

3.78 

3,99 

3.58 

3.67 

3.61 

3.48 

3.55 
3,52 

3.62 

3,58 

3.54 

3,83 


4123 

3.50 

3.97 


3.37 

3.13 

3,27 

3.93 

3.35 

3.77 

3,SS 


5TD. DEV'
 

.37
 

.24
 

.28
 
s27
 
.26
 
.23
 
'25
 
.22
 
.25
 
.26
 
03
 

.79
 

.68
 

.56
 

.47
 
o97 
,48
 

.52
 

.44
 
#46
 
.52
 
5.7
 

.77
 

.60
 

.63
 
51
 
.55
 
053
 
,Sq
 
.48
 
.48
 
.58
 
.68
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Table 1.2. Orbit 331, 330N to 430N Interim Minus Cross Mode
 

CHANNEL COLUMN 


6.6 	V I 

2 

3 
14 


6,6 H 1 

2 
3 

4 


10.7 V 	 1 


2 

3 

4 

S 

6 

7 


10.7 	H 1 

2 

3 

4 

5 

6 

7 


18.0 V 	 I 

2 

3 

14 

5 

6 

7 

8 

9 

10 

11 


MEAN 


1.59 

1.45 

1.v6t4 
2,41 


.20 

-t00 

.01 


-. 15 


1,50 


1.84 

1,93 

2.05 

2,15 

2.09 

2.73 


3,12 

2,39 

2.09 

2.03 

2.11 

2.22 

2.12 


2.89 

2,69 

2.91 

2.78 

2.84 

2.73 

2.82 

2.84 

2,79 

2.68 

2.79 


STD. OEV.
 

.09
 

.09
 
906
 
.17
 

.06
 
.08
 
.06
 
.09
 

.07
 

,08
 
9'08
 
.08
 
.09
 
.08
 
.10
 

.07
 

.07
 

.06
 

.08
 
,09
 
.09
 
.12
 

.39
 

.27
 
,29
 
.2S
 
.25
 
.2m
 
.27
 
.22
 
.27
 
.25
 
34
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Table 1.1. Orbit 331, 33N to 43N Interim Minus Box Mode (Continued)
 

CHANNEL COLUMN 


37*0 V 1 

2 

3 

14 

S 


6 

7 

8 

9 


10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 


37.0 H 	 1 

2 

3 

4 

5 

6 

7 

8 

9 


I0 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 


MEAN STD. DEV, 

2.73 SO 
2,28 .37 
2.46 .36 
1,97 .36 
1.83 .35 

2.20 36 
2,10 .3S 
2.06 029 
2,16 o31 
2.12 .34 
2.09 *31 
199 *36 
2.03 .33 
1,89 .30 
1.93 .28 
1.8S .28 
2.00 .28 
1.94 ,27 
1.75 .33 
2.05 .3D 
2,12 .33 
2.07 ,33 

3.59 o 46 
3.67 -. fs 
3.15 .39 
3,75 .42 
4.17 *'2 -

3.37 .42 
3042 0'2 
3920 .36 
3.13 .39 

3.11 .42 
2.96 .40 
2.94 .10 
2.91 .38 
3,05 ,37 
297 ,35 
3.16 .36 
2.93 .37 
3,32 .36 
3.63 ,qj 
3,92 .52 
3.66 .4j 
3*73 *7a 
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Table 1.1. Orbit 331, 330N to 430N Interim Minus Box Mode (Continued)
 

CHANNEL COLUMN MEAN 

1890 H 1 4,26 
2 3*51 
3 3.16 
4 3,07 
5 3.05 
6 3o04 
7 3.00 
8 3.11 
9 3,22 
10 3,*45 
11 3,72 

21.0 V ! 3,70 
2 3.60 
3 3,68 
4 3.62 
5 3,50 
6 3,5s 
7 3,55 
8 3,60 
9 3.60 

10 3.50 
11 3.74 

21.0 H 1 19,23 

2 3,55 
3 3.93 
4 3.68 
5 3.38 
6 3,15 
7 3.26 
8 3941 
9 3,36 

10 3,76 
11 3.67 

STD, DEV.
 

.25
 

.214 
,214
 
.22
 
.21
 
,20
 
.21
 
.20
 
@21
 
21
 

.18 

.58
 

.57
 
e55
 
0s
 

-046 
.47 
*48 

- 4 
46 

.49
 
47
 

.66
 

61
 
960
 
,53
 
95&
 
5'2
 
.52
 
.48
 
.48
 
.53
 
146
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Table 1.1. Orbit 331, 330N to 430N InterimuMinus Box Mode
 

CHANNEL COLUMN MEAN STD, DEV,
 

6.6 V 1 1.60 .06
 
2 1.22 .07
 
3 1,30 .06
 
4 1.57 -.12
 

696 H 1 	 .21 ,05
 

2 	 .19 .06
 
3 	 .23 .04
 

.36 .05
 

, 	 .04
10.7 V 	 1,52 

2 1.80 05
 
3 1.90 .04
 
4 1.99 .04
 

S 2.08 .05
 
6 2,02 .05
 

7 2.06 .07
 

10.7 H 1 3103 .04
 
2 2.44 .04
 
3 2.14 ,04
 
q 2,08 604
 

5 2.09 .05
 
6 2.25 .0
 
7 2.35 ,06
 

1 	 .26
18.0 V 	 2.51 

2 2.70 .26
 
3 2.93 .26
 
4 2.83 .23
 

S 2.84i 23
 
6 2.75 .22
 

7 2,8S .23
 
8 2-84 922
 
9 2,83 *24
 

10 2.b9 24
 

11 2,b6 
 .25
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truth data sets. These data sets can then be used along with
 
geophysical models and appropriate assumptions about atmospheric water
 
content to yield a better determination of the bias for each SMMR
 
channel. To facilitate this process, it is recommended that, as new
 
APC output is produced, the LOCATE program be run in a production mode
 
to accumulate additional buoy hits.
 

6.0 NEW TECHNOLOGY 

No new technology has been developed in the course of this study. 

7.0 REFERENCES 
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SEASAT-A SMMR APC Algorithm: 6.6 GHz TB vs. 

Tsurface truth 
Comparison Results", March 16, 1979. 

2. 	 Kitzis, S.N. and Kitzis, J.L., "Evaluation and Analysis of
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3. 	 Kitzis, J.L. and Kitzis, S.N., "Evaluation and Analysis of 
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4. 	 Kitzis, J.L. andKitzis; S.N., "Evaluation ant-EAnalysis of
 
SEASAT-A Sb0a APC Algorithm: Interim Mode TB vs. Cross and 
Nominal Mode TB", July 27, 1979. 
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5.0 

(2) 	Initial analysis carried out by R. Hofer of data produced by the
 
software described in section 3.2 indicates that there are still
 
significant inter-channel biases in the SMfR data (i.e. residual
 
biases between S2MR TB values and model-predicted brightness
 
temperatures from surface truth). Simulation runs indicate that
 
these 	inter-channel biases are not introduced by the APC
 
algorithm. Therefore, these biases are either the result of
 
errors in the model-predicted brightness temperatures or else 
biases in the data which is input to the APC. 

(3) 	 Over open ocean, the only differences observed between the four
 
APC modes are offsets which vary with the mean TB level. At
 
low TB levels, the interim mode values are above the other three
 
modes, while at high TB levels the reverse is true. This chang
ing-offset varies smoothly with increasing brightness
 
temperatures.
 

(4) 	The box mode outputs are generally similar to those of the interim
 
mode, except that the box mode removes some of the sidelobe con
tributions from nearby land. No "ringing" effects are observed
 
in the box mode values. Thus, the box mode is superior to the
 
interim mode near land without suffering any ill effects from
 
"ringing."
 

(5) 	The cross mode appears to remove more of the sidelobe contributions
 
near land than does the box mode. Unfortunately, the cross mode
 
exhibits "ringing" effects for some channels, thereby making it
 
less desirable than the box mode.
 

(6) 	The nominal mode still shows severe "ringing" effects for all
 
channels. Although this mode shows the potential for signi
ficantly better resolution than the other modes, the "ringing"
 
renders it unreliable at the present time.
 

RECOMMNDATIONS
 

All of the previous questions regarding the SNMR brightness tempera
tures 	have been answered with the possible'exception of two. One
 
involves the "ringing" effects observed in the nominal and, to a much
 
lesser degree, in the cross nodes near land. _Apresent,-ths'
"ringing" phenomenon is not completely understood and should be further
 
investigated unless a final decision is made to completely disregard
 
the nominal and cross modes. This effect can best be studied by simu
lating a brightness temperature scene which is half ocean and half land,
 
which 	requires a more sophisticated simulation approach than that
 
currently in use.
 

The second remaining question concerns the inter-channel TB biases.
 
These biases should be studied by using the software described in sec
tion 3.2 to assemble a large number of matched spacecraft and surface
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@ASG,A JK*ENI.
 
@ASG,A JK*TABLE.
 
@ASG,A II35*WINDFIELDf. 
@USE 10. ,1l35*WINDFIELD.
 
@ASG,T TAFE.,U9H,Sx~xR (Tape containing TB data)
 
@REWIND TAPE.
 
@USE SMMRTAPE., TAPE.
 
@CAT,P OUTPUTl. (Output file for TB data)
 
@ASG,A OUTPUT1. 
@USE 23.,OUTPUT1. 
@CAT,P OUTPUT2. (Output file for surface truth data)
 
@ASG,A OUTPUT2. 
@USE ii.,OUTPUT2.

@XQT JK*ENI. CORAL 

$TIMES -
LWIND 	 = .TRUE., LVAPOR = .TRUE., 

$END
 
@ADD JK*TABLE.
 

The output file of TB data contains two card images corresponding to 
each grid-i cell location. The first card image contains an ID number 
for the point and the ten SNMR brightness temperature measurements. 
The format of this card is 15, 1OF7.2 

The second card image- contains the same ID number and the ten grid
 
column numbers corresponding to the TB measurements. This card has the
 
format I5, 1017. The ID numbers range from 101 through 116 for the 16
 
points from the first block of SIMR data processed, then from 201
 
through 216 for the points from the second block of data, etc.
 

The output file of surface truth data contains a single-card image
 
corresponding to each grid-l cell location. This card contains the
 
ID number for the point, the sea surface tem erature in degrees
 
Celsius, the water vapor content in grams/cm , and -the wind speed in 
meters/second. The format used is I5, 3F7.2
 

4.0 CONCLUSIONS
 

Several conclusions may be drawn from the results discussed in
 
section 3.0:
 

(1) 	'Most of the problems in the APC outputs discussed in previous
 
reports have now been eliminated or reduced to insignificant
 
levels. These problems all involved unrealistic variations in
 
brightness temperatures across the SMMI swath. These include
 
unmodeled cos $ effects, cross-track gradients induced by the
 
sidelobe correction procedure, and large biases at the edges of
 
the swath also caused by sidelobe corrections. These problems
 
are no longer apparent in the brightness temperature output of
 
the APC.
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choose to have the temperatures for all channels taken from grid 1, or
 
alternatively to have temperatures for each channel taken from those
 
cells of its best grid which lie closest to the grid-i cell locations.
 
In either case, the grid 1 locations are used to interpolate the surface
 
truth fields to produce corresponding surface truth measurements. If
 
a given location is outside the limits of a field, the corresponding
 
surface truth parameter is set to zero.
 

The namelist $TIMES is required to execute the program and contains the
 
following variables:
 

Variable
 
Name Type Dim. Default- Description
 

ITI 'Int. 4 0.0,0,0 	 Beginning time (DaysHrs,Min,Sec) 

IT2 Int. 4 366,0,0,0 	Ending time (Days,Hrs, Min, Sec)
 

ALLGRI Log. 1 .FALSE. 	 .TRUE. if TB measurements for all
 
channels are to be taken from grid 1.
 

LWIND Log. 1 .FALSE. 	 .TRUE. if wind speeds are to be inter
polated from a wind field. 

LVAPOR Log. 1 .FALSE. 	 .TRUE. if water vapor values are to be
 
calculated.
 

The namelist STABLE contains the sea surface temperature field data and
 
is made available to the program by @ADD'ing the file JK*TABLE to the 
runstream. In addition to printed output, the program produces two
 
output files, one containing TB data and one containing surface truth
 
data.
 

- The following is a sample runstream for orbit 1135, assuming that TB 
data is to be read directly from a nine-track tape.
 

@ASG,T TAPE.,T,Q160R
 
@EZIO,RS JK*ENI.
 
@REWIND TAPE.
 
@FREE TAPE. 
@ASG,T TAPE. ,T,Y317R
 
@EZI0,RS JK*TABLE.
 
@REWIND TAPE.
 
@FREE TAPE.
 
@ASG,T TAPE. ,T,W498R
 
@EZIO,RS TAPE.,I135*WINDFIELD. ,1298*WINDFIELD.
 
@REWIND TAPE.
 
@FREE TAPE.
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these are not measured by buoys and are simply set to zero. The fields
 
are as follows:
 

Field # Parameter 	 Units Format
 

1 Air temperature Tenths of degrees Celsius 14 
2 Dew point Tenths of degrees Celsius 14 
3 Barometric pressure Tenths of millibars I5 
4 Wind speed Hundredths of meters/sec. 14 
5 Wind direction Tenths of degrees from-north 14 
6 Weather code Ii 
7 Visibility Tenths of nautical miles I3 
8 Precipitation Millimeters 14 
9 Solar radiation Hundredths of Langleys/min 13 

(wave lengths from .6 to
 
4.0 microns)
 

10 Solar radiation Hundredths of Langleys/in 13 
(wave lengths from 4.0 to 
50 microns) 

11 Significant wave height Tenths of meters I3. 
12 Average wave period Tenths of seconds 13 
13 Average wave direction Degrees from north I3 
14 Highest crest Tenths of meters 13 
15 Deepest trough Tenths of meters 13 
16 Sei surface temp. Hundredths of degrees Celsius 14 
17 Salinity Thousandths of paits per i5 

thousand
 
18 Conductivity Thousands of millimhos/cm I5
 

The third and fourth cards respectively contain the maximum and minimum 
values measured during the six-hour window. The fifth card contains the 
standard deviations of the measurements about their mean values. These 
three card images use the same format as the second card.
 

3.2.3 	 CORAL User's Guide. The program CORAL uses sea surface temperature
 
fields, wind fields, and a simple water vapor model to pxdueecorres
ponding sets of surface truth values and SMMR brightness temperature 
measurements. The current sea surface temperature field covers a 

region in the northeastern Pacific between 21 degrees and 55 degrees 
north latitud&, and between 179 degrees and 245 degrees east longitude.
 
It represents the NM1FS monthly average temperatures for September 1978.
 
Figure 15 shows the full extent of the sea surface temperature field.
 
Wind field values have been produced by Vince Cardone and are avail
able for SEASAT orbits 1135 and 1298. Values for water vapor content
 
are calculated as a function of latitude.
 

Sixteen brightness temperature measurements for each channel are
 
extracted from each block of SMMR data. These measurements are asso
ciated with the centers of the sixteen grid-i cells. The user may
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In addition to printed output, a FORTRAN formatted file is produced.
 
An example of the printed output appears in figure 14. The nonzero
 
measurements are respectively air temperature (C), pressure (mb),
 
wind speed (meters/see), wind direction (degrees from north), and sea 
surface temperature (C). The value of 1 for JSTAT indicates that 
measurements are available both before and after the time of overflight 
within the 6-hour window centered on overflight. A value of 2 would 
indicate that measurements were found on only one side of the over
flight time. The value of NTOT indicates the number of sets of mea
surements found within the 6-hour window centered on overflight. When
 
no measurements are available, an appropriate message is printed.
 

The following is a sample runstream:
 

@ASG,T TAFE.,T,Q160R
 
@EZIO,KS TAPE. , JK*ENI. , SEASAT-ADF*BFILE.
 
@REWIND TAPE.
 
@FREE TAPE.
 
@USE BFILE.,SEASAT-ADF*BFILE.
 
@ASG,A JK*ENI. 
@ASG,A BFILE. (This buoy file must be assigned to the run under the 

-- name -B'IE.) _ 
@ASG,A OUTPUT.- (-Output file). 
@USE 22.,OUTPUT.
 
@ASG,A HITFILE. (File produced by LOCATE)
 
@USE 23.,HITFILE.
 
@XQT JK*ENI.KITCH
 

The output file contains either one or five card images corresponding
 
to each overflight time encountered in the hit file from LOCATE,
 
depending on whether or not buoy measurements are available within
 
3 hours of overflight. The first card image is formatted as follows:
 

(Buoy ID) (Days,Hrs,Xin,Sec) JSTAT NTOT
 

110 5X 415 5X Ifi 5X Ii
 

A value of 3 for JSTAT indicates that buoy measurements are not avail
able and that no additional cards have been produced for this over
flight time. A value of 1 or 2 indicates that measurements are
 
available, and in this case, the 4 cards immediately following contain
 
information regarding this hit.
 

The second card image contains the interpolated measurements. There
 
are fields for eighteen separate physical parameters, but many of
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The following is a sample runstream, when reading TB data from a
 
9-track tape.
 

@ASG,T TAPE. ,T,Qi60R
 
@EZIO,RS TAPE. ,JK*ENI.
 
@REWIND TAPE. 
@FREE TAPE.
 
@ASG,A JK*ENI.
 
@ASG,A OLDHITS. (file of previously accumulated hits)
 
@USE 25.,OLDHITS.
 
@CAT,P HITFILE. (output file - will include old and new hits)
 
@ASG,A HITFILE.
 
@USE 23.,HITFILE.
 
@ASG,T TAPE.,U9H, SxxxxR (Tape containing TB 'data)
 
@REWIND TAPE.
 
@USE SN!MMTAPE., TAPE.
 
@XQT JK*ENI. LOCATE
 

$TIMS 
MERGE = . TRUE.,
$END
 

Note: 	 If MERGE = .FALSE., no file of previously stored hits is
 
required.
 

The output file contains 3 card images corresponding to each hit
 
encountered. The first card is formatted .as follows:
 

(Buoy ID) (Days, Hrs., Min., Sec.) (Seconds from beginning of year)
 

SXx10 415 	 5X F10.0
 

The second card image contains the ten brightness temperature mea
surements and uses the format 1OF7.2. The third card image contains 
the ten grid column numbers, and uses the format 1017. 

3.2.2 	 MATCH User's Guide. The program MATCH outputs buoy surface truth data
 
corresponding to overflight times listed in a "hit" file produced by
 
LOCATE. Surface truth values are extracted from a buoy file covering
 
the period between July 1 and October 31, 1978, and are interpolated to
 
the exact time of overflight whenever possible. Measurements must be 
available within 3 hours of overflight in order to produce surface 
truth-output. If measurementsare available both before and after the 
time of overflight, a linear interpolation is performed. If measure
ments are only available on one side of the time of overflight, those 
closest to the time are used. The program also outputs the maximum 
and minimum values measured within 3 hours of overflight and the 
standard deviations of the measurements about their mean values during 
the same period. Measurements contained in the buoy file include air 
temperature, air pressure, wind speed and direction, sea surface tem
perature, 	 and sometimes significant wave height and average wave period. 
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to yield valid statistical results. In order to automate the process
 
of accumulating large sets of spacecraft and surface truth data which
 
are co-located in time and space, 'we have developed a package of three
 
programs. These programs are:
 

(1) 	 LOCATE - This program identifies times at which the SMMR swath
 
passes over the locations of a predetermined set of buoys.
 

(2) 	 MATCH - This program produces buoy measurements corresponding
 
to the overflight times output by LOCATE.
 

(3) 	CORAL - This program uses digitized surface truth fields
 
to produce corresponding sets of surface truth measurements and 
SbMR data. 

These 	programs have been designed with the goal of minimizing required
 
user preparation and involvement. They may be used in a production
 
environment in which the only inputs which change for each run are the
 
file names/tape ID's to be processed. Since it is expected that a
 
large 	number of users may be interested in this software, a user's
 
guide 	for each program is provided in the following sections. This
 
software has been thoroughly tested and has been used to process all
 
the SMNR TB data produced for the 	SMMR Mini-II workshop. These pro
grams 	are easy to set up and are fast-running.
 

3.2.1 	 LOCATE User's Guide. The program LOCATE identifies 'times at which the 
SMMR swath passes over the location of any of.the buoys listed in 
Table 3. The outputs of the program include buoy ID, time of over
flight, SOMI brightness temperature measurements for all 10 channels,
 
and the grid column numbers corresponding to these measurements for each
 
buoy "hit" encountered. The TB measurements for each channel are taken
 
from that 	channel's best grid and represent the grid cell closest to
 
the location of the buoy. A buoy 	falling outside the Slbr swath may
 
still 	result in a hit if the buoy is within 13.5 kilometers (one half
 
of a grid 	4 cell-width) of the swath's edge. In addition to printed
 
output, the program produces a FORTRAN formatted file for use in a
 
subsequent program.
 

A namelist input.STIES is required to execute the program, and includes
 
the following variables:
 

Variable
 
Name Type Dim. Default Description
 

IT1 Int. 4 0,0,0,0 	 Starting time for processing TB data
 
(days, hours, minutes, seconds)
 

IT2 Int. 4 365,23,59,59 Ending time for processing TB data
 
(days, hours, minutes, seconds)
 

MERGE Log. 1 .TRUE. .TRUE.-to merge all hits encountered
 
with file of previously accumulated
 
hits.
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Observations regarding these plots are listed below:
 

(1) 	 The effects of the adjacent land on the interim mode data can be
 
seen as a rise in TB values occurring between 380 and 40' north
 
latitude. Th horizontal channels show larger effects than the
 
vertical channels. In fact, the interim 18V and 21V channels 
(figures 11.5 and 11.7) show hardly any response to the nearby 
land. This behavior is unchanged from that previously observed 
in references 3 and 4. 

(2) 	 For all channels except 6.6 GHz, the only difference between the 
box and interim modes is a constant offset. For the 6.6 GHz 
channels, this offset diminishes slightly as the SbMfR swath 
approaches the point of closest proximity to land. These obser
vations imply that the box mode sidelobe corrections are not 
improving upon the performance of the interim mode in this par
ticular case. In fact, the observation concerning the 6.6 GHz 
channels seems to suggest that the box mode may be more sensitive 
to the nearby land than the interim mode. 

(3) 	The behavior of the cross mode is somewhat similar to that of the
 
box in that the cross mode values differ from the interim mode.,
 
values by a nearly constant offset. However, this offset
 
increases near the point of closest proximity to land for the
 
6.6 H 	and 18 H channels. This implies that the cross mode is
 
less sensitive to the nearby land than the box or interim mode
 
for these channels. Unfortunately, the cross mode data for the
 
10.7 H channel exhibits some over- and under-compensation which is
 
reminiscent of the "ringing" discussed for the coastline crossing
 
case.
 

•(4) As 	noted in prior reports, the nominal mode data exhibits more
noise 	than the other modes. In addition, the nominal mode shows
 
severe over- and under-compensation effects near land for all the
 
horizontal channels. This is particularly evident for the 6.6 H
 
and 10.7 H channels (figures 13.2 and 13.4). This severe over
and under-compensation is undoubtedly related to the "ringing"
 
effects previously discussed.
 

3.2 	 Creation of Matched Surface Truth and Svacecraft Data Sets. Refer
ences 2 and 3 document attempts to determine instrument biases in the
 
SbMR data by comparing SMMR TB values with surface truth measurements.
 
Such comparisons are difficult to perform due to the frequent lack of
 
adequate atmospheric water measurements. This problem may be partially
 
alleviated by first assembling large quantities of surface truth data.
 
Measurements corresponding to clear atmospheric conditions can then
 
be extracted from the large ensemble, or alternatively, mean values of
 
atmospheric water content can be assumed to hold for the complete data
 
set. In either case, a sufficiently large data set must be available
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Observations regarding the complete set of data are listed below:
 

(l) 	The box, cross, and nominal mode values are generally below the
 
interim values over the ocean. This is not the case over land,
 
where the relationship is reversed for the lower frequency
 
channels.
 

(2) 	As expected, the transition from ocean to land is sharpest for the
 
37 GHz channels and becomes less sharp with decreasing frequency.
 
In addition, the ocean data exhibits more noise for the higher
 
frequency channels than for the lower frequency channels. This
 
is due to the better resolution of small local weather features
 
affbrded by the higher frequencies.
 

(3) 	 "Ringing" is clearly observed in the nominal mode data near the 
coastline crossing (figures 10.1 through 10.10). It is present
 
to a much lesser extent in the cross mode data (for 10.7H and
 
l8V), and is not present at all in the box and interim modes.
 

(4) 	 The differences observed between-the interim mode and the other
 
three modes generally increase as the distance from land dimin
ishes. This increase in the differences is due to a gradual rise
 
in the interim mode values as the swath approaches land while the
 
box and cross modes maintain more constant levels. This is good
 
evidence that the sidelobe correction procedure is truly removing
 
contamination from nearby land.
 

(5) 	 Table 2 summarizes the differences observed for orbit 1212, over
 
open ocean and adjacent to the coast. Note that the land con
tamination in the interim data extends farthest from the coast
 
for the lower frequency channels (e.g. 7 grid-1 cells - 1000 km.
 
for 6.6 GHz versus 4 grid-4 cells 100 km for 37 GHz), which is
 
a reflection of their wider beam widths. Also, note that the 
cross mode appear-s-to riemove mr fteln otmnto 
than does the box mode, which is evidenced by the larger dif
ferences adjacent to land for the cross mode. Unfortunately, 
the cross mode appears to over-correct for land (i.e. "ring") 
in the 10.7H and 18V channels. This over-correction becomes 
much more severe in the nominal mode for all channels. 

3.1.3 	 Paralleling Coastline Case. We have analyzed data from orbit 1212
 
near 38' north latitude as an example of the SMMR swath following a
 
coursg parallel and extremely close to land. The right-hand edge of
 
the swath runs parallel to the California coastline and comes within
 
50 kilometers of San Francisco. There are two points of closest
 
approach to land, one at 38.5' and the other at 40* north latitude.
 
Figures 11, 12, and 13 contain plots of TB values versus latitude for
 
the four APC modes.
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(2) 	 Table 1 also shows that the interim mode values are consistently
 
higher than the corresponding box, cross, and nominal mode values
 
for all channels. The mean differences tend to increase with
 
increasing frequency, and vary between 00 and 40K. These differ
ences are approximately the same for the box, cross, and nominal
 
modes.
 

(3) 	 The outer cells for the 18, 21, and 37 GEz channels tend to be
 
somewhat lower than the center cells in the box, cross, and
 
nominal mode outputs.
 

(4) 	 The cross-track gradients observed in the TB data appear to be
 
very similar for all four APC modes. A slight enhancement of the
 
interim mode gradients can be seen in the box, cross, and nominal
 
modes (see figures 4 through 7). These gradients for all modes
 
appear to be geophysically realistic, and thus indicate that the
 
final cos 8 estimates have been properly implemented.
 

(5) 	 The box, cross, and nominal modes appear to introduce small
 
(<lK)opposing cross-track variations in the 10.7 V and B data
 
(see Table 1). This is the only remaining evidence that the
 
sidelobe correction procedure is introducing undesired effects.
 
Note, however, that all of the previously observed problems
 
(see reference 4) have been corrected.
 

.(6) 	 As noted previously.in references 3 and 4, the-difference between 
the interim mode and the other modes decreases with an increasing 
average TB level. In fact, if the TB level increases high enough, 
the box, cross, and nominal mode values will be consistently 
above the interim mode data. An excellent example can be seen in 
figures 1, 2, and-3, where TB data is plotted through the eye of 
hurricane Fico. Note that the interim values are above the other _ 
mode 	values away frm Fico, but are.below them near the eye of
 
Fico, 	with a smooth transition in between.
 

(7) 	An additional comment is in order regarding the pass over Fico.
 
The nominal mode appears to achieve a better resolution of the
 
eye of the hurricane than do the other modes. 'This is readily
 
apparent in figures 3.1 through 3.10, and especially in fig
ures 3.3, 3.4, and 3.6. The box and cross modes generally show
 
the eye to the same extent as the interim mode, whereas the nomi
nal mode shows a significant improvement in resolution. 

3.1.2 	 Coastline Crossing Case. We have analyzed data from orbits 1178 and 
1212 as examples of the SNMR swath crossing a coastline. We have 
produced plots of TB versus latitude corresponding to these two orbits 
for different positions across the scan and for each of the A2C modes-
A set of expanded-scale plots produced for the left-hand edge of the 
SNMR swath for orbit 1212 are displayed as figures 8, 9, and 10. The 
sharp rise in TB values near 500 N is due to the SbR swath crossing 
the Kenai Peninsula on the Alaskan coast. 
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A third analysis tool calculates mean TB values for each cell of the ten
 
channels for two modes of the APC, and associated standard deviations.
 
The program also calculates the mean differences between the two modes
 
and associated standard deviations. This program is typically used to
 
compare interim mode results with results of one of the other modes. An
 
example of the program's output may be found in Table 1.
 

The comparisons presented here have been performed for the purpose of
 
evaluating the effects of the different sidelobe correction procedures.
 
The following results are expected from these types of comparisons:
 

(1) 	All four modes of-the APC should produce generally similar results
 
over open ocean, in terms of both mean TB levels and any gradients
 
which may exist in the data. However, the nominal mode is expected
 
to exhibit more point-to-point variation than the interim mode,
 
with the box and cross modes being intermediate between the two.
 

(2) When crossing a land-sea interface, the sharpest transition is
 
expected for the nominal mode, a somewhat less sharp transition for
 
the cross and box modes and the smoothest transition for the interim
 
mode. The cross and box modes are expected to remove the ringing
 
phenomena observed in the nominal mode and discussed in references
 
3 and 4.
 

(3) 	When paralleling a coastline, the nominal mode should be least sen
sitive, the cross and box modes slightly more sensitive,-and the
 
interim mode most sensitive to the nearby land.
 

This section contains the results of a direct comparison of interim mode
 
data with nominal, cross, and box mode data from the APC. Separate com
parisons are made for the open ocean, land-crossing, and land-paralleling
 
-cases listed above.
 

3.1 	 Open Ocean Case. For the open ocean case, we have analyzed data from two
 
SEASAT passes over the Gulf of Alaska, orbits 1178 and 1212, and a third
 
pass over hurricane Fico near Hawaii, orbit 331. For each pass, we have
 
produced plots of brightness temperature versus latitude and of cross
track gradients versus latitude. In addition, we have calculated mean
 
differences between the various modes for each grid-cell. Examples of
 
these three types of output for the hurricane pass may be found in Fig
ures 1 through 7 and Table 1.
 

Observations regarding the complete set of data are listed below:
 

(1) 	As expected, the nominal mode data exhibits more noise than any of
 
the other modes. As seen in Tables 1.1, 1.2,_and-1.3,,the noisiness
 
of the box and cross modes is only slightly greater than that of the
 
interim, while the nominal exhibits significantly more noise than
 
the others.
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Report 4 - The fourth report (reference 4) extended the evaluation to the
 
Nominal and Cross modes of the APC. Both of these modes were compared
 
directly with Interim APC output for the three environmental regimes. As
 
observed for the Gaussian APC, the Nominal and Cross mode TB values were
 
biased low with respect to Interim values, and exhibited cross-track
 
gradients significantly different from those observed in Interim TB
 
output. In general, these effects were less severe for the Cross than
 
for the Nominal APC. "Ringing" was again observed in Nominal output near
 
coastline crossings. Two parallel efforts showed that the world TB map
 
agrees well with actual SMMR data, and that the cos $ correction effec
tively removes the previously observed opposing cross-track gradients.
 

Report 5 - This present report evaluates the latest versions of the 
Interim, Cross, Box, and Nominal modes of the APC. Most of the problems 
observed in report 4 have been corrected. The biases between the Interim 
and the other modes are significantly reduced, and the gradients pre
viously introduced by the sidelobe correction procedure are no longer 
apparent. "Ringing" is still observed in the Nominal, is greatly 
reduced in the Cross, and does not appear at all in the Box APC. For 
the first time, cases have been observed which show that the implemented 
sidelobe correction procedure removes land contamination effects such 
that the Nominal, Cross and .Boxmode data is preferable to the Interim 
data when near land. In addition, due to the need for larger surface 
truth data sets, new software has been developed which facilitates_-the_._ 
production of matched spacecraft and surface truth data sets which are . 

co-located in time and space. .

3.0 	 TECMICAL DISCUSSION
 

3.1 	 Intercomnarison of APC Modes. The comparisons presented here are a
 
continuation of the work previously discussed in section 3.1 of refer
ence 4. Several software analysis tools have been used to facilitate
 
these comparisons.
 

One of these tools produces plots of brightness temperatures versus 
latitude for two modes of the ABC. Typically, these plots display interim 
mode data along with either nominal, cross, or box mode data. Examples 
of these plots are shown in figures 1.1 through 1.10. For all plots pre
sented here, the symbol "I" represents interim mode data, while "F" 
represents either box, cross, or nominal mode data, as indicated in the 
plot title. 

A second analysis tool produces plots of TB cross-track gradients versus
 
latitude. These gradients are calculated by fitting a straight line to
 
each row of TB data cells. The gradients are plotted in units of degrees
 
Kelvin per grid cell. Examples of these plots are shown in figures 4.1
 
through 4.5. In each plot, the symbol "V" represents gradients for the
 
vertical polarization and "H" represents gradients for the horizontal
 
polarization for the frequency indicated in the plot title.
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Of course, each of these versions has incorporated changes over time as
 
problems have been uncovered and the resulting corrections implemented.
 
For example, the Nominal, Cross, and Interim modes of the APC discussed
 
in this report are slightly different from those of the same names dis
cussed in the last report (reference 4). These changes are a reflection
 
of problems identified in this prior report, as well as problems
 
uncovered in independent investigations. Even though the present report
 
concludes this particular evaluation effort, it is expected that-the APC
 
will continue to change following the publication of the report. ' There
fore, the results presented here should not be construed as representing
 
the final state of the AC algorithm, but only its status as of this time.
 

The following is a short history of the valiant attempts of this evalua
tion to keep pace with the ever-changing APC algorithms.
 

Report 1 - This first report (reference 1) documented the initial evalua
tion of the Interim APC 6.6 GHz channels. SMMR data was compared with 
sea surface temperature values obtained from the NThFS monthly average sea 
surface temperature mapfor September, 1978. This comparison yielded the 
first indication of the existence of opposing cross-track gradients. A 
brief survey of TA data suggested that the source of the gradients may 
lie in the TA data. 

Report 2 - The second report (reference 2) extended the evaluation to all
 
ten of the Interim APC channels. This portion of the evaluation estab
lished the basic software analysis tools to be used throughout the fol
-lowing stages of the study. SMMR data was compared with NDBO buoy
 
measurements, using a geophysical model to convert the buoy measurements
 
into predicted brightness temperatures. This initial attempt at deter
mining TB biases was frustrated by a lack of atmospheric water vapor and
 
cloud liquid water measurements. However, this comparison still indicated
 
the existence of TB biases which vary from channel to channel, with the
 
horizontal channel biases being more positive than the corresponding
 
vertical channel biases. In addition, opposing cross-track gradients
 
were observed for the 18 and 21 GHz channels as well as the 6.6 GHz
 
channels.
 

Report 3 - The third report (reference 3) represented the first evalua
tion of the sidelobe corrections implemented in the Gaussian APC.
 
Gaussian APC output was directly compared with corresponding Interim APC
 
output for the three basic environmental regimes of open ocean, crossing
 
a coastline, and paralleling a coastline. The Gaussian TB values were
 
found to be significantly lower than corresponding Interim values, and
 
in addition, gradients observed in the Gaussian data were significantly
 
different from those observed in Interim data. Both observations sug
gested that the sidelobe correction procedure was introducing errors
 
into the TB data. This conclusion was reinforced by the first observa
tions of "ringing," seen in the Gaussian TB data at coastline crossings.
 
In a parallel effo----fist esta aes of dod 8"values were Ebtained by 
fitting TA data to the narrow beam antenna equations. These cos S
 
values correlated well with the opposing cross-track gradients pre
viously observed in the Interim APC.
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1.0 SUMMARY
 

This report contains an evaluation of the latest versions of the SEASAT-A
 
SMMR Antenna Pattern Correction (APC) algorithm, and concludes the APC
 
evaluation previously documented in references 1 through 4. The report
 
focuses on two principal efforts: 1) the intercomparison of the interim,
 
box, cross, and nominal APC modes, and 2) the development of new software
 
to facilitate the creation of matched spacecraft and surface truth data
 
sets which are co-located in time and space.
 

The more important conclusions of the report are:
 

(1) 	Most of the problems in the APC outputs discussed in the previous
 
reports have now been eliminated or reduced to insignificant levels.
 

(2) 	 The box mode is superior to the interim mode in that it removes
 
some of the sidelobe contamination effects due to nearby land with
out exhibiting "ringing."
 

(3) 	 The cross and nominal modes are unreliable near land due to the
 
presence of "ringing" effects.
 

2.0 INTRODUCTION
 

The work described in this report concludes the current evaluation 'of the
 
APC algorithm which is documented in references 1 through 4. Over the
 
.course of this evaluation, the APC has evolved through several stages of
 
development. The following presents a synopsis of this stepwise
 
evolution.
 

a. 	 The first version of the APC to be implemented is known as the
 
Interim APC. This version of the algorithm does not include correc
tions for Earth sidelobe contributions, although it does correct for
 
sidelobe contributions from cold space

b. 	 The Gaussian APC is the first version which applies Earth sidelobe
 
corrections. The actual antenna patterns are not used, but are
 
approximated by smooth Gaussian functions.
 

c. 	 The Nominal APC is identical to the Gaussian version except that the
 
actual antenna patterns are used in performing Earth sidelobe correc
tions. Corrections are applied for all cells outside the cell being
 
corrected.
 

d. 	 The Cross APC is a refinement of the Nominal, developed for the
 
purpose of eliminating algorithm sensitivity to small errors in the
 
sidelobe contributions from the four cells nearest the one being
 
corrected.
 

e. 	 The Box APC is a further refinement of the Nominal, which elimi
nates sensitivity to small errors in all eight adjacent cells.
 



CONTENTS (CONTINUED)
 

FIGURE 

13.2 Orbit 1212, 380 N, Nominal and Interim SMMR 6.6H TB 
vs Latitude ....... ............................ 127 

13.3 Orbit 1212, 380 N, Nominal and Interim SMR 10.7V TB 
vs Latitude ....... ....................... ...... 128 

13.4 Orbit 1212, 380N, Nominal and Interim SMMR 10.7H TB 
vs Latitude ............. ................ ...... 129 

13.5 Orbit 1212, 380 N, Nominal and Interim SMMR 18V TB 
vs Latitude .............. ..................... 130 

13.6 Orbit 1212, 380 N, Nominal and Interim SMHR 18H TB 
vs Latitude ............ ....... .............. 131 

13.7 Orbit 1212, 380 N, Nominal and Interim SM2R 21V TB 
vs Latitude ........................ 132 

13.8 Orbit 1212, 380 N, Nominal and Interim SMMR 21H TB 
vs Latitude ........ ................ ......... 133 

13.9 Orbit 1212, 380 N, Nominal and-Interim SMMR 37V TB 
vs Latitude ............. ................ ...... 134 

13.10 Orbit 1212, 380 N, Nominal and Interim SM1a 37H TB 
vs Latitude .......... ....................... 135 

14 Sample Output from Program MATCH, .................. 137 

15 NMFS Mean Sea Surface Temperature map for September, 1978 . 138 

x 



CONTENTS (CONTINUED)
 

FIGURE
 

11.1 	 Orbit 1212, 38 N, Box and Interim SMMR 6.6V TB vs Latitude. 106
 

11.2 	 Orbit 1212, 380 N, Box and Interim SNMR 6.6H TB vs Latitude. 107
 
11.3 	 Orbit 1212, 38 N, Box and Interim SMMR 10.7V TB vs Latitude 108
 

11.4 	 Orbit 1212, 38 N, Box and Interim SMM 10.7V TB vs Latitude 109
 

11.5 	 Orbit 1212, 380 N, Box and Interim SMMR 18VHTBvs Latitude . 110
 

11.6 	 Orbit 1212, 38' N, Box and Interim SNMR 18H TB vs Latitude . i1
 

11.7 	 Orbit 1212, 380 N, Box and Interim SMMR 21V TB vs Latitude . 112
 

11.8 	 Orbit 1212, 38° N, Box and Interim SMR 21H TB vs Latitude . 113
 

11.9 	 Orbit 1212, 38' N, Box and Interim SMMR 37V TB vs Latitude . 114
 

11.10 	 Orbit 1212, 380 N, Box and Interim SMMR 37H TB vs Latitude . 115
 

12.1 	 Orbit 1212, 380 N, Cross and Interim SMMR 6.6VTB
 
vs Latitude ... .. . .. ..e.r. .. .. . .. . . . 116
 

12.2 	 Orbit 1212, 38' N, Cross and Interim SNMR 6.6H TB 117
 
vs Latitude ........ ........................
 

12.3 	 Orbit 1212, 380 N, Cross and Interim SMMR 10.7V TB
 

vs Latitude . . . . . . . . . . . . .... .. . .. 118
 

12.4 	 Orbit 1212, 380N, Cross and Interim SMMR 10.7H TB
 
vs Latitude ......... ................ ....... 119
 

12.5 	 Orbit 1212," 38' N, Cross and Interim SbMR 18V TB vs Latitude 120
 

12.6 	 Orbit 1212 380 N, Cross and Interim SM 18H T3 vs Latitude 121
 

12.7 	 Orbit 1212, 38' N, Cross and Interim SMR 21V TB vs Latitude 122
 

12.8 	 Orbit 1212, 38' N, Cross and Interim SMHR 21H TB vs Latitude 123
 

12.9 	 Orbit 1212, 380 N, Cross and Interim SMMR 37V TB vs Latitude 124
 

12.10 	 Orbit 1212, 38' N, Cross and Interim SMR 37H TB vs Latitude 125
 

13.1 	 Orbit 1212, 38' N, Nominal and Interim S10R 6.6V TB
 
vs Latitude ......... ...................... ... 126
 

ix
 



CONTENTS (CONTINUED)
 

FIGURE
 

9.3 	 Orbit 1212, 550 N, Cross and Interim SMMR 10.7V TB
 
vs Latitude ........ ........................... 88
 

9.4 	 Orbit 1212, 55- N, Cross and Interim SMMR 10.7H TB
 

vs Latitude ....... ........................... 89
 

9.5 Orbit 1212, 550 N, Cross and Interim SMMR 18V TB vs Latitude. 90
 
S9.6 Orbit 1212, 550 N, Cross and Interim SMM 18H TB vs Latitude. 91
 

9.7 	 Orbit 1212, 550 N, Cross and Interim SMMR 21V TB vs Latitude. 92
 

9.8 	 Orbit 1212, 550 N, Cross and Interim SMMR 21H TB vs Latitude. 93
 

9.9 	 Orbit 1212, 550 N, Cross and Interim SMMR 37V TB vs Latitude. 94
 

9.10 	 Orbit 1212, 550 N, Cross and Interim SM 37V TB vs Latitude. 95
 

10.1 	 Orbit 1212, 550 N, Nominal and Interim SMMR 6.6V TB
 
vs Latitude . . . . . . . . . . . . . . . . . . . . . . . 96
 

10.2 	 Orbit 1212, 550 N, Nominal and Interim Sb2MR 6.6H TB
 
vs Latitude .............. ..................... 97
 

10.3 	 Orbit 1212, 550 N, Nominal and Interim S1MM 10.7V TB
 
vs Latitude ................. .......... 98
...... 


10.4 	 Orbit 1212, 550 N, Nominal and Interim SMMR 10.7H TB
 
vs Latitude................ ......
........... 99
 

10.5 	 Orbit 1212, 550 N, Nominal and Interim SMMR 18V TB
 
vs Latitude ............. ..................i....00
 

10.6 	 Orbit 1212, 550 N, Nominal and Interim SM 18H TB
 
vs Latitude ................ ................. 101
 

10.7 	 Orbit 1212, 550 N, Nominal and Interim SM11R 21V TB
 
vs Latitude .. ................... .... ...... 102
 

10.8 	 Orbit 1212, 550 N, Nominal and interim SMMR 21H TB
 
vs Latitude ........... .....................
.... 103
 

10.9 	 Orbit 1212, 550 N, Nominal and Interim SOM2 37V TB
 
vs Latitude .......... .................... 104
..... 


10.10 	 Orbit 1212, 550 N, Nominal and Interim SM 37H TB
 
vs Latitude ........... ......................... 105
 

viii
 



CONTENTS (CONTINUED)
 

FIGURE
 

6.3 	 Orbit 331, Cross Mode 18 GHz TB Cross-Track Gradient
 
vs Latitude .......... .................. .... 68
 

6.4 	 Orbit 331, Cross Mode 21 GHz TB Cross-Track Gradient
 
vs Latitude ......... ................... . .69
 

6.5 	 Orbit 331, Cross Mode 37 GHz TB Cross-Track Gradient
 
vs Latitude ........... ................. .... 70
 

7.1 	 Orbit 331, Nominal Mode 6.6 GHz TB Cross-Track Gradient
 
vs Latitude .......... ...................... 71
 

7.2 	 Orbit 331, Nominal Mode 10.7 GHz TB Cross-Track Gradient
 
vs Latitude ..... ..................... ..... 72
 

7.3 	 Orbit 331, Nominal Mode 18 GHz TB Cross-Track Gradient
 
vs Latitude ............ ............ ...... 73
 

7.4 	 Orbit 331, Nominal Mode 21 GHz TB Cross-Track Gradient
 
vs Latitude .......... ............... .....
.. 74
 

7.5 	 Orbit 331, Nominal Mode 37 GHz TB Cross-Track Gradient
 
vs Latitude ........ ...................... .... 75
 

8.1 	 Orbit 1212, 550 N, Box and Interim-SbtI 6.6V TB vs Latitude . 76 

8.2 	 Orbit 1212, 550 N, Box and Interim SMNR 6.6H TB vs Latitude . 77 

8.3 	 Orbit 1212, 550 N, Box and Interim SM-M 10.7V T vs Latitude. 78

-B
 

8.4 	 Orbit 1212, 550 "N,Box and Interim SMMR 10.7H T vs Latitude. 79
 
B
 

8.5 	 Orbit 1212, 550 N, Box and Interim SMMR 18V TB vs Latitude 80 

8.6 	 Orbit 1212, 550 N, Box and Interim SIMR 18H TB vs Latitude 81 

8.7 	 Orbit 1212, 550 N, Box and Interim SMNR 21V TB vs Latitude 82
 

8.8 	 Orbit 1212, 550 N, Box and Interim SMMR 21 TB vs Latitude 83 

8.9 	 Orbit 1212, 550 N, Box and Interim SMMR 37V TB vs Latitude 84
 

8.10 	 Orbit 1212, 550 N, Box and Interim SMMIR 3711 TBvs Latitude 85
 

9.1 	 Orbit 1212, 550 N, Cross and Interim SMMR 6.6V T B vs Latitude 86 

9.2 	 Orbit 1212, 550 N, Cross and Interim SMMR 6.6H TB vs Latitude 87
 

vii
 



CONTENTs (CONTINUED) 

FIGURE
 

3.5 	 Orbit 331, Nominal and Interim SMMR ISV TB vs Latitude . . 50
 
3.6 	 Orbit 331, Nominal and Interim SMR IE TB vs Latitude . .51
 

3.7 	 Orbit 331, Nominal and Interim SMMR 21V TB vs Latitude ... 52
 

3.8 	 Orbit 331, Nominal and Interim SMMR 21V TB vs Latitude 53
 

3.9 	 Orbit 331, Nominal and Interim SMMR 37V TB vs Latitude . . . 54
 

3.10 	 Orbit 331, Nominal and Interim SMNR 37H TB vs Latitude . . . 55
 

4.1 	 Orbit 331, Interim Mode 6.6 GHz TB Cross-Track Gradient
 
vs Latitude . . . . . . . . . . . . . . . . . . . . . .. . 56
 

4.2 	 Orbit 331, Interim Mode 10.7 GHz TB Cross-Track Gradient
 
vs Latitude ............. ...................... 5
 

4.3 	 Orbit 331, Interim Mode 18 GHz TB Cross-Track Gradient
 
vs Latitude ............. ...................... 58
 

4.4 	 Orbit 331, Interim Mode 21 GHz TB Cross-Track Gradient
 
vs Latitude ............. ...................... 59
 

4.5 	 Orbit 331, Interim Mode 37 GHz TB Cross-Track Gradient
 
vs Latitude ........................ .... 60
 

5.1 	 Orbit 331, Box Mode 6.6 GHz TB Cross-Track Gradient
 
vs Latitude .............. ............. 61
........ 


5.2 	 Orbit 331, Box Mode 10.7 GHz TB Cross-Track Gradient
 
vs Latitude ... ........................ .... 62
 

5.3 	 Orbit 331, Box Mode 18 GHz TB Cross-Track Gradient
 
vs Latitude ............... .................. 63
 

5.4 	 Orbit 331, Box Mode 21 GHz TB Cross-Track Gradient
 
vs Latitude ............. ...................... 64
 

5.5 	 Orbit 331, Box Mode 37 GHz TB Cross-Track Gradient
 
vs Latitude ............ ........................ 65
 

6.1 	 Orbit 331, Cross Mode 6.6 GHzTB Cross-Track Gradient
 
vs Latitude ............. ................... ... 66
 

.6.2 	 Orbit 331, Cross Mode 10.7 GHz TB Cross-Track Gradient
 

vs Latitude ........ .......................... 67
 

vi
 



CONTENTS (CONTINUED)
 

FIGURE
 

1.1 Orbit 331, Box and Interim SMMR 6.6V TB vs Latitude ... .... 26 

1.2 Orbit 331, Box and Interim SMNR 6.6H TB vs Latitude ... .... 27
 

1.3 Orbit 331, Box and Interim SMR 10.7V TB vs Latitude .. . . 28 

1.4 Orbit 331, Box and Interim SbM 10.7H1 TB vs Latitude . . .. 29 

1.5 Orbit 331, Box and Interim Sfl'R ISV TB vs Latitude .... .30 

1.6 Orbit 331, Box and Interim SMMR 181 TB vs Latitude . . ... 31
 
1.7 Orbit 331, Box and Interim SbM 21V TB vs Latitude . . . 32
 

1.8 Orbit 331, Box and Interim SMMR 21H TB vs Latitude .... 33
 

1.9 Orbit 331, Box and Interim SNNr 37V TB vs Latitude ...... 34
 

1.90 Orbit 331, Box and Interim SNiMR 37V TB vs Latitude....... 35
 

2.1 Orbit 331, Cross and Interim SMMR 6.6V TB vs Latitude . 36
 

2.2 Orbit 331, Cross and Interim SMMR 6.6V TB vs Latitude . . . 37 

2.3 Orbit 331, Cross and Interim SNM 10.7V TB vs Latitude . . . . 38 

2.4 Orbit 331, Cross and Interim SMR 10.7H TB vs Latitude . 39
 

2.5 Orbit 331, Cross and Interim SbMa 18V TB vs Latitude. . . . 40 

2.6 Orbit 331, Cross and Interim SMM 18H B vs Latitude. . 41 

2.7 Orbit 331, Cross and Interim SMMR 21V TB vs Latitude.. 42 

2.8 Orbit 331, Cross and Interim SMMR 21H TB vs Latitude.. 43 

2.9 Orbit 331, Cross and Interim SMMR 37V TB vs Latitude... 44 

2.10 Orbit 331, Cross and Interim SMb 37H TB vs Latitude. 5.....4
 

3.1 Orbit 331, Nominal and Interim SMMR 6.6V TB vs Latitude . 46
 

3.2 Orbit 331, Nominal and Interim SNMR 6.6H TB vs Latitude . . . 47 

3.3 Orbit 331, Nominal and Interim SMMR 10.7V TB vs Latitude. 48
 

3.4 Orbit 331, Nominal and Interim SMMR 10.7H TB vs Latitude. 49
 

v 



CONTENTS
 

1.0 SUMMARY ......................................................... 1
 

2.0 INTRODUCTION .................................................... 1
 

3.0 TECHNICAL DISCUSSION ............................................ 3
 

3.1 	 Intercomparison of APC Modes .............................. 3
 

3.1.1 Open Ocean Case ................................... 4
 
3.1.2 Coastline Crossing Case ........................... ... 5
 
3.1.3 Paralleling Coastline Case ......................... 6
 

3.2 	 Creation of Matched Surface Truth and Spacecraft
 
Data Sets ................................................. 7
 

3.2.1 LOCATE User's Guide .................................. 8
 
3.2.2 MATCH User's Guide................................ 9
 
3.2.3 COAL-User's Guide ................................ 11
 

4.0 CONCLUSIONS..................................................... 13
 

5.0 RECOMMENDATIONS ................................................. . .14
 

6.0 NEW TECHNOLOGY .................................................. 15
 

7.0 REFERENCES ...................................................... 15
 

TABLE
 

1.1 Orbit 331, 33°N to 430N Interim Minus Box Mode .................. 16
 

1.2 Orbit 331, 330N to 430N Interim Minus Cross Mode ................ 19
 

1.3 Orbit 331, 330N to 430N Interim Minus Nominal Mode .............. 22
 

2 Land Sidelobe Effects Orbit 1212, 51'N to 590N, Column 1 ........ 25
 

3 Buoys Used in Program LOCATE 136
 

iv
 



ABSTRACT
 

This report contains an evaluation of the latest versions of the SEASAT-A SMMR
 
Antenna Pattern Correction (APC) algorithm, and concludes the current APC evalua
tion effort. The report focuses on two principal efforts: 1) the intercomparison
 
of the interim, box, cross, and nominal APC modes, and 2) the development of new
 
software to facilitate the creation of matched spacecraft and surface truth data
 
sets which are co-located in time and space. The major conclusion of the report
 
is that most of the problems discovered in earlier versions of the APC have now
 
been corrected.
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