
A THREE-DIMENSIONALJ TIME-DEPENDENT
 

f 
MODEL OF MOBILE BAY
 

(NAS-eA-150110) A THREE-DIMENSIONAL, N77-136251 
TIME-DEPENDENT MODEL OF MOBILE BAY Final 
Report (Louisiana State Univ.) 414.p HC 
A19/F A01 CSCL 08J Unclas
 

G3/48 56977
 

FINAL REPORT TO THE
 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
 

ON CONTRACT NAS8-30380
 

OCTOBER 1976 N4
 

WRITTEN BY __ 

F.H.PIUS
 

DIRECTED BY
 

R.C.FARMER
 
DEPARTMENT OF CHEMICAL ENGINEERING
 

LOUISIANA STATE UNIVERSITY
 

BATON ROUGEJ LOUISIANA 70803
 



A THREE-DIMENSIONAL, TIME-DEPENDENT
 

MODEL OF MOBILE BAY
 

FINAL REPORT TO THE
 

NATIONAL AERONAUTICS AND.SPACE ADMINISTRATION
 

ON CONTRACT NAS8-30380
 

OCTOBER 1976
 

WRITTEN BY
 

F. H. PITTS
 

DIRECTED BY
 

R.C.FARMER
 
DEPARTMENT OF CHEMICAL ENGINEERING
 

LOUISIANA STATE UNIVERSITY
 

BATON ROUGE, LOUISIANA 70803
 



Mobile Bay as seen in an IR photograph from a satellite. 





ACKNOWLEDGEMENTS
 

The authors appreciate the support which the technical monitors:'
 

Mr. Ted Paludan, Mr. Rex Morton, and Mr. H. B. Wilson of the Marshall
 

Space Flight Center have given to this study.
 

Special thanks are extended to the personnel of the U.S. Army,
 

Corps of Engineers, Mobile District who supplied much of the data dis­

cussed in this report. The outstanding cooperation of Mr. High
 

McClelland of this office was particularly valuable.
 

Dr. Bill Schroeder, meterologist of the Dauphin Island Sea
 

Laboratory, contributed much to our understanding of wind conditions
 

on Mobile Bay.
 

The participation of Dr. W. R. Waldrop, TVA, Engineering Laboratory
 

in the early phases of this research program was invaluable.
 

This report also constitutes the PhD Dissertation of Mr. Fred Pitts.
 



TABLE OF CONTENTS
 

Page
 

ACKNOWLEDGEMENTS .............................. ... ii
 

LIST OF TABLES ................................ .. v
 

LIST OF FIGURES ....... ...... vi
 

ABSTRACT .................. .................. ..viii
 

CHAPTER
 

1 INTRODUCTION.................... 1
 

A. Estuaries ..i.................... 	 .
 

B. Mobile Bay................... 	 4
 

C. Summary................ ..... .. 6
 

2 GOVERNING EQUATIONS.................. 8
 

A. State ...................... 	 .... 8
 

B. Mass Conservation .I.. ............... 	 11
 

C. Species Conservation... .............. 	 15
 

D. Momentum Conservation ................ 	 18
 

E. Energy Conservation 	..... ............ 21
 

F. Eddy Transport Coefficients ............. 	 22
 

G. Water Level . . ..................
.	 31 

H. Applied Equations .... .......... ........ 	 34
 

I. Initial-Boundary Conditions ..... ......... 35
 

3 NUMERICAL METHOD .... ... .................... . 43
 

A. Literature Survey ......... 	 .......... .. . 43
 

B. Description of Numerics ..... ............... . 48
 

C. 	Summary .......... .............. ..... 87
 

iii
 



CHAPTER Page
 

4 RESULTS . ..... ...... 89
 

A. Approach to Exact Periodicity ... ....... ..... 89
 

B. Comparison of Computer Model and Prototype Data 93
 

C. Discussion of Computer Model Test Cases ....... 114
 

D. Identification of Controlling Parameters ...... 133
 

E. Purview of Results.. . .............. 135
 

5 RECOMMENDATIONS AND CONCLUSIONS ............. 137
 

REFERENCES ... ...... ................... 141
 

NOMENCLATURE . ...... .................... 145
 

APPENDICES .. ..... .................... 149
 

A TEST CASES .... ................... 149
 

B MOBILE BAY MODEL PROGRAM.. .......... ...... 318
 

C VARIAN PLOT PROGRAM . .................. 395
 



LIST OF TABLES
 

TABLE Page
 

2.1 Applied equations .. ....... ............ 36
 

2.2 Auxiliary conditions for the applied equations ...... 39
 

3.1 Dimensionless variables . ....... .......... 49
 

3.2 Finite difference equations .... ........... 63
 

4.1 Test cases ...... ......... ............ 92
 

4.2 Beacon 12 bottom data .. ...... ........... 101
 

4.3 Beacon 32 bottom data .. ...... ........... 101
 

4.4 Longitudinal surface differentials .... ........... .. 108
 

4.5 Tidal discharges ............ .............. . 113
 

4.6 Organization of figures in AppendixA . . ........ 116
 

B.1 Mobile Bay model program routines ....... ...... .. 319
 

B.2 Input variables for Mobile Bay model program .. ........ 324
 

C.I Input variables for Varian plot program..... .. . .. 396
 

v 



LIST OF FIGURES
 

FIGURE 

1.1 	 Mobile Bay ........... .. . 5
 

2.1 	 Differential element at free surface .... ........ . 33
 

3.1 	 Three dimensional grid system for bay .... ...... 51
 

3.2 	 Top view of three-dimensional grid and bay boundaries . 52
 

3.3 	 Side view of two-dimensional grid and bay-channel
 

boundaries ...... .... ............. ...... 55
 

3.4 	 Typical grid point located adjacent model banks ..... 68
 

3.5 	 Typical grid point adjacent to model bottom .. . .... 71
 

3.6 	 Typical grid configuration at a forced flow surface . . 73
 

3.7 	 Typical grid configuration at a forced water level.1
 

boundary .......... ............. ...... 77
 

3.8 	 Typical grid configuration at free surface . . ...... 79
 

4.1 	 Approach to steady-state ... ............ ...... 91
 

4.2 	 Verification poinus for computer model .. ............ 94
 

4.3 	 Verification of velocities at Beacon 12 .. ......... . 96
 

4.4 	 Verification of salinities at Beacon 12 . . . ...... 97
 

4.5 	 Verification of velocities at Beacon 32 .... ..... 98
 

4.6 	 Verification of salinities at Beacon 32 .. . ...... 99
 

4.7 	 Comparison of idealized, forced model tide at Main Pass
 

with prototype tide ...... .......... ....... 103
 

4.8 	 Comparison of idealized, forced model tide at Pass Aux
 

Herons with prototype tide ... ........... ...... 104
 

vi
 



FIGURE Pag
 

4.9 Verification of tides at Fowl River .... ...... ... 105
 

4.10 Verification of tides at Point Clear .......... . . 106
 

4.11 Verification of tides at State Docks ... ........... ... 107
 

4.12 Verification of volumetric rates at Main Pass . . .... 110
 

4.13 Verification of volumetric rates at Pass Aux Herons . . i
 

4.14 Tides for Case 1 . . . 126
.................. 


4.15 Tides for Case 2 . . ................... 127
 

4.16 Tides for Case 3 . . ................... 128
 

4.17 Volumetric rates for Case 1 ............... 130
 

4.18 Volumetric rates for Case 2 ............... 131
 

4.19 Volumetric rates for Case 3 ............... 132
 

A.1­
A.168 Test cases ......... ........................ . 150
 

B.1 Simplified flow diagram for Mobile Bay model program . . 320
 

vii
 



ABSTRACT
 

A three-dimensional, time-variant mathematical model for momentum
 

and mass transport in estuaries was developed and its solution imple­

mented on a digital computer. The mathematical model is based on state
 

and conservation equations applied to turbulent flow of a two-component,
 

incompressible fluid having a free surface. Thus, bonyancy effects
 

caused by density differences between the fresh and salt water, inertia
 

from the river and tidal -currents, and differences in hydrostatic head
 

are taken into account. The conservation equations, which are partial
 

differential equations, are solved numerically by an explicit, one-step
 

finite difference scheme and the solutions displayed numerically and
 

graphically. To test the validity of the model, a specific estuary
 

for which scaled model and experimental field data are available,
 

Mobile Bay, was simulated. Comparisons of velocity, salinity and water
 

level data show that the model is valid and a viable means of simulating
 

the hydrodynamics and mass transport in non-idealized estuaries.
 

viii
 



CHAPTER 1
 

INTRODUCTION
 

In addition to being unique natural envirbnments, estuaries are
 

sources of commercially valuable seafoods, essential links in water
 

transportation routes, and important recreational areas. Further­

more, they serve as areas to dilute and degrade urban and industrial
 

wastes. Since the use of these essential properties is expected to
 

increase, the effectiveness with which estuaries are utilized must
 

improve or these natural resources will be completely consumed. Im­

provement in the utilization of estuaries can be achieved only through
 

a better understanding of estuarine phenomena, both qualitatively
 

and quantitatively. This understanding can only be achieved by a
 

combination of computer simulations, scaled model studies, and field
 

observations of real estuaries. To make these ideas concrete, it is
 

expedient to select a specific estuary to study. The estuary selected
 

here is Mobile Bay.
 

A. ESTUARIES
 

"An estuary is a semi-enclosed coastal body of water which has
 

a free connection with the open sea and within which sea water is
 

measurably diluted with fresh water derived from land drainage" is
 

a widely accepted definition proposed by Cameron and Pritchard (1963).
 

Therefore a bay, sound, inlet or small gulf into which several rivers
 

flow, as well as the lower reaches of a single river into which salt
 

water intrudes, may be classified as an estuary (Officer, 1976). In
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any of these situations, the density difference between the fresh and
 

salt water provides a driving force for circulation and mixing pro­

cesses. In most estuaries, the density differences are a consequence
 

of variations in salinity as opposed to variations in temperature.
 

Other driving forces for circulation and mixing processes are tides
 

and winds. Irrespective of the driving force or combination of
 

forces for these turbulent momentum and mass transports, the result­

ing velocity and salinity distributions are complex, frequently
 

varying in three space dimensions and time. Because river flows,
 

tidal variations and wind conditions are seldom all constant for more
 

than a few hours at a time, estuaries are generally in transition from
 

one dynamic state to another. Furthermore, even the topography of an
 

estuary may be changing rapidly if sedimentation processes are
 

important.
 

The purpose of the research reported herein was to develop a
 

generally applicable three-dimensional, time-variant mathematical
 

model for momentum and mass transport in estuaries and to implement
 

the solution of the model on a digital computer, that is, generate a
 

computer model. The mathematical model is based on state and conser­

vation equations applied to turbulent flow of a two component, incom­

pressible fluid having a free surface. The conservation equations,
 

which are partial differential equations, were solved numerically by
 

an explicit finite difference method and the resulting solutions were
 

displayed both numerically and graphically. To test the validity of
 

the model, an estuary for which scaled model and field studies have
 

been made, Mobile Bay, was simulated. Beyond testing the validity of
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the model, Mobile Bay was selected for study because it is both tech­

nically and commercially interesting. The National Aeronautics and
 

Space Administration has accumulated large quantities of remote sensor
 

(i.e. satellite) data on this bay which in conjunction with an adequate
 

hydrodynamic and salinity model should prove useful in resource and
 

pollution studies. A point of particular interest in many of the photo­

graphs of Mobile Bay taken from satellites is that the ship channel
 

stands out from the rest of the bay. See the photograph in front piece.
 

Because the bay water is opaque, the bottom of the bay cannot be seen
 

from the altitude of the satellite. Therefore, the contrast between
 

the ship channel and the shallow waters on either side must be the con­

sequence of a complex surface phenomenon. Again a computer model should
 

be of value in establishing what that phenomenon is.
 

The Army Corps of Engineers is responsible for maintaining ship 

channels in the bay and for evaluating the impact of proposed new 

channels. A model with sediment transport incorporated in it would be
 

valuable in scheduling dredging operations in existing channels. As it
 

presently stands, the model developed here can be used to assess the
 

effect of islands formed from dredging spoils on the circulation and
 

salinity patterns, matters of critical concern to the oyster industry
 

in the bay. A unique feature of the present work is that the bay's
 

main ship channel has been included by representing the channel with a
 

vertical two-dimensional model that is interfaced with the three­

dimensional model of the bay proper. It is feasible to evaluate the
 

effects of new channels in this fashion at the cost of some additional
 

programming.
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B. MOBILE BAY
 

The follcwing description of Mobile Bay relies heavily on that
 

presented by Shah and Farmer (1976). Mobile Bay, located on the
 

northern edge of the Gulf of Mexico, is roughly pear shaped as can
 

be seen in Fig. 1.1. The bay has an approxinate length of 51 km and
 

an average width of 20 km; the maximum width is 36 km. Its boundaries
 

are delineated by relatively steep banks on the eastern, western and
 

southern edges and by a causeway on the north. The overall area of
 

2
the bay is 1022 km . The average depth is 3 m at mean low water with
 

maximum of 18.3 m occurring near the tidal inlet to the Gulf, the
 

Main Pass. This inlet is 4.8 km wide between Mobile Point on the
 

east and Dauphin Island on the west. The Pass Aux Herons, the tidal
 

inlet that connects the bay with the Mississippi Sound to the west,
 

is 3.7 km wide and 1.1 m deep on the average. During the diurnal
 

tide cycle, these passes contribute on the order of a billion cubic
 

meters of flow into and out of the bay.
 

Aside from an average of 69 inches of rainfall evenly distrib­

uted through the year and several small streams entering the east
 

and west sides of the bay, the fresh water sources are four inter­

connected rivers entering the north end of the bay. These rivers,
 

the Mobile, Tensaw, Blakeley and Appalachie, are the distributaries
 

of the Mobile River which results from the junction of the Tombigbee
 

and Alabama Rivers. The respective depths of the rivers entering
 

the bay are 9, 9, 6 and 8 M. The Mobile and Tensaw Rivers are the
 

major contributors of fresh water and sediment to the bay.
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The Mobile Harbor Ship Channel connects the lower anchorage near
 

Mobile Point with the State Docks at the city of Mobile. This channel
 

is maintained at a depth of 12.2 m and a width of 122 m by the Army
 

Corps of Engineers. High salinity water intrudes almost the entire
 

length of the channel at depths below the natural depth of the bay.
 

The other channel of major significance in Mobile Bay is the Gulf
 

Intracoastal Waterway, which extends from Apalachee Bay, Florida, to
 

Brownsville, Texas. Traversing the lower end of the bay, the waterway
 

passes through Bon Secour Bay, crosses the main ship channel approxi­

mately 4.4 km north of the Main Pass, and continues through the Pass
 

Aux Herons into the Mississippi Sound. The depth of the waterway
 

ranges from 3.7 m to 5.5 m. Because it is only slightly deepter than
 

the bay itself and has little influence on salinity patterns, the Gulf
 

Intracoastal Waterway was neglected in the present work.
 

As stated previously, the tides from Mobile Bay are diurnal; the
 

difference between high and low tide normally range from 30. to 76 cm.
 

While these tides promote mixing, a slight but measurable salinity
 

stratification exists throughout much of the bay most of the time.
 

Strong winds over the bay generate surface waves that can breakdown
 

this concentration. The tide elevation is also strongly influenced by
 

prevailing winds of several hours duration.
 

C. 	SUIMARY
 

This chapter discussed the concept of an estuary, presented moti­

vations for developing an estuarine model, and stated the objective
 

of this work. A description of Mobile Bay was also given. In the
 

next three chapters, the equations governing the phenomena of
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interest, the numerical method used to solve the set of equations and
 

the results of applying the model to Mobile Bay will be set forth,
 

The final chapter will present conclusions regarding the model's via­

bility and recommendations for possible improvements and extentionso
 

The appendices contain graphical displays of the model results and
 

descriptions and listings of the computer model program and Varian
 

plot program used in this research.
 



CHAPTER 2
 

THE GOVERNING EQUATIONS
 

The philosophy followed in developing this model of Mobile Bay was
 

to base the model on the fundamental laws pertinent to the system and
 

to make as few restrictive simplifications as possible. Of course, the
 

latter part of this philosophy had to be tempered by the necessity of
 

remaining within the capabilities of the available computing facilities.
 

This chapter presents the general governing equations, the necessary 

simplifications and the specific equations used. A statement of the
 

required initial and boundary conditions is also given.
 

A. STATE
 

The brackish waters found in Mobile Bay are a consequence of tie
 

mixing of fresh water from the river complex and gulf water from the
 

tidal inlets. The density of this mixture at any point in space and
 

time depends on the local composition (i.e., the salinity s which is
 

the mass of salts in grams per kilogram of brackish water or, equiva­

lently, in parts per thousand, PPT), temperature T, and pressure p. An
 

equation relating these variables is referred to as an equation of
 

state and may be represented by
 

= p p(s,T,p). (2-1) 

A theoretically derived analytical expression for Eq. (2-i) applied to 

brackish water over the range of values of s, T and p of interest is 

presently lacking. One recourse is to use a Taylor series to expand 

8
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the density about a reference value in terms of small changes in s, T
 

and p. Thus,
 

PP Op, p S'p
 O+ ( apIPAs +( jP AT +(§)T Ap (2-2) 

A suitable reference state corresponding to typical conditions in 

Mobile Bay would be s = 10. PPT, T = 20.0C and p = 1. bar where 

p = 1.0058 gm/cm3 . For small changes in s, T and p, the partial deriv­

atives in Eq. (2-2) are very nearly constant and may be evaluated from 

salinity-density, compressibility and thermal expansion data for sea­

water such as that given in Home (1969). Thus, 

S--)p,T = 7.5 x 10- 4 gm em-3 PPT- I 

(a-) =2.1 x 10 6 gm m-3 ,C-1
 
3T s,p
 

Lphs,To45 x1O- gm bar-


Estimates for expected differences in the variables s, T and p in the
 

horizontal direction at a given elevation over the length of the bay
 

are 33. PPT, 10. C deg, and 0.1 bar, respectively. Therefore, the
 

changes in density resulting from salinity variations are three orders
 

of magnitude larger than those from temperature variations and five
 

orders of magnitude larger than those from pressure variations in the
 

horizontal. Estimates for differences in s, T and p in the vertical
 

direction in slightly stratified shallow water (i.e., depth less than
 

3. m) are 2. PPT, 2. C deg and 0.3 bar, respectively. Here changes in
 

density due to salinity variations are two orders of magnitude larger
 

than those from temperature variations and four orders larger than
 

those from pressure variations. Deeper waters may be more stratified
 

with appreciably larger differences in salinity but not temperature.
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From the above discussion, it is apparent that the fluid in Mobile
 

Bay is essentially incompressible and, to a good approximation, iso­

thermal. Furthermore, density is a linear function of salinity only,
 

with the consequence that density is a measure of the composition of
 

the brackish water. In the rest of this work, composition will be
 

denoted by S which is defined by
 

P - pf 

pg - Pf (2-3) 

so that 

P = Pf + OS (2-4) 

where
 

-3 
pf= density of fresh water, 

gm cm
 

Pg density of gulf water, gm cm-3
 

= pg-Pf. 

The variable S, which might be termed the normalized density anomaly, 

will range between zero and unity. 

For reference, the relationships between p, S and two other mea­

sures of composition will be listed and examined. These measures are
 

salinity s and mass fraction salts wA" They are related to p and S as
 

follows:
 

ap( -) 
p f +S=pf a s= f + 'OA

P P +fS =P~+ 23 5=%3 + ZIa (2-5) 

where a = 1000. (Sp/s). The reference density p in Eq. (2-2) has 

been replaced by pf, the reference salinity taken as 0. PPT so that 

As = s, and the pressure and temperature terms neglected. Also, the 

relation wA = s/000, has been used. It should be noted that these
 

relations are strictly valid only over a limited range of salinities,
 



say 0. to 40. PPT, which fortunately covers the range found in the
 

problem at hand. Also, from an analytical standpoint, it is exceed­

ingly convenient that the density is a linear function of the composi­

tion variable in each case. 

B. MASS CONSERVATION
 

In this section, the mean continuity equation for an incompres­

sible, variable density fluid in turbulent flow is developed. As 

derived in several transport phenomena texts, for instance, Bird, 

Stewart and Lightfoot (1960) and Slattery (1972), the equation govern­

ing mass conservation in terms of the mass density p dnd the mass 

average velocity u is 

at + div (pi) = 0. (2-6) 

The divergence term in Eq. (2-6) may be expanded and the resulting 

equation rearranged to,
 

1 Dp + div u = 0, (2-7)
pDth 

where ! is the substantial derivative operator or the total derivative
 

operator following the mass average velocity. While Eq. (2-7) is rig­

orously correct, its inclusion in the system of equations to be solved
 

is undesirable because it admits sound waves to the possible solutions
 

of the system which in turn requires very small time steps in finite
 

difference schemes in order to achieve stability. One way to avoid
 

this difficulty is to simplify Eq. (2-7) to
 

div u = 0 (2-8) 

which filters sound waves from the possible solutions (see Kamenkovich, 

1975). This simplification may be justified by an analysis suggested 

by Batchelor (1967). 



12 

If
 

div
Ip1 = I v (2-9) 
p It1 L 

where L is a length scale representing the minimum distance over which 

large variations in u occur and V is a velocity scale representing the 

variation in J I in both time and space over the distance L, then Eq. 

(2-8) is a reasonable approximation to Eq. (2-7). Since, in general, 

the flow under consideration will be turbulent, the appropriate length
 

and velocity scales are the smallest length scale occurring in the flow
 

and its associated velocity scale. These are the Kolmogorov micro­

scales (see Tennekes and Lumley, 1972) and are given by
 

L = (\3/s)i/4, V = (s)1/4 , (2-10)
 

where v is the kinematic viscosity of the fluid and e is the dissipa­

tion rate of turbulence energy per unit mass of fluid. To test whether
 

Eq. (2-9) is satisfied or not, one must also have an estimate for
 
Dt'
 

Obtaining such an estimate requires the use of the relations in Eq.
 

(2-5), as well as an equation governing species conservation. Presum­

ing no chemical reaction occurs and diffusion is of the Fickian type,
 

one then finds the equation of species conservation at the continuum
 

level presented in transport phenomena texts as
 

a (pA) + div (pe) = div [PD grad(wA)], (2-i1) 

where pA is the mass concentration of the species, fA is the mass
 

fraction of the species, and DAB is the mass diffusivity of the species
 

in the solution. In this case, the species is total salts. By noting
 

that
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(pA) + div = f (pA) + u grad (p + PA divu 

D fDp D
 
Dt A Dt =A D (tA)'
 

Eq. (2-11) may be rewritten as
 

D 
 1:L
D5t (wA) = p div[PDAB grad (wA) ] . (2-12) 

Applying the substantial derivative to the first and last parts of
 

Eq. (2-5) gives
 

Dp D
 

and combining this result with Eq. (2-12) yields
 

-P-P = div [pDAB grad (w)]. (2-13) 
Dt p 

If 2A is used to represent the variation in LA over the length scale L 

and the distances in the spatial derivatives are approximated by L, 

then Eq. (2-13) may be modified and inserted in the inequality Eq. 

(2-9) to give 

V-2 -2
ap-DAB"AL << f 

which may be rearranged and combined with Eqs. (2-10) to yield 

ap-2DAB«A 1 (2-14) 

The magnitudes of the various factors appearing in the left-hand side 

of this equation are as follows: 

p = 1.0 gm cm3 

- 3 
a = 0.75 gm cm
 

-5 2 A1
 

cm see
DAB = 1.3 x 10 - 5 


- 2
 
x 10 

= 4.0"A 


= 1.0 x 10-2 cm2 see-1 
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These values substituted in Eq. (2-14) yield 4. x 10- 5 which is
 

certainly much less than unity. Thus, for the system under considera­

tion div u = 0, frequently called the equation of volume continuity, is
 

an excellent approximation to the equation of continuity, Eq. (2-7).
 

The discussion to this point has been in terms of instantaneous
 

values of the flow field variables. Since the flow field under consid­

eration is turbulent, these-instantaneous values fluctuate rapidly and
 

with a certain degree of randomness. Because it is practially impos­

sible to track these fluctuations numerically, it is necessary to
 

express the governing equations in terms of variables with the turbu­

lent.fluctuations averaged out. Having determined that dlv u = 0 is
 

the appropriate equation to describe mass conservation at the continuum
 

level, one can proceed to an equation at the turbulence level by util-

N
 
l a
 

izing the ensemble or statistical averaging 
operation limi 


N-onN f i l i, 
where a. is the instantaneous value of an observed variable in the ith
 

realization of an ensemble of repeated experiments. The reader is
 

referred to Leslie (1973), p. 6, or Townsend (1976), p. 4, for an
 

introductory discussion of the concept of an ensemble mean and its rela­

tion to the more conventional time mean. Denoting the ensemble mean
 

velocity by u and the fluctuation about the mean or turbulent velocity
 

by ji', one has that u =u + u' and 

div (u + u') = 0 (2-15) 

Averaging Eq. (2-15) over an ensemble of flow realizations, an opera­

tion indicated by ( , one obtains 

(div ( u+ u')> 0 

which reduces to 

div u = 0 (2-16) 



15 

since the divergence and averaging operators are commutative and
 

GU+ u') = u. Eq. (2-16), which in a rectangular cartesian coordinate
 

system reads
 

(W )
xa az 0 (2-17) 

where u, v, w are the components of the ensemble mean velocity in the
 

x, y, z directions, respectively, is the mean volume continuity
 

equation.
 

C. SPECIES CONSERVATION
 

As stated in the previous section, the species continuity equa­

tion is
 

k A + div (pAU) = div [PDAB grad (wA)] (2-18) 

assuming no chemical reactions occur and brackish water can be approx­

imated by a binary mixture of salts and water. The first term on the
 

left side of this equation represents the rate of accumulation of the
 

salts in a differential volume of fluid fixed relative to the coordi­

nate system while the second term represents the net efflux of salts
 

across the boundaries of the differential volume by convection. The
 

term on the right side models the net influx of salts resulting from
 

ordinary diffusion. This equation governs the instantaneous values of
 

the flow field variables at the continuum level.
 

To obtain a useful equation at the turbulence level it is neces­

sary to treat the density and mass diffusivity in Eq. (2-18) as con­

stants. Neither assumption is in serious error physically since the
 

density varies by only 3% and the diffusivity by 6% for the range of
 

salinities encountered in estuaries. Moving p inside the gradient
 

operator gives
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u ) S(pA) + div (p = div [DAB grad (pA)]. (2-19) 

Substituting ensemble mean plus turbulent fluctuation variables for pA
 

and u in this equation and applying the averaging operation introduced
 

in the previous section gives
 

(P + P') + div[(p + p)(u + u')]-- div[DABgrad( A + pD]) = 0 
3t A A A + A ABA + A 

which reduces to
 

- (pA) + div (p u ) = div [DABgrad(PA)] - div(pu') (2-20) 

after rearrangement. The physical significance of each term in Eq.
 

(2-20) is the same as for the corresponding term in Eq. (2-16) except 

that a new term representing the net influx of salts into the differen­

tial volume by turbulent diffusion now appears. The correlation (pu 

frequently called the turbulent mass flux vector, is an unknown that 

must be modeled in terms of known flow field variables if a closed 

system of working equations is to be had. A common practice is to
 

invoke an analogy with the ordinary diffusion term in the above equa­

tion and write the turbulent mass flux vector as
 

( = D grad p (2-21) 

where D is a second-order tensor whose components are turbulent dif­
z(t)
 

fusion coefficients or eddy diffusivities and the dot * denotes the
 

operation of taking an inner product in cartesian coordinates. See
 

page 25 of Hinze (1959) or Corrsin (1974) for a discussion of the
 

necessity of using a second-order tensor as opposed to a scalar in any­

thing other than isotropic turbulence.
 

Inserting the expression for (Piu' given by Eq. (2-21) into Eq.
 

(2-20) and rearranging yields
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)7t (PA) + div (pA = div (D(e) * grad pA) (2-22) 

where D(e) is the effective diffusivity tensor given by 

Z(e) =D (2-23)D~e DAI+Dt. 

I is the identity tensor; the off-diagonal components of D are gen­
Zz(e)
 

erally nonzero. It is known that for fully turbulent flows the
 

diagonal components of D are several orders of magnitude larger than
 

DAB. The flow in this work is considered to be fully turbulent every­

where except in close proximity to solid boundaries and the equations 

are applied away from these boundaries. Therefore, ordinary diffusion
 

is neglected and D set equal to D The components of D are
 
z(e) sZ(t)* z(e) 

unknowns like those of the vector ( and are subject to measurement 

and prediction. This topic will be taken up in a latter section of the 

present chapter. Finally, by dividing Eq. (2-22) with the density p 

taken as a constant and utilizing the relation between mass fraction 

salts wA and normalized density anomaly S given by Eq. (2-5), one can 

rewrite Eq. (2-22) as 

- +iv- (U ga+a S(S) div (S) = div (e) -grad S). (2-24) 

This is the mean species continuity equation. In terms of its compo­

ents in a rectangular cartesian coordinate system it reads
 

-) + 2- (S-) + (SV) + 2x )=( 

at ax ay 3z
 

[E aLD ~ (S)+Dfl~
 

ax xxx ay
s-(~y xz 9Z
 

ay yxax yy y yz z
 

a [D a ( S) + D a C ) + D- l (2-25)
 
az zx ax zy ay (S) -C)) 
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D. MOMENTUM CONSERVATION
 

The equation governing the conservation of linear momentum in a
 

Newtonian fluid at the continuum level may be written
 

(u) + div (tin) -grad (p) + v div grad (u) + $. (2-26) 

Here, p is a scalar called the mean pressure, v is the kinematic 

viscosity , and g is the body force vector. All other symbols retain
 

their previous definitions. The first term on the left models the
 

accumulation of momentum per unit mass of fluid in a differential
 

volume fixed relative Lo the coordinate system; the second term repre­

sents the net efflux of specific momentum across the differential 

volume boundaries due to convection. Note that in cartesian coordi­

nates uu is a dyadic product and, therefore, a symmetric second-order
 

tensor. The first term on the right models the force per unit mass
 

resulting from the mean pressure. The second term on the right sym­

bolizes the shearing stresses per unit mass due to the relative move­

ment or deformation of the fluid. The last term is the body force per
 

unit mass resulting from the gravitational force field of the earth.
 

An equation in terms of the ensemble mean flow field variables is­

developed by substituting mean plus fluctuating variables for u and p 

in Eq. (2-26) and ensemble averaging the result. To pursue this course 

of action successfully, it is necessary to assume that density fluctua­

tions are so small that there are no relevant correlations between the
 

fluctuations in density and the derivatives of fluctuations in velocity
 

and mean pressure. In essence, this assumption along with the approxi­

'Eq. (2-26) has been written assuming that v is constant. This is a
 
valid approximation for brackish water; see Horne (1969).
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mation that div u = 0 are tantamount to invoking the Boussinesq approxi­

mation; see Kamenkovich (1975). The result is
 

(u) + div ku)=
 

(2-27)
V div grad (u) - div (u'u') + g1 grad p + 

which contains terms analogous to those in Eq. (2-26) plus a new term, 

- div (u'u'), which is the net increase of specific momentum due to 

turbulent shear stresses. The set of nine turbulent velocity correla­

tions (u'u'), six of which are distinct, is commonly called the 

Reynold's stress tensor. 

The components in the Reynold's stress tensor are unknowns and, 

just like the components of the turbulent mass flux vector, they must 

be modeled in terms of known flow field variables if a closed system of 

equations is to be had. Again the common practice is to write by 

analogy with the viscous stress term 

(u'u') = - 2N~t 13 (2-28) 

where N(t)' the eddy viscosity tensor, is a tensor of at least second­
order and possibly, fourth-order, and D= {grad (u) + [grad (u)]T)/2 is
 

the deformation tensor. It the latter is the case, the inner product 

operation would be replaced by the double inner product operation so 

that the result would be a second-order tensor. See page 22 of Hinze 

(1959) for a limited discussion of the need for tensorial representa­

tion of eddy viscosities. Specification of the components of N will 

be taken up in a latter section of this chapter along with those of the 

eddy diffusivity tensor. 

Substitution of the expression for (u'u') given aboye into Eq. 

(2-27) produces 
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) + g-- ()+div (uii) = _ -grad p+ 2 div (N (2-29) 

t z=(e)z 

where N is the effective eddy viscosity tensor defined by

Z(e)
 

N v + N (t (2-30) 

In fully turbulent flows the diagonal components of N are generally

Z}t) 

several orders of magnitude larger than the kinematic viscosity; there­

fore, following the argument of the previous section N is set equal

Z(e)
 

totoN (t). 

With the addition of one more term to the right-hand side, Eq.
 

(2-29) becomes the working momentum conservation equation. This term
 

accounts for the fact that the governing equations are written for a
 

coordinate system rotating relative to the inertial coordinate system
 

attached to the fixed stars. Called the Coriolis effect, it is written
 

-20 x u where Q is the earth's angular velocity vector and the cross X
 

denotes the vector product operation. See page 22 of Waldrop (1973)
 

for a fuller discussion of the origin of the effect. Its consequences
 

are that large scale flows in the northern hemisphere tend to turn to
 

the right if not restrained by a boundary parallel to the flow direc­

tion. If such a boundary is present, slopes in the free surface result
 

that balance this apparent force through pressure gradients. Dyer
 

(1973) discusses the influence of the Coriolis effect on various types 

of estuaries. The final form of the mean momentum equation is 

Cu) + div (ux-) 

- grad (p) + 2 div (N D) -20 xu (2-31) 

In expanded form, the x-directed component of this vector equation is
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(in)a- Tu) + y(uv) + fz(uw) = -n-x (7) 
+ + + ( + N[y-(u) + Nx[-(u) ax 

a a- a- + - - a­
ay(Nxx[Kx(V) + y(U) + Nxy[V(v) + y(V)] + Nxz[wIv) + ay 

+-	 + + N a a­

aK yy zy 	 a 

+gx 	-2 ( w-zV). (2-32) 

Analogous equations exist for the y and z directions.
 

E. 	ENERGY CONSERVATION
 

For completeness an energy equation will be presented even though
 

it is not used because the estuary under consideration is isothermal.
 

If, as shown in Slattery (1972) or Bird, Stewart and Lightfoot (1960),
 

a kinetic energy equation derived from the momentum equations is sub­

tracted from the total energy conservation equation, an equation for
 

the internal energy results. If the internal energy is expressed in
 

terms of temperature through the proper thermodynamic relationships,
 

the fact that div u = 0 utilized, and allowance for energy transfer 

by thermal radiation made, this equation reads 

C (TT + div (uT)) div (K grad T) + 1 div q + v@ (2-33) 

V P p r v 

where the new symbols are as follows: 

= 


T = temperature
 

CV 	 heat capacity at constant volume
1
 

K = 	thermal conductivity1
 

1Both the heat capacity and thermal conductivity of seawater may be
 

treated as constants over the ranges of temperature and salinity
 
encountered here. See Horne (1969).
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qr = thermal radiation flux vector
 

= positive viscous dissipation function.
v 

The viscous dissipation function-is generally neglected unless the
 

flow approaches sonic velocity and will not be considered further.
 

Averaging this continuum equation over an ensemble of turbulent flow
 

realizations gives
 

-5(T)+ div(uT) = (PC div[K grad(T)] + (pCv)-div(r) (2-34) 
t z(e) 

where
 

K =(e) I + K (2-35)
(e Z (t)
 

As in the previous two sections, the eddy conductivity K(t) is a
 

second-order tensor with diagonal components several orders of magni­

tude larger than K SO that the effective conductivity K(e) may be set
 

equal to K Eq. (2-34) is the mean equation describing the tem-

Z(tY*
 

perature distribution within in a turbulent flow field once the com­

ponents of K have been specified. Its application is no different
 
Z(e)
 

conceptually than that of the mean equation for conservation of
 

normalized density anomaly,,Eq.,s(2 24. "
 

F. EDDY TRANSPORT COEFFICIENTS
 

This section will be limited to a discussion of eddy diffusivi­

ties and viscosities. Eddy conductivities would be handled in a
 

fashion very similar to that for eddy diffusivities. At the outset,
 

it should be made clear that eddy transport coefficients are proper­

ties of the flow field and not the fluid itself. Therefore, anytime
 

significant changes are made in the boundary conditions or the flow
 

geometry, the possibility that different eddy transport coefficients
 

will be required has to be considered. To add to the complexity of
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the problem, these coefficients may vary with position in steady flows
 

and with time and position in unsteady flows.
 

As presented in the development of the mean conservation equa­

tions, the eddy transport coefficients have tensor properties. While
 

the physics of the problem demand this character of the transport
 

coefficients, it is only in the simplest of flow geometries that suf­

ficiant numbers and types of measurements have been made to enable one
 

to specify components other than those on the main diagonal. See
 

Corrsin (1974) for a determination of off-diagonal components in the
 

eddy conductivity tensor when applied to turbulent heat transfer in a
 

boundary layer and a circular jet. In estuarine flows experimental
 

measurements and theory have advanced only to the point that it is
 

possible to estimate the diagonal components. Consequently, the eddy
 

diffusivity and viscosity tensors must be simplified to
 

Dx 0 0 Nx 0 0
 

0 Dyy 0 and 0 N y 0
 

0 0 D 0 0 N 

respectively. This restricted form of the eddy transport tensors
 

implies that they are oriented with their major axes parallel to the
 

coordinate axes. Since the selection of the coordinate directions are
 

somewhat arbitrary, particularly in the horizontal plane, and the
 

magnitude of an eddy transport tensor component should depend on
 

whether it is for a direction parallel or perpendicular to the flow or
 

stable density stratification, the above simplified eddy transport
 

tensors are not completely adequate for geometrically complex, time­

dependent flows. To utilize what remains of the eddy diffusivity
 

tensor, one often assumes that D equals D and neglects them since
xx yy
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mass transfer in the horizontal plane is dominated by advection or
 

sets them equal to D on the assumption that the turbulence is nearly
zz 

isotropic. In the case of the eddy viscosity tensor, Nxx and Nyy are 

retained and often set equal and N is ignored. The dependence of
 zz
 

the remaining eddy transport coefficients on stable density stratifi­

cation is formulated in terms of the gradient Richardson number; this
 

topic is discussed below. Furthermore, when a solution to the equa­

tions is obtained by a finite difference scheme, there are apparent or
 

artificial viscosities and diffusivities that compensate for the
 

neglected horizontal transport and confuse the issue when it is not.
 

These simplifications in the eddy transport tensors allow attention to
 

be focused on the prediction and measurement of Dzz, Nxx and N y, a
 

topic to be considered shortly.
 

Although eddy translort coefficients can be determined by dye or
 

particle release experiments, they are generally calculated from field
 

measurements of mean flow properties through the appropriate conserva­

tion equations. Since measurements of estuarine flows are expensive
 

and prone to error, there is a dearth of quality eddy coefficient data
 

based on short term (say, one minute) averages of the flow properties.
 

More frequently, the eddy coefficients found in the literature are
 

based on averages of the mean flow properties over the entire tide
 

cycle. These tidal-average eddy coefficients are generally an order
 

of magnitude smaller than the short-term values and are not appropri­

ate for the problem at hand. Dyer (1973) presents tables of tidal­

average coefficients for salt and momentum transfer in several differ­

ent estuaries and quotes a few short-term eddy viscosity values'
 

obtained by Bowden and others. The short-term values are not directly
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applicable to Mobile Bay because the bay in which they were measured
 

is geometrically different. Consequently, the eddy transport coeffi­

cients used in the present model are estimated values obtained from
 

theoretical and empirical considerations.
 

Another number associated with turbulent transport of scalar
 

quantities is the dispersion coefficient. This coefficient appears
 

in the diffusive terms of conservation equations that have been spa­

tially averaged in one or two directions in order to reduce the dimen­

sionality of a given problem. It has the two-fold task of accounting
 

for (1) the difference between the convective transport resulting from
 

the actual velocity distribution and that predicted by the spatially­

averaged velocity and (2) the turbulent diffusive transport. See page
 

432 of Daily and Harleman (1966) for a rudimentary discussion of these
 

coefficients. Levenspiel and Bischoff (1963) develop the concept at
 

length. Since the present model is fully three dimensional, disper­

sion coefficients are inappropriate.
 

The following discussion of eddy transport theory parallels that
 

of Bowden and Hamilton (1975). While the discussion is phrased in
 

terms of a two-dimensional flow, it is applicable to three-dimensional
 

flow in light of the approximations presented in the first paragraph
 

of this section. Furthermore, the theory is based on a broad spectrum
 

of flow problems in which estuarine flows are a representative, but
 

complex case.
 

The Prandtl mixing length hypothesis relates the eddy viscosity
 

coefficient to the magnitude of the mean velocity gradient by
 

Nx = 2 R(U)j (2-36) 
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where X, the mixing length, is to be prescribed in some manner and the
 

flow is assumed to be parallel to the x-axis and to vary only in the
 

z-direction. For instance, in the constant stress layer of turbulent
 

flow parallel to a wall, the mixing length is given by
 

£ = k (z + zo) (2-37) 

where k is Von Karman's constant and z is the size of the wall
 
0 o 

roughness elements. Since the velocity profile in this layer is log­

arithmic in the distance from the surface, the eddy viscosity is
 

Nxx = kou (z + zo) (2-38)
. 


where u,, the friction velocity, is related to the wall shear stress 

T by u. = v'T7W. For uniform flow in a two-dimensional, open channelO 0 

of depth h and with no applied stress at the free surface, a mixing 

length of the form 

£ = k z (1 - z/h)1/2 (2-39)
o 

has been proposed. The corresponding velocity profile is logarithmic
 

and the eddy viscosity coefficient given by
 

Nxx = kouz (1 - z/h). (2-40)
 

Both £ and Nxx become zero at the free surface, approach small values
 

= 
at z z and have maxima at mid-depth. The maximum value of Nxx is 

(N 1Xm (2-41)koU~h .  
(xx)max 4o 

While the preceding formulations for the mixing length are
 

derived for steady flows, they appear to be applicable to neutrally
 

stable tidal flows during maximum flood and ebb. At other times
 

during the tide cycle, the velocity profiles deviate significantly
 

from the logarithmic curve. Furthermore, the velocity profile near
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the free surface exhibits a weak dependence on N so that to a good
x~x 

approximation the eddy viscosity can be taken as a constant above the
 

friction layer located at the bottom. Based on measurements in
 

neutrally stable tidal currents offshore, Bowden, Fairbairn and Hughes
 

suggested that Nxx increase linearly from the bottom by Eq. (2-38) up
 

to z = ch and then have the value
 

Nxx = koauh (2-42)
 

from there to the free surface. The corresponding velocity profile is
 

logarithmic in the lower segment and parabolic above. For their
 

observations, a = 0.14 gave the best fit.
 

Order of magnitude estimates of the eddy viscosity during maximum
 

flood and ebb currents can be made with the formulations presented
 

above. Utilizing the empirical relationship
 

2 kp 2 

wher pu=* pU (2-43) 

where k is a friction factor having a value in the range 0.0025-0.005 

and U is the depth-mean velocity, Eqs. (2-41) and (2-42) may be 

rewritten as 

(Nxx)ma x = 5.1 x 10 - 3 Uh (2-44) 

and
 

(Nxx)max = 2.9 x 10 - 3 Uh for z > 0.14 h (2-45) 

respectively, if Von Karman's constant is taken as 0.41 and the fric­

tion factor as -0.0025, a typical value. In addition, the eddy diffu­

sivity Dzz is generally presumed to be equal to the eddy viscosity Nxx
 

in neutrally stable or homogeneous waters. As pointed out by Bowden
 

and Hamilton (1975), it is physically unrealistic to assume that N
 

xx 
remains constant throughout the tide cycle, and yet tidal currents
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appear to be reasonably well modeled with a time-independent eddy
 

viscosity. When nonhomogeneous waters are considered, the eddy trans­

port coefficients may be modified to account for the reduction in
 

vertical turbulent transport induced by stable density stratifications.
 

A set of modifications, proposed by Munk and Anderson (1948) as a
 

result of a study of the thermocline in the open sea, are
 

"5
Nxx= (Nxx)max ( +loRi)-0 (2-46) 

and 

1 "5  
Dzz = (Dzz)ma (I + 3.33Ri)- (2-47)
x 


where Ri is the gradient Richardson number given by
 
p - I
Ri= gz P- )­

l9p I -- 2 (2-48)Ri~g [() 

nd (NXX)max = (Dzz)ma are values for neutrally stable flows. Dif­

ferent modifications, or dampening factors, are used for the eddy
 

viscosity and eddy diffusivity because stable density stratification
 

influences the two coefficients differently.
 

This examination of eddy transport theory is somewhat cursory by
 

intent. The reasons for the superficiality are two-fold. First,
 

there are several formulations for eddy transport coefficients in
 

estuarine flows, none of which are completely adequate. Bowden and
 

Hamilton (1975) devote an entire literature article to assessing the
 

influence of eddy transport coefficients of the following forms on the
 

results of a two-dimensional model in the vertical:
 

1) N = 2D = a constant
 

2) Nxx =N + N hJUI 

= D + DhjUf
 

where N 2D and N1 = 2D1
 

x 
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mRi)q
 

3) 	Nxx =N + N hfU I(i + 


DI = + D (1 +
D UhJIUj SRi) P 

where No = 2Do, N1 = D1 and
 

m, 5, q, P are constants. 

The Richardson number in the above is of the overall type and is 

defined by 

Ri = gzhApU-2 

where Ap is the density difference between the bottom and surface. 

Bowden and Hamilton conclude that the third form is the best model,
 

but that it is not entirely adequate for the range of conditions
 

encountered in their study. The present author objects to their use
 

of the depth-mean velocity and overall Richardson number in these
 

formulae. These parameters are of little value when tidal effects are
 

weak and salt water intrusion is strong. In a three-dimensional
 

model, Leendertse and Liu (1976) utilize eddy transport coefficients
 

of the form
 

N = NoEXP{mg lp t(u)] + N{--(u)]-I+ [tz(v)]l/2 

xx o z -3z I13z 

Dxx 	 = DEXP{-rgzp - I z [z(U ]2 2+ 1() 08z a z 3z 

3 -2 D -2 1/2+ DI{[Z(u)]2 + [3 5(v)] I/2 

where m and r are constants. For the y-directed momentum equation N
xx 

is 	 replaced by Nyy and u by v in the exponentional term. Second, 

there are strong arguments that eddy transport coefficients are inade­

quate models of turbulence. Harsha (1971), after reviewing all the
 

current eddy viscosity models for planar mixing layers and circular
 

jets and comparing their predictions against the available experimental
 

data, concluded*
 



30 

It is doubtful whether methods which fail to take into
 

account the fact that the flow is turbulent, and not laminar
 

with some badly behaving viscosity, can ever be made to agree
 

with more than a small range of experiments. It is clearly
 

time that the methods of analysis of turbulent flow recognize
 

that it is indeed turbulent.
 

To overcome the limitations of simple eddy transport coefficient
 

models, considerable work with turbulent kinetic energy models and
 

Reynold's stress closure schemes has been conducted since the mid­

1960's. For an introduction and recent reviews of the state of these
 

turbulence models, the reader is referred to Chapter 5 of the textbook
 

by Reynolds (1974) and the articles by Reynolds (1976) and Lumley and
 

Khajeh-Nouri (1974). In order to give an impression of the complexity
 

of the partial differential equations involved and the degree of
 

empiricism required, a two-equation model proposed by Spalding and
 

coworkers (1974) for a two-dimensional boundary layer will be presen­

ted. The equations are
 

=C 2-i
 
= CPq
Npxx 


[C N az]+N xxIt PEPDt z 4 xx ]2 

-
p DD 7- [C3NxX zS]+ CINxxeq [@z (u)]2 - C2Pe2q­

where q is the turbulent kinetic energy per unit mass of fluid, s is 

the dissipatioh rate mass of turbulent kinetic energy per unit mass 

and C1 through C5 are constants determined by applying the equations 

to limiting cases. This model requires that two more partial differ­

ential equations be solved and the attendant boundary conditions be 
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specified, neither of which are trivial tasks. Furthermore, Corrsin
 

(1974) presents an analysis that indicates the concept of eddy trans­

port coefficients is strictly applicable to limited ranges of length
 

scales, time scales and variations in the mean flow properties that are
 

not found in many turbulent flows of interest. The turbulent kinetic
 

energy models are suspect because they explicitly contain eddy trans­

port coefficients. To circumvent this problem, if it is one, one must
 

use a Reynold's stress closure scheme that contains even more equations
 

and empirical constants. See Lumley and Khajeh-Nouri (1974) for the
 

details of one such scheme.
 

Despite the complexity and empiricism of these higher order models,
 

they have the potential advantage of a wider range of applicability
 

than the simpler eddy transport coefficient formulations. Still, none
 

of these schemes have advanced to the point where they can be effec­

tively applied to three-dimensional, time-dependent free surface flows
 

with the available numerical methods and computing facilities. In
 

light of the above situation, constant eddy transport coefficients
 

multiplied by gradient Richardson number dependent dampening factors,
 

as in Eqs. (2-46) and (2-47), were used in this work.
 

G. WATER LEVEL
 

A realistic model of a tidal estuary requires that one account for
 

changes in the water level (i.e., the location of the free surface or
 

the interface between the water and the atmosphere above it) with
 

Noting that div u = 0 implies fluid
horizontal position and time. 


volume is conserved, one can derive an equation governing the vertical
 

motion of the water level by performing a fluid volume balance on the
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differential element shown in Fig. 2.1. The bottom of the element is 

located in a horizontal reference plane denoted by z0 that is below the 

lowest water level. The top of the element coincides with the free 

surface which has an elevation denoted by hi= h(x,y,t). Sides 1 and 2 

are in planes perpendicular to the x-axis and have a width of Ay; sides
 

3 and 4 are perpendicular to the y-axis and have a width of Ax. The 

flux of fluid-volume through the bottom of the element is denoted by 

. Performing the volume balance yields 

AyHh1 12-;.3­
Ay(f dz 2 dz ) + Lx( 3 dz - h vv4dz) + AxAywO 

z 0Z :Z -Z
O 


= - (AxAy f dz)
at 

z 
0 

where the subscripts 1 through 4 associate the variables with the
 

appropriate element faces. Dividing this equation by AxAy and taking
 

the limits as Ax and Ay approach zero gives
 

H -

f dz f T---fz vdz + w 

at ax o 

or 

-a _a z - f vdz + w (2-49) 

0 a 

since z is independent of time. Eq. (2-49) has been derived in terms 

of ensemble mean values of the variables h, u and v, and is referred to 

as the mean water level equation where mean is not to be confused with 

a time average over a tide cycle. If the instantaneous values (i.e., 

mean plus fluctuating components) were used instead and an ensemble 

average of the resulting equation taken, Eq.. (2-49) plus the terms 



x 

'3
 

r 
-

Figure 2.1 element at free surface-Differential 
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h+h' a h+h' 
(u-(uu') dz-> (v+v') dz>ax h hy 

added to the right hand side would be obtained. These terms are 

neglected in the subsequent work by assuming that the free surface is
 

smooth and determined by long gravity waves (i.e., the length of the
 

wave is large compared to the depth of the flow).
 

H. APPLIED EQUATIONS
 

The state equation,mean conservation equations for mass, species
 

and momentum, and the mean water level equation set forth in the pre­

ceding sections are sufficient to describe the dynamics of an isothermal
 

estuary if proper initial and boundary conditions are supplied. A
 

general analytical solution to this set of partial differential equa­

tions and initial-boundary conditions is presently impossible because
 

of the nonlinearities in the system. On the other hand, specific
 

analytical solutions can be derived only after many drastic simplifica­

tions are made, and the results obtained are of limited applicability.
 

If the phenomena modeled are restricted to those associated with long
 

gravity waves and essentially horizontal fl6ws, then the inertial and
 

convective acceleration, turbulent momentum diffusion and Coriolis
 

terms in the vertical momentum equation are small compared to the pres­

sure gradient and gravitational acceleration terms and may be neglected.
 

Commonly used in estuary and oceanic modeling, this simplification is
 

called the hydrbstatic approximation (Dyer, 1973; Bowden, 1967).
 

Besides being based on sound physical ground, this approximation has
 

the added benefit of greatly reducing the computational effort required
 

to obtain a solution because it facilitates the pressure field
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calculation. The numerical scheme used in this work utilizes this
 

fact to full advantage. However, the approximation should not be con­

sidered a limitation on the scheme because the neglected terms in the
 

z-directed momentum equation could have been retained.
 

The other simplifications made concern the models for the turbu­

lent diffusion of mass and momentum. The model used for turbulent 

mass diffusion is 

D1 -- (0) + 2 ()] + D2 2S 

[ x2 ay23z 

where eddy diffusivity D1 is constant and D2 is Richardson number
 

dependent. The model for turbulent momentum diffusion is simplified
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to N -2 (u) in the x-directed momentum equation and N -2 (v) in the 
az z 

y-directed equation. In both equations the eddy viscosity N is
 

Richardson number dependent. Turbulent diffusion in the z-directed
 

momentum equation is neglected in making the hydrostatic approximation.
 

The decision to retain the horizontal turbulent diffusion terms in the
 

species continuity equation and to neglect the corresponding terms in
 

the momentum equations is the fact that mass generally diffuses faster
 

than momentum. -For either quantity, the turbulent diffusion rates in
 

the vertical are significantly larger than those in the horizontal and
 

the horizontal convective rates dominate the corresponding turbulent
 

diffusion rates. For convenience in future discussions, the actual set
 

of equations used in the model are presented in Table 2.1.
 

I. INITIAL-BOUNDARY CONDITIONS
 

According to the theory of partial differential equations, second­

order, linear, constant coefficient equations in one dependent and two
 

or more independent variables can be classified as being hyperbolic,
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TABLE 2.1 

Applied Equations 

State 

P = Pf + S 

Volume Conservation 

(2-50) 

I--x (u) + 2 (v-) + Iz (w) = 0 (2-51) 

Species Conservation 

I CS) 2 -!( ) - ( fc ) - L (w ) 

+ D1 a122 S)'+ a2 ( -) ] + D2 2 - (S) 
ax ay a 

x-Directed Momentum Conservation 

a -) _ a_ -­ 2 a - a --(ii) 3x- (u) - y-(uv) -8-(uw)
t ax (U T U)- Tz i p a p ) 

(2-52) 

a 
az 

(u) + fv (2-53) 

y-Directed Momentum Conservation 

a v)= CaCv-} V2)avt _x( 2  -
WV ax ay az 

2 
+ N -- (v) - fu 

3z 

)i P--- (p 
p ay 

(2-54) 

z-Directed Momentum Conservation 

0= -! (p) - g (2-55) 

Eddy Transport Coefficients 

N = Nma x (1 + 10. Ri ) - 0 . 5 

Dl = Dma x (2-56) 

(continued) 
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TABLE 2.1 (continued) 

D2 = D ( + 3.33 Ri) -
1 5 

Ri = g P 2 + v2)0.5]-2 (2-56) 

VITI. Water Level 

a- -
(h) ax 

f 

z 
0 

dz f 
@dz 

z 
0 

vdz + w 
0d~ 

(2-57) 
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parabolic or elliptic by examining the coefficients of the highest
 

order derivatives in the equation. Once the equation has been classi­

fied, specification of initial and boundary conditions follow in a
 

straightforward manner. For instance, if the equation is parabolic,
 

one initial condition (the value of the dependent variable as a function
 

of position at the initial time) is specified throughout the domain 

of the problem and one boundary condition (either the value of the 

dependent variable or its first spatial derivative normal to the 

boundary or a condition on a combination of both values) is specified 

at all points along the boundary of the problem domain. Unfortunately 

the problem at hand can not be reduced to a second order, linear, 

constant coefficient equation in one dependent variable. In fact, it 

consists of a system involving seven dependent variables and seven
 

equations of either the partial differential or algebraic type. Par­

tial differential equation theory has not developed to the stage that
 

such a complex system can be classified as to type and the required
 

initial boundary conditions automatically determined. Thus, one must
 

base the specification of these auxiliary conditions on the physics of
 

the problem and on the requirements of the numerical scheme used to
 

solve the system of equations. A set of auxiliary conditions based on
 

the physical aspects of the problem are presented in Table 2.2 and dis­

cussed below. These initial-boundary conditions will be discussed
 

again in the next chapter because their implementation in the numerical
 

scheme is not always straightforward.
 

Since the problem is time dependent, obviously a set of initial
 

These should
conditions on the dependent variables will be required. 


be physically realistic with regard to the expected behavior of the
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TABLE 2.2
 

Auxiliary Conditions for the Applied Equations
 

1
 
Initial Conditions 

u = uo(x,y,z) S = So(X,y,z) p = po(x,y,z) 

v = vo(X,y,z) h = ho(x,y) p = PO(x,y,z) (2-58) 

w = wo(,y,z) 

Boundary Conditions
 

" Solid surface
 

No mass transfer condition
2
 

+ 


T 	= (grad S).n = 0 (2-59)n 	 ~
 

+ 	Inviscid flow velocity conditions 

U-n = 0 = 0 (2-60) 

+ 	Viscous flow velocity conditions
 

u = 0 (2-61)
 

+ 	Surface wave reflection condition
 

-h 0 (2-62) 

an 

o 	Flow surface
 

+ 	River mouth conditions 

u = U(X1,y,z,t) S = S(X,y,z,t) = 0 (2-63) 

an
 

+ 	Tidal inlet conditions
 

=(u) 0 h = hX,(x,y,z,t) 	 or = 0 (2-64) 

iThe subscripts 0 and 1 denote initial conditions and boundary
 

2conditions, respectively.
 
n denotes a unit vector normal to the boundary surface and n, the
 
distance in the direction of n. (continued)
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TABLE 2.2 (continued)
 

o 	Free surface
 

+ 	Pressure condition
 

p = pl(X,y,t)
 

+ 	Shear stress condition 

T = T = 0 (2-65)xz yz
 

Wind induced shear stress condition
3
 

+ 


4 /3 
Txz c vw cos 6w T yz = c vw 
4 /3 sin 6w	 (2-66) 

where vw = Vwl(x,y,t) and = 0wl(X,y,t)w 


c is an empirical constant.
 
3 
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system for the imposed boundary conditions and they must satisfy those
 

equations not containing tiie derivatives such as the volume conserva­

tion, hydrostatic and state equations. The boundary conditions can be
 

grouped according to the type surface under consideration. These are
 

solid, flow and free surfaces where the first consist of the bottom and
 

banks of the bay, the second the river mouths and tidal inlets, and the
 

third the interface between the water and the overlying atmosphere.
 

The condition on the salt concentration at a solid surface is that
 

there is no diffusion of salt through the surface and thus that the
 

normal gradient (i.e., the gradient in the direction normal to the
 

surface) of the concentration is zero. The conditions on the velocity
 

vector at solid surfaces depend on the type of flow expected in the
 

region adjacent to the surface. If the flow is inviscid, then the
 

normal gradient of the magnitude of the velocity is zero. If the flow
 

is viscous, the velocity vector itself'will be zero at the suriace.
 

For reasons to be explained in the next chapter, the inviscid flow
 

will be associated with solid surfaces corresponding to the banks of
 

the bay and the viscous flow with the bottom. In both cases, the com­

ponent of the velocity vector normal to the surface is zero at the
 

surface. Another boundary condition associated with solid surfaces,
 

vertical banks in particular, is that the normal gradient of the water
 

level is zero at the surface. This condition is based on the fact that
 

the theory of small amplitude surface waves on an ideal fluid predicts
 

that the waves are reflected exactly at vertical walls.
 

The most troublesome boundary conditions to specify are those at
 

flow surfaces because the nature of these conditions depend on whether
 

inflow or outflow occurs and on what combination of velocity, water
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level and salinity distributions one is predicting as opposed to
 

forcing. In the present work, the velocity and salinity distributions
 

in the river mouths are forced while the water level distribution is
 

predicted. Since both inflow (i.e., flow into the bay) and outflow
 

occur at the river mouths in the course of a tide cycle, the forced
 

salinity distribution may become inappropriate if high salinity water
 

is convected from the interior of the bay across the flow surface. The
 

normal gradients of the water level at the river mouths are set to zero
 

due to a lack of data and the physical intuition that these gradients
 

have little influence on the water level in the interior of the bay.
 

At tidal inlets ideally the water level distributions are forced and
 

the velocity distributions are predicted. The salinity distributions
 

may be forced over a portion of the tidal inlet, say below a certain
 

elevation, and predicted over the remaining area during ebb tide and
 

forced over the entire area during flood tide. In those portions of
 

the flow surface where velocity or salinity distributions are predicted,
 

the normal gradients of the pertinent variables are set to zero. As in
 

the case of the river mouths, the forced salinity distribution in the
 

tidal inlet may become inappropriate if low salinity water is convected
 

through the corresponding area. The pressure and density distributions
 

at both solid and flow surfaces are determined by the water level and
 

salinity distributions as a consequence of the hydrostatic and state
 

equations. On the free surface, the pressure, which is equal to the
 

atmospheric pressure, and the shear stress are forced boundary condi­

tions. The shear stress is related to the wind velocity v at an
w 

elevation 10. m above the water level through an empirical relationship
 

presented by Hsu (1972).
 



CHAPTER 3
 

THE NUMERICAL MODEL 

A. LITERATURE SURVEY
 

The governing equations presented in the preceding chapter form
 

the basis for most estuarine models appearing in the literature.
 

Differences in the published models stem from the simplifications of
 

the governing equations used to make the problem more manageable and
 

from the numerical techniques employed to solve the simplified equa­

tions. A comprehensive survey of the literature on estuary models
 

would be prohibitively long since interest in the field has grown
 

rapidly in recent years and resulted in numerous publications. However,
 

if one limits oneself to time-dependent models that are truly three
 

dimensional and account for tidal phenomena and transport of a scalar
 

such as salt or heat, the relevant literature is considerably smaller.
 

Numerical models meeting these requirements have been developed by
 

Leendertse and others (1973), Waldrop and Farmer (1973), and Spraggs
 

and Street (1975). Before listing other relevant literature and dis­

cussing these models in detail, the following observations are in order.
 

A characteristic, common to the three works listed is that explicit
 

finite difference methods were used to solve the momentum and scalar
 

transport equations. This trait is a consequence of the fact that in
 

three-dimensional, time-variant fluid flow problems, fully implicit
 

finite difference methods or finite element methods require more com­

puter storage than is currently economical to use. Furthermore,
 

43
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semi-implicit finite difference methods such as-the alternating­

direction-implicit scheme are extremely difficult to apply in three­

dimensional problems with complex geometries. The reader is referred 

to Roache (1976) for a discussion of implicit finite difference methods 

and to Oden and others (1974) and Gallagher and others (1975) for 

finite element methods as applied to fluid flow problems. Street (1976) 

reviews several models applicable to estuarine systems but not neces­

sarily meeting the requirements outlined above. 

Leendertse and others (1973) and Leendertse and Liu (1975)
 

employed the hydrostatic approximation and conservation equations that 

have been averaged over horizontal layers. These layers were of con­

stant but not necessarily equal thickness in all but the top layer.
 

The thickness of the top layer varied in space and time with the water
 

level. Their calculation sequence is as follows. At each new time
 

level, horizontal velocity components, salinities, temperatures and
 

water levels were computed through the corresponding conservation
 

equation from flow field variables at the preceding two time levels.
 

Vertical velocities were obtained from the new horizontal velocities
 

through the volume continuity equation. The density field was calcu­

lated- from the new salinities and temperatures through a sophisticated
 

state equation and the horizontal pressure gradients from the new water
 

levels and densities through the hydrostatic equation. Turbulent dif­

fusion of momentum, salt and heat was modeled with eddy transport
 

coefficients in the vertical and dispersion coefficients in the hori­

zontal directions. While the dispersion coefficients were equal and
 

constant, the eddy transport coefficients depended on the vertical
 

gradient of the local horizontal velocities and on the gradient
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Richardson number. The Richardson number dependency promoted turbulent
 

diffusion in unstable density stratifications and inhibited it in
 

stable situations. Examples of these relations may be found on pa. 29
 

of Chapter 2. Since centered difference approximations to the space
 

and time derivatives were used,, the numerical scheme may be classified
 

as a midpoint rule or leap-frog method. This method is conditionally
 

stable for pure convection problems but unstable for combined convec­

tion-diffusion problems if the diffusion terms are evaluated with flow
 

field variables at the same time level as those used to evaluate the
 

convection terms. To prevent instability the turbulent diffusion terms
 

were computed with flow field variables from the preceding time level.
 

The maximum stable time step was limited by the Courant.-Friedricks-Lewy 

(CFL) criterion and a diffusion stability condition. After extensive
 

testing on simplified as well as real estuaries, Leendertse and Liu
 

(1975) concluded that the model was viable even though special pre­

cautions were required to prevent instabilities from originating at
 

tidal inlet boundaries.
 

Rather than make the hydrostatic approximation, Waldrop and
 

Farmer (1973, 1974) elected to neglect the local acceleration and
 

Coriolis terms in the vertical momentum equation but to retain the
 

convective acceleration and turbulent diffusion terms in addition to
 

the pressure gradient and gravity terms. The water level calculation
 

was based on the approximation that the rate of change in the water
 

level is proportional to the rate of change in the vertical velocity
 

component at the free surface.-,This approximation becomes exact as the
 

gradients in water level become small; but it should be re-examined
 

when applied to problems where significant tidal variations occur. In
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the publication cited, tides were not considered. Waldrop and Farmer
 

stretched the grid system in the horizontal directions to improve reso­

lution in the region of greatest interest. The calculation sequence is
 

primarily the same as that in the model of Leendertse and others except
 

that only flow field variables at the preceding time level were used,
 

the water level was computed after the vertical velocity components,
 

and the pressure field as opposed to the horizontal pressure grad­

ient field was explicitly calculated. Turbulent diffusion was modeled
 

with eddy transport coefficients that were spatially invariant but not
 

necessarily equal in magnitude for each direction. The numerical
 

scheme is a forward-in-time, centered-in-space method since forward
 

difference approximations to time derivatives and central difference
 

approximations to space derivatives were employed. The maximum stable ­

time step was limited to approximately one half that given by the CFL
 

criterion.
 

The model developed by Spraggs and Street (1975), Roberts and
 

Street (1975), and Street (1976) is an extension of the marker-and-cell
 

methods applied to constant composition, nonisothermal flows. The three
 

velocity components and temperature at a new time level were computed
 

from the flow field variables at the preceding time level through the
 

.corresponding conservation equations in an explicit manner. Then the
 

pressure field was computed from the flow field variables at the previ­

ous time level through a modified Poisson equation derived from the
 

momentum and volume conservation equations. Successive-overrelaxation
 

was employed to solve the Poisson equation at each time level. The
 

density was then calculated from a state equation. The water level
 

distribution was obtained from a kinetic free surface equation by a
 



47 

double-sweep alternating-direction-implicit method that rendered the
 

solution insensitive to rotations of the coordinate system about the
 

vertical axis. The turbulent diffusion terms were modeled with tem­

porally and spatially variant eddy transport coefficients calculated
 

from the rate of strain tensor for the mean velocity field and the
 

dimensions of the local grid cell. The eddy transport coefficients did
 

not depend on a Richardson number. Forward difference approximations
 

were used for time derivatives and centered differences for the space
 

derivatives except for the convective terms where a windward differenc­

ing scheme was employed. Apparently the critical stability limitation
 

for this model was the CFL criterion. Because an iterative calculation
 

was required to obtain the pressure field at each time level, Street
 

(1976) concluded that the model is too expensive to be used for long
 

real time calculations.
 

B. DESCRIPTION OF NUMERICS
 

The finite difference method utilized in the present work repre­

sents an extension of the method developed by Waldrop and Farmer (1974).
 

The method and the modifications made to it since the last published
 

description will be discussed in detail below. The discussion will
 

proceed from the nondimensionalization of the partial differential
 

equations to the grid system used and the temporal and spatial discreti­

zation of the applied equations to obtain finite difference equations.
 

Then the calculation sequence will be presented. Finally, the numeri­

cal viscosity, stability, convergence and accuracy of the method will
 

be considered.
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Nondimensionalization of Applied Equations
 

It is generally accepted that proper scaling or normalization of
 

the variables in a problem will result in a more accurate numerical
 

solution. For this reason, the applied equations of Table 2.1 were
 

rendered dimensionless with the following reference variables:
 

Pf = density of fresh water
 

H = length characteristic of the depth of the flow
 

g = gravitational acceleration
 

The nondimensionalization was accomplished by dividing the variables in
 

the applied equations by combinations of the reference variables as
 

shown in Table 3.1 and then canceling common factors. Note that the
 

normalized density anomaly Sdoes not appear in the table because it
 

is already dimensionless. If the asterisks are dropped, equations
 

identical to those of Table 2.1 are recovered except that pf and g are
 

replaced by unity; therefore, that table will not be repeated here.
 

Note that dimensionless variables and equations will be used in the
 

remainder of this work except where it is noted otherwise. To
 

emphasize this fact a period will be substitued for the hyphen in
 

equation numbers when the equation is nondimensional. Furthermore, the
 

bar over ensemble mean variables will be dropped since it is understood
 

that the mean conservation equations are being used.
 

Configuration of Grid Systems
 

The implementation of a finite difference method requires that
 

the partial differential equations be discretized, that is, the partial
 

derivatives in the equations must be replaced by appropriate finite
 

difference operators. The differences for these operators are defined
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TABLE 3.1
 

Dimensionless Variables
 

1. Density . . . .............. . . . .. p* = P/pf
 

2. State equation constant ...... P = 
................ /Pf
 

3. Position vector ........... ............. x* = x/H
 

4. Pressure................... p* = p/(pfHg)
 

5. Time ........... ..................... t* = t/f/iT
 

6. Velocity . ............... . . u* =. 


7. Eddy viscosity .....................N* = N/(HHg)
 

8. Eddy diffusivity ................. D* = D/(HVHg)
 

9. Coriolis parameter ........ ............. .f* = f/(/gTHH)
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in terms of a grid system superimposed on the time and space domain of
 

the problem. Modeling Mobile Bay required the use of two spatial grids
 

of different dimensions, a three-dimensional grid for the bay proper
 

and a two-dimensional grid for the ship channel. A two-dimensional
 

vertical grid was judged adequate for the ship channel because it is
 

straight, deep and narrow relative to the bay dimensions. Furthermore,
 

attempting to use a three-dimensional grid for the bay and channel
 

combined would result in the waste of many grid points because they
 

would be located in the ground. The three-dimensional spatial grid
 

employed in the bay proper is indicated schematically in Fig. 3.1. The
 

grid system for the space and time domain is generated by repeating the
 

spatial grid system at increments of At along the t-axis.
 

The discretization process in effect replaces the problem vari­

ables defined at an infinity of points in time and space by a set of 

discrete variables defined at a finite number of points in time and 

space generated by the intersections of the grid planes. Thus it 

becomes convenient to number or index the grid points with integers 

and to specify grid points with their indices. Thus, the space and 

time coordinates of a general grid point are denoted by t = tn}, 

x = x{i}, y = y{j} and z = z{k} where the integers (n,i,j,k) are 

specifically associated with the coordinates (t,x,y,z), respectively. 

The value of any time and space dependent variable, say Q, at a 

general grid point is denoted by Q{n,i,j,k. 

A horizontal view of the three-dimensional grid with the bound­

aries of Mobile Bay indicated is presented in Figure 3.2. The origin
 

of the coordinate system for the grid is located 5. m below mean sea
 

level at the State Docks below the Mobile River. The positive x-axis
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is directed due south, the positive y-axis due east, and the positive 

z-axis upward. The ship channel is approximately aligned with the
 

x-axis in reality and was taken as being exactly aligned with it in the 

model. The y-axis coincides with the causeway across the northern end
 

of the bay. The grid planes intersecting the x- and z-axes are spaced
 

at constant increments Ax and Az, respectively, while the increments
 

between the grid planes intersecting the y-axis vary with distance 

along that axis. The variation in the y-axis grid increments is such 

that resolution is increased in the vicinity of the ship channel at the 

expense of reduced resolution near the east and west banks. The motive 

for generating such a grid system was that large horizontal gradients 

in the flow variables were expected to occur along the channel and high 

resolution in the area of steep gradients generally results in more 

accurate solutions overall. 

Programming an efficient computer code is facilitated if the grid 

increments for a given coordinate direction are equal in size. Equal 

increments in the independent variable can be obtained by defining a 

coordinate transformation or stretching function, say Y = Y(y), such 

that equal increments in Y give the desired distribution of increments 

in y, and then rewriting the partial differential equations in terms 

of the new independent variable Y. This last step is accomplished by 

applying the chain rule to the derivatives involving the coordinate to 

be transformed. For instance, working with the general dependent 

variable Q, one has that 

= yt (3.1) 
3y 3Y
 

and
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(y,)2 + 2a y11 (3.2)
Y2 y 

where
 

Y, dY and Y" = 2 Y  (3.3)
dy dy2
 

Eqs. (3.1) and (3.2) are used to express the derivatives with respect
 

to y ii the equations of Table 2.1 in terms of derivatives with respect
 

to Y so that y appears as an independent variable in derivatives of
 

Y only. The particular stretching function employed to transform the
 

y-axis in the Mobile Bay model is
 

-
Y = k21 tan 
I (kI1 y) (3.4)
 

= or y kI tan (k2 Y) (3.5) 

where Y ranges from -1. to 1. and k and k2 are constants. The con­

stant k2 controls the distribution of increments in y. The smaller the
 

value of k2, the more evenly the grid planes tend to be distributed;
 

the larger the value of k2 , the more the grid planes tend to be concen­

trated about the x-axis. In any case, k2 should be between 0. and 4/2.
 

The constant k is fixed by the maximum absolute value of the variable
 

y. 

The two-dimensional grid employed in the ship channel is shown 

schematically in Fig. 3.3. Having the same origin and grid increments 

in the x- and z-directions.as the three-dimensional grid for the bay,
 

the two-dimensional grid coincides with the latter for positive values
 

of z. 
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Model Boundaries
 

The solid and flow surfaces in the Mobile Bay model were estab­

lished by approximating the prototype boundaries with a set of 

rectangular, flat surfaces oriented normal to the coordinate axes. All 

vertical solid surfaces in the model are located midway between the 

grid planes that bound them. Thus, a vertical solid surface in the 

model oriented perpendicular to the x-axis and falling between x{i} and 

x{i+l} is located at x{iJ + Ax/2, while one oriented perpendicular to 

the stretched y-axis and falling between y{il and y{j+l1 is located at 

y{j} + (AY/2)[(Y'{jJ + Y'{j+l}/2] - I . All flow surfaces are vertical 

and coincide with grid planes. Horizontal solid surfaces are positioned 

at any elevation desired within the grid. below z{k - 2). This 
max
 

restriction was imposed so that at least one general interior point
 

exists in each grid column. The reason for the additional flexibility
 

in positioning the horizontal surfaces will become apparent when the
 

boundary conditions are discussed.
 

Using the approximations described above, the sides of Mobile Bay
 

are treated as steep banks which is reasonably accurate. The bottom of
 

the bay is fitted with a patchwork of horizontal rectangles located at
 

elevations corresponding to the average local depth at each vertical
 

grid column and vertical rectangles to seal the gaps. The resulting
 

model boundaries are illustrated in the top and side views of the grid
 

system in Figs. 3.2 and 3.3, respectively.
 

The degree'of approximation used in fitting the location of the
 

free surface depends on the particular applied equation involved. For
 

the horizontal momentum equations applied at grid points just below the
 

free surface, a crude approximation is sufficient with the surface being
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fixed at an elevation midway between the top grid plane and a fictitious
 

grid plane one vertical grid increment above the top plane. An excep­

tion to this statement .is that the gradient of the shear stress induced
 

by wind is dependent on the actual free surface location at each
 

vertical grid column. A better approximation is required for the
 

vertical momentum and water level equations so the free surface is
 

located a distance h{n,i,j} - z{k I above the top grid plane at each
 max 

vertical column. The latter .fit to the free surface is shown in
 

Fig. 3.3.
 

Finite Difference Equations-


The appropriate finite difference operators referred to in the
 

preceding subsection will now be presented. The presentation will be
 

in terms of the fictitious dependent variable Q at an arbitrary grid
 

point internal to the flow field. .To facilitate the presentation of
 

the finite difference equations, several of the operators will be
 

assigned symbols.
 

First-order, spatial derivatives in the linear terms of the con­

servation equations are approximated by central difference operators.
 

These operators are denoted by Ac where the subscript x indicates the
 x 

coordinate direction with respect to which the difference is taken.
 

The point about which the operator is applied and the size of the
 

spatial increment used is indicated by the indices of the dependent
 

variable. For instance, the first derivative of Q with respect to x
 

evaluated at the grid point (n,i,j,k) is approximated by
 

Q{n,i,j,k} z AcQ{n,i,j,kI 
x x
 

(2Ax)l(Q{n,i-fl,j,kI - Q{n,i-l,j,kl) (3.6)
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or if the coordinate has been stretched as y in the present work, by
 

ay Q{n,i,j,k} z A Q{n,i,j,k}
 
ay y 

= (2AY)-I(Yj})(Q{n,i,j+1,k} - Q{n,i,j-l,k}) (3.7) 

where Y'{jJ is given in Eqs. (3.3). The first-order derivative with 

respect to x evaluated at a point midway between the grid points 

(n,i,j,k) and (n,i+l,j,k) is approximated by 

Q{n,i+l/2,j,k} z AcQ{n,i+1/2,j,k} 

= (Ax)- (Q{n,i+l,j,k} - Q{n,i,j,kl) (3.8) 

Second-order, spatial derivatives in the conservation equations are 

also evaluated with central difference operators. The fact that the
 

operator represents a second order derivative is indicated by repeating
 

the subscripts on the symbol for a central difference operator twice.
 

Thus the second derivative of Q with respect to x evaluated at the grid
 

point (n,i,j,k) is approximated by
 

2­a Q{n,i~j,k} A cQ{n,i,j,k}
 

= (Ax)-2(Q{n,i+l,j,kl - 2Q{n,i,j,k} + Q{n,i-l,j,k}) (3.9) 

or for the stretched coordinate y by 

2 
a Qtn,i,j,k} z Ac Q{n,i,j,kl

ay2 yy
 

= (AY)-2(Y'{j})2 (Q{n,i,j+l,k} - 2Q{n,i,j,kl + Q{n,i,j-l,k})
 

+(2AYky"{jl})(Q{n,i,j+l,k} - Q{n,i,j-l, k}) (3.10) 

The second-order, central difference operators are applied only at
 

defined grid points and not at points midway between grid points in the
 

present work. The truncation error for a finite difference operator
 

is the error made in approximating a derivative by the operator. This
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error can be assessed by deriving the operator from Taylor series
 

expansions of the dependent variable about the points where the opera­

tor is applied. The truncation errors for the central difference
 

operators presented above are second order in the grid increment; that
 

is, the error is proportional to the square of the grid increment and
 

the operators are said to be second-order accurate.
 

The first-order derivatives in the convective terms of the momen­

tum and species conservation equations are nonlinear and represent a
 

special case in finite differencing when they are important to the
 

problem solution. Apparently no single difference operator can dupli­

cate all the properties associated with the convective derivatives.
 

Roache (1976), Spraggs and Street (1975) and Codell (1973) discuss
 

several difference operators in terms of such concepts as phase error,
 

numerical viscosity, the conservative property, the transportive
 

property and truncation error. Truncation error has already been
 

defined and numerical viscosity will be discussed later in this chapter.
 

Phase error is related to the rates at which the various wavelengths in
 

a Fourier series representation of the dependent variable are trans­

ported. If some wavelengths move at the proper rates while others do
 

not, phase errors are said to exist. A difference operator has the
 

conservative property if it is capable of identically satisfying
 

integral formulations of the conservation laws disregarding round-off
 

errors. It has the transportive property if it convects a local dis­

turbance (i.e., a disturbance at a single grid point) in the direction
 

of the local velocity only. While the consensus is not unanimous, the
 

following upwind difference operator presented by Roache (1976) appears
 

to be superior in terms of the above mentioned properties. Let Q
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represent a conserved quantity such as specific momentum or a chemical
 

species and u and v represent velocity components in the x and y
 

directions, respectively. Then the convedtive derivative is approxi­

mated by 

- (uQ){n,i,j,kl = A(uQ){n,i,j,k} = (Ax)-i(UFQFUBQ) (3.11) 

where uF = 0.5 (u{n,i+l,j,k} + u{n,i,j,kJ)
 

uB = 0.5 (u{n,i,j,k} + u{n,i-l,j,k})
 

Q{n,i,j,k} if uF > 0 
QF = Q{n,i+l,j,k} if uF < 0 

Q{n,i-l,j,kl if uB > 0 
QB = Q{n,i,j,kl if uB < 0
 

and the subscripts F and B are intended to suggest forward and backward,
 

respectively. For the stretched coordinate y, the operator is given by
 

a (vQ){n,i,j,kl z y(VQ){n,i,j,k} 

= (y)-i (Y'{jl)(vFQF-vBQB) (3.12)
 

where vF, vB, QF and QB are defined in a manner analogous to the cor­

responding variables in Eq. (3.11). The truncation error for this
 

upwind difference operator is formally first-order in the grid incre­

ment, but the error approaches being second order when the conserved
 

"
 quantity is distributed uniformly (i.e., QF = QB)

All the terms involving spatial derivatives in the applied equa­

tions of Table 2.1 may be approximated by selecting an appropriate
 

finite difference operator from those introduced above with one excep­

tion, the integro-differential term of the water level equation. The
 

difference operator for this term and a symbol to denote the operator
 

are now-defined. The approximation is, letting m = n + 1,
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h .~wh{n,ijl}.. .
 
h- udz){n,i,jJ z AwIh '
jn,i,jM3-J,k}

/Zjkmaxl-1- n x z{kmax-1 

= 	 (86x)-l[(u{m,i+l,.j,kma} + u{m,i+l,j,kma-11 +umijk 
umm, iaxmax}

max
 

+ 	 u{m,i,j,kma-l})(h{n,i+l,j} + h{n,i,jI + 2Az) 

-	 (u{m,ij,kma x + u{m,i,j,kmax-11 + u{m,i-l,j,kma x } 

+ u{m,i-l,j,kmax-1) (h{n,i,jI + h{n,i,j+l} + 2Az)] (3.13) 

or for a stretched coordinate such as y, it is 

a h ^wlhfn,i,j } . .
 

(=y m lvdz){n,i,j} A zI j v{m'i'j kQ
- h 
ayzfkma-11 	 y zfkmx-11 ...
 

= 	 [4(y{j+l-y{j-l})] [i(v{m,i,j+l,kmax}+v{n,i,j+l,kmax-l} 

+ 	v{m,i,j ,kmaxI+v{m,i,j ,kmax-11) (h{n,i,j+l+h{n,i,jl+2Az)
 
(v{m,i,j,kmax +Vim,i,j,kmax-1}+v{m,i,j-l, ma x }
 

+ v{m,i,j ,k1max-l) (h{n,i,j]-+h{n,i,j-l}+2Az)] (3.14) 

Note that (AY)- '{j} has been replaced by the equivalent [(y{j+l} ­

y{j-l})/2] -1 and that z{k -11 corresponds to the z° of Eq. (2-5).max0
 

The I in the symbol for the operator is intended to suggest the integral.
 

Since the operator is centered about the point of its application, it
 

should be second-order accurate.
 

Now all the terms involving spatial derivatives in the applied
 

equations of Table 2.1 can be represented by finite differences. The
 

results of doing so are given in Table 3.2. There is a one-to-one
 

correspondence in the terms for each equation in the two tables with
 

four exceptions. Remembering that the variables have been made dimen­

sionless so that pf and g are replaced by unity, one finds the excep­

tions to be as follows: (1) In the volume conservation equation, the
 

gradients in the horizontal velocity components are evaluated at
 

(n,i,j,k+1/2) by averaging central difference operators applied at
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(n,i,j,k) and (n,i,j,k+l). The motive for using this particular
 

approximation will become apparent when the calculation sequence is
 

discussed below. (2) The z-directed momentum equation (or hydrostatic
 

equation) has been modified before differencing it. The applied equa­

tion is
 

p

9z ­

which upon integration from elevation z to the free surface gives
 

h 
p = f pdz' (3.16) 

z 

if atmospheric gage pressure is taken to be zero. If Eq. (3.16) is 

applied to freshwater in static equilibrium and having a water level 

located at z = z{k I} which corresponds to mean sea level in the max ­

present work, one has that
 

p z{kmax dz for z < z{k I
 
eq max
 

z 

(3.17) 

Peq= 0 for z > z{kmax 

Subtracting Eqs. (3.17) from Eq. (3.16), rearranging and applying
 

p = 1. + S gives 
h z{k } 

p' P - Peq =1 pdz' + f maxBSdz' for z < z{kma x 
eq z{k z a 

h max (3.18) 
p p - f pdz' for z > z{kma x 

z 

The pressure difference p' represents the deviation of actual pressure
 

from a reference pressure caused by changes in water level and density.
 

The advantage of using p' instead of p in calculations with numbers of
 

finite length is primarily realized when pressure gradients are induced
 

by density variations or small deviations in the water level from the
 



TABLE 3.2 

Finite Difference Equations 

I. State 

II. 

III. 

p = 1. + aS{n,i,j,k1, p-i = 1. ­ OS{n,i,j,k} 

Volume Conservation 
SC C 

A w{n,i,j,k+1/2} = -0.5(Acu{n,i,j,k+l} + Acu{n,i,j,k}
z x x 

Species Conservation 

+ Acv{n,i,j,k+l}
y 

+ Acv{n,i,j,k})
y 

(3.19) 

(3.20) 

~--S{n,i,j,kY
T 

-A (uS){n,i,j,k} - Aw(vS){n,i,j,kJ - Aw(wS){n,iL,j,kl
y z 

+ D (AxC S{n,i,j,k} + Ac StnIi,j,k)) + D Ac S{n,i,j,k}
l xx yy 2 zz 

(3.21) 

S{n+l,i,j,kl = S{n,i,j,k} + (0.5)% S{n,i,j,k} + Tt S{n-l,i,j ,k}) (At) (3.22) 

IV. x-Directed Momentum Conservation 

ufn,i,j,k} = -AW (uu){n,i,j,k} - A (vu){n,i,j,k} - Az (wu){n,i,j,k}
x ~ y 

-c, c - p-A p{n,i,j,k} + NAz u{n,i,j,k} + fv{n,i,j,k) (3.23) 

u{n+l,i,j,k} = u{n,i,j,kl + (0.5)( u{n,i,j,k} +a ufn-l,i,j,k})(At) (3.24) 

01 
w) 



TABLE 3.2 (continued) 

V. 	 y-Directed Momentum Conservation
 

a w w
 
-vn,i,j,kl -A 	 - (vv){n,i,j,k} A (wv){n,i,I,,k}~(uv){n,i,j,k} Aatx 	 y 

- p lA pI{n,i,j,k} + NACzv{n,i,j,k} - fu{r i,j,kl 
y 	 zz 

v{n+l,i,j,k} 	= v{n,i,j,k} + (0.5)(j v{n,i,j,k} + avntl,i,j,k})(At) 

VI. z-Directed Momentum Conservation
 

p'{n,i,j,kmax=Iph{n,i,jI for k kma 

ACpt{n,i,j,k+1/2}m = -0.50(S{n,i,j,kI + S{n,i,j,k+l) form,k < kmax 

VII. 	Water Level
 

c h{ni ,i,j) (ch{n,i,j
(Ac zrk l n i,
-h{n,i,j} = 	-(Ax I ..max-11.unl,i,j,k) - y zj"max -yflijklz k 


+ y(A" hnij} + Ach{n,i,j})
xx 	 Iy 

,1 a...+ L i))Aa)
h{n+,i,j = h{n,i,j +h{n,i,j + hn-l,i,j)(At) 

VIII. Eddy Transport Coefficients
 

Ri) 0 . 5 
N = Nmax(1. + 10. 


5
Ri) - 1 
D2 = Dmax(l. + 3.333 


Ri = ACSc2 20.5 n }-2

Ri O~Sjn,i,kEA (u + v ) {n,i,j,klI(,3) 

(3.25)
 

(3.26)
 

(3.27)
 

(3.28) 

(3.29) 

(3,30) 
4 
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reference level. In this situation, several significant figures of
 

accuracy are retained that would be otherwise lost when horizontal
 

pressure gradients are computed near the bottom of the flow field. Of
 

course, this advantage'dimiiiihes as the deviations of the water level
 

from the reference level increase. (3) An arbitrary term is added to
 

the difference equation for the water level. This diffusion-like term
 

has a stabilizing effect on the calculation. In fact, without the term
 

the calculation would be unconditionally unstable. Determining the
 

magnitude of y, referred to as an artificial viscosity, will be dis­

cussed later in this chapter when stability is considered in detail.
 

(4) With little error, the density in the Richardson number calcula­

tion is taken to be unity. Thereby, an operation in an expression that
 

is evaluated thousands of times in the course of a simulation is elim­

inated. The density gradient in the Richardson number is simply 0 times
 

the gradient of S.
 

With consistent flow field data at time level n, the volume and 

z-directed momentum conservation difference equations of Table 3.1 are 

identically satisfied aid the right-hand sides of the difference equa­

tions containing time derivatives can be evaluated. To proceed to time 

level n+l, finite difference operators for the time derivatives are 

required. The forward difference operator,
 

Q{niik} z (At)- (Q{n+l,i,j,k} - Q{nAi,j,k}) (3.31) 

which is first-order accurate in At, is commonly used. The use of this
 

operator results in difference equations that ican be solved explicitly
 

for the dependent variable at time leve-l'n-+L Thus,
 

Q{n+l,i,j,k} = Q{n,i,j,k} + (At) Qtn,i,jk}) (3.32) 
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where 2Q{n,i,j,k} represents the results of evaluating the right-hand
 

side of a conservation or water level equation in Table 3.2. The
 

limitations of the forward difference operator are the small allowable
 

time step required for stable calculations and the fact that solutions
 

generated with it tend to oscillate from one time level to the next. A
 

simple modification reported by Waldrop and others (1974) that improves
 

stability and removes the oscillations is to replace
 

Q{n,i,j,k} with 2 ( -Q{n,i,j,k} + T Q{n-l,i~j,k}) 

to obtain
 

Q{n+l,i,j,kl = Q{n,i,j,ki + (0.5)(t Q{n,i,j,k} 

+ y Q{n-l,i,j,kl) (At) (3.33)at
 

This modified forward difference operator is formally first-order
 

accurate in At. It should be noted that when large time steps are as
 

important as accurate solutions, there may be an advantage to using a
 

first-order accurate finite difference operator for the time derivative.
 

The advantage lies in the fact that the truncation error is directly
 

proportional to At for a first-order accurate operator while it is pro­

portional to a higher power of At for a higher order accurate operator.
 

Thus the truncation error for the latter may be greater than that for a
 

first order accurate operator at large time steps. Also note that the
 

scheme represented by Eq. (3.A3) is simple to implement and requires
 

little additional computer storage or operations over that of the
 

normal forward difference operator.
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Boundary Conditions
 

The finite difference equations developed in the preceding para­

graphs apply at general interior grid points, that is, points whose
 

closest neighbors are immersed in fluid, also. To those grid points
 

located adjacent to or in solid, flow or free surfaces, special consid­

eration must be given in order that boundary conditions applying at the
 

surfaces are satisfied. In many cases, this is accomplished by assign­

ing certain values to dependent variables at grid points located
 

outside the flow field. To avoid conflicts that arise at convex
 

corners of the flow field boundary, these assignments are made at the
 

time the finite difference equations are evaluated. No data are stored
 

in or retrieved from the computer-storage locations associated with
 

igrid .points outside the flow field. Some boundary conditions require
 

that the finite difference formulations of the applied equations be
 

modified. The detailsof applying the boundary conditions will be
 

presented at this point. The reader is referred to Table 2.2 for
 

analytical statements of these auxiliary conditions.
 

For a solid surface oriented normal to the x-axis as indicated in
 

Fig. 3.4, the no mass transfer condition by diffusion is satisfied by
 

assigning the value of the species concentration at the point (i,j,k)
 

inside the flow field to that of the point (i+l,j,k) outside the 

flow field at each time level. Thus,
 

S{n,i+l,j,k} = S{n,i,j,k}. (3.34)
 

For solid surfaces oriented normal to the other coordinate axes
 

analogous assignments apply.
 

The geometry of Mobile Bay is such that the grid increments in the
 

horizontal directions must be on the order of kilometers in magnitude
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Figure 3.4 - Typical grid point located adjacent model banks
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if the number of grid points is to be manageable. Since the model
 

banks are located midway between the bounding grid planes, the normal
 

distance from a bank to the nearest grid point is still large. In
 

fact, the distance is so large that the solid surface has negligible
 

viscous effect on the velocity at nearby grid points. Thus, the appro­

priate boundary conditions on the velocity field at the model banks
 

are those for inviscid flow. The conditions of zero normal velocity
 

and zero normal gradient in tangential velocity are implemented with
 

the reflection technique of Richtmyer and Morton (1967). Consider a
 

grid point adjacent to a bank, such as point (i,j,k) in Figure 3.4 and
 

the point (i+l,j,k) on the opposite side of the bank in the solid. The
 

zero normal velocity condition at the surface is achieved by making the
 

assignment
 

u{n,i+l,j,k} = -u{n,i,j,k}. (3.35)
 

When the windward difference operator of Eq. (3.11) is applied at point
 

(i,j,k) with respect to the x-direction, Eq. (3.35) will result in zero
 

normal flow at the bank, the desired result. T4 zero normal gradient 

in tangential velocity is implemented with the assignment 

v{n,i+l,j,kl = v{n,i,j,k). (3.36) 

In contrast to the large grid increments required for the hori­

zontal directions, the vertical grid increment is small, on the order
 

of a meter. Thus, the bay bottom is relatively close to the adjacent
 

grid points, and the viscous effects of the horizontal solid surface on
 

the velocity at these points should not be neglected. Therefore, the
 

viscous flow condition of zero velocity at a solid surface is applied
 

to the bay bottom. On the other hand, the resolution of the grid in
 

the vertical direction is not sufficient to accurately resolve the
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steep gradients in velocity associated with turbulent flow near the
 

bottom. To overcome this obstacle, the following artifice is employed.
 

Consider the typical bottom grid point (iJkbot) indicated schemati­

cally in Fig. 3.5; note that the value of kot depends on the location
 

of the vertical grid column (i,j). By assuming that the logarithmic
 

velocity profile for a fully developed turbulent boundary layer applies
 

from the bottom up to elevation z{k.ot + l},a horizontal velocity at
 

(i,jk.ot) can be obtained by several interpolation procedures. The
 

procedure used here matches the slope of the model velocity profile
 

with that of the logarithmic velocity profile at z{kbot I + Az/2. The 

interpolation formula that accomplishes this match is
 

n{n,i,Jkbot I = 

-u{ni'ikbot + l}.[l-Az(zl)- (ln(z 2 /ks) + 8.5ko) ] (3.37) 

where
 

zI1 Z{kbot } - Zbot{i,j} + Az/2
 

Z2 {=bo t + 11 - Zbot{iij 

Zbot{ii,j} = bottom elevation at grid column (i,j)
 

k = length characteristic of bottom roughness elements
 

k = 0.4, von Karman's constant. [ 

An analogous formula may be written for v{n,i,ji\t. This interpola­

tion formula is flexible in that it allows the model bottom to be
 

positioned anywhere between grid points and that it accounts bottom
 

roughness. Its greatest shortcoming is that it presumes that the flow
 
I 

at zfok I is in the same direction as the flow at z{kb + 11 which is
 

not necessarily true. The boundary condition on the vertical velocity
 

component at the bottom is that the component is zero. This condition
 

is imposed on the volume conservation equation by evaluating its finite
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Figure 3.5 - Typical grid point adjacent to: model bottom 



72 

difference form over a vertical height z{ktl - Zbot{i,jl instead of 

Az and setting the horizontal and vertical velocity components to zero 

at Zbot{ii,} in equation (3.20). 

The boundary condition on the water level at the banks of the bay 

-is the surface wave reflection condition. It is implemented by setting 

the water level at points outside the flow field equal to the level at 

the corresponding point inside the flow field. For the typical hori­

zontal grid location (i,j) indicated in Fig. 3.4, this assignment is
 

accomplished with 

h{n,i+l,j} = h{n,i,j} (3.38) 

A top view of the grid configuration at a typical river mouth is 

given in Fig. 3.6. As the figure indicates, the width of the river
 

mouth is generally smaller than the horizontal grid increment normal
 

to the direction of the discharge. The forced flow condition at the
 

grid column located in the flow surface in the river mouth was imple­

mented with
 

u{n,i,j,k} = u max[l.(lr(/z2) 7] (3.39) 

u 
max 

C(Uavg + uvarlcos(2(t{n}-%l)/T) + uvar2cos(4n(tfnl-@2)/T) (3.40) 

where 

I = z{k} - Zbot{ilj} 

z2 = h{n,i,j} - Zbotfilj} 

u = tidal average river discharge velocity 
avg
 

Uvarl'Uvar2 = amplitudes of first and second variations in
 

discharge velocity
 

phase lags for first and second variations
 

T = period of tide cycle
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Figure 3.6 - Typical grid configuration at a forced flow surface 
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umax = velocity at free surface
 

c 
 = conversion factor relating average and maximum velocities
 

for the profile used.
 

Eq. (3.39) provides a flat velocity profile that rapidly drops to zero
 

at the bottom of the river. Eq. (3.40) accounts for the time variation
 

of the river flows and was obtained by fitting the trigonometric series
 

to average river velocities-time data derived from field measurements.
 

The velocity specifications presented above are for the actual cross
 

sections of the river mouths. Before these velocities are used in the
 

Volume conservation equation or in calculating the transport velocity
 

for the convective acceleration term in the directed momentum equation,
 

they are multiplied by the -ratio of the width of the river mouth to
 

AY(Y'{j})-, the horizontal grid increment normal to the direction of
 

the river flow, in order to cbnserve fluid volume. The salinity dis­

tribution in the river mouths was given by
 

S{n,i,j,kl = 0. (3.41)
 

As commented in the previous chapter, this boundary condition would be
 

inappropriate if saltwater intrusion or reversed flow occurred at the
 

river mouths to a significant extent. The concentration of the species
 

at the flow surface during outflow would have to be obtained by extrap­

olation from grid points in the interior of the flow field or by a
 

simplified formulation of the species conservatilon equation. The
 

boundary condition on the water level at the river mouths was imple­

mented with
 

h{n,i,j} = h{n,i+l,j} (3.42) 

which implied that the water levels in the river mouths are essentially 
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controlled by the water levels in the bay. This approximation is valid
 

for the range of flows considered in the present work.
 

The boundary conditions on the velocities in flow surfaces at
 

tidal inlets are based on the assumption that the flow field does not
 

change appreciably by the time it reaches a fictitious plane of grid
 

points located one grid increment outside the flow field. Thus, in
 

terms of the typical tidal inlet grid point (i,j,k) indicated in
 

Fig. 3.7, the conditions on the horizontal velocity components are
 

u{n,i+l,j,k} = u{n,i,j,k}
 

v{n,i+l,j,k} = v{n,i,j,k}. (3.42)
 

The vertical velocity component in tIfe flow surface is calculated with
 

the volume conservation equation and the assignments of Eqs. (3.42).
 

The boundary conditions on the species concentration are
 

S{n,i,j,k} = 1 for z{k} < z{kcud 

S{n,i+l,j,k} = S{n,i,j,k} during ebb (3.43)
 

for z{k) > zfkcut
S{n,i+l,j,k} = 1 during flood) 


This first boundary condition is based on field data indicating that
 

gulf water persists below a level z{kcut throughout the tide cycle.
 

The second condition allows bay water of low salinity to exit through
 

the tidal inlet during ebb tide and gulf water to enter the bay during
 

flood tide. The boundary condition for flood tide above z(kcut
 

presumes that the discharged bay water from the previous ebb tide is
 

swept away by currents in the gulf or mixed with a large volume of
 

gulf water so its salinity becomes essentially that of gulf water. The
 

water level in the tidal inlet is a forced function of time. The 

function employed in this work is 

h{n,i+l,jI = havg +ha r cos (2w(t{n}-3)/T) (3.44) 

avg va 

OP-P~QIA' 
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where
 

h = tide average water level
avg
 

h = amplitude of the tide variation
 var
 

3 = phase lag in the tidal variation.
 

The forced water level boundary condition was applied at the fictitious
 

grid plane at x(i+l) in Fig. 3.7 because it was expected that flow
 

geometry and Coriolis effects would generate gradients in the water
 

level across the tidal inlets. Presently there are no published field
 

data to substantiate this expectation or to generate water level forcing
 

functions that are dependent on location across the inlets. However,
 

one would expect there to be smaller lateral gradients in the water
 

level than longitudinal ones at-positions removed from the inlets.
 

The original intent was to treat both the Main Pass and Pass Aux Herons
 

in the same way with regard to boundary conditions. As the development
 

proceeded, it became necessary to treat the Pass Aux Herons with the
 

river velocity boundary conditions for velocity with umax being deter­

mined as a percentage of the average velocity through the Main Pass.
 

The treatment of the Pass Aux Herons boundary conditions will be dis­

cussed in more detail in Chapter 4.
 

If application of boundary conditions to solid and flow surfaces
 

is complex and fraught with approximations, application of boundary
 

conditions to free surfaces is doubly so because the surface is free to
 

move and not necessarily bound between any two grid "points for all
 

time. In the present work, the approach to application of boundary
 

conditions to the free surface is very simplistic but the particular
 

implementations used are sufficiently accurate to obtain reasonable
 

solutions. The implementations used may be divided into two categories:
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1) those whose application of necessity depend on the exact location
 

of the free surface, and 2) those whose application do not require
 

such exactness. An approximation inherent in all the implementations 

used here is that the gradient of a quantity normal to the free surface 

is equal to the gradient in the vertical direction.
 

The boundary conditions failing in the first category in the pres­

ent work is the pressure condition, and the wind shear stress condition.
 

The pressure condition was implemented through the first equation of
 

Eqn. (3.27) where p' = 0. The wind shear stress condition influences
 
at
 

the horizontal velocity components at the elevation z{k through the
 
max
 

vertical gradients of the horizontally directed shear stress. This
 

influence is incorporated in the finite difference formulations of the
 

horizontal momentum equations by adding extra terms of the form
 

TW/(h{n,i,j}-z{k I + Az/2) and TW /(h{n,i,j}-z{k ) + Az/2) 
xz max yz max 

to the x- and y-directed equations, respectively when they are evalu­

ated at z{k }. These implementations, which account for the effectmax
 

of the free surface location on the magnitudes of the gradients in a
 

natural way, presume that the vertical diffusion of momentum at
 

z{kmax-Az/2 without wind is negligible in comparison to that induced 

by the wind.
 

The boundary conditions falling in the second category are the no
 

mass transfer condition and zero shear stress condition in the absence
 

of wind. In terms of the typical grid point (i,j,ka) near the free
 
max 

surface in Fig. 3.8, these conditions were implemented with 

S{n,i,j,kmax + 11 = S{n,i,j,kmax1 (3.45) 

OP ?QO~v PAGZ 
J2~7 
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Figure 3.8 - Typical grid configuration at free surface
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u{n,i,j,kmax + l} = u{n,i,j,kma x I 

v{n,i,j,k + 11 = v{n,i,j,kmax 

w{n,i,j,kmax + 11 = w{n,i,j,k}max (3.46) 

where (k max+ i) denotes a fictitious grid plane located a distance Az
 

above zk }. The primary justification for using the course approxi­max
 

mations of Eqns. (3.45) and (3.46) is that the implementation of more
 

accurate specifications generally results in a slow computer code. Now
 

that it has been demonstrated that the present model is operative, more
 

accurate specification of free surface boundary conditions is a logical
 

next step in improving the model.
 

As the model is presently programmed, the water level may not move 

below the elevation z{kmax - 11. This restriction is imposed in order 

that in shallow water areas, at least one general interior grid point 

will remain submerged in water. While there are no programmed restric­

tions on how high the water level may rise, the solution would be 

suspect if the level moved above z{kmaxI + (2)(Az). 

Calculation Sequence
 

Assuming that values of u, v, w, S, p and h at time level n and of 

au 8v 3S and iat' Dv and ay-at time levels n and n-l are available for the rele­

vant grid points in the flow field, the sequence for computing the 

values of these variables at time level n+l is as follows: 

1. On the,first sweep of the flow field, values of S, u and v are
 

calculated with Eqns. (3.21) through (3.26) using the pertinent bound­

ary conditions at the solid and free surfaces. Although it is imma­

terial to the results, the sweep of the flow field proceeds first in
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the positive z-direction, then in the positive y-direction and finally
 

in the positive x-direction.
 

2. On the second sweep of the flow field, values of w are calcu­

lated with a spatial integration of Eqn. (3.20) using the new horizontal
 

velocity components. The sweep of the flow field on this step must
 

proceed in the positive z-direction first in order that the zero verti­

cal velocity boundary condition may be applied at the bay bottom. The
 

sweep then proceeds arbitrarily first in the positive y-direction and
 

then the positive x-direction.
 

3. In addition to the spatial integration of step 2, on the
 

second sweep values of h are computed with Eqns. (3.28) and (3.29).
 

4. On the third sweep of the flow field, values of p' are calcu­

lated using the new salinities and water levels. In contrast to step 2,
 

the sweep must proceed in the negative z-direction first so that the
 

zero atmospheric gage pressure can be satisfied at the free surface.
 

5. Values of u, v, S and h associated with flow surfaces that are
 

forced functions of time are calculated.
 

6. Instantaneous and net volumetric flows through flow surfaces
 

and accumulations within the bay are computed with the appropriate
 

surface, volume and time integrations.
 

This sequence is repeated as many times as are required to com­

plete the simulation. The combination of the above calculation sequence
 

and the finite difference equations of Table 3.2 yields an explicit
 

method that requires the retention of arrays of u, v, S and h at two
 
3u av aS and1hat 

consecutive time levels and arrays of w, p, as and Lat one 

time level. The retention of p is not required because the density and 

its reciprocal are calculated from Eqn. (3.19) as needed. 
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Numerical Viscosity, Stability, Convergence and Accuracy
 

According to Roache (1976), implicit numerical or artificial
 

viscosity is a particular kind of truncation error produced by some
 

finite difference approximations to the convective terms in conservation
 

equations. Furthermore, explicit numerical Viscosity can be generated
 

by adding to the finite difference equation the product of a non­

physical coefficient times a difference approximation to the second­

order spatial derivative of the conserved quantity. Explicit numerical
 

viscosity is frequently employed to achieve stability. Both implicit
 

and explicit numerical viscosity are present in the,system of finite
 

difference equations used in the present work and are considered below.
 

An analysis for the implicit numerical viscosity in a finite
 

difference equation is possible only if the equation is linear with
 

constant coefficients. In addition the analysis becomes prohibitively­

complex if coupled systems of difference equations are considered;
 

Within these limitations the most physically meaningful equation left
 

subject to analysis is the convection-diffusion equation
 

= -V 'Q + a '2Q (3.47)
at a a x 2 

or a multidimensional variation therefore,* where Q is a conserved 

quantity, V is a constant convective velocity, and a is viscosity or 

diffusion coefficient. Assuming that V is positive and applying the 

modified forward difference 6perator for the time derivative, the wind­

ward difference operator for the convective term and the centered 

difference operator for the diffusion term as described earlier in this 

chapter, one obtains 
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Q n,i} = -V Q{n,i}-Q{n,i-1} Q{n,i+l}-2Q{n,i)+Q{ni-l} 
Ax (Ax)2 

Q{n,i+l} = Q{n,il+(0.5)(At)[@ l i + An-l,iJ] (3.48) 

By expanding the discretized variables of Eqn. (3.48) in terms of a
 

double Taylor series expansion in Ax and At about the grid point (n,i)
 

and collecting like terms, one obtains
 

Q
tni) = -v 

_22 

n,i} + (a+ct) L ~ni}+ I.O.D. (3.49) 

where a = V(Ax) [1-2 V(At)]
 
n 2 (Ax)
 

H.O.D. = higher order derivatives.
 

If the indices (i,n) are dropped and the higher order derivatives
 

neglected on the assumption they are small compared to the retained
 

terms, one recovers the original convection-diffusion equation plus an
 

extra term that resembles a viscosity term if the conserved quantity
 

is momentum or a diffusion term if the quantity is a chemical species.
 

This numerical viscosity has nothing to do with the physical system
 

and is an error that originates in the discretization process. Further­

more, there is a good probability that the results of the above
 

analysis can not be extended to the system of equations used in the
 

present problem because interactions that provide other sources for
 

truncation error exist between the various equations. In light of the
 

circumstance, any estimate of the implicit numerical viscosity in the
 

Mobile Bay model based on Eqn. (3.49) would be of dubious value.
 

Possibly, with more work a rigorous analysis of the model for implicit
 

numerical viscosity can be obtained in the future.
 

The explicit numerical viscosity present in the finite difference
 

equations for the model appears in the water level-equation, Eqn. (3.28),
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in the form y (AC h{n,i,j} + Ac h{n,i,j}). This term, which ostensibly
 
yy
 

cancels negative implicit numerical viscosity, is required in order to
 

obtain stable solutions. The same effect can be obtained by-averaging
 

water level values at (i,j) and the four surrounding grid columns in
 

some fashion, but the explicit numerical viscosity form is simpler to
 

manipulate. Since y is nonphysidal, selection of the correct value to
 

use in calculations represents a problem. Nichols and Hirt (1973)
 

suggest that
 

At2 2
 
Y -jmax (u , v (3.50) 

is necessary for stability. Preliminary experiments by this author
 

indicated that a y value based on Eqn. (3.50) was inadequate. Subse­

quent experimentation revealed that
 
At22 

> [Hg + max(u2,v )] (3.51) 

' where Vg -is the wave celerity, is required for stability in the pres­

2 2 2 -2
 
ent model. For the At = 60.s, H = 5. m and max (v ,v ) =1.3 m s 

-Eqn. (3.51) gives a minimum y of 1500. m2s- ; a value of 2400 m2s was 

actually used in the computations. The reason for the difference in
 

the restriction on y may stem from the fact that Nichols and Hirt-used
 

a marker-and-cell technique in which vertical velocities are calculated
 

from the z-directed momentum equation while in the present model
 

vertical velocities are calculated indirectly from the horizontal
 

momentum equations through the volume conservation equation.
 

A numerical method for solving partial differential equations is
 

said to be stable if errors, either from round-off generated when
 

working with numbers of finite length or from inaccuracies in the
 

initial conditions, remain bounded as the calculation proceeds. Most
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explicit methods for solving partial differential equations are condi­

tionally stable in the sense that there are restrictions on the magni­

tudes of certain parameters in the finite difference model. The
 

condition on y in Eqn. (3.51) is one such restriction. To date, most
 

analyses of finite difference methods for stability conditions have
 

been limited to problems where the equations are linear or to linearized
 

versions of nonlinear equations. The reader is referred to Roache
 

(1976) for a discussion of various methods of analyzing for stability
 

and to Schumann (1975) for an analysis of linearized conservation
 

equations. Because of the complexity of the system of coupled nonlinear
 

equations in the present problem such analyses have not been fruitful.
 

Instead, stability conditions have been determined by extending the
 

results of analysis for limiting cases and testing the validity of
 

these proposed stability conditions by numerical experiment. In addition
 

to the condition given in Eqn. (3.51), two other restrictions appear
 

to apply to the numerical method used here. One is the CFL criterion
 

At < min(Ax,Ay) (3.52)
 

which originates in the theory of characteristics for small amplitude
 

surface waves on inviscid flows. See Stoker (1957.) for a treatise on 

the mathematics of this theory. For the grid system used in the Mobile 

Bay model 

1.7x10O3 

At < 2 240.s 
,(5.m)(9.8ms ) 

Another restriction applicable to the present problem is the stability 

condition related tO diffusion of momentum given by 

()2
 
( A z )At < 2N2 (3.53) 
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where N is the maximum eddy viscosity for turbulent diffusion of
 

momentum in the vertical direction. An analogous condition related the
 

diffusion of salt is
 

At < (Az)2D 
2 (3.54)

2
 

where D2 is the eddy diffusivity.
 

This stability condition may be derived from a stability analysis
 

of the finite difference formulation of the simple diffusion equation.
 

The values of Az and maximum N used in the present work are 0.625 m and
 

2 -1
 
0.0030 m s which give
 

At < (0.625m) 65. s. (3.55) 

2 (0.0030m2s-1 

The stability condition related to diffusion gives the most restrictive 

time step for the Mobile Bay model with the present grid configuration. 

The time step actually employed in the calculations was 60. s. 

A concept closely related to stability is convergence.. A numeri­

-cal scheme for solving partial differential equations is"said to be 

convergent if the solution of the finite difference equations approaches
 

the solution of the governing differential equations as the grfd system'
 

is successively refined. The convergence of the numerical method used
 

here with some slight variations in the windward difference operator
 

and~the technique for introducing explicit numerical viscosity into
 

the water level equation has been demonstrated by Waldrop (Farmer,
 

1976). In the cited work, the same problem was run twice, once on a
 

coarse grid: and again on a refined grid, and the solutions compared.
 

The two solutions agreed sufficiently well to imply convergence.
 



87 

Ideally, the accuracy of a finite difference method is assessed
 

by comparing the numerical solution with an analytical solution to the
 

partial differential equations under consideration. The difficulty is
 

that no analytical solutions exist to the equations under consideration.
 

Therefore, it must be assumed that the applied equations developed in
 

the preceding chapter adequately model the phenomena of interest and
 

that experimental data can be used in lieu of analytical results. How­

ever, one must realize that the errors inherent in field observations
 

may be as large or larger than those in the finite difference solutions.
 

The next chapter is primarily devoted to comparing the model results
 

with field observations to ascertain the accuracy of the model.
 

C. SUMMARY
 

This chapter is devoted to-discussing the numerical method uti­

lized in solving the partial differential equations and auxilary­

conditions that govern the phenomena of interest. After the applied
 

equations are transformed to a nondimensional form, finite difference
 

approximations are introduced in order that the equations can be
 

solved on a digital computer. The particular difference utilized
 

lead to an explicit calculation procedure that exhibits superior
 

properties with respect to the smoothness of the solutions (i.e.
 

oscillations are eliminated) and that takes little additional com­

puter core over the minimum required for obtaining a solution. The
 

method is subject to the CFL criterion and a stability limitation
 

associated with diffusion; the latter is the most restrictive in the
 

present problem. Next, the implementation of difference approxima­

tions .for boundary conditions is considered in detail. The correct
 

specification of boundary conditions requires much physical insight
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and is critical to the success of the model. Presently simple, but
 

adequate difference approximations to the boundary conditions are
 

used, particularly at the free surface. The initial conditions neces­

sary to implement the numerical method are not discussed in the pre­

sent chapter but are elaborated on in the next'chapter where their
 

presentation is more natural. Finally, numerical viscosity, stabi­

lity, convergence and accuracy of the numerical method are considered.
 

A significant observation made from numerical experimentation is that
 

an explicit numerical viscosity proportional to the square of the
 

wave celerity, as opposed to the square of the maximum horizontal
 

velocity component, is required for stability.
 



CHAPTER 4
 

RESULTS
 

Upon establishing that the hydrodynamics approach being exactly
 

periodic within two tide cycles, this chapter presents the computer
 

model results for three test cases. One of these cases is compared with
 

prototype data for approximately the same boundary conditions. Then
 

the controlling parameters for Mobile Bay as an estuarine system are
 

identified and discussed. Finally, a purview of the results in the
 

context of the objectives of this work is given.
 

A. APPROACH TO EXACT PERIODICITY
 

In reality, no two tide cycles for an estuary are identical pri­

marily because the conditions at its boundaries are never constant or
 

exactly periodic long enough foi the system to achieve exact periodi­

city. These boundary conditions include river flows and their sediment
 

loadings, tidal height, flow rate and salinity variations, and wind
 

patterns and durations. Ideally, one would have sufficient prototype
 

data to (1) input the histories of the boundary conditions to the com­

puter model for as many tide cycles as are of interest, (2).accurately
 

specify the initial conditions within the system and (3) verify the
 

simulation results at later times. Practically, one seldom has the
 

resources needed to collect for more than one or two diurnal tide
 

cycles the detailed data required to specify the boundary condition
 

histoiies and never to completely fix the conditions throughout the
 

system at one instant in time. Still, if the boundary conditions are
 

89
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nearly steady or periodic for several tide cycles, there is reason to
 

believe that the flow patterns for the system repeat themselves after
 

one or two cycles at the imposed conditions, assuming that the flow
 

field within the estuary is not atypical initially. The hydrodynamics
 

cannot be exactly periodic, however, because they are coupled with the
 

salinity distribution. The latter does not respond as rapidly as the
 

hydrodynamics to changes in the boundary conditions, particularly the
 

river flows.
 

Support for the above conjectures on the response times of the
 

flow and salinity patterns is derived from the computer model in the
 

following way. Variables named UBAR, VBAR and SBAR are calculated for
 

each time step by evaluating the change in the square of u, v and S,
 

respectively, at each mesh point over the time step, summing these
 

changes over all mesh points internal to the flow field, and then
 

dividing by the product of the total number of points used and the size
 

of the time step. If plots of UBAR, VBAR and SBAR versus time,
 

referred to here as signatures, are identical for consecutive tide
 

cycles, conditions within the system should vary with exact periodicity.
 

The verb "should" is used .because there is a possibility that u, v
 

and/or S are undergoing redistribution from one tide cycle to the next
 

in such a way that the corresponding signatures remain exactly periodic,
 

but this situation is considered unlikely.
 

Signatures for U and S are given in Fig. 4.1 for ten tide cycles.
 

The three combinations of boundary conditions examined and their dura­

tions are listed in Table 4.1. Note that sediment transport is not
 

considered here. Also note that Case 4 is a repetition of Case 2; it
 

was conducted to verify that the model results are reproducible when
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TABLE 4.1 

Test Cases 

Tide Average River Wind 

Case Cycles Flow m3 s-I Applied 

1 1- 4 5780 No 

2 5- 6 2980 No 

3 7- 8 2980 Yes 

4 9-10 2980 No 
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starting from slightly different initial conditions. With the excep­

tion of Case 1, the initial conditions for each case are the flow field
 

properties from the preceding case. For Case i a grossly approximate
 

salinity distribution that placed mostly fresh water at the north end
 

of the bay and saltwater at the south end and a zero velocity field are
 

the initial conditions. The boundary conditions were changed in a step­

like manner between cases.
 

Fig. 4.1 reveals that for Case 1 the u signature almost repeated 

itself after the second cycle and did so exactly after the third. The 

S signature in Case 1 is qualitatively the same for cycles 3 and 4, but 

a slight increase in the minimum occurred in the latter. This prolonged 

change in the S signature is to be expected since the initial saltwater 

content of the bay was high for the average river discharge used in
 

Case 1. Since the flow patterns repeated themselves beginning with the
 

third cycle when starting from rough guesses at the initial conditions,
 

they should be identical in the second and third cycles when more real­

istic initial conditions 4re supplied. Thus, the second tide cycle for
 

a given set of boundary conditions and accurate initial conditions are
 

accepted as being exactly periodic, at least with respect to the flow
 

patterns. The salinity distributions may require several more cycles
 

to reach this condition, but a two-cycle simulation provides an
 

economic compromise between computer time and information about their
 

final state.
 

B. COMPARISON OF COMPUTER MODEL AND PROTOTYPE DATA
 

Computer model results for Case 2 and prototype data taken from
 

the 15-16 May 1972 field survey are compared for the stations and types
 

of data indicated in Fig. 4.2. The types of data include velocity
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components, salinities, tide curves and discharge rates. The compari­

sons are made primarily by plotting for each station the indicated
 

data from both sources versus time. Unless it is noted otherwise, the
 

prototype data are adapted from Lawing and others (1975). Of the three
 

model cases, Case 2 most closely approximates the prototype data with
 

respect to imposed boundary conditions. However, there are significant
 

differences between the two. One is that the model combined river
 

3 -l 
average discharge is 2980. m s while the corresponding prototype 

3 -1 
discharge is 1798. m s This discrepancy is a consequence of the
 

fact that the river velocities are specified functions of time while
 

the flow cross-sections and discharges are predicted by the model;
 

Another is that an unsteady and unmeasured wind from the southwest over
 

the southern portion of the bay influenced the prototype data, whereas
 

there is no wind in Case 2. Finally, theire are slight, but possibly
 

significant differences between the prototype and model-tidal inlet
 

tide curves. These differences in the tide curves are described below.
 

North-south components of the free surface velocities and the
 

salinities at Beacons 12 and 32 are compared in Figs. 4.3 through 4.6.
 

The sign of the velocity component is positive if it points in the same
 

direction as the positive x-axis; the sign is negative otherwise. The
 

model and prototype velocity curves for Beacon 12 are much the same
 

although a stronger flood flow in the model resulted in a maximum flood
 

-
velocity of -0.7 m s compared to -0.5 ms for the prototype. There
 

are 2.5 to 3.0 hr differences in the times of the maximum ebb and flood
 

The free surface salinity comparison at
velocities for the two curves. 


Beacon 12 is not as positive as that for the velocity component. A
 

strong variation in salinity from 30. rPT at high tide to 8. PPT just
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after the model low tide at Main Pass occurred in the model, whereas
 

the prototype variation is a much milder 13. to 7. PPT. The disparity
 

between the model and prototype salinity curve is probably attributable
 

to a strong but short flood tide in the model. For Beacon 32 the model
 

predicted that the current would ebb over much of the tide cycle and
 

-i 
flood with velocities up to -0.4 m s1. The salinity variation is 

small in both model and prototype with the latter salinity being 

approximately 4. PPT greater than the 1. PPT in the former. The 

model's strong flood tide caused the velocity reversal, but -the failure 

of the prototype to reverse at the surface is unexpected considering 

the magnitude of the river flows and-the tide conditions. 

In addition to the free surface prototype data at Beacons 12 and 

32 presented-above, velocity magnitudes and salinities have been col­

lected near the channel bottom (i.e., at 0.2 times the channel depth 

from the bottom). Directions have been assigned to the prototype ­

velocity magnitudes by the Army Corps of Engineers on the basis of 

physical model results (McClelland, 1975). These data are compared in 

Tables 4.2 and 4.3. The velocity data-at both stations agree with 

respect to direction and are of the same order of magnitude. From 

Table 4.2 one would conclude that near the bottom of the channel at 

Beacon 12 the flow is directed up the channel as the tide rises and 

passes through its high point and is directed down the channel as the, 

tide falls and passes through its low point. Table 4.3 shows that at 

Beacon 32, the bottom flow is directed up the channel at all but low 

tide. The salinity data at both stations agree well over most of the 

tide cycle,with most of the disagreement occuring at low tide in both 

cases. AG 

Poon 
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TABLE 4.2 

Beacon 12 Bottom Data 

Elapsed Tide Velocities Salinities 
Time Stage Prototype Model Prototype Model 
hr m s - m s -1 PPT PPT 

131.25 falling 0.3 0.2 32.0 27.0
 

137.50 low 0.3 0.5 31.0 24.0
 

143.75 rising -0.5 -0.9 28.0 27.0
 

150.00 high -0.5 -0.2 31.0 30.0
 

TABLE 4.3
 

Beacon 32 Bottom Data
 

Elapsed Tide Velocities Salinities
 
Time Stage Prototype Model Prototype Model
 

- -I
hr m s m s' PPT PPT
 

131.25 falling -0.2- -0.1 30.0 27.0
 

137.50 low 0.1 0.4 29.0 21.0
 

143.75 rising -0.4 -0.4 29.0 27.0
 

150.00 high -0.5 -0.5 26.0 27.0
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The tide stage comparisons are presented in Figs. 4.7 through
 

4.11. The first two plots of this set contrast the tide stage func­

tions supplied to the model for Main Pass and Pass Aux Herons with
 

prototype curves. The model tide curves at the two tidal inlets agree­

with the prototype tide curves with respect to the time of high tide,
 

but differ slightly as to the time of low tide. Low tide occurred
 

approximately 0.75 hr earlier than the simple trigonometric function
 

used in the model permits at Main Pass and 1.5 hr earlier at Pass Aux
 

Herons. At both stations the model tide curves are about 10. cm
 

higher than the prototype curves at high tide and 2. cm lower at low
 

tide. The differences between the model and prototype curves are
 

attributed to the following facts. The constants in the model tide
 

stage functions were determined by least square fits to actual tide
 

gage data that are not exactly periodic. The prototype curves, which
 

were adapted from the Army Corps of Engineers report by Lawing and 

others (1975), were made exactly periodic by the Corps for a physical
 

model study by adjusting the actual tide gage data. The two separate
 

analyses of the original data resulted in the differences noted above.
 

Comparisons of the tide stage predictions for Fowl River Point,
 

Point Clear and State Docks are presented in Figs. 4.9, 4.10 and 4.11,
 

respectively. At all three stations, the model tracked the prototype
 

data closely through falling tide and roughly predicted the correct
 

times for low tide. However, it-allowed a too rapid increase during
 

the rising tide and overshot to produce high tides that are 25. to 30.
 

cm too high and 2.5 to 3.0 hr premature. In Table 4.4 the differences
 

in the tide elevation from State Docks to Main Pass at four points in
 

the tide cycle are given. Duting falling and rising mean tide the
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TABLE 4.4 

Longitudinal Surface Differentials 

Elapsed Tide Differential 
Time Stage Prototype Model 
hr cm cm 

131.25 falling -27.5 -27.0 

137.50 low -10.0 -24.0 

143.75 rising 26.0 24.0 

150.00 high 2.5 -21.0 
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agreement between model and prototype is good but at high and low
 

tide it is poor. These amplitude and timing errors in the tide curves
 

are the most telling deficiencies of the model as it presently stands
 

since of the prototype data available, the tide curves are the data
 

least subject to error. On the other hand, there is the possibility
 

these discrepancies can be reduced by supplying the model with more
 

accurate tide curves for Main Pass and Pass Aux Herons or by adjusting
 

parameters such as the eddy viscosity. Further computations will be
 

required to test these conjectures. But even with the tide stage
 

errors, the goal of computing acceptable three-dimensional velocity
 

and salinity distributions was achieved.
 

The instantaneous volumetric flow rates through Main Pass and Pass
 

Aux Herons are compared in Figs. 4.12 and 4.13. The prototype curves
 

are taken from Hill and April (1974). For Main Pass, the model pre­

dicted that ebbing commences at high tide; the prototype data indicate
 

that ebbing does not start until 3.5 hr after high tide. Both the
 

model and prototype data show that ebbing continues after low tide, for
 

3.25 hr. in the former and 4.5 hr in the latter based on the times of
 

the low tides in the corresponding data. The peak model flooding rate
 

3 - 1 3 ­of 44,000 m s is nominally 70% greater than the 26,000 m s I for
 

the prototype; the peak model and prototype ebbing rates are more
 

3 -1 
nearly the same at 30,000 and 27,000 m s , respectively. For Pass 

Aux Herons, the model flow rate is a fixed at 20% of the rate through 

Main Pass with the same sign regarding ebb and flood and with no time 

lag to compensate for differences in times of flow reversals. The 

value of 20% was based on a consideration of estimates regarding the 

distribution of flows through the tidal inlets (McPhearson, 1970 and 
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Doyle, 1975). This relationship was utilized only after many futile
 

attempts were made at independently modeling the Pass Aux Herons flow
 

rates. Hill and April (1974) encountered the same problem in their
 

development of a vertically integrated, 2-dimensional model of Mobile
 

Bay. The primary difficulty stems from the fact that the flow direc­

tion is strongly dependent on the difference in the surface elevation
 

in the Mississippi Sound and just inside Mobile Bay. Any error in the
 

prediction of the free surface elevation inside the bay tan result in
 

unrealistic flows through the Pass Aux Herons. Because the relation­

ship between tidal flows is fixed in the model, the model ebb flow
 

through Pass Aux Herons started at the same instant it did at the Main 

Pass (i.e., high tide at Main Pass), some 1.5 hr. before the prototype
 

high tide at Pass Aux Herons. In the prototype, ebb flow started 2.75
 

hr. after high tide at Pass Aux Herons resulting in a total timing
 

error of 4.25 hr. The fixed relationship also resulted in the model
 

ebb flow continuing 1.25 hr. past the model low tide while the proto­

type data indicate ebbing continued for 4.75 hr. after the prototype
 

low tide at Pass Aux Herons. The prototype data indicate that a one
 

hour lag exists between the reversal of the tidal flow direction at
 

Main Pass and Pass Aux Herons. Incorporation of this time lag in the
 

-computer model would reduce the above differences in the times of the
 

flow reverals.
 

The results of integrating the instantaneous volumetric flow rate
 

curves between flow reversals are given in Table 4.15. Because the
 

model flood flow rates are larger and the flood durations are shorter
 

than the corresponding prototype quantities, the average flood flow
 

rate for the model is 66% greater than the prototype average at Main
 



TABLE 4.5 

Tidal Discharges 

Net Average Net Average 
Ebb Ebb Ebb Flood Flood Flooa 

Tidal Flow Duration Flow Flow Duration Flow 
Inlet 10-8, m3 hr 10-3 , m3 s -1 10-8, m3 hr i0-3, m3 s - 1 

Model 

Main Pass -11.5 15.6 -20.5 9.4 9.4 27.8 

Pass AuxHerons - 2.3 15.6 - 4.1 1.9 9.4 5.6 

Prototype 

Main Pass - 9.0 13.2 -19.0 7.1 11.8 16.7' 

Pass Aux Herons - 1.3 13.1 - 2.8 1.3 11.9 3.0 
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Pass and 87% greater for Pass Aux Herons. The average ebb flow rates
 

for the model and prototype are somewhat closer in magnitude;
 

From the previous two paragraphs, the reader is certain to have
 

the impression that the results of the tidal flow comparisons are nega­

tive. This impression should be mollified by the realization that the
 

specification of model boundary conditions at tidal inlets is an exceed­

ingly difficult task that requires much physical insight into the
 

problem if it is to be done correctly. See Leendartse and Liu (1975)
 

for an informative discussion of'specifying tidal boundary conditions.
 

Two difficulties center on fixing the free surface along a flow boundary
 

as a function of position and time and on specifying velocity gradients
 

in coordinate directions parallel and perpendicular to the open flow
 

boundary. Seldom is this kind of data obtained in field surveys. A
 

third difficulty concerns the salinity of the return flow to the estu­

ary, particularly just after slack water. The composition of the
 

returning water is strongly dependent on circulation patterns outside
 

the bay. Beyond these considerations, there exists the possibility"
 

that some agent such as a local wind has influenced the prototype tidal
 

data and the agent is not properly acccounted for in the model.
 

C. DISCUSSION OF COMPUTER MODEL TEST CASES
 

The results of a computer model of a multidimensional problem may 

be displayed graphically in two ways: (1) over the spatial extent at 

selected instants in time or (2) versus tine at selected points in 

space. When the problem is three dimensional in space, the first type
 

of display is generally limited to given dross-sections of the volume.
 

The first approach is used extensively in this work. Because of their
 

large number, these plots are located in Appendix A; they are discussed
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below. The second approach is also used, and these plots are inter­

spersed with their description in this section.
 

Appendix A contains plots for the four cases described in Table 

4.5. The first three cases are presented with block borders that repre­

sent the limits of the computational grid used; the fourth case is 

presented with borders that represent the physical boundaries of Mobile
 

Bay. Cases 1 through 3 contain the following type plots: (1) velocity
 

vectors and normalized salinities (i.e., normalized density anomalies 

that have been multiplied by a factor'of ten to facilitate plotting) in
 

horizontal cross-sections at 0., 1.25 and 2.5 m below mean sea level 

(MSL), (2) free surface profiles, (3) velocity vectors and salinities 

in vertical cross-sections in planes perpendicular to the y-axis along 

the ship channel and 1.7 km to the west of the channel. These plots 

are given for the following four points in the tide stage at Main Pass: 

(1) falling mean tide, (2) low tide, (3) rising mean tide, and (4) high
 

tide. Case 4 contains horizontal displays of velocity vectors and
 

salinities at mean sea level and the free surface profiles at approxi­

mately 2.-hr intervals. The following table should help the reader
 

visualize how Appendix A is arranged, and thus facilitate locating the
 

figures as they are discussed. For Cases 1 through 3, the first five
 

plots under velocity vectors and salinities are for falling mean tide, 

the next five for low tide, and so on; Under surface profiles for the
 

first three cases the first plot is for falling mean tide, the next for 

low tide, and so on. As stated above, Case 4 contains plots at approxi­

mately 2.-hr intervals and only one horizontal plot of each kind for
 

each interval. Since Case 4 is essentially a duplicate of Case 2, the
 

discussion devoted to it will be minimal. 
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TABLE 4.6 

Organization of Figures in Appendix A 

Case 
Velocity 
Vectors 

Salinity 
Profiles 

Surface 
Profiles 

1 

2 

3 

4 

A.l -A.20 

A.45 -A.64 

A.89 -A.108 

A.133-A.144 

A.21 -A.40 

A.65 -A.84 

A.109-A.128 

A.145-A.156 

A.41 -A.44 

A.85 -A.88 

A.129-A. 132 

'A.157-A.168 
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On all of the plots in Appendix A, there is a figure labeled "Gulf
 

Tide Stage" that indicates the current tide condition at the Main Pass.
 

The arrowhead pointing toward the scale gives the tide elevation and
 

the other arrowhead indicates whether the tide is rising or falling.
 

On each figure there is an appropriate scale or reference to show the
 

magnitude of the quantity plotted. Also note that the vertical scale
 

in the north-south cross-section plots has been expanded by a factor
 

of 2400 to make phenomena in those sections visible.
 

From the velocity vectors for falling mean tide, one can see that
 

the rivers discharge into the bay at a few centimeters per second and
 

that the tidal flows are out of the bay into the Gulf with an average
 

velocity of 0.8 m s in Cases 1 and 2 and 0.6 m s in Case 3. There
 

-1
 
is a slight flow into Bon Secour Bay from the north and a 0.3 m s
 

current out of this area to the west. In the ship channel the flow is
 

-i
 
directed to the south at 0.1-0.3 m s near the free surface and to the
 

north in the same velocity range near the bottom except at the State
 

Docks and in the southern most 10. km where the flows are directed to
 
-i
 

the south with velocities up to 0.7 m s 1 The general movement in the
 

bay is to the south with the pattern much the same for the two river
 

discharges and with or without wind. Note that the wind pattern in
 

Case 3 is indicated by the boldfaced vectors in Figure A.89. The wind
 
-i1. -l 

speed varies from 6.1 m s in the south to 4.7 m s in the north.
 

At low tide the velocity vectors indicate that the rivers dis­

-
charge into the bay at 0.3-0.5 m s 1 and that the tidal inlet flows ebb
 

at 0.9 m s -1 in the first two cases and at 0.5 m s- I in the third case.
 

The current pattern in Bon Secour Bay is much the same as it is at
 

falling mean tide except in Case 3 where the wind causes the main flow
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to bypass the Bon Secour area and has set the shallow waters there in
 

motion to the north against a slightly adverse surface gradient. From
 

top to bottom along the entire length of the ship channel, the flow is
 

-1
ebbing with a maximum velocity of 0.8 m s in Cases 1 and 3; the cur­

rent is somewhat weaker for the lower river discharge of Case 2. As 

at falling mean tide, the general movement in the bay is to the south 

with the exception that the wind has resulted in a westerly movement in 

the southern third of the bay in Case 3. 

As the tide rises past its mean position, the river discharges are
 

-1 
in the 0.1-0.4 m s range and are diminishing. There is a strong
 

flood flow at the tidal inlets with the average of 1.0 m s -1 in Case 2
 

-il 
exceeding the 0.8 m s in Case 1 with its higher river discharge rate.
 

-i 
The average flood velocity in Case 3, 0.8 m s , is weaker than in Case
 

2 because the wind results in storage of tidal waters which in turn
 

reduces the favorable gradients in the free surface. In all the cases,
 

there is a strong current into the Bon Secour area from Main Pass. In
 
-i 

the ship channel, the flow floods in the south at 1.0-1.2 m s and 

ebbs in the north. The ebb flow is stronger for Case 1 than Case 2 due
 

to the difference in the river discharge rates and strongest in Case 3
 

because of the favorable surface gradient caused by the storage effect.
 

The general movement in the bay is to the north except at the river
 

mouths and along the southern edge of the bay where the movement is to
 

the east. Currents along the western edge of-the bay are enhanced by
 

the wind.
 

At high tide the rivers are essentially stagnant in all cases.
 

The tidal flow at Main Pass is weak and mixed with regard to direction
 

except in Case 3 where the wind results in an average flood velocity of
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-
0.2 m s . The large velocity vector just outsiae the Pass Aux Herons
 

is directed toward this pass in the first three cases because the
 

imposed tide stage boundary condition in the pass is approximately 10.
 

cm lower than the free surface at the location of the vector. The
 

actual flow through Pass Aux Herons is 20% of that through Main Pass
 

with the same direction with regard to ebbing and flooding. Therefore,
 

the direction and magnitude of these currents are suspect in the first
 

three cases. In Case 4, the free surface gradient in the Pass Aux
 

Herons was set equal to zero (i.e., the surface height in the pass was
 

equated to that at the first grid column inside the bay) and a more
 

reasonable velocity pattern resulted. At high tide an unexpected
 

vortex pattern rotating in a clockwise direction and having-velocities
 

-1
 
up to 0.4 m s appears in the Bon Secour area. At present, there are
 

insufficient prototype data to verify the existence of such a flow pat­

tern. The flow is predominately to the north in the ship channel with
 

-i
 
a maximum velocity of 0.7 m s near the center. The channel current
 

is beginning to reverse and ebb at Main Pass. The strength of the cur­

rent at the north end of the channel is reduced in Case 1 because of
 

the positive river discharge and in Case 3 because of adverse pressure
 

gradients resulting from the storage effect. Except for the circula­

tion pattern in the Bon Secour Bay, slack water exists in most of the
 

-i
 
bay with a slight southerly current of 0.1 to 0.2 m s along the
 

western edge of the bay in all but Case 3.
 

At this point it should be noted that the velocity distributions
 

in the bay proper are relatively uniform with depth as can be seen in
 

Figs. A.9, A.14, A.19 and others. A small reduction in the velocity
 

occurs near the bottom due to viscous effects. However, in the ship­
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ping channel intricate velocity distributions result that could not
 

have been forecast by a vertically averaged model. One of the mile­

stones of the present work is the successful interfacing of the three­

dimensional model for the bay proper and the vertical, two-dimensional
 

channel model.
 

Now the normalized density anomaly or salinity distributions for
 

the cases will be discussed. In these figures, the integer numbers
 

should be interpreted as follows:
 

Integer 
Numbers 

Normalized 
Density 

Salinity 
Range 

Anomaly PPT 

0 0.00-0.05 0.0- 1.5 

1 0.05-0.15 1.5- 4.5 

2 0.15-0.25 4.5- 7.5 

9 0.85-0.95 25.5-28.5 

10 0.95-1.00 - 28.5-30.0 

Since salinity is a concept familiar to most people working with estu­

arine systems, the discussion will be in terms of that variable. 

On falling mean tide at Main Pass, the salinity in the northern 

third of the bay is less than 1.5 PPT. In Beon Secour Bay, the salinity 

ranges from 1.5 to 10.5 PPT in Cases 2 and 3. In Case 1, the higher 

salinity water along the southern edge of Beon Secour Bay is probably 

the remains of the unrealistically high initial salinity distribution 

that has not yet been transportid out of the region. The salinity in
 

the Main Pass is not uniform and depends strongly on the prevailing
 

conditions. The salinity near the surface in the eastern quarter of
 

Main Pass is apparently convected there from the Beon Secour area. The
 

http:0.95-1.00
http:0.85-0.95
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maximum surface salinity in Case I is 19.5 PPT, while in Case 2 it is
 

22.5 PPT; the minimum is 4.5 PPT in both cases. The difference in
 

the maxima results from the difference in river discharge rates and
 

probably would be greater if Case 1 had reached exact periodicity
 

with respect to the salinity distribufion. The wind in Case 3 in­

creases the maximum and minimum salinities in Main Pass to 28.5 and
 

16.5 PPT, respectively. An analogous increase in salinity exists at
 

Pass Aux Herons in going from Cases 1 to 2 and from 2 to 3. If one
 

uses 1.5 PPT to define an interface between low and high salinity
 

water, this interface moves up the bay with decreasing river flow and
 

with the application of wind from the south at equal river discharge
 

rates. In particular, the wind pattern of Case 3 results in higher
 

salinities along the western edge of the bay. Traveling south from
 

the north end of the bay, one encounters this interface first in
 

Case 3, second in Case 2 and third in Case 1. The ship channel is
 

essentially full of 25.5 to 30.0 PPT salinity water below its inter­

face with the bay proper. A smooth decrease towards fresh water
 

occurs in the salinity profile as this interface is approached from
 

below in the northern third of the channel. The saltwater intrusion 

in the channel is diminished from Case 2 by the higher river discharge 

of Case 1 and even more by the storage effect caused by the wind in 

Case 	3. 

At low tide the 1.5 PPT interface has moved down the bay while 

maintaining the same relative positions described in the previous para­

graph for the first three cases. Now the northern half of the bay con­

tains water with less than 1.5 PPT salinity. The salt content of the
 

Bon Secour area as a whole has fallen slightly from that at falling
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mean tide, but concentrations as high as 10.5 PPT are still present.
 

The comment made above concerning the remains of the initial salinity 

distribution still applies to the extreme southeast corner of the bay
 

in Case 1. The salinities in the tidal inlets are nominally 6.0 PPT
 

lower than they were at falling mean tide in all cases, and the distri­

bution across Main Pass is somewhat more uniform. The salt content of
 

the northern third of the ship channel has decreased significantly over
 

the quarter tide cycle with the change enhanced by the higher river
 

discharge of Case 1 and the wind pattern of Case 3. The reduced salin­

ity just below the bay-channel interface between 30. and 50. km is 

caused by a down flow of low salinity water from the bay proper during
 

ebb tide.
 

when the tide stage at Main Pass reaches the rising mean position, 

the 1.5 PPT interface is at about the same position that it had at low 

time in Cases 1 and 2 and nominally 3. km further to the south in 

Case 3. The salinity distribution in the Bon Secour area did not 

change between low and rising mean tide. Since the currents in the
 

tidal inlets are flooding strongly, the surface salinities there have 

increased and are approaching that of gulf water, 30.0 PPT. The fresh 

water content of the northern end of the ship channel has reached a 

maximum for the tide cycle with the saltwater wedge being 10. km 

further down the channel in Cases 1 and 3, respectively, than in Case 2. 

In all three cases the flooding flow at Main Pass is convecting gulf 

water into the channel. 

At high tide, the 1.5 PPT salinity interface attains its northern
 

most position in the three cases while maintaining the same relative
 

positions described before. High salinity water is being convected
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from the middle of the bay into the northwest corner of the Bon Secour
 

area and low salinity water is being convected out of the area through
 

the southwest corner. Except for the relatively constant salinity of
 

the shallow waters to the east, the salinity in Bon Secour Bay
 

increases by as much as 18. to 21. PPT over the last quarter tide cycle.
 

Main Pass and the adjacent area contain gulf water as a consequence of
 

the strong flooding. Pass Aux Eerons contains water with a salinity
 

equal to or slightly less than the 21.0 PPT of the Mississippi Sound.
 

The flooding currents of the previous quarter tide cycle have convected
 

saltwater up the ship channel. In Cases 1 and 2 pure gulf water has
 

intruded half the length of the channel and in Case 3, almost a third
 

the length. In Case 2, with its lower river discharge, the saltwater
 

wedge has .intruded to the channel's north end while the higher river
 

discharge in Case 1 has retarded the intrusion significantly and the
 

wind induced storage effects of Case 3 have retarded it even more.
 

For the particular set of river flows, tidal variation, and wind
 

conditions investigated, the bay proper varies between being vertically
 

homogeneous and slightly stratified. On the other hand, the ship chan­

nel is highly stratified below the channel-bay interface over much of
 

the channel's length. Furthermore, the salinity distribution in the
 

bay may require several tide cycles to reach exact periodicity after a
 

substantial shift in the boundary conditions. In Case 1, the salinity
 

in Bon Secour Bay continued to decrease four cycles after starting from
 

inordinately high initial salinity in the area. Also, in Case 4 along
 

the western edge of the bay above Fowl River Point, traces of higher
 

salinity water forced there by the wind still remained two cycles after
 

the wind has ceased.
 



124 

The surface profile plots indicate that at falling mean tide there
 

is approximately a 15. cm decline in the free surface elevation from
 

north to south over the length of the bay excluding local effects at
 

the river mouths and the tidal inlets. The differential is roughly
 

half that given in Table 4.5, pa. 113, for the prototype between State
 

Docks and Main Pass at the same point in the tide cycle. The surface
 

gradient in the lateral direction is essentially zero except in the
 

Main Pass. A combination of flow geometry and Coriolis effect generate
 

a 5. to 15. cm rise from east to west across the width of this inlet.
 

It should be emphasized that this lateral gradient is predicted by the
 

model and is not an imposed boundary condition. The tide stage bound­

ary condition, which is level in the lateral direction, is applied at
 

an "imaginary" row of grid points one grid increment further out in the
 

Gulf. The surface elevation at the north end of the bay is 3. cm
 

higher in Case I than it is in Case 2 because of the difference in the
 

river discharges; the surface profiles for these two cases are identi­

cal otherwise. In Case 3, the wind induced storage raises the surface
 

by about 10. cm from that in Cases 1 and 2 over most of the bay except
 

,at the tidal inlets. At low tide, the surface of the entire bay has
 

subsided 45. to 50. cm from its position at falling mean tide. The
 

relative positions of the free surface are about the same between the
 

three cases. Also, a very slight positive gradient from east to west
 

exists as a result of the Coriolis effect. The wind pattern in Case 3
 

accentuates the lateral surface gradient. At rising mean tide, a 5. to
 

25. cm rise exists from north to south over the length of the bay.
 

Cases 1 and 2 are nearly identical, while the free surface in Case 3 is
 

about 20. cm higher at the north end of the bay and 5. cm higher at the
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center than that in Case 2. No lateral gradients are discernible
 

except at Main Pass. At Main Pass high tide, a 10. to 20. cm decline
 

from north to south exists over the length of estuary with the free
 

surface elevation being approximately the same in the three cases. A
 

2.5 cm rise occurs in the prototype at this point in the tide cycle.
 

Laterally the surface is level in the northern half of the bay, but a
 

10. cm rise from west to east occurs in the Bon Secour area primarily
 

because of the flow geometry.
 

The tide level curves for the designated stations in Fig. 4.2 are
 

presented in Figs. 4.14, 4.15 and 4.16 for Cases 1, 2, and 3, respec­

tively. An anomalous result that is immediately obvious in these plots
 

is that the model high tide occurred at the State Docks as much as 0.75
 

hr before it did at the Main Pass. Figs. 4.3 and 4.7 show that the pro­

totype high tide at State Docks lagged that at Main Pass by 2.5 hr.
 

The relationship between the times of low tide at Main Pass and State
 

Docks in the model are more nearly correct. Cases 1 and 2 are essen­

tially identical; the primary difference is that the higher river flow 

in Case 1 has elevated the water levels at Point Clear, Fowl River
 

Point and State Docks as much as 10. cm over those in Case 2. The
 

times of high and low tide at the different stations are the same in
 

the two cases. It should be noted that the model tide curves for the
 

State Docks are influenced by the variation in the discharge rate for
 

the Mobile River. This influence is evident in Figs. 4.14 and 4.15
 

where the increase in the river discharge during ebb tide retards the
 

fall of the water level at State Docks. The tide curves in Case 3
 

indicate that the wind pattern reduced the fall of the water level in
 

the middle and upper regions of the bay. In particular, low tide at
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State Docks in Case 3 is 14. cm higher than it is at the corresponding
 

station in Case 2. The tines of low tide are approximately the same in
 

Cases 2 and 3, but the wind in the latter case, somewhat surprisingly,
 

delayed the time of high tide in the middle and upper regions of the
 

bay by as much as an hour.
 

Figs. 4.17, 4.18 and 4.19 display the volumetric flow rates for
 

the Main Pass, Pass Aux Herons and the combined rivers as functions of
 

time. In addition, the rate of accumulation within the bay and an
 

error calculated by summing the input rates and subtracting the accumu­

lation rate are shown. The river velocities are specified functions of
 

time in the model as described in Chapter 3. The average river velo­

city is 0.50 m s in Case 1 and 0.27 m s in Cases 2 through 4; the 
-1 

maximum variation is 0.52 m s in all cases. However, the combined 

river rate depends on the flow cross-section of the river mouths which 

in turn depend on the free surface locations, variables calculated by 

the model. The tidal inlet flow rates and accumulation rate are calcu­

lated or predicted by the model. From Figs. 4.17 and 4.18, one can 
conlueha th 28 13 m3 -i
 

conclude that the 2.8 x 10 m s decrease in river flow rate from
 

Case 1 to Case 2 is compensated for by a corresponding increase in the
 

tidal flow rates so the accumulation rate remains approximately the
 

x 103

A 1.5 hr increase in the duration of flood tide and a 

9. 

same. 


3 -l m s decrease in the maximum flood flow rate from Case 2 to Case 3,
 

indicated by Figs' 4.18 and 4.19, result because of wind induced stor­

age in the bay. A point discernible in all three figures is that the
 

error in the overall balance on the bay is the same order of magnitude
 

as the Pass Aux Herons flow rate at any time in the tide cycle. The
 

primary source of error is considered to be in the accumulation rate
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term which depends directly on the rate of movement of the free surface.
 

Any error in the calculated dynamics of the free surface, either from
 

the finite difference scheme or the specification of boundary condi­

tions, manifests itself as an error in the accumulation rate. In par­

ticular, if the surface rises and falls too slowly, then the error is
 

proportional in phase and magnitude to the tidal flow rates which are
 

significantly larger than the combined river flow rates over most of
 

the tide cycle. The fact that the magnitude of the error is nearly the
 

same as that of the Pass Aux Herons flow rate is thought to be
 

coincidental.
 

D. IDENTIFICATION OF CONTROLLING PARAMETERS
 

The combined river flows have a significant influence on the com­

position and dynamics of Mobile Bay, particularly its upper region.
 

The greater the freshwater flow, the lower the salt content of the bay
 

for a given tide variation. The smaller the flow, the stronger the
 

tendency for velocity reversals to occur in the river mouths and for
 

salt water to intrude upstream. Conditions at the tidal inlets are com­

plex and interactive. The flows through the Main Pass and the conse­

quent free surface elevation and salinity distribution in the southern
 

portion of the bay have a strong influence on what the flows and tide
 

elevations in the Pass Aux Herons are like. The Pass Aux Herons flood
 

current appears to deflect the Main Pass flow to the east during- flood
 

tide. Additionally, the flow through Pass Aux Herons depends on the
 

conditions in the Mississippi Sound which are not necessarily the same
 

as those in the Gulf of Mexico. The primary effects of local wind
 

appears to be a perturbation in the velocity pattern throughout the
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tide cycle and a redistribution of the salt water. It should be noted
 

that a sustained wind over a long fetch of the Gulf of Mexico has a
 

significant influence on the tide stage in the bay inlets. A wind from
 

the north will tend to lower the average tide height in the inlets and
 

the saltwater content of the bay, while a wind from the south will
 

raise the average tide height and saltwater content. This wind-tide
 

interaction has a much stronger influence on the estuary than a local
 

wind alone.
 

As noted earlier, the accurate specification of the tidal inlet
 

boundary conditions is critical to successful modeling of estuarine
 

systems. This point is particularly applicable when the net fl6od and
 

ebb tides are a significant fraction of the total volume of the system,
 

say at low tide, as it is in Mobile Bay. Errors in these boundary con­

ditions result in inaccurate simulations of the tidal flows and the
 

attendant salinity distributions, if not instability in the calculation.
 

Further study is required to determine the effect of the various
 

approximations made in order to specify enough boundary conditions to
 

solve the problem. For instance, the validity of setting 3u/3x and 

avlax equal to zero or holding the salinity at the gulf water value at 

the "imaginary" grid points in the Gulf needs closer scrutiny. The 

former approximation implies that the flow is uniform as it passes 

through the boundary; the attainment of this condition depends strongly 

on the local flow geometry and the currents in the adjacent gulf area. 

The latter approximation is reasonable if the ebb flow is infinitely 

diluted by gulf water by the time the discharge reaches the last set of 

grid points. This dilution process probably does not happen in reality. 

Certainly, an accurate representation of the bathymetry of the bay is 
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needed. Because zero-order approximations are used to fit the geometry
 

in order to facilitate formulation of boundary conditions and a narrow
 

but deep portion of the Main Pass is ignored so as to minimize the size
 

of the grid required, the topography of the Main Pass is poorly approxi­

mated at present, although the flow area is roughly correct. This dis­

crepancy in geometry must have an influence on the tidal flows,
 

probably in the direction of allowing the model tidal flows to be too
 

large for a given tide stage variation.
 

Among the controlling parameters, one of the least understood is
 

the eddy transport coefficient. Its impact on the tidal dynamics and
 

salinity distribution in three-dimensional, time-dependent estuarine
 

flow is a subject begging for further research. For instance, in the
 

2 -1 
development of the present model an eddy viscosity of 15. cm s with 

a dampening factor based on the gradient Richardson number was used in 

the two-dimensional region of the ship channel. A recurring problem 

was the prolonged movement of an internal velocity wave up the channel 

toward the State Docks after the tide had begun to ebb at Main Pass. 
2 -i 

When the eddy viscosity was doubled to 30. cm s , the velocity wave 

movement diminished and reversed during ebb flow as one would expect. 

To accurately model the unsteady flow and salinity patterns in an 

estuary, one must experiment extensively with the eddy transport coef­

ficient formulations. 

E. PURVIEW OF RESULTS
 

The primary purpose of this research is to develop a working model
 

of three-dimensional, time-dependent flows in estuarine systems, and
 

this goal has been achieved. The computational procedure is stable as
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evidenced by a calculation involving 15,000 time steps of 60. seconds
 

and ten tide cycles. Starting from different initial conditions and
 

computing to the same final state demonstrate that the results are
 

reproducible. Time steps approaching the limits set by the CFL crite­

rion and the diffusion stability limit can be taken. The model con­

serves the total water volume relatively well. Furthermore, the model
 

accounts for the interactions of the essentially two-dimensional ship
 

channel with the three-dimensional bay, a non-trivial task.
 

This tool can be used to assess different formulations for eddy
 

transport coefficients and different prescriptions of conditions at
 

open boundaries such as the river mouths and tidal inlets. With a
 

minimum of program modifications, the effects of changes in the bay
 

geometry can be evaluated. Furthermore, since wind and tide conditions
 

can be varied independently, the model can be used to investigate a
 

variety of wind-tide conditions with ease.
 

All the relevant phenomena with their associated parameters are
 

incorporated in the model. It is sufficiently general in scope that it
 

can be used to simulate any estuary considered to be isothermal. It is
 

particularly applicable to those having velocity reversals with depth
 

and saltwater intrusion. What is now needed is a study to improve the
 

simulative capacity of the model by selecting more accurate values and
 

representations of the controlling parameters. This study will require
 

a coordinated effort by the modeler and those groups making field sur­

veys to identify and measure the parameters critical to accurate simu­

lations and to verify the expected and unexpected results, both from
 

the prototype and the model.
 



CHAPTER 5
 

CONCLUSIONS AND RECOMMENDATIONS
 

The primary conclusion from this research is that the computer
 

model is a viable means of studying three-dimensional, time-dependent
 

estuarine flows. The nature of this viability is explained in the
 

following comments: (1) Because of the three-dimensionality and time­

dependency, use of the computer model with reasonable spatial reso­

lution requires a significant amount of CPU time and core storage.
 

For instance, in the present work approximately 220 K bytes of core
 

and either 36.2 min/25-hr. tide cycle on the IBM 370, Model 158 or
 

54.8 min/25-hr. tide cycle on the IBM 360, Model 65 were required.
 

Since the maximum stable time step. is related to the smallest hori­

zontal grid increment through the CFL criterion and the vertical grid
 

increment through the diffusional stability limitation both CPU time
 

and core storage requirements escalate with increased spatial reso­

lution. With the present model an acceptable compromise between
 

resolution and computer resources can generally be found. (2) Be­

cause there is no truly typical set of conditions for a given estuary,
 

a potential user should expect to have to investigate and adjust cer-­

tain items that were not fully investigated herein. For instance,
 

the eddy viscosity and diffusivity probably vary with prevailing wind
 

conditions; this variation was not considered in this research. Also,
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at low river flows the boundary conditions on the species coutinuity
 

equation would have to be modified to account for saltwater intrusion,
 

a circumstance not handled by the model as it presently stands.
 

(3)A potential user should have at hid disposal computer plotting
 

facilities. Graphical displays are essential to being able to in­

terpret the large volumes of numbers generated when describing a
 

general flow field.
 

Further conclusions are as follows: (1)The model velocity and
 

salinity patterns compare favorably with those obtained from field
 

measurements. (2) Sustained local winds have a signigicant influence
 

on the velocity and salinity distributions as in Case 3. (3)High
 

river discharges are capable of displacing salt water from the bay
 

as in Case 1. The second and third conclusions agree with field
 

observations also. However, quantitative data sufficient to check
 

the second conclusion do not exist.
 

Recommendations for improving the computer model apply primarily
 

to the numerical method. They are as follows: (1) The effect of the
 

magnitude of the artificial or explicit numerical viscosity in the
 

water level finite difference equation should be analyzed more fully.
 

This parameter should be large enough to insure stability but not
 

so large as to generate unwanted "diffusional effects". (2)At the
 

expense of'additional computations, the use of an explicit artificial
 

viscosity in the water level finite difference equation can be elimi­

nated by solving the equation with an alternating-direction-implicit
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scheme. However, the programming becomes difficult when the geometry
 

is complex. (3) The location of the water level is taken into account
 

in the overall continuity equation (i.e. the water level equation)
 

and the pressure terms of the momentum equations where it is essdntial.
 

Improved solutions should result from modifying the finite difference
 

formulations of the convective and diffusive terms of the momentum and
 

species continuity equations when applied at grid points adjacent the
 

free surface so that they also take into account the water level loca­

tion. (4) "Semi-implicit" finite difference formulations of the
 

second-order derivatives (i.e. the diffusion terms) in the momentum
 

and species continuity equations that eliminate the diffusional sta­

bility limitation have been proposed (Roache, 1975). Their use should
 

be considered. (5) The numerical method utilized here is termed a
 

one-step procedure because only one estimate of each dependent vari­

able is made for a new time level. A one-step procedure was used
 

because it is computationally fast and the available CPU time was
 

limited. If computer resources are not a limiting factor and accu­

racy of the solution is important, two-step procedures, where cor­

rections to the first estimates at a new time level are made, should
 

be investigated.
 

The recommendation for improving the mathematical model per se
 

is that a better representation of turbulence, for instance a turbu­

lent kinetic energy or Reynold's stress closure model, should be
 

used instead of constant eddy transport coefficients modified by
 

gradient Richardson number dependent dampening coefficients. It
 

should also be noted that the particular set of boundary conditions
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employed at the tidal inlets in the present work are not unique. For
 

instance, if velocity profile data are available, these can be used as
 

boundary conditions and the tide height variation with time predicted.
 

Recommended extensions and applications of the computer model
 

include the following: (1) The model can be used to assess the impact
 

of islands formed as a consequence of dredging operations on circula­

tion and salinity patterns, a topic of vital interest to the oyster
 

industry in Mobile Bay. This application is obvious and would require
 

no modifications to the computer code. It was not pursued in the
 

present research due to a lack of computer resources. (2) The computer
 

code with a sediment transport model incorporated in it would be of
 

value in scheduling maintenance-type dredging operations in Mobile Bay.
 

(3) As mentioned in Chapter 1, the computer model should be useful in
 

investigating the complex surface phenomena that cause the main ship
 

channel to be strongly contrasted with the shallow waters on either 

side in visible spectrum photographs taken from satellites. 

An item that may be classified as both a conclusion and a recom­

mendation is that future computer modeling efforts and field surveys
 

should be coordinated. In this way attempts to measure parameters
 

critical to accurate simulations will be made and expected and unex­

pected results from the prototype and model can be verified.
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NOMENCLATURE
 

c empirical constant or conversion factor 

C heat capacity at constant volume 
v 

D diffusivity 

f Coriolis parameter 

g gravitational acceleration 

h instantaneous flow depth 

H length characteristic of flow depth 

i,j,k spatial indices 

I identity element 

k friction factor or constant 

k
0 

Von Karman's constant 

K thermal conductivity 

£Prandtl mixing length 

L length scale 

m empirical constant 

n normal distance to a surface or time index 

N kinematic viscosity 

p pressure 

P empirical constant 

q empirical constant or turbulent kinetic energy per unit mass 

of fluid 

qr thermal radiation flux 

Q dummy variable 

145 
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Ri gradient Richardson number 

s salinity 

S normalized density anomaly 

t time
 

T temperature or period of a tide cycle
 

u,v,w velocities or components of velocity vector
 

u friction velocity
 

U depth mean velocity
 

V velocity scale
 

x,y,z Cartesian coordinates
 

X,Y stretched coordinates
 

z 0 	 size of a wall roughness element
 

Greek
 

a 	 constant in state equation or a viscosity or diffusion
 

coefficient
 

density difference between gulf and fresh water or an
 

empirical constant
 

y explicit artificial or numerical viscosity 

E dissipation rate of turbulent kinetic energy per unit mass 

of fluid 

e angle with respect to positive x axis in the horizontal plane 

K thermal conductivity 

vkinematic viscosity 

p density 

shear stress 

T wall shear stress
0 
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4phase lag
 

4Dv viscous dissipation function
 

W mass fraction
 

0maximum variation in w with distance or angular velocity 

Subscripts
 

A chemical species A, in particular, total salt
 

avg tide cycle average
 

B chemical species B, in particular, water
 

(e) effective value
 

f fresh water value
 

g gulf water value
 

max maximum value
 

(t) turbulence induced value
 

varl,var2 first and second variations over tide cycle, respectively
 

w wind
 

o initial value or reference quantity
 

1 boundary value
 

Operators
 

div divergence
 

D
 
t substantial derivative
 

EXP exponential
 

grad gradient
 

I trapezoidal integral
z
 

gg dyadic product
 

x cross vector product
 

inner vector product
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a 
partial derivative with respect to Q 

A incremental difference 

AC first-order centered difference
 
x
 

AC second-order centered difference
 
xx
 

Aw 
 windward difference
 
X
 

summation 

f integral 

( ) ensemble average 

Special symbols
 

Q1 turbulent fluctuation in Q about ensemble mean or first
 

derivative of Q with respect to distance
 

Q" second derivative of Q with respect to distance
 

Q* nondimensional variable
 

Q ensemble mean 

Q scalar
 

9 vector
 

9 tensor 



APPENDIX A
 

TEST CASES
 

This appendix contains the Varian plots of the computer model
 

results for the four cases described in Table 4.1, pa. 92, and dis-­

cussed in Chapter 4, beginning on pa. 89.
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APPENDIX B
 

MOBILE BAY MODEL PROGRAM
 

This appendix presents a description and listing of the computer
 

program that implements the model of Mobile Bay developed in this
 

research. The description material is devoted to the program organiza­

tion, input and output.
 

Discussion of the Program
 

The Mobile Bay model program is composed of fourteen subroutines
 

driven by a main program. The names of these routines and their
 

primary tasks are listed in Table B.1. The sequence of calculations
 

and the subroutine where the calculations are performed are shown in
 

the flow diagram of Figure B.l. Since the program was written to allow
 

restarting a simulation from data stored on magnetic tape as well as
 

performing several different simulations in succession, the user is
 

referred to the comment statements in the subroutine PRELIM for a
 

detailed explanation of the options. The following information should
 

facilitate interpretation of Figure B.1. At the beginning of a new
 

calculation, whether it be a cold start or a restart, the calling
 

sequence is controlled primarily by PRELIM until the preliminary calcu­

lations have been completed and then by MAIN while the time integration 

is being performed. 

At predetermined intervals and at the normal completion of a tun) 

data Are written on magnetic tape from RITE, an entry point in REED.
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Name 


MAIN 


BALNCE 


BONDRY 


BOTTOM 


INITAL 


PRELIM 


PRESS 


PRNT 


REED 


RUBBER 


SETUP 


UVSNEW 


VISCUS 


VOLDIL 


BLOCK DATA 


TABLE B.1
 

Mobile Bay Model Program Routines
 

Primary Task
 

Serves as a driver for subroutines.
 

Performs cumulative and-unsteady total and salt Water
 
balances at each time level.
 

Adjusts time dependent boundary conditions at each time
 
level.
 

Computes the elevations of the bay and channel bottoms
 
at start of new simulation.
 

Initializes flow field and material balance variables at.
 
start of new simulation.
 

Reads input data from cards, performs or invokes routines
 
to perform preliminary calculations and writes input
 
data to paper.
 

Calculates the pressure field at each time level.
 

Writes flow field variables to paper.
 

Reads and writes (through entry point RITE) complete
 
problem description on magnetic tape.
 

Generates bay and channel grid systems at start of new
 

simulation.
 

Retrieves old values of flow field variables from arrays
 

and assigns them to working variables, invokes UVSNEW,
 
and assigns new values to storage locations in arrays.
 

Calculates horizontal velocity components and the
 
salinity at a grid point at each time level.
 

Evaluates the turbulent diffusion terms in the horizontal
 
momentum and species continuity equation.
 
Calculates the vertical velocity components at each time
 

level.
 

Assigns numerical values to constants.
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These data are used by a'plot program presented in Appendix C and for
 

restarting if a simulation is to be continued or a change in boundary
 

conditions made.
 

When the restart capability is utilized, data are read from the
 

magnetic :tape by REED. The option of calling this subroutine is
 

invoked by a flag described in PRELIM.
 

The program was coded to be as general and flexible as possible
 

so that it can be applied to other bays and estuaries with a minimum
 

of program modifications. For instance, the location of the banks and
 

bottom of the bay are specified on input data cards and can be easily
 

modified. At present, one to four rivers with their discharges directed
 

along a x-z grid plane can be located along the upper edge of the bay.
 

Also, a tidal inlet or river with a discharge in the y direction can
 

be positioned anywhere along the right side of the bay when looking
 

down the positive x axis and a tidal inlet can be positioned at will
 

along the lower edge of the bay. While the depth of the two-dimensional
 

channel may vary with x and its y location adjusted the channel must
 

coincide with a x-z grid plane. With additional programming effort,
 

the channel and rivers can be made to flow at angles other than 00 and
 

90' to the vertical grid planes.
 

Program Input
 

All data cards used by the program are read by PRELIM. Preceding 

each READ statement are comment cards which define and specify the 

units for each variable read. These data are nondimensionalized before 

using them in the simulation. Three basic formats are used for input 

from data cards 8110 9F10.5 and 6E12.0. The fiifst format is used for 
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integers right adjusted in as field of ten columns, the second for
 

floating point numbers without exponents but with a decimal point
 

punched in a field of ten columns and the third for floating point
 

numbers with right adjusted exponents and decimal points punched in a
 

field of twelve columns. The input variable names and corresponding
 

formats are listed in Table B.2 for easy reference.
 

Program Output
 

The bulk of the output from the Mobile Bay model program is to
 

magnetic tape; the rest is printed. The output to tape, which is
 

accomplished with RITE, consists of a complete problem description
 

(i.e. boundary locations, boundary conditions, grid plane locations,
 

flow field variables, etc.) at the beginning and end of a run and at
 

predetermined intervals in between. Because large volumes of data are 

involved, it is necessary to conserve tape by using unformated WRITE 

statements. The output to paper, which ocdurs in MAIN, PRELIM and
 

PRNT, is primarily for the purposes of problem identification, verifi­

cation of card input data and monitoring the progress of the simulation.
 

Also, all the flow field variables at each grid point are printed at
 

the normal or abnormal end of a run to allow an inspection of the state
 

of the flow field.
 

Listing of Program
 

A listing of the FORTRAN IV statements for the Mobile Bay model
 

program and a typical set of input data follow. The large volume of
 

printed output is not presented here.
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TABLE B.2
 

Input Variables for Mobile Bay Model Program
 

Name Format Name Format Name Format 

LTAPE I10 CVIS F10.0 UVAR2 F10.0 

LABELI 110 ROUGH F10.0 PASS FI0.O 

LABELO I10 VONKAR F10.0 PDEPTH F10.0 

IMAX 110 JWAG I10 PSALT F10.0 

JMAX I10 KMXC 110 PWIDTH F10.0 

KMAX I10 CDEPTH I10 IIMAX 110 

NBAR I10 CWIDTH I10 SOUTH(I) F10.0 

NMAX I10 DIRCTN FIO. 0 WEST(I) F10.0 

NWRITE I10 DIRCTS F10.0 EAST(I) F10.0 

CUTPT F10.0 FETCHN F10.0 BI E12.0 

DTREAL F10.0 FETCHS FI0.0 B2 E12.0 

FETCH F10.0 VWINDN F10.0 B3 E12.0 

HREF FI0.0 VWINDS F10.0 B4 E12.0 

PERIOD F10.0 ACCEL F10.0 B5 E12.0 

PHI F10.0 ARTVSC F10.0 B6 E12.0 

SIGMAT F10.0 YK2 F10.0 B7 E12.0 

YMAX FI0.0 NRIV 110 B8 E12.0 

PHSEMP F10.0 JRIV(I) I10 B9 E12.0 

PHSEPH F10.0 RDEPTH(I) I10 B10 E12.0 

TAMPNP FIO.0 RWIDTH(I) I10 BBl E12.0 

TAMPPH F10.0 PHASEI F10.0 BB2 E12.0 

TAVCMP F10.0 PHASE2 F10.0 BB3 E12.O 

TAVGPH F10.0 UAVG F10.0 BB4 E12.0 

CDIF F10.0 UVARI F10.0 



C 
c DRIVER PROGRAM FOR 3-D. TIME-DEPENDENT HYDRODYNAMIC AND
 
C SALINITY MODEL OF MOBILE BAY WITH SHIP CHANNEL.
 
C
 
C OCT. 29, 1975
 
C
 

LOGICAL 

DIMENSION 

COMMON/ACCT/ 


I QSDOT(7). 

COMMON/BARS/ 


1 UBAR. 

COMMON/FORTNO/ 


I LW
 
COMMON/GRID/ 


I DX. 

2 DXINSQ, 

3 DYT2IN. 

4 DZD2. 

5 DZINSQ
 
COMMON/INDEX/ 


1 K, 

COMMON/LIMITS/ 


1 JMAX, 

2 KMAXM1. 

3 KEYOUT
 
COMMON/PULL/ 


1 TIME, 

2 YK2. 

COMMON/RYTE/ 

I LABELO
 
COMMON/STEP/ 


I NBAR, 

COMMON/UNITS/ 


I FETCH, 

2 OMEGA, 

3 VREF, 


C
 

ISTEP. KEYOUT
 
0(7,4)
 
QDOT(7), ONET(7).
 
OSNET(7)
 
PTCTIN, SBAR.
 
VBAR
 
LR, LT,
 

DT, DTD2. 
DXINV, DXT2IN, 
DY, OYINV, 
DYINSQO DZ. 
DZINV. OZT2IN,
 

I. J,
 
N
 
IMAX, IMAXMI,
 
JMAXmI. KMAX.
 
KMAXM2, NMAX,
 

SY(17), SYY(17),
 
X(18). Y(17),
 
Z(8)
 
10. LABELI.
 

MN, MO.
 
NWRITE, ISTEP
 
BETA, BETAD2,
 
GRAV, HREF,
 
PI, TREF,
 
YMAX
 

C READ DATA AND PERFORM PRELIMINARY CALCULATIONS.
 
C
 

5 CALL PRELIM
 
TIMED = TIME
 
CTM 

CSB 

CUB 

CFR 

CVL 


= TREF / 3600. 
= PTCTIN / TREF 
= CSB * VREF
 
= HREF * HREF * VREF
 
= HREF * HREF * HREF
 



KEYOUT = ,FALSE.
 
WRITE(LW,1000) (I I = It 7)
 

C
 
C STEP FORWARD IN TIME.
 
C
 

10 	N = N + I
 
TIME = TIMED + FLOAT(N) * DT
 
MN = 3 -MN
 
MO = 3 -MO
 

C
 

C ADJUST TIME DEPENDENT BOUNDARY CONDITIONS.
 
C
 

CALL BONDRY
 
C
 
C ESTIMATE NEW HORIZONTAL VELOCITY COMPONENTS AND SALINITIES.
 
C
 

ISTEP ,TRUE,
 
CALL SETUP
 

c
 
C ADJUST VERTICAL VELOCITY COMPONENTS AND SURFACE HEIGHTS.
 
C
 

CALL VOLDIL
 
IF(KEYOUT) GO TO 100
 

C
 
C COMPUTE NEW'PRESSURE FIELD.
 
C
 

CALL PRESS
 
IF(KEYOUT) GO TO 100.
 

C
 
C PERFORM MATERIAL BALANCE AROUND SYSTEM.
 
C
 

CALL BALNCE
 
C
 
C DEPENDENT VARIABLES HAVE BEEN COMPUTED FOR THIS TIME STEP.
 
C
 
C WRITE MONITOR VARIABLES EVERY NBAR TIME STEPS TO TAPE AND
 
C PRINTER.
 

-C
 
If(N.NE.NBAR*(N/NBAR)) GO TO 30
 
'10 = LT
 
CALL RITE2
 
TIMERL = TIME * CTM
 
SBARI = SBAR * CSB
 
UBARI = UBAR * CUB
 
VBAR1 = VBAR * CUB
 
WRITECLW,1001) N, TIMERL, SBARI, UBARI, VBARI
 
DO 	20 L = I. 7
 



Q(L*I) = QDOT(L) * CFR
 
Q(L*2) = QSDOT(L) * CFR
 
O(L.3) = QNET(L) * CVL
 

20 	Q(L94) = QSNET(L) * CVL
 
WRITE(LW,1002) { (Q(L,M) ,L=J *7) M=1,4)
 

C
 
C WRITE FLOW FIELD VARIABLES TO TAPE AT SELECTED INTERVALS.
 
C 30 	IF(N.NE.NWRITE*(N/NWRITE)) GO TO 40
 

10 = LT
 
CALL RITE
 

C
 
C TEST FOR END OF RUN. IF END IS REACHED PRINT RESULTS.
 
C OTHERWISE, CONTINUE.
 
C'
 

40 IF(N.LT.NMAX) GO TO 10
 
100 CALL PRNT
 

LABELI = LABELO
 
10 = LT
 
CALL RITE
 
IF(KEYOUT) STOP
 

C
 
C RESET TIME AND TIME INDEX TO ZERC FOR NEXT CASE.
 
C
 

N 0
 
GO TO S
 

1000 FORMAT(//.5X.'RATES ARE IN N**3/S. VOLUMES ARE IN M**31,/.SX,
 
t
1 7(t TOTAL/SW*) ,/,5X,7( RATE/VOL'),/1IX,7(1IXI1)) 

1OCI FORMAT(5X,' N = *,I5,.o TIME = l9F6.2.0 HR.. SBAR = 1IPE12.A4 
1', UBAR = 'E12.40 VBAR = *E12.4) 

1002 FORMAT(6X.IP7E12.4,/.3(6X.7E12.4,/)) 
END
 

14 
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SUBROUTINE BALNCE
 
C
 
C PERFORM CUMULATIVE AND UNSTEADY TOTAL 

C BALANCES.
 
C
 

LOGICAL 

DIMENSION 

DOUBLE PRECISION 

COMMON/ACCT/ 


I QSDOT(7), 

COMMON/BNKCRD/ 


1 JE. 

2 JWEST(22). 

COMMON/CHNNEL/ 


I JWAG, 

2 KMXCM2
 
COMMON/FLOOR/ 

COMMON/FLOORC/ 

COMMON/FLOWl/ 

I U(2,18.17,08), 

COMMON/FLOW2/ 

1 DUDT(18,17,08), 

COMMON/FLOWCI/ 

I UC(2.18.20),

COMMON/FLOWC2/ 

I DUCDT(18,20)
 
COMMON/GRID/ 


I DX, 

2 DXINSQ, 

3 DYT2IN, 

4 DZD2, 

5 DZINSQ

COMMON/LIMITS/ 

1 JMAX, 

2 KMAXMI, 

3 KEYOUT
 
COMMON/PASS/ 


I PMOMAF, 

CbMMON/PULL/ 


1 TIME, 

2 YK2. 

COMMON/PULLC/

COMMON/RIVERS/ 

I PHASE19 

2 RMOMAF(4), 

3 UVARI, 

COMMON/STEP/ 


ISTEP, 

QDOTO(6), 

SURF(2,18,17), 

QDOT(7), 

QSNET(7)
 
EAST(22), 

JEAST(22), 

SOUTH(22), 

CDEPTH, 

KMXC. 


KFLOOR(18,17), 

KFLORC(18), 

P(18,17.08), 

V(2,18,17,08), 

SURF, 

DVDT(18,17,08)
 
PC(1820)1 

WC(18.20)
 
SURFC, 


DT, 

DXINV. 

DY, 

DYINSO, 

DZINV. 


IMAX, 

JMAXWI , 

KMAXW2, 


IPAS-S, 

PSALT, 

SY(17), 

X(18), 

Z(8)
 
ZC(20)

JRIV(4). 

PHASE2, 

RWIDTH(4), 

UVAR2
 
PN, 


AND GULF WATER
 

KEYOUT
 
QSDOTO(6)
 
SURFC(18)
 
QNET(7),
 

IIMAX.
 
JW,
 
WEST(22)
 
CWIDTH.
 
KMXCMI,
 

ZB(18.17)
 
ZBC(18)
 
S(2,18,17,08),
 
W(18,17.08)
 
DHOT(18,17),
 

SC(2,18,20).
 

DHCDT(18),
 

DT02,
 
DXT2IN,
 
DYINV,
 
DZ,
 
OZT2IN,
 

IMAXMI,
 
KMAXv
 
NMAX.
 

PDEPTH,
 
PWIDTH
 
SYY(17),
 
Y(17),
 

NRIV,
 
RDEPTH(4),
 
UAVG,
 

Mo.
 

http:W(18,17.08
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I NBAR. NWRITE. ISTEP 
COMMON/TIDE/ PHSEMP. PHSEPH, 

I TAMPMP. TAMPPH, TAVGMP, 
- 2 TAVGPH. THGTMP. THGTPH 

DO 5 NN = 1, 6
 
QDOTO(NN) = QDOT(NN)
 

5 QSDOTO(NN) = QSDOT(NN)
 
C
 
C EVALUATE FLUXES THROUGH RIVER MOUTHS.
 
C
 

DO 20 NN = 1. NRIV
 
J = JRIV(NN)
 
KBOT = KFLODR(IJ)
 
KBOTPI = KBOT + I
 
UKBOT = U(MN.I,J,KBOT)
 
UKMXM1 = U(MN.I.JKMAXWI)

USKBOT = UK5OT * S(MN.I,J.KBOT)
 
SUMA = 0.5 * (UKOOT + UKMXI) 
SUMS = 0.5 * (LSKBOT + UKMXMl * S(MNIJ,KMAXMI)f 
DO 10 K = KSOTPI, KMAXM2 
UK = U(MNtlJ.K)
 
SUMA = SUMA + UK
 

10 SUMS = SUMS + UK * S(MN,IJ.K)
 
DZKSOT = Z(KBOT) - ZB(I.J)
 
DZKMAX = SURF(MN.1,J) + OZ,
 
UKBOT = 0.5 * UKBOT
 
USKBOT = 0.5 * USKBOT
 
UKMAX = U(MN.1.J.KMAX)
 
UK = 0.5 * (UKMAX + UKMXMI)
 
USK 0.5 * (UKMAX * S(MN.IJ,KAX) +
 

I UKMXM1 * S(MN,1,J.KWAXMI))
 
PREFIX = DY / SY(J)
IF(J.EQ.JWAG) PREFIX,= PREFIX - CWIDTH 
QDOT(NN) = (DZ * SUMA + DZKMAX * UK + DZKSUT * UKOOT) * PREFIX 

20 QSDOT(NN) = (DZ * SUMS + OZKMAX * USK + DZKSOT 4-USKSOT) * PREFIX
 
C
 
C EVALUATE FLUX THROUGH PAS AUX HERONS.
 
C
 

I' = IPASS
 
'J = JWEST(I) - 1
 
JP1 = J + I
 
KBOT = KFLOOR(IJPI)
 
KSOTPI = KBOT + I
 
UKSOT = V(MNI.JKBOTV
 
UKMXMI = V(MNgI.J.KMAXWI)
 
USKBOT = UKBOT * S(MN.I,JKSOT)
 
SUMA = 0.5 * (UKBOT + UKMXNI)
 



sUMs 0.5 * (USKSOT + UKMXMI * S(MN.I,J.KMAXMI)) 
IF(KBOTPI.GTKMAXM2) GO TO 35 
DO 30 K 

UK 

SUMA 


30 SUMs 

35 DZKBOT 


DZKMAX 

UKBOT 

USKBOT 

UKMAX 

UK 

USK 


I 

QDOT(5) 


= 
= 

= 
= 
= 

= 

QSDOT(5) 

C
 

KBOTPI, KMAXM2 
V(MN.I.J.K) 
SUMA + UK 
SUMS + UK * S(MN.IJ.K) 
Z(KSOT) - ZB(IJPI) 
THGTPH + DZ 
0.5 * UKBOT 
0.5 * USKBOT 
V(MN,I,J,KMAX) 
0.5 * (UKMAX + UKMXMI) 
0.5 * (UKMAX * S(MN,I.J.KMAX) + 
UKMXMI * S(MNIJ.KMAXM1)) 
= (DZ * SUMA + DZKMAX * UK + DZKSOT * 
= (DZ * SUMS + DZKMAX * USK + DZKBOT 

UKDOT) 
* USKBOT) 

DX 
DX 

C EVALUATE FLUX THROUGH THE MAIN PASS.
 
C 

JW = 
JE = 
SURFI 

SURFJP = 

KBOT = 

KBOTJP = 

QDOT(6) 

QSOOT(6) 

DO 210 J 


JWEST(IMAX)
 
JEAST(IMAX) . 
SURF(MNIMAXJW)
 
SURFi
 
KMAX + I 
KFLOOR(IMAX,JW)
 
= 0.0
 
= 0.0
 
= JW. JE
 

JP1 =J + 1
 
JMI =J- 1
 
PREFIX DY / SY(J)
 
IF(J.EO*JWAG) PREFIX = PREFIX - CWIDTH
 
SURFJM = SURF!
 
SURF1 SURFJP
 
SURFJP SURF(MNIMAXJPI)
 
IF(J.EQ.JE) SURFJP = SURF!
 
KBOTJM = KBOT
 
KBOT = KBOTJP
 
KSOTPI = KBOT + I
 
KBOTJP = KFLOOR(IMAX.JPI)
 
IF(KBOT.GT.KMAX) GO TO 210
 
UJK = U(MN.IMAXJvKBOT)
 
USJK - UJK * S(MNIMAX,J,KBOT)
 
IF(KBOT.GT.KBOTJM) GO TO 40
 
UJMK = UJK
 
USJMK' = USJK
 
GO TO 50
 

http:IF(J.EQ.JE


40 UJMK = U(MN.IMAXJMIKBOT)
 
USJMK = UJMK *. S(MNIMAXJMIKOT)
 

50 IF(KBOT.GT.KBOTJP) GO TO 60
 
UJPK = UJK
 
USJPK = USJK
 
GO TO 70
 

60 UJPK = U(MN.IMAXJP1,KBOT)
 
USJPK = UJPK * S(MNvIMAX.JPI.KBOT)
 

70 UKBOT = 0.25 * (UJMK + UJK + UJK + UJPK)
 
USKBOT = 0.25 * LUSJMK + USJK + USJK + USJPK)
 
UJK = U(MNIMAX4J*KMAXMI)
 
USJK = UJK * S(MNIMAX,J,KMAXMI)
 
IF(KMAXMI.GT.KBOTJM) GO TO 80
 
UJMK = UJK
 
USJMK = USJK
 
GO TO 90
 

80 UJMK = U(MN,IMAXJMI,KMAXMI)
 
USJMK UJMK * S(MNIMAXJMI,KMAXMI)
 

90 	IF(KMAXMI.GT.KBOTJP) GO TO 100
 
UJPK = UJK
 
USJPK = USJK
 
GO TO 110 

100 UJPK = U(MNIMAXJP1,KWAXMI) 
USJPK = UJPK * S(MN.IMAXJPI.<MAXMI) 

110 UKXMI = 0.25 * (UJMK + UJK + UJK + UJPK) 
USKXMI = 0.25 * (USJMK + USJK + USJK + USJPK)
 
SUMA = 0.5 * (UKBOT + UKXMI)
 
SUMS = 0,5 * (USKBOT + USKXM1)
 
DO 160 K = KBOTP1, KMAXM2
 
UJK = U(MN,IMAX.J,K)
 
USJK = UJK * S(MNIMAX,J.K)
 
IF(K.GT.KBOTJM) GO TO 120
 
UJMK = UJK
 
USJMK = USJK
 
GO TO 130
 

120 UJMK = U(MN.IMAX.JMIK)
 
USJMK = UJMK * S(MN4IMAXJMIK)
 

130 IF(K.GT.KBOTJP) GO TO 140
 
U3PK = UJK
 
USJPK = USJK
 
GO TO 150
 

140 UJPK = U(MNIMAXJPI,K)
 
USJPK = UJPK * S(MN,IMAX,JPI,K)
 

150 SUMA = SUMA + 0.25 * (UJMK + UJK + UJK + UJPK)
 
160 SUMS = SUMS + 0.25 * (USJMK + USJK + USJK + USJPK)
 

DZKBOT = Z(KBOT) - ZB(IMAX,J)
 
DZKMAX = 0.25 * (SURFJM + SURFI + SURFI + SURFJP) + DZ
 



UKBOT = 0.5 * UKBOT
 
USKBOT = 0.5 * USKBOT
 
UJK = U(MN,IMAX.JKMAX)
 
USJK = UJK * S(MNIMAX,J.KMAXI
 
IF(KMAX.GT.KBOTJM) GO TO 170
 
UJMK = UJK
 
USJMK = USJK
 
GO TO 180
 

170 UJMK = U(MNIMAX,JMIKMAX)
 
USJMK = UJMK * S(MN,IMAXJM1,KNAX)
 

18o IF(KMAX.GT.KBOTJP) GO TO 190
 
UJPK = UJK
 
USJPK = USJK
 
GO TO 200
 

190 	UJPK = U(MNIMAXJP1,KMAX)
 
USJPK = UJPK * S(MN,IMAX,JPI,KMAX)
 

200 	UKMAX = 0.25 * (UJMK + UJK + UJK + UJPK)
 
USKMAX = 0.25 * (USJMK + USJK + USJK + USJPK)
 
UJK = 0.5 (UKXMI + UKMAX)
 
USJK = 0.5 * (USKXM1 + USKMAX)
 
QDOT(6) = (DZ * SUMA + DZKNAX * UJK + DZKBOT * UKBOT) *
 
I PREFIX + ODOT(6)
 
QSDOT(6) = (DZ * SUMB + DZKMAX * USJK + DZK80T * USKEOT)
 

1 PREFIX + QSDOT(6)
 
210 CONTINUE


,C
 
C EVALUATE FLUXES THROUGH NORTH AND SOUTH ENDS OF THE CHANNEL
 
C AND ADD TO MOBILE RIVER AND MAIN PASS FLUXES, RESPECTIVELY.
 
C
 

I =1
 
22C 	KBOT = KFLORC(I)
 

KBOTPI = KBOT + I
 
UKBOT = UC(MN.IKROT)
 
UKMXMI = UC(MNI.KMXCWI)
 
USKBOT = UKBOT * SC(MN,IKBCT)

SUMA = 0.5 * (UKBOT + UKMXMI)
 
SUMB = 0.5 * (USKBOT + UKWXNI * SC(MN,IKMXCMIJ)
 
DO 230 K = KBOTPI. KMXCM2
 
UK = UC(MN.,IK)
 
SUMA = SUMA + UK
 

230 	SUMB = SUMB + UK * SC(MN,I,K)
 
DZKBOT = ZC(KBOT) - ZBC(I)
 
DZKMAX = SURFC(I) + DZ
 
UKBOT = 0.5 * UKBOT
 
USKBOT = 0.5 * USKBOT
 
UKMAX = UC(MNIKMXC)
 
UK = 0.5 * (UKMAX + UKMXM1)
 



USK 0.5 * (UKMAX * SC(WN.I.KMXC) + 
I UKMXMI * SC(MNI,KMXCMI)) 
IF(INE.I) I = 6 
QDOT(I) = (DZ * SUMA + DZKMAX * UK + DZKBOT * UKBOT)

I QDOT(1)
 

QSDOT(I) = (DZ * SUMB + DZKMAX * USK + 
I DZKBOT * USKBOT) * CWIDTH + QSDOr(I) 
IF(I.NE.1) GO TO 240 
I = IMAX 
GO TO 220
 

240 CONTINUE
 
C
 
C DETERMINE TOTAL AND GULF WATER VOLUME IN SAY.
 
C
 

SUMA = 0.0
 
SUMs = 0.0
 
DO 260 1 = 2, IMAX
 
IPI = I + I
 
IF(I.EQo.IMAX) IPI = IMAX
 

* CWIDTH 4 

IM1 

JW 

JE 

SURFI 

SURFJP 


= I - I
 
= JWEST(I)
 
= JEAST(I)
 
= SURF(MN.IJW)
 
= SURFI
 

IF(I.EQ.IPASS) SURFI = 
KBOT = KMAX + I 
KBOTJP = KFLOOR(I.JW) 
DO 260 J = JW, JE
 
JPI = J + I
 
JM1 = J- I
 
PREFIX = DY / SY(J)

IF(J.EQ.JWAG) PREFIX 

SURFJM = SURF1
 
SURFI = SURFJP
 

THGTPH
 

PREFIX - CWIDTH 

SURFJP = SURF(MN,I,JPI)
 
IF(J.EQJE) SURFJP = SURFI 
KBOTJM = KBOT 
KBOT = KBOTJP 
KSOTPI = KBOT + I 
KBOTJP = KFLOOR(IJPI) 
SURFIM = SURF(MNIMI.J) 
IF(KFLOOR(IMIJ).GT.KMAX) SURFIM = SURFI
 
SURFIP = SUR-F(MN,IPXJ)
 
IF(KFLOOR(IPIJ).GT.KMAX) SURFIP = SURFI
 
IF(I.EQ.IMAX) SURFIP = THGTWP
 
SUMC 0.0
 
DO 25C K = KBOTPI, KMAXWI
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250 	SUMC" SUMC + S(MN,IJ,K)
 
SURFAV = 0.125 * (4.0 * SURF! + SURFJP + SURFJM + SURFIM 4
 

1 SURFIP)
 
DZKMAX = SURFAV + DZD2
 
ZBOT = ZB(IJ)
 
DZKBOT = DZD2 + Z(KBOT) - ZBOT
 
SUMs = (SUMC * DZ + DZKMAX * S(MN,IJ.KMAX) +
 

1 DZKSOT * S(MNI,J.KBOT)) * PREFIX + SUMB
 
260 SUMA = (SURFAV + 1.0 - ZBOT) * PREFIX + SUMA
 

SURF! = SURFC(I)
 
SURFIP = SURFC(2)
 
DO 280 1 = 2, IMAX
 
IPi = I + I
 
IF(I.EQ.IMAX) IPI = IMAX 
IMI = I - 1
 
KBOT = KFLORC(I)
 
KSOTPI = KBOT + I
 
SURFIM = SURF1
 
SURFI = SURFIP
 
SURFIP = SURFC(IPI)
 
IF(I.EQ.IMAX) SURFIP = THGTMP
 
SUMC = 0.0
 
DO 270 K = KSOTP1, KMXCMI
 

270 SUMC = SUMC + SC(MNI,K)
 
SURFAV = 0.25 * (SURFIM + SURFI + SURF! + SURFIP)
 
DZKMAX = SURFAV + DZDZ
 
ZBOT = ZBC(1)
 
DZKBOT = DZD2 + ZC(KBOT) - ZBOT
 
SUMB = (SUMC * DZ + DZKMAX * SC(MN,I,KMAX) +
 

I DZKBOT * SC(MN,IKBCT)) * CWIDTH + SUMS
 
280 	SUMA = (SURFAV + 1.0 - ZBCT) * CWIDTH + SUMA
 

SUMA = SUMA * DX
 
SUMs = SUMS * DX
 
QDOT(7) = (SUMA - QNET(7)) / DT
 
QSDOT(7) = (SUMS - QSNET(7)) / DT
 

C
 
C CALCULATE CUMULATIVE FLOS.
 
C
 

QNET(7) = SUMA
 
QSNET(7) = SUMS
 
DO 290 NN = 1, 6
 
QNET(NN) = QNET(NN) + (QDOTO(NN) + ODOT(NN) * CTD2
 

2g0 	QSNETCNN) = QSNET(NN) + (OSDCTO(NN) + QSDUT(NN)) * DTO2
 
RETURN
 
END
 

-I) 



SUBROUTINE BONDRY


A " C ADJUST TIME DEPENDENT BOUNDARY CONDITIONS.

C
 

LOGICAL 


DOUBLE PRECISION 

COMMON/ACCT/ 


I QSDOT(7), 

COMMON/BNKCRD/


I JE, 

2 JWEST(22), 

COMMON/CHNNEL/ 


I JWAG, 

2 KMXCM2
 
COMMON/FLOOR/ 

COMMON/FLOORC/ 

COMMON/FLOW1/


I U(2.18,17,08)v 

COMMON/FLOW2/ 


1 DUDT(18.17.08). 

COMMON/FLOWCI/ 


I UC(2.18,20). 

COMMON/FLOWC2/ 


I DUCDT(1B.ao)
 
COMMON/FORCES/ 


1 FWLNDY(18,17), 

COMMON/GRID/ 


I DX. 

2 DXINSQ. 

3 DYT21N, 

4 0ZD2, 

5 DZINSO
 
COMMON/GULF/


I PERIDI
 
COMMON/LIMITS/ 


1 JMAX, 

2 KMAXMI. 

3 KEYOUT
 
COMMON/PASS/ 

I PMOMAF, 

COMMON/PULL/ 


I TIME, 

2 YK2, 

COMMON-/PULLC/ 

COMMON/RIVERS/


1 PHASE1, 

2 RMOMAF(4), 


ISTEP, 

SURF(2,18,17). 

QDCT(7), 

OSNET(7)
 
EAST(22),

JEAST(22), 

SOUTH(22), 

CDEPTH, 

KMXC. 


KFLCOR(18,17), 

KFLORC(18), 

P(18,17,08),

V(2,18,17,O8), 

SURF, 

DVDT(18,17,08)
 
PC(18,20), 

WC(18,20)
 
SURFC. 


F, 

TOPLYR
 
DT. 

DXINV, 

DY, 

DYINSO. 

DZINV, 


CUTPT, 


IMAX, 

JMAXMI, 

KMAXM2, 


IPASS,' 

PSALT, 

SY(17), 

X(18)9

Z(8)
 
ZC(20)
 
JRIV(4),

PHASE2, 

RWIDTH(4), 


KEYOUT
 
SURFC(18)
 
QNET(7),
 

IIMAX,
 
Jw.
 
WEST(22)
 
CWIDTH,
 
KMXCMI,
 

ZB(18.17)
 
ZBC(18)
 
S(2.18.17.08).
 
W(18,1708)
 
DHDT(I1. 17),
 

5C(2,18,20),
 

DHCDT(18),
 

FWINDX(1S,17).
 

DTD2,
 
DXT2IN,
 
DYINV,
 
OZ,
 
OZT21N.
 

KCUT,
 

IMAXMI,
 
KMAX,
 
NMAX,
 

PDEPTH
 
PWIDTH
 
SYY,(17).
 
Y(17).
 

NRIV,
 
RDEPTH(4),
 
UAVG.
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3 UVARI* UVAR2
 
COMMON/STEP/ MN, MO,
 
I NBAR, NWRITE, ISTEP
 
COMMON/TIDE/ PHSEMP, PHSEPH,
 
I TAMPMP, TAMPPH, TAVGNP,
 
2 TAVGPH. THGTMP, THGTPH
 
COMMON/UNITS/ BETA, BETAD2,
 

I FETCH, GRAV, HREF,
 
2 OMEGA. PTO TREF.
 
3 VREF. YMAX
 
TNM1 = TIME - DT 

C 
C SET VELOCITIES IN RIVER MOUTHS AND NORTH END OF CHANNEL. 
C 

URIV = 1.142857 * (UAVG + UVAR1 * COS(UTNMI - PHASEI) * PERIDI) 
1 + UVAR2 * COS((TNM1 - PHASE2) * 2.0 * PERIDI)) 
DO 30 NN = 19 NRIV 
URIVI = URIV / RMOMAF(NN) 
J = JRIV(NN) 
ZBOT = ZB(1,J) 
KBOT = KFLOOR(1.J) 
PREFIX = 1.0 / (SURF{MO1,J) + 1.0 - ZBOT) 
DO 10 K = KBOT, KMAX 
VERT = (Z(K) - ZBOT) * PREFIX 

10 U(MO*1,J,K) = URIVI * (1.0 - (1.0 - VERT)**7)
IF(J.NE.JWAG) GO TO 30
 
ZBOT = ZBC(I)
 
KBOT = KFLORC(I)
 
URIVI = URIVI * RMOMAF(1)
 
PREFIX = 1.0 / (SURFC(1) + 1.0 - ZBOT)
 
DO 20 K = KBOT, KMXC
 
VERT = (ZCIK) - ZBOT) * PREFIX
 

20 UC(MO,IK) = URIVI * (1.0 - (1.0 - VERT)**7)
 
30 CONTINUE
 

C
 
C SET FREE SURFACE LOCATION IN PASS AUX HERONS AND MAIN PASS,
 
C
 

THGTMP = TAVGMP + TAMPMP * COS((TNNl - PHSEMP) * PERICI)
 
Sw = JWEST(IPASS)
 
THGTPH = SURF(MOIPASSJW)
 

C
 
C SET SALINITY BOUNDARY CONDITION IN THE MAIN PASS.
 
C
 

IF(KCUT.LT.I) GO TO 60
 
Jw = JWEST(IMAX)
 
JE = JEAST(IMAX)
 
00 50 J = JW. JE
 



4C KBOT = KFLOOR(IMAXJ) 
IF(KCUT.LT.KBOT) GO TO 50 
DO 40 K = KBOT, KCUT 

40 S(MO,IMAXJ,K) = 
50 CONTINUE 

1.0 

60 KCUTC = KCUT + KMXC - KMAX 
IF(KCUTC.LT.O) GO TO 80 
KBOT = KFLORC(IMAX) 
DO 70 K = KBOT. KCUTC 

70 SC(MOIMAXK) = 1.0 
80 CONTINUE 

C 
C SET VELOCITIES IN PASS AUX HERONS. 
C 

JW 
JWMI 

= 
= 

JWEST(IPASS) 
JW - I 

ZBOT = ZB(IPASSJW) 
KBOT = KFLOOR(IPASSJW) 
PREFIX = 1.0 / (THGTPH + 1.0 - ZHOT) 
VPASS = - 0.228571 * QOT(6) * PREFIX / PWIOTH 
DO 90 

,VERT 
K = KBOT, KMAX 
= (Z{K) - ZBOT) * PREFIX 

S(MO,IPASSJWMIK) = PSALT 
'0 V(tO,IPASS;JWMI.K) = VPASS * (1.0 (1.0 - VERT)**7) 

RETURN 
END 



SUBROUTINE BOTTOM(CtC2,C3,C4 ,CS.C6.CTC8.C9,CIOCCI,CC2,CC3.CC4)
 
C
 
C CALCULATE BAY AND CHANNEL BOTTON LOCATION RELATIVE TO A DATUM
 
C PLANE LOCATED HREF METERS BELOW MEAN SEA LEVEL, A POLYNOMIAL
 
C IN X AND Y THAT 'HAS BEEN FITTED TO SOUNDING DATA TAKEN FROM
 
C NOAA TOPOGRAPHICAL MAP C&GS 1266 IS USED.
 
C
 

LOGICAL KEYOUT
 
COMMON/BNKCRD/ EAST(22), TIMAX,
 
I JE, JEAST(22), JW.
 
2 JWEST(22), SOUTH(22), WEST(22)

COMMON/CHNNEL/ CDEPTH, CWIDTH.
 

I JWAG, KMXC, KMXCMI,
 
2 KMXCM2
 
COMMON/FLOOR/ KFLCOR(I8.17). ZB(18.17)
 
COMMON/FLOORC/ KFLORC(18), ZBC(18)
 
COMMON/GRID/ DT, DTD2,
 
t DX, DXINV, DXT2IN,
 
2 DXINSO, DY, DYINV,
 
3 DYT2IN, DYINSQ, DZ,
 
4 DZD2. DZINV, DZT2IN,
 
* 	 DZINSO
 
COMMON/LIMITS/ IMAX, IMAXMI,
 

I JMAX, JMAXMI, KMAX,
 
2 KMAXMI, KMAXM2, NMAX,
 
3 KEYOUT
 
COMMON/PASS/ IPASS, PDEPTH,
 

I PMOMAF, PSALT, PWIDTH
 
COMMON/PULL/ SY(17), SYY(17),
 
I TIME, X(18), Y(17)9

2 YK2, Z(8)
 
COMMON/PULLC/ ZC(20)
 
COMMON/RIVERS/ JRIV(4), NRIV.
 

1 PHASEI. PHASE2. RDEPTH(4).
 
2 RMOMAF(4). RWIDTH(4), UAVG,
 
3 UVARI, UVAR2
 
COMMON/UNITS/ BETA, BETAD2,
 
1 FETCH, GRAVy HREF,
 
2' OMEGA, PI, TREF,

3 VREF. 	 YMAX
 

C 
KMAXPI = KMAX + 1 
KMXCPI = KMXC + 1 
D 10 1 = It 1MAX 
KFLORC(I) = KMXCPI 
ZBC(I) = 1o01 
DO 10 J = 1, JMAX 
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O0 20 1 = 2, IMAXMI
 
JW JWEST()
 
CDNST3JE = C6 = KMXPIC
JEAST(I)
Xi X(I)
 
CONSTI = Cl + Xl * (C2 + XI * (C4 + XI C7))
2y0 	 ZB( I, J) =OS1.01 *(~~S2+ I*{OS3 I*d)CONST2 = C3 + X1 * (CS + x1 * C8)
 
CONST3 = C6 + XI * C9
 
DO 	 20 J = JW, JE 
Yi = Y(J) 

20 ZB(ITJ) = CONSTI + YI * (CONS2 + Y (CONST3 + YI CIO))
DO 40 K = 2, IMAXMIJw = JWESTM[
 
JE = JEAST(1
 
DO 40 J = JW, JE
 
ZBl = ZB(IvJ)
 
IF(ZBIoLT, 1,O) GO TO 35
 
K = KMAXM2
 

ZB(IJ) = Z(K) - 0.1 * DZ
 
GO TO 40
 

35 K = 0 
30 K = K + I 

IF(Z(K).LT.ZB1) GO TO 30
 
IF(K.LE.KMAXM2) GO TO 40
 
K = KMAXM2
 
ZB(I J) = Z(K) - 0.1 * DZ
 

40 	KFLOOR(IJ) = K 
DO 50 NN = I* NRIV 
J = JRIV(NN) 
ZB(IJ) = ZB(2,J) 

50 	KFLOOR(lJ) = KFLOOR(2,J)
 
JW = JWEST(IMAX)
 
JE = JEAST(IMAX)

DO 60 J = JW, JE
 
ZB(IMAXJ) = ZB(IMAXMI,J)


60 KFLOOR(IMAX.J) = KFLOOR(IMAXMI,J)
JW = JWEST(LPASS) 
ZB1 "= i-0 - PDEPTH 
ZB(IPASS.JW) = ZB1
 
K 0
 

70 	K K + 1 
IF(Z(K).LT.Z81) GO TO 70 
KFLOOR(IPASSJW) = K 
DO 	80 I = I, IMAX 
X1 X(I) ID 

80 ZBCCI) = CCI + XI * (CC2 + Xl (CC3 + Xl * CC4)) 

http:ZB(IPASS.JW


DU 100 1 = 1, IMAX 
ZaI = ZBC(I)
K =0
 

90 	K K + I
 
IF(ZC(K).LT.ZBI) GO TO 90
IF(K.LE.KMXCM2) GO TO 100
 
K = KMXCM2
 
ZBC(I) = ZC(K) - 0.1 * DZ
 

100 	KFLORC(1) K
 
RETURN
 
END
 

Lo 
4:-
C0 



SUBROUTINE INITAL
 
C
 
C INITIALIZE FLOW FIELD AND MATERIAL BALANCE VARIABLES AND
 
C DETERMINE INITIAL TOTAL AND GULF WATER CONTENT.
 
C
 

LOGICAL 

DOUBLE PRECISION 

COMMON/ACCT/ 

I QSDOT(7). 

COMMON/bARS/ 


I UBAR, 

COMMON/BNKCRD/ 

1 JE, 

2 JWEST(22). 

COMMON/CHNNEL/ 


1 JWAG. 

2 KMXCM2
 
COMMON/FLOOR/

COMMON/FLOORC/ 

COMMON/FLOWI/ 

1 U(2,18,17.08). 

COMMON/FLOW2/ 

I DUDT(18.17,08), 

COMMON/FLOWC1/ 


1 UC(2,18,20), 

COMMONYFLOWC2/ 

I DUCOT(18,20)
 
COMMON/FORTNO/ 

I LW
 
COMMON/GRID/ 

I DX, 

2 OXINSQO 

3 DYT2IN, 

4 DZD2, 

5 DZINSO
 
COMMON/GULF/ 


I PERI>I
 
COMMON/LIMITS/ 

I JMAX, 

2 KMAXMI, 

3 KEYOUT
 
COMMON/PASS/ 


1' PMOMAF. 

COMMON/PULL/ 


I TIME, 

2 YK2, 

COMMON/PULLC/ 


ISTEP, 

SURF(2,18,11), 

ODOT(7), 

QSNET(7)
 
PTCTIN. 

VBAR
 
EAST(22), 

JEAST(22), 

SOUTH(22), 

CDEPTH, 

KMXC, 


KFLOOR(18,17). 

KFLORC(18), 

P(18,17,08), 

V(2,18.17,08). 

SURF, 

0VDT(18T17.38)
 
PC(18.20), 

WC(18,20)
 
SURFC. 


LR, 


OT, 

DXINV, 

DY, 

DYINSO, 

DZINV, 


CUTPT, 


IMAX. 

JMAXMI. 

KMAXM2, 


IPASS, 

PSALT, 

SY(17), 

X(18)9 

Z(8) 

ZC(20)
 

KEYOUT
 
SURFC(18)
 
ONET(7),
 

SBAR,
 

I[MAX.
 
JW.
 
WEST(22)
 
CWIDTH.
 
KMXCMI,
 

ZB(18.I7)
 
ZBC(18)
 
S(2,18*17.08)
 
W(18,170,8)
 
DHDT(18.17),
 

SC(2,18,20)1
 

DHCDT( 18),
 

LT,
 

DT02,
 
DXT21N.
 
DYINV,
 
0Z1
 
DZT2IN.
 

KCUT.
 

IMAXMI
 
KMAX,
 
NMAX,
 

PDEPTH,
 
PWIDTH
 
SYY(17).
 
Y(I7),
 

H 
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COMMON/RIVERS/ JRIV(4). NRIV,
 

1 PHASEI, PHASE2, ROEPTH(4).
 
2 RMOMAF(4), RWIDTH(4), UAVG,

3 UVARI. 
 UVAR2
 
COMMON/STEP/ MN, MO,
 
I NBAR, NWRITE, ISTEP
 
COMMON/TIDE/ PHSEMF, PHSEPH,
 
1 TAMPMP, TAMPPH. TAVGMP,
 
2 TAVGPH, THGTMP 	 THGTPH
 
COMMON/UNITS/ BETA, BETAD2,
 
1 FETCH, GRAV. HREF.
 
2 OMEGA, Pl. TREF,
 
3 VREF. YMAX
 

C
 
C SET ALL FLOW FIELD VARIABLES TO AN EXTREME VALUE TO INSURE
 
C THAT NOTHING IS MISSED.
 
C 

TIME = 0.0 
00 20 1 = 1, IMAX 
DO 10 J = 1, JMAX
 
SURF(MN,IJ)= 1.E70
 
DHDT(I.J) = IE70
 
DO 10 K = 1, KMAX
 
P(I.J.K) = 1.E70
 
S(MNI.JK) = 1.E70
 
U(MN,I.J,K) = I.E70
 
DUDT(I,JK) = I.E70
 
V(MN,1.JK) = 1E70
 
DVDT(I.J.K) = 1.E70 

10 	 W(IJK) = 1.E70
 
SURFC(I) = I.E70
 
DHCDTCI) = I.E7O
 
DO 20 K = 1. KMXC.
 
PC(I.K) = I1E70
 
SC(MNIK) = I.E70
 
UCCMN,I,K) = 1.E70
 
DUCDT(IIK) = I1E70
 

20 WC(I.K) = I.E70
 
C
 
C SPECIFY INITIAL CONDITIONS IN RIVER MOUTHS.
 
C
 

TIDAMP = TAVGMP + TAMPMP
 
URIVI = 1.142857 * (UAVG + UVARI * COS((TIME - PHASEI) * PERIDI)
 

I + UVAR2 * COS((TIME - PHASE2) * 2,0 * PERIDI)) 
DO 30 NN = 1, NRIV 
J = JRIV(NN) 
KBOT = KFLOOR(1,J) 
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ZBOT = ZB(1.J) 
SURFIMN,91J) = TIDAMP 
DHDT(IJ) = 
URIVI = URIVI 

0.0 
/ RMOMAF(NN) 

PREFIX = 1.0 / (TIDAMP + 1.0 - ZBOT) 
DO 30 K = KBOT, KMAX 
DUDT(1.J,K) = 0.0 
DVDT(IJK) = 0.0 
VERT = (Z(K) 
PROFIL = 1.0 -
U(MN,19J,K) = 

- ZBOT) * PREFIX 
(1.0 - VERT)**7 
URIVI * PROFIL 

V(MN.1.JK) 
W(IJ.K) 

= 
= 

0.0 
0.0 

C 
30 S(MNI.J,K) = 0.0 

C
C 

SPECIFY INITIAL CONDITIONS IN PASS AUX HERONS. 

JW = JWEST(IPASS) 
J1mi = JW - I 
KBOT = KFLODR(IPASS.JW)
DO 35 K = KEOT, KMAX 

C 

S(MN.IPASSJWMIK) = 
35 V(MN.IPASSJWMI,K) = 

PSALT 
0.0 

C SPECIFY INITIAL CONDITIONS IN BAY PROPER, 
C 

XMAX 
D 40 

= X(IMAX) 
I = 2, IMAX 

SALT = X(I) / XMAX 
IF(I.LE.11) SALT = 
JW JWEST(I) 
JE = JEAST(I) 

0.01 

DO 40 J = JW, JE 
SURF(MNIJ)
DHDT(IJ) 

= 
= 

TIDAMP 
0.0 

KBOT = KFLOOR(I.J)
DO 40 K = KBOT, KMAX 
DUDT(I.JK) 
Di/DT(IJK) 

= 
= 

0.0 
0.0 

U(MN.IJ.K) 
V(MNIJK) 

= 
= 

0.0 
0.0 

W(IJ.K) = 0.0 
40 S(MN.[.J.K) = SALT 

c 
C SPECIFY CONDITIONS IN SHIP CHANNEL. 
C Lo 

KBOT = KFLORC(1) 



ZBOT = ZBC(1)
 
URIVI = URIVI * RMOMAF(NRIV)
 
SURFC(1) = TIDAMP
 
DHCDT(1) = 0.0
 
PREFIX = 1.0 / (TIDAMP + l.O - ZBOT)

DO 50 K KBOT, KMXC
 
DUCDT(IK) 0.0
 
VERT = (ZC(K) - ZBOT) * PREFIX
 
PROFIL = 1,0 - (1.0 - VERT)**7
 
UC(MN,IK) = URIVI * PROFIL
 
WC(1.K) = 0.0
 

50 	SC(MNIK) = 0.0
 
DO 60 I = 2, IMAX
 
SALT = X(I) / XMAX
 
SURFCCI) = TIDAMP
 
DHCDT(I) = 0.0
 
KBOT = KFLORC(I)

DO 	60 K = K5OT. KMXC 
DUCDT(I.K) = 0.0
 
UC(MN.IK) = 0.0
 
WC(I.K) = 0.0
 

60 	SC(MNtI.K) = SALT
 
CALL PRESS
 

C 
C DETERMINE INITIAL GULF AND TOTAL WATER VOLUMES. 
C 

NPT = 0
 
VOL = 0.0
 
KMAXPI = KMAX + 1
 
DO 	70 1 = 2s IMAXMI
 
JW = JWEST(I)
 
JE = JEAST(I)

DO 70 J = JW. JE
 

70 NPT = NPT + KMAXPI - KFLOCR(I,J)
 
DO 80 1 = 2, IMAXMI
 

80 NPT = NPT + KFLOOR(I.JWAG) - KFLORC(I)

DO 85 NN = 1, 7
 
QDOT(NN) 0.0
 
QODOT(NN) = 0.0
 
QNET(NN) = 0.0
 

85QSNET(NN) = 0.0
 
CALL BALNCE
 
"PTCTIN = 1.0 / (FLOAT(NPT) * DT)
 
HREF3 = HREF * HREF * HREF
 
VOL = QNET(7) * HREF3
 
VOLSLT = QSNET(7) * HREF3
 
WRITE(LWVIO00) NPT, VOL. VOLSLT
 

http:UC(MN.IK


O5 ZERO MATERIAL BALANCE VARIABLES 
C 

00D 90 NN Is16
 
QNET(NN) = 0.0
 

90 QSNET(NN) - 0.0
 
RETURN
 

C 
1000 FORMAT(///,5X,'NO. OF POINTS IN FLOW FIELD %I4I,//,5X,'INITIAL


ITOTAL WATER VOLUME = IIPElO.391 M**3*,//,5X,'INITIAL GULF WATER V
 
20LUME t,E1O.3.' M**3')
 
END
 



SUBROUTINE PRELIM
 
C
 
C READ DATA TO SET UP PROBLEM, PERFORM PRELIMINARY CALCULATIONS,
 
C AND WRITE DESCRIPTIVE INFORMATION.
 
C
 

LOGICAL ISTEP, KEYOUT
 
DOUBLE PRECISION SURF(2,18.I17) SURFC(18)
 
COMMON/BNKCRD/ EAST(22), [IPAX,

1 JE, JEAST(22), JW.
 
2 JWEST(22). SOUTH(22), WEST(22)

COMMDN/CHNNEL/ CDEPTH. CWIDTH.
 
1 JWAG* KMXC. KMXCM1,
 
2 KMXCM2
 
COMMON/FLOOR/ KFLOOR(18917), ZB(18,17)

COMMON/rLOORC/ KFLORC(18), ZBC(18)

COMMON/FLOWI/ P(18.17,08), 5(2918,17,08).

I U(2918.17.08), V(2918.17,08)* W(18*17.08)
 
COMMON/FLOW2/ SURF, DHDT(18,17),

I DUDT(18,17.08), DVDT(l8,17,08)

COMMON/FLOWCI/ PC(18,20), SC(2.18.20),
 
1 UC(2,18920). WC(18,20)
 
COMMON/FLOWC2/ SURFC, DHCOT(18).

I DUCOT(18.20)
 
COMMON/FORCES/ F, FWINDX(C8o17)*

1 FWINDY(18,17)v TOPLYR
 
COMMON/FORTNO/ LR* LT,
 
I LW
 
COMMON/GRID/ DT, DTD29
 
1 DX, DXINVs DXT2IN.
 
2 DXINSQ, DY. OYINVs
 
3 DYT21Ns DYINSO, OZ.
 
4 DZD2t DZINV, OZT2IN,
 
S DZINSO
 
COMMON/GULF/ CUTPT, KCUT,

1 PERIDI
 
COMMON/LIMITS/ IMAX, IMAXMI,

I JMAXv" JMAXN1I, KMAX,
 
2 KMAXMI, KMAXM2, NMAX,
 
3 KEYOUT
 
COMMON/LN/ FUNLNI . FUNKAP
 
COMMON/PASS/ IPASS, PDEPTH,
 
1 PMOMAF; PSALT, PWIDTH
 
COMMON/PULL/ SY(17)o SYY(17),

I TIMEr XC18), Y(I7).

2 YK2, Z(8)
 
COMMON/PULLC/ ZC(20)
 
COMMON/RIVERS/ JRIV(4), NRIV,
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I PHASEI. PHASE2, RDEPTH(4)0
 
2 RMOMAFI4), PWIDTH(4). UAVG,

.3 UVARI, UVAR2
 
COMMON/RYTE/ 1O. LABELI.
 

1 LABELO
 
CONMDN/STEP/ NN, No.
 
1 NBAR, NWRITE,. ISTEP
 
COMMON/TIDE/ PHSEMP. PHSEPH,
 

1 TAMPMP* TAMPPH, TAVGMP,
 
2 TAVGPH. THGTMP. THGTPH
 
COMMON/TUNE/ ACCEL. ARTVSC.
 

1 AVCOMP
 
COMMpN/TURB/ COIF. CRICH,
 

I CVIS DIFFUS, VISC
 
COMMON/UNITS/ BETA, BETAD2,
 

I FETCH. GRAY. HREFv
 
2 OMEGA. PI. TREF,
 
3 VREF. YMAX
 

C
 
C *LTAPE = I IF A RUN IS TO BE CONTINUED WITH STARTING DATA READ
 
C FROM TAPE OR FROM PREVIOUS CASE.
 
C *LTAPE = 0 IF STARTING DATA IS TO BE GENERATED INTERNALLY.
 
C *LTAPE = -1 IF LAST CASE HAS BEEN RUN. 
C 
C *LABELI = 0 IF STARTING DATA GENERATED INTERNALLY OR LEFT FROM 
C PREVIOUS CASE. LABEL! IS THE LABEL NUMBER OF THE DATA SET USED
 
C FOR STARTING DATA AND TO WHICH RESULTS ARE WRITTEN. OTHERWISE.
 
C *LABELO IS THE LABEL NUMBER OF THE DATA SET TO WHICH DUPLICATE
 
C COPY OF LAST RESULTS FOR A GIVEN CASE ARE WRITTEN.
 
C
 

READ(LR,1000) LTAPE. LABELI. LABELO
 
IF(LTAPE.EQ.-I) STOP
 
IF(LABELI.EQ.O) GO TO 5
 
I0 = LT
 
IF(LTAPE.E*I) CALL REED
 

5 CONTINUE
 
C
 
C .*IMAX, JMAXv KMAX ARE THE MAXIMUM NUMBER OF GRID POINTS IN THE
 
C X. Y. Z DIRECTIONS. EXCLUDING THE SHIP CHANNEL,
 
C *NBAR IS THE NUMBER OF TIME STEPS BETWEEN OUTPUTS OF DESCRIPTIVE
 
C PARAMETERS. NBAR MAY BE ADJUSTED AS REQUIRED AS THE CALCULA-

C TION PROCEEDS.
 
C *NMAX IS THE MAXIMUM NUNBER OF TIME STEPS TO BE TAKEN0
 
C *NWRITE IS THE NUMBER OF TIME STEPS BETWEEN OUTPUTS OF FLOW
 
C FIELD VARIABLES AND GEOMETRY TO TAPE. IT SHOULD DIVIDE NMAX
 
C AN INTEGER NUMBER OF TIMES.
 
C
 



READ(LR,1000) IMAX, JMAX, KMAX* NBAR. NMAX, NWRITE
 
C 
C *CUTPT IS THE HEIGHT IN METERS OF THE SALT WEDGE AT THE MAIN 
C PASS RELATIVE TO THE Z = 0 REFERENCE PLANE. 
C *DTREAL IS THE SIZE OF THE TIME STEP IN SECONDS.
 
C *FETCH IS THE LENGTH IN KILOMETERS FROM NORTH TO SOUTH.
 
C *HREF IS THE LOCATION IN METERS OF THE Z = 0 REFERENCE PLANE
 
C BELOW MEAN SEA LEVEL. Z = 0 IS SLIGHTLY BELOW THE DEEPEST
 
C POINT IN THE BAY EXCLUDING THE SHIP CHANNEL.
 
C *PERIOD IS TIME IN HOURS CF A COMPLETE TIDE CYCLE.
 
C *PHI IS THE AVERAGE LATITUDE IN DEGREES OF THE BAY.
 
C *SIGMAT SPECIFIES THE DENSITY OF SEA WATER RELATIVE TO THAT OF
 
C FRESH WATER, 1.0 GM/CC, SIGMAT = (SEA WATER DENSITY-10)*1000.
 
C
 

READ(LR,1001) CUTPT, DTREAL, FETCH, HREF, PERIOD, PHI. SIGMAr
 
C
 
C *YMAX IS SLIGHTLY GREATER THAN THE MAXIMUM DISTANCE IN METERS
 
C FROM THE SHIP CHANNEL TO THE EAST BANK.
 
C
 

READ(LR,1001) YMAX
 
C
 
C *PHSEMP. PHSEPH ARE PHASE LAGS IN HOURS AT THE PASS AUX HERONS
 
C AND MAIN PASS, RESPECTIVELY.
 
C *TAVGMP. TAVGPH ARE AVERAGE TIDE HEIGHTS IN CENTIMETERS RELATIVE
 
C TO MEAN SEA LEVEL.
 
C *TAMPMP. TAMPPH ARE TIDAL AMPLITUDES IN CENTIMETERS.
 
C
 

READ{LRI001) PHSEMP, PHSEPH, TANPMP, TAMPPH, TAVGMP, TAVGPH
 
C
 
C *CDIF IS THE COEFFICIENT OF EDDY DIFFUSION IN SQUARE METERS
 
C PER SECOND.
 
C *CVIS IS THE COEFFICIENT OF EDDY VISCOSITY IN SQUARE METERS
 
C PER SECOND.
 
C *ROUGH IS THE DIAMETER IN MILLIMETERS OF THE AVERAGE PARTICLE
 
C WHICH GENERATES TURBULENCE ON THE BOTTOM.
 
C *VONKAR IS THE VON KARMAN UNIVERSAL BOUNDARY LAYER CONSTANT.
 
C
 

CDIF. CVIS, RCUGH, VONKAR
 READ(LR.1001) 

C *JWAG IS THE VALUE OF THE INDEX J CORRESPONDING TO THE Y-COORD-

C INATE LINE ALONG WHICH THE SHIP CHANNEL LIES.
 
C *KMXC IS THE MAXIMUM NUMBER OF GRID POINTS IN THE Z-DIRECTION
 
C IN THE SHIP-CHANNEL.

C
 

READ(LRlO00) JWAG. KMXC
 
C
C *CDEPTH IS THE DEPTH IN METERS OF THE SHIP CHANNEL,
 



C *CWIDTH IS THE WIDTH IN METERS OF THE SHIP CHANNEL.
 
C 

READ(LR1001) CDEPTH, CWIDTH
 
C 
C" *DIRCTN, DIRCTS ARE THE DIRECTIONS IN DEGREES TO WHICH THE WIND
 
C IS BLOWING IN THE NORTH AND SOUTH PORTIONS OF THE BAY. ANGLES
 
C ARE MEASURED IN AN ANTICLOCKWISE DIRECTION FROM THE POSITIVE
 
C X-AXIS.
 
C *FETCHN, FETCHS ARE THE NORTH AND SOUTH LIMITS IN KILOMETERS
 
C OF A REGION SEPARATING THE REGIONS ABOVE.
 
C *VWINDN. VWINDS ARE THE WIND VELOCITIES IN CM/SEC 10 METERS
 
C ABOVE THE WATER SURFACE.
 
C
 

READ(LR.1001) DIRCTN. DIRCTS, FETCHN* FETCHS, VWINDN VWINDS
 
C
 
C *ACCEL IS AN ACCELERATION FACTOR EXPEDITING CONVERGENCE OF THE
 
C SALT CONSERVATION EQUATION. IT IS NORMALLY UNITY.
 
C *ARTVSC IS AN ARTIFICIAL VISCOSITY PARAMETER IN THE KINEMATIC
 
C EQUATION FOR THE FREE SURFACE. IT NORfMALLY VARIES FROM 0.5 TO
 
C 1.0.
 
C *YK2 IS A COORDINATE STRETCHING PARAMETER IN THE Y-DIRECTION.
 
C SEE SUBROUTINE RUBBER FOR DEFINITIONS. ALWAYS MAKE YK2 LESS
 
C THAN PI/2.0.
 
C
 

READLR,.100) ACCEL, ARTVSC. YK2
 
C
 
C *NRIV IS THE NUMBER OF RIVERS DEBOUCHING AT THE NORTH SHORE OF
 
C THE BAY.
 
C *JRIV ARE THE INDEX VALUES OF THE Y COORDINATES OF RIVER MOUTH
 
C LOCATIONS.
 
C *RDEPTH ARE THE RIVER DEPTHS IN METERS.
 
C *RWIDTH ARE THE RIVER WIDTHS IN METERS.
 
C
 

READ(LR,1000) NRIV
 
DO 10 NN = 1, NRIV
 
READ(LR,1001) RIV. RDEPTH(NN), RWIDTH(NN)
 

10 JRIV(NN) = IFIX(RIV + 0.5)
 
C
 
C *PHASE1. PHASE2 ARE PHASE LAGS IN HOURS IN A TRIGONOMETRIC
 
C FUNCTION APPROXIMATING THE TIME VARIATION OF THE RIVER DIS-

C CHARGE VELOCITIES.
 
C *UAVG IS THE TIME AVERAGE DISCHARGE VELOCITY IN METER/SECOND.
 
C *UVARI, UVAR2 ARE AMPLITUDES IN METER/SECOND OF THE PERIODIC
 
C TERMS.
 
C
 

READ(LR,I001) PHASE1, PHASE2, UAVG. UVARI, UVAR2
 
C
 



a J 	 C *IPASS IS THE INDEX VALUE OF THE X-CCORDINATE OF THE LOCATION
 
C, 	 C OF THE PASS AUX HERONS ON THE WESTERN SHORE.
 

C *PDEPTH IS THE PASS DEPTH IN METERS.
 
C *PSALT IS THE SALINITY IN THE MISSISSIPPI SOUND.
C *PWIDTH IS THE 
PASS WIDTH IN METERS.
 

READ(LRI001) PASS, PDEPTH9 PSALT. PWIDTH 
IPASS = IFIX(PASS + 0.5)

C
 

C SKIP READING CARDS SPECIFYING.BAY GEOMETRY IF CONTINUING A RUN.

C
 

IF(LTAPE.EO.I) GO TO 22

C
 

C READ IIMAX DATA CARDS TO SPECIFY THE GEOMETRY OF ThE BAY AS
 
C FOLLOWSO
 
C 1. THE DISTANCE SOUTH OF THE NORTHERN BOUNDARY OF THE BAY.
 
C BEGIN WITH 0.0 & END WITH FETCH.
 
C 2. THE DISTANCE FROM THE SHIP CHANNEL TO THE WESTERN BOUNDARY
 
C OF THE BAY (NOTE...ALWAYS NEGATIVE).

C 3. THE DISTANCE FROM THE SHIP CHANNEL TO THE EASTERN BOUNDARY
 
C OF THE BAY.
 
C ALL DISTANCES ARE IN NAUTICAL MILES.
 
C
 

READ(LRIO00) IIMAX
 
DO 20 IT = 1, IIMAX
 
READ(LR.1001) SOUTHI, %ESTI. EASTI
 
SOUTH(II) = SOUTH1 * 1852,
 
WEST(II) = WESTI * 1852.
 

20 EAST(II) = EASTI * 1852.
 
C
 
C INPUT CONSTANTS OF POLYNOMIAL FITS TO BAY AND SHIP CHANNEL
 
C BOTTOMS. THESE BOUNDARIES ARE SPECIFIED RELATIVE TO THE Z = 0 
C REFERENCE PLANE. CONSTANTS HAVE BEEN NORMALIZED WITH HREF. 
C 

READ(LR,1018) 61, 82. 83. B4, 85, 86
 
READILR,1018) 87, 8 89, B10
 
READ(LR,1018) B61. B2, 63, B4
 

22 CONTINUE
 
C 
C PRINT INPUT DATA TO IDENTIFY CASE BEING RUN. 
C 

WRITE(LW.1002) LTAPE, LABELI, LABELO
 
WRITE(LW.1003) IMAX, JMAX. KAX,'NSAR, NMAX, NWRITE
 
WRITE(LW.1004) CUTPT, DTREAL, FETCH, HREF, PERIOD, PHI, SIGMAT,
 

I YMAX
 
WRITE(LW.1023) PHSEMP. PHSEPH, TAMPMP, TAOPPH, TAVGMP, TAVGPH
 
WRITE(LW.1005) CDIF, CVIS, ROUGH, VONKAR
 



WRITE(LWt06) JWAG, KNXC
 
WRITE(LW.1007) CDEPTH, CWIDTH
 
WRITE(LW,1008) DIRCTN, DIRCTS, FETCHN, FETCHS, VWINDN. VWINDS
 
WRITE(LW.1009) ACCEL. ARTVSC, YK2
 
WRITE(LW.1010) (NN, JRIV(NN). RDEPTH(NN), RWIDTH(NN), NN = I1
 

t NRIV)

WRITE(LW.1024) PHASEIX PHASE2. UAVG, UVARI. UVAR2
 
WRITE(LW.1011) IPASS, PDEPTH. PSALT. PWIDTH


C 

C SKIP PRINTING BAY GEOMETRY IF CONTINUING A RUN.
 
C
 

IF(LTAPE.EQ.I) GO TO 24
 
WRITE(LW,1012)

WRITE(LW.1013) (II SOUTH(II)t WEST(II), EAST(II)v [I = It IIMAX) 
WRITE(LW.1019) 81 52, 83, 84, 85, 86, 87, B8. 894 810. 

1 881* BB2. B63, 684 
24 CONTINUE 

C 
C CALCULATE CONSTANTS AND CONVERT UNITS.
 
C
 

IMAXM1 = IMAX - I
 
JMAXMI = JMAX - 1
 
KMAXMI = KMAX - 1
 
KMAXM2 = KMAX - 2
 
KMXCMI = KMXC - I
 
KMXCM2 = KMXC - 2
 
VREF = SQRT(GRAV * HREF)
 
TREF = HREF / VREF
 
CUTPT = CUTPT / HREF
 
DT = DTREAL / TREF
 
DTD2 = 0.5 * DT
 
FETCH = FETCH * 1000.0 / HREF
 
PERIOD = PERIOD * 3600.0 / TREF
 
PERIDI = 2.0 * PI / PERIOD
 
PHI = PHI * PI / 180.0
 
PHSEMP = PHSEMP * 3600.0 / TREF
 
PHSEPH PHSEPH * 3600.0 / TREF
 
TAMPMP = 0.01 * TAMPMP / HREF
 
TAMPPH = 0.01 * TAMPPH / HREF
 
TAVGMP = 0.01 * TAVGMP / HREF
 
TAVGPH = 0.01 * TAVGPH / HREF
 
YMAX = YMAX * 1000.0 / HREF
 
ARTVSC = ARTVSC / (HREF * VREF)
 
CDIF = CDIF / (HREF * VREF)
 
CVIS = CVIS / (HREF * VRRF)

ROUGH = 0.001 * ROUGH / HREF
 
CDEPTH = CDEPTH'/ HREF 



CWIDTH 
DIRCTN 

= 
= 
CWIDTH / 
DIRCTN.* 

HREF 
PI / 180.0 

DIRCTS 
FETCHN 

= 
= 
DIRCTS * 
FETCHN * 

PI / 180.0 
1000.0 / HREF 

FETCHS = FETCHS * 1000.0 / HREF 
DO 30 NN = 1, NRIV 
RDEPTH(NN) = RDEPTH(NN) / HREF 

30 RWIDTH(NN) = RWIDTH(NN) / HREF 
PHASE1 = PHASE1 * 3600. / TREF 
PHASE2 = PHASE2 * 3600. / TREF 
UAVG = UAVG / VREF 
UVARI = UVAR1 / VREF 
UVAR2 = UVAR2 / VREF 
PDEPTH 
PWIDTH 

= 
= 
PDEPTH /
PWIDTH / 

HREF 
HREF 

C 
C GENERATE GRID SYSTEM. 
C 

CALL RUBBER 
C 
C SKIP CALCULATING BOUNDARIES IF CONTINUING A RUN. 
C 

IFCLTAPE.EQ.1) GO TO 137 
DO 40 II = 1, IIMAX 
SOUTH(II) 
WEST(II) 

= SOUTH(II) / HREF 
WEST(II) / HREF 

40 EAST(II) = EAST(II) / HREF 
C 
C ESTABLISH BAY LIMITS FOR GRID SYSTEM. 
C 

1 =1 

so J = JWAG 
60 J = J + I 

IF(Y(J).LT.EAST(II)) GO TC 60 
JEAST(I) = J - 1 
J = JWAG 

70 1 = J - 1 
I(Y(J).GT.WEST(II)) GO TC 70 
JWEST(I) = J + 1 
IF(I.NE.1) GO TO 80 
I = IMAX 
II = IIMAX 
GO TO 50 

80 DO 120 = 2 IMAXMI 
II = 

90 II = I + I 



IF(SOUTH(II).LT.X(I)) GO TO 90
 
WATE = (X(I) - SOUTH(II-1))/(SOUTH(LI) - SOUTH(II-1))
 
YEAST = EAST(II) * WATE + EAST(II-I) * (1.0 - WATE)
 
YWEST = WEST(II) * WATE + WEST(II-1) * (1.0 - WATE)
 
J = JWAG
 

0J -- = J + I
 
IF(Y(J).LT.YEAST) GO TO 100
 
JEAST(I) = J - I
 
J JWAG
 

110J =J 
 - 1
 
IF(Y(J).GT.YWEST) GO TO 110
 

120 JWEST(!) = J + I
 
WRITE(LW.1014)

WRITE(LW.1015) (I, JWEST(I). JEAST(I). I = 1 IMAX) 

C
C GENERATE BOTTOM CONFIGURATION.
 

CALL BOTTOM(BI,B2.B3,B4.B5,B6.87.B89B.810.BBB182BB3BB4)
 
WRITE(LW,1016)
 
DO 130 1 = 1. IMAX
 
DO 130 J = I, JMAX
 
XREAL = X(I) * HREF
 
YREAL = Y(J) * HREF
 
ZBREAL = ZB(IJ) * HREF
 

130 	WRITE(LWl017) I J, KFLCOR(I.J), XREAL, YREAL, ZEREAL
 
WRITE(LW.I021)

DO 135 1 = 1, IMAX
 
XREAL = X(I) * HREF
 
ZBREAL = ZBC(I) * HREF
 

135 WRITE(LW.I022) I, KFLORC(I). XREAL. ZBREAL
 
137 CONTINUE
 

C
 
C COMPLETE CALCULATION OF CONSTANTS AND WIND SHEAR FCRCES.
 
C
 

BETA = 0.001 * SIGMAT
 
BETAD2 = 0.5 * BETA
 
CRICH = -2.0 * BETA * OZ
 
F =20 * OMEGA * SIN(PHI) * TREF
 
FUNLNI = ALOG(O.2/ROUGH)
 
FUNKAP = VONKAR * 8.5
 
FWINDN = 1.64E-4 * (VWINDN**1.333)

FWINDS = 1.64E-4 * (VWINDS*tI.333)
 
CXN = .COS(DIRCTN) * FWINON
 
CYN = SIN(DIRCTN.) * FWINDN
 
CXS = COS(DTRCTS) * FWINDS
 
CYS = SIN(DIRCTS) * FWINDS
 
WRITE(LW,1020) FWINDN, CXN, CYN
 



C
 
C 

C
 

WRITE(LW.1020) FWINDS. CXS. CYS
 
PREFIX = 1.0 / ((100.0 * VREF)**2)
 
CXN = PREFIX * CXN
 
CYN = PREFIX * CYN
 
CXS = PREFIX * CXS
 
CYS = PREFIX * CYS 
DO 149 1 = 1, IMAX
 
X1 = X(I)

IF(XI.GT.FETCHN) GO TO 141
 
CX = CXN
 
CY = CYN
 
GO TO 144
 

141 IF(XI.LT.FETCHS) GO TO 143
 
CX = CXS
 
CY = CYS
 
GO TO 144
 

143 	CX = (Xl - FETCHN) / (FETCHS - FETCHN) * (CXS - CXN) + CXN 
CY = (X1 - FETCHN) / (FETCHS - FETCHN) * (CYS - CYN) + CYN 

144 	DO 148 J = I. JMAX
 
FWINDX(I.J) = CX
 

148 	FWINDY(I,J) = CY
 
149 CONTINUE
 

Cl = CUTPT./ DZ
 
IF(CX.LT.O.0) GO TO 150
 
KCUT = IFIX(C1 + 0.5)

GO To 160
 

150 	KCUT = IFIX(CI - 0.5)
' =
160 DO 170 NN 1. NRIV
 

J JRIV(NN)
 
AREAX RWIDTH(NN) * RDEPTH(NN)

AREA2 = 0.5 * (Y(J+1) - Y(J-1') * (1.0 - ZB(IJ))
 
RATIO = AREA2 / AREA1
 

170 	RMOMAF(NN) = RATIO
 
PMOMAF = 0.5 * (X(IPASS+I) - X(IPASS-I)) / PWIDTH-


IF LTAPE = 0, MAKE COLD START BY CALLING SUBROUTINE INITAL. 

IF(LTAPE.EQ.O) CALL INITAL
 
DO 190 1 = 1, IMAX
 
DO 180 J = 1, JMAX
 
SURF(MOI.J)= SURF(MN.I,J)
 
DO 180 K = 1, KMAX
 
U(MODI,J.K) = U(MN.IJK)
 
V(MO.I.J.K) = V(MNIJ.K)

S(MO, I*J,*K) = S(MN*IvJ*K)
 

180 	CONTINUE
 
DO 190 K = I. KMXC
 



UC(MOv.1K) = UC(MN.I.K)
 
SC(MOIK) = SC(MN.IK)
 

190 CONTINUE
 
IF(LABELI.EQ.0.ANDoLIAPE.EQOl) GO TO 200
 
10 = LT
 
CALL RITE3
 

200 CONTINUE
 
RETURN
 

C,
 
1000 FORMAT(8I10) 
1001 FORMAT(gFIO.5) 
1002 FORMAT(/.SXOLTAPE = *,14,/,5X91LABELI = 1#4,/5X.,LABELO = 0, 

1 14) 
1003 FORMAT(/,5X.'IMAX = *914s/,5X%*JMAX = '.14,./5X.'KMAX = *I 

I I4,/.SX,'NBAR = 1,14,/.SX.'NMAX = '.14./.SX.NWRITE = ',14)
1004 FORMAT(/,5X,'CUTPT = '.FI0.4.' Mo,/.SX.OTREAL = *,F1O.4,' SEC**
 

1 /.5X,'FETCH = #,FIO.4.' KMI./.SX,'HREF = 4,FIO.4.1 M'./,5X,

2 'PERIOD = 4,F1O.4, HR'./.5X*"PHI = *.FlO.4.1 DEG',/.5X.
 
3 'SIGMAT = t9FIO.4/.5X.'YNAX = 0,FI0.4,1 KM')

1005 FORMAT(/.5X,*CDIF = '9FI0.4s0 M**2/SEC.,/.5X,*CVIS = ',F1O.49 
I ' M**2/SEC./,5X.'ROUGH = .,F10.4.' MM'/,SX.*VONKAR = 1,FI0.4) 

1006 FORMAT(/.5X.JWAG = *,14,/.5X*OKXC = ',14)
 
1007 FORMAT(/.5X,'CDEPTH = 99F10.444 M',/.5XCWIDTH = 4,F1O.4.0 M*4)

1008 FORMAT(/,5X.*DIRCTN = 2.F1C.4.* DEG, DIRCTS'= *.F10.4.' DEG*./
 

1,5X,'FETCHN = tFIO.4.' KM. FETCHS = '.FIO.491 KM',/

2.5XOVWINDN = 9.F1O.4.0 CM/SEC, VWINDS = 0,FIO.4,' CM/SEC')
 

1009 FORMAT(/.SX.'ACCEL = *,FIO.4,/,5X,'ARTVSC = .F10..4,/,5X,

I @YK2 = 49FO.4)
 

1010 FORMAT(/.SX.'RIVER rolls' J = 1,12,' DEPTH = $,FS.l1
 
1 a m WIDTH = *.F6.0* M*)
 

1011 FORMAT(/.5X*IPASS = '.t4./.5X.'PDEPTH = 1,F1O.4, M',/,5X.

1 OPSALT = f*FIO.4/5X'PWIDTH = *,FO.4,' MO)
 

1012 FORMAT(/.15X,*XI .15X,'SOUTH (M)',15X,'WEST (M)',15X,'EAST (M)',/)

1013 FORMAT((13X,14.13X.1PE13.6.2(10XEI3.6)))
 
1014 FORMAT(/.15X.I ,15X.*JWEST',15X,'JEAST')

1015 FORIAT(13X.I3,16X.I3,17XI3)
 
1016 FORMAT(/.IOXI'lOX. J',IOX.'KFLOOR(IJ),15X.'XREALs14X,
 

1 *YREAL'v15Xv.ZBREAL'v/)
 
1017 FORMAT(8X.13.8XI3IOX.14.20XIPEI.6.7KI3.6,5XE13.6)
 
1018'FORMAT(6EI2.0)
 
1019 FORMAT(//.5X,'BI THRU 810 AND Bat THRU BB4 ARE AS FOLLOWSO9/.
 

I 5X,IPSE16.6./.(SX,5E16.6))
 
1020 FORMAT(/95X.*FWIND = *;1PE12.5.' DYNES/CM**2, FWINDX = ttE12.5.
 

1 0 DYNES/CM**2. F.WINDY = *iE12.5,' DYNES/CM**2*)
 
1021 FORMAT(/,IOX,'I t.IX,'KFLORC(1) .16X.'XREAL,14X.'ZBCREAL',/),
 
1022 FORMAT(SX.13.1OX,14,20XIPE13.6.SXE130 6)
 
1023 FORMAT(/.5X.'PHSEMP = '*FIO.4.' HR. PHSEPH = '.F104.' HR-'.
 

http:DEG',/.5X
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1 /.5X,OTAMPMP = 0,F1O.4,v CMO. TAMPPH = *,FLO.4.' CM,,/9SX. 
2 OTAVGMP = 49F1O.49. CM, TAVGPH = ',F1O.4,* CM) 

1024 FORMAT(/.5X.*PHASEI = ',FIO.49 HRI/S5XO'PHASE2 = *,FiO.4,* HRI 
I /*SX,*UAVG' = '.FI0.4vo N/Sv,/.5X*OUVARI = IF10.4,' M/S', 
2 /.5X.'UVAR2 - 0,F1O.4.1 M/S) 
END
 

00 

http:49F1O.49


SUBROUTINE PRESS
 
C
 
C CALCULATE PRESSURE FIELD USING STATIC FLUID APPROXIMATION.
 
C INTEGRATE FROM FREE SURFACE DOWN TO BAY BOTTOM. NOTE THAT P IS
 
C THE DEVIATION FROM THE HYDROSTATIC PRESSURE FOR FRESH WATER
 
C HAVING A FREE SURFACE AT MEAN SEA LEVEL.
 
C
 

LOGICAL 

DOUBLE PRECISION 

COMMON/BNKCRD/ 


1 JE, 

2 JWEST(22). 

COMMON/CHNNEL/ 


I JWAG, 

2 KMXCM2
 
COMMON/FLOOR/ 

COMMON/FLOORC/ 

CDMMON/FLOWI/ 


1 U(2918,17,08), 

COMMON/FLOW2/ 


1 DUDT(18,17*08), 

COMMON/FLOWC1/ 


I UC(2,18,20). 

COMMON/FLOWC2/ 


I DUCDT(I8.2O)
 
COMMON/FORTNO/ 

I LW'
 
COMMON/GRID/. 


I DX. 

2 DXINSQG 

3 DYT2IN. 

4 DZD2v 

5 DZINSQ
 
COMMON/LIMITS/ 


1 JMAX, 

2 KMAXMI9 

3 KEYOUT
 
COMMON/INDEX/ 


1 K. 

COMMON/RIVERS/ 


1 PHASEI. 

2 RMOMAF(4). 

3 UVARI. 

COMMON/STEP/ 


I NBAR. 

COMMON/UNITS/ 

I FETCH. 


ISTEP, 

SURF(2,18.17), 

EAST(22), 

JEAST(22). 

SOUTH(22). 

CDEPTH, 

KMXC, 


KFLOOR(1a.17). 

KFLORC(16), 

P(18.17.08)t 

V(2,18.17.08). 

SURF. 

DVDT(18I7.08)
 
PC(1S,20), 

WC(18,20)
 
SURFC. 


LR. 


DT, 

DXINV. 

DY, 

DYINSQ, 

DZINV. 


IMAX, 

JMAXI1, 

KMAXM2. 


I. 

N
 
JRIV(4). 

.PHASE24 

RWIDTH(4), 

UVAR2
 
MN, 

NWRITE, 

BETA, 

GRAV 


KEYOUT
 
SURFC(18)
 
I[MAX,
 
JW.
 
WEST(22)
 
CWIDTH,
 
KMXCMI,
 

ZB(18vI7)
 
ZOC(18)
 
S(2,1ia.r108),
 
W(18917.08)
 
DHDT(18.17),
 

SC(29IB,20),
 

DHCDT(18).
 

LT,
 

DTD2,
 
DXT2IN9
 
DYINV.
 
DZ,
 
DZT2IN,
 

IMAXMI,
 
KMAX,
 
NMAX.
 

J,
 

NRIV.
 
RDEPTH(4),
 
UAVG.
 

MO.
 
ISTEP
 
BETAD2.
 
HREF,
 

http:DHDT(18.17
http:W(18917.08
http:DVDT(18I7.08
http:V(2,18.17.08
http:KFLOOR(1a.17
http:SURF(2,18.17
http:DUCDT(I8.2O


2 OMEGA, PI. 	 TREF,
 
3 VREF, YMAX
 
TEST = 3.0 * DZ
 
DO 10 I = 1, IMAX
 
Jw = JWEST(I)
 
JE = JEAST(I)
 
DO 10 J = JW, JE
 
KBOT = KFLOOR(I,J)
 
IF(KBOT.GT.KMAX) GO TO 10
 
SK = S(MNI,J.KMAX)
 
RHO = 1.0 + BETA * SK
 
PK = RHO * SURF(MNI.J)
 
PIIJKMAX) = PK
 
KKMAX = KMAX - KBOT
 
DO 5 KK = I. KKMAX
 
K = KMAX - KK
 
SKP1 = SK
 
PKPI = PK
 
SK = S(MN,I.J,K)
 
DELRHO = BETAD2 * (SK + SKPI)
 
PK = PKPI + DELRHO * DZ
 
P(IJK) = PK
 

C
 
C DETERMINE IF PRESSURE HAS DIVERGED.
 
C
 

IF(ABS(PK).GT.TEST) GO TO 100'
 
5 CONTINUE
 

10 	CONTINUE
 
DO 20 I = It IMAX
 
KBOT = KFLORC(I)

SK = SC(MN.I.KMXC)
 
RHO = 1.0 + BETA * BK
 
PK = RHO * SURFC(I)
 
PCIIKMXC) = PK
 
KKMAX = KMXC - KBOT
 
DO 20 KK = 1. KKMAX
 
K = KMXC - KK
 
SKPI = SK
 
fKPl = PK
 
SK = SC(MN.I.K)
 
DELRHO = BETAD2 * (SK + SKP1)
 
PK = PKPI + DELRHO * DZ
 
PC(IK) = PK
 

C
 
C DETERMINE IF PRESSURE HAS DIVERGED.
 
C
 

IF(ABS(PK).GT.TEST) GO TO 110
 



20 CONTINUE 
RETURN 

ICO WRITE(LW.1000) N, I, Jo K 
GO TO 120 

C 
110 WRITE(LW.1001) N, 
120 KEYOUT = .TRUE. 

I, K 

, RETURN 
C 
1000 FORMAT(/SXPRESSURE DIVERGED AT N = ',I4,4i I = ,14', J -

1 14,'. K = 1,14)
1001 FORMAT(/,SX,*PRESSURE DIVERGED AT N = '9149.s I = '14,.9 K = 

1 14) 
END 

Lo 
U(3 



SUBROUTINE PRNT
 
C
 
C OUTPUT FLOW FIELD VARIABLES TO LINE PRINTER.
 
C
 

LOGICAL ISTEP* KEYOUT
 
DIMENSION SURFI(18]
 
DOUBLE PRECISION SURF(2.18.17), SURFC(18)
 
COMMON/BARS/ PTCTIN, SBAR.
 
I UBAR, 	 VBAR
 
COMMON/BNKCRD/ EAST(22), IIMAX,
 
I JE, JEAST(22), JW.
 
2 JWEST(22). SOUTH(22), WEST(22)
 
COMMON/CHNNEL/ CDEPTH, CWIDTH,
 
1 JWAG, KMXC. KMXCM1,
 
2 KMXCM2
 
COMMON/FLOOR/ KFLCOR(18,17). ZB(18.17)
 
COMMON/FLOORC/ KFLORC(18), ZBC(18)
 
COMMON/FLOWI/ P(18,17,O8), s(2,18.17.08),
 
1 U(2918,17.08)., V(2,18.l7v08), W(18.17908)
 
COMMON/FLOW2/ SURF, DHOT(18.17).
 
1 DUDT(18.17.08). DVDT(I8,17,08)
 
COMMON/FLOWCI/ PC(1820). SC(2.18,20),


1 UC(2.18,20). WC(18,20)
 
COMMON/FLOWC2/ SURFC, DHCDT(18],
 

* I DUCDT(18,20)
 
COMMON/FORTNO/ LR, LT,
 
I LW
 
* COMMON/INDEX/ I. 	 J.
 
1 	 K, N
 
COMMON/LIMITS/ IMAX., IMAXMI.
 
1 JMAX, JfAXM1* KMAX.
 
2 KMAXMI. KNAXMZ NMAX.
 
3 KEYOUT
 
COMMON/PULL/ SY(17). SYY(17). 
I TIME,- X-(18)* Y(17). 
2 YK2. Z(8)
COMMON/STEP/ MN, MO
 
I NBAR, NWRITE, ISTEP
 
CbMMON/UNITS/ BETA, BETAD2,
 
I FETCH, GRAV. HREF,
 
2 OMEGA, Pl. TREF.
 
3 VREF, YMAX
 

C
 
CTM = TREF / 3600.
 
CSB = PTCTIN / TREF
 
CUB = CSB * VREF
 
CSH = HREF 100.
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CPR = GRAV * HREF * 0.01
 
KMAXPI = KMAX + 1
 
KMXCPI = KMXC + I
 
JMAXPI = JMAX + I
 
TIMERL = TIME * CTM
 
SBAR = SBAR * CSe
 
UBAR = UBAR * CUB
 
VBAR = VBAR * CUB
 
WRITE(LW.100) N, TIMERL. SHAR, UBAR, VBAR
 
WRITE (L%,I 001.)
 
00 10 1 = I, IMAX
 
JW = JWEST(I)
 
JE = JEAST(I)
 
DO 10 J = JW. JE
 
WRITE(LW1002)
 
KBJT = KFLOOR(IJ)
 
IF(KBOT.GT.KMAX) GO TO 10
 
KKMAX = KMAXPI - XOT
 
DO 5 KK = 1. KKMAX
 
K = KMAXPI - KK
 
UNEW U(MN.I,J,K) * VREF 
VNEW = V(MNI,JK) * VREF 
WNEW W(IJ.K) * VREF 
SNEW S(MN.X.J,K) 
PNEW P(IJK) * CPR 

C 
C VELOCITIES ARE IN M/S. SALINITIES ARE GULF WATER FRACTIONS, 
C AND PRESSURES ARE IN BARS. 
C 

WRITE(LWI003) UNEW, VNEW. WNEW, SNEW, PNEW, I. J, K
 
5 CONTINUE
 

10 	CONTINUE
 
WRITE(LW,1004)
 
DO 20 1 = 1, IMAX
 
WRITE(LW.1002)
 
KKMXC = KMXCP1 - KFLORC(I)
 
DO 20 KK = 1,, KKMXC
 
K. = KMXCPI - KK
 
.UNEW = UC(MN,I,K) * VREF
 
WNEW = WC(I.K) * VREF
 
SNEW = SC(MNr.K)
 
PNEW = PC(IK) * CPR
 
WRITE(LW,1005) UNEW. WNEW, SNEW, PNEW. I, K
 

20 CONTINUE
 
C
 
C GENERATE SURFACE HEIGHT NAP.
 
C
 



WRITE(LW,1006)

WRITE(LW1007) (1T I = 1, IMAX)
 
DO 40 JJ = 1. JMAX
 
J = JMAXPI - JJ
 
DO 30 I = I, IMAX
 

30 SURFI(I) = SURF(MN.IJ) * CSH
 
WRITE(LW,1008) J, (SURFI(I), I = I. IMAX)
 

40 CONTINUE
C' 
WRITE(LW,1009)
 
DO 	50 I = I IMAX 

50 	SURFI(I) SURFC(I) * CSH
 
WRITE(LW,l0068).JWAG. (SURFI(I), I = 1. IMAX)
 
RETURN
 

1000 FORMAT(5X,' N = 115,, TIME = *,F6.2.l HR., SBAR = O,IPEI2.4,
 
1' UBAR = '*E12*4,1. VBAR = IsE12.4)


1001 FORMAT(//,7X,'U,M/S VdY/S W.W/S FRAC G W PoBAR
 
1 I 4 Kls/)
 

1002 FORMAT(/)

1003 FORMAT(5X,IPES.2,4(2X,E9.2),3(2X,13))

100f4 FORMAT(//,7Xv'UC,M/S WC.M/S FRAC G W PCv8AR I K',/)

1005 FORMAT(5X,IPE9.2,3(2X.Eg.2),2(2X,12))
 
1006 FORMAT(///,48X,'SURFACE HEIGHTS, CA.',//)
 
1007 FORMAT(4X,'I=9ZOI6t//)

1008 FORMAT(* J=9,12,3XF5.I,20(IX,F5.1))
 
1009 FORMAT(///.52X.'SHIP CHANNEL'*/)
 

END
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SUBROUTINE REED
 
C
 
C SUBROUTINE FOR 

C.
 

LOGICAL 

DOUBLE PRECISION 

COMMON/ACCT/ 


I QSDOT(7). 

COMMON/BARS/ 


I UBAR. 

COMMON/BNKCRD/ 


I JE, 

2 JWEST(22). 

COMMON/CHNNEL/ 

1 JWAG.-

2 KMXCM2
 
COMMON/FLOOR/

COMMON/FLOORC/ 

COMMON/FLOWI/ 


1 U(2,18,17.08). 

COMMON/FLOW2/ 

1 DUD'T(18,17.08), 

COMMON/FLOWC1)' 


1 UC(2.18,20)9 

COMMON/FLOWC2/ 

1 DUCDT(18,20
 
COMMON/FORCES/ 


1 FWINDY(18.17), 

COMMON/GRID/ 

1 DX, 

a DXINSQ, 

3 DYT2IN, 

4 DZD2 

5 DZINSQ
 
COMMON/GULF/ 

I PERI)I
 
COMMON/LIMITS/ 

I JMAX, 

2 KMAXMI,

3 KEYOUT
 
COMMON/PASS/ 

1 PMOMAF, 

COMMON/PULL/ 


I TIME,

2- YK2s 


COMMON/PULLC/ 

COMMON/RIVERS/ 


I/O 
TO SEQUENTIAL STORAGE 


ISTEP, 

SURF(2,18,17). 

QDOT(7), 

QSNET(7)
 
PTCTIN. 

VBAR
 
EAST(22). 

JEAST(22). 

SOUTH(22). 

CDEPTH, 

KMXC, 


KFLOOR(18.17),

KFLORC(I1), 

P(18,17,08), 

V(2*18.17.08), 

SURF, 

DVDT(18.1708)
 
PC(18.20), 

WC(18,20)
 
SURFC, 


FFWINDX(,17),
 
TOPLYR
 
DT, 

DXINV, 

DY, 

DYINSO, 

DZINV, 


CUTPT, 


IMAX, 

JMAXNI, 

KWAXN2, 


IPASS, 

PSALT. 

SY(17), 

X(18),

Z(8)
 

ZC(20) 

JRIV(4), 


DEVICE.
 

KEYOUT
 
SURFC(18)
 
ONET(7).
 

SBAR,
 

IIMAX,
 
JW,
 
WEST(22)
 
CWIOTH.
 
KMXCMI,
 

ZB(18,1?)

ZBC(18)
 
Sf2.18.17,08),
 
W(18917,083
 
DHDT(18, 17),
 

SC(2.18.20),
 

DHCDT(18),
 

TD2.
 
DXT2INv
 
DYINV,
 
DZ,
 
DZT2IN,
 

KCUT.
 

IMAXMI,
 
KMAX,
 
NMAX.
 

PDEPTH,
 
PWIDTH
 
S-YY(-17)*
 
Y(17),
 

Lo 
NRIV.
 

http:SC(2.18.20
http:PC(18.20
http:V(2*18.17.08
http:KFLOOR(18.17
http:FWINDY(18.17
http:DUD'T(18,17.08
http:U(2,18,17.08


C) 

I PHASEI. PHASE2, RDEPTH(4),
 
2 RMOMAF(4), RWIDTH(4). UAVG.
 
3 UVARI. UVAR2
 
COMMON/RYTE/ 10, LABELI
 

I LABELO
 
COMMON/STEP/ MN MO.
 

1 NBAR, NWRITE, ISTEP
 
COMMON/TIDE/ PHSENP, PHSEPH,
 
I TAMPMP. TAWPPH. TAVGMP.
 
2 TAVGPH, THGTMP. THGTPH
 
COMMON/TUNE/ ACCEL, ARTVSC,
 

I AVCOMP
 
COMMON/TURB/ CDIF, CRICH,
 
1 CVIS. DIFFUS, VISC
 
COMMON/UNITS/ BETA, BETAD2.
 

I FETCH*. GRAV, HREF.
 
2 OMEGA, PTi TREF,
 
3 *VREF, YMAX
 
REWIND 10
 
READ(IO) ACCEL9, ARTVSC, BETA. CDEPTH, CDIF, CUTPT, CVIS,
 

I CWIDTH. DT, DX* DY, DZ. FETCH, HREF. IIMAX,
 
2 IMAX* IPASS. JNAX. JWAG. KCUT. KMAX, KMXC, DUM,
 
* DUM, NBAR. NRIV, NMAX, NWQITE, PDEPTH. PERII, PMOMAF,
 
4 PTCTIN, PWIDTH, TREF, VREF, YMAX
 
READ([O)'(EAST(I), SOUTH(I). WESTCI), I I* IIMAX)
 
READI-IO) (JEAST(I). JWEST4I). I = I, IMAX}
 
READ(IO) ((KFLOOR(I.J), ZB(I,J), I-= 1, IMAX), J =' I, JMAX)
 
READ(IO) (KFLORC(I), ZBC(I). I = I, IMAX)'
 
READ(IO) (((PCI,J,K). I = I, IMAX). J = 1, JMAX), K = 1. KMAX)
 
READ( IO) (((S(MN,TJK), I = 1, IMAX),. J 1s JMAX), K = 1. KMAX) 
READ(1O) (((U(MNIJKh, I = 1, IMAX), J = 1, JMAX), K = 1, KMAX)
READ(TO) (((V(MN,I,JK), I I. IMAX), J = 1, JMAX'), K = 1, KMAX)
 
READ(O) C((W(I.J.K). I I, IMAX), J = 1, JMAXY, K = I, KMAX)
 
READ(TO) ((DHDT(IJ). I = 1, IMAX), J = 1, JMAX)
 
READ(IO) (-((DUDT('I,JK) I = I, IMAX), J = 1, JMAX), K 1, KMAX)
 
READ(TO) (((,.VDT(I,J,K), I = I, [MAX), J = t, JMAX). K ="I, KMAX)
 
READ(IO) (PC(IK), SC(MN.I,K), UC(MN,I,K), WC( I,K), I I, IMAX).
 
I K- = 14 KMXC') 
OEAD(IO) (DHCDT(I). (DUCDT(I.K), K = 1, KMXC), SURFC('I) I = 1,
 
1 IMAX) 
READ.(10) ((FWINDX(I,J), FWINDY(I J), I = 1, IMAX), J = Is JMAX) 
READ(IO) (SY(J), SYY(J), Y(J), J It JMAX), (X(I). I = I IMAX), 
I CZ(K), K = 1. KMAX), (ZC(K). K 1, KMXC)
 
READ(IO) (JRIV(I), RDEPTH(I), RMOMAF(I), RWIDTH(I), I I, NRIV),
 

I PHASEI; PHASE2, UAVG, UVARI, UWAR2
 
READ( I0) PHSEMP, PHSEPH, TAMPMP., TAMPPHO TAVGMP. TAVGPH
 
ENTRY REED2
 



READ(IO) (ODOT(L). ONET(L), QSDOT(L). QSNET(L), L = 1. 7), TIME
 
READ(IO) SBAR. UBAR* VAR
 
READ(TO) ((SURF(MN.IJ). I = I, IMAX). J = Is JMAX)
 
RETURN
 

C
 
C A ENTRY TO WRITE TO STORAGE DEVICE.
 
C
 

ENTRY RITE
 
IF(LABELI.EQ.LABELO) END FILE 10
 
GO TO 10
 
ENTRY RITE3
 
REWIND [0
 

10 CONTINUE
 
WRITE(IO) ACCEL, ARTVSC, BETA, CDEPTH. CDIF. CUTPT, CVIS,
 

1 CWIDTH, DT, DX. DY, DZ, FETCH, HREF, IIMAX,
 
2 IMAX, IPASS. JMAX, JWAG. KCUT, KMAX. KMXC. LABELI.
 
3 LABeLO, NEAR, NRIV. NMAX. NWRITC, PDEPTH, PERIDI. PMOMAF, 
4 PTCTIN. PWIDTH, TREF. VREF, YMAX 
WRITE(IC) (EAST(I), SOUTH(I)'. WEST(I). I = I, IIMAX) 
WRITE(I) (JEAST(I), JWEST(I), I = Is IMAX)
 
WRITE(IO) ((KFLOOR(IJ)..ZB(I.J), I = 1. [MAX), J = I, JMAX)
 
WRITE(IO) (KFLORC(I), ZBC(I), I = I, IMAX)
 
WRITE(I) ({(P(I,J.K), I = 1. IMAX), J = I JMAX), K = 1, KMAX) 
WRITE(IO) (C((S(MN,IJ,K),.I = I, IMAX), J = I. JMAX). K = 1. KMAX) 
WRITE(O) (((U(MNI.J.K). I = 1. IMAX). J = 1. JMAX). K = 1. KMAX) 
WRITE(IO) (((V(-MNIJK), I = 1, IMAX), J = I, JMAX), K = 1, KMAX) 
WRITE(IO) (((W(IJK), I = 1. IMAX), J = , 'JMAX). K = I* KMAX) 
WRITE(IO) ((DHDT(I,J), I = I. INAX), J = I'JMAX) 
WRITE(IO)(((DUD-T(IJ,K). 1 1, IMAX), J = Is JMAX), K = I. KMAX) 
WRITE(IG)(((DVDT(IJ.K), I 1, IMAX), J = Is JMAX), K = 1, KMAX) 
WRITE(IC) ((PC(IK), SC(MN.IK), UC(MNIK), WC(I,K), I = 1, 

I IMAX)s K = Is KMXC)
WRITE(CO) (OHCDTCI), (DUCDT(IK). K = I* KIXC)-, SURFC(I)v I = It 

I IMAX) 
WRITE(I) ((FWINDX(I.J)'. FWINDY(I.J), I = 1, IMAX). J = 1. JMAK) 
WRITE(IO) (SY(J). SYY(J). Y(J), J = 1, JHAX), (X(I). I = l IMAX), 

I (Z(K)o K = Is KMAX), (ZC(K), K = Is KMXC) 
WRITE(IO) {JWIV-(I), RDEPTH(I). RMOMAF(I). RWIDTH(I). I = It NRIV). 

I PHASEI, PHASE2, UAVG, UVARI, UVAR2
 
WRITE(IO) PHSEMP, PHSEPH, TAVPWP,, TAMPPH, TAVGMP, TAVCPH.
 
ENTRY RITE2
 
WRITE(IO) .(QDOT(LX, QNET(L), QSDOT(L), OSNET(.L). L = 1, 7), TIME 
WRITE(IO) SOAR, UBAR, VBAR 
WRITEA4O) ((SURF(MN,IJ), 1 1, IAX), J = I. JMAX) 
RETURN 
END In 
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SUBROUTINE RUBBER 
C 
C GENERATE GRID SYSTEN. 
C 

LOGICAL KEYOUT 
COMMON/CHNNEL/ CDEPTH, CWIOTH, 

I JWAG, KMXC. KMXCMI, 
2 KMXCM2 
COMMON/FORTNO/ LR. LT. 

1 LW 
COMMON/GRID/ 

I DX, 
DT, 
DXINV, 

DT02, 
DXT2!N, 

2 
3 

DXINSQO 
DYT2IN, 

DY. 
DYINSQO 

DYINV, 
DZ. 

4 DZD2. DZINV, 0ZT21N, 
5 DZINSQ 
COMMON/LIMITS/ IMAX. IMAXMI, 

1 JMAX, JNAXMI, KMAXv 
2 KMAXMI, KWAXM2, NMAX. 
3 KEYOUT 
COMMON/PULL/ 

1 TIME, 
SY(17), 
X(18). 

SYY(17), 
Y(17), 

2.. YK2. Z(8) 
COMMON/PULLC/
COMMON/UNITS/ 

ZC(20)
BETA, BEtAD2, 

I FETCH,, GRAV. HREF, 
2 OMEGA-* PI, TREF, 
3 VREF. YMAX 

C 
WRITE(LW*100O) 
DX = FETCH / F'LOAT(MAX - 2) 
DXINV 
DXT2IN 

= 
= 

1.0 /
0.5 * 

DX 
DXINV 

DXINSQ = DXINV * DXINV 
Xl =-1.5 DX 
DO 10 1 = 1. IMAX 
X2 = Xl + DX * FLOAT(1) 
X(I)
XREAL 

= 
= 

X2 
X2 * HREF 

10 WRITE(LW.1001) I, XZ XREAL 
WR'ITE(LW.1002) 
DY = 1.0 / FLOAT(JMAX - JWAG) 
DYINV 
DYT2IN 

= 
= 

1.0 / DY 
0.5 * DYINV 

DYINSO = DYINV * DYINV 
YKI = YMAX / TAN(YK2) 
CONSQ = YK1 * YK1 



DO 20 J = 1. JMAX
 
CAPY DY * FLOAT(J - JWAG)
 
YI = YKI * TAN(YK2 * CAPY)
 
Y(J) = Yi
 
YREAL YI * HREF
 
YSQ Y. * YI
 
DENOM cdNso + YSQ
 
SY(J) = YKI / (YK2 * DENOM)
 
SYY(J) = -2.0 * YKI * YI / (YK2 * DENOM * DENOM)
 

20 	WRITE(LW,1003) J, Yl SY(J). SYY(J), YREAL
 
WRITE(LW.1004)
 
DZ = 1.0 / FLOAT(KMAX)
 
DZ02 = 0.5 * DZ
 
DZINV = 1.0 / DZ
 
DZT2IN = 0,5 * DZINV
 
DZINSQ'= DZINV * DZINV
 
ZI = 0.0
 
DO 30 K = 1,-KMAX
 
Z2 = ZI +"DZ * FLOAT(K)
 
Z(K) = Z2
 
ZREAL = Z2 * HREF
 

30 	WRITE(LW,1001) K. Z2, ZREAL
 
WRITE(LWrIOO5)
 
Z1 = 1.0 - DZ FLGAT(KMXC)
 
DO 40 K = 1. KMXC
 
Z2 --- = Z1 + DZ * FLOAT(K)
 
ZC(K) = Z2
 
ZREAL = Z2 * HREF
 

40 WRITE(LW.1001) K. Z2, ZREAL
 
RETURN
 

C 
1000 FORMAT(//.3-XI.HI18X,'X15X'XREAL(M)%,/)
 
1001 FORMAT(IOX,14.IIX.IPEI3.6.5X.EI3.6)
 
1002 FORMAT(//13X J.'18Xtr ,15X*OSYIblX.SYY I5K,'YREAL(M)%/)
 
1003 FORMAT(10X,14.11X*IPEL3.6,3(5X.Eiaf6))
 
1004 FORMAT(//.13X.K*-IlX,'Z'tS5X.'ZREAL(M)%,/)
 
1005 FORMAT(//.13X. K'.17X,'ZC ,13XZCREAL(M)%/)
 

END
 



SUBROUTINE SETUP
 
C
 

C RETRIEVE VALUES FROM ARRAYS AND ASSIGN THEM TO SCALARS IN ORDER
 
C TO CALCULATE NEW VALUES OF U, V, AND S.
 
C
 

LOGICAL 

DOUBLE PRECISION 

COMMON/BARS/ 

I UBAR, 

COMMON/BNKCRD/ 


I JE, 

2 JWEST(22). 

COMMON/CHNNEL/ 

I JWAG, 

2 KMXCM2
 
COMMON/CONC/ 

1 SJMI. 

2 SKPI, 

COMMON/FLOOR/ 

COMMON/FLOORC/ 

COMMON/FLOWI/ 

1 U(2.18.17.08), 

COMMON/FLOW2/ 


1 DUDTC18,17,08),

COMMON/FLOWC1/ 

1 UC(2.18,20)., 

COMMON/FLOWC2/ 

I DUCDT(18,20)
 
COMMON/FORCES/ 

I FWINDY(18.17), 

COMMON/GRID/


I DX, 
2 DXIN-SQ, 
3 DYT2IN. 

4 DZD2, 

5 DZINSQ
 
COMMON/INDEX/ 


I K, 

COMMON/LIMITS/ 


I JMAX, 

2 KMAXMI, 

3 KEYOUT
 
COMMON/LN/ 

COMMON/PASS/ 

I PMOMAF, 

COMMON/PRES/ 

I PJMI. 


ISTEP, 

SURF(2.18,17), 

PTCTIN, 

VBAR
 
EAST(22), 

JEAST(22). 

SOUTH(22), 

CDEPTH, 

KMXC, 


SIMI. 

SJPI. 

SNEW, 

KFLCOR(18,17), 

KFLORC(18)* 

P(18,17908)v 

V(2,18,17.08). 

SURF, 

DVDT(18,17,O8)

PC(18,20), 

WC(18.20)
 
SURFC, 


F, 

TOPLYR
 
DT, 

DXINV. 

DY, 

DYINSO. 

DZINV. 


I.
 
N
 
IMAX, 

JMAXtl, 

KMAXW2, 


FUNLNl. 

IPASS, 

PSALT, 

PIMi. 

PJPI
 

KEYOUT
 
SURFC(18)
 
SBAR.
 

IIMAX.
 
JWq
 
WEST(22)
 
CWIDTH.
 
KMXCMI
 

SIPi.
 
SKMIl
 
SOLD
 
ZB(18.17)
 
ZBC(18)
 
S(2918.17,08),
 
W(18.17,08)
 
DHDT(18.l7),
 

SC(2.18.20).
 

DHCDT(18),
 

FWINDX(18,17)
 

0TO2.
 
DXT2IN,
 
DYINV,
 
DZ.
 
DZT21Nv
 

IMAXMI,
 
KMAX,
 
NMAX,
 

FUNKAP
 
POEPTH-

PWIDTH
 
PIPI,
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C 

COMMON/PULL/ 

1 TIME, 

2 YK2 

COMMON/PULLC/ 

COMMON/RIVERS/

I PHASEI, 

2 RMOMAF(4). 

3 UVARI. 

COMMON/STEP/ 

1 NEAR, 

COMMON/STRTCH/ 

I SYJ, 

COMMON/TIDE/ 


I TAMPMP, 

2 TAVGPH, 

COMMON/UNITS/" 


I FETCH, 

2 OMEGA, 

3 VREF. 

COMMON/VELCTY/ 


I UJMI. 

2 UKPI, 

3 VIM1. 

4 VJPI 

5 VNEW, 

6 WKPI, 


SBAR = 0.0
 
UBAR = 0.0
 
VOAR = 0.0 
KOELTA =,KMXC - KMA-X 

SY(17). 

X(18), 

Z(83)
 
ZC(20)
 
JRIV(4),

PHASE2, 

RWIDTH(4). 

UVAR2
 
MN. 

NWRITE. 

PREFIX. 

SYJPI 

PHSEMP, 

TAMPPH. 

THGTMP, 

BETA. 

GRAV, 

PIS 

YMAX
 
UIMI. 

UJPI, 

UNEW, 

VIPI, 

VKMI. 

VOLD. 

WNEW
 

FRAC CWIDH * SY(JWAG) * DYINV
 
C
 
C 3-0 CALCULATION FOR BAY PROPER.
 
C
 

DO 290 I = 2.- IMAX
 
JW = JWEST(I)
 
JE = JEAST(I)
 
-PI = I + 1
 
IF(I.EQ.IMAX) IPI = IMAX
 
IM1 = 

J M1 = 

SYJ = 

SYJPI = 

KBOT = 

KBOTJP = 
DO 290 J 

I -1
 
JW - 1
 
SYCJWMI)
 
SY{JW)
 
KFLOOR(I.JWMI)

KFLOOR-(IJW)
 
= JW, JE
 

SYY(17),
 
Y(17),
 

NRIV.
 
RDEPTH(4)9
 
UAVG.
 

MO
 
ISTEP
 
SYJM1.
 
SY2
 
PHSEPH,
 
TAVGMP,
 
THGTPH
 
BETAD2.
 
HREF,
 
TREF,
 

UIPI,
 
UKMI,
 
UOLD,
 
VJMI,
 
VKPI.
 
WKMI,
 



JP1 = J + 1
 
JMI = J -

SY2 = SYY(J)
 
KBOTIM = KFLOOR(IMI,J)
 
KBOTIP = KFLOOR(IPI.J)
 
KGOTJM = KBOT
 
KBOT = KBOTJP
 
K = KBOT
 
KBOTJP = KFLOOR(I.JPX)
 
KBOTP1 = KBOT + I
 
SYJMI = SYJ
 
SYJ = SYJP1
 
SYJPI = SY(JPI)

PREFIX = SYJ * DYT2IN 
IF(KBOT.GT.KMAX) GO TO 290 
TOPLYR = SURF(MN,IJ) + DZD2 
ZBI = ZB(IJ,) 
ALPHA = 5.0 * (Z(KBOTPi) - Za1) - 1.0 
FUNLN2 = ALPHA * (1.0 - ALPHA * (0.5 - ALPHA * (0.3333.3 -

I ALPHA * (0.25 - 0.2 * ALPHA)))) 
FUNLN = 1.0 - DZ / ((Z(KSOT) - ZBl + DZD2) * (FUNLNI 4 FUNLN2 + 

I I FUNKAP))

SOLD S(MO.IJ*KBOT)
 
UOLD = U(MOI.JKBOT)
 
VOLD = V(MO*IvJ*KBOT)
 
WNEW = W(IJKBOT)
 
WKM1 = - WNEW
 
SKMI = SOLD
 
IF(J.NE.JWAG) GO TO 5
 
NTRFCC = KFLOOR(IJWAG) + KDELTA - 1
 
WKMI = WC(I.NTRFCC) * FRAC
 
SKN1 = SC(MN.I*NTRFCC)
 

5 	CONTINUE
 
SKPI = S(MO,IJKBOTPI)
 
UKPI = U(MOIJKBOTPI)
 
VKPI V(MO.I,JKBOTPI)
 
WKPI W(IJ,KBOTP1)
 
IFtKBOT.GE.KBOTJM) GO- TO 10
 
SJmi = SOLD
 
VJMI = -VOLD
 
IF(F.NE.IPASS.OR.J.NE J%) GC TO 20
 
SJMi = PSALT
 
VJMI- V(MO.I.JM1,KBOT)
 
GO TO 20
 

t0 SJi = S(MO*IJMIvKBOT)
 
VJM1 = V(MOL,JMX,KBGT)
 

20 IF(KBOT.GE.KBOTJP) GO TO 30
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SJpI = 
VJPI = 
GO TO 40 

30 	SJP1 = 

VJP1 = 


SOLD
 
-VOLD
 

S4MOIJPIKBCT)

V(MOIJPX.KBOT)
 

40 	IF(KBOT.GE.KBOTIM) GO TO 50
 
Simi = SOLD
 
UIMI = -UOLD
 
GO TO 60 

50 SIMI = S(MOTMIJKBOT) 
UINM = U(MO.IMI.J.KBOT) 

60 	IF(I.EQ.IMAX) GO TO 80
 
IF(KBOT.GE.KBOTIP) GO TO 70
 
SIPI = SOLD
 
UIP1 = -UOLD 
GO TO 90 

70 SIPI = S(MOIP1.J.KBOT) 
UIPI = U(MO.IP1,J.KBOT) 
GO TO 90 

80 SIPI = 1.0 
UIP.I = UOLD 

90 	CALL BOTGRD
 
S(MNIJ*KBOT) = SNEW
 
SBAR = SBAR + (5NEW * SNEW - SOLD * SOLO)
 
DO 190 K = KBOTPI, KMAXMI
 
KPI = K + 1
 
SKMI = SOLD
 
SOLD = SKP1
 
SKPI = S(MO.IJKPI) 
UKMI = UOLD
 
UOLD = UKPI
 
UKPI = U(MOI.JKP1)
 
VKMX = VOLD
 
VOLD = VKPL 
VKP1 = V(MOsI,J,KP4) 
WKMI = WNE w 
WNEW = WKPI 
WKP1 = W(1,J.KPI-) 
IF(K.GE.KBOTJM) GO TO 

SJMi = SOLD
 
UJMI = UOLD
 
VJM1 = -VOLD
 
PJMi = P(IJK)
 

100-


IF(I.NE.IPASS.OR.J.NE.JW) GO TO 110
 
SJm1 = PSALT
 
VJMI = V(MO.IsJMIK)
 
PJM1 = THGTPH + BETA * PSALT (-THGTPH + 1.0 - Z(K))
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GO TO 110
 
100 	SJMi = S(MO,1.JMI,K)
 

UJMX = U(MO,I[JMZ.K)
 
VJM1 = V(MOI.JMIK)
 
PJM1 = P(I,JMIK)
 

110 	IF(K.GE.KBOTJP) GO TO 120
 
SJP1 = SOLD
 
UiJP1 = UOLD
 
VJPI = -VOLD
 
PJPl = P(I,JK)
 
GO TO 130
 

120 	SJPI = S(MOIJPI.K)

UJPI = U(MOIJPI.K)
 
VJPI = V(MO,IJPIK)
 
PJPI = P(IJPI.K)


130 	IF(K.GE.KBOTIM3 GO TO 140
 
SIMi = SOLD
 
UMI1 = -UOLD
 
VIMI = VOLD
 
PIMI. = P(I.J.K)
 
GO TO 150
 

140 	SIMI = S(MOIM.JK)
 
UI I-= UCMOIMI*JK)
 
VIMI = V(MOIMI.JK)
 
PIMI = P(IMI.JK)
 

150 IF(I.EQ.IMAX) GO TO 170
 
IF(K.GE.KBOTIP) GO TO 160
 
SIP1 = SOLD
 
UIPI = -UOLD
 
VIPI = VOLD-

PIPI = P(I.J,K)
 
GO TO 180
 

160 SIPI = S(MOIPIJK) 
UIPI = U(MO.IPIJ.K) 
VIPI = V(MOIPI,J,K) 
PIPI = PCIPIJ,K)
GO TO 180 

170 SIPI = I.-O 
U'IPI = UOLD 
VIPI = VOLD
 
PIPi = THGTMP + BETA * (THGTMP + 1.0 -Z(K) 

iO CALL UVSNEW 
S(Mltr*,J.K) = SNEW 
SBAR = SBAR + LSNEW * 
U(MN*NIJK) = UNEW 
UBAR = UBAR + (UNEW * 
V(MN*IJK) = 

YNEW* 

SNEW 

UNEV 

-

-

SOLD * 

UOLD * 

SOLD) 

UOL) 
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VBAR = VBAR + (VNEW * VNEW - VOLD * VOLD) 
190 CONTINUE 

C 
C INTERPOLATE LOGARITHMICALLY FOR VELOCITIES AT BOTTOM GRID
 
C POINT.
 
C
 

Ul = U(MO.I.JKBOT)
 
U2 = U(MNI.JKBOTPI) * FUNLN
 
U(MNNI.J.KBOT) = U2
 
UBAR = UBAR + (U2 * U2 - U1 * UI)
 
Ul = V(MO,I.J,KBOT)
 
U2 = V(MN.IJKBOTPI) * FUNLN
 
V(MN.IJ.KBOT) = U2
 
VBAR = VBAR + (U2 * U2 - Ul *_UI) 

C 
C EVALUATE NEW S, U, AND V AT FREE SURFACE. VALUES OF St U. V. 
C AND W JUST ABOVE THE SURFACE ARE ASSUMED TO BE EQUAL TO THOSE
 
C AT THE SURFACE.
 
C
 

K KMAX
 
SKMI =-SOLD
 
SOLD = SKPI
 
UKMI = UOLO.
 
UOLD = UKPI
 
VKMI = VOLD
 
VOLD = VKPI
 
WKMI = WNEW
 
WNEW = WKPI
 
IF(KMAX.GE.KBOTJM) GO TO 200
 
SJMi = SOLD
 
UJM1 = UOLD
 
VJM1 = -VOLD
 
PJM1 = P(I,J1 KMAX)
 
IF(I.NE.IPASS0 OR.J.NE.JW) GO TO 210
 
SJMi = PSALT
 
VJMI = V(MOI,JMIEMAX)
 
PJMI = THGTPH * (1.0 + BETA * PSALT)
 
GO TO 2L0
 

200 SJMI SCMO.I,JMIKMAX)
 
UJM1 = UCMO,IJMIKMAX)
 
VJMI = V(MO.I.JMI,KMAX)
 
PJMI = P(I.JM1,KMAX)
 

210 IF(KMAX.GE.KBOTJP) GO TO 220
 
SJP1 = SOLD
 
UJPI = UOLD
 
VJPI = 
-VOLD
 
PJPl = P(IJ.KMAX)
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GO TO 230
 
220 SJPI = S(MO.IJPI,KMAX)
 

UJPI = U(MO.IJP1,KMAX)
 
VJP1 = V(MO.I.JPI,KMAX)
 
PJP1 = P(I.JP1,KMAX)


230 	IF(KMAX.GE.KBOTIM) GO TO 240
 
SIMi = SOLD
 
UIi = -UOLD
 
VIMI = VOLD
 
PIMI = P(I.JKMAX)
 
GO TO 250
 

240 	SIMI = S(MO.IMIJ,KMAX)

UTMI = U(MOIM1,JKMAX)
 
VIMI = V(MOIMIJ,KMAX)
 
PIMl = P(IMI.J.KMAX)
 

250 	IF(I.EQ.IMAX) GO TO 270
 
IF(KMAX.GE.KBOTIP) GO TO 260
 
SIPI = SOLD
 
UIPI , = -UOLD
 
VIP1" = VOLD
 
PIPI = P(I.JKMAX)
 
GO TO 280
 

260 SIPI = S(MO4IPIJ*KMAX)-

UIPI = U(MOIPI-,JKMAX)
 
VIPl = V(MO.IPIJ.KMAX)
 
PIPl -= P{IPIJ.KMAX)
 
GO TO 280
 

270 	SIPI = I0
 
UIPt = UOLD
 
VIP'i = VOLD
 
PIPI- = THGTMP * (1.0 + BETA)
 

280 CALL SURFAC
 
S(MN,-I.J.KMAX) = SNEW
 
SBA-R = SBAR + (SNEW * SNEW - SOLD * SOLD)
 
U(MN. I.JIKMAX) = UNEW
 
UBAR . = UBAR + (UNEw * UNEW - UCLD * UOL-)

V-(MNI,J.KMAX) = VNEW
 
V&AR = VBAR + (VNEW * VNEW - VOLD * VOLD)
 

29O CONTINUE
 
C
 
C 2-u CALCULATION FOR SHIP CHANNEL.
 
C
 

KBOT = KFLORC(1)
 
KBOTIP = KFLORC(2)
 
DO 460 1 = 2, IMAX
 
IPI = I + I
 
IF(I.EQ.IM'Xk IPI = IMAX
 



IMi 

KBOTIM 

KBOT 

K 

KBOTIP 

KBOTPI 

NTRFCE 

NTRFCC 

TOPLYR 

ZDX 

ALPHA 

FUNLN2 


I 

FUNLN 


I 

SOLD 

UOLD 

WNEW 

SKMI 

SKPI 

UKPI 

WKP1 


= I - 1 
= KBOT 
= KBOTIP 
= KBOT 
= KFLORC(IP1) 
= KBOT + I 
= KFLOOR(IJWAG) 
= NTRFCE + KDELTA I­
= SURFC(I) + DZD2 
= ZBC{I) 
= 5.0 * (ZC(KBOTPI) - ZBI) - 1.0 
= ALPHA * (1.0 - ALPHA * (0.5 - ALPHA * 

ALPHA * (0.25 - 0.2 * ALPHA)))) 
= 1.0 - DZ / ((ZC(KBOT) - ZBI + DZO2) * 
FUNKAP)) 
SC(MOI,KBOT) 

= UC(MOIKBOT) 
= WC(IKBCT)
 
= SOLD
 
= SC(MO,IKBOTPL)
 
= UC(MO,I,KBOTPI)
 
= WC('I,KBOTPI)
 

IF(KBOT.GE.KBOTIN) GO TO 300 
SIMi = SOLD 
UtMI = -UOLD 
GO TO 310 

300 SIMi = SC(MO,INIKBOTI 
UIMI = UC(MOIMIKBOT)

310 IF(I*EQ.IMAX) GO TO 
330
 
IF(KBOT.GE.KBOTIP) GO TC 320
 
SIPI 

UIPI 

GO TO 


320 SIP1 

UIP1 

GO TO 

330 SIPl 

UIPI 

= SOLD
 
= -UOLD
 

340
 
= SC(MO,IPI.KBOT)­
= UC(MO.IPI,KBOT)


34-0
 
= 1.0
 
= UGLD
 

340 CALL BTGRDC
 
SC(MNIKBOT) = SNEW
 
SBAR = SBAR + (SNEW * SNE - SOLO * SOLO) 
DO 400 K = KBO.TP1. NTRFCC
 
KPI = K + I
 
SKMI = SOLD
 
SOLD = SKPI
 
SKPI = SC(MOIKPI)
 
UKMI = UOLD
 

(0.333333 ­

(FUNLNI + FUNLN2 + 



UOLD = UKPI
 
UKPI = UC(MO,I,KPI)
 
WKMI WNEW
 
WNEW WKPI
 
WKPI WC(I,KP1)
 
IF(K.GE.KBOTIM) GO TO 350
 
SiMI = SOLD
 
UIMI = -UOLD
 
PIMI = PC(I.K)
 
GO TO 360
 

350 	SIMI = SC(MO,IMIK)
 
UIMI = UC(MO,IMIK)
 
PIMl = PC(IMIK)
 

360 	IF(I.EQ.IMAX) GO TO 380
 
IF(K.GE.KBOTIP) GO TO 370
 
SIPI = SOLD
 
UIPI, = -UOLD
 
PIPI PC(I*K)

GO TO 390
 

370-SIPI SC(MOIPIK)
 
UIPI UC(MOGIP1,K)
 
PIPI PC(IPIK)
 
GO TOU3O
 

380 	SIPr", = 1.0 
UIPi = UOLD 
PIPI = THGTMP'+ BETA * (THGTMP + 1.0 - ZC(K)) 

390 	CALL USNEW
 
SC(MNItK) = SNEW
 
SBAR = SBAR + (SNEW * SNEW - SOLD * SOLD)
 
UC(MN,I,K) = UNEW
 
UBAR - UBAR + (UNEW * UNEW - UOLD * UCLD)
 

400 CONTINUE
 
ut = UC(MO,t,KBOT)
 
U2 = UC(MN.,IKBOTPI) * FUNLN
 
UC(MN*Ir,KBOT) = U2
 
UBAR = UBAR + (U2 * U2 - Ul 4 Ut)
 
DO 450 K = NTRFCE. KMAX
 
KC = K + KDELTA
 
UC(MNIKC) = U(MN,I*JAGK)
 

450 SC(MN.I.KC) = S(MNIJAAG*K)
 
46G CONTINUE
 

RETURN
 
END
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SUBROUTINE UVSNEW
 
C
 
C EVALUATE HORIZONTAL MOMENTUM AND SALT WATER TRANSPORT EQUATIONS
 
C USING ROACHE'S SECOND WINDWARD DIFFERENCES FOR THE CONVECTIVE
 
C TERMS.
 
C
 

LOGICAL 

DOUBLE PRECISION 

COMMON/BNKCRD/ 


1 JE. 

2 JWEST(22), 

COMMON/CHNNEL/ 


1 JWAG. 

2 KMXCM2
 
COMMON/CONC/ 


I SJMi, 

2 SKPI, 

COMMON/FLOW2/


I DUDT(8,17.O8)v

.COMMON/FLOWC2/ 


1 DUCDT('8.20)
 
COMMON/FORCES/ 


1 FWINDY(18,17), 

COMMON/GRID/


I DX, 

2 DXINSQ, 

3 DYT2IN., 

4 DZD2,

.5 DZINSQ
 

COMMON/INDEX/ 

I K. 

COMMON/PASS/ 


1 PMOMAF, 

COMMON/PRES/


1 PJMI. 

COMMON/RIVERS/ 


1 PHASE1, 

2 RMOMAF(4). 

3 UVARI, 

COMMON/STEP/ 


1 NBAR, 

COMMON/STRTCH/ 

1 SYJ-9 

COMMON/TUNE/ 


1 AV-COMP
 
COMMON/TURB/ 


1 CVIS. 


ISTEP
 
SURF(2,18,17). 

EAST(22), 

JEAST(22), 

SOUTH(22), 

CDEPTH, 

KMXC. 


Si'i, 

SJFI. 

SNEW, 

SURF, 

DVDT(18.17.08)
 
SURFC, 


F. 

TOPLYR
 
DT. 

DXINV, 

DY. 

DYINSO, 

DZINV, 


I$ 

N
 
IPASS, 

PSALT, 

PIwl 

PJPI
 
JRIV(4). 

PHASE2, 

RWIDTHC4). 

UVAR2
 
MN, 

NWRIVE, 

PREFIX. 

SY-JPI, 

ACCEL* 


COIF, 

DIFFUS, 


SURFC(IB)
 
IIMAX,
 
JW.
 
WEST(22)
 
CWIDTH,
 
KMXCMI,
 

SIPI,
 
SKMI.
 
SOLD
 
DHDT(18.17),
 

DHCDT(18)v
 

FWINDX(i817})
 

DTD2.
 
DXTZIN,
 
DYINV.
 
DZ.
 
DZT2-N,
 

J,.
 

PDEPTH,
 
PWIDTH
 
PIPI*
 

NRIV,
 
RDEPTH(4),
 
UAVG,
 

MO.
 
LSTEP
 
SYJMI.
 
SY2
 
ARTVSC,
 

CRICH.
 
VISC
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COMMON/UNITS/ BETA, GETAD2.
 
I FETCH, GRAV. HREF.
 
2 OMEGA. PIS TREF.
 
3 VREF, YMAX
 
COMMON/VELCTY/ UImI, UlPl,
 

I UJM1. UJP1, UKMI.
 
2 UKPI, UNEW, UOLO,
 
3 VIMI, VIPI, VJMI,
 
4 VJPI. VKM1. VKPI.
 
5 VNEW, VOLD, WKMI,
 
6 WKPI, WNEW
 

C
 
C 3-U EQUATIONS FOR BAY.
 
C
 

RHOINV = 1.0 -' BETA * SOLD 
WINOX = 0.0
 
WINDY = 0.0
 
GO 	TO 10


C
 

C SPECIAL ENTRY FOR SURFACE CALCULATIONS.
 
C
 

ENTRY SURFAC
 
RHOINV = 1.0 - BETA * SOLO
 
COMP = RHOINV / TOPLYR
 
WINDX = FWINDX(I,J) * CONP
 
WINDY = FWINDYCI.J) * COPP
 

10 	CONTINUE
 
UF = tIPI + UOLO
 
Us = UOLD + UIMI
 
IF(UF.GT.0O) GO TO 20
 
COMPUI = UF * UIPI
 
COMPVI UF * VIPI 
COMPSI = UF * SIPI 
GO 	 TO 30 

20 	COMPUI = UF * UOLD
 
CGMPVI = UF * VOLD
 
COMPS1 = UF * SOLD
 

30 IF(UB.GT.O.O) GO TO 40
 
COMP'Ul = COMPU1 - UB * UOLD
 
COMPVI = COMPVI - LB * VOLD
 
COMPSI = COMPSI - UB * SOLD
 
GO TO 90
 

40 IF(I.NE.2) G" TO 70
 
DO 50 NN = 1, NRIV
 
IF(JRrV(NN).EQ.J) GO TO 60
 

50 	CONTINUE
 
GO TO 70
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60 COMPUl = COMPUI - UB * UIMI * RMOMAF(NN)
 
GO TO 80
 

70 COMPUI = COMPUI - US * UIMI
 
80 COMPVI = COMPVI - Us * VIMI
 

COMPS1 = COMPSI - Us * SIMI
 
90 COMPU2 = RHOINV * (PIPi - PIMI)
 

COMPV2 = RHOINV * (PJPl - PJW1)
 
VF = VJPI + VOLD
 
VB = VOLD + VJM1
 
IF{VF.GT.0.0) GO TO 100
 
COMPU3 = VF * UJP1
 
COMPV3 = VF * VJP1
 
COMPS3 = VF * SJP1
 
GO TO 110
 

1GO 	COMPU3 = VF * UOLD
 
COMPV3 = VF * VOLD
 
COMPS3 = VF * SOLD
 

110 IF(VB.GT.O.0) GO TO 120
 
COMPU3 =-COMPU3 - VS * UOLD
 
COMPV3 = COMPV3 - VR * VOLD
 
COMPS3. COMPS3 - VB * SOLD
 
GO TO 150
 

= 
120 COMPU3 COMPU3 - V6 * UJMI
 
IF(I*NE.IPASS.OR.JoNE.JW) GC TO 130
 
COMPV3 = COMPV3 - VS * VJM1 * PMOMAF
 
GO TO 140
 

130 COMPV3 = COMPV3 - VB * VJMI
 
140 COMPS3 = COMPS3 - VS * SJW1
 
150 WF = WKPI + WNE,W
 

WB = KNEW + WKM1
 
IF(WF.GT.0.O) GO TO 160'
 
COMPU4 = WF * UKPI 
COMPV4 = WF * VKPI
 
COMPS4 = WF * SKPI
 
GO TO 170
 

160 COMPU4 = WF * UOLD
 
COMPV-4 = WF * VOLD
 
COMPS4 = WF * SOLD
 

170 IF(WS.GT.O.0) GO TO 180
 
COMPU4 = COMPU4 - WB U
UOLD
 
COMPV4 = CQMPV4. - W6 * VOL.
 
COMPS4 = COMPS4 - WS * SOLD
 
GO TO iqO
 

,180 COMPU4 = COMPU4 - WS * UKMI 
'COMPV4 = COMPV4 -W * VKMI 
COMPS4 =.COMPS4 - WS * SKMI 

190 	CONTINUE
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C
 
C NOW SOLVING THE X-MOMENTUM EQUATION.
 
C
 

CALL VISCUS
 
C
 
C DU/DT -(D(U*U)/DX + D(U*V)/DY + D(U*W)/DZ + (l.O/RHO)*DOP/DX)
 
C + COEFVZ*(DSQU/DZS) + F*VOLD + FWINDX/(RHO*OEPTH)
 
C
 

DUODT =- DXT2IN * (COMPUl + COMPU2) - PREFIX * COMPU3
 
1 DZT2IN * COMPU4 + VISC + F * VOLD 4 WINDX
 
UNEW = UOLD + (DUOUT + DUDT(I.J.K)) * DTD2
 
IF(ISTEP) DUDT(I,J.K) = DUODT
 

C
 
C NOW SOLVING THE Y-MOMENTUN EQUATION.
 
C
 

CALL-VVISC
 
C
 
C DV/DT = -(D(IU*V)/DX + D(V*V)/DY + O(V*W)/DZ + (1.O/RHO)*DP/DY)
 
C + COEFVZ*(DSQU/DZSQ) - F*UOLD + FWINDY/(RHO*DEPTH)
 
C
 

DVODT = - DXT2IN * COMPVI - PREFIX * (COMPV2 + COMPV3) -

I DZT2IN * COMPV4 + VISC - F * UOLD + WINDY 
VNEW = VOLD + (DVODT + DVDT(I,J,K)) * DTD2 
IFIISTEP) DVDT(I.JK) = DVODT 

C 
C NOW SOLVING THE SALT CONSERVATION EQUATION. 
C 

CALL OIFUSE
 
C
 
C DS/DT = -(D(U*S)/DX + D(V*S)/DY + O(W*S)DZ)
 
C + COEFDX*(DSOS/DXSG + COEFDY*(DSQS/DYSO)
 
C + COEFDZ*(DSQS/DZSQ)

C
 200 DSODT = - OXT2IN * COWPSI - PREFIX * COMPS3 DZT2IN *
- COMPS4 

I + DIFFUS 
SNEW = SOLD + OSODT * DT * ACCEL 
XF(SNEW.LT.O.0) SNEW = 0.0 
IF(SNEW.GT.I.0) SNEW = 1.0 
RETURN 

C
 
C SPECIAL ENTRY FOR SALIN'ITY CALCULATION AT BOTTOM GRID POINT.
 
C
 

ENTRY BOTGRD
 
UF = UIPI + UOLD
 
UB = UOLD + UIMI
 
IF(UF.GT.OO) GO TO 210
 
COMPSI = UF * SIPX
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GO TO 220
 
210 COMPSI = UF * SOLD
 
220 IF(UB.GT.O.O) GO TO 230
 

COMPSI = COMPSI - US * SOLD
 
GO TO 240
 

230 COMPSI = COMPSI - US * SIMI
 
240 VF = VJPI + VOLD
 

VS = VOLD + VJMI
 
IF(VF.GT.O.0) GO TO 250
 
COMPS3 = VF * SJPI
 
GO TO 260
 

250 COMPS3 = VF * SOLD
 
260 IFIVB.GT..0) GO TO 270
 

COMPS3 = COMPS3 - VB * SOLD
 
GO TO 280
 

270 COMPS3 = COMPS3 - VS * SJMI
 
280 WF = WKPI + WNEW
 

WS = WNEW + WKMI
 
IF(WF.GT.O.0) GO TO 290
 
COMPS4 = WF * SKPI
 
GO TO 300
 

290 COMPS4 = WF' * SOLD
 
300 IF(WB.GT.a.0) GO TO 302
 

COMPS4 = COMPS4 - WB * SOLD
 
GO TO 304
 

302 COMPS4 = COMPS4 - * SKM1
WB 

304 CONTINUE
 

SKMI = SOLD
 
CALL BT&IF
 
GO TO 200
 

C
 
C 2-D EQUATIONS FOR SHIP CHANNEL.
 
C
 

ENTRY U.SNEW
 
RHOINV = 1.0 -- BETA * SOLD
 
WINDX = 0.0
 
GO TO- 31C
 

C 

ENTRY SRFACC 
RHOINV = 1.0 - BETA * SOLD 
WINDX = FWINDX(IJWAG) * RHOINV / TOPLYR 

310 CONTINUE
 
UF = UIPI + UOLD
 
US = UOLD + UIMI
 
IF(UF.GT.0,O) GO TO 320 
COMPUI = UF * UIPI H 
COMPSI = UF * SIPr 
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GO TO 330 
320 COMPUI = UF * UOLD 

COMPS1 = UF * SOLD 
330 IF(UB.GT.0O.0) GO TO 340 

COMPUl = COMPUl - US * UOLD 
COMPS1 = COMPS1 - US * SOLD 
GO TO 35C 

340 COMPUI = COMPUl - Us * UIWI 
COMPS1 = COMPSI - US * SimI 

350 COMPU2 = RHOINV * (PIPI - PIMI) 
WF = WKP1 + WNEi 
WB = WNEW + WKMI 
IF(WF.GT..O°) GO TO 360 
COMPU4 = WF * UKPI 
COMPS4 = WF * SKPI 
GO TO 370 

360 COMPU4 = WF * UOLD 
COMPS4 = WF * SOLD 

370 IF(WB.GT.O.0) GO TO 380 
COMPU4 = COMPU4 - WS * UOLD 
COMPS4 = COMPS4 - WB * SOLO 
GO TO 390 

380 COMPU4 = COMPU4 - WB * UKNI 
COMPS4 = COMPS4 - WO * SKMI 

390 CONTINUE 
C 

CALL VISCSC 
DUObT = DXT2IN * (COMPUX + COMPU2) - DZT21N * COMPU4 

+ VISC + WINDX 
UNEW = UCLO + (DUODT + DUCDT(IK)) * DTD2 

C 
IF(ISTEP) DUCDTAI*K) = DUQODT 

CALL DIFUSC 
400 DSODT = - DXT2IN * COMPSI - DZT21N * COMPS4 DIFFUS 

SNEW = SOLD + DSOD-T DDT * ACCEL 
IF(SNEW.LT.O.0) SNEW = 0.0 
IF(SNEW.GT.1.O) $NEW = 1.0 
RETURN 

C 
ENTRY BTGRDC 
UF = UIPI + UOLD 
US = UOLD + UIMI 
IF(UF.GT.0.0) GO TO 410-
COMPS1 = UF * SIPL 
GO TO 420 

410 COMPS1 = UF * SOLD t 

420 IF(UB.GT.O.0) GO TO 430 



COMPSI = COMPSI - US * SOLD
 
GO TO 440
 

430 COMPSI = COMPSI - US * SIMI
 
440 WF = WKP1 + %NEW
 

IF(WF.GT.O.O) GO TO 450
 
COMPS4 = WF * SKPI
 

S45GO TO 460
 
450 COMPS4 = WF *'SOLO
 
460 CONTINUE
 

CALL BTDIFC
 
GO TO 400
 
END
 

U) 



SUBROUTINE VISCUS
 
C
 
C CALCULATE TURBULENT SHEAR STRESS AND DIFFUSION TERMS.
 
C
 

COMMON/CONC/ 

1 SJMI# 

2 SKP1. 

COMMON/GRID/ 


1 DX, 

2 DXINSQ, 

.3 DYT2IN. 
4 DZ02, 
5 DZINSO
 
COMMON/STRTCH/ 

1 SYJ. 
COMMON/TURB/ 

I CVIS, 
COMMON/VELCTY/ 


1 UJMI, 

2 UKPIv 

3 VIMI, 

4 VJPI. 

5 VNEW, 

6 WKP1. 


C
 

SIMI, 

SJPI, 

SNEW, 

DT, 

DXINV, 

DY, 

DYINSO, 

DZINV, 


PREFIX. 

SYJPI1 

CDIF. 

DIFFUS, 

UIME, 

UJPI, 

UNEW, 

VIPI, 

VKMI, 

VOLO 

WNEW
 

C 3-D EQUATIONS FOR BAY.
 
C
 

CVIS- = CVIS 
UDEL UKPI - UKN 
VDEL VKP - VKM1 
DO SQRTLUDEL * UDEL + VDEL 

10 RICH CRICH * (SKPI - SKMI) / 
tF(RICH.LTO.0) RICH = 0.0 
DAMPV = 1.0 / SQRT(I.O + 10.0 * 
ZCOMP = CVLSI * (UKPI - UOLD -
GO TO 2C 
ENTRY VVISC 
ZCOMP = CVISI * (VKPI - VOLD ­

20 	V-ISC = DAMPV * ZCOMP
 
RETURN
 

C 
ENTRY 5/DIF

CD-IFI = CDIF
 
DAMPD = 1.0
 
GO TO 30
 

C 
ENTRY DIFUSE 

SIPI.
 
SKMI,
 
SCLD
 
OTD2.
 
DXT2IN.
 
DYINV,
 
DZ,
 
DZT2IN.
 

SYJMI.
 
SY2
 
CRICH.
 
VISC
 
UIP!.
 
UKMI,
 
UOLD*
 
VJMI,
 
VKPI.
 
WKNI,
 

* VDEL)
 
(DO * DQ + 1.OE-6)
 

RICH-) 
UOLD-+ UKMI) * DZINSO 

VOLD + VKMI) * DZINSO
 

a­



DAMPO = 1.0 / (1.0 + 3.333 * RICH)**1.5 
30 TWOS = SOLD + SOLD 

0 
40 

YCOMP1 
YCOMP2 
XCOMP 

= 
= 
= 

SY2 * 
4.0 * 
(SIPI 

DYT21N * 
PREFIX * 
- TWOS + 

(SJPI -SJMI)' 
PREFIX * (SJPI
SIMI) * OXINSO 

- TWOS + SJMI) 

ZCOMP 
DIFFUS 
RETURN 

= 
= 
CDIFI 
CDIF1 

* 
4 

(SKPI - TWOS + SKM1.) * DZINSO 
(XCOMP + YCOMPI + YCOMP2) + DAMPD * ZCOMP 

C 
C 2-D EQUATIONS FOR SHIP CHANNEL. 

cl C 
ENTRY VISCSC 
OQ 
CVISI 

= 
= 

ABS(UKPI -
2.0 * CVIS 

UKNI) 

GO TO 13 
C 

ENTRY BTDIFC 
CDIF = 2.0 * CDIF 
DAMPD = 1.0 

C 
GO TO 50 

ENTRY DIFUSC 
DAMPD .= 1.0 / (IC + 3.333 * RICH)**I.S 

50 TWOS = SOLD + SOLD 
YCOMPI = 0.0 
YCOMP2 0.0 
GO TO 40 
END 

co 
Li, 



SURROUTINE VOLDIL
 
C
 
C CALCULATE NEW VERTICAL VELCCITIES AND SURFACE HEIGT LOCATIONS
 
C USING THE VOLUME DILATATION EQUATION.
 
C
 

LOGICAL ISTEP. KEYOUT
 
DOUbLE PRECISION SURF(2,18,17), SURFC(18)
 
DOUBLE PRECISION SURFAV, SURFIM,
 

I SURFIP. SURFJW, SURFJPq
 
2 SURFI. SURF2, TWCSRF
 
COMMON/ANKCRD/ EAST(22), IIMAX,
 
1 JE, JEAST(22)' 
 .JW.
 

2 JWEST(22), SOUTH(22), WEST(22)
 
COMMON/CHNNEL/ COEPTH, CWIDTH,
 

I JWAG, KMXC,' KMXCMI,
 
2 KMXCM2
 
COMMON/FLOOR/ KFLOOR(I8,I7). ZS(18*17)
 
COMMON/FLOORC/ KFLORC(18), ZSC(1t)
 
COMMON/FLOWI/ P(18917,08) 0 S(2,18.17,08)
 

I U(2,18,17,08), V(2.l8,17,O8), W(18.17,38)
 
COMMON/FLOW2/ SURF, UHD1(18,Lf),
 
I' DULT(18.l7,08), DVDT(18,17,OB)
 
CUMMON/eLOWCI/ PC(18,20). SC(2#I182').


I UC(2,18,20), WC(18,20)
 
COMMON/FLOWC2/ SURF.C? .' .HCCT(I8).
 
I DUCD.T(18.20)j
 
COMMON/FORTNO/ L'R. LT,
 

I LW
 
COMON/GRID/ DT, DT02,
 
I DX, UXINVY CKT2KN.
 
2 DXINS(, DY. DYINV.
 
3 OYT21N, DYINSQ, DZ,

4 DZ02, DZINV, DZT2IN,
 
5 DZINSO
 

COMMON/GULF/ CUTPT, KCUr.
 
t PERI D I
 
COWMON/-INDEX/ I,- J,
 

I K, K
 
COMMON/LIMITS/ IMAX, IMAXMI,
 

I JMAX. JNAX I, KMAX,
 
2 KMAXMI, KMAXW2, AX
 
.3 KEYOUT
 
COWMON/PASS/ IPASS, P-EPTi.
 

I PMOMAF, PSALTP PWIO-Th
 
COMMON/PULL/ SY(17), SYY(17),
 

I TIME, X(18)6 Y(17).
 
2 YK2, 2(8)
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COMMON/PULLC/ 
COMMON/RIVERS/

I PHASEI, 

ZC(20) 
JRIV(4),
PHASE2, 

NRIV. 
RDEPTH(4), 

23 RMMAF(4),UVARI,. RWIDTH(4).UVAR2 UAVG, 

1 NBAR, NWRITE, ISTEP 
COMMON/TIDE/ PHSEWP, PHSEPH. 
I TAMPMP, TANPPH, TAVGMP, 
2 TAVGPH, THGTMP, THGTPH 
COMMON/TUNE/

'I AVCOMP 
ACCEL, ARTVSC, 

KOELTA = KMXC - KMAX 

TEST = -1.5 * DZ 

Az C 
FRAC = CWIDTH * SY(JWAG) * DYINV 

C 2-D EQUATIONS FOR SHIP CHANNEL. 
C 

KBOT 
KBOTIP 

= 
= 

KFLORC(1) 
KBOT 

DO 430 1 1. IMAX 
IMI = I - I 
IF(I.EO.I) IMI = 1 
IPt = I + I 
IFCI.EQ.IMAX) IPI = IAX 
KBOTIM = KBOT 
KbOT = KBOTIP 
KE3OTIP = KFLORC(IPI) 
KBOTPI = KBOT + I 
NTRFCE = KFLOOR( I JWA(,) 
NTRFCC = NTRFCE + KDELTA - 1 
IF(KBOT.GE.KBOTIM) GO TO 
UIII = - UC(MN.I.K9CT) 

300' 

GO TO 31C 
30C UIMi = UC(MNIMl,KBOT) 
310 IF(KBOrt.Gr.KBOTIP) GO TC 320 

UIPI 
GO TO 

= -
3J0 

UC(MN,,I.KBOT) 

320 UIPI = UC(MNIP1,KBOT) 
330 CONTINUE 

WNEW = 0.25 * (UIMl - UrPI) * DXINV • (ZC(KCT) - C(I)) 
WC(I.KBOT) = WNEW 
00 380 K = KBOTPl. NTRFCC 
KMI = K - Iw 

UIMKM1 = UIMI 
IF(K.GE.KBOTIM) GO TO 340 
UII = - UC(MN.I,K) 



GO TO 350 

to0 
IVIF(K.GE.KBOTIP) 

340 UIMI = UC(MN.IMI,K) 
360 U[PKMI = UIPI 

GO TO 360 

Ito 
UIPI = - UC(MN.I.K)
GO TO 370360 UIPI UC(MNIPIK) 

370 CONTINUC 
UIN = UIMI + UIMKMI 
UOUT = UIPI + UIPKMI 
WNEW = WNEW + 0.25 * (UIN - UOUT) * DXINV * DZ 
WC( ,K) = WNEW 

380 CONTINUE 
430 CONTINUE 

C 
C 3-D EQUATIONS FOR BAY. 
C 

D0 280 1 -1 IMAX 
IMI =I -I 
IF(I.EQ.I) IMI = I 
IPI = I + 1 
IF(I.EQ.IMAX) IPI = IMAX 
Jw = JWEST(1) 
JE = JEAST(I) 
SURFI = SURF(MOI,JW) 
SURFJP = SURFI 
KBOT = KMAX + I 
KBOTJP = KFLOOR(I.JW) 
Y! = Y(JW-) 
YJPI = Y(JW) 
DELY2 =. YJPI - YI 
DO 280 J = JW, JE 
JPi = J + I 
JMI = J - I 
YJMI = YI 
YI = YJPl 
YJPI = Y(JPl) 
DELY = C.5 * (YJPI - YJMI) 
OELYIN = 1.0 / DELY 
DELYI = DELY2 
DELY2 = YJPI - Y1 
KBOTJM = KBOT 
KBOT = KBUT.JP 
KBOTJP = KFLOOR(I,JPI) 
SURFJM = SURF1 
SURFI =SURFJP
 
SURFJP = SURF(MO.I.JPI)
 



IF(KBOTJP.GT.KMAX) SURFJP SURFI
 
IF(KBOT.GT.KMAX) GO TO 280
 
SURFIM = SURF(MO,IMI,J)
 
IF(I.EQ.IMAX) GO TO 10
 
SURFIP = SURF(MOIP1,J)
 
GO TO 2C
 

10 	SURFIP = THGTMP
 
20 	KBOTIM = KFLOOR(IM1,J)
 

KBOTIP = KFLOOR(IPI.J)
 
KBOTPI = KBOT + I
 
IF(KBOTIM.GT.KMAX) SURFIM = SURFI
 
IF(KBOTIP.GT.KMAX) SURFIP SURFI
 
IF(KBOT.GE.KUOTIM) GO TC 30
 
UIM1 = - U(MN,I,JKBOT)
 
GO TO 4C
 

30 UIMI = U(MN,IMI,JKBOT)
 
40 IF'KBOT.GE.KBOTIP) GO TC 50
 

UIPI, = - U(MNIIJ.KBOT)

GO TO 60
 

50 UIPI = U'(MNIPI.J.KBOT)
 
60 IF(KBOT.GE.KBOTJM) GO TC 70
 

VJM1 = - V(MNIJ.KBCT)
 
IF(I.EQ.IPASS.AND.J.EQ.JW) VJMI = V(MOI,JMI,KBOT)
 
GO TO 80
 

70 	VJMI = V(MN,IJMI,KBOT)
 
80 	IF(KBOT.GE.KBOTJP) GO TO go
 

VJPI = - VLMN,I,JKBOT)
 
GO TO 100
 

90 VJPi = V(MN.I,JP1,KBCT) 
100 CONTINUE 

WNEW = 0.25 * ((UIMI - UIPI) DXINV + (VJMI - VJP1) * DELYIN)
1 (Z(KBOT) - Zt3(t.J))
 
W(.I,J,KHOT) = WNEW
 
DO igo K = KBOTPi. KMAX
 
KMI = K.- I
 
UIMKMI = UIMI
 
IF(K.GE.KBOT[-M) GO- TO 110
 
UIM1 = - U(MN,I.J,K)
 
GO TO 120
 

110 UIMI = U(MN,IMI*J,K)
 
120 UIPKMI = UIPI
 

IF(K.GE.KBOTIP) GO TO 130 
UIPI -- U(MN.I.J.K) 
GO *TO 140, 

130 UIPi = U(MN.IPI,JK) 
140 VJMKM1 = VJMI 

IF(K.GE.KSOTJM) GO TO 150 
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VJM1 = - V(MNi,.JK) 
IF(I.EQ.IPASS.AND.J.EQ.JW) VJMI = V(MO,I,JMIK) 
GO TO 16C 

'" 	 150 VJMI = V(MN,I,JMI,K) 
I VJPKMI VJP1IC = 


IF(K.GE.KBOTJP) GO TO 170
 
VJP1 = - V(MNI,J,K)
 
GO TO 160
 

170 VJPI V(MN,IJPIK)
 
180 CONTINUE
 

UIN = UIMI + UINKMI
 
UOUT = UIPI + UIPKMI
 
VIN = VJM1 + VJNKMI
 
VOUT = VJPI + VJPKMI 
WNEW = WNEW + 0.25 * ((UIN - UOUT) * CXINV + 

I (VIN - VOUT) * DELYIN) * 0Z 
190 W(I,J,K) = WNEW 

IF(J.NE.JWAG) GO TO 210
 
WCHN = WC(I.NTRFCC)
 
WBAY = FRAC * VCHN
 
DO 200 K = KBOT, KNAX
 

200 W(IJWAG,K) = W(I,JWAGK) + WRAY
 
210 CONTINUE
 

C
 
C CALCULATE FREE SURFACE LOCATION.
 
C 

UMID = U(MN.I,JKMAX) + U(MN,IJ,KMAXWI)
 
VMID = V(MN,I,J.KMAX) + V(Ut',I,JKMAXMI)
 
UIN = (UIN + UMID) * (0.5 * (SURFIM + SURFI) + DZ)
 
UOLT = (UOUT + UMID) * (0.5 * (SURFIP + SURFI) + DZ)
 
VIN = (VIN + VMID) * (0.5 * (SURFJM + SURFI) + DZ)

VOUT = (VOUT + VID) * (0.5 * (SURFJP + SURFI) + CZ)
 
TWOSRF = SURFI + SURFI
 
COMPHI - (SURFIP - TWOSRF + SUtFIM) * DXINSO
 
PREFIX = SY(J) * DYINV
 
COMPH2 (SURFJP - TWOSRF + SURFJM) * PREFIX * PREFIX +
 
I (SURFJP - SURFJM) * DYr21N * SYY(J)
DHODT = WtI,J,KMAXM1) + 0.25 * ((UI=N - UCUT) * DXINV + 

I (VIN - VOUT) * DELYIN) + ARTVSC * (CCMPHI + COMPH2) 
SURFZ SURFI + (DHOOT + DHDT(IJ)) * DfD2 
DHDT(I.J) = DHODT 
IF(SUiRF2.LT.TEST) GO TO 290 
SURF(MN,I.J) = SUPF2 
GO TO 47C 

2g0 	WRIVE(LiIOC0) No I, J
 
KEYOUT = .TRUE*
 
RE TURN
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470 CONTINUE 
C 

IF(J.NE.JWAG) GO TO 280 
00 390 K = KBOT, KMAX 

390 WC(I,K+KDELTA) = WCHN + h(I,JWAGK) 
SURF2 = SURF(MN,IJWAG) + WCHN * DT 
IF(SURF2.LT.TEST) GO 
SURFC(I) = SURF2 

TO 440 

280 CONTINUE 
GO TO 45C 

440 WRITE(LW,1001) N, I 
KEYOUT = TRUE. 

450 RETURN 
10CO FORMAT(5X,'SURFACE

i I3) 
TOO POUGH AT N = ',I5.5X,' I = 4.13,SX, J = 

0JI FORMAT(5X,OSURFACE TOO ROUGH AT 
END 

N = ',15,5Xt I = 4,13) 



BLOCK DATA 

c VARIOUS CONSTANTS ARE DEFINED. 
to C 
c)LOGICAL 

COMMON/FORTNO/ 
ISTEP 
LR. LT. 

1 LW 
COMMON/INDEX/ I, J, 

I K* N 
COMMON/STEP/ 

I NBAR. 
MN, 
NWRITE, 

MC. 
ISTEP 

COMMON/UNITS/ 
I FETCH. 

BETA, 
GRAV. 

t3ETAD2,. 
HIREF, 

2 OMEGA, PI, TREF. 
3 VREF, YMAX 

C 
C LW, LR, LT ARE THE LOGICAL I/0 UNIT NUMBFERS FOR WRITING ON LINE 
C PRINTER, READING FROM CARD READER. USING TAPE. RESPECTIVELY. 
C 

DATA LW.LRLT/6,5,3/ 
DATA MN.MON/2,9,O/ 
DATA GRAVOMEGA.PI/9,790,7.29E-5,3.1415Q/ 
END 



DATA 
0 0
 

18 17 8 60 6000 375
 
C. 60. 50.5860 5. 25. 30.7 30.
 

26.3130
 
0. 1.7127 39.5 35.9 33.2 33.2
 

0.0015 	 0.0015 10.0 0.4
 
7 20
 

12.3 122.0
 
0.0 0.0 0.0 0.0 0.0 0.0
 
1.0 2400. 1.0
 

4 
7. 9. 235.6
 
8. 9. 316.6
 

11. 6. 335.5
 
12.' 8. 312.4
 

0.9996 3.8256 0.4971 - J.4i78 -C.Y7T6
 
15. 	 1.5 0.7 3000.
 
22
 

0.0 -0.10 6.00
 
1.3 -1.35 5.90
 
2.6 -1.45 5.85
 
3.9 -1.40 6.20
 
5.2 -1.65 6.00
 
6.5 -2.50 6.35
 
7.8 -3.00 6.40
 
9.1 -3.15 5.90
 

10.4 -4.20 5.40
 
11.7 -4.35 4.25 
13.0 -4.40 5.00
 
14.3 -4.80 5.20
 
15.6 -4.60 5*40
 
16.q -4.55 6.50
 
18.2 -4.45 8.25
 
19.5 -4.85 9.80
 
20.8 -5.40 10.90
 
22.1 -5.35 13.10
 
23.4 -5.00 14.00
 
24.7 -4.40 14.20
 
26,0 -3.80 11.20
 
27.3 -3.20 0.50
 

.5C90404EO .7724584E-4-.1369818E-3-.2940399E-7 * 3376q83E-7 .6457060E-7
 
.,l9078E-1I-.223053E-11 .460191E-LI-.164306E-10
 
-. 1459126EI O.EO O.EO O.E0
 

1 0 4 
is 17 8 0 3OOC LL5 

0. 60. 50.5960 S. 25. 30.7 30.
 



C 

26.3130
 
2.1C. 


0.0015 


12.3 

120.
PI°w10 

4
 
7. 

4v 

11. 

12.
0.9996 

15. 


1.7127 


0.0015 


122.0
 
200.
2400. 

9. 

9. 

6. 

a.
3.8256 

1.5 


39.5 35.9 33.2 33.2 

10.0 0.4 

25.01.0 37.0 474. 608. 

235.6 
316.6 
335.5 
312.4C.2721 -0.4378 -0.0796 

0..7 3000. 



APPENDIX C
 

VARIAN PLOT PROGRAM 

The Varian plot program generates plots of velocity vectors,
 

salinity numbers and water level contours in cross-sections correspond­

ing to the grid planes in the Mobile Bay model program. The plot
 

program has been written specifically for the output of the Mobile Bay
 

program. In addition, it requires the Varian plot package currently
 

available on Louisiana State University Computer Research Center's
 

IBM 360.
 

The Varian plot program determines what cross-sections to plot at 

a given time level for which data are stored on tape on the basis of 

the values of control variables read from punched card input. These 

variables are defined with comment statements preceding the READ state­

ments in which they appear, and are listed in Table C.1 along with 

their input format for easy reference. These READ statements are 

located in the MAIN program. The modelfdata are read from tape by a
 

subroutine entitled READ, scaled by PREP and plotted by Varian subrou­

tines invoked by the MAIN program. Subroutines DODADI and DODAD2 

generate reference scales and XYBRDI, XZBRD1 and YZBRD1 generate the 

bay boundaries corresponding to the xy- xz- and yz-cross-sections. The
 

printed output from the program is nominal. 

A listing of the FORTRAN IV statements for the Varian plot program
 

and a typical set of input data follow.
 

395
 



396 

TABLE C.1
 

Input Variables for Varian Plot Program
 

Name Format 

NPLOTI I10 

NPLOT2 I10 

NXY I10 

NXZ 110 

NYZ I10 

KSECTN(I) I10 

JSECTN(I) I10 

ISECTN(I) 110 



C
 
C THIS PROGRAM PLOTS VELCCITY, SALINITY, AND SURFACE HEIG-T DATA
 
C FOR VARIOUS CROSS-SECTIONS OF MOBILE BAY.
 
C
 

LOGICAL 
 ISTEP, KEYOUtJT
 
DIMENSION ISECTN(5). JSECTN(5),


I KSECTN(5)
 
DIMENSION LCASWY(4), LCHANL(4),


I LELA(4). LEAS(3), LFRE(3).
 
2 LFRGU(9). LGUL(d). LHEI(3),

3 LMMS(2). LNSS(3)o LPLO(3),

4 LSAL(4), LSUR(4), LTID(4),

5 LVEL(4)9 LWAT(3). LIWPS(2)

DOUBLE PRECISION SURF(18,17), SURFC(,18)

COWMON/ACCT/ QDGT(7). ONET(7)}
 

I QSDOT(7). QSNET(7)

COMMON/BARS/ PTCTIN. S8ARs
 

I UBAR, VBAR
 
COMMON/BNKCRD/ EAST(22), IIMAX,
 

1 JE, JEAST(22), JW.
 
2 JWEST(22), SOUTH(22), WEST(22)

COMMON/CHNNEL/ CDEPTH. CAIDTH,
 
I JWAG, KMXC. KMXCMI,
 
2 KMXCM2
 
COMMON/FLOOR/ KFLOCP(18*17). ZU(18,7)

COMMON/FLOORC/ KFLORC(8), ZBC(18)

COMMON/FLOWI/ P(18917.08), S(I8.17.:a).

I U(18.17.08), V(18,17,08), W(I81I7,08)

COMMUN/FLOW2/ SURF, DHOT(18.17),
 

I DUDT(18.17,08). DVDT(18,17,C8)

COMMON/FLOWC1/ PC(18,20), SCCX8.20),
 

1 UC(1d.20), WC(16,20)
 
COMMON/FLOWC2/ SURFC, DHCOT(18),


I DUCDT(18.20)
 
COMMON/FORCES/ F, FWINDX(Ithl?)o

1 FWINI)Y(18,17). TOPLYR
 
CUMMON/FORTNO/ LR* LT,
 
I LW
 
COMMON/GRID/ DT, )TOD2.


I DX, DXINV, DXT2IN.
 
2 DXINSQ, DY, DYINY,
 
j DYT2IN, DYINSO, oz.
 
4 DZD2. DZINV, DZT2IN,
 
5 DZINSO
 
COMMON/GULF/ CUTPT, KCUT.
 

I PERIDI
 
CUMMON/INDEX/ I. I,
 

http:DUCDT(18.20
http:UC(1d.20
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I, K, N
 
COMMON/LIMITS/ IMAX, IMAXMI,
 

I JMAX. JMAXWI, KMAX.
 
2 KMAXMI, KWAX2*2 NMAX,
 
3 KEYOUT
 
COMMON/PASS/ IPASS, POEPTH,
 
I PMOMAF, PSALT, PWIOTH
 
COMMON/PLOTT/ DXD2, L,
 

I NPLOTI, NPLQT2. PERIOD,
 
2 ZMAX, ZOHSCL
 
COMMON/PULL/ SY(17). SYY(17),
 
1 TIME, X(18) , Y(17).
 
2 YK2, Z(8)
 
COMMON/PULLC/ ZC(20)
 
COMMON/PrVERS/ JRIV(4). NRIV.
 

I PHASEI.& i PHASE2. RDEPTH(4). 
2 RMMAF(4). RWIDTH(4). UAVG. 
3 UVARI, UVAR2 
COMMON/RYTE/ 0, LABELI.
 
L LASELO
 
COMMON/SCALE/ HSCALE. SSCALE.
 
1 USCALE, WSCALE. XSCALE.
 
2 ZSCALE
 
COMMON/STEP/ MN, MO
 

I NBAR, NWR[TE, ISTEP
 
COMMON/rIDE/ PHSEMP, PHSEPH,
 
1 TAMPMP, TANPPH, TAVGMP.
 
2 TAVGPH, THGTrP, THGTPH
 
COMMON/TUNE/ ACCEL, ARTVSC.
 
I AVCOMP
 
COMMON/TUR/ CDIF. CRICH.
 
I CVIS, DIFFUS, VISC
 
COMMON/UNITS/ HETA, BETAD2.
 
I FETCH, GRAV, HREF.
 
2 OMEGA, P1l TNEF,
 
3 VREF, YMAX
 
DATA LCASWY/' KM .'WRT I'ICAUSIOEWAY/

DATA LCHANL/O KM .'WRT ',OCHAN*,'NEL 1/
 
DATA LELA /'ELAPOISED .'tTIRE','0 I,
 

DATA LEWS /*E--W *,'SECT'OICN I/
 
DATA LFRE /'FRES4,'H *.10 /
 
DATA LFRGU /'FRES,H WA',*TER 6,1= O ' G','ULF *,'WATE',


I OR = 1,110 1/ 
DATA LG.L /'GULF',' 1.4c I/ 
DATA LHEI /'HEIG ,'HT, .'CN ' 

DATA LHR /' HR 1/
DATA LMMS /0 M M','SL I/
 



DATA LNSS /*N-S I/
'*/SECT'ION 

DATA LPLO /'PLOT99' ELE','VO I/
 
DATA LSAL /lSALI%'.NITY.,' PRO','FILF'/
 
DATA LSUR /'SURF'.*ACE ',*PROF',OILE '/

DATA LTID /'TIDE sl PLR$,lIODO' q/
 
DATA LVEL /OVELO''CITY*', VEC'.,TCRS'/
 
DATA LWAT /'WATE%,'R SC'.'ALE 0/
 
DATA LIMPS /'I.M/,OS t/
 
CALL IDENT({1303 88532 FHP')
 
10 = LT
 
REWIND 10
 
DGORD = 180.0 / PI
 
PID2 = 0.5 * PI
 

10 CALL PLOT( 5.00, 12.0.-3)
 
C
 
C *NPLOTI. NPLOT2 ARE THE FIRST AND LAST FRAME NUMBERS FOR THE
 
C SEQUENCE OF FRAMES TO BE PLOTTED. A FRAME IS A COMPLETE SET
 
C OF DATA DESCRIBING THE FLCW FIELD AT A GIVEN INSTANT IN TIME.
 
C THE FRAME NUMBER MULTIPLIED BY INWRITF EQUALS THE TIME INDEX N
 
C IN THE MOBILE BAY PROGRAM.
 
C
 

READ(LR,1000) NPLOTI. NPLLT2
 
IF(NPLOTI.EQ.-I) STOP
 

C
 
C *NXY, NXZ, NYZ ARE THE NUMBER OF CROS$-SECTIONS IN THE XY-, XZ-,
 
C AND YZ-PLANES, RESPECTIVELY. TO BE PLOTTEU. FOR EA0- FRAME.
 
C
 

READ(LR,1000) NXY, NXZ. NYZ
 
C
 
C *KSECFN, JSECTN, ISECTN ARE THE SPECIFIC 'VALUES OF THE SPATIAL
 
C INDICES FOR EACH SECTION IN THE XY-. XZ-. AND YZ-PLANES,
 
C RESPECTIVELY.
 
C
 

READ(LR.1000) (KSECTN(L), L =I . NXY)
 
READ(LR.1000) (JSECTN(LJ . L = I . NXZ)
 
READ(LR.1000) (ISECTN(L), L = 1, NYZ)
 

C
 
C GENEPATE PLOTS FOR ABOVE SEQUENCE CF FRAMES,
 
C
 

DO 350 L = NPLOTI, NPLOT2
 
C
 
C READ DATA FOR GIVEN FRAME AND SCALE'THEM,
 
C
 

CALL PREP
 
C
 
C PLOT VELOCITY VECTORS IN XY-PLANE CRCSS-SECTIONS.
 
C
 



IF(NXY.Q.0) GO TO 
DO 90 M = 1, NXY 

t65 

K = KSECTN(M) 
CALL XYRDI 
CALL PLOT( 2.25. -1,00.-3) 
CALL DODAD2 
CALL PLUT( -2.25, 1.00,-3) 
CALL VTHICK(1) 
CALL PLOT( 2.90, -4.00-3) 
VECTOR = USCALE / HREF 
CALL PLOT( O.00,VECTOR, 2) 
CALL SYMBOL( O00,VECTOR,0.O7, 2, 0.0.-I) 
CALL SYMt3OL( 0.20,VECTCR*O.5-0.07,0.14. LIMPS, 
CALL PLOT( -2.50. 1 4.00.-3) 
CALL PLUT( 0.30, -7.25,-J) 

0.c. 5) 

CALL SYMBOL( 0.70, 0.00,0.14, LVEL, 0.0,16) 
CALL SYMOOL( O.CO, -0.25..14, LPLO, 0.U.11) 
ELEV = HREF * (1.0 - Z(K) / ZSCALE) 
CALL NUMBER( 
CALL SYMBOL( 
CALL SYMBOL( 

1.54, -0.25,0o.14, 
2.24, .-0.25,0.14, 
0.00, -0.50,0.14, 

ELEV, 
LUMS, 
LTO, 

0.0, 2) 
0.0. 6) 
0.0;13) 

CALL NUMBER( 1.82, -0.50.0,14,PFRIC, 0.0, 2) 
CALL SYMBOL( 2.52, -0.50,r.14, LHR,, .0. 3) 
CALL SYMBOL( 
CALL NUMBER( 

0.00, -0.75,0.14, 
1.96, -0.75.0.14, 

LELA, 
TINE, 

0014) 
0.0, 2) 

C 

CALL SYMBOL( 2.80, -0.75.0.14, 
CALL PLUT( -0.30, 7.25,-3) 

LHR, S.0, H 

C FOR THIS PLOT Y IS ALONG THE PAPER ROLL AND X IS ACROSS THE 
C PAPER ROLL. 
C 

DO 80 1 = 1, IMAX 
XSIRT = X(I) 
IF(I.NE,1) GO To 40 
00 30 NN = 1, NRIV 
J = JRIV(NN) 
YSTRT = Y(J 
IF(K.GE.KFLOOR(I.Jf) GO TC 20 

IF(J.EO.JWAG) GO TO 15 
CALL SYMBOL( YSTRT, XSTRT,0.07, 6. 0.0.-1) 
GO TO 3k, 

IS KC = KMXC - KWAX + K 
UCi = UC(IKC) 

XEND = XSTRT - UCI 
THETA = 0.0 
IF(UCI.GT,.0.O) THETA = 180.0 
CALL PLCIr( YSTRT. XSTRT, 3) 0 



00 CALL -SYMBOL( YSTRT,
GO TO JC 

XEND90.07, 2.THETA,-2) 

20 UI 
Vi 

= 
= 

U(I.J,K) + 
V(IJ.K) 

O.C00001 

XEND = XSTRT - Ul 
YEND = YSTRT '+ VI 

J v 
THETA = (ATAN2(-UIV1) - P1D2) 
CALL PLUT( YSTRT, XSTRT, 3)
CALL SYMBOL( YEND. XEND,.07, 

* DGRD 

2.THETA,-2) 
o 30 CONTINUE 

GO To 6 C 
40 JW 

JE 
= 
= 
JWEST(1) 
JEAST(I) 

DO 70, J = JW, JE 
YSTRT = Y(J) 
IF(K.GE.KFLOOR(IJ)) 
IF(J.EQ.JWAG) GO TO 

GC.TC 
50 

60 

CALL SYMBOL( YSTRT, XSTRT,0.07, 3, 0.0.-I) 
GO TO 70 

S0 KC = KMXC - KMAX + K 
UCi = UC(I.KC) 
XEND = XSTRT - UCi 
THETA = 0.0 
IF(UCI.GT.O.0) THETA = 180.0. 
CALL 
CALL 

PLOT( YSTRT, XSTRT, 3) 
SYMBOL( YSTRT. XEND,O.07, .2,THETA,-2) 

GO TO 70. 
60 Ul 

V.1 
= 
= 

U(I.J.K) + 
V(IJK) 

O.CO0001 

XEND = XSTRT - UI 
YEND = YSTRT + VI 
THETA = (ATAN2(-UI.Vl) - PIO2) * DGORO 
CALL PLOT( YSTRT, XSTRT. 3) 
CALL SYMBOL( YEND, XENO,0.07, 2,THETA,-2) 

70 CONTINUC 
80 CONTINUF 

CALL EUL'LOT(O.1) 
CALL PLOT( 0.0C, O.OG,-3) 

'O CONTINUL 
C 
C PLOT SALINITIES IN. XY-PLANE CROSS-SEC1 IOYb. 
C 

DD 140-M 1.1, NXY 
K = KSECTN(M) 
CALL XY5RDI 
CALL PLOT( 2o25, -1.00,-3) 
CALL L)L)AD2 



CALL PLOT( -2.25, 1.00.-3)
 
CALL VTHICK(1)

CALL PLOT( 1.50, -3.C0.-3)
 
CALL SYMBOL( 0.00, 0.00.0.14, LWAT. 0.0.11)
 
CALL SYMBOL( O.CO, -0.25,0.14, LFRE. 0.0, 9)

CALL SYMBOL( 0.00, -0.50,0.14, LGUL, 0.0.10)

CALL PLOT( -1.50, 3'.00.-3)
 
CALL PLOT( 0.30, -7.25,-3)
 
CALL SYMBOL( 0.70, 0.00,0.14, LSAL, 0.0,16)
 
CALL SYMBOL( 0.00, -0.25,0.14; LPLO, 0.0.11)
 
ELEV = HREF * (1.0 - Z(K) / ZSCALE).
 
CALL NUMBER( 1.54, -0.25.0.14, ELEV, 0.0. 2)

CALL SYMBOL( 2.24, -0*25.0.14, LNMS, 0.0. b)

CALL SYMBOL( 0,00, -0.50,U.14, LTID, 0.0,13)

CALL NUMBER( 1.82, -O.50,0.14,PRIOV, 0.0, 2)
 
CALL SYMBOL( 2.52, -0.50#0.14, LHR, 0.0, 3)
 
CALL SYMBOL( 0.00. -0.75.0.14, LELA. C.O.14)

CALL NUMBER( 1.96, -0.75,0.14, TINE, 0.0. 2)
 
CALL SYMBOL( 2.80. -0.75,0.14, LHR. 0.0. 3)

CALL PLUT( -0.30, 7.25,-3)
 
.DO 	130 1 = 1, IMAX
 
XSTRT = X(I) - 0.039
 
IF(I.NE.1) GO TO 110
 
00100 NN = 1. NRIV
 
J = JRIV(NN)

YSTRT = Y(J) - 0.035
 
IF(K.LT.KFLOOR(I,J).AND.J.EC.JWAG) GO TO ')5
 
CALL NUMBER( YSTRT, XSTRT,0.07,S(IJ,K), 0.,--)
 
GO TO 1CC
 

95 CALL NUMiBER( YSTRT, XSTRT,0.07,SC(I.KC). 0.0.-I) 
ICO CONTINUE 

GO TO 130 
110 	JW = JWEST(I)
 

JE = tEA-ST (I)
 
DO 120 J = JW, JE
 
YSTRT = Y(J) - 0.035
 
IF(K.LT.KFLOOR(I,J),AND.J.EC.JWAG) GC Tf: 115
 
CALL NUMBER( YSTRT, XSTRT, C.07,S-(IJ.K), .;.o,-1)
 
GO TO 120
 

115 	CALL NUMBER( YSTRT, XSTRT,0.O7,SC(IKC), 
 2 ,09 -1 )
 
120 	CONTINUL
 
130 	CONTINUE
 

CALL FOPLOT(O,1)
 
CALL PLOT( 0.00, 0.00,-3-)
 

140 CONTINUE
 
C
 
C PLOT SURFACE HEIGHT PRCFILES.
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CALL XYBRDI
 
CALL PLOT( 2.25, -1.00,-3)
 
CALL DODAD2
 
CALL PLOT( -2.25, 1.00.-3)

CALL VTHICK(1)
 
CALL PLOT( 2.00. -3.25,-3)
 
VECTOR = HSCALE / HREF
 
CALL SYMBOL( O00.-VECTOR.O.1O, 13, 

CALL SYMBOL( 0.00. 0.00.0.10. 13. 

CALL SYMBOL( 0.00,VECTORO.10, 13, 

XSTRT = 0.10
 
YSTRT = - VECTOR - 0.035
 
CALL NUMBER( XSTRT, YSTRT.O.07,-100.0. 

YSTRT = YSTRT + VECTOR
 
CALL NUMBER( XSTRT, YSTRT90.07, 0.0, 

YSTRT = YSTRT + VECTOR 
CALL NUMBER( XSTRT. YSTRT.0.07, 100.0. 

CALL SYMBOL( '0.70, -0.70,0.14. LHEI, 

CALL PLOT( -2.00, 3,25-3)
 
CALL PLOT( 0.30, -7.25,-3)

CALL SYMBOL( 0.70, 0.00.0.14, LSUR. 

CALL SYMBOLC 0.00, -0.25,0.14, LTID, 

CALL NUMBER( 1.82, -0,25,0.14,PERICD. 

CALL SYMBOL( 2.53, -0.25.0.14, LHR, 

CALL SYMBOL( 0.00. -0.50.0.14. LELA, 

CALL NUMBER( 1.96, -0.50.0.14, TIME, 

CALL SYMBOL( 2.80, -0.50,0.14, LHR, 

CALL PLOT( -0.30, 7.25,-3)
 
DO 160 1 = 2.' IMAX
 
jW = JWEST(I)
 
JE = JEAST(I)

Xl = X(I)
 
yw = Y(JW)
 
YE = Y{JE)
 
CALL VTHICK(1)
 
CALL PLOT( YE, Xl. 3)
 
CALL PLOT( YW, Xl, 2)
 
X2 = XI + SURF(IJW)
 
CALL PLOT( YW, X2. 2)
 
CALL VTHICK(-j)
 
DO 150 J = JW, JE
 
X2 = XI + SURF(IJ)
 
Y2- = Y(J)
 
CALL PLOT( Y2, X2. 2)
 

15L 	CONTINUE
 
CALL VTHICK(1)
 

90.0,-1)
 
90.0.-2)
 
90.0,-2)
 

3.C, 0)
 

0.0. 0)
 

0.0. 0)
 
90.},10)
 

0.3.15)
 
0.0.13)
 
0.0, 2)

0.3. 3)
 
0.0.14)
 
0.0v 2)
 
0.,0 3)
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C CALL PLOT( YE, X1, 2) 

160 CONTINUE 
CALL EOPLOT(Oi) 

1(5 CALL PLOT( 0.00. -5.0f.-3) 

C PLOT VELOCITY VECTORS IN XZ-PLANE CROSS-SECTIONS. 
C 

IF(NXZ.EO.0) GO TO 285 
DO 220 f0 = Is NXZ 
J = JSECTN(M) 
CALL PLOT( 2.00, 1.80,-i) 
CALL DODAD1 
CALL PLJT( -2.00, -1.80,-3)' 
CALL PLJT( 7.20, -I.50,-3) 
CALL DODAD,2 
CALL PLOT( -7.20* 1.50,-i) 
CALL VTHICK(1)
CALL PLOT( 0.00, -2.70,-3) 
CALL SYMBOL( 2'.10. C.00,0.14, LVEL, C.0,16) 
CALL SYMBOL( 0.91. 0.25.0.14. LNSS. 
OFFSET = 0.C01 * HREF * Y(J) / XSCALL 

U.cJ.12) 

CALL NUMBER( 2.59, -0.25,0.14,0FFSET. 0.0, 2) 
CALL SYMBOL( 3.43, -0.25,0.14,LCHANL, 0.0,15) 
CALL SYMBOL( 
CALL NUMBER( 
CALL SYMBOL( 
CALL SYMBOL( 
CALL NUMBER( 
CALL SYMBOL( 

0.00, -0.50,0.14. LTID, 
L.82, -0.50.0.14.PERIOD, 
2.52, -0.50,0.14, LHR, 
3.29. -0.50,C.14, LELA, 
5.25. -0.50.0.14. TIME. 
6.09, -0.5f,0.14, LHR. 

.. 0,13) 
3.0. 2) 
0.0, 3) 
0o0.14) 
0.0. 2) 
OC. 3) 

CALL PLOT( 0.00, 2.70,-3) 
IF(J.EQ.JWAG) GO 
CALL XZHRD1 

TC 190 

CALL VTHICK(1) 
C 
C FOR THIS PLOT X IS ALONG THE PAFER F4CLL AND Z IS ACPOSS THF 
C PAPER ROLL. 
C 

DO 180 1 = 1, IMAX 
KBOT = KFLOOR(IJ)
IF(KBQT.GT.KMAX) GO TO I0 
XSrRT = 
DO 17C K 

-
= 

*(I) 
KBOT, KMAX 

ZSTRT = Z(K) 
Ur 
w-

= u(IJ.K' + 
W(I,J,K) 

0.1OoC'0l 

XEND = XSTRT + U1 
ZLND = ZSTRT + %I 



THETA = (ATAN2(WI,U1) - P102) * DGCRD 
CALL PLOT( XSTRT, ZSTRT. 3)
CALL SYMBOL( XEND, ZEND,0.07, 2tTHETA.-2) 

170 CONTINUE 
180 CONTINUE 

GO TO 210 
190 CALL CHURDI 

CALL VTHICK(1) 
DO 200 I =' 1. IMAX 
KBOT = KFLORC(I) 
XSTRT = 
DO 200 K 

-
= 

X(I) 
KBOT, KMXC 

ZSTRT = ZC(K) 
UCI 
WCI 

UC(I,K) + 
WC(IK) 

O.O00001 

XEND = XSTRT + UCI 
LEND = ZSTRT + WCI 
THETA = (ATAN2(WCI,UC1) - P102) * OGORD 
CALL PLOT( XSTRT, ZSTRT, 3)
CALL SYMBOL( XEND, ZENO,0.07, 2,THETA,-2) 

200 CONTINUE 
210 CALL EOPLOT(O.1) 

CALL PLOT( 0.00, 
220 CONTINUE 

O.CO.-.) 

C 

C 
C 

PLOT SALINITIES IN XZ-PLANE CROSS-SECTIONS. 

DO 280 M = 1, NXZ 
J = JSECTN(M) 
CALL PLO2T( 7.20, -1.50.-3) 
CALL DOI.A02' 
CALL PLOT( -7.20, 1.50,-3) 
CALL VTHICK(I)
CALL SYMBOL( 0.70, 1.80,0.07, LFRGU, 0.0.34) 
CALL PLOT( 0.00, -Z.70,-3) 
CALL SYMBOL( 2.10, 0.00,0.14, LSAL. 0.,0 16) 
CALL SYMBOL( 0.91, -0,25.0.14, LrSS. 
OFFSET = 0.001 * HREF * Y(J) / XSCALE 
CALL NUMBER( 2.59. -0.25-.0.14,OFFSET,
CALL SYI:BOL( 3.43, -0.25,Q.14,LCHANL, 

0.0.12) 

S.t, 2)
0.0.15) 

CALL SYMf1OL(
CALL NUMBER( 
CALL SYMBOL( 

0.00. 
1.82, 
25 

-0.90.0.14, LTID,
-0.50,0.14,PER[CD. 
-0.0,.14, LHR, 

0.0s.3)
0.3, 2) 
0.0, 3) a 

CALL SYMBOL( 3.29, -0.50.0.14, LELA, 0.0.14) a' 
CALL NUMBER( 5.25. -0.50-.0.14, 
CALL SYMBOL( 6.09, -0.50,0.14, 
CALL PLOT( 0.00, 2.70,-3) 

rINE, 
LHk, 

0.0, 2)
.O. 1) 



IF(J.EQ.JWAG)
CALL XZHRDI 

GO TO 250 

CALL VTHICK(1) 
DO 240 
KBOT 

1 
= 

= 1, IMAX 
KFLOOR(I.J) 

IF(KBOT.GT.KMAX) GO TO 240 
XSTRT = - X(I) - 0.035 
DO 230 K = KOOT, KMAX 
ZSTRT = Z(K) - 0.035 
CALL NUMBER( 

230 CONTINUE 
XSTRT. ZSTRT,0.07.S(I,JK). 0.0.-1) 

240 CONTINUE 
GO TO 270

250 CALL CHURD1 
CALL VTHICK(1) 
DO 260 1 = 1, rMAX 
KBOT = KFLORC(I) 

XSFRT = X(I -C035 
DO 26C K = KBOT, KMXC 
ZSTRT = ZC(K) - 0.035 

RC^ 
CALL NUMBER( XSTRT. 
CONTINUF ' 

ZSTRT.5).z7.SC(I,K), C.0,-1) 

270 CALL EOPLOT(0,1) 

2eC 
CALL PLOT( 
CONfINUL[ 

0.00, 0.00,-3) 

C 
C PLOT VELOCITY VECTORS IN YZ-PLANE CROSS-SECTICNS. 
C 

285 IF(NYZ.EO.C) GO TO 345 
DO 310 M = 1, NYZ 
I = LSECTN(M) 
CALL PLOT(
CALL DODADI 

0.00, 1.800-i) 

CALL PLJT( 0.00, -1.8.--3) 

CALL 
CALL 

PLJT(
ODA02 

4.00, I.CO.-31 

CALL PLtjT( -4. J0, -1. ",.-J) 
CALL VTHICK(1)
CALL PLCIT( -2o20, -2.60,-3) 
CALL SYMOL( 2 10, 0.00,0.14. LVEL, .,,16) 
CALL SYQ{3UL( 0.91, -0..2 ,0.14, 
OFFSET = - 0.001 x HREF * X(I) / 

LEW&, 
XSCALE 

v.C .12) 

CALL NUMOER(
.CALL SYMBOL( 

2.b9. 
3.43. 

-0.25,0.-I.4.OFFSUT, 
-O,25,0.14.LCASwY, 

0.0, 2)
u.0, 16) 

CALL SYMBOL( 
CALL NUMDER( 

0.00. -0.50.0.14, LrID, 
1.82, -0.50,014,PERIOD, 

0.C, I 
0.,. 2) 

0) 

CALL SYMVOLC 2.52. -0.50,0.14, LHP. 0.0, ) 



CALL SYMBOL( 3.29, -0.50,0.14. LELA, 0.0,14') 
CALL NUMBER(
CALL SYMBOL( 

5.25, -0.50.0.14, 
6.09. -0.5090.1,4, 

TIME. 
LHR. 

0.0, 
0.0. 

2)
3) 

CALL PLUT( 2.20, 
JW = JWEST(I) 

2.60,-3) 

JE 
CALL 

= JEAST(I)
YZBRO1 

CALL VTHICK(1) 
C 
C FOR THIS PLOT Y IS ALONG THE PAPER RCLL AND Z IS ACROSS THE 
C PAPER ROLL. 
C 

DO 300 J = JW. JE 
KBOT = KFLOOR(I.J) 
IF(KBOT.GT.KMAX) GO TO 300 
YSTRT = Y(J) 
DO 290 K = KBOT KMAX 
ZSTRT = Z(K) 
Vi 
Wl 

= 
= 
V(IJ.KY 
W(IJ.K) 

+ 0.000001 

YEND = YSTRT + VI 
ZEND = ZSTRT + Wi 
THETA = (ATAN2(W1,VI) - PID2) * DGORD 
CALL PLOT( YSTRT, ZSTRT. 4) 
CALL SYMBOL( YEND. ZEND.O.07, 2.THETA.-2)_. 

290 CONTINUL 
300 CONTINUE 

CALL EOPLOT(0.1) 
CALL PLOT( 

310 CONTINUE 
0.00, 0.00.-3) 

C 
C PLOT SALINITIES IN YZ-PLANE CROSS-SECTIONS. 
C 

00 340 M = 1, NYZ 
I 
CALL 

= [SECTN(M)
VTHICK(I) 

CALL SYMBOL( O.C3. 1.S0,0.07, LFRGU, 0.0,34) 
CALL PLOT( 4.00, L.00'-3) 
CALL DODAD2 
CALL PLUT( -4.00. -1.0-0-3) 
CALL PLOT( -2.20, -2.60,-3) 
CALL SYMBOL( 2.10, 0.CO0.14, 
CALL SYMBOL( 0.91, -0.25.0.14. 
OFFSET = - 0.001 * HREF * X(I) / 

LSAL. 
LEWS, 
XSCALE 

0.0,16) 
0.0.12) 

CALL NUMBER( 2.59,.-0.25,0;14.0FFSET, 0.0, 2) 
CALL SYMBOL(
CALL SYMBOL( 

3.43, -0.25,0.14.LCASWY
0.00. -0.50,0.14, LTID, 

'0.o'16)
0.0.13) 



CALL NUMBER( 1.82, -0.50.0.14.PERIOD 0.0, 2)

CALL SYMBOL( 2.52. -0.5090.14, LHR, 0.0, 3)
 
CALL SYMBOL( 3.29, -0.50,0.14, LELA, 0.0,14)
 
CALL NUMBER( 5.29, -0.50,0.14, TIME, 0.0, 2)
 
CALL SYMBOL( 6.09. -0.50.0.14, LHR, 0.0. 3)
 
CALL PLOT( 2.20, 2.60.-3)
 
JW = JWEST(I)
 
JE = JEAST(I)
 
CALL YZi3RDI 
CALL VTHICK(1)
 
DO 330 J = JW. JE
 
KBOT = KFLOOR(I,J)
 
IF(KEOT.GT.KMAX) GO TO 330
 
YSTRT = Y(J) - 0.035
 
.DO 32C K = KBOT, KMAX 
ZSTRT = Z(K) - 0.035 
CALL NUMBER( YSTRT, ZSTRT,O.07,S(I,J.K), O.o,-I)' 

320 	CONTINUE
 
330 	CONTINUE
 

CALL EOPLOT(Ol)
 
CALL PLOT( 0.00, 0.00,-3)
 

340 CONTINUE
 
345 CALL PLOT(, 0.00. 5.00.-3)
 
350 CONTINUE
 

C
 
C PUT ORIGIN IN BOTTOM LEFT HAND CORMER OF VARIAN FRAME.
 
C
 

CALL PLOT( -5.00,-12.00,-3-)"
 
GO TO- 10
 

IOCC FORMAT(8I10)

LNO
 

410 
00 

http:0.50.0.14
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SUBROUTINE DODADI
 
DIMENSION LINMPS(2), LIMPS(2)
 
COMMON/SCALE/ HSCALE, SSCALE,

I USCALE, WSCALE, XSCALE,
 
2 ZSCALE
 
COMMON/UNITS/ BETA, BETAD2.
 
1 FETCH, GRAV, HREF,
 
2 OMEGA. PI, TREF,
 
3 VREF, YMAX
 
DATA L1MMPS/tI.MM',*/S #/
 
DATA LIMPS /fl.M/*,$S I/
 

C
 
C GENERATE VELOCITY SCALES FCR VERTICAL CROSS-SECTIONS.
 
C
 

CALL VTHICK(I)
 
VECTOR = USCALE / HREF
 
CALL SYMBOL(VECTOR, 0.00.0.07, 2,-90.0,-2)

CALL SYMBOL(VECTOR+0.07,-o.035,0.07. LIMPS, 0.0. 5)

CALL PLOT( 0.00, 0.00, 4)
 
VECTOR = WSCALE / (HREF * 1000.0)
 
CALL SYMBOL( O.00,VECTORO.07, 2, 0.0,-2)

CALL SYMBOL( -0.49,VECTCR*o.5-0.0350.07,LIMMPS, 0.0, 6)

RETURN
 
END
 

0 

http:O.00,VECTORO.07
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SUBROLTINE DODAD2 
DIMENSION LST(2) 
COMMON/PLOTT/ DXD2. 

I NPLOT1. NPLOT2, 
c 2 ZMAX, 

COMMON/PULL/I TIME, 

ZOHSCL 
SY(17),(18) 

2 YK2, Z(8) 

COMMON/TIDE/1 TAMPMP, PHSENP,TAMPPH, 

2 TAVGPH. THGTMP, 

. 
COMMON/TUNE/

I AVCOMP 
ACCEL, 

COMMON/UNITS/ 
I FETCH, 

BETA. 
GRAV, 

2 OMEGA. PI. 
3 VREF. YMAX 
DATA LGU 

.DATA LHI 
/'GULF,/
/fHI q/ 

DATA LLO 
DATA LMN 

'/LO. 
/IMN 

I/ 
I/ 

DATA LST /'STAGE ' 

C 
DATA LTI /'TIDE'/ 

C GENERATE GULF TIDE GAGE. 
C 

CALL VTHICKUl} 
CALL SYMBOL( 
CALL SYMBOL( 

O.C0,-TANPMPC,.I0, 
0.00.- 0.00.0.10. 

CALL SYMBOL( 0.OOsTAMPMP,0.l0, 
XSTRT = -0.24 
YSTRT = - TAMPMP - 0.035 
CALL SYMbOL( XSTRT. YSTRT.O.07. 
YSTRT = YSTRT + TAMPMP 
CALL SY-MBOL( XSTRT, YSTRT.O.07, 
YSTRT = YSTRT + TAMPWP 
CALL SYMBOL( XSTRT. YSTRT.G.07, 
TIbSCL = THGTMP - TAVGMP 
CALL SYMBOL( 0. 0,TID-CL.0.07, 
DTHTMP = - SIN(2. * Pt * (TIME 
THETA = b.o 
IF(DTHTMP.LT.O.O) THETA = 180.0 
CALL SYMBOL( 0.18,TIDSCL,0.07. 
CALL SYMBOL( -0.14, -0.40,0.07, 
CALL SYMBOL( -0.14.-0.505,0.07, 
CALL SYMBOL(-G.175. -0.61,0.07, 
RETURN 

L.
 
PERIOD.
 

SYY(17).

Y(17)v
 

PHSEPH,
TAVGMP,
 

THGTPH
 
ARTVSC,
 

8ETAD2.
 
HREF.
 
TREF,
 

I3, 90.0,-1)
 
13, 90.0.-2)
 
13. 90.0.-2).
 

LLO, 0.0, 2)
 

LAN. 0.0, 2)
 

LH[, 0.0, 2)
 

2. 90.0'.-1)
 
PHSEWP) / PERIOD)
 

2,THETA,-I)
 
LGU, 0.0. 4)

LTI, G.0s 4)
 
LST, Q.0, 5)
 



'-4 END 

.to
 

clH 

-4 



SUBROUTINE PREP
 
LOGICAL 

DOUBLE PRECISION 

COMMON/ACCT/ 


1 QSDOT(7). 

COMMON/BARS/ 

I UBAR, 

COMMON/BNKCRD/ 


I JE. 

2 JWEST(22), 

COMMON/CHNNEL/ 


I JWAG. 

2 KMXCM2
 
COMMON/FLOOR/ 

COMMON/FLOORC/ 

COMMON/FLOWI/ 

I U(18,17,08), 

COMMON/FLOW2/ 

I DUDT(18.17,08). 

COMMON/FLOWC1/ 

I UC(18,20), 

COMMON/FLOWC2/ 


I DUCDT(18,20)
 
COMMON/FORCES/ 

I FWINDY(18,17), 

COMMON/FORTNO/ 


I LW
 
COMMON/GRID/ 


1 DX, 

2 DXINSQ, 

3 DYT2IN, 

4 DZD2* 

5 DZINSQ
 
C&MMON/GULF/ 


I PERI1) 1 
COMMON/INDEX/ 


1 K, 

COMMON/LIMITS/ 


1 JMAX. 

2 KMAXMI 

3 KEYOUT
 
COMMON/PASS/ 

I PMOMAF, 

CONMON/PLOTT/ 


I NPLOTI, 

2 ZMAX,

COMMON/PLLL/ 


ISTEP, 

SURF(18.17), 

QDOT(7). 

QSNET(7)
 
PTCTIN. 

VBAR
 
EAST(22), 

JEAST(22), 

SOUTH(22). 

CDEPTH. 

KMXC, 


KFLOCR(18,17), 

KFLORC(18), 

P(18,17,08), 

V(13,17,08), 

SURF, 

DVDT(18.17,U8)
 
PC(18.20), 

WC(18,20)
 
SURFC, 


F, 

TOPLYR
 
LR, 


DT. 

DXINV, 

DY, 

DYINS, 

DZINV, 


CUTPT. 


I. 

N 
IMAX, 

JWAXWI, 

KMAXV2, 


IPASS, 

PSALT, 

DX02, 

NPLOT2, 

ZOHSCL
 
SY(17), 


KEYOUT
 
SURFC(18)
 
ONEt(7),
 

SEAR,
 

IIMAX,
 
JW,
 
WEST(22)
 
CWIOTH.
 
KMXCMI,
 

Z1(18.17)
 
ZBC(IS)
 
S(186 17,08),
 
W(18,17,08)
 
DHDT(18,17),
 

SC(1820),
 

DHCDT( 18),
 

FWINDX(18,17),
 

LT,
 

DfD2.
 
DXT2IN,
 
DYINV,
 
DZ.
 
DZT21N,
 

KCUT,
 

J.
 

IMAXMI,
 
KMAX,
 
NMAX,
 

PDEPTH,
 
PWIDTH
 
L,

PERIO,
 

SYY(I7),
 

http:Z1(18.17
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I TrME. X(18),
2 YK2, Z(8) 

Y(17), 

COMMON/PLLC/ ZC(20)
COMMON/RIVERS/ JRIV(4)., NRIV, 
I PHASEl. PHASE2, RDEPTH(4). 
2 RMOMAF(4), RWIDTH(4), UAVG, 
3 UVARI, U\LAR2 
COMMON/RYTE/ 1O, 
1 LABELO 

LABEL[. 

COMMON/SCALE/ HSCALE, SSCALE, 
1 USCALE, WSCALE. XSCALE, 
2 ZSCALE 
COMMON/STEP/ MN, MO. 
I NBAR. NWRITE,
COMMON/TIDE/ PHSENP, 

ISTEP 
PHSEPH, 

I TAMPMP. TAMPPH, TAVGMP. 
2 - TAVGPH, THGTMP. THGTPH 
COMMON/TUNE/ ACCEL* ARTVSC, 
I AVCOMP 
COMMON/TURB/ CDF, 

I CVIS, DIFFUS, 
CRICH, 
VISC 

COMMON/UNITS/ BETA, BETAD2, 
1 FETCH, GRAV. HREF, 
2 OMEGA. Pi, TREF, 
.3 VREF. YMAX 

C 
C LOCATE DESIRED FRAME ON TAPE. 
C 

IF(N.NE.O) GO TO 10 
N =I 
IMAX = 18 
JMAX 17 
NBAR = 60 
NWRITE = 375 
NMAX = 6C00 
GO TO 10 
10 = LT 
CALL REED 

ON = N + 1 
IF(N.NE.NBAR*(N/NBAR)) GO TC 20 
10 = LT 
CALL REED2 

20 IF(N.NE.NWRITE*(N/NWRITE)) GO TO 30. 
10 = LT 
CALL REED 4 
IF(N.GE.NPLDTI*NWRITE) GO TO 50 

30 IF(N.GE.NMAX) GO TO 40 



GO TO 10
 
40 WRITE(LW.1000)
 

STOP
 
C
 

GENERATE SCALE FACTORS AND CONVERT FROM NONOIMENSIONAL VARI-

C BLES TO VARIABLES SCALED FCR PLCTTING.
gg C c
 

50 EHGTMP = TAVGMP + TAMPMP * COS((TIME - PHSEMP) * PERIDI)
TIME = TIME * TREF / 3600.0 
PHSEMP = PHSEMP * TREF / 3600.0 
PERIOD = 2.0 * PI * TREF / (3600.0 * PER[CI) 
IMAXM1 = IMAX - 1 
JMAXMI = JMAX - 1 
KMAXMI = KMAX 1
 
XSCALE = 6.50 / X(IMAX)
 
ZSCALE = 1.5
 
I = ,
 

60 I = I + I
 
X(I) = - X(I) * XSCALE
 
IF(I.LT.IMAX) GO TO 60
 
J = 0
 

70 	1 = J + I
 
Y(J) = Y(J) * XSCALE
 
IF(J.LT.JMA) GO TO 70
 
K =0
 

80 	K =,K + I
 
Z(K) = Z(K) * ZSCALE
 
IF(K.LT'.KMAX) GO TO 80
 
ZMAX = Z(KMAX)
 
K 0
 

&.5K K+I
 
ZC(K) = ZC(K) * ZSCALE
 
IF(K.LT.KfAXC) GO TO 85
 
LI = 0
 

86 	II = I + 1
 
SOUTH(II) = - SOUTH(II) * SCALE
 
EAST(II) = EAST(II) * XSCALE
 
WEST(II) = WE-ST(II) * XSCALE
 
IF(II.LT.IIMAX) GO TO 86
 
USCALE = 2.5
 
WSCALE = 5O.0
 
HSCALE = 2.5
 
SSCALE = 10.0
 
ZOHSCL = ZSCALE / HSCALE
 
DO 130 1 = 1, IMAX
 
DO 11-0 J = It JMAX
 
IF(KFLOOR(I,J).LT.KMAX) GO TO 90
 



SURF(I,J) = 0.0
 
ZB(IJ) = ZB(IJ) * ZSCALE + 0.225
 
GO TO 110
 

90 SURF(IJ) = SURF(IJ) * HSCALE
 
Zs(IJ) = ZB(I,J) * ZSCALE
 
KBOT = KFLOOR(I,J)
 
DO 100 K = KBOT, KMAX
 
U(I,J,K) = U(I.J,K) * USCALE
 
V(I,J,K) = V(I,J,K) * USCALE
 
W(I.J.K) W(I,J.K) * WSCALE
 

110 S(I.J.K) = S(IJ.K) * SSCALE
 
110 CONTINUE
 

ZEC(I) = ZBC(I) * ZSCALE
 
SURFC(I) = SURFC(I) * HSCALE
 
KBOT = KFLORC(I)
 
DO 220 K = KBOT, KMXC
 
UC(IK) = UC(IK) * USCALE
 
WC(LK) = WC(IK) * WSCALE
 

120 SCCI,K) = SC(I.K) * SSCALE
 
130 	CONTINUE
 

DX = DX * XSCALE
 
OXD2 0.5 * DX
 
PWIDTH PWIDTH. * XSCALE
 
THGTMP THGTMP * HSiCALE
 
TAMPMP = TAMPMP * HSCALE 
TAVGMP TAVGMP * HSCALE
 

C
 
C PRINT FRAME IDENTrFICATICN. IF THIS IS THE FIRST FRAME
 
C PLOTTED, PRINT SCALED GECWETRY.
 
C
 

WRIrE(LW,1001) L, LABELI
 
IF(L.NE.NPLOTI) GO TO 140
 
WRITE(LW,1002) HSCALE, SSCALE. USCALE. WSCALE, XSCALE. ZSCALE
 
WRITE(LW,00-3)
 
WRITE(LW,1004) (I XCI)o I = 1, IMAX)
 
WRITE(LW1005)
 
WRITE(LW.1004)- (-J, Y(J). J = r. JMAX)
 
WRITE(LW,1006)
 
WRITE(LW,1004) (K, Z(K), K = 1, KMAX)
 
WRITE(LW, 100-7)
 
WRITE(LW,1004) (K, ZC(K), 1 KWXC)
K 1, 


140 	WRITE(LW,1008)
 
RETURN
 

C 
1000 FORMAT(///,5X,*RAN OUT CF. INPUT DATA.*) 	 H
 

tn1001 FORMAT(///,5X,L = .13, LABELI = 1.[3) 

102 FORMAT(SX,'IHSCALE = ,F,3,/,SX,'SSCALE = ',FS.3,/,bX9*USCALE =I
 



I Fe,3,/,SXOWSCALE = ,,F8.3,/,5X,,XSCALE = *.F8.3./,5X,
 
2 OZSCALE = ',F8.3)
 

i003 FORMAT(/.5X, I X(SCALED)*,/)
 
1004 FORMAT(/,SX,I2,F9.2)
 
1005 FORMAT(/,SXl J Y(SCALED)',/)
 
1006 FDRMAT(/.5X,. K Z(SCALED)*,/)
 
1007 FORMAT(/,SX,' K ZC(SCALED)',/)
 
1008 FORMAT(/.5..PREPARATORY CALCULATICNSCCMPLETED.#)


END
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C 

SUBROUTINE REED
 

SUBROUTINE FOR 1/0 TO SEQUENTIAL STORAGE DEVICE.
 

LOGICAL 

DOUBLE PRECISION 

CCMMON/ACCT/ 

1 QSDOT(7), 

COMMON/HARS/ 


I UBAR,
COMMON/BNKCRD/ 


I JE. 

2 JWEST(22), 

COMMON/CHNNEL/ 


1 JWAG. 

2 KMXCM2
 
COMMUN/FLOOR/ 

CQMMON/FLOORC/ 

COMMUN/FLOWI/ 


I U(18917,08),

COMMON/FLOW2/ 


1 DUDT(18,17,O8). 

COMMON/FLOWC1/ 


I UC(ld,20). 

COMMON/FLOWC2/ 

I DUCDT( [8.20)
 
COMMON/FORCES/ 


I FWINDY(18s17), 

COMMON/GRID/ 

I DX. 

2' DXINSQO 

d DYT2IN, 

4 DZD2, 

5 DZ INSQ 

COMMON/GULF/ 
I PERIDr
 
COMMN/LIMITS/ 

I JMAX, 

2 KMAXI. 

3 KEYOUT
 
COMMON/PASS/ 


I PMOMAF, 

CUMMON/PULL/ 


I TIME, 

2 YK2, 

COMMON/PULLC/ 

COMMON/RIVERS/ 


ISTEP, 

SURF(18,17), 

QDC3T(7), 

OSNET(7)
 
PTCTIN, 

VBAR
 
EAST(22), 

JEAST(22), 

SOUTH(22). 

COEPTt 

KMXC, 


KFLOOR(18917), 

KFLQRC(18 , 

P(IB.17,O8), 

V(18.1708).

SURF9 

DVDT(18,I7,08)
 
PC(1S.20), 

WC(18.20)
 
SURFC, 


F, 

TOPLYR
 
OT, 

DXINV, 

DY, 

DYINSQ. 

DZINV. 


CUTPT. 


IMAX, 

JMAXMI, 

KNAXM2, 


IPASS, 

PSALT, 

SY(17). 

X(18), 

Z(8)
 
ZC(20)
 
JRIV(4), 


KEYOUT
 
SURFC(18)
 
ONET(7).
 

SBAR,
 

IMAX,
 
Jwo
 
WEST(22)
 
CWIDTH,
 
KMXCML,
 

Zo(18,17)
 
ZEC(18)
 
S(189 17,08),
 
W(18917908)

DHDT(18,17),
 

SC(18,20).
 

DHCDT(Ib),
 

FWINOX(IS,1r),
 

DTD2.
 
DXT2IN.
 
OY(NV,
 
DZ,
 
DZT2IN.
 

KCUT 

IMAXMI,
 
KMAX,
 
NMAX.
 

PDEPTH,
 
PWIDTH
 
SYY(I7),
 
Y(17),
 

N RIV, 

http:WC(18.20
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I PHASEI. PHASE2, RDEPTH(4).
 
2 RMOMAF(4). RWIDTH(4). UAVG,
 
3 UVARI, UVAR2
 
CUMMON/RYTE/ 10, LABEL[, 

I LABELO 
COMMON/STEP/ WN. MO. 

1 NBAR. NWRITE, ISTEP 
COMMON/rIDE/ PHSEMP, PHSEPH, 
I TAMPMP, TAWPPH; TAVGMP. 
2 TAVGPH, THGTWP, rHGTPH 
COMMON/TUNR/ AZE., AfTVSC, 

I AVCOMP 
COMMON/TURB/ CDIF, Cr4ICH,
 
I CVIS, DIFFUS, VISC
 
COMMON/UNITS/ BETA. BETAD2,
 

I FETCH, GRAV, HREF,
 
2 OMEGA. PI, TREF.
 
3 VREF, YMAX
 
READ(10) ACCEL. ARTVSC, BETA, CDEPTH, CDIF. CUTPr, CVIS.
 

I CW!PTH, DT. DX, DY,' DZs FETCH, HREF, IIMAX,
 
2 IMAX. IPASS. JMAX, JWAG, KCUT, KMA% KMXC, LABELI,
 
3 DUM, NBAR. NRIV. NMAX, NWRITE.* PDEPTH. PERICI. PMOMAF,
 
4 PTCTIN. PWIDTH9 TREF, VREF, YfAX'
 
READ(IO) (EAST(I), SOtTH(I), WEST(I), I = ', IIMAX)
 
READ(IO) (JEAST(I), JWEST(I). I = Is IMAX)

READ(IO) ((KFLOOR(IJ), ZB{IJ.). I = I. IMAX),*J = I. JMAX)
 
READ(IO) (KFLORCtI), ZBC(1), I- 1. IMAX)

READ(TO) (((P(I,J.K), I = 1, IMAX), J = 1. JMAX), K = 1, KMAX)
 
READ( 1O) (((S(I,JK), I = 14 IAX), J = I, JMAX), K = 1, KMAX)
 
READ'({O) (((U(I,J,K), I = 1, IMAX), J = Is JMAX). K = 1, KMAX)
 
READ(10) (((V(I.J,K), I = 1, IMAX), J = 1. JMAX), K = I, KMAX)
 
READ(TO) (((W(IJK). I = 1, IMAX). J 1, JMAX), K = 1, KMAX)
 
READ(IO) ((DHDT(I,J) I = 1, IMAX), J I, JMAX)

READ(1O) (((DUODT(I,J,K), I [. J 1. K = 1, KMAX)
= IWAX), = JMAX), 

READ(TO) (((DVDT(IJ.K)-. I = I. rNAX). J = I. JMAX). K = 1, KMAX)

READ(IO) ((PCCI,K)i SC(IK). UC(I,K), WC(I.K). I = 1, IMAX).
 

I K = 1, KMXCI 
READ(IO) (DHCDT(I), (DUCOT(I,K). K = 1, KMKC), SURFC(I), I = 1, 

I IMAX) 
READ(tO) ((FWINDX(IJ). FWINDY(I,J), I = 1, IMAX). J I. JMAX) 
READ(IO) (SY(J). SYY(J), y(J) . J = 1, JMAX), (X(), I to [MAX), 

I (Z(K), K = 1, KMAX), (ZC(K). K = 1, KMXC)
READ(-!O) (JRIV(I). RDEPTH(I), RWOAF(U), RWIOTH(), I = 1. N4IV), 
1 PHASEl, PHASE2, UAVG, UVARI, UVAR2 O
READ( IO-) PHSEMP. PHSEPH. TAMPWP.TAWPPH. TAVGM . TAVGPH H1
 

ENTRY REED2
 
READ(IO) (ODOT(L), QNET(L), QSDCT(L), CSNET(L), L. = 1, 7), TIME
 



READ(10) SBAR. UBAR. VBAR
 
READ(10) ((SURF(I,J), I = 1, IMAX), J = 1. JMAX) 
RETURN 
END 

* 4:­



.t't 	 SUBROUTINE XYBRDI
 
LOGICAL 

LOGICAL
k .) 	 DIMENSION 


1 LSOKM(2)
 
DOLBLE PRECISION 

COMMON/ACCT/ 


I OSDOT(7). 

COMMON/BARS/ 


1 UBAR, 

COMMON/UNKCRD/ 

1! JE. 

2 JWEST(22), 

COMMON/CHNNEL/ 


1 JWAG, 

2 KMXCM2
 
COMMON/FLOOR/ 

COMMON/FLOORC/ 

COMMON/FLOWt/ 


1 U(18.17,08)-

COMMON/FLOW2/ 


I DUDT(18-17.08) * 
COMMON/FLOWC1/ 


I Ucl(la20), 

COMMON/FLOWC2/ 


I DUCDT(I-8.20)
 
COMMON/FORCES/ 


I FWIND)Y(i8,17). 

COMMON/GRkD/ 


I DX. 

2 DXINSQG 

3 DYT2IN. 

4 DZD2, 

5 DZINSO
 
COMMON/GULF/ 


I PERIDI
 
COMMON/INDEX/ 


1 K. 

COMMON/LIMITS/ 


I JMAX, 

2 KMAXMI1,

3 KEYOUT
 
COMMON/PASS/ 


I PMOMAF, 

COMMON/PLOTT/ 


1 NPLOTI. 

2 ZMAX, 


FLAG
 
ISTEP, 

LNIOKN(2), 


SURF(18,17). 

ODOT(7). 

QSNET(7)
 
PTCTIK. 

VBAR
 

-EAST(22), 


JEAST(22), 

SOUTH(22). 

CDEPTH. 

KMXC, 


KFLCCR(I8,I7), 

KFLORC(18). 

P(18,17,08), 

V(18,17,C), 

SURF, 

DVDT(18.17*08)
 
PC(i8,20). 

WC(18.20)
 
SURFC, 


F. 

TOPLYR
 
DT. 

DXLNV, 

DY. 

DYINSQO 

DZINV, 


CUTPT. 


I, 

N
 
IMAX, 

JM-AXM1, 

kAXW2, 


IPASS, 

PSALT, 

DXD2, 

NPLOT2, 

ZOHSCL
 

KEYOUT
 
L3OKM(2),
 

SURFC(I8)
 
QNET(7).
 

SBAR,
 

IIMAX,
 
JW,
 
WEST(22)
 
CWIDTH,
 
KMXCMI,
 

ZB(18.17)
 
Z8C(18)
 
5(18.17,08),
 
W(18,17,08)
 
OHOT(1817),
 

SC(18,20),
 

DHCtT(18).
 

FWINDX(1217).
 

DTU2,
 
DXT2IN,
 
DYINVq
 
DZ.
 
OZT2IN,
 

KCUT,
 

J,
 

IMAXMI,
 
KMAX,
 
NMAX, 

PDEPTHI
 
PWIDTH 	 4 
L,
 
PERIOD, 	 0 
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COMMON/PULL/ SY(17), 

I TIME, X(18)9 

2 YK2. Z(8)
 
COMMON/PULLC/ 	 ZC(20)
 
COMMON/RIVERS/ JRIV(4). 


I PHASEI, PHASE2, 

2 RMOMAF(4), RWIDTH(4), 

3 UVARI, UVAR2
 
COMMON/RYTE/ 10. 

I LABELO
 
COMMON'/STEP/ WN. 


I NBAR. NWRITE, 

COMMON/SCALE/ HSCALE, 


I USCALE, WSCALE, 

2 ZSCALE
 
COMMON/TURB/ CDIF, 
I CVIS, DIFFUS, 
COMMDN/UNITS/ BETA, 
I FETCH. GRAY, 
2 OMEGA, PI, 
3 VREF, YMAX 
DATA LNIOKM/*-l0.',IKM '/ 
DATA LOKM /'O*KM'/
DATA LSOKM /150.Kt.M '/
 
DATA L3CKM /930.K',§M '/
 

C
 
C PLOT BAY OUTLINE.
 
C
 

CALL VTHICKC2)

JW = JWEST(1)
 
JE = JEAST(1)
 
YWEST 0.5 * (YCJW-l) + Y(JW))
 
YEAST = 0.5 * (Y(JE) + Y(JE+I))
 
CALL PLOT( YWEST, 0.00, 3)
 
NN = 0
 

I0 	NN = NN +I
 
J = JRIV(NN)
 
Y1 = Y(J)
 
YIM = YI - 0.05
 
Yip = YI + 0.05
 
CALL PLOT( YIM, 0.00, 2)
 
CALL PLOT( YIM-, 0.25, 2)
 
CALL PLUT( YIP, 0.25, 3)
 
CALL PLOT( YIP, 0.00, 2)

rF(NN.Lr.NRIV) GO TO 10
 
CALL PLOT( YEAST, 0.00, 2)
 
CALL PLOT( YWEST, 0.00, 3)
 

SYY(17),
 
Y(17),
 

NRIV,
 
ROEPTH(4),
 
UAVG.
 

LABELI,
 

Mot
 
ISTEP
 
SSCALE,
 
XSCALE,
 

CRICH,
 
VISC
 
fETAD2,
 
HREF,
 
TREF,
 



j0 
ft 

XPASS = X(IPASS)
 
- PWTHD2 = 0.5 * PWIDTH
 

XBANKN = XPASS + PWTHO2
 
XBANKS = XPASS - PWTHD2
 
YWSTIP = YEST 
XAVGIP = X(I) - 0XD2 
IPSSMI = IPASS - 1 
DO 30 1 = It IMAXM1 
IPI = I + 1 
XAVG = XAVGIP 
XAVGIP = XAVG - DX 
IF(IPI.EQ.IMAX) XAVGIP XAVG - DXD2 
JWIP = JWEST(IP1) 
JWIPMI = JWIP - I
 
YWEST = YWSTIP
 
YWSTIP = 0.5 * (Y(JWIPMI) + Y(JWIP))
 
CALL PLOT(YWSTIP, XAVG, 2)
 
IF(I.NE.IPSSMI) GO TO 20
 
CALL PLO)T(YWSTIP,XBANKN, 2)
 
'CALL PLUT(YWSTIP-0.25,XBANKN. 2)

CALL PLUT(YWSTIP-0.25,XAANKS, 3)
 
CALL PLOT(YWSTIP,XBANKS, 2)
 

20 CALL PLUT(YWSTIPXA'VGIP, 2)
 
30 	CONTINUE
 

CALL PLOT( YEAST, 0.00, 3)
 
YESTIP = YEAST
 
XAVGIP = X(1) - .XD2 
DO 40 I = 1, IMAXMI. 
IPI I + I 
XAVG XAVGIP 
XAVGrP : XAVG - DX
 
IF(IPI.EQ.IMAX) XAVGIP = XAVG - DXD2
 
JEIP = JEAST(IPI)
 
JEIPPI = JEIP + 1
 
YEAST = YESTIP
 
YESTIP = 0.5 * (Y(JEIP)- + Y(JEIPPL))
 
CALL PLUT(YESTIP.. XAVG. 2)
 
CALL PLCIT(YESTIPXAVGIP. 2)
 

40 	CONTINUE
 
C.
 
C GENERATE LENGTH SCALES.
 
C 

CALL VTHICK(I')
 
CALL PLOT( -1.50, 0.00.-3)
 
XREAL = 10000.0
 

50 XREAL = XREAL - 10000,0
 
Xt = (XREAL / HREF) * XSCALE 



0 

CALL SYMBOL( O.CO. X1,0.07. 13. 
[F(XREAL.GT.-50000.O) GO TO 50
X1 X1 - 0.035
CALL SYMBOL( -0.44. XI .0.07, LSOKW,
CALL SYMBOL( -0-37,-0.035,0.07, LOKM. 

90.0,-i) 

0.0, S)
0.0, 4) 

CALL PLCT( 1.50, 0.00,-3) 
CALL PLT(- 0.00, -6.60,-3)
YREAL = -20000.0 

6C YREAL = YREAL + IC000.0 
YI = (YREAL / HREF) * XSCALE 
CALL SYMBOL( YI. 0.00,0.07,
IF(YREAL.LT.3000o.o) GO TO 60 

13. 0.0.-i) 

C 

Yi = YI - 0.175
CALL SYMBOL( Y1, -0.20,0.O, L3OKM. 00,Yi =. (-10000.0 / HREF) * XSCALE - 0.21 
CALL SYMBOL( YI. -O.20,O.07,LNIOKM, 0.0.
CALL PLOT( 0.00, 6 .60,-d) 

5) 

6) 

C GENERATE 8.5 BY 11-INCH PAGE BORDER. 
C 

CALL VTHICK(I)
CALL PLOT( -3.50, 
CALL PLOT( -3.50, 

1.50, 3) 
-9.50, 2) 

CALL PLOT( 5.00,
CALL PLOT( 5.00, 
CALL PLOT( -3.50, 
RETURN 

-9.50. 2)
L.50. 2) 
1.50, 2) 

END 
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SUBROUTINE XZBRDX
 
LOGICAL 

DIMENSIUN 

DOUBLE PRECISION 

COMMON/ACCT/ 


1 QSOOT(7). 

COMMON/HARS/ 


I UBAR, 

COMMON/BNKCRD/ 


I JE, 

2 JWEST(22), 

COMMON/CHNNEL/ 


I JWAG, 

2 KMXCM2
 
COMMON/FLOOR/ 

COMMON/FLOORC/ 

COMMON/FLOI/


I U(18,179O8)9 

COMMON/FLOW2/

I DUDT(18,17,08), 
COMMON/FLO&C1/ 

I UC(I,20), 
COMMON/FLOWC2/ 
I DUCDT(I8.20) 
COMMON/FORCES/ 

I FWINDY(18.17), 
COMMONY(GRID/ 

I DX, 
2 DXINSO, 
3 DYT2IN, 
4 DZD2, 
* DZINSO
 
COMMON/GULF/ 

I PERIDI
 
COMMON/INDEX/ 

I K, 

COMMON/LIMITS/ 


1 JMAX, 

2 KMAXMI, 

3. 	 KEYGUT
 
COMMON/PASS/ 


I PMOMAF, 

COMMON/PLOTT/ 

I NPLOTI, 

2 ZMAX, 

COMMON/PULL/ 


1 TIME, 


[STEP, 

LSOKM(2)
 
SURF(I8,17), 

QDCT(7). 

QSNET(7)
 
PTCTIN, 

VBAR
 
EAST(22), 

JEAST(22), 

SOUTH(22), 

CDEPTH. 

KWXC, 


KFLGCR(19,17). 

KFLORC(18), 

P(18,17,O8),

V(18.17.08), 

SURF, 

DVDT(18,17,08)
 
PC(18,20), 

WC(18,20)
 
SURFC. 


F, 

TOPLYR
 
DT, 

DXINV, 

DY. 

DYINSO, 

DZINV. 


CUTPT. 


1,-

N
 
IMAX, 

JMAXVIV, 

KMAXM2. 


IPASS, 

PSALT. 

DXD2, 

NPLOT2. 

ZOHSCL
 
SY(i?), 

X(18)v 


KEYOUT
 

SURFC.(18)
 
QNET(7).
 

SBAR,
 

IIMAX,
 
JW,
 
WEST(22)
 
CWIDTH,
 
KMXCMI,
 

ZB(1817)
 
ZBC(18)
 
S(18917,08),

W(18,17.,}B)
 
DHOr(18,17).
 

SC(18.20),
 

UHCDT(18),
 

FWINDX(Id17),
 

oro2,
 
DXT2IN4
 
CYINV.
 
DZ,
 
DZT2IN,
 

KCUT,
 

J,
 

[MAXMI.
 
KMAX,
 
NMAX.
 

PDEPTH,
 
PWIDTH
 
L,
 
PERIOD,.
 

SYY(17).
 
Y(17),
 

http:SC(18.20
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2 YK2, Z(8) 
COMMON/PULLC/ ZC(20)
 
COMMON/RIVERS/ JRIV(4), 


I PHASE1, PHASE2, 

2 RMOMAF(4). RWIDTH(4). 
3 UVARi UVAR2
 
COMMON/RYTE/ I. 


I LABELO 

COMMON/SCALE/ HSCALE, 
I USCALE, WSCALE, 
2 ZSCALE 
COMMON/STEP/ WN, 

1 NBAR, NWRITE, 
COMMON/rIDE/ PHSEMP, 
1 TAMPMP, TAWPPH, 
2 TAVGPH, THGTWP, 
COMMON/TUNE/ ACCEL, 

I AVCOMP 
COMMON/TURB/ CDIF. 
I CVIS. DIFFUS, 
COMMUN/UNITS/ BETA. 

I FETCH. GRAV. 
2 OMEGA, Pr, 
3 VREF, YNAX 
DATA LN5M /'-5.M'/ 
DATA LOKM /'O.KMt/ 
DATA LOW- /'OoM I/ 
DATA LSM' /15.M I/ 
DATA L5'XKM /'50.KOIM I/ 

10 CALL VTHICK(2) 
XNORTH = - X(1) - DXD2 
ZBOTIP = ZB(1,J) 
CALL PLL)T(XNORTH.ZNAX+O.3. 3) 
IF(ZBOTIP.LT.ZMAX) CALL VTHICKC-4)
M = 2 

IF(J.EQ.JWAG) M = 3 
CALL PLUTLXNORTH,ZEUTIPo N)
 
CALL VTHICK(a)
 
00 20 1 = 1, IMAXWI
 

' IP = I + I 
ZBOT = ZBOTIP 
ZBOTIP ZB(IPI.J)
 
XAVG .-= - X(I) + DXD2
 
CALL PLOT( XAVG, Z3OT. 2)
 
CALL PLOT( XAVGZBOTIP, 2)
 

2C CONTINUE
 
XSOUTH = - X(IMAX) + DXD2 

NRIV,
 
RDEPTH(4),
 
UAVG,
 

LABELI.
 

SSCALE,
 
XSCALE,
 

MC.
 
ISTEP
 
PHSEPH,
 
TAVGMP.
 
THGTPH
 
ARTVSC.
 

CRICH.
 
VISC
 
BETAD2,
 
HREF,
 
TREF,
 



CALL PLOT(XSOUTH.ZBOTIP, 2) 
IF(ZBOTIP.GT.ZMAX) GO TO 30, 
IF(J.EQ.JWAG) GO TO 30 
CALL VTHICK(-4) 
CALL PLOT(XSOUTHZMAX+0,3, 3) 
CALL PLOT(XSOUTH,ZBOTIP, 2) 

30 CALL VTHICK(-3) 
CALL PLOT( 0.00. ZMAX.-3) 
SURFIP = SURF(IJ) * ZOHSCL 
KBOTIP = KFLOOR(IJ) 
CALL PLOT(XNORTHSURFIP. 3)
DO 70 1 =, IMAXMI 
IPi = I + 1 
KBOT = KBOTIP 
.KBOTIP = KFLOOR(IPIJ) 
SURFI = SURFIP 
SURFIP = SURF(IPLJ)'* ZOHSCL 
XAVG = - X(I) + DXD2 
[F(KBOT.GT.KMAX.AND.KBOTIP.Gr.KMAX) GO TO '60 
IF(KBOT.GT KMAX.OR.KBOTIP.GT.KMAX) GO TO 
SRFAVG = 0.5 * (SURFI + SURFIP) 

40 

CALL PLOT( XAVG.SRFAVG, 2) 
GO TO 60 

40 IF(KBOT.LT.KMAX) GO TO 50 
CALL PLOT( XAVGSURFIP. 3) 
GO TO 60 

60 CALL PLOT(
6C CONTINUE 

XAVG, SURFI, 2) 

IF(IPI.LT.IMAX) GO TO 7C 
SI FAVG = 0.5 * (SURFIP + THGTNP * ZCHSCL) 
CALL PLOT(XSOUTH.SRFAVG, 2) 

70 CONTINUE 
CALL PLOT( 0.00. -ZMAX,-3) 

C 
C GENEINATE LENGTH SCALES. 
C 

CALL VTHICK(I) 
ZSTRT = 0.00 
IF(J.EQ.JWAG) ZSTRT = - 2.30 
CALL PLOT( 0.00, ZSTRT,-3) 
XREAL = -10000.C 

80 XREAL = XREAL + IC000.0 
XI 
CALL 

= (XREAL / HPEF) * XSCALE 
SYMBOL( Xl, -0.00,0.07, 13, 3.0,-I) 

IF(XREAL.LT.500CO.0) GO 
X1 = Xl - 0. 175" 

TO 80 
O 

CALL SYMBOL( XI, -0.20.0.07, L5OK,. 0.3. 5) 



CALL SYMBOL( -0.14, -0.2,00.07, LOKM, 0.0, 4)
 
CALL PLOT( 0.O0-ZSTRT,-3)
 
ZREAL - 1.0
 
IF(J*EQ.JWAG) ZREAL = - 6.0 

9O 	ZREAL = ZREAL + 1.0
 
Z1 = (ZREAL / HREF) * ZSCALE
 
CALL SYMBOL( -O eO. Z1.0.07, 13, 90.0,-1)
 
IF(ZREAL.LT.5.0) GO TO 90
 
Zi = Z - 0.035
 
CALL SYMBOL( -II0, ZI,0.07, LSM, 0.0, 3)
 
CALL SYMBOL( -1.10.-0.035.0.07. LOM. 0.0. 3)
 
IF(J.NE.JWAG) GO TO 95
 
ZI = - (Z1 + 0.07)

CALL SYMBOL( -1.17, Z1.0.07, LN5M, 0.0. 4)
 

95 CONTINUE
 
C
 
C GENERATE 8.9 BY 11-INCH PAGE BORDER.
 
C
 

CALL PLOT( -2.50, 3.50, 3)
 
CALL PLOT( -2.50, 5.00'2)
 
CALL PLOTC 8.50. -5.00. 2)
 
CALL PLOT(- 8.50, 3.50, 2)

CALL PLOT( -2.50, 3.50, 2)
 
RETURN
 

•C
 
C SPECIAL ENTRY FOR PLOTTING SHIP CHANNEL OUTLINE.
 
C
 

ENTRY CHBRDI
 
XNORTH = - X(I) - DXD2
 
ZBOTIP = ZBC(1)
 
CALL PLOT(XNORTH,ZMAX+C.3, 3)
 
CALL VTHICK(-4)
 
CALL PLOT(XNORTH,ZUOTIP, 2r
 
-CALL VTHICK(2)
 
O0 100 I = 1, IMAXMI
 
IPI = I4 1
 
ZHOT = ZBOTIP
 
ZAOTIP = ZSC(IP1)
 
XAVG = - X(I) + DX02
 
CALL PLOT( XAVG, 'ZBOT. 2)
 
CALL PLOT( XAVG,ZBOTIP, 2)
 

ICO CONTINUE
 
XSOUTH = - X(IMAX) + DXO2
 
CALL PLOT(XSOUTH,ZdOTIP, 2)
 
CALL VTHICK(-4)
 
CALL PLOT(XSOUTH,ZMAX+0.3, 3-)
 
CALL PLOT(XSOUTH,ZOOTIP .2)
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- GO TO 10 
I't i END 

l I
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SUBROUTINE YZBRDlS LOGICAL 
DIMENSION 

DOUBLE PRECISION 

CUMMON/ACCT/ 

1 QSDOT(7), 

COMMON/HARS/ 


I UBAR, 

COMMON/ONKCRD/ 


I JE,
2 JWEST(22), 


COMMON/CHNNEL/
I JWAG, 

2 KM XCMA2 
COMMON/FLOOR/ 

COMMOIN/FLOORC/ 

COMMON/F.LOWI/ 


1 U(18,17,08), 

COMMON/FLOW2/ 

I DUDT(18,17,08), 

COMMON/FLOWC1/ 

I UC(18,20), 

COMMON/FLUWC2/ 


I. DUCDT(18,20)'

COMMON/FORCES/ 


1 FWINDY(18,17), 

COMMON/GRID/ 


I DX, 

2 DXINSQ, 

3a DYT2IN, 

4 DZD2. 

5 DZINSO
 
COMMON/bULF/ 


1 PERIDI
 
COMMON/INDEX/ 


I K, 

COMMON/LIMITS/ 


I JMAX, 

2 KMAXMI. 

3 KEYOUT
 
COMMON/PASS/ 


I PMOMAF. 

COMMON/PLOTT/ 

1 NPLOTI, 

2 ZMAX, 

COMMON/PULL/ 


1 TIME, 


ISTEP, 

LNIOKM(2), 

SURF(18,17). 

QOOT(7). 

OSNET(7)
 
PTCTIN, 

VBAR
 
EAST(22), 

JEAST(22),
SOUTH(22), 


CDEPTH7
KMXC. 


KFLOCR(18,17) , 

KFLORC(18), 

P(18,17.08) , 


V(18.17.08), 

SURF, 

DVOT(18,17,0t8)
 
PC(18.20), 

WC(18,20)
 
SURFC, 


F,. 

TOPLYR
 
DT, 

DXINV, 

DY. 

DYINSO, 

DZINV,' 


CUTPT, 


1, 

N
 
LMAX. 

JMAXPI. 

KMAXM2, 


IPASS. 

PSALT, 

DXD2. 

'NPLOT2, 

ZOHSCL
 
SY(17), 

X(18), 


KEVOUT
 
L3OKM(2)
 
SURFC(18)
 
QNET(?).
 

SUAR,
 

II(AX,
 
JW
WEST(22)
 

CWIDTH,
KMACM1,
 

ZB(18,17)
 
Z8C(18)
 
S{18,I7.08},
 

W(18,17 ',8)
 
DHOT(18,17),
 

SC(18,20),
 

DHCDT(I8).
 

FWINDX(18 17),
 

DTO2,
 
DXT21N,
 
CYINV,
 
Oz.
 
DZT2IN.
 

KCUT,
 

J,
 

IMAXM1,
 
KMAX,
 
NMAX,
 

POEPTH,
 
PWIOTH
 
L,
 
PERI OD,
 

SYY(17),
 
Y(17),
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2 YK2, 
COMMON/PULLC/ 

Z(8) 
ZC(20) 

COMMON/RIVERS/ JRIV(41, NRIV, 
1 
2 

PHASEI, 
RMUMAF(4), 

PHASE2, 
RWIDTH(4). 

RDEPTh(4). 
UAVG, 

3 UVARI UVAR2 
COMMON/RYTE/ 1o, LABELI, 

I LABELO 
COMMON/SCALE/ 

1 USCALE. 
HSCALE, 
WSCALE* 

SSCALE, 
XSCALE, 

2 ZSCALE 
COMMON/STEP/ UN, MO. 

I NBAR. NWRITC, ISTEP 
COMMON/TIDE/ 
I TAMPMP, 

PHSEMP, 
TAMPPH, 

PHSEPH, 
TAVGMP, 

2 TAVGPH, THGTMP, THGTPH 
COMMON/'TUNE/ ACCEL, ARTVSC. 

I AVCOMP 
COMMON/TURB/ 

1 CVIS, 
CDIF. 
DIFFUS, 

CRICH. 
VISC 

COMMON/UNITS/ 
I FETCH, 

BETA, 
GRAV, 

8ETAD2. 
HREF, 

2 OMEGA, Pl, TREF, 
3 VREF, YMAX 
DATA LNIGKM/'-IO.1lKM f/ 
DATA LOM /4O.M I/ 
DATA LSM /45.M V/ 
DATA L3OKM /*30.K'.9m I/ 

C 
C 
C 

GENERATE YZ-CROSS SECTION AT X(I). 

CALL VTHICK(2) 
JWMI = JW - I 
JEMI = JE - 1 
JEPI = JE + I 
YWEST 
ZBOTJP 

= 
= 

0.5 * (Y(JWM1) 
ZB(ItJW) 

+ Y(J)) 

CALL PLOT( YWEST.ZMAX+O.3. 3)
IF(I.EQ.IPASS) CALL VTHICK(-4) 
CALL PLOT( YWEST,ZBOTJP. 2) 
CALL VTHICK(2) 
YJP = YWEST 
DO tO J = JW, JE 
JP1 = J + 1 
ZBOT = ZBOTJP 
ZBOTJP = ZB(I.JP1) 
YI = YJP 



YJP = Y(JPL)
 
YAVG = 0.5 * (YI + YJP)
 
CALL PLOT( YAVG, ZBOT, 2)

CALL PLOT( YAVG.ZBCTJP. 2)
 

10 CONTINU
 
YEAST = YAVG
 
CALL VTHICK(-3)
 
CALL PLOT( 0.00, ZMAX.-3)
 
SURFJP = SURF(I.JW) * ZOHSCL
 
CALL PLUIT( YWESV.SURFJP, 3)
 
KBOTJP = KFLOOR(I,J%)

YJP = YWEST
 
DO 40 J = JW, JEMI
 
JP1 = J + I
 
KBOT = KBOTJP
 
K8OTJP = KFLOOR(I.JPI)
 
SURFI = SURFJP
 
SURFJP = SURF(IJPI) * ZOHSCL
 
YI = YJP
 
,YJP - Y(JP1)
 
YAVG =O'.s * (Y1 + YJP)
 
IF(KBOT.GT.KMAX.ANDKBTJP.GT.KWAX) GO TO 40
 
IF(Kt3OT.GT.KMAX.OR.KBOTJP.GT.KNAX) GO TO 20
 
SRFAVG = 0.5.* (SURF1 + SURFJP)
 
CALL PLOT( YAVG.SRFAVG, 2)
 
GO TO 40
 

20 IF(KBOT.LT.KMAX) GO TO 30
 
CALL PLOT( YAVG.SURFJP. 3)
 
GOTO 40
 

30 	CALL PLOT( YAVG, SURFI, 2-)
 
40 	CONTINUE
 

CALL PLOT( YEASTSURFJP, 2)
 
CALL PLOT( 0.00, -ZMAX,-3)
 

C
 
C GENERATE LENGTH SCALES.
 
C
 

CALL VTHICK(1)
 
-YREAL = -20000.0
 

50 	*REAL =-YREAL + 10000.0 
YI = (YREAL / HREF) * XSCALE 
CALL SYMEOLC YI, -0.00.0.07, 13, 0.0.-I) 
IF(YREAL.LT.300a0.O) GO TO 50
 

- 0.175
='YI
Y1 

CALL SYMBOL( YI, -0.20,0.07, L3OKM. 0.0, 5) 
YI = (-10000.0 / HREF) * XSCALE - 0.21 
CALL SYMBOL(, YI. -0.20,0.07,LNIOKM, 0.0, 6) 
ZREAL -1.0 

http:0.20,0.07
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60 ZREAL = ZREAL + 1.0 
Zi = (ZREAL / HREF) * ZSCALE 
CALL SYMBOL( -1.70. ZI.0.07. 13, 90.0,-I) 
IF(ZREAL.LT.5.0) GO TO 60 
Z1 = Z1 - 0.035 
CALL SYMBOL( -2.00, Z1,0.07, LSM. 0.0. 3) 
CALL SYMBOL( -2.00,-0.03590.07, LOM. C.0, 3) 

C 
C GENERATE 8.5 BY 11-INCH PAGE BORDER. 
C 

CALL PLOT( -4.40,
CALL PLOT( -4.40, 

3.50, 3)
-5,00, 2) 

CALL PLOT( 6.60, -5.00, 2) 
CALL PLOT( 6.60, 3.50s 2) 
CALL PLOT( -4.40, 3.50, 2) 
RETURN 

END 

w 
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BLOCK DATA
 
C 
C VARIOUS CONSTANTS ARE DEFINED.
 
C
 

LOGICAL ISTEP
 
COMMON/FORTNO/ LR, LT,
 
1 LW
 
COMMON/INDEX/ I, J.
 

1 K. N
 
COMMON/STEP/ MN, MOo
 

I NBAR. NWRITE. ISTEP
 
COMMON/UNITS/ BETA, BETAD2.
 

I FETCH. GRAV. HREF,
 
2 OMEGA, P1, TREF,
 
3 VREF, YMAX
 

C
 
C LW, LR, LT ARE THE LCGICAL I/C UNIT NUMBERS FOR WRITING ON LINE
 
C PRINTER. READING FROM CARD READER, USING TAPE, RESPECTIVELY.
 
C 

DATA LW.LRLT/6.5,3/
 
DATA MN,MO.N/2*1,0/

DATA GRAV.OMEGA.PI/9.7907.?29E-5,3.14159/

END
 

Lo 
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