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ABSTRACT

This thesis reports some results from studies of the Generaliazed
Likelihood Ratio (GLR) technique to the detection of failures in an air-
craft application. The GLR method can be used for detecting and identi-
fying abrupt changes in linear, dynamic systems. It is designed to deter-
mine simultaneously whether a change has taken place, the time that the
change occurred and an estimate of the extent of the change.

The technigue is presented and its relationship to the properties of
the Kalman-Bucy filter is examined. Under the assumption that the system
ig perfectly modeled, the detectability and distinguishability of four
failure types is investigated by means of analysis and simulations.
Detection of failuréds is found satisfactory, but problems in identifying
correctly the mode of a failure may arise. These issues are closely
examined as well as the sensitivity of GLR to modeling errors., The ad-
vantages and disadvantages of this technique are discussed and various
modifications are suggested to reduce its limitations in performance
and computational complexity.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

This thesis is concerned with the detection of abrupt changes in
linear dynamic systems. The problem is one with many implications for
estimation and control.

In many applications with Kalman-Bucy filtering [ 1], very good
performance can be achieved when the modeling of the dynamics is suffi-
ciently accurate. For a number of important applications, however, a
linear model is only a good approximation to the actual system dynamics
over short time intervals., In others, a filter may be desired of lower
dimension than that of an accurate model. The use'of the Kalman-Bucy
filter in such cases frequently results in the divergence of the state
trajectory of the system. Another important situation which also presents
difficulties for estimation and control is the occurence of failures in
a system. Such events can be troublegsome even for systems which are other-
wise modeled with high accuracy.

One practical approach to the divergence problem is the use of
adaptive estimation and filtering techniques which have been developed,
as in [2 1, [3]. Although these techniques abound in the literature
for cases where the changes in a system are slowly time-varying, only
in the last few years has the problem of detecting sudden changes béen
addressed.

Linear models of systems subject to abrupt changes can be used
to study these problems involving modeling inaccuracies. They can also

~12~
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be used to represent systems which may undergo failures in some of zts
components, such as gensors or actuators. The word "farlure", as used here,
refers-to abrupt changes in a system which need not be physical failures -~
e.qg., a sudden, but infrequent, acceleration in a system when the esti-
mation is based on a constant velcocity model.

With the greater availabilaity and lower costs of digital hardware
and software, more sophisticated design technigues can be studied in order
to improve overall system performance and reliability. A recent survey by
Willsky [ 4] describes a nurber of failure detection techniques and men-
tions some of the characteristics and tradecffs involved in the various
methods discussed. The class of problems considered in [4 ] is that of
linear systems, where some analysis is possible. In this thesis we look
in some detail at the Generalized Likelihood Ratio technique [571, [6].

The Generalized Likelihood Ratio (GLR) teéhnique consists of per-
forming hypothesis testing on the resaduals, or innovations process, of
the optimal (Kailman-Bucy) filter. The different hfbothesis correspond to
the behavior of the residuals assuming various failure models (including,
of course, the 'no-failure' situation under normal conditions). The GLR
formulation results in decision functions which allow us to extract a
large amount of information (such as estimates of the failure mode, size
and time of occurrence) about a failure, in addition to indicating whether
a failure has occurred or not. A detailed analys;s of the detection and

identification performance of this technique is possible. In the following

- T . - U

chapters we examine the performance of the GLR technique in a simple appli-

cation. Finally, by offering a flexible set of implementations, the GLR
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provides a practical method with which to study the many issues and trade-—

offs in the design of a reliable failure detection system. Some related
work which this researcher has come across may be found in [7 1, [81,

(91, [10].

Some important question concerning the capabilities of GLR for
failure detection are of interest. In particular, we will look at several

performance indices such as

. false alarm rates
. delays in detection
. ability to distinguish among a variety of failure modes

. sensitivity to modeling errors

The tradeoffs to be resolved in obtaining optimum performance, with these
congiderations in mind, axe trade-offs between complexity (of the failure
detection design) and performance. For a technique like the GLR, issues
such as these must be understood hefore the relative merits of hardware
redundancy vs. 'analytical redundancy' can be appreciated. The*ad-
vantages and disadvantages of using hardware redundancy with voting
decisjons —- e.g.; comparing two or more sensors to determine their
reliability ~- versus the use of more sophisticated (and generally, with
higher computational costs) techniques must be considered. This work,
hopefully, is a small step in such a direction., Further research should
help-identify situatioﬁs where the added complexity is warranted.

Basic to the GLR method is the formulation of the alternative hy-
potheses by means of different failure models. It is therefore important
to consider the relative distinguishability between failure of different

modes when implementing the GLR detectors. It is important, for example,
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to distinguish a sensor failure from an actuator failure. Correct identi-
fication of the mode of a failure is examined here, as well as the effects
of errors in the modeling of the dynamic system. The performance of the
detection system under various conditions is examined in the following
sections 1n order to indicate where the main limitations of this approach -
lie. At this stage in the developments of a methodology for the design

of GLR failure detection systems, it was felt that it is important to con-
sider these guestions in the context of a simple but meaningful example.
We have chosen a gimplified model of the F-8C aircraft.

It must be pointed out that in the following chapters the dis-
cussion is concerned with a "worst-case" kind of situation. We are as-
suming that there is only one set of measurements with which to work with.
This is in contrast to the case where measurements are available from a

get of redundant sensors [9 ], [10].

Note: Some inaccuracies exist in the reported values of various quantities
in [12] and [13]. This work should correct such instances, until
a further update is deemed necessary.
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1.2 THE GLR METHOD

1.2.1 The Generalized Likelihood Ratio {(GLR) Technigue

We will now describe the generalized likelihood ratio (GLR) tech-
nigque and the modifications which provide simpler formulations. The
modrfications allow some flexibility in the application of this approach
to failure detection.

Consider the dynamical system model

x(k+1)

P(k)x(k) + B(klu(k) + wik) + fD(k,G) (1.1)

z (k)

Il

H{k)x(k) + J{k)ulk) + v(k) +-fs(k,9) (1.2)

m
where x(k) £ Rp, uk) e R, z(k) & Y are the state, input and output,
respectively. The independent, Gaussian, white noise sequences v(k) and

w(k}) have statistics

E(w(k)) o, E(w{k)w(j)") Q(k)ij (1.3)

E{v(k))

0, E(v(k)v({i)")

It

R(k)akj (1.4)

where 613 is the Kronecker delta (in this context representing the unit
pulse at time i=j). The terms fD and fs are used to model a variety of
abrupt system changes. By 8 we denote the unknown time of occurrence
of the failure.

The types of changes which are the subject of this thesis are:

1. Dynamics ox State Jump

fb(k,e) = V0§ (1.5)

k+1, ©
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where V € R° denotes the unknown direction and magnitude of the fazlure in
state space and 6ij 15 defined above. This model can be used to describe
the occurrence of a brief disturbance in the system such as a sudden noise
spike well outside the given statistics for w(k} in (1.3), for example,
Or, it can also describe momentary deviations of the control action away
from the expected B(k)u(k). Notice that this aincludes possible changes

in either the contrxol signal u{k) or the gain through which it enters

the system B(k), or both. The modeling of V will be discussed later.

2. Dynawics or State Step

£ = 1.6
D(k’e) ""k+1,e (1.6)
Here Uij is the unit step function
0 i<
=Y (1.7)
+J 1 >3

This model can be used to represent the effect of a falled actuator in a
control system, whereby an additional constant, driving signal enters the
system thus causing the state to move away from a prescribed trajectory.
For example, a sudden increase in demwand in a power generating system,
where the demand acts as a contrel, due to an emergency situation perhaps
due to a failure or shutdown in one of.the plants. Or, a constant bias
in the control signal of a digital flight control system of an aircraft
which can be the result of some component malfunction. In addition, in
many cases more complex failures (such as scale factor changes) resemble

steps over periods of time, and a detector looking for a step can be used
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to detect them.
3. Sensor Jump

£k, 0) = V8 o (1.8)

This can be used to represent bad data points (outliers) in the measure-
ments of the output variables. By detecting such points one can prevent
the error in the state estimates that otherwise results in the estimation

subsystem (e.g., a Kalman filter).
4, Sensor Step

fs(k,e) =V (1.9)

°ko
This models the onset of a bias in a measuring instrument. Again, this is
an important situation where detection of the failure makes possible the
removal of the consistent errors which result in the estimation of the
process variables. The importance of being able to detect failures in
the measuring system grows if one considers the use of feedbac£ involving
the estimated state variables. Again, one can use a model such as (1.9)
to approximate a scale factor change over a period eof time.

We recognize that these models are highly simplified descriptions
of actual failure situations. However, they allow for detailed analysis
in the GLR context and thus provide the opportunity to gain valuable in-
sight into the workings of this technique. This is necessary before we
can move on to analytically more complicated failure models.

Other failure modes that are of interest and that can be the subject

of future study are:
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5. Hard-over Actuator

fD(k,G) = AB(k)u(k)Uk (1.10)

+1,0
Here AB(k) is an unknown change in the effectiveness of one or more of

the actuators,

6. Increased Actuator Noise

fD(k,B) = E(k)0k+l,6 (1.11)

where £ 1s a zero-mean, white noise sequence with unknown covariance =..

7. Dynamics Shift

= .12
fD(k,e) A@x(k)0k+l'e (1.12)
where A® is an unknown shift in the plant dynamics.
8. Hard-over Sensor
£_(k,8) = [AHx(k) + AJu(k)]o (1.13)
s x,©6
where AH, AJ represent scale factor changes in the sensors.
9. Increased Sensor Noise
= .1
£, (k,0) E(k)qk’e (1.14)

This list of possible failure models 1s not intended to represent
all cases of interest. Nevertheless, it iz clear that these cases and
conbinations of them provide a fairly broad range of failure modes on
which to base a study of failure detection technigues. It is alsc worth
reiterating that fallure models 1-4 may be viewed as having models 5-9

embedded in them, although admittedly not in a trivial way. For example,


http:AB(k)u(k)ak+l,(1.10
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models 3, 7 and 8 are, in some sense, 'dynamic biases' which are nat radi-
cally different from models 2 and 4 when x(k) and u(k)} remain approximately
constant over the detection interval. This may be the case in systems
with very slow dynamics, Alternatively, the increased noise model§ 6 and
9 can be thought of as random sequences of jumps, as in modes 1 and 3,
given the proper distribution of theirr magnitudes Vv and times of occurrence
0.

Let us now consider the detection of such failures. The basis for
the GLR approach, given in‘ﬁillsky-Jones [6], is as follows. Design a

Kalman filter based on the "no failure" hypothesis (fD = fs = 0). The

filter equations are

F(x+1]k) = 2R KX|K) + B&x)ulk) (1.15)
Rk[x) = RK|x=1) + KK VK (1.16)
Yk) = z(k) - HEK)R(k|k-1) - J&kiulk) ; (1.17)

where ﬁ(i]j) is the optimal (minimum mean - squared error) estimate of the
state at time i based on measurementg up to, and includihg, time j. The
Y(k) are the zero-mean, Gaussian innovations process (fhe residuals)
associated with the optimal filter. The optimal filter gain seguence

K(k) is calculated from the equations

P(k+1lk) = S(K)IP(k|K) 8 (k) + O (k) (1.18)
P(x|k) = P(k|k~1) ~ X(K)HK)P (k|k-1) = " (1.19)
Vik) = H(KP(k[k-1)H' (k) + R(X) = E(YE)Y' (k) (1.20)
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K() = P(k[k-1)H' &IV (k) (1.21)

with the appropriate initial conditions

R(0fo) = E(x(0)) =X, (1.22)
p(0|0) = E([x(0) —3?0] [x(0) - Ky1") =¥ . (1.23)

Now suppose that an abrupt change, corresponding to one of the
above models, takes place at time 0 and from then on the system is
described by (1.1} and (1.2).

By the linearity in the assumed system model one can then obtain

an expression for the filter residuals
Yk) = ¥(k) + s(k,0) (1.24)

where ¥ is the "no failure" innovations with the statistics given above,
and s(k,0) is the effect of the failure on the residual. The form that
s(k,0) takes is different for each of the failure models. In particular,

for models 1-4 which concern us here, one can write
s(k,0) = Gi(k.B)v (1.25)

where i € {1,2,3,4} denotes the failure type, and Gi(k,G), called the

failure signature matrix, can be precomputed (see Appendix A). This matrix

gives the effect of the fairlure on the residual and, as one would suspect,
. bPlays a crucial role in the development and analysis of the GLR system.
The failure detection problem can be formulated as a decigion

to be made between competing hypothesis (Schweppe [14], Van Trees [15]).

H0 : no failure has occurred (8 > k)
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Hi : a failure of type i has occurred (6 < k)
vhere 6 and vV are regarded as unknown parameters (i.e., no prior distri-
butions are postulated). The GLR approach attempts to isolate the differ-
ent failures by using knowledge of the different effects that such fail-

ures have on the system residuals. BAn equivalent formulation of the

problenm, which is more useful for our purpose, is the following:

H ¥ (k) (1.26)

o YW

|

H

i vik) = ¥(k) + G, (k,6)v (1.27)

"

The generalized likelihood ratio test (Van Trees [15]) can now
be applied and we obtain a decision function based on the innovations
sequence., Given this seguence, the procedure consists of computing the
maximum likelihood estimates (MLE's) of 6§ and v assuming that a failure
has occurred (for each type .0of failure). Substituting these wvalues into
a likelihood ratio test, :one can then proceed<to 'decide- on the hypotheses.

In other words, given the estimates

8(k), vk} = axg max p(Y(1), ..., Y(k)]Hi,t8=§,v=ﬁ) -(1.28)
6,v

where p denotes the probability density function, the generalized likeli-

hood rxatio is. defined by

PO, wen, Yk |H, B=0(K), V=V(K)) (1.29)

Li(k) =
plY(1), ..., Y(k)lHé)

A decision between HO and Hi can then be made by means of a decision rule
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max L (k)
; 1
i

n (1.30)

oA VvV iH

where T is appropriately chosen as a design parameter in comformity with

the goals of the detection system.

Without loss of information, one can simplify the decision function

{1.29) by taking logarithms

f,l(k) = 2 In Li(k)

k
=Z Y VG V) (1.31)
=1

k
—Z [Y(2) = €, (3,60)VE1V TG YE) - 6, (3,66)VE)]
—

Fa

Here V(k} can be expressed explicity as a function of Bi(k)
v, (k) = C. (k, 6, (k) d (x, 6 (k)) (1.32)
i i i 1 1

where cl(k,e) is the deterministic matrix

c, (x,0) = S ,G G.0v T5)e, (5,0) (1.33)
L j=l 1 1 .

and dl(k,e) is a linear combination of the residuals -

k
8, (k,0) = D 61 (3,09 ()Y () (1.34)
3=1
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Finally, the log-likelihood ratio can be given by

. -1

and the MLE Bi(k) is the value of § < k that maximizes

£, (k,0,) = max a'(k,8)C 0k, 8)d(k,0). (1.36)
3]

The decision rule becomes

H,

i
max £, (k, 6, (k)) Ze=2 £an . (1.37)

i i i <

HO

A failure of type i 1s declared if ﬂi(k,e(k)) exceeds the threshold €.

Some remarks are in order here.

* In egquations (1.33) and {(1.34) many of the terms are zero,

since G(j,0) = 0 for j<6.

* The signature matrices Gi(k,e) can be precomputed and stored,

or they can be generated recursively {see Appendix a).

* The equations for di(k,e) can be interpreted as defining
matched filters for a failure of type i (for more on matched

filters, see Van Trees [15], Schweppe [14]}.

* &g Figure 1.1 illustrates, this detection scheme involves
the implementation of a growing bank of matched filters for
different 8. To avoid this complication, the maximization
in {1-36) is restricted to a "data window" such that 0 lies

in the interval
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k-M < B < k-N (1.38)

More on this and on the selection of M, N follow.

The fi(k,e) can be updated, by means of a recursive algorithm,

for every new residual Y(k) produced in the Kalman filter.

The basic recursion is given by
c, (k,8) = ¢, (x-1,8) + G! x,0)v Lk)a. (k,0) (1.39)
1 s 1 1
4, (k,8) = a, (k-1,0) + G]E_(k,e)v_l(k)Y(k) (1.40)

for each 0 in (1.38). WNote that the Ci(k,e) does not depend

on Y(k) and can be precomputed and stored.,

If the system and filter are time-invariant, G(k,0) and
C(k,0) depend only on r = k-0. This means that only M-N+1
of each need to be generated when a window {1.38) is used.

This reduces the computational burden significantly.

The information generated by the GLR system can be very use-
ful for compensation schemes to follow the detection of a
failure. The estimates 6 and G in particular can be used
to determine updates for the filter estimate and covariance
matrix, for example, in order that accurate functioning may
continue, This would allow for the detection of multiple
failures since the residuals are made to conform to the new
situation which has been compensated for. More on the esti~

mate and covariance incrementation can be found in Willsky-

Jones [61].
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As mentioned at the beginning of this séction, there are modifications
which can be incorporated into éhe GLR method. Each of these reflects
different assumptions made on the types of failure of interest. In the
preceding, the failure vector has been allowed to take on any value in
R or RP, for dynamics or sensor failures respectively. It is often
the case however, that one has additional information concerning the pos-
sible failure modes.

In some cases one may, by physical considerations, conclude that a
particular failure mode must necessarily be restricted to one of a par~
ticular set of directions in state or output space, [This is the case,
for example, when we know that only a particular actuator or sensor is

stbject to the assumed possible failures. This leads to the constrained

GLR (CGLR) formulation, in which we constrain v in the form
v = ij £ ¢ {e), voer £3 = (1.41)

where the fj are the hypothesized failure directions and B is the un-

known failure magnitude. One then computes

[£1d, (k,6)12
.3 1

Fic. (K, 0)F
J 1 J

£ij (k,0) = (1.42)
which gives the log-likelihood ratio for a failure of type i in the di-
‘rection fj. {(There may be different failure directions for different
failure types, which implies that not all i-j pairs need be considered.)

We then compute the maximum likelihood estimates {(MLE's) i, j, € and the

MLE of the failure magnitude



—28-

fé(k) di(k)(k'?(k)) " (1.43)
£y Cigo ®OEIE

Bk} =

By further constraining the failure such that the magnitude is also

fixed
Ve {vl, vees vs} {1.44)

we obtain the Simplified GLR (SGLR}) formulation. Here one computes

ﬂij(k,e) = 2v5di(k,6) ~ véci<k.e)vj (1,45)

and uses the largest of these to determine the presence of a failure and
the best estimates of i, j and 6. 1In contrast to these two restricted
GLR techniques, we will refer to the original version, where no infor-
mation about v 1s assumed, as 'full® GLR.

This completes the introduction of the GLR-based approach to the
detection of failures. The basic modeling assumptions, concerning the
types of failure modes to which our attention will be directed, were
presented. A hypothesis testing preoblem was formulated, a solution to
which resulted in what we will refer to generically as the GLR system.
It was also seen how variations of the main formulation result by im-
rosing some further comnstraints on the failures ko be detected. This
provides a useful way to incorporate additional information that one
might have on the possible failures in a manner which may simplify the
procedure and alleviate the computational reguirements.

We have not yet suggested what the expected performance of such a

system might be or what appropriate measures of such performance are.
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We will be dealing with questions like these throughout the rest of this
thesis. But first we will present the system to which we will apply our
failure detection scheme and on which our results are baged. This problem
ha;, in effect, been the "test-bed" for assessing GLR performance character-—

istics.

1.2.2 2Application Prcblem: The Reduced F-8C Model

The essential concepts in the GLR technique for failure detection
have been introduced in the previous section. In addition to our analysis
of the performance, and limitations, of such a system, extensive use of
simulations has been made. Nc attempt was made to generate complete
-and statistically significant data, or to provide any kind of final test
of the system. The simulations did provide some confirmation of the
analysis and helped us to develop intuition into GLR behavior. Consider-
able insight into the dynamics of failure detection was the result,

The simulations were made by applying the GIR s&stem to a simplified
model of the longitudinal dynamics of the F-8C aircraft. The model on
which the detector design was based is a second-order, discrete-time version
of the aireraft longitudinal dynamics at several particular flight con-
ditions.

The motivation for using this modei lies in the need to have a model
of a concrete, physical system on which to implement the GLR detectors that
would provide some common grounds for compariscns. This model provides
a compromise in complexity between realism on the one hand and the

amount of computation and ease of interpretation on the other. At thas
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stage in the development and study of the GLR approach to the detection
of failures, some gqualitative results were needed in order to understand
its structure and performance characteristics.

Our medel is derived from the continuous time representation of the
F-8C longitudinal dynamics, linearized-;bout flight condition 11. Flight
condition 11 corresponds to level flight at an altitude of 20,000 feet,

at a speed of Mach 0.6 in cumulus clouds. It can be represented by a 7-

dimensional model:

x(t) = Ax(t) + Bu(t) + GE(t) (1.46)
where

X, = Q PLECH Zate suvssneiececsasnannsssessnnsnsscanansnnsssa,.Lad/sec

X, = Vy velocity - VO[V0 = Mach no. x speed of sound].........ft/sec

x, = 0, (angle of attack) = (trim value)ersvesseernraesrisesass.Lad.

X, = O, pitch attitude. i eeiacerrscnscssscosacssscoronrencsanssad.

4
Xy = Ge' (elevator deflection) — (£rim value)..eeeoeeecssseasaarad.
X, = 6ec, commanded elevator angle...cieesveersesonerasssesss rad,
x7 = w, normalized wind disturbance .esesserscosasescssnsaess Tad.
State variables X = Ge and x6 = Ge take into account the actuator dyna-
c

mics. The control variable is

ult) = 6e (£) eeneanistiiaiensesssrsnnsnnsssness rad/sec {1.47)
c

The matrices A, B and G are 7x7, 7xl and 7x1, respectively. The wind
disturbance, x7=w, is modeled by the output of a first-order linear system

draiven by the white noise process £(t). The wind model arises from a
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given power spectral density

2
h 4 -
Y = 2 w#w= x7]
ﬂvO 4 + JL“ w 2
VO

For flight condition 11, which is considered here, we have

h = 2,500 ft. (for altitudes > 2500 ft.)
V0= (0.86) (1,036.93 ft./sec) = 622.15 ft./sec
g = 15 ft./séc {cumulus clouds)

w (rad/sec)

- \
which determine the values of G and statistics of E(t) in (1.46).

There are five sensor outputs given by =z

z{t) = Cx(t) + n(t)

where
z, = zq ; pitch rate measurement
Zy = 2. g velocity error measurement
Z, = = . .
3 6 , pitch attitude measurement
zZ =z -
4 Ge ¢ elevator angle measurement
Z_ = Z R
5 mz , normal acceleration measurement

(1.48)

(1.49)

C 1s 5x7 matrix and n{t) contains the five measurement noises which are

white, mutually independent random variables with given statistics

E{n(t)} =0

Em{eIn'{t)) = Z8(t-s)

(1.50)
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Reduction to a Two-Dimensional Model

Given this model, a simplified two-dimensional representation was
chtained, (More on the F-8C model can be found in Athans & Dunn [16l).
Some of the steps and considerations taken in the reduction of order of the
model were:

* ignoring the input dynamics represented by xs and ¥gr S they
are not the main variables of interest in an aircraft dynamics

model.

* eliminating x7, the wind disturbance, as a variable and modeling
its effects on the remaining ones by a white noise process (i.e.,

we ignore correlation in the wind).

* selecting the variables with the highest signal-to-noise ratios

among the observations and ignoring the rest.

* using common sense and engineering intuition to correct and/or

add for any other significant interactions.

The two state variables which were finally selected are

*1

9

g, the pitch xate

i

¢, angle of attack - trim value

The last step Wwas cbtaining -the corresponding discrete-—time model
to facilitate implementation on the digital computer as well as being
consistent with our intended discrete-time analysis. A discretizing time

step of T = 0.03125 sec (1/32 sec) was used. The resulting model for
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flight condition 11 was -

x (k+1) & x(k) + cw(k) {1.51)

z (k)

Hx (k) + Dv(k) {1.52)

where ¢, G, H and D are the 2x2 matrices,

[0.98258 -0.14649] [0.022596 0.0 ]
’ G =

.0.03059 0.97193 0.004328 0.000226

1.0 0.0 0.00873 0.0
H = ;, D= (1.53)
0.0 16.154 0.0 0.06]

The eigenvalues of ¢ are

A(®) = 0.977 + 5(0.0667) (1.54)

and so the system is a stable one. The sequences w(k) and v{k} are zero

mean, independent, white Gaussian sequences with unit covariance

Ew(k)w(i)}")

I

Iakj ' ij = 0 k#3

1 k=3

Iskj (1.55)

]

E(vi{k)v{j}")
Note that the system (1.51), (1.52) is'equivalent to that of (1.1l), (1.2)
if we set Q and R from (1.3), (1.4) to be

Q= G&' , R = DD' (1.56)

The first step in designing a GLR system is obtaining the Xalman-
Bucy filter (KBF) corresponding to the unfailed system. For the system

given by (1.51)-(1.55), the steady-state version of the filter described
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by eguations {1.15) - (1.21) of the previous section gives us
C R(k]k-1) = &(k-1]k-1) (1.57)
Riklx) = 2(k|k-1) + Ky (k) (1.58)
with .
Y(k) = z(k) - HRE(k|k-1) (1.59)
K =pav e (1.60)

The filter error covariance matrix P = lim P(k|k-1)} is the steady-state
Jebeo -

solution of equations (1.18), {1.19) and gives K, the constant, steady-

state Kalman gain matrix. The covariance matrix for the residuals, V, is

then given by (1.20) ’

V = HPH' + DD! {1.61)

The resulting matrices K, P and V are as follows for flight condition

11.

— -1 -2

. 7.5351 x 10 4.6257 x 10

K= -1 2
1.3527 x 10 1,2748 x 10 J
" -4 —4 -
5,6311 x 10 1.0891 x 10

P = -4 -5
1.0891 x 10 2,2130 x 10 |
6.3933 10 %  1.7503 1073

vV = -1 - 3
1.7593 x 10 9,3747 x 10~ (1.62)

The predicted estimate, as given by equations (1.57)-(1.59), can be put

in its recursive formulation
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Rk+llk) = ®R(k[k-1) + ¥K[z(k) - HR(k|k-1)]

O (I-KH) % (k|x-1) + Kzd(k) (1.63)

with ®(I-KH) given by

_ 0.2620 ~0.8505
&(I-KH) = {1.64)

0.1239 0.7489
The eigenvalues of the filter are

_ 0.09966 i=1
Ai(@(I—KH)7= (1.65)
0.91188 i=2

Notice the absence of the control terms in the system (1.51), (1.52)
and filter (1.57) - (1.59). They were not included .since their effect on the
residuals is cancelled in the XBF. The detector is therefore not affected
and the analysis is simplified somewhat.

As was stated in section 1.2.l1, our discussion on the performance
of the GLR system will be. limited to the detection of failures that can
be represented by the failure models 1-4. Recall the four basic failure

modes as applied to the simplified aircraft model,

1. State (Dynawics) Jump

x({k+1l) = ®x(k) + Gwik) + vskﬂ'e {1.66)
2, State (Dynamics) Step

x(k+l) = dx(k) + Gw(k) + Wk+1,e ’ {(1.67)
3. Sensor Jump

z(k) = Hx(k) + Dv{k) + vak s {(1.68)
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4. Sensor Step

z{k) = Hx(k) + Dv(k) + VGk 8 {(1.69)

whers v is the failure and O the time at which it occurs.

In the design of a GLR system under the assumptions of these failure
models, some thought should be given to the proper use and interpretation
of the failure vector V. For the cases where the constrained or simpli-
fied GLR are adequate or desirable this question isgof particular im-
portance. BAs their formulations implicitly depend on the hypothesized
direction and/or magnitude of Vv, it is reasonable t; expact that the
careful selection of this failure vector will result in improved overall
performance of the detection system. Ultimately, this is a gquestion of
physical and engineexing considerations.

For the simulations, the failures were taken in orthogonal directions
in failure space, V € B for 1, 2 and v €-RP for 3, 4 (n=p=2 for ocur’
simplified model).” Thus, vectors of the form (vl 0) anid (0 v2) were
considered for a range of values of,vl, v2 thought to be of most interest.
ILet us take a closer look at the kinds of situatioﬂs that these failures
might represent in the case of the simplified F-8C model.

Recall that %5 =9q is the pitch rate and that X, =0 is the angle
of attach deviation from the trim value. Thus a state jump of the form
(v, O?T or a state step of thé forw (O vz)T might be used to model the
effect of a-sudden wind shear that leads to an increasing angle. of attack.
On the other hand, a jump of the form (0 v2) could be used to model a

relatively long-term upward or downward gust that initially manifests
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itself as a shift in . A step of the type (Ul 0) could arise from an
elevator failure.

In the observation equation, failure models 3 and 4, we have a simi-
lar situation. A failure (vl 0) may model a bad data pqint in the measure-
ment of g for the jump case (3), or it may represent a permanent bias in
that measurement for the case of a step (4). Such a bias might be the
result of a component failure in a gsensoxr, for ezample. By analegy, the
same may be said about a (0,v2) failure, whaich then refers to the measure-
ment of .

Table 1.l summarizes the failure schedule implemented in the simu-
lations. S5tate and sensor failure magnitudes are given in terms of the
standard deviations of the noises affecting each variable (1 ¢ eguals
one standard deviation of the noise). For clarification purposes Uq, da
will denote the standard déviatlons of the noise in the dynamic equaticns
for q and ¢, respectively, and Gé, G& will denote the analogoés noise

level for the measurements of g and ©. In table 1.2 the values of these .

10 noise levels are given.

DETECTOR AND o
FAILURE TYPE (ul 0) {0 vz)T
STATE JUMP 10'q, scrq, 10csq, ZOGq 1005, 50‘&, 10cra, 200_{)5
TE J . . Jdo o, . o
STA! UMP 1c;q, scq, 1crq, SGq 1 o Sca, 1 o' so'a
; v ' ) T t v 1 '
SENSOR JUMP 1crq . scq,locq, 2ocq 1cra, 5%, 106@, 20crOL
JAg', .50, 1o¢ 167, J50° 1g!
SENSOR STEP q' 1’ g ar o’ Ta
[} L] L] ] [] 1
scq , 1ocq, 20c;q 5()'&, 10(5&, 200,

TABIE 1.1 Set of Failures Simulated
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STATE NOISE SENSOR NOISE
O'q 00!. O‘C’l O'c'x
1 std, dev, =11 std., dev. = | 1 std. dev. =1} 1 std. dev. =
2.2596 x 1072 | 4.3335 x 107> | 8.7298 x 107" | 6.0 x 1072

TABLE 1.2 Noige Levels in Standard Deviations

For jump failures nothing under 10 was looked at since those jumps
would be undistinguishable from the noise. Such failure magnitudes were
considered for step failures since they are detectable because their sus-
tained presence provides more information as time passes. This will be
seen in more detail when we examine the signature matrices Gi(k,e) for
the various failure modes.

This completes our presentation and description of the system

model with which ocur numerical results of the simulations were generated.
We will have more to say as we go along.
1.3" SUMMARY OF THE GLR APPROACH AND OVERVIEW

In the introduction we tried to define the goals of this effort:
to evaluate the performance of the GLR-based technique for the detection
of failures in the light of some analysis, and 'experience' via simulations
of i1ts application to a specific dynamical system.

In section 1.2.1 the basic modeling assumptions and issues that will
ctoncern us here were presented. A number of failure models were intro-
duced, and what we will refer to as the GLR system was developed for the
cases to which this work will be restricted. A simple but adequate (for

our purposes) dynamic System model was discussed.
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In the following we examine the performance of a GLR detection
systeﬁ as applied to a specific exémple. In combination with some anal-
vtic performance measures developed by Chow [12] and Willsky-Jones (51,
the aim here is to develop insight into the practice of failure detection
and the difficulties that arise.

Chapter 2 wall present some results obtained by a straightforward
application of the method in section 1.2.1 to the system presented in
A.2.2, TIn a sense, conditions are set to be ideal: the GLR detection
system is based on exactly the same dynamics as the system which under-
goes the failures. Furthermore, the correct detectors for the particular
failure modes treated are implemented. After some discussion in section
2.2 on the gquestion of performance measures and GLR characteristics,
in section 2.3 some actual results are presented and interpreted, providing
an initial evaluation of the failure detecting capabilities of the GLR.

Chapter 3 takes a look. at some of the limitations on the capability .
of the GLR technique to correctly éetect and identify the actual failure
mode present in a system. The question of distinguishing among several
possible failure modes is of central importance here. Some simulation
results from the GLR implementation in Chapter 2 are discussed. Knowledge
of these limitations obtained by increaging our understanding of the
method, suggests ways of overcoming some of the difficulties and of
realistically evaluating our ability to handle failures.

After some familiarity with~the GLR system performance character-

istics is developed in Chapters 2 and 3, in Chapter 4 our attention
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focuses on the sensitivity of such performance to modeling errors. Im-
portant questions on the final relevance of the GLR system for reliable
farlure detection in applications where modeling erroxs may be substantial
are raised and an attempt is made to look for a way out of the difficulties.
Finally, in Chapter 5, we try to put ocur results in perspect%ve and
to draw some conclusions. Discussion of the merits and drawbacks of the
GLR approach is followed by specific suggestions on means to overcome
the major limitations on the achlevable performance levels. Areas of

\
potential and of promising future work are pointed out,



CHAPTER 2

CORRECT DETECTION UNDER MATCHED CONDITIONS

2.1 MATCHED CONDITIONS AND CORRECT DETECTION

The motivation for the use of the GLR techpique was explained in
Chapter 1 and a framework for its use in the area of failure detection
was developed. BAs a tool for detecting and identifying the events that
we characterize as failures, the GLR technigue offers some advantages.
The estimation of § and v, for example, provides some essential information
1f compensation is reguired subsequent to the detection of a failure.
The possibility of some analytical evaluation of the anticipated per-
formance is another reason for the appeal of this approach.

| In this chapter we examine the performance of an application of

the full GLR technigue of section 1.2.1 to the detection and identifi-
cation of failures in the system presented in section 1.2.2. The tems
'matched conditions' will be used to denote the modeling assumptions on
which the detection system design is based. We assume perfect knowl-
edge of the system parameters and noise statistics. This is in con-
trast to the situation refer;ed to as 'mismatched conditions', considered
in Chapter 4, where modeling errors are allowed.

The main purpose here is to develop some intuition on the theoreti-
cally optimal performance that can be extracted from a simple appli~
cation of the GLR method to the detection of failures. Our approach is

qualitailve in nature. It is meant to complement the work done by Chow

[L2] of a more quantitative kind. In addition to the overall understanding

-41-
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we expect to develop, this will also provide a reference performance level
with respect to which one can measure the degradation in detection and identi-
fication.which takes place in a more realistic environment, where the system
does not perfectly correspond to the model.

Furthermore we also explicitly assume that the failure mode is
known and, consequently, that we are able to implement a GLR detectoxr
based on that mode. This is what is meant by correct detection, and
no judgment on the resulting performance is implied. It is clear that
if we are certain about the kaind of failure anticipated, then we can do
at least as well, if not better, as when the failure type must first
be isolated. Chapter 3 considers the difficulties that may arise when
the failure mode is unknown.

The results under these conditions indicate how well the GLR
detection system can perform in under ideal conditions. Therefore
expectations about what can,+and cannot, be achieved will be firmly
grounded. Section 2.2 presents some measures with which to evaluate
the detection performance of the GLR technique. In addition, we begin
to lock at some questions on the detectability of the different failure
modes. Then, in section 2.3, some results are shown from an application

to the simplified F-8C model. Section 2.4 summarizes the results.

2.2 THE DETECTION PERFORMANCE OF THE GLR

2.2.1 Pexformance Analysis

We now begin our study of the performance of a GLR failure detection
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system. In order to evaluate the performance and reliability of such a
system, we need to select some indices that measure its quality. We look at
the decision procedure in the GLR technique and at ways to characterize

its dynamic behavicr. This helps us to choose the detector parameters

and to ‘resolve tradeoffs which are inherent in this method. Our aim is

to understand well how the GLR technique works. )

If a condition of failure exists, changes are induced in the
behavior of the innovations of the Kalman £ilter. The GLR detectors
continually compute the correlation between the‘actual residuals and
their anticipated behavior under each of the failure hypotheses. This
concept is expressed by equations (1.26), (1.27) and (1.33)-{1.37)},
which describe the GLR detectors and procedure. The quantity l{(k,a)
is a normalized measure of that correlaticon between the system residuals
and the residuals under the best estimate of the failure mode.

It is clear that for any configuration of the parameters
{M, N, i, e} which specify the GLR detectors, it is the statistical be-
havior of the random variable Zi(k,e) which defines the performance
of the system. Some of the. features or characteristics of this behavior,
such as delay times to detection and failse alarm rates, for example,
can be studied by éxamining)the evolution in time of the distribution
of values that this variable takes under various conditions. Many in-
teresting and important questions can be formulated in terms of certain

events. These guestions can then be transformed into the calculation of

probabilities. Such an analysis allows us to study in detail the numerous
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tradeoffs that one faces 1n designing an acceptable failure detection
system.

Consider now a situation where a GLR detector iz designed for
the failure mode which coincides with that of the actual failure taking
place. For simplicity we will drop i € {1, 2, 3, 4}, the failure type,
in the following discussion. In {12] Chow shows that for the full GLR
£(k,8) is a non-central, chi-squared (xz) random variable with n degrees
of freedom for state failure detectors, or p degrees of freedom for sehsor
failure detectors (n is the dimension of the state and p the number of
measurements), The mean or expected value of £(k,8) is n + 62 (or

2 . .
p + 8 for the sensor cases) where 62, the non-centrality parameter, is

given by

62 = 6%2(k,8) = vic(k,0)v (2.1)

when a failure of size V occuwrs.
This can be readily seen by examining the eguations from the

GLR, PFrom section 1.2.1 we recall

-~

Yik) = yvik) + Gg(k,Mv {2.2)
a(x,8) = e (3,007 F(5)v () (2.3)
k
Clk,8) = Z‘;G'(j,e)v_l(:a)e‘(j,ﬁ) (2.4)
JL"
and
L(k,8) = a' (k,00¢ " (k,6)d(k,0) (2.5)
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Notice that in (2.3) and (2.4) the. lower limit in the summation has been

replaced by €.

By expressing (2.3) in terms of y(k) one gets

d(k,6)

ak,8) + clk,0)v : ' (2.6)
k

Il

a(k,8) ' (1,0V DY) = {ak, 0 |y = v} (2.7)

=0
This follows by simple substitution of (2.2) into (2.3). Here d(k,0)
is a zero mean random vector with covariance matrix C(k,8), as may be
easily verified given the properties of Y(k). When a failute is present,

d(k,€) has the same covariance, but the mean value becomes C(k,0)V as

(2.6} shows. Finally, using (2.6} in equation (2.5)

L(x,0) = [;(k,e) + Ck,0v] ¢ x,0) [;(k,e) + C(k,0)V]
- a e, 0)C (6,00 a06,0) + vict (,0)C (ks 0) d (K, 0)
& ar e, Lk, 000,00y + \)'C'(k,B)Cbl(k,G)C(k,B)v‘
= E(k,e) + 2\:';(1:,6) + v'c(k,e;)v (2.8)
where
2k,0) = ' (e,0)¢ Lk, 6)a(k,0)

]

{2(x,0) |y =v} (2.9)

and where use is made of the fact that C{k,0) is a symmetric matrix,

-~

Using our knowledge that d{k,8) has zero mean value and taking

expectations on both sides of equation (2.8),
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E(f{k,8) = B(L(k,0) + 2v'd(k,0) + v'C(k,8)V)

E{L{,9) + 2V'E(d(k,0)) + viC(k,)V

E(L{k,8)) + v'C(k,0)Vv (2.10)

The linearity property of the expectation operator has been used here.

By identification with the result from [12] previously mentioned and (2.1)

we conclude
E(LGk,0)) = n + 6 (k,0) (2.11)

If we remember the decision rule which completes the GﬂR procedure
from (1.37), we can make some immediate observations. Given the updated
a(k,0), once Y(k) is computed, as in (1.40) for 8 in the range k-M <8
< k-N as in (1.38), then g(k) is chosen to be the 0 which maximizes the
log-likelihood ratio in (1.36). A failure is declared to have. ocgurred

at time 6 if Z(k,0(k)) exceeds a threshold €:

failure declared
£(x,08(x)) ; € (2.12)

no failure
By studying thé average behavior of £(k,0) as given by (2.11) it
is possible to develop some ideas on how well the decision rule (2.12)
responds to failures of different kinds. This, in combination with the
estimate of the failure in (1.32), can provide a picture of how the GLR
system works and of its reliability. ‘Thig means. that one must study
in detail the changes in 62(k,9). By assuming for the moment that the

value of the threshold € has been selected in some appropriate manner,
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this kind of analysis will in the end provide the knowledge necessary to
choose € in a way that assures the best detection performance.

. The two guantities that determine the evolution in time of

52(k,9), v and C(k,0), 1lluminate some basic features of the GER technique.

The expression for §2
62 (x,0) = viC(k,0)Vv (2.13)

already indicates two important facts. The way the failure vector V

comes into play appeals to our intuition that somehow larger failures should
be easier to detect. This quadratic dependence of 62 on the actual

failure is modulated by the generally time-varying matrix C(k,8). It is

this quantity, the information matrix, which brings to light how the

GLR approach uses information about the dynamic effect of failure on
the system residuals. Here lies the essence of the flexibility that
the GLR approach can bring to the failure detection problem: full use
is made of the characteristic response of the physical system and Kalman
filter to each failure mode.

The matrix Cl(k,B), given by equation (2.4}, measures the in-
formation available in the residuals at time k from a failure of type
i ocecurring at time 6. It is therefore worthwhile to study how it
changes for varying k and O for the different failure modes. Such a
. study will show how much impact each failure mode has on the GLR de-
tectors and, conseguently, the degree of detectability of various
failures. 1In fact, this quantity -can be shown to be an observability

matrix. For these reasong in the next section we take a closer look
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at c{k,0}.

Complementary to the study of the average performance of the
GLR by way of the non~centrality parameter 62, one can define and com-
pute various probabilities of the event that £(k,8) takes on certain
values or follows given patterns with k or € varying. Three useful
probabilities defined in [12] by Chow are: correct detection, wrong time

and false alarm probabilities, given respectively by

P = Prob {£(k,0) > elv, 6=6, } (2.14)
Pef’e = By = Prob {£(x,6)|v, 06} (2.15)

t

P, = Prob {£(k,0) > elv=0} (2.16)

The correct detection probability PD measures how sensitive the detectors
are by giving the probability at time k of detecting a failure v which
started at time Bt. The wrong~time prcobability gives some idea of the
detectability of a failure by indicating the accuracy of GLR in esti-
mating the time of failure Gt and the persistence of the failure effects
for 8 > Gt. Finally, P gives the probability that a failure will be de-
clared vhen no failure is present. It shows the sensitivity of the GLR
detectorg to the noises in the system.

Although the fact that for the full GIR the £, (k,8) are chi-
squared random variables makes analysis difficult, one can compute the
values of these probabilities for cases of interest (see the appendix

in [12]1). Fiqgure 2.1 gives an example of how useful such computations

can be. It is a plot of PD for different values of the threshold and of
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the non—-centrality parameter for a x? random variable with two degrees
of freedom. This is the case for our example, which consists of two
states and two observations. HNotice that the curve corresponding to
62 = 0 is that of P which is fixed once the threshold is specified.
The correct detection prcbability, however, is an increasing function of
52 as shown., For a given threshold, it is the value of 62 that determines
the probability of detection.

Figure 2.1 points out one of the basic tradeoffs in the GLR
technique. By selecting € large enough the false alarm rate can be reduced
significantly, an appealing feature for failure detection. In doing so,

however, P_ is also reduced for any value of 52 as the curves show. Thus

D
one is only able to detect failures for larger magnitudes of V. This
is true at a particular time step, since over a time interval Sz(k,e)
may grow encugh to exceed the threshold. Two important concepts in inter-
play’can be observed here, In eliminating Ffalse alarms via a higher
threshold, the same degree of detectability is achieved for larger failures
only. On the other hand, the dynamic charactexr of ‘Q(k,e) for a given
failure mode may be such that the value of £(k,B8) required for detection
is reached rapidly. This points out how studying c(k,8) in (2.13) is
valuable for understanding GLR failure detection and also, in particular,
for selecting the optimal value of the threshold.

We have’only mentioned some of the possible performance measures .

which are useful to evaluate and understand a GLR detection system,

Different indices can be used to study other aspects of detector performance,
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such as correlations of the ﬂi(k,e) in time for wvarious i, k and G,
for example. We will introduce some of these as we touch on the areas
where they are most relevant, The next sectlion examines some important

1

elements of the GLR technigue in more detail.

2.2.2 The Signature and Information Matrices

The last section. focused on the characteristics of ﬂi(k,e) and
on the way these change under different failure situations. It was seen
that this random variable can be studied by examining how the non-
centrality parametex Ga(k,ﬁ) responds to different fallures. Thus one
can develop some qualitative understanding of the dynamics of GLR-based
failure detection and the detectability of the variocus failure modes.
Also of practical interest is the development of some criteria for
selecting those detector parameters, such as the threshold and tﬁe‘di—
mension of the sliding time window, which greatly affect the performance.
Wwith these concerns in mind, we will concentrate on the information mat-
rix, Ci(k,e).

We have already commented on why this quantity is of importance
in relation to 62(k,8) and, consequently, to the statistical behavior of
the log-likelihood ratio. In’this section we will take a close lock at
the values of this matrix for different i, k and 8. We will proceed
by first locking at Gi(k,e), the failure signature matrix, which is cen-

tral to a study of Ciik,e), as (2.4) makes evident,
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The Failure Signature Matrix, G.(k,0)

1

The basis for the GLR approach to failure detection lies, as
seen 1n Chapter 1, in the changes that failures induce in the residuals
of the filter in the system, These changes are specific to each failure
mode and, for the cases being considered here, they can be expressed

as the alternative hypotheses.
H o vk =y + G (k6 i =1{1,2,3,4} (2.17)

where V is the failure vector and Go(k,e) & 0 for all k and . Hence,
the time histories of these signature matrices are very informative with
respect to the degree of detectability of each failure mode. For a
given failure V we can anticipate the capability of the GLR to accurately
detect -and estimate it if we understand how the Gi(k,e) behave. Ex-
pressions for the signature matrices for the four failure modes are in-
cluded inm Appendix A. ‘'These show the dependence of Gi(k,e) onxthe system
and filter parameters.

We have computed the G, matrices for failure modes i = {1,2,3,4}
for the reduced F-8C model. They are plotted in Figures 2,2-2.5 as a
function of r=k-0 for the steady-state filter case. Before discussing
these curves, let us concentrate briefly on the elemenFs of these matrices.

Consider Ay, the deviation in the residual due to a failure V,
from the expression {2.17)

Ay (k) = vX)-Y(k) = G; (k,0)v (2.18)
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or, in more detail,

AYl(k)_ gll(k_e) ng(k—B)' v .19
AYz(k) ng(k—G) g22(k-9) v,

The lth row of G(ﬁ-e), 9:1 and 9 5r GLVES the effect of the failure on

the ith component of the residuals. Alternatively, the jth column of

the signature matrix, and ¢.., gives the effect of the jth failure
923

component, vj, on the different elements of the vector of residuals.
For the two-dimensional F-8C model with fallures taken in

orthogonal directions, we get the following. For pitch rate failures

of the form v = [vl ol',

by, R) = gy (k=B)V, (2.20)

Ayz (k) ng(k-B)vl ’ (2.21)

while for angle-of-attack failures, v = [0 vzl';

Ay, (5) = gy, (k=B)V, (2.22)

It

Ky, (k) = g, (k=B)v, (2.23)

-

Comparing the gij(k—e) for different failure modes provides in-
formation about the distinguishability of failures of different modes.
This is a very important consideration and will be discussed in more

detail in Chapter 3.
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Faigure 2.2 and 2.3 are plots of the signatures for the aircraft
example, where the failure modes correspond to state jump and sensor
jump respectively. Notice, first of all, that the elements of both
matrices die out as r, the elapsed time from the occurrence of a failure,
increases, This is not surprising since both the system and the filter
are stable. So, for the jump failures, the signatures reflect the im-
pulse reponse of the system and filter. A sensor failure enters the
filter directly while a state failure does so only in proportion to its
effect on the output of the system. The figures indicate that the sensor
jump signatures tend to zero much faster than those of a state jump
failure. This is in agreement with the fact that the time constants of
the filter are smaller than those of the system for the reduced air-
craft model.

The signatures for the cases of state step and sensor step
failures present a different picture however, Figures 2.4 and 2.5 con-
tain plots of their respective elements (for a longer interval in x}.
Some of these curves now grow with r, rather than dying out. This is
a reflection of the different nature of these failure modes. The sus-

tained effect of a step failure on the regiduals is in marked contrast
to the case with jump failures. Given that the residuals are the inputs
to the detectors, this implies that step failures are more detectable
than jump fajlures. Recall that in the GIR detectors, weighted sums

of the residuals are sequentially computed over the interval determined by



-5R—

e
gij : effect of jump in x,
15 an residual }:
X329
X2 = Qa

z; = meosurément of g

z,= measurement of a

™~

®

5 — e
]
Qe i et T YUY SR SOr YU Y L =

\. glz .__,,,._.—-9-———9" 6 — &8
S Qs e &

92} -_—‘_’_—O_-—'e_—ﬁQ—m-’a

2 b= g

Fig, 2.2 sState Jump G(r)



~5G

—1.01-

921

10
[ ™ l
T mrean O 8

g;. ¢ effect of jump inz,

on residual )’l

9
o

1
*2
zy = measurement of q

Zy= medsurement of &

Fig. 2.3 Sensor Jump G(r)



~57=

1404~ gij : effect of jumpin x,
on residual 7‘
X3=q
]20 . x2= o
z; = mecsurement of g
» = mecsurement of a

100

80

60

40

Fig. 2.4 State

Step G{r)




-5~

1.0

g;: 1 effect of jump inz,
on residual 7,

Xp=4q

xy= @

2z = meosyrement of g

Z4 = measurement of a

Fig, 2.5 Sensor Step G(r)



-5

the moving window parameters M and N, as in equation (2.3}, The per-
sistent, if not increasing, deviations in the residuals apparent in
Figures 2.4 and 2.5 suggest that higher values of ﬂi(k,ﬁ) are achieved
and that, in fact, these likelihood ratios grow in time. Conseguently,
betteé detection should follow, for'a fixed threshold, than for the case
of jump failures. By the same token, it is reasonable to expect that

the estimation of v will be better for step failures than for jump failures.

It 1s important to rezlize what the shapes of the different
signatures tell us about the system and the failures. Recall that the
signatures indicate how the Kalman filter yields dynamically—reiated
estimation errors when a failure is present. These properties of Gi(k,e)
translate directly, as will be emphasized, into the properties of the
detection performance of the GLR.
Conéidgf again the plots of Gi(k,B). Notice how for "the state

failures (Figures 2.2 and 2.4) the dominant values correspond to 9o

and gzl, in order of importance. As equations (2.20)-(2.23) indicate,
these g's give the components of the prediction error in & due to failures
“in o (g,,) and g (g,1)+ It is interesting that the main error caused

by the g failures is in the estimate of o (as 991 > gll). *This reflects
the way in which the effect of the failure propagates through the system

and the filter. What the relative magnitudes of the curves for 9o and

x

957 imply is that ététe failures in ¢ are more detectable than similar

failures in g, Or, the same degree of detectability is achieved only

for relatively larger failures in g than in ¢. In the case of sensor


http:2.20)-(2.23

-

failures (Figures 2.3 and 2.5), on the other hand, the converse is true:
failures in § are more detectable than those in . (Notice that, in
general, gil z_giz, i=1,2)., Here again, the off-diagonal elements of
the signatures (gzl) play an important role for failures in g. For
these failures the increase in g (the pitch rate) slowly integrates into
o (angle of attack) in the filter. Thus, the estimate of o becomes in-
correct to the extent that it leads to the dominant erxor, So the failure
in q actually manifests itself mogtly in the inconsistency between the
true and predicted values of 0. The GLR technigue exploits these dyna-
mic characteristics which are a consequence of the properties of the
Kalman filter,

The failure signatures also provide infoémation concerning the
capability of the GLR to correctly identify and estimate Bt, the true
failure time. The plots suggest that jump failures might lead to better
estimates 3 than step failuxes. This is due .to the Yargely lo;alized
effect on the residuals at the initial times. For step failures, which
may become more detectable with time, the initial values of the signa-
tures are not the largest in general.

That is, the fact that the effects of some step failures per-
sist in the residuals is clearly seen by a signature that persists.
However, by its very nature, a persistent signature has an autocorrelation
function that is not particularly peaked. Thus, for such failures we
expect good detection performance but anticipate inaccuracies in our

estimate of Gt- To see this point, the reader may want to compute the
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autocorrelation anctions of gZI in Figure 2.3 and g2l in Figure 2.5. -
This clearly indicates the increased detectability Of.EEEE failures (as
indicated by the magnitude of the autocorrelation), and the increased
problem in resolving.the failure time 8 (as indicated by the peakedness
of the autocorrelation).

Finally, the signatures teli us about the relative distinguish-

ability of the failure modes., If two different failure modes have simi-

N .

lar saignatures, potential difficulties arise in discriminating between
~

them. In full GLR the estimate V is free to take any value in failuré
space (e.g., a combined ¢ and ¢ sensor failure). Hence, the incorrect
detector can select G as that v which would best account for the ob-
tained likelihood ratios although this G might not be physically mean-
ingful. This suggests that other GLR formulations (such as CGIR or
SGLR, Chapter 1) might have less of a problem in choosing the correct
failure mode for these cases. Since the failure estimate is constrained
in direction and/or magnitude, different values of the likelihood ratios
should regult. Looking gt the- signatures, for example, one can anti-
cipate possible difficulty in telling apart a sensor step in g from

a state step failure in either g or 0. The signature curves for these
cases can lock scmewhat alike with proper scaling (which is done by G).
Also, there is a potential problem in distinguishing between a g state
jump and an O sensor step. MNotice the qualitative  similarity between

915 in ¥agure 2.5 and = in Figure 2.2 (with the proper scaling).

EPYY r 991
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This distinguishability problem clearly involves-grogsg-correlations of

the various signatures. We will discuss this topic further in Chapter

3.

The Information Matrix, C. (k,9)
L

One way to interpret the statement that Ci(k,G) maasures the
information in the residuals at time k from a failure of type i at time
8 is to view it geometrically, Ci(k,B) has the form of an inner pro-
duct or projection operator. For example, the non-centrality parameter

can be expressed, using (2.4),

)

2 L
Gi {(k,8) = Vv Ci (k,8)v

k
. :E: . -1,. .
v ( 7Gi(j,8)v (J)Gi(J,e)v
=0

k

te tfa -1,
Zv G; " 3.0V GJ)Gi(J,B)v
j=8

i

[}

<G oy 01V, Gl B)v> 11

2
Te; ¢ ovf]® -1 (2.24)

where the symbol (*) represents the time index which runs from =0 to
j=k. 1In this case the projection of the failure signature onto itself
gives a squared-norm measure of the deviation Ay in the residuals over

the time interval from 8 to k, It is reasonable then that a failure
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mode- resulting in a lasting presence in the residuals process, such as
one of the step failures, will lead to large values of the non-ceptrality
parameter. This corresponds to a high degree of detectability as the
pr;bability of correct detection PD increases rapidly.

Suppose the failure vector V is in a given direction, U=IU1 0l°+.
Then 52(k,8) is just a particular element of the information matrix

with a scaling factor

i

2
§°(x,0) v, 0} clltk,e) clzck,e) v

C21(k,9) sz(kye) 0

2
. (2.25)
vlcll k,5

Similarly for the other direction in the two-dimensional case. This
means that the elements of Gi(k,e) give the directional sensitivity of
a detector for failure mode i'to different failures v, The off-diagonal

.

terms measure the effect on detectability of non-orthogonality in the

failure directions. The study of the changing values of the information
matrix 1s then an additional way of 1earning about the failure modes
and the capability of the GLR method for detécting them.

If the signatures for the jump failures tend to zero as the
elapsed time increases, then the information matrix reaches a steady-
state at a fast rate. This is due to the guadratic ﬁorﬁ of Cl(k,e)

and to the fact that addiational terms contribute less aé ¥ increases,

The contrary is true in the case of step failures, where the signatures
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either grow or remain at non-zero values. Here the information matrix
does not necessarily reach a steady-state, as more information is ac-
cumulated with evéry term in (2.4).

Figures 2.6 ~ 2.9 illustrate this. They are plots of the non-
centrality parameter and correct detection brobability versus the elapsed
time r. They correspond to jump failures (Fig. 2.6, 2.7) of magnitude
50 and 5a' for the state and sensor detectors and to step failures
(Fig. 2.8, 2.9) of 10 in the state and 50! in the sensors, Figures 2.6
and 2,7 are related to the failure signatures in Figures 2,2 and 2.3.

We see that in fact 62 reaches steady state almost immediately for the
sensor Jumps while it grows at a diminishing rate for the state ﬁump
failures.

Similar comments can be made about the curves in Figures 2.8 and
2.9 in reference -to the signatures in Figures 2.4 ;nd 2.5, The dif-
ferences and similarities among these curves are very informative of
the performance of the GIR detectors. Careful analysis and observation
reveals how the specific and characteristic dvnamics of the system-
filter combination are reflected in these varying degrees of detectability.

For example, consider the 62 curve for a sensor step in o,
shown in Figure 2.9. While the 62 curves for the other state and sensor
step failures show a non-diminishing rate of increase, this one reaches
steady-state eventually, for the same time interval. The aagle of
attack O is approximately the integral of the pitch rate g. To the extent

that this is true, a state jump in g is similar to a step increase in the
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value of ¢ at the input to the filter. This can be seen qualitatively
in the fact that the sensor step 62 curve for o in Figure 2.2 is not
unlike that of a state jump in g 1n Figure 2.6. Analogous comments
hold for the signature curves 919 (r)} and gzz(r) in Figure 2,5 and the
curves gll(r) and g21(r) in Figure 2.2, as was mentioned in discussing
the signatures. This points out how the similarity in the signatures
for two different failure modes, as suggested garlier, may lead to
problems in distinguishing failures. The same comment can be made from
these curves about sensor step failures in g and state step failuxes
of both kinds. The similarity in the growth of 62 with time is re-
markable, although not surprising considering the corresponding signa-
tures.

For linear time-invariant systems, it makes sense to gpeak of
a steady state. The rate of convergence of Ci(k,e)_to such a limit is
a useful indicator of the length of the window to bhe chosen, over which
6 18 to be selected in maximizing ﬂi(k,e). For jump failures in the
sensors it is clear that if they are not detected right away, the odds
on dc‘:ing so are not improved by waiting, The non-centrality parametex
and PD reach their final values zlmost immediately. IQ contrast to
th:s, for step failures 62 is inecreasing in general with the elapsed
time and, therefore, a longer window length would indeed enhance the
possibility of detection significantly. It must be noted of course,

that the value of the parameter M thus selected depends also on other
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considerations, The actual size of the failure V must be taken into
account. For a large enough vV detection can be immediate for any
failure mode and implementing a large sliding window (large M) is waste-
ful and unneeded computationally.

311 references made in the above discussion to the non-centrality
parameter Gz(k,e) assume we know 6 to be the time of failure. If so,
then 52{k,8) is a measure of the average behavior of ﬁ(k,9=8t). in fact,
however, Gt is considered unknown by the GLR detectors until the decision
is made by first maximizing £(k,6) over k-M<8<k-N, For each 6 in the
moving window there igs a matched filter d(k,®) which will give the
likelihood £(k,8) that a failure began at that time., The d(k,k~N),
dk,k-N-1}, ..., d{k,k-M) "scan" the recent past for posszible failures.

In the maximization operation ,(1.36), the GLR detector in effect *'slides®
the signature G(k,8) over the time history of the residuals in the inter-
val given by the window. Then a(k) is seélected as the 'starting! time
for which the best correlation is achieved. This correlation is given

by K(k,a(k)).

Here we have exposed the dual nature of the dependence of £(k,0)
on its arguments. For a fixed 6, §(k,0) for increasing k predicté the

behavior of £(k,8), as long as that § remains in the moving window (the

window k-M<8<k~K 1s referenced to k, the 'present' time). So, if 8=Bt
2 . . .
then §7(k,0) gives the growth pattern of the correlation as it evolves

in time. However, for a fixed k, £(k,0) with 8 varying over the window
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is a measure of that correlation for different possible 'starting' times
(in a sense an autocorrelation, assuming a failure has occured). The
values of £(k,9) for neighboring 8's reflect the time structure of the
failure signature. Therefore it will be dirfferent for the various failure
modes. We will have more to say on this in section 2.3.4,

The non-centrality parameter for £(k,0) when 6 # Bt iz given

121 by .
6%(,8[0,) = vic' k8]0 )7t (x,0]03c (5, 0]0)v . (2.26)
with %
c(k,8]8,) = E G (3,0)V(3)6(5,8,) (2.27)
=0
and
T = max(8,6,) " (2.28)

Notice that for 8=9t this reduces. to 62 as in (2.13). The expression
in (2.26) is in effect an autocorrelation function for the residuals.
It gives the sensitivity of the detector to the error in the estimate
of Bt. If 62(k,8|9t) does not vary much for small T=8—9£, the GIR
detector is likely to choose the wrong 0 as often as the correct one.
We have already suggested that this might be the case for step failures
in general, But if 62(k,6|9t) drops sharply in value for small T, ‘the
detector will have 1ittlé troible in consistently choosing g=9t. By

~

selecting 8 as the O for which [£(k,9) is largest, this is almost assured,
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Consider the expression for C(k,@[@t) in (2.27). If we let
r=k-8 and s=k~6t, we can write

min (r,s}

c(k.elet) = :E:: ct (v Le ()

= Clx,s) (2.29)

for the time-invariant case, with T=s-x, This gives the value of the
autocorrelation in the sjignatures for a fixed T, When T=0 we get back

the original information matrix
clk,8) = clr,r) (2.30)

Thus the non—centrality parameter in (2.26) is a normalized autocorrelation
function for the failure V when viewed as a function of T (i.e., with

8 as the variable since T=8-9t).

'v'c‘(r,s}c—l(r,r)c(r,s)v

6% x,606,)

il

Gz(r,s)

82 (x,x+7) (2.31)

Going back briefly to the failure signatures with equation (2.29)
in mind, we can see how the wrong-time information matrix reveals the
time structure of the different failure modes. Clearly the jump fzilyres
(Figures 2.2 and 2.3} lose correlation rapidly as T, the time shift,
increases. This is more pronounced for the sensor jump, where the tran-—

sients disappear very quickly. Then sz(k,e!et) drops sharply in value,
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for a fixed k, as 0 varies. For the step failures (Figures 2.4 and 2.,5)
this is no longer the case., As T increases C(k,elﬂt) in (2.29) changes
little because of the larger, if not increasing, values of the signatures.
Thus Gz(k, e]et) does not change drastically for small T=G—Bt. Since
82 is a function of the failure, these results are deifl;d depending
on V. For example, the gignature for sensor step failures (Figqure 2,5)
indicates that-the autocorrelation for a fa%lure wn g is highexr than for
one in ¢. For a g failure the situatioﬁ is much like that for the
astate steps while for O it is more like for the state jum;s. We will
discuss this further in the next sections and in Chapter 3.

One other consideration in deciding on the selection of the
detector parameters is the desired guality of the failure estimate G.
In some cases this might not be an issue at all, but if, for example,
the value of G will be used in compensation adjustments following de-
tection, the estimation accuracy gains in importance, In 121 Chow
showed that the error covariance of the estimate G(k), which has mean

value v, is given by

) ~

E([v-v] [v-v1%) = C ‘(k,8) (2,32)

under the assumption that the full GIR detector has selected the true
failure type and time of failure 0. -

In Figures 2.10-2.13 the elements of C-l(k,B) are plotted for
r=k-6, based on the simplified F—Schmodel. One can gee that for the jump

failures, in both the state and the sensors, the best estimation accuracy
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is achieved in less than f£ive time steps. For step fallures however,
Figures 2.12 and 2.13 indicate that waiting up to twenty time steps can
regult in improved estimation. Again, this all agrees with the notion
that those failure modes leading to more persistent effects on the
filter residuals provide more information with time. Since the GLR
detectors are computing the correlationg between these residuals and their
hypothesized values for each failure mode, better estimates result from
having more data availsble. The signal-to-noise ratios are inherently
much higher in some failure modes than in others, Notice, for example,
that for the gensor failures (Figures 2,11 and 2.12) the element Cgé
of the covariance matrix is the largest consistently. This means that
less confidence exists on the estimate of the second component, vz,
of the failure; the angle-of-attack component. In equation {1.52) in
€hapter 1 we can see that the measurement of & has a higher noise con-
tent than that of g.' This, incidentally, is reflected in the Kalman
gain matrix in the filter, where the larger gains are in the first
column (see (1,61)). More weight is given to the information in the g
residual than to that of 0. Going back to the signatures, Figures 2.3
and 2.5, the sensor failures in g lead to the largest values of the
gij for both jumps and steps, On the other hand, Figures 2.2 and 2.4
indicate that o state failures have the largest signatures. Figures
2.10 and 2,12 show C;; to be the smallest values accordingly.

Before leaving this section, some remarks on the invertibility

of the information matrix point out some interesting connections to
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other results. Given the GLR technigue, for a failure to be detectable
it must be able to influence the output of the system. For this reason
all sensor failures are detectable, although the degree of detectability‘
may be small for a particular failure, The noise distgrbances in the
system in fact impose a lower limit on the detectability of some sensoxr
farlures. The question is really one concerning the observability of

the system in the absence of failures, Clearly, failures originating

in an unobservable region of the state space will go undetected by a
detection system that uses the ouvtput measurements, or the residuals

of the Kalman filter (which is eguivalent), as the information input.

In [12] it is shown that the information matrix is invertible
if the system is observable and, in fact, C(k,8) can be interpreted
as an observability matrix. For sensor failure modes C(k,0) is always
invertible while for state failuxe C(r) is invertible if the gystem is
observable in r steps or less. If the system is time-~varying, the re-
lation to observability still holds, although with some modifications
(see Chow [12]). The result on invertibility may be used in the se-
lection of the other window parameter, N. One can choose the value of
N in the window k-M<8<k-N such that C_L(N) exists.

Finally, it must be mentioned that one may study the detectability
of different failure directiong by looking at the behavior of the
eigenvalues and eigenvectors of Ci(k,e). It has already been mentioned
that the elements of Ci(k,e) give the directional sensitivty of the

GLR detector for the ith failure mode. The eigenvalues and eigenvectors
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of this matrix also provide useful information in this area. For a fail-
ure aligned with one of its eigenvectors, the non-centrality parameter

of interest is proportional to the corresponding eigenvalue while the
covariance of the estimate is inversely related to it. For more on this
see Chow [12].

This concludes our comments on the failure signature and infor-
mation matrices. We have tried to understand some of the structure of
the GLR technique in order to develop some intuition into the performance
that one can expect under various failure situations., We will utilize
this intuition again when we discuse the problem of cross-detection in

Chapter 3.

2.3 SIMULATION RESULTS FOR CORRECT DETECTION

At this point we are in the position to-study some simulations
of a GLR system, The results in this secticn conform to the assumptions

kehind the correct detection formmlation under matched conditions.

2.3.1 Detector Implementation

The simulations were carried out on an IBM 370 digital computer,
under the two-dimensional, discrete-time model of the F-8C aircraft.

The noise disturbances were taken from a random number generator with

standard normal distribution [13],.
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Since numerous gsimulations were done, a specially designed
Fortran program, the Multiple Detector Simulation Program (MDSP), was
used for these purposes. MDSP simulates linear, time-invariant, discrete-
time systems with their steady-state Kalman-Bucy filters. Up to four
GLR detectors can be implemented at a time for failure modes 1-4, in
any combination and window sizes. Once the system, filter and detectors
are specified, any of the four kinds of farlures can.be_introduced. fhe
output can be selected to display different guantities of interest.
These include the state, its estimate, the residuals and the output of
the detectors., The detector performance is available in terms of the
ﬂi(k,e)‘s, the detection decisions and the estimates g(k) and G(k).
Different combinations of thig information can be displayed or suppressed
for any run. A description of MDSP and its user options is contained
in [13].

In Figure 2.14 a flowgraph illustrates the implementaéion and
,opération of the detection scheme. Once the system data {in the form
of parameter matrices, nolse statistics and filter gains) are read
in, MDSP proceeds to compute and store the Gi{k,e) Ci(kwe), C;l(k,ﬁi
and V—l for the length of the windows to be implemented, M-N+l, The
simulation then begins with specified initial conditions and thresholds
for the detectors. At the chosen Bt, the fzilure V from the selected
failure mode is introduced into the system. Meanwhile, at every time k

the filter residuals enter the detector algorithms. The matched filters

are updated and the log-likelihood ratios are computed for each 6 in
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the range of thHe moving windoiw,"

d (k,8) = a4, (k-1,0) + G;_(k,ﬁ)v-l(k)’Y(k) (2.33)
6 € 5 = {6|k-M<O<k-N}
£, (k,0) = al(k,0)c (k,0)d, (k,0) (2.34)
L 1 1 1

Detection is declared when

max £ (k,8) > ¢ | {2.35)
pes

for each detector, in which case the MLE's of 0 and V are produced

Bl(k) = arg(max ﬂl(k,e)) (2.38)
8es -
v, (&) = ¢ lik,8(k))d. (k,0 (k) (2.37)
1 1 L

The threshold £ was set to £=5, a relatively low value, in ordex
to study the effect of the noises on detection (i.e., false alarms,
estimation accuracy, delays, etc.). In addition, this alloweé the per-
formance for higher thresholds to be inferred fro& the data gince all

the necessary information (the £'s) was available. The moving window

for 8 was chosen as follows:

Jump Detectors (i=1,3)

M = 10, =0 {2.38)

Step Detectors(i=2,4)

M = 30, N=0 {(2.39)
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The value of N is justified since this is an observable system., The -
parameter M was chosen with the discussion in 2.2.2 taken into congsidera-
tion. That is, for jHEB_failures a longer window in the detectors would
provide no further information. Figures 2.,2-2.3, 2.6-2.7 and 2,10-2,11
indicate that the short-lived effects of these failures are detectable
immediately following their occurrence or not at all, On the other

hand, a look at Figures 2.4-2.5, 2.8-2,9 and 2.12-2.13 shows how the pro-
Ionged presence of the §E§E_failures leads to improved detection., The
detectability and accuracy in the egtimates for these failures benefitg
with the passage of time. The value of M selected represents a com—
promise between these factors and the computational and storage require-—
ments.

The failures were simulated one at a time for the range of magni-
tudes and directions shown in Table 1.l. The motivation and interpretation
of the failure events modeled by these vectors were digcussed in Chapter
1. Consideration of these failures in the different state variables and
sensors enables us to appreciate the way the system dynamics and detectoxr
regponse are related. For each failure simulated in this section two
different realizations of the noise sequences were considered. While
this does not statistically validate the results, it does provide insight

into GLR performance.

2.3.2 False Alarms:Detector Sensitivity

We begin the evaluation of the simulation results by locking

at false alarms, This is an important issue in the design of the GLR
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detectors since detection caﬁnot be reliable if they are overly sensitive
to new data. 'Detection' in the absence of failures is no better than
neglecting to detect one when it is present, A study of the resulting
false alarm rates for a given 1mplementét10n of the GLR detectors is
therefore crucial. Dealing with this problem involves one of the main
tradeoffs in the design of a failure detection system. TIts resolution
lies in the selection of the threshold., A large value of the threshoid
can eliminate most or all false alarms, but at the expense of other
factors in the guality of detection. .

Figure 2.15 shows a plot of

25 (x,0) = mg.x £iuc,e)' (2.40)

p
for the state jump and state step (i=1,3) detectors for a run with no
failure. At a tame k, £*(k,8) is the largest log-likelihood ratio for

all the 8's included in the window., The data corresponding to the state

Jump detector stops at k=20, Two facts are noteworthy here:

. & relatively small change in the threshold can reduce
the number of false alarms very effectively

. the jump detector is more sensitive to the noise on
the average, than the step detector

. The first point is encouraging since most failures of interest
are likely to still be detectable after a small change in the threshold.

Large values of the non-centrality parameter are not uncommon (see the

2 . . s .
¢” plots in section 2,2.2), thus assuring a good probability of detection.
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With respect to the second remark, jump failures can be thought of as
noise spikes or outliers outside their statistical distributions. Con-
sequently, the jump detectors can be "fooled" by a noise sequence with
large spikes. By the same token, step failures involve persistent effects
and thus are less susceptible to short bursts of noise,

In Table 2.1 we compare some results from false alarm (v=0)
simulations with previously computed values of the false alarm pro-

babilities for different thresholds, Recall the definition of PF:

By, = Prob {£(k,8) > slHo}
[+
=] px,8) |H0)d£ (2.41)
€

The numbers offerred for comparisons are ratios of times when £(k,9)
exceaded the threshold to the total number of tame steps, NIS, for

each particular run. NTS equals 20 for the jump detectors and 40 for the
step detectors. By ND we represent the number of times that detection
was declared, i:e., times k for which E;(kqe) > ¢, NDD however, is a
more meaningful measure of false alarm rates than ND. It is the total

nunber of distinct detections: detections declared as different events.

]
Fal

This was determined by the estimate 6 of the "failure" times (different

Fal

O's corresponding to distinct detection). So, for example, three detec-
tion decisions in a row at times k-1, k-1, k declaring a failure as having

Pl

occurred at some 81 is counted as 1 for NDD but as 3 for ND. While ND/NTS



State Sensor State Sensor
Threshold Jump L. - Jump . Step Step

ND/NTS  NDD/NTS ND/NTS NDD/NTS ND/NTS NDD/NTS ND/NTS NDD/NTS
0.575 0.700 0.475 0.7625

0.125 0.100 0.150 0.150
0.175 0.575 0.3375 0.300

0.100 0,075 0.0875 0.125
0.0 0.300 0.2625 0.1125

0.0 0,050 0.025 0.0625
0.0 0.175 0.1625 0.0

0.0 0.025 0.0125 0.0

Table 2.1 PFalse Alarm Rates for Different Thresholds
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says something about the accumulated effect of the noises on the sensi-
tivitf of the detectors, NDD/WTS in a sense sifts out the effect of
particularly large noise values once they result in a detection decision.
Although admittedly pramitive, these counts qualitatively cenfirm
the énticipated relationship to the value of the threshold. One would
need a much larger data set over vhich to -‘obtain a truer image of the
noise handling capabilities of the GLR detectors. As previously sug-
gested, state jump and step detectors show a tendency to be less affected
by the noise than the sensor detectors, The reason is that the system
acts as a low-pass filter on the plant noise. In this sense then the
measurement noise 1s potentially the bigger problem for detection, 2
different kind of failure detection criterion - one which chacks for
persistence in the £(k,8)'s - would show greatly reduced false alarm
rates. One such test might, for example, count ‘only when £(k,0) re-
mains above the threshold or grows in time, This would take advantage

of the patterns in the likelihood ra“ics, as a function of k and 6.

We will talk about this further in section 2.3.4.

2.3,3 PFailure Detection

We have seen the response of the GLR detectors in the absence
of failures. The next gquestion is, how well can the GLR system spot
and track a failure once it has taken place? With good performance
we associate fast detection following a failure and reasonable accuracy

in the eatimates for the time of failure and of the failure itself, The
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identification of the correct failure mode is not an issue here, but it

1s the topic in Chapter 3. Complementing the discussion on the detect-
ability of different failures, we now look at the simulations with failures.
One must keep in mind that the failure size is measured here in propor-
tion to the intensity of the corresponding noise disturbance that affects
the system in the game way that the failure does,

One good place at which to begin an evaluation of the detection
performance of the GLR in the simulations is with the delay times. If
a failure occurs at time Gt, then the delay time, T=k—8t, until the de~
tector declares a condition of failure is a good indication of the sen-
sitivity of the detection system. If the delays are tooc long the detec-
tion gystem may be useless. This presents the other side to the trade-
off in the selection of the threshold, For a given application one must
reach a decision which is a compromise between tolerable falge alarm
rates and delay times in detection. No general rules can be put forth
since the c¢riteria change with the system and the failures that are con-
sidered important.

We have computed the delay times in the detectién of the failures
simulated. Table 2.2 includes the detection delays for all the state
and sensor jump failures simulated for the threshold set to the values
5, 7, 10 and 14, They are grouped by faiiure nmode and by the direction
of the failure vector: pitch rate and angle-of-attack (and their measure-

ments). The columns in Table 2.2 show the delays for all the failures



STATE JUMP: (V,0) SENSOR JUMP: {v,0)
v =5 g="7 £=10 £=14 v =5 e=7 £=10 =14
1o ’ 3,4 3,5 7,9 lo . 0, 0,» 4 0
50 ' 0,0 a,0 0,1 50" 0, 1,» oo, 00
100 . 0,0 0,0 0,0 100" . 0,6 0, 0,
200 ’ 0,0 0,0 0,0 200! . 0,0 0,0 0,0
STATE JUMP: (O vz) SENSOR JUMP: (0,V,)
1o 0,0 0,0 15,0 ®,2 1g? ¢,0 0,0 0,0 7,%
50 0,0 0,0 0,0 0,0 50" 0,0 0,0 0,0 0,0
100 0,0 0,0 0,0 0,0 logo? 0,0 0,0 0,0 0,0
200 0,0 0,0 0,0 0,0 200! 0,0 0,0 0,0 0,0

Table 2,2 Delays in Detection for Different Thresholds:

Jump Failures.,Measured in time steps from‘BT.

(One time step = 1/32 of a second).

.-.'[6_
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for q and o failures must be seen in light of the relative values of the
the failures in g and & also, This, for example, accounts for the
marked difference in the values of 62 for g and ¢ sensor Jjumps
in Figure 2.7. The corresponding signature in Figure 2.3 shows somewhat
larger values for g failures (gil) than for o (giz). The noise intensity
in o, however, is distinctively larger than that in the g sensor, as
Table 1.2 points out,

This is perhaps easier to see by looking at the growth of E{(k,e)
(see (2.40)) after a failure takes place. Figure 2.16 is a logarithmic
plot of ﬂ;(k,e) for state and sensor jumps of 50 and 50', respectively,

in both ¢ and 0. Here we can observe that

. State jumps give rise to higher values in the GLR than
sensor jumps. This is in agreement with the more pro-
longed effect on the residuvuals. The signatures, we have
seen, clearly illustrate this (see Figures 2.2 and 2.3),

. While £%(k,0) grows with time for the state jump failures,
the maximum values for the sensor jumps is reached almost
immediately. Notice the similarity to the growth in &2
showvn in Figures 2.6 and 2.7. .

« The failure:in the g sensor suffers mors severely than
one in ¢ in loss of detectability for an increase in
the threshold. We have just discussed this (see Figure
2. 7.

. £%(k,0) drops in value much more sharply for the sensor

failures once fhe time of failure €_ is no longer a
candidate for B in the window,

The last observation points out again how the kind of correlation pre-
sent in the residuals from time to time, which differs for the various

failure modes, plays an important role in determining the detector
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response. For the sépsor jump failures the signature (Fig. 2.3} shows
a quick transient, well localized in time. This implies that the in-
formation in the residuals for two overlapping time intervals becomes
uncerrelated for very small shifts in region of overlap. This is not
the case for state jumps where the failure i1s integrated into the state
of the system and its effects last longer. These kind of structural
dirfferences in the impact of different failure modes can and should be
exploited in seeking the most reliable detection system.

Figure 2.17 is a similar plot of ﬂ;(k,e) for state and sensor
step failures. WNotice that the data for the state step failures is for
a magnitude of .50 in ¢ and @ while for the sensor stepé it is of 50°
in the measurements of g and ®. The state step failures, in general, have
a much stronger impact on the residuals, and consequéntly on the GLR,
than comparable sensor failures. The reasons are the same. discussed in
connection te the jump failures. The steps in the state are integrated
into ramp-like behavior in the output of the system (see the signatures
in Figures 2.4 and 2.5).

It is worth comparing the curve for ﬂz(k,el corresponding to
a sensor step in o with that for the non-centrality parameter for the
same failure in Figure 2.9. This corroborates our analysis of 62 as
a measure of the dynamic behavior of the log-likelihood ratio and the
performance of the GLR system. One might also note the difference in
the growth rates and actual values of £{(k,8) between jump (£%, ﬂ;) and

step (ﬁg, 32} failures. The sustained presence of step failures results
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in an oxder of magnitudes difference in these values,

Figures 2,16 and 2,17 verify our analysis of the wrong-time non-
centrality parameter in Section 2.2.2, Consider the behavior of ﬂ;(k,e)
when Bt drops from the moving window (k=15 for jumps and k=35 for steps}.
After thls_time, 8 is chosen as the most likely of the remaining ©'s.

In general the next 0 chosen is 8t+1, 9t+2, etc., 5o we are looking at

the £*'s corresponding tO‘Gz(r, ¥r+T), where Eggh_r and T are increasing,
The fact that r is also increasing in addition to T=8-8t accounts for

the continuing increase in ﬂ; for some of the curves in Figure 2,17.

For step failures Gz(k,BIBt) increases with k for all the 6's in the
window (although, for a fixed k, 62 decreases with T). BAs discussed earlier,
the sensor jumps lose correlation in the £'s rapidly for the wrong 9's.

The same is true for state jumps, although it is less pronounced. Finally,
notice how the £'s for an 0 sensor step indicate wrong-time correlations
not unlike the state jumps. This is further evidence of the way in which
the differences among the failure modes seen in the signatures translate
into distinctive, patterns in the likelihood ratios. We will see this

in more detail in the following section,

Finally, Figure 2.17 tells us that we can expect for step failures

. shorter delays in detection in general

. less sensitivity of detection to changes in the
threshold

In Table 2.3 the delays in detection are presented for two sample runs,

for state and sensor step failures. Notice that data is included now for



STATE STEP: (v,0) SENSOR STEP: v,0)

v =5 e=7 e=10 £=14 v e=5  e=7 £=10 £=14
1/100 3,0 4,0 7,5 17,13 1/10c* 0,0 73,0 4,0 o3, 00
1/2g0 2,0 3,4 3,4 ) 3,4 1/20' 0,0 2,0 4,9 ©,26
10 1,1 2,1 2,3 2,3 10" 0,0 2,5 3,5 7,9
50 0,0 0,0 0,0 . 0,1 5¢* 0,1 1,3 1,3 2,4
100 - - - - 100" 1,0 0,1 0,0 0,1
200 - - - - 200" 0,0 0,0 0,0 0,0

STATE STEP: (0 V) SENSOR STEP: (0 V,
i/100 13,0 14,0 14,33 14,33 1/lo0' 0, 3,b 15, 27,0
1/20 5,0 5,0 6,0 6,2 1/20" , 0,0 15,0 27,%
lg 1,0 2,0 2,0 3,2 - 0 0,0 15,0 27,2
50 0,0 0,0 0,0 0,0 50" . 0,0 0,0 0,0
100 - - - - 100! ' 0,0 0,0 0,0
200 - - - - 200" , 0,0 0,0 0,0

Table 2.3 Delays is Detection for Different Thresholds:

Step failures. Measured in time steps from BT.

-G
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failures of magnitudes .50, .10 and .50', .10'. The two points mentioned
above are clearly indicated by the (limited) data for step failures of

1o (or 1¢') and larger, in compariscn to the jump failures, Even for

the case of most small failures here, detection is fast for high thresholds.
Although somewhat sensitive to increases in £, the growing nature of

62 for these failures means that for a larger window detection is assured
after some time. In order to provide some additional insight into these
results, we point out that with a threshold set at €=7 the 1onéest delay
in the simulations for .10 and .10' step failures was 14 time steps (about
.44 seconds). This was the case for a .10 state step in o, which trans-
lates into a ‘magnitude of 4;.3335}:10“4 radians, or approximately 2.4831}:10“2
degrees. The same failure with e£=14 doubles its delay time, still under one

second, and eliminates almost all false alarms, as seen before. Thys we see

that the GLR performance under perfectly matched conditions can be extremely

good. The limitations come in, of course, as we consider some cf the
more realistic congtraints -— i.e., when the type of failure is unknown
or when the system model 1s in error. These issues will be addressed

in Chapters 3 and 4.

~

~
2.3.4 The Failvure Estimates: v and 6

The simulation results seen so far tentatively corroborate our
prior gualitative analysis of the GLR performance. Another component
of the performance of a failure detection system is the estimation of

the failure event. For a technique such as the GLR which takes into

account the dynamic propagation of the failure through the system, the
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estimates of the failure and of its time of occurrence are good indicators
of the quality of the detection. These estimates can provide crucial in-
formation, as we will see, in the event that complications arise in de-
tection. Specifically, they will be useful in providing information that
will allow us to determine the failure type (Chapter 3), or to identify
the presence of significant modeling errors (Chapter 4). For the moment,
let us take a look at the performance of the GLR detectors under matched
conditions and correct detection of failure modes, by way of these esti-
mates.

From (2.37) the estimate of the failure at time k is gaven by

FaY ~ Fal
VK = ¢ (k,6(k))Alk,0 (k) (2.42)

" ~
once 8{k) has beeh selected. Assuming that © is the correct estimate,

e=et,
EWK) = ¢ (k,8) E(d(k,0))
“'"j. ~ ~ ~ N
=C “(k,8) B{a(k,0) + C(k,0)Vv)
;_1 Fal ~ ~ “'l Fal Fal
=C " (k,0) E{d(k,0)) + C T (k,0)1C(k,8)V
=0+ IV

So vV is an unbiagsed estimate of the true failure if 0 is accurate. Notice that

v{k} in (2.42) is the unigue solution of
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C(k,0)v = d(k,8) (2.44)

where V is considered unknown. The GLR detectors actually solve for the

failure which best fits the mean value of the matched filter for the

A
selected time 8,
~

If the estimated failure time is incorrect, S#Bt, then

~

E(V(K)) = C T(k,8) E(d(k,8) + Clk, 8,)V)

c‘l(k,e)c(k,et>v (2.45)

~ ~
The bias in V introduced by the error in 6 can be examined for different

B—Bt in much the same way as the wrong-time non-centrality parameter
§(k, 8[6.).
With these 1deas in mind we now look at what the simulations

~

show about the GLR estimates. First we consider the estimate € of the
time of failure. The general trends in the simulations of the GLR de-

tettors for the four failure modes are discussed, first for the state

jump and state step failures.

State Failures

. Tfor state,jump failures of gize 10 and higher, the
estimate 8 is accurate in general.
~
. for state step failures larger than .50, 6%0_ almost
immediately; for yf,SU,'G undergoes an initidl transi-
ent but scon coverges to Gt(i_l or 2 time steps).

. once 8 is no longer in the range for § in the window,
GLR chooses the point farthest in the past that is in
the window.
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Locking at the growth of 62(k,6) for these failure modes in
Figures 2.6 and 2.8, the initial rate of growth for the step cases is not
very large. So for small failures it 1s possible for the noises to
imcorrectly influence 8 until enough time has passed and larger values
in §° are achieved. TFor the state jumps the situation is different
and there is, in general, good estimation of et (but for larger size
failures}, Figures 2,18 and 2.19 illustrate this. They are three-
dimensional plots of £(k,0) as a function of its two time arguments. For
these the detector windows were set at M=50, N=0: the total length of
the run is 60 time steps and Gt = 5. For each time k, the values in the
(£,6) plane are the £(k,*) for k-50<6<k. Alternatively, for a fixed 6
the projection on the (£,k) plane gives the growth in time of £(.,8),
k=0,1,..., 60, The values along the diagonal k=0 correspond to £ (k,k)
and moving parallel to the 0 axis toward 6=0 shows the output of the
detectors at a time k for the whole window. Figure 2.18 is the output
of the state jump detector for 50 jumps in g and o. The output of the
state step detector is shown in Figure 2,19 for 10 failures in both state
variables also.

Consider first the state jump failures in Figures 2.18. We see
that after the failures take place at k=5 the £(k,8) quickly grow r xreaching
the final values after about 20 time steps (5/8 sec.). Notice how well
the failure time iz isolated, with ﬁ(k,elﬁt) for B#Gt having much smaller

values than ﬂ(kret). As k increases ﬂ*(k,et) recedes from the diagonal
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N >
as the correct estimate 9=6t is maintained. Notice what happens ‘aftex

time k=55. The true failure time Gt is no longer in the window so Bttl,
6t+2, etc. are chosen as the values of 3. The GLR detector chooses the
earliest time in the window as the most likely starting time for the
effects of the failure on the residuals. It is clear in Figure 2.18

that, for the jump failures, after some time the £(k,0) for the remainding
0's in the window will be smaller. Eventually the detector will not see
the failure at all any longer. As the signatures show, the effect of a
Jump failure in the state diminishes with time.

The situation for the state step failures is different in many
ways, as Figqre 2,19 indicates, Here the growth of the log-likelihood
ratios is slower initially,but much larger values are reached and no
steady-state is seen. The distribution of £(k,.) over the window shows
a very Gifferent response. While the wrong-time ﬂ(k,e[et) grow in the
same way as ﬁik,et), for a given interval in @ the drop in the £'s is
not as dramatic as in the state jump detector. Although the same be-
havior is observed for 3 once Bt leaves the window at time k=55 (hidden
by the angle in which the plots are done), the increasing values of
Eik,eiﬁt) with k mean that detection can occur long after, for k>>8ﬁ.
This illustrates the central difference between the two failure modes,
The continued presence of a steplfailure leads to a very different re-

sponse pattern of the £(k,8). BAs a function of k, the composition of

£{k,8) tells us about the detectability of the farlures as time progresses.

]
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As a function of B the same response shows the kind of correlations in
time which characterize the temporal evolution of a failure mode in the
system. That is, the transient nature of the jump leads to highly peaked
L's as a function of O, while the persistence of a step leads to large

£'s over a range of O's,

Sensor Failures

The following summarizes general trends in the simulations

corresponding to sensor jump and step failures:

. much more sensitivity to the noises in the system than for
comparable state failures
*
. much lower values of £ (k,8), implying greater sensitivity
also to changes in the threshold for the detection of
small failures

. for sensor jumps 0 is very erratic once 8_ leaves the moving
window (as one might expect for such a transient failure)

We can discuss these features by referring to Figures 2,20 and
2.21. They show the corresponding plots of £(k,0) for 50' sensor jumps
and 10' sensor steps, respectively. Several things stand out immediately.
First consider Figure 2.20. As a function of k, £(.,8) reaches its
maximum value almost instantly. This is just as suggested by the non-
centrality parameters in Figure 2.7, The magnitudes of these likelipood
ratios are relatively low and keep the proportions seen for the 52,
with higher values for the 50" sensor jump in o. Notice that these plots

*
are scaled to the maximum value of £ (k,8) (this must be kept in mind
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Fig., 2.21(a) TIakelihood Ratios: 10' ¢ Sensor Step
Failurxe; Sensor Step Detector
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since, for example, the values of £(k,0) for the jump in g are of the
order of the noise lewvel in E(k,e) which are therefore scaled up in the
plot). With respect to 6, £(k,8) behaves similarly to the jump in the
state case, although the change in value for B8's neighboring Bt is more
pronounced. The ratio ﬂ(k,et)/ﬂ(k,ﬁlet) can be large even for G-Gt small.
This reflects ﬁﬁe very short duration of the failure effects on the re-
siduals, as is clear in its signature. Once Gt leaves the window 3 1S
randomly directed by the noise,

In Figure 2.21 we have the detector output for 10' sensor Ffailures
in g and @. Again we find that the values of L(k;0) are much smaller
than those for state step failures, Furthermore, the £(k,0) look very
different for a g sensor step and one in ¢. All this was indicated by
the non-centrality parameters and the signatures in section 2,2.2. Fin-
ally, the response to a sensor step in o is gualitatively similar to that
for the state jump in g (see Figure 2.18) as was argued earlier in the
Chapter. This similarity is even more striking if we consider larger
sensor failures where the noise effects are small in comparison. Figure
2,22 makes this more evident. It gives the response to sensor step

failures of magnitude 100' in both g and &. Except for the values reached

by £(k,0), notice the resemblance of the £'s for a sensor §teplin g to
M T
1 b

MELLE TN
those for state steps in Figure 2.19 and between the {'s £ a sensor
step in O and those for state jumps in Figure 2,18.
This last fact already anticipates a source of possible trouble.

If we do not assume, as we have done in this chapter, that the failure
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mode is known, then these plots suggest that other failure modes might
trigger similar responses in the detectors. It must be pointed out,
however, that the shapes of correct detector £'s being the same does not
necessarily mean that there wall be cross—-dection problems. These im-
portant issues are the topic of Chapter 3.
We now come to the estimates of the actual failures, G‘ We have
~ "

seen that if 0 is a correct estimate, V has as mean value Vv,

Let us consider first the state jump and step failures.

State Failures

The estimation performance of the GLR detectors cbserved in the

simulations, for all the state failures tried, show:

, for junps, the best estimates are obtained in less than
5 time steps (~ 1/6 sec.}. When Bt leaves the window
Vv degrades soon after,

. for step failures of magnitude .50 or less, the estimates
are not very accurate and lose quality with time. For
larger failures there is iImprovement in Vv, with the best
estimate occurring after a wait of about 15 time steps
(™ 1/2 sec.).

It is not surprising that for state jump failures the estimate
~
v does not improve much after its initial values. The covariance of the

estimate error, C—l, remains near constant in time (Figure 2,10). The
initial estimates are as accurate as any others which may follow. When

~
Gt is outside the window -- so that B#Bt necessarily -- the estimate

vik) = cta,e), 648, (2.46)
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degrades rapidly. The reason is that d(k,et) and d(k,g) in (2.46) cor-
relate poorly except for very small Ia‘etl' This is not the case for state
step failures. As the 3-D plots just seen indicate, for state steps the
d(k,8) for B8's after Gt are highly correlated with d(k,Bt). This is
evidenced by the relatively close values of Z(k,et) and £, 8|9t), as
long as |9—Bt],remains.moderate. Furthermore, Figure 2.12 shows how much
the error covariance for 3 18 reduced by a wait of about 15 time steps.
Afterthat there is little improvement. These results are thus consistent
with our prior analysis.

Figures 2.23 and 2,24 ‘illustrate these ideas. The first one
1s a plot of the estimates produced by the jump and step detectors for
10 junp and step state failures in g. The jump detector has window
parameters ‘M=10, N=0 while the step detector has a window M=30, N=0,
Notice that for the jump detector the estimate G after k=15, the last
time that Bt is in the window, quickly moves in the wrong directions. 1In
addition, there is little change in G'while Bt remains ‘in the window.
The state step estimate, however, does tend to converge slowly toward
the actual failure. Convergence is faster initially, coinciding with
the chandging C_l(k,e) in Figure 2,12, For very largé jump and step
failures, the G's are much better in that we have the same standard de-

viation for the estimate errors, but these are smaller in relation t6

the larger sizes of the actual failures.

Sensor Failures

For the sensor jump and step failures, the simulations allow for
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the following observations:

~
. the difference in the quality of V between small and large
failures is more significant than for the state failures

. sensor jumps of up to 50' in size have estimates which are
very sensitive to the noises

« for step sensor failures of 50' or larger in magnitude,
the accuracy achieved can be very good. One can achieve
improvement in the estimates by waiting: the best esti-
mates are obtained after more than 10 time steps (> 1/3
sec).

~

- rapid degradation in V gccurs when 8_ drops out of the
window in the jump detector. For theé step detector
the degradation is gradual.

At this point it should not be unexpected that for small failures
in the sensors the estimates are very sensitive to the noise disturbances.
The information matrices do not reach as large values as their counter-

parts for state failures. Therefore in

alk,0 = d(k,8) + Clk,6,)v

k-M<B<k-N . (2.47)
~ ~
the first term, d(k,0), can greatly affect the estimate v in (2.42) for
~
the failures which are not very large, Since V is computed to solve
equation {2.44), the effect of that term is negligible by comparison
for large v, Another factor involved in this question has to do with
the dynami:c- nature of théﬂsystem response to the failure. Clearly, for

a sensor step for which C(k,ﬂt)v ig increasing, one can expect improved

estimates after some time. The error covariance for the estimate in
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this case, shown in Figure 2,13, indicates the improved confidence in
~
the estimate after a waiting period, In Figure 2.25 a plot of V is gaven

for 50' jump and step failures in the g sensor. Notice how the estimate

for the step finally converges near V after,a very erratic beginning,

2.4 SUMMARY OF CORRECT DETECTION

The GLR technique for failure detection has heen examined in
detail in this Chapter. Under the assumpéion of perfect knowledge of
the model parameters and of the failure mode, the performance of the
GLR detectors is quite good. We have seen that the detectors are very
sensitive and, therefore, that detection is guaranteed for all meaningful
failures (a sensor jump, for example, of less than 30" does not make
much sense).

While this kind of sensitivity might suggest difficulties arising
from the noise disturbances in the system, we have seen that this is not
the case, The reason f£or this i1s the very concept of hypothesis testing
inherent in the GLR -- i.e, the GLR detectors take full advantage of the
structured and dynamic effect of the failures by correlating the observed
residuals with the fallure signatures.

The differences observed in the performance of the GLR detectors
for the four failure modes studied here have been linked to the charact-
eristics of the failure signatures for those modes. A detailed analysis
of the signatures G(k,0) and of the information matrix C(k,0) associated

with them has shown that a stddy of the average hehavior of the likelihood
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N la )
ratios and failure estimates O and v is feasible and reasonably accurate

in predicting the performance of the detectors. The simulations presented
corroborate the previous analysis based on knowledge of the signatures.

One of the key quantities in our analysis igs the non~centrality
parameter 62, which gives the failure-induced component of the expected
value of the likelihood ratios. This 62 captures all the information
concerning the failure and its dynamic effect on the filter residuals.
Its study for different failures in the four modes of interest allows
us both to predict the detection performance for a given detector con-
figuration and to systematically select those detector parameters to
achieve optimum performance.

By means .of Sg(k,e) we can look at the patterns in the behaviox
of the likelihood ratios, for different failure modes, as a function of
k and 8, We saw how, ultimately, all these features can be relatéd back
to the signatures of each fallure mode. For example, we saw that for
jump failures, especially sensor jumps, 62 grows toward a steady-state
value (as does the probability of detection) for the correct 6, while
falling sharply in value for the wrong time 0 in the detector
window. Figures 2.18 and 2.20 in section 2.3.4 illustrate this vividly,
This reflects the transient nature of the filter response to these
failures (Figures 2.2 and 2.3),.

In the case of most step failures 62 increases indefinitely with

k after the failure takes place, Furthermore, the wrong-time 62 also
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attain large values with time, especially near Bt. The exception is a
sensor step failure in ¢ which looks like a state jump (Figures 2.2 and
2.5): a fact which is clearly indicated by .comparing Figures 2.1% and 2.22
with Figure 2.18. In contrast to the jump cases, the rest of the signa-
tures for these step failures grow with the elapsed time thus providing
more information in the residuals as time passes. Since the residuals
over any time interval (after et) show increasiqg values, especlally
neaxr Gt, the GLR detectors for these modes in general have more of a
problém with wrong-time estimates 6, although detection for gggg_e'is
far easier than in the jump case, This is also shown by Figures 2,19
and 2.21{a), 2.22(a).

All these ogservations about the failure modes and the likelihood
ratios point out the roleﬁplayed by the selection of the threshold. As._
mentioned earlier, false alarms can be effectively removed by a raised
threshold, fThis, in turn, implies longer delays in the detection of
failires since the likelihood ratios must reach the new value. The
analysis and simulations show, however, that Zor most failures of interest
the delay is minimal. In general, failures of all four modes are guickly
detectable if their magnitudes are of the order of the noise intensity
or greater. The most troublesome failures are sensor jumps, which are
nevertheless easily detectable for larger failures (e.g., sensor jumps
of magnitude 50' or greater).

While the probabilities used as performance measures, PD and PF’

are valuable indicators of the detection quality of a specifiec GLR scheme,
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they are by no means the only important ones or the defanitive ones. Other
probabilities can be defined on events which relate to the evolution of

the likelihood ratios over intervals of time, rather than for given wvalues
of k and 6, In this sense PD and PF are static measures which must be

computed for a sequence of times. One can, for example, define the time-

to-detection probability
Py (T,€,0,6,,v) & Prob(2(k,8)> € for some k < [0 ,V) (2.48)

of the event that detection takes place for a given § in T time steps or
less. This guantity is clearly of importance in determining detection delay
as a function of the threshold. The only drawback to this kind of analy-
sis is that correlations between likelihood ratiocs are involved and for
full GLR (and CGLR) it becomes dAifficult. The reason is the chi-sguared
nature of these random variables, Thus, a shift in focus to the simpli-
fied GLR (SGLR) might be rewarding in trying to obtain this kind of infor-
mation, For the SGLR, recall, the likelihood ratios become Gaussian
raﬁdom variables. The evaluation of interval-related quantities such as
(2,48) is still involved in this cagse but is somewhat more tractable.
Further work in this area is needed. It is felt that such SGLR analysis
w1ll also shed licht on full GLR and CGLR performance, since the de-
tectors have performance characteristics that are similar to SGLR (e.q.,
vrong-time and detectability conditions are the same for all three}.

The tools with which we have examined the performance of the

GLR detectors have been adeguate, nevertheless, for the task of uncovering
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the basic mechanisms at work. On the one hand we have seen the inter-
actron between failures of different modes and the résponses they induce
in the Kalman filter residuals, On the other, this interplay between
failure modes and residuals has been related to the relative detectability
of these modes via the GLR technique. These tools allow, at this stage,
for a systematic consideration of the different tradeoffs which must be
taken into account in implementing a reliable detection system. Once the
threshold has been chosen (a compromise in delays and false alarms), the
length of the windows can be arrived at (for example, by computing the
waiting times necessary for a specified probability of detection: e.g.,
PD = .95 or P, = -99).

In the next chapter we relax one of the assumptions held up to
now. We consider the problem of isoclating correctly the mode ;f a failure,
if and when detection has taken place, This will provide an opportunity

to determine some of the limitations of the GLR technigue in a more

realistic environment.



CHAPTER 3

IDENTIFIABILITY OF FATLURES WITH THE GLR

3.1 MATCHED CONDITIONS AND THE CROSS-DETECTION PROBLEM

This chapter considers an important gquestion concerning failure
detection which has not been directly addressed yet: the distinguish-
ability of the various failure modes. The discussion of the performance
of the GLR technique in Chapter 2 was restricted to the situation where
the failure mode 1s known. Consequently, the emphasis was on the capa-
bility of a GLR detector to correctly identify when a failure in a speci-
fic mode occurs and to estimate it. We will now consider the case where
the mode of the failure is not known in advance. Given the decisions
and output of a set of GLR detectors corresponding to different failure
modes, the problem is to isolate the correct decision with the highest
possible degree of certainty. The assumption is made that if a failure
does take place, its mode is that of one of the detectors.

This problem may be viewed in a different way. Suppoéé éhat a
GLR detector has been implemented based on the hypothesis of a particular
failure mode. While in operation, detection is declared for a number
of consecutive times over an interval. Complementing these decisions
are sequences of estimates of a failure and its time of occurrence,

G(k) and a(k). We can assume that the threshold has been chosen to
eliminate the possibility of false alarms. The question is the following:
with what degree of confidence can we accept these decisions, i.e., how

certain can we be that in fact a failure of that type has occured? The

-122-



-123-

-problem is- an important one, especially 1f compensating action 1is to fol-
low such a decision. Clearly, compensation for the wrong type of failure
will, at best, not correct the source of failure.

For example, in Chapter 2 it was pointed out that failures which
can be modeled by a sensor step in ¢ alter the residuals 1n a way not
unlike a state jump failure in g. If, in response to: detection déclared
by the sengor step detector, a new sensor is activated when the actual
failure originates in the actuator affecting the paitch rate, nothing is
achieved., The question involves locking at some of the fundamental
limitations of the GLR method.

In many situations additional information may be available which
may resolve the ambiguity about the failure mode. One may, for example,
have sufficient reason to believe that the & sensor in the above hypo-
thetical situation is functioning properly (e.g.,we may have two 0 sensors
that agree). For the rest of this chapter the assumption is made that
no such extra information is available, and thus we are considering
what is decidedly a worst-case situation.

Given the way the GLR technigue works, one can expect that any
non-random development in the innovations sequence 7 (k) will result in
increased values of £i(k,6) for the different i, Depending on the selec-
tion of parameters in the detectors, this may be followed by detection

and estimation of the possible failures. In Chapter 1 the decision rule

max = £, (k,8.(k})) > & (3.1)
i + 1
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was given, for a set of GLR detectors based on different failure mode
hypotheses., This decision rule is very straightforward and appealing
in its simplicity. Simulations for different failure conditions in-
dicate, however, that it does not always choose the correct failure
mode. In a number of cases the ﬂ;(k,@) for two different detectors

are close enough in value that the random influences from the noise be-
come decisive. Although the correct failure wode may be selected, that
decision carries a degree of uncertainty which might not be tolerable
for many applications.

The source of this cross-detection problem lies in the fact

that failures of different modes may have signatures which are close,
in some sense, to one another. BAn exXample has already been given, A
decision rule such as (3.1) will work adeguately in separating most
jump failures from step failures, A step detector-will, in general,
indicate less correlation (i.e., lower values of ﬂi(k,e)) with a jump
failure than a jump detector would. Conversely, a step-like failure
will correlate much better with both step detectors than with any jump
failure signature. But one step failure of a particular mode may cor-
relate almost as well with signatures for either state or sensor step
failures. Thus, a real distinguishability problem exists between these
modes.

We saw in Chapter 2 how the patterns in the log-likelihood
ratios Ei(k,e) with respect to both arguments reflect the characteristics

of the failure responses (the signatures) of the system to the various
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modes. The analysis of the performance of the GLR system via the esti-
mates and Gz(k,ﬁ) for the correct and wrong times shows how those char—
acteristics relate to the detectability of the failures. In section 3.2
we observe how these quantitites change when the detector does not cor—
respond to the correct failure mode. Then in section 3.3 some results
from the simulations of the aircraft model are presented. A thorough
study of the cross—detection problem is beyond the scope of this work,
but we are able to shed light on this crucial issue and on some of the
fundamental limitations of GLR. In section 3.4 is a brief discussion
evaluating what other GLR formulations, the Constrained GLR {CGLR) in
particular, may offer as a way out of this difficulty, Finally., section
3.5 sums up our treatment of the identifiakility factor in the GLR and

suggests the need for better decision rules.

3.2 SOME ANALYSIS OF THE CROSS-DETECTION PROBLEM

We begin our brief analysis of the 1dentifiability of the dif-
ferent failure modes by considering the response of the incorrect de-

tector to a failure. Consider a GLR detector based on the hypothesis

Hl : Yik} = vk} + Gi(k,et)v ' (3.2)

for a failure of type i starting at k=6t. Suppose that the actual failure
which occurs 1s of a different mode, j. Then the actual innovations

in the filter will be

Y(k) = y(k) + Gj(k,et)v (3.3)
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In order to understand what takes place in this situation, let us follow
these residuals into the detectors and observe how their outputs are

affected,

First, we look at the matched filters for the times in the win-
dow. The subscript 1/j will denote quantitites in the iEE-detector when

the residuals contain information from a failure of type j. So we have:

k

. , -1
dillj(k,ﬁlet) = E 6] (m, B}V " (m)Y m)

=0

k

=§:‘ -1 =~
/ Gi{m,G)V (m) [y (m) + Gj(m,et)v]
=0

I

a4, (k,8) + Cilj‘k'elet)" (3.4)

for each ¢ in the window, k-M<g<k-N. This has the same form as in

the correct detector situation (see (2.6)) but now
k
-1
= t
Cilj(k,Blet) E , G! (m,0)v (m)e, (x,6,) (3.5)

m:max(e,et)

is the wrong-time, cross—detection infoxrmation matrix. The mean value

of each di : for all the 8's in the window at a given time k is shaped

by the values of this matrix with @ varying. For any ©

E(dilj(krelet)) = cih(k,ewt)v (3.6)
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and the log-liikelihood ratios become

-1
ﬂilj(k,e|et) =4 lj(k,elet)ci (k,e)dilj(k,e[et) (3.7)

]
1
where C;l(k,e) is the same as in (3.5) with 9=9t and i=3. We will use

this notation for simplicity

ck.0 2 cw,6(0) (3.8)
sﬁmméaﬂmem) (3.9)
when 6=6t.

The wrong-time, cross-detection non-centrality parameter for
the 1likelihood ratios (3.7) in the detector window, using (3.6), is

then

2 (=1
Gi[j‘k’ 8lo,) = E(dilj(k,e]et)> c, (k,ﬁ)E(dilj(k,e|et))

= Tt -1
=v Cilj(k,9|8t)ci (k,e)ci!j(k,8|6t}v (3.10)

which for i=j reduces to the wrong-time (correct detector) 62 in (2.26)
and if 8=8t it equals 82 in {(2.13). The evolution of this term under
different conditions gives us the sensitivity of the detectors to
failures in other modes. As in the correct detectron situstion, such
performance indices as delay times, false alarms and correct time
detection are related to the behavior of Gilj.
In a similar fashion, the estimate G of the failure under these

conditions is given by
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~

-1 ~
Ci (k,eilj)dlij (k,eilj)

-

\)il

(k)
3

el

_1 ~ had ~
c, (k,eilj)Idi(k,Gilj) + Cilj‘k'eilj]et)“] (3.11)

with the expected value

~ —l ~ ~
E‘“i|j(k” =c, (k'ei]j’cl|j‘k'ei]jlet’“ (3.12)

~

where ei’. is the estimate of the failure time obtained in the maximiza-

tion of the likelihood ratics over @ by the iEE-detector:

0,

llj ges *

(k) = argmax £, .(k,8[0.) , s={0]}k-m<B<x-N} (3.13)
|5 t —

All these guantities differ from their counterparts for the cor-
rect detectors only in the role which the cross-detection information
matrix plays. This guantity captures the relevant informat:ion concerning
the correlation which exists between the modes of the detector.and fail-
ures. The nature of the response of a GLR detector to the "wrong" type
of failure is largely determined by the characteristics offcilj(k,e,et)
as a function of its arguments. Its behavior as 6 and Gt vary can tell
us the way the estimate ailj will react, if detection takes pldce.

We saw in Chapter 2 how the behavior of 62, with 6 changing, reflects
intrinsic properties of the mode of a failure. As a function of k,
Ci]j (and therefore Gilj) indicates the sensitivity of the iEE-detector
to the failure as time progresses.

It is expected that if full advantage is taken of these charac-

teristics of the cross-detection responses, modified decision rules may
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be constructed which lessen the difficulties with distinguishability for
the detectors. As Chapter 2 showed, detection may be very good assuming
that the correct failure mode can be established (still with perfect
knowledge of the parameters of the model).

The problem is illustrated in Figure 3.1, It presents the

2 2 -+ . . .
62|2(k, 8|6t) and 64[2(k, e]et) profiles across a detector window
k~40<0<k, for fixed k. A .10 g state step failure is assumed to have

2

occurred at 6t=k—30. Notice that &

2
4|2

Also note that for G#Bt the wrong-time, cross-detection.62 can actuwally

2,2, for the state step detector,

has a clear peak at 8=9t while & does not in the sensor step detector.
be greater than the wrong-time correct detector 52. "The physical in-
terpretation of the situation is that a particular failure mode may not
look much like another one occurring at the same time, but it may be
highly correlated with the other mode started at a different time ...",
[12]. As k varies, the 82 profiles over the window will vary for both
detectors. It is this kind of information about the patterns in the ‘
£'s for different detectors which can be used in modifying the GLR

system to alleviate.cross-detection problems, Some other examples are

given in section 3.3.

T2 2
2I2and 64|2
2) and sensor step (type 4) detectors for a state step failure, as

.given by the notation introduced in relation to equation (3.4)

are the non-centrality parameters of the state step (type



TRUE FAILURE IS A g STATE STEP AT 8= k=30

k ) k=10 k=20 k=30 k=40

4
¥Fig, 3.1 Wrong Time Cross Detection Noncentrality Parameter

-

-0€£T—



-131~

. . . 2,
Following the geometric interpretation of 6  in (2.24),

ViCilj(k,elet)Vz can be thought of as an inner product between the signa-

ture of a type 1 failure at time O and a type j failure at Bt.

viclh(k,ewt)vz = <G (+/8)v), G, 'et)"fv—l(_) (3.14)

Thus, two farlure modes having a large value in (3,14) (e.g., i=2 and
j=4, state and sensor steps) are likely to have distinguishability
difficulties. When‘viciljvz is small (for example, i=2, j;B, state step
and sensor jump), we expect little or no problem with cross-detection.

Performance probabilities can be defined in much the same way

ag in the case of correct detection. These now involve the distribution

'

values of £ilj(k' GIBt) around its expected value: ailj' plus the di-

mension of the failure space. The cross-detection probability PCD is

the probability that £i|j exceeds the threshold for some failure of

type j. P.. 1s a special case —- vhere 6=6t —- of the wrong-time,

cD
cross—detection prcobability PCW' Both of these are defined as follows.
P k13,0, = Prob(ﬂilj(k,e) > 8|Hj,6,\J} (3.15)
Py (kried 8,8,,) = Prob(ﬂilj(k,e) > E|Hj,6t,\)) (3.16)

These probabilities are increasing functions of 6§|jas given in (3.10). IE£

Péﬁ 1s small (e.g.«PéD f_PF) the modes are easily distinguished., If

PCD z_PD, the two modes in qﬁestion are highly correlated. Since the

full GLR selects the most likely failure without restrictions, it may

have difficulties with cross-detection. When the failure estimate 1s
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constrained to a specific set of directions (CGLR) or magnitudes (SGLR},

these prcobabilities will be restricted accordingly and the cross-detection
problem may be greatly reduced. Thus, incorporating into the GLR formula-
tion reasonable expectations about realistic, possible failures (directions
and/or magnitudes) can result in improved overall performance in isolating

failures. We will expand on this in section 3.4,

3.3 CROSS-DETECTION SIMULATIONS

3.3.1 The Likelihood Ratios

In order to gain some concrete understanding of the difficulties
of the GLR with failure mode distinguishability, we have made a number
of cross-detection simulation runs. In addition to the correct GLR
detector, other detectors based on different modes were implemented
simultaneously. As the failures in different modes were simulated, the
output and decisions of all detectors were recorded. .Pértiéular‘emphasis
was placed on the distinguishability between state and sensor step failures.
These are failure modes whose signatures are, in most cases, highly
correlated (and which are modes that model failures of great practical
interest).

If the correlation between the signatures of two failure modes
is not ‘too pronounced, simple decision rules, wuch -as (3.1}, which com-
pare the £'s of the detectors can effectively isplate the correct fail-
ure mode. When the cross-detection difficulties are more severe, how-

ever, more sophisticated decision rules must be used. These must utilize
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the information about the patterns in the £'s of each detector. The
availability of the values of the £'s for all the 6's in the window sug-
gests that window decision rules should be used. & detection decision
would then be made conditional on £(k,8) having a certain shape across
the window (k-M<8<k-N) for any k. For example, a window decision can
declare a failure at time k if K of the L's in the window exceed the
threshold at that time. Then 8 can be chose; as that value of € in the
window with the largestJﬁ. Other rules can be similarly designed.

Another reason for looking at window decision rules is to take
full advantage of the structured behavior of the £'s as a function of
0. It is clear from éhapter two that £(k;8) ——xfor fixed k and varying
9 —— displays the differences between the signatures of the different
modes. .

Decision rules that look at £(k,8) as a function of k are also
possible., These rules can check for the growth in time of the likelihood
ratios, which differs for the various failure modes, They can be de-—
signed to search for continued increase in the L's -~ ag for most
step failures -- or, for steady states -~ as for jump failures (or o
sensor steps). The price, however, is that a certalin waliting time is
necessary before a decigion can be made, since the £'s must be monitored
over some specified interxrval of time, Also important is the & ( or 6's)
xn the windows for which this test applies. We have seen (in Chapter 2)

how different the growth in £ can be, for some types of failures, for
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two O's wide apart in the window.

Let us look at the cross-detection problem between state step
and sensor step failures. The generally persistent effects of these
modes (Figures 2.4 and 2.5) on the residuals leads to indistinguishability
difficulties. It is possible for both kinds of failures to elicit a
similar response in the detectors for either mode. Figure 3.2, (a) and

(b), are plots of £ {k,0) for simulation runs of 1log! sensor step

2[4
fajilures in g and o (9t=5). Compare these with the response of this
gsame state step detector to state step failures in g and ¢t shown in Fig-
ure 2.19, (a) and (b). ©Notice the similarity in the patterns of the
likelihood ratios in Figures 2.19 (a) and 3.2 (a), andxtpeir differences
in Figures 2.19 (b) and 3.2 (b}.

A decigion rule for the state step detector which declares a
failure only if the £'s across the window at time k have the shape of
the correct detector response (Figure 2.19, (a) and (b)), would work
as follows if excited by a sensor step. If a sensor step in o (Fig-
ure 3.2 (b)) occurs, it would not satisfy the test and the state step
detector would not declare a failure. The failure mode is easily dis-
tinguished in this case. However, if the failure is a g sensor step.
Figure 3.2 (a) indicates that it would be accepted by the state step
detector and detection declared. Here the indistinguishability is more
severe. Yet, the response of the correct detector (sensor step) to this

same failure -- shown in Figure 2,22 (a) -~ shows larger values for 2
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than the incorrect detector does. Hence,a comparison of the £'s for
the two detectors can resolve the problem,

Unfortunately, it is not always as simple as indicated. Figure
3.3, (a) and (b}, are plots of ﬂ2|4 (k,8)+ when the failures are 10°
sensor steps in g and O (Bt=5). The situation remains the same for the
o failure: the wrong failure does not meet the reguirement of the con-
cave shape of the £'s across the window. But things are different for
the ¢q sensor step failure. Figure 2,21 (a) has the xesponse to this
failure of the (correct) sensor step detector. A simple comparison
of the £'s in both detectors will not necessarily select the correct
failure mode, The reason is that the difference between the non-
centrality parameters of the correct and incorrect detectors, for a
given failure, is proporticrial to the square of V (see eguatiohs (3.10)
and (2.26)). Thus, this difference is larger in the case of the 100'
sensor step failure.

All this suggests is that information about the structure of
the likelihood ratios cannot be used to resolve cross detection problems
for all cases (perhaps their behavior with increasing k is also necessary).
We have seen that there are different degrees of indistinguishability.
In particular, separating state steps from ¢ sensor steps reguires even

more than testing the shape of the £'s across the window, Other infor-

TThat is, the £ of the state step detector in response to a sensor step
failure.
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mation must be used,

For example, compare the values:of the £'s achieved in Figures
3.2 and 2.19, A state step fairlure with magnitude of the order of the
noise in the dynamics actually fesults in much larger values than a sen-—
sor failure ten times the measurement noise,

Thus, using a priori information as to what are physically mean-
ingful failure sizes, we may set the threshold for the state step de-
tector at a very high level —- allowing for detection of reasonable size
state step failures, but avoiding cross—detection of all except very
large g-sensor step Failures, The point here is that additional in-
formation is available which can be used to distinguish‘modes. In the
next section we lock at another fact which helps alleviate the cross-
detection difficulties,

This discussion can be illustrated with the aid of Table 3.1.

It summarizes the shapes of the likelihood ratioc profiles over~;he window
of the state and sensor step detectors (i.e., £(k,08) versus 6 for fixed
k), for the correct and cross-detection combinations. We have char-
acterized these, for simplicity, as either concave (as in Figure 3.2 (a))
or convex (as in Figure 3,2 (b)). The shape of the £'s in the correct
detectoxr/failure combinations are underlined (entries #1, é; 7 and 8).

2 decision rule which tests the £'s for consistency with the correct
patterns would easily distinguish a failure with a different shape

(e.g.{ between entries #2 and 4 or between # 6 and 8). The real dig-

tinguishability problem is then reduced to that between a g sensor step
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and a g state step (entries # 1 and 3 or 5 and 7).

FAILURE STATE STEP DETECTOR SENSOR STEP DETECTOR
state step 1
: congave concave
in g
state step kD *% 6
. concave, concave
in O ————
sensor step 3
. concave concave
in g _——
sensor step ¥* 4 *&
: convex convex
in o =

TABLE 3.1 ILikelihood Ratio Profiles Over Window

The situation-for sensor step detectors is illustrated in Figure

3.4 (a) and (b). They are plots of £ (k,8|6t=5) when the failures are

al2
q, (a), and 0, (b), state steps. These correspond to entries no. 5 and 6
in Table 3.1, The response of this dete;tor to sensor step failures can
be seen in Pigure 2,22 (corresponding to entries no. 7 and 8 in Table
3.1). A similar decision rule would have no difficulty distinguishing
a sensor step in 0 from the other failures, Again, it is a sensor
step tn g which gives rise to indistinguishability.

We conclude that the indistinguishability between failure modes
can be reduced in many cases by exploiting the distinctive patterns in
the likelihood ratios. Thus the cross-detection problem is narrowed

down to the more fundamental causes of difficulty. Other information

in the GLR still remains unexamined which can further contribute to
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alleviating these limitations. In the next section we look at the fail-

ure estimates.

3.3.2 The Failure Estaimates

In addition to the likelihood ratios, the estimates of the fail-
ure have something important to say about cross-detection. We have
seen that on the basis of the %'s -- using all the available information
in the detectors -- the distinguishability between different failure
modes can be enhanced. Since the estimates of the failure (in the event
of detection) are readily accessible, they offer a convenient source
of information. The quality and behavior of G(k) was seen in Chapter
2 to reflect some of the characteristics of the signatures of the dif-
ferent modes. In the case of an incorrect detector one mrght alsoc expect
to see the gstimates provide information indicative of the mode of a
faijure.
- In the simulations of the correct and incorrect detectors, the
failure estimates were recorded whenever detection took place. Figures
3.5 and 3.6 show the behavior of the failure estimates fo; the state
and sensor step detectors when 10 state step failures were simulated

~

in g and 0. The correct estimate Vv (k) slowly coverges to the vicinity

2|2

of the true failure in the phase plane. The incoxrrect estimate

v412 (k) , however, behaves cuite differently. Firxst of all, it con-

verges to a point whach indicates contributions to the failure from

from g and o whale Gt remains in the window. A decision rule which
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only accepts failures that are physically meaningful —— e.q.,

Fal

fajilures only in g or in O —— by monitoring the convergence of Vv, can
be a substantial aid in identifving the correct failure mocde. Notice

that what such a rule amounts to 1s CGLR.

~

Also of interest is the reaction of Vv when Gt is no longexr in
the window. In these simulations (M=50, N=0, 8t=5) this occurs at k=55.

Notice that while v

V4|2

is reached. Also, the correct estimates tend to vary less before the

2|2(k) changes slowly after Gt is out of the window,

{k} goes through a sharp reversal in direction as soon ag that tiwe

end of the window is reached. This information about the incorrect esti-
mate can be used if one is willing to wait the time necessary for Bt to
leave the window (M-N+1 time steps) before making a decision based on a

}
particular £(k,0) for a fixed 0 and varying k.

The kind of behavior shown here by the correct and incorrect
failure' estimates. shows clearly that this information can further con-~
tribute towards identifying the true failure mode. Together with modi-
fications which maké use of the patterns in the £'s, the cross-deétection

problem can be systematically studied, ameliorated, ahd possibly,

eliminated.

3.4 DISTINGUISHABILITY WITH CGLR

The observation made in the last section, cohcerning the behaviox
of the incorrect failure estimate, merits a closer look. In Figures

3.5 and 3.6 it was seen how for the Ffull GLR the incorrect estimates
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oA

vi 5 differ from the correct detector estimates (for a sensor gtep de-
tector and state step failure). The failures simulated were orthogonal:
failure in either g or o. Yet, the incorrect estimates approached --
while Gt remained in the window --— an estimate indicating substantial
components in both g and ¢. The full GLR detector chooses the estimate
G which is most likely to have resulted in the maximum (over the window)
likelihood ratio, assuming the particular failure mode hypothesized by
the detector in fact occocurred. It 1s free to chocse 3 as any point in
the failure space of appropriate dimension. This raises the following
question: how much better would the constrained GLR (CGLR) or the
simplified GLR (SGLR) perform with respect to distinguishability problems?
The assumption that these formulations will, in fact, do at least as
well as the full GLR 1s discussed below. The comments in thas section
refer to the CGLR and it is expected that many of them carry over to
SGLR as well.

The CGLR {and SGLR) formulation was discussed briefly in Chapter
l. We saw that 1t consists of computing, for each failure mode, the
likelihood ratios and failure estimates along specific directions:
Gzéfm, where fm igs one out of a set of possible failure directions and

Fal

B 15 an estimate of the magnitude of the failure along £ {i.e., a

scaling factor). We note that when a failure occurs in the assumed
. . 2 - .
direction, fm' the §° in the CGLR corresponding to that direction should

be the same as for the full GLR (In CGLR a Sz(m) 18 associated with
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avery direction.fm). This is true assuming that the correct mode is
known. When V=Bfm in the full GLR, the expressions for 62 and E{G) coin—
cide with those for CGLR.

In most applications the physically meaningful failures are not
likely to be "free" -- i.e., with Vv totally unknown. For example, a
failure in a particular sensor may be independent of the other measure-
ments. Restricting the search for failuregs to a set of gpecific directions
should reduce the uncertainty in identifying the actual failures. 1In
& cross detection situation between modes with considerabhle distinguish-
ability problems, the potential gains in using CGLR are very appealing.
Suppose, in reference to the results in Figures 3.5 and 3.6, that the
incorrect detector had been constrained to pure g and pure ¢ failures.
In all probability, then the incorrect ﬂilj's along those directions
would be appreciably smaller than the £'s for the correct detector.
The reason for this is the following. For the full GLR the incorrect
detector estimate Gilj ==~ the most likely type i failure which accounts
for the ElI. achieved -- required a mixed g and o failure. Constrained
to orthogonal failure directions, the likelihood ratios would have to
be lower in value, and hence they would be smaller than the £'g in
the correct detector, which should not change too much (as they tend
toward predominately g or ¢ failure estimates. ‘

Thus, a comparison between the capabilities of full GLR and
CGLR should be investigated in order to gain a better understanding of

the tradeoffs vis a vis cross—dection. Since the dominant failure modes

K
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and directions in any application are given to us, the design limitations
of the GLRfare very much context-dependent. Hence, further work on this
question should concentrate on developing a systematic treatment of these
limitatrons and tradeoffs between full GER and CGLR (and; by extension,
SGLR) .

The likelihood ratios and failure estimates in CGLR are computed
only for failures in certain directiong which are specified beforehand
(see Chapter 1, section 1.2). Thus, for every failure mode the cox-
responding CGLR detector searches along these directions and selects
the one in which a failure is most likely to have occurred. 2R scheme
in which the outputs of all detectors are compared for each failure
direction can then be studied by means of analysis and simulation. Forx
example, one can evaluate 62 for the state step and sensor step detectors
in the g and o directions in CGLR and compare them to 62 in the full GLR
for those same detectors. The wrong-time, cross—detection version of
these quantities then tell us what can be gained by using CGLR as far
as failure mode distinguishabilaty is concerned.

The general expression for the wrong-time, correct detector

2
§° and failure estimate in CGLR are

2
b (k68 _,m)

.17

£(k,8|et, m) afk,0|m) - (3.17)
~ b(k,G[Bt, m)

B (k) {3.18)

a(kcelm)
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where

bk, 8]6_m = £1a(k,0[0,) (3.19)
alk,8[m) = £1Ck,0)f (3.20)

and fm is the mEE-fallure direction (i.e., U=Bfm). The actual failure

leads to a residual sequence
vk = yk) + BG(k,Gt)‘fm (3.21)

Corresponding to (3.17) and (3.18)}, we have

2 (ol ' 2
52 ) = B (fmc(k,elet)fm)
£'cl{k,0) £
mn m

2 2
- BlaT k06, (3.22)
a{kre)

and

B a(k,,e|et)

'a‘(kr,. ’9\')

(3.23)

In a cross—detection situation, for a fixed direction, the
expressions for thege quantities become
2 . 2
f?! . !
B ( mCi;L_L(k,BIBt) £)

82, (m = , (3.24)
ily £1C; 0,00 E_

and


http:fkef(3.24
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~  Bflc|.(k0]0)f
E(B) = - 1l E.X

£iC. Ok BV E_ (3.25)
Comparing these quantities with those given by (3.17) and (3.18)
for fm in the g and ¢ directions will tell us how well the CGLR handles
distinguishability between failure modes with correlated signatures.
Comparing them to the corresponding ones in full GLR then indicates the
relative advantages in cross-detection between the two GLR formulations.
A similar kind of analysis can be performed with respect to simplified
GLR to see how further restriction to include the magnitude of v affects
distinguishability. Finally, we note that (3.24) and (3.25) can be
expanded to include the case where, in addition, the failure is in a

direction fn other than the one hypothesized in the detector.

3.5 CROSS-DETECTION: DISCUSSION

This concludes our brief lock into the difficulties with the
GLR technique in distinguishing between several failure modes. We have
seen some of the fundamental limitations of this approach. The nature
of this indistinguishability -- similar behavior of the residuals under
different failure conditions -~ is built inte the GLR technigue since
it searches for specific developments in the residuals.

There are several ways to deal with these difficulties in de-
termining which is the true mode of a failure. The main consideration

common to all is the realization of the fact that the principal design
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limitations with the GLR are very much context-dependent. Therefore,
efforts to improve detection must take advantage of the way in which
these dependencies are displayed in the various quantities computed

in the detectors. 1In one approach, full use should be made of all
available information concerning the £'s and the estimates. The patterned
behavior of these quantities for the correct detector can be used ef-
fectively to provide increased distinguishability. The design of "smart"
decision rules, which check for this distinctive kind of behavior con-
sistent with the hypothesized failure mode, can eliminate or restrict

many of the limitations of this method.

Another approach, complementary to the use of modified decision
rules, is the search for the most applicable GLR formulation for the
problem at hand. The flexibility offered by full, constrained and
simplified GLR allows us to provide a better match to our knowledge
about the system and failures. The assumptions about the failures which
can be made on physical considerations motivate the various restrictions
on V made by SGLR, CGLR and full GLR. If only a particular failure can
occur;, or 2f its origin must necessarily be related to specific points
in the systems, such information should be acknowledged explicitly in
selecting the detector formulation. Further work with the GLR technfi-
que should «concentrate on development of a methodology with which to

select the best design, for a given situation, i1n a systematic fashion.



CHAPTER 4

SENSITIVITY 1CG MCDELLING ERPORS

4.1 DETECTION UNDER MISMATCHED CONDITIONS

In this chapter we consider the sensitivity of the performance of
the GLR detectors to modeling errors. Up to now we have assumed that the
model of the system used to compute the Kalman filter gains and detector
matrices is exact: all parameters are perfectly known. In previous chépters

we have examined the detection performaﬁce of the GLR under this assumption.

The concern over the issue of modeling errors 1is motivated by two

5
important considerations:

I

. one can never really measure the model parameters exactly,
© and, imn fact, the model 1s often a vast mathematical
simplification of the physical system :

. even if one could, the true system parameters are likely to
" have gome time-varying behavior

With respect to the first of these, one would like to know the relation-
ship between guality of detection and the accuracy to which the system
parameters are known. Perhaps of more importance, howevef, 1s the .second
observation. In many’applicatfons the true sys%em drifts slowly away
from the dynamical system specified by the model. Or, the true séstem

1s only approximated by the model for certain regions in the state space.
For example, the F-8C model used here consists of a sequence of iinear,
time-invariant systems corresponding to different flight conditions

along the flight trajectory. 2 more exact representation of the air-

craft would be a nonlinear dynamic system [16].

=151~
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In order to develop some intuition into the possible implications
of modeling errors for reliability in detection via the GLR, some analysis
and simulations were carried out. These results are only preliminary,
and much more work remains to be done. However, we feel that some of
the basic issues have been 1dentified and that it is possible to deal
with the problem of parameter errors in a number of ways.

Finally, we view the gubject of this chapter as a further lock
at the bésic limitations of the GLR technique. Some of the difficulties
in distinguishing between failure modes were demonstrated in Chapter 3.
In fact, it will be seen that an analogous situation exists between cer-
tain other failure modes —-- hard-over sensor failures in particular -—-
and the kind of modeling errors considered here, Therefore, on the one

hand we learn about the effect of these errors on performance and on

the other we can view this as providing insight into failures (Chapter
1, section. 1,2) using detectors based on the*simplet models ~*sich as
the step detectors.

Reference to the term '"mismatch' in this ch?pter denotes the
situation where some or all of the model parameters on which the de=

tectors and the filter are based are in error.

4.2 THE FILTER MATCHED TO THE DETECTOR

4.2.1 Description of Mismatch

In approaching the sensitivity of GLR performance to modeling

errors, an analytical treatment becomes intractable very guickly. We
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therefore rely substantially on the use of simulations. The simulation
program MDSP ({13] and Chapter 2, section 2.3.1) easily accomodates
various forms of mismatches. The detectors and filter can each be com-
puted based on the same model of the system as the true one, or, on
another one *hich can be specified, For our purposes reduced-order models
for the F-8C aircraft were used, for flight conditions 10 and 12 (Chapter
1, section 1,2.1 and [16]). These correspond to flight at Mach 0.4 and
Mach 0.8, respectively, with the same altitude and weather conditions as
flight condition 11 (20,000 feet and cumulus clouds).

The most significant differences between these three models are:

* the H o term changes approximately by a factor,of 2 from each
fligh% condition to the next (due to marked changes in dyna-
mic pressure) :

* the ® matrix changes so that the period of the alrcraft os-

cillations increases by almost 50% from condition 12 to
condaition 11, and again from condition 11 to condition 10.

We note that these are fairly large modeling werrors and therefore we are
\considering extreme, but meaningful, situations. Table 4.1 summarizes
the parameters of the model and Kalman. filter coxrresponding to flight
condition 12 (the parameters for flight condition 1l‘are given in
section 1.2.2}. &all the results reported_in.this chapter involve a
mismatch between flight conditions 11 and 12. )

The period of oscillation of these two models are approximately
-92 (3 sec.) and 67 (2 sec) time steps respectively. The Hy terms

which doubles from flight condition 11 to condition 12, depends on the

dynamic pressure and thus the velocity. We use flight condition 12
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rather than 10 for the real system because 12 has a shorter period. Hence,

the effects that depend on this are likely to happen faster.

4,2.2 Complete Mismatch

We first look at the case where the detector and the filter axe
calculated based on the same flight condaition which differs from the
true system (on which the measurements are made). This is a realistic
situation since the filter gains and detector matrices must be erther
generated on-line or kept in storage. However, it is an idealization
of the actual situation since the true system is likely to be gradually
changing. It is impossible to obtain them for every change in the
actual system. So we only assume that the system model is "near enough"
to the real system to be meaningful. The case where the filter gains,
Put not the detectors, can be matched to the true system is discussed
briefly in section 4.4. -

In order to understand how detection performance is affected by
the ?odeling errors we look at the way Y, &, g and G change. We can
then infer the probable rates of false alarms, detection delays, etc.
We beqin with the behavior of the residuals under mismatch. Since the
Kalman filter is not matched to the system, these innovations need no
longer be a white noise process in the absence of failures (although
whiteness in the residuals is pot a sufficient condition to. declare
a model exact, as is pointed out in [17]).

Figure 4.1 gives plots of the residuals for simulation runs

where the true system is at flight condition 12 while the filter and
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detector are computed for flight condition 11, PFigure 4.1 (a) shows the
actual residuals generated, and in 4.1 (b) the same residuals are shown
for a deterministic run (all noises equal zero for all k). Both are the
residuals of the unfailed system. The latter indicates how the mean val-
ue of the residuals responds to the mismatch. Both of these correspond
to the system started at an initial condition with q{0)=0 and a{0)=5°,
the reason for which will be discussed shortly. By deleting the noises
we have 1solated the pure effect of the mismatch on the residuals. The
relationship between this oscillatory behavior an ¥ and the system dy-
namics is explored later on in this chapter.

This kaind of behavior in the residuals suggests how the GLR de-
tectors will be sensitive to modeling errors. To the extent that the
residuals over some interval of time resemble the failure signatures for
some mode, false alarms will increase. The likelihood ratios in the
state step and sensor step detectors for these residuals are plotted
in Figures 4.2 (a) and 4.2 (b)}. Notice, first of all, the large values
of the £'s in both detectors. Thus, false alarms will surely occuxr
(assuming the use of an instantaneous decisicn rule}. Furthermore,
notice the peculiar nature of the patterns in the %'s, involving os-
cillatory behavior in both k and 0.. The latter fact should not sur-
prise us, given the oscillations in the residuals and that 2(k,8) is
a quadratic function of yY(k).

Consider the £'s in Figqure 4.2(a) as they develop with increasing

~

k. At first only the first peak 1s in the window and a 6 will correspond
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to its largest value. ILater, as the first peak dies out and a new one

appears for later 8's, O undergoes an abrupt shift. As we know, V also
~

changes sharply for such behavior in 6. The correlation between the

L's for 8's wide apart can be quite small. In Figure 4.3(a) we have
plotted a(k) corresponding to the likelihocd ratios, shown in Figure
4.2(a), for the state step detector under mismatch. The estimate 6 for
the sensor step deéector, under simlar conditions, is shown in Fig.
4.2(b). In the first case, the estimate of the declared failure under-
goes a large discontinuity. This increase equals the distance in 6
between the two peaks observed in the £'s in Fig. 4.2(a). The estimate
g in the sensor step detector behaves quite differently, as deo the
4's shown in Fig. 4.2(b).

' Two comments can be made based on these observetions. In the
case of the state step detector, Figures 4.2(a) and 4.3(a) suggest
that sudden, large shifts in g, corresponding to times within the
window, are indicative of & mismatch situation. Furthermore, the size
of the shift Ag 1s a function of the period in the 2's and thus, is
directly related to the oscillations in the residuils. The importance
of this fact should become clear in the discussioﬁ which follows. On
the other hand, in the case of the gensor step detector (Figures 4.2(b)
and 4.3(b)) a(k) is indistinguishable from the estimated time of an
actual failure, as it consistently selects the same value for a(k).

Hence, other information must be used in this case to distinguish be-

tween a real failure and simply a condition of mismatch. This information
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must come from the failure estimates V(k) and/or from the patterns of

the likelihood ratios (from this detector and from the state step detector).
The distinctive shapes of the f£'s in Fig. 4.2 indicates that the

kind of decision rules suggested in the last chapter (in relation to

cross~detection} might prove useful here also. For example, under mig-

match the %'s at times exibit more than one peak across the window simul-

-

b

taneously. This was never seen before in detection of failures of any
kind under matched conditions. Similar comments apply to decision rules
which look at the behavior of the &'s with time.

Let us consider the nature of the changes in the residuals in re-
sponse to the mismatch. Suppose that the rea} system can be described

by

1

x (k+1) @lx(k) + T'lw(k) (4.1)

z (k)

Hlx(k) + v(k)} ; (4.2)

where w(k) and v(k) are the same Gaussian white noise sequences given in
Chapter 1.
If the Kalman filter is based on a system model with &, H and

I' instead of Ql,H and Pl , the estimates in the filter are ‘given by

1l

"~ ~

x (k+1) O (I-KH) x{k) + oKz (k)

-~

S(I-KE)x(K) + @ KHl x{k}) + oxv(k)

1

~~

(I-KH)x (k) + OKHx(k) + OKAHx(k) + 0Kv(k) (4.3)

1

where
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£(k) = R(kx|x-1) (4.4)

and z(k) in (4.3) comes from (4.2). If we now let

@l =& + AD (4.5)
H:L = H + AH {4.8)
I‘1 =T + AT (4.7}

we can express ‘the residual ‘in the filter:

v:(k) z{k) - Hx(K)

i

ir

(H + A x(k) - HR(k) + vik) (4.8)

Letting e(k) denote the estimation error

e(k) = x(k) - ;\(k) {4.9)
then
e(k+l) = ®(T-KH)e (k) + (T+AD)wik)+ Adx (k)
- ®Rv (k) - OKRAHx (k) (4.10}
and
Y(k) = He(k) + Aux(k) + v(k) (4:11)

Thus, we can think of the residuals as the cutput of an augmented

system with state wvector

e(k+ly| [o(x-Km) | A-2kAH] [e(k)] [Tw(k)-@Kv (k)
I : (4.12)
% (k+1) 0 i @+AD x (k) T'w (k)
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Yk} = [H AH] [e(k)] + v(k) (4.13)

x{k)

Assuming that ®(I-KH) 1s a stable matrix with real eigenvalues, e(k)
and Y(k) oscillate when forced by x(k), and therefore at a frequency
determined by @-&A®==®L, i.e., the real system. If the eigenvalues of
®(I-KH) are not real, then the previous statement still holds, but the
behavier of e(k) in equation (4.10) will show mixed oscillatory modes.

Returning to our example, ®(I~KH) for flight condition 11 is a
stable matrix with real eigenvalues as shown by equation (1.65). The
residuals in Fagure 4.1 in fact oscillate with a period close to
that of ¢ in flight condition 12. The initial condition in o was chosen
to provide the maximum possible effect, as AH in equation (4.11) is of
the form: '

0 0

AH = . (4.14)

0 Ahaa

It should be pointed out that-the value of that initial condition
iq(0)=0, 0 (0)=5°}) 1s guite large: a{0}=5° has a value twenty times the
standard deviation of the noise in the ¢ dynamics. Therefore, it is
expected that the effects of mismatch will be less apparent for a more
subduad state trajectory.

Finally, in Figure 4.4(a} and 4.4(b), we preseﬁt the %'s under
mismatch between the zame two flight conditions -- and for no failures --

when the initial condition is one in g: g(0) = 26°/sec (200} and
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¢{0) = 0. Although there are some differences in the magnitude cof the
%4's achieved and, for the sensor step detector, in their shape, all oux
earlier observations apply equally well here. The interaction between
g and o through the dynamics results in similar responses in the detectors,
as the pitch rate g is integrated into angle-of-attack .

In the next section we consider the case when failures occur while

a condition of mismatch prevails.

4.2.3 PFailure Detection Under Complete Mismatch

In the last section we saw how the sensitivity of the GLR detectors
to modeling exrors can result in large values of the likelihood ratios,
and consequently in false alarms. The response of the detectors to the
mismatch was seen to have very definite characteristics, as well as to
be quite dependent on the state of the system.

In order to determine how detection might be affected when a failure
does occur under these conditions, a number of simulation runs were made
for different failures and initial conditions. Figure 4.5{(a) shows the
2's in the state detector in response to a 10 state step failure in q.
The initial condition was g(0}=0, c(0}=5° and 6t=5 was the failure time.
The £'s in Figure 4.5(b) correspond to the same kind of failure and
mismatch, but for g(0)=0 and a(0)=-5°, The unfailed, mismatched response
o% the same detector, for comparison, was gaven in Figure 4.2(a}. While
the oscillatory behavior of the 2's due to the mismatch are clearly

present, i1t is worth noticing that they (the £'s) are actually growing
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with time. This 1s in contrast to the unfailed case where they are
expected to decrease with time, in line with the decaying tendency shown
by the residwvals in Figure 4.1. The reason for the decrease in the
residuals is that these oscillations depend on x(k) (see eguations
(4.10) and (4.11)). Since the system is stable, the effects of the
initial conditions diminish with time, in the absence of any forcing
input. Notice that this "free" response of the system is mainly de-
termined by the initial state (the noise disturbances are the other
factor).

Figure 4.5(b) shows the %'s, also from the state step detector,
for the same failure when the system is started at a different value
of the state., While the same comments apply, note the larger values
of the 2's and the apparent change in the oscillations. Figures 4.6(a)
and 4.6(b) show the R&'s in the sensor step detector in response teo a
10' g sensor step failure, with the same two initial conditions. HNotice
that cbservations can be made analogous to those for the state step
detector. One difference is that-for the initial condition with
2{0}=-5°, the likelhood ratios are actually smaller than in the unfailed
case shown in Figure 4.2(b). The effect of the g failure on the value
of 0 is opposite that of the negative initial conditions. Both tend to
cancel out scmewhat the effect on the residuals.

Thege simulations indicate that detection i1s still possible under
mismatch, although not without difficulties. The increasing, although

oscillatory, nature of the 's for failures under these conditions imply
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continued detectability of the failure., By raising the thresheold to a
very high value we can insure that only failures can lead to detecktion.
The large thresholds necegsary to guarantee this will lead to increased
delays before a failure can be detected, or decreased probability of
detection, However, we have seen in Chapter 2 that step failures, state
steps in particular, of moderate size result in extremely high valuas
of the £'s very guickly. Therefore the real problem is that modeling
errors may limit the smallest fairlures we can hope to detect.

The dependence of the 4's on the values of the state of the
system is a factor which is unigue to the condition of mismatch; it
was not seen before in matched detection analysis and results. As with
the lakelihood ratio, the estimates of the failure and failure time
~ ~ .

v and 0, also depend on the state.

Since some of the failures enter into the state of the system -—
state jump and state step failures -— the behavior of the outputs of
the deéectors for those failures is more sensitive to the state tra-
jectory than the detectors for the sensor failures.

Figures 4.7 and 4.8 digplay the likelihood ratios under the mis-
match between flight conditions 11 and 12 for d step failures (8t=5)
in the state and sensors. Figures 4.7{a) and 4.B(a) show the &'s in
both the state step and sensor step detectors for an o initial condition
of 5%, The corresponding detector response to the same failures for an
initial condition of—a=‘5° is shown in Faigures 4.7(b} and 4.8(b). As

before, the differences in the state lead to changes in the 's, However,
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compare the resulting changes in the 's due to the different state of
the system in Figures 4.5 and 4.7 to those changes observed in Figures

4,6 and 4.8. We can see that

* the way in which the £'s respond to the differences in the
state 1s not the same for both detectors: in one case they
increase and they decrease in the other

* the £'s in the state step detector change by as much as 100%
depending on the state, for the same failure; the £'s 1in the
sensor step detector only differ by about 25% (the value of
the state can tend to cancel out part of the failure when 1t
is a state failure ~- but not when it is a sensor failure)

Knowledge of these characteristics of the detector responses in the pre-
Sence of modeling errors can be used to advantage, once understocd in more
detail. )

Just as in the case of crogs—detection (Chapter 3}, the best way
to deal with these difficulties is the full use of the behavior of the
£'s, and the -estimates G(E)‘and atk). The maximum likeilhogé'inter-_
pretation of these quantities for thé various detector hypotheses can
tell us something about the activity of the‘re51duals; and, hence, also
about the behavior of the real system. It may be possible to use all
this information in an integrated manner in connection with a scheme for

1

system identification. .
Finally, in Figures 4.9, (a) and (b), we show the estimates of the
failure time for the state step detector. The failures are a 10 g state

step (Figure 4.9 (a)) and a 10 o state step (Figure 4.2 (b)) and et =5

for both. They are given the initial condition in ¢ of 5° and also —5°.
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We notice that the kand of failure —- failure in g or in & ~— can enhance
or diminish the differences between the resulting g(k)'s for two different
values of the initial state. Compare these plots to the unfailed response
of the same detector for arn initial condition in o of 5°, shown in Figure
4.3(a). |

First of all, notice that the failure in o (Fig. 4.2(b)} overrides
the effect of the mismatch to some extent and maintains a consistent
3, for both state trajectories. The failure in ¢, on the other hand
(Fig. 4.9(a)), shows erratic estimates not too different from the unfailed
estimate in Figure 4.3(a). It must be kept in mind, however, that these
are small failures and thus the problem is expected to be less severe for
larger failures. Also of interest is the way that the sequence g{k) dif-
fers, for the same failure and detector, for two separate state paths.
This is particularly evident in Figure 4.9(a). A more detailed analysis
of this state dependence might prove fruiftful. It may tell us if we may
corroborate a detection decision by deliberate perturbation of the actual
flight trajectory.

Although the data presented here is limited to a few situations
of special interest, we feel that our observations can be generalized. A
more complete study of this sensitivity to modeling inaccuracies should

be rewarding. In the next section we look at another possible approach

to improving detection under mismatch.



~-175-

4.3 PARTIAL MISMATCH: AH

4.3.] Compensation for AH

It was pointed ocut in section 4.2.1 that one of the major parameter
errors in the mismatch between flight conditions corresponds the Huu term
of the observation matrix. 2 nunber of simulations were made where the
only mismatch between the system model and the actual system consisted
of the difference in the H. The detector and filter were based on flight
condition 11. The real system was the same, except that the H was that
of flight condition 12.

Figures 4.10(a) and 4.10(b) show these L's under the same conditions
as in Figure 4.2: no failure 'and an initial condition in o of 5°, The
great similarity to the previous likelihood ratios, under the complete
mismatch between the flight conditions, makes it clear that it is in fact

H which contributes, in our case, to the main effect. Thus, if one could
correct for this parameter error, one would expect to be able to miti-
gate greatly the sensitivity to the mismatch.

' It was mentioned earlier that the Haa term, which is the only one
contributing toward AH (see equation (4.13)), 1s a function of the dyna-
mic pressure. Hence, if one can determine the actual H by some means --
such as measuring dynamic pressure directly -- one may be able to com-
pensate for AH. Figures 4.11 and 4.12 display the £'s in the state step
and sensor step detectors for a complete mismatch where AH has been

compensated for {i.e., the actual AH=0). %There is noc failure in either
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case. The £'s in Figure 4.11 corxrespond to the system started at an
o (200) initial conditaon and for the £'s in Figure 4.12 the system
started with a 200 g initial condition (G=0). Note that in both cases
the values of the £'s are significantly smaller than in the cases where
there was no such compensation (Figures 4.2 and 4.4). Selecting a high
threshold can eliminate the false alarms without significantly diminishing
the capability for detecting failures.

If we recognize that our example consists of relatively large
modeling errors ané initial conditicns, these results suggest that in
many cases 1t may be possible to isclate the main source of the dif-

ficulties and o eliminate them.

4,3.2 Approximate Analysis of Complete Mismatch

We mentioned earlier that analytical treatment of the sensitivity
of GLR performance to modeling errors is in general intractable, To
consider changes in all parameters of the system and their effects on the
filter residuals results in too large a burden which overrides any gain
in clarity or understanding of the situation. However, some analysis
may be possible in those cases where adequate approximations can be made.
In this section we present some expressions obtained, for the airgraft
example, by recognizing the dominant sources of the mismatch.

In section 4.3.1 it was pointed out that for our example the
dominant pa;ameter error was AH.) This term accounts for the major trends

in the behavior of the residuals under mismatch. Figure 4.10 shows that



-180-

AH alone produces a response in the &'s of the GLR detectors which is
gualitatively similar to that shown in Figure 4.2 for the complete mis-—
match. In Appendix B we have calculated the change in the residual due
to the presence of the AH between the true system and the model in the
filter (which is the same as for the detector).

The residuals in the Kalman filter, expressed in terms of the resid-

-~

uals for the matched, unfailed case (Y(k)), are then given by

k
Y0 = Y00) £ M Ox() _ (4.15)
%=0
where !
Ak,k) = AH (4.16)
A, = -B* Loxan, 8k (4.17)
and
0 = &(I-K) ° : (4.18)

@ is recognized to be the transition matrix of the Kalman filter,

Note that this 1s another expression for the'residuals in (4.13)
and that the dependence on the past and present values of the state is
made explicit. The guantities which go into A{k,%) are all known and
thus it is not hard to compute A for increasing values of T=k-£. If
knowledge of AH can be obtained, or if we can estimate it, it may be .possible
to filter out a large part of the non-white component of the residuals in
{(4.15) by subtracting out values computeé with an approximation with a

small number of terms in that convelution. This pre-filtering would pro-

vide the new residuals to be used by the detectors:
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k

Y B0 = Yo14®) - ng-T Ax,2yx(2}2) (4.19)

~

where A and T are to be optimized. We must use the estimate x(k|k) since
we do not have x. f
Otherwise, the effect of the residuals in (4.15) on the likelihood

ratios of the GLR detectoxrs (for AH) can be calculated, as in Appendix

B, to be:
k
E(2{k,0)) = tr E Lk,0; 3,3)v(3) .
3=6 '
k ' l'l'l.ln(fa- 'h l) -
+2tr |y E E > 506,670,940, 0 88T T ()
h=8 3=0 2=0 i=0
[k k 4§ m
+tr Z Z E ‘ E Lk, 053 ,m) Am,n) 8% %7 (A(J:J&)@_g)
[ j=0 m=6 £=0 n=
[k  k i m min(4~-1,n-1)
+tr! 2 Z :z :L(k,e:j.mlﬂ(m,n)(z : Sy pro |
3=0 m=0 1= n=0 i 5=
where (4.20)
V(j) = HP(J)H' + R (4.21)
P(J) = E(e(j)e(i}") (4.22)
L(k,08;h,7) = V1 (h)G(m,00c L (k,6)6" (3,67 1) (4.23)

e(k), © and A are given by equations (4.9) and (4.15)-(4.18) and 3052(0).

Thus we find that even for the i1dealized mismatch with only AH,


http:4.15)-(4.18
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the analysis of the likelihood ratics is not a trivial exercise. Hence,
our heavy reliance on simulations is justified as the more immediate and
useful approach. Based on the observed patterns in the behavior of the
various detector cutputs, ‘smart' decision ruleg must be designed and
tested for improved performance. Otherwise some form of compensation
must be implemented either by the pre-filtering sugdested above or by
means of the suggestion in section 4.3.1 (correcting for the dominant
parameter by directily measuring it, whenever possible}.

In the next section we look briefly at another kind of mismatch

where the analysis becomes somewhat simpler,

4,4 THE PILTER MATCHED TO THE SYSTEM

- 8o far in this chapter, all the discussion on the laimitations of
the GLR technique arising from inaccuracies in the modeling of the system
of interest has been related to vwhat we call complete mismatch (section
4.2.2), The same model is used to calculate the detector matrices and
the gains in the Kalman filter.

Ansther possibility ig having the filter gains matched to the
dynamics of the real system and the detector quantities based on the
system model. This becomes feasible if the GLR detection system operates
simultanecusly with an identification gcheme -- e.g., the multiple model
adaptive control method (MMAC) [18], which is capable of choosing a Kalman

filter for the correct flight condition. The detectors for a given flight

condition consists of a sequence of matrices (G(r), C¢(x): r=0,1, ..., M-N+1)
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for the interval in the window. Therefore it 1s desirable to have detectors
for a limited number of f£light conditions.

Consider the system given by equations (4.1) and {(4.2). Suppcse,
again, that the only difference between this system and its model in the
detector is that the latter assumes a value Hd while the actuval observation

matrix is

= -+ .
HS Hd AH (4.24)

The subject (')s denotes quantities corresponding to the real system while
(-)d denotes quantities based on the model of the detector.

The Kalman filter is matched to the system -- i.e., it 1s based on

In the absence of failures, the filter residuals will form a white

noise process. However, let us express Y(k) in texms of the model in the

detector:
Ys(k) = zs(k) - st(k)
= (Hd + AH)x(k) - (Hd + AH)x(k) + vk}
= Hde(k) + v(k) + AHe(k)
= Yd(k) + AHe (k)
= 'Ys(k) s (4.25)
Or,
Ys(k) = Yd(k) + AHe (k) (4.26)
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e

where x(k) and e(k) --- the predicted state estimate and estimation erxor -—-

are defined in equations (4.4) and (4.9},
1f we compute the expected value of the likelihood ratios in the
GLR detectors,basedcn1ﬁd,for these residuals corresponding to Hs’ we

obtain (in the absence of failuresg):

k
E(Ed|s<k,e)) = trZL(k, 8; 3) v_(3) (4.27)
3=6
where Lk, 6; 3) = L(k,0: 4, ) {4.28)
v, = HPH' +R
= (Hd+ AE) P(Hd + AH)' + R
= HdPHé + R + HdPAH' + AHPHd + AHPAH'
=Vt av - {4.29)
AV = M_PAR' + AHPHY + AHPAH' . ' (4.30)

Lik, 6; 3, j) is defined in (4.23), P in (4.22), and A is as in (4.21).

~

“The expression Qd‘s refers to the unfailed likelihood ratio as described

.above and is derived in Appendix C. Thus, we have

. [ = ] k
(2 ®.0)) = tIfEL'(k, 8 3) v )= ZL(k, 8; 3) (V63 + AV(IN
| 5=0 ) Li=8 .
Ik R k :
= tx ZL(k, 0; v, 0N + t;Z Lk, 6; j)AV(j)i:?
L3=6 ] =0 :

E(Rd(k, 8) + A=n-+A {4.31)
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The last equality follows from the result in Chapter 2 for the matched
detection case. Hence, the difference in the 2's in the detectors, due
to the error in their model value for H, leads to an increase in the

value of the unfailed likelihood ratios. To the extent that AH is the

most significant modeling error,

A= E(!Ldls(k,e)) - E@®,(,0)
k
= x> Lk, 6 HAVG) _ (4.32)
36

predicts the changes needed in the threshold in order to maintain the

same detection probabilities (P, and PF) as in the case when the detector

d
is perfectly matched to the system. Notice the AV, and thus A, can be

precomputed,

In contrast to the complete mismatch situation in the previous
part of this chapter, the approximate analysis for this other kind of
detector mismatch is feasible. An analysis of the failure detecticn
performance of the detectors under these conditions can be developed
much like in the case of cross-detection in Chapter 3. In appendix C
the following expressions are also derived:

k
' -1 . g _
E(ddts(k; 0}) = B( E G3(3.0v Dy GON = cdls(k,e)v (4.33)

5=8

2 — [Pl -1
6d]s(k,6) =V cdls(k,e)cd (k,G)Cdls(k,B) (4.34)
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~ _ —1 FaY ~
E('\)d's(k)) = Cd {k, edfs(k))cdls(k' edls(k))"\) (4.35)
and
Gdls(k,a) = arg mgx 2d]s k,9) {4.36)
where X
Ca)s (er®) =ZGé(j,9)vdJ(3) G_(3:6) (4.37)
=0

and G, is the signature bagsed on H=H Notice the similarity in form to

d a’
the same quantities in cross—-detection given by equations (3.8), (3.10),
(3.12), (3.13) and (3.5), in that order.

Thus, if one can isolate the parameter error which contributes
the most to the detector sensitivity, a thorough, although approximate,
analysis of the effects on detection is possible. In conjunction with
an adaptive estimation control system such as MMAC [18], this may be an

-

attractive approach to dealing with the sensitivity to modeling errors.

4.5 DISCUSSION OF MODELING ERRORS AND THE GLR

In this chapter we have examined some of the implications of in-
accuracies in the model parameters used to compute the XKalman filter
and detector matrices. This completes our discussion of the limitations
inherent in the GLR techniques, which we began in Chapter 3 by looking
at distinguishability between the failure mndes.

We have looked at the complete mismatch situation *=~ i,e., where

the filter and detector are computed for the same model -- and found that
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indeed detection is very sensitive to such errors. However, in view of
the large parameter errors assumed, and in the manner in which performance
is affected, it is felt that the degradation in detection which may re-
sult can be dealt with effectively (i.e., compensating for the modeling
errors). It was seen that the detector outputs -- the &'s, a(k) and

G(k) —- are affected by the mismatch in a way which 1s characteristic

of the true system. Thus, "smart" decision rules can be constructed
which minimize the possibility of false alarms, much as in the case of
cross—-detection. In addition, some of the information in these outputs
may be useful for an identification system.

The correlations in the regidualg induced by the parameter errors,
even in the absence of failures, are very distinctive. Although analysis
of this kind of mismatch is not tractable, it may be possible to isolate
the dominant source of error by means of simulations. The results pre-
sented with our example indicate that some form of compensation for such
errors can reduce the difficulties significantly. In any event, it was
seen how parameter errors lead to residual signatures much likse those
of actual failures. In fact, some modeling errors are equivalent to
some of the more complex failure modes mentioned in Chapter 1 —- e.g.,
an error AH is seen to be the same as the Kard-over sensor failure. Un-
like the simpler failures considered throughout this thesis, the likeli-
hood ratios now depend on the gtate of the system. This is one of the
reasons for the distinctive manner in which the GLR detectors react,

corresponding to the actual dynamics associated with the state trajectory.
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Viewed in this light, we see that 1t is possible to detect, and perxhaps
identify, the wore complex failures with detectors hkased on elementary
additive failure models.

Finally, another kaind of mismatch was briefly considered where
analys:s and compensation seems tractable. If in conjunction with an
identification technique the filter gains can be made to correspond
to the true system, the residuals may remain nearly uncorrelated. We
examined an example where the dominant parameter error was assumed to be
the only mismatch. The unfailed response of the detectors can then be
corrected by a simple change in the threshold. In the event of failure,
the characteristics of the detector cutputs can be studied analytically,

much as in the cross-detection problem considered in the last chapter.



CHAPTER 5
CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

5.1 COHCLUSIONS

We have examined in detail the performance of the generalized
likelihood ratic (GLR) technigue for failure detection. In particular,
we have looked at the full GLR formulation (in which no information about
the failure wvector V is available} and have applied it to a reduced-oxder
model of the longitudinal dynamics of the P-8C aircraft. A number of failure
models have pbeen introduced and the performance of the GLR detectors cor-
responding to four basic failure modes has been discussed at length.

A quaiitative examination of the performance of the full GLR for
this application has been made. It has been directed toward an evalu-
ation of the capability of this technigue to extract information about
the failure, and to the degradation which results from parameter uncer-
tainties. Extensive use of gimulations has complemented the analysis
of thig method.

The failure signatures and GLR detectors for some simple failure
modes -- state jumps and steps, sensor jumps and steps —~ have been
analyzed and discussed in detail. The performance of the full GLR, as
measured by such indices as

. false alarm rates

. detection delays -

. ability to distinguish among the various failure modes

. sensitivity to modeling errors

-189-
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indicates great sensitivity to failures. In most cases (including very
small failures) the thresholds can be chosen to guarantee fast detection
with few, if any, false alarms. This is true as long as the modeling

is accurate, Nevertheless, even under these conditions there are cross-
detection problems, i.e., difficulties in selecting the true mode of a
failure from among failure modes with correlated signatures. The problem
exists if one simply looks at the values of the likelihood ratios for
single times (as opposed to their values over intervals- of time).

The saimulations verify the analysis under matched conditions (exact
medeling) and suggest ways to deal with the difficulties. The distinctive
patterns in the likelihood ratios indicate that it is possible to develop
more sophistidated, or "smart", decision rules which make full use of the
available information. These rules -- which remain to be formulated --
should be able to improve detection performance. The basis for these
rules is to look for specific behavior of the likelihood ratios, and of
the estimates of the failure and its time of occurrence, which is char-
acteristic of each mode. The joint detection, isolation, and estimation
of failures can greatly improve overall detection performance (i.e.,
lower false alarm rates, etc.). When loocked at as simultaneous tasks,
rather than sequential operations -~ i.e., first detect, then isolate
the failure mode and finally estimate the failure -- better use is made
of the available information.

These comments apply whether distinguishability between failure

modes or the effects of parameter errors is the main concern. The
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development of such modified decision rules is related to the use of other

GLR formulations. It was seen that where full GLR can have serious dis-
tinguishability difficulties, the CGLR {and possibly the SGLR) can be of
great utilaity.

Our' experience with the GLR method up to now suggests that it is
a useful and reliable technique for the detection of failures, or abrupt
system changes. The performance of the GLR method can be studied an-
alytically [12]: the analysis becomes simpler for the more restrictive
forhulation cf SGLR. In addition, we have seen that GLR can be success-—
fully examined by way of simulations. Usaing both approaches, the GLR
offers ample flexibility in the range of implementations possible. This
allows us to match the technaque to the available information about the

system and the failures of interest.

5.2 SUGGESTIONS FOR FURTHER ‘WORK

u

Based on the results obtained, it is felt that future efforts should

concentrate on the following immediate issues:

» The study of the correlations between the ﬁl(k,e) for the
different failure modes. New analytical technigues and per-
formance measures are needed with which to develop and evaluate

the suggested "smart" decision rules.

+ The development of modifications to the signatures in order
to increase the distinguishability of the failure modes.
The concepts of "orthogonal™ signatures on the one hand (teo

minimize cross—detection effects), and "universal" signatures
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{signatures which can detect all or groups of the failures
of interest) on the other should be explored further.
Computational and storage savings are issues which can

also be dealt with by means of modifications in the de-

tectors.

Further study of the sensativity to parameter errors and of
the more complex fallure models is needed. Their inter-
connections are important to understand and can contribute

to the analysis of "smart" decision rules.

Work should continue with CGLR and SGER. It may be possible
to cbtain improved failure mode distinguishability and reduced
sensitivity to parameter errors by looking for failures in

specific directions (and/or magnitudes) only.

On a more distant horizon, work should continue toward:

an integrated study of the options offersd by the various
GLR formulations, as part of an overall design methodology

for maximum wutailization of the characteristics of each system.

The study of tradeoffs between the use of these techniques
which rely on analytical redundancy and simpler detection
systems relying on hardware redundancy. These complexity-
performance tradeoffs should be examined in the light of

the GLR and compared to other methods for failure detection.

Finally, an evaluation of the performance of such failure
detection systems within an overall scheme of self-organizing
control systems which automatically restructure themselves

as compensation to failures in the system. The criteria
with which to critically consider the performance of failure
detection systems can be dafferent for closed-loop operation.

For example, the "price" of a false alarm or delayed detection
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can be gquite different (£rom an open-lcop situation) if these

decisions are used in a feedback control systemn.



APPENDIX A
THE FAILURE SIGNATURES FOR FAILURE MODELS 1-4

The failure signature matrices Gi(k,e) are presented here for
the following failure modes: state jumps, state steps, sensor jumps
and sensor steps (failure models 1-~4 in Chapter 1). These expressions
are derived by Chow ([12], Chapter 2).

For the linear dynamic system

x{ktl) = ®(k)x(k} + w(k) (a.1)

z(k) = H{k)x(x) + v(k) (r.2)

and Kalman-Bucy filter based on the no-failure hypothesis,

1

x(k+1]k) = @R (K|K) (A.3)

Rklr-1) + RX)Y (%) (a.4)

]

£(k|x)
with K{k}, the optimal gains (see (1-18)-(1~21}, the measurement
residuals are

vik) = y{k) {a.5)

where Y (k) is a white noise process. In the event of a failure v at

time O in one of the above modes we can write, by linearity,

vk} = vk) + sk,v,9) (r.6)

s(k,v,0) = G,V a.7)

where G(k,8) 1s non—zero for kzﬁ and satisfy the following recursive
equations. The matrix F(k,0) used below 1=z defined by

P

& ko) + %, x|K) (A.8)

x|k}

~194-
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ﬁztklk) = F(k,0)v

{A.g)

where ﬁl(klk) is the 'unfailed' estimate and ﬁz(klk) is due solely to

the failure. O(k,k-1) is the filter transition matrix for the updated

estimated in (a.4).

O(k,k~1) = B(k-1) = [I-K(k)H(k)]P(k-1)

B(k-1)0(x-2) ... O(3)

L]

(k) D(k-1) ... 2(9)

O,

@(k,3)

The signatures are:

State Jump Failures {Mode 1)

0
k
F, (k,0) = Z Bk, HIRGIHG) 8(5,0)
=0
0
Gl(k,e) =

H(k) [9(k,0)- ®(k,k—l)Fl(k~1.9)]

State Step Failure (Mode 2)

.

.k
Fz(k,e) =

k
Zé“ck,j)xcjmcj)@(j,i)
6 =i

k<9

k>0

k<8

Kzﬁ

k<@

k>

{1.10)

(a.11)

(A.12)

(A.13)

{a.14)

(3.15)



Gz(k,e)
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k
H{k) E ®(k,j) - ok, k-1F, (k-1,0)
=

Sensor Jump Failure (mode 3)

G3(k,9) =

0

O(k,0)K(6)
0
I

~H(k)® (k,k—l)F3 (k-1,0)

Sensor Step Failure (mode 4)

F4(k,9?

G%(k,e)

NS o
w

Bk, 1)K
=0

0
={I
I-H {k) @ (krk"‘l)F4 (k"lre)

k<86

k>0

k<8

k>0

<8
=0

k>0

k<6

k>6

k<6
=0

k>0

(n.16}

(.17

{A.18)

(2.19)

{n.20)
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Approximate Analysis of the Likelihood Ratios: Partial Mismatch
(in H) with the Filter Matched to the GLR Detectors

I, The Resaiduals

Congider the following dynamical system:

x (k+1) dx (k) + I'w(k) (B.1)

z {k)

1

Hx(k) + vi(k) (B.2)

with w{k) and v{k) uncorrelated, white noise sequences with zero

mean value and covariance matrices:

E(w(il'(3)}

16, {(B.3)
ij

E(v(i)w'(§)) = I¢,. (B.4)

1]
The corresponding residuals in the optimal Kalman-Bucy filter for

this system, with z (k) as input to the filter, are given by

Y (k)

z(k) - z(k|k-1)

z (k) - Hx(k|k-1) {(B.5)

where %(k]k—l) 2s the (one-step) prediction of the state which is the
optimal estimate of x(k) based on the values of z(i) up to and including
%z (k-1). When the filtér has reached steady-state, it evolves with the

following dynamics:
R0ct1]k) = ®R(k|k-1) + OK[z (k)-HR (k|k-1)] (B.6)

where K is the steady-state optimal gain (see eguations (1.15)-(1.17)).

Rearranging terms we obtain the equivalent formulation:

P
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Rctl|k) = [6-0KHIR (k|k-1) + ¥Rz (k) ®.7)
oxr, letting

O=0 (I-KH} , (B.8)
the filter transition matrix, we obtain,

R(ktl|k) = OR(k|k-1) + Kz (k) (8.9)

vhich 1s the steady-state equation for the optimal estimate.
The (non-recursive} solutions of (B.1l) and (B.9) express x{k) and

x(k[k—l) as follows:

k-1
x(x) = x4+ Z 4 1py (1) {8.10)
2=0
k-1
Ree|x-1) = &% + E & Loz (1) (8.11)
2=0
where
x, = x(0) , £(0) = 2(0]-1) (B.12)

If, instead of the observations given by (B.2), the actual input

to the filter is

(2 + AH) x(k) + vik)

1

zl(k)

Hx(k) + v(k) + Aox{k)

z(k) + Anx(kx) , ¢B.13)

then and (B,1l) changes to
k-1
& elk-1) = eksao + Z Lok 1z (0) + Mux(g)]
2=0

k-1 - .
= R(k]k-1) + Z : L aranz (o) (5.14)
2=0
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The actual residuals in the Kalman Bucy filter can now be ex—

pressed (using (B.5), (B.13) and (B.1l4)) as

Y, (k) = 2 (k) - Hxl(klk—l)

k-1
z()-ER (k|k-1) + AHx(x) - HY ©O
£=0

~

k-1
v(k) + AHx(k) - HE Ok-R_:L(DKAHx(R,)
2=0

or, more generally,

k
Y, ) = Yx) +Z Atk,2)x(2)
=0

with

AH , k=R
Alx,8) =

k=1

~HE drAH , k>%

IT. The Log-Likelihood Ratios

k~f~1

ORAHX (L)

{B.15)

(B.16)

(B.17)

The detector eguation giving the log-likelihood ratios, we recall

from Chapter 1,

2(k,0) = a* (k;e)c"l(k,eaa(k,e)
k

alk, o) =E & (5,0V T EHYE)
j=0
k

C(k,8) =ZG'<j,e)v“l(j)G<j,e)
326

{B.18)

(B.19)

(8.20)
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When the GLR detectors are computed assuming z(k) as n (B.2) but, 1nstead,
we have zl(k) as in (B.13), we can compute the effect or change 1n E(%({k,0)}.

Substituting Yl(j) from (B.16) for v(j) in (B.19),

k J
at,8)=Y 6'&,0V 1) yG) +Eﬂ{j,£)x(£.)]

=8 =0
k ) . x 3

=Z &' (3,0V ()7 (3) +Z ZG' (35,00 (5HAE, L) =)
T 5=6 =0
- k 3

=da(k,08) + ZZG (3,007 (5)A5, 0% (%) ®.21)

j=8 =0

where d(k,0) denotes the quantity that would be obtained were everything

matched (i.e., if AHZ=0).

From (B.18), the log-likelihood ratios can be evaluated with the

use of (B.21):

L k3
rd(k,8) +>:;z G' (j,e)v'l(j)A(j,R)x(R) 'c—l(k,e) .
=6 2=0

2(k,0) =
k3
< a0 + Z ‘ z G (5. OV T (3IAG, ) x(R)
3= =0

k 3
L(k;0) + 2a' (k,0)C L (x,0) Z ZG'(],@)V_I (1A (5 ,2) %42

il

556 =0
E ke 7
R B , -1
+ZZ ¢ 1,0V GG, x| ¢ Lx,0) -
[1=6 2=0

[ x5
. ZZG'(jre)v_l(:j)ﬂ(jrfo}x(z) (B.22)

L. j=e R,:O
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~

where £(k,0) denotes the log~likelihood ratios corresponding tc d(k,0).
In order to evaluate the expected value of 2(k,0), E(L(k,0)),

we proceed with one term at a time. Let us express (B.22) as
L = + -+ B.23)
E(4{k,8)) El 232 E3 (
then, taking the terms in order:

B E(2(k,0))

i

E(atk,0)c T (x,8)d(k,8))

. 1 3
1.7 -1 . =
= E Z Gt 3,0V DY@ | ¢k, 0) ZG'(JrG)V Gy ()
j:e J j:e
rx 7 k ~
Y . -1 . -1,. .
= E Z’Y‘(J)V (316,80 C " &,9) ZG‘M)V (337 3)
= | o
k k - )
= E 2 :z Y:‘ (DLk,0; 1,370 (B.24)
' =0 §=0
where we define
_ - - i
L, 0 1,9 & viwew, 0o, 06 (3,0v ) (8.25)

for simplicity.
Continuing with (B.24), applying the expectation to each term in

the sum,

E. = E(%(k,0))

1
k k ~ ~
= E E Ey' (1)L(k,0;:1,3)v(3))
i= j:

I

k
= Z Ztr[L(k,B;i,j)E(Y(i)Y' GN1] (B.26)
=0 5=0 '
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where we have used the property of the expectation operator by which
E(x'Ay) = tr{aE(yx")] {B.27)

Since the residuals in the Kalman-Bucy filter are uncorrelated, we have

L. 0 i#j
E(v(u)y'(3)) = (B.28)
v i=j

and consequently,
k
X Ecr Lk, 0 §,3)V(3)
- 50
IR

tr‘EE:L(k,e;j,j)vtj> (B.29)
=

e
1]

]

Proceeding to the second term in (B.22}:

[

e
2
il

/ ko j
, = Efar 6, 00¢ L x,0) ZZ 13,07 A, L) %)
=6-%=0

k3
B -1 -1 ) 1, xn
Y*(R)V T (h)G(h,8)|Cc T (k,0) E E G'(3,00v T (N AG,Lyx(R)

=0 1=0 =0
kK k3§
= E E Y' (W) L(k,8:h,5)4(5,2)x(2) (B.30)
=0 j=0 =0

where use was made of (B.25), Continuing,

kK k3
By =Z Z 2 :tr[L(k:E’?hrj)A(j,&)E(x(!&)"{‘ (h))1] (B.31)
n=8 3-6 =0
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where, using (B.10),
-1

E(@R'XOY' (b)) + E Z @2—i—lrw(i)y‘ (h)
=0

E(x(2)v' (h))

21 N
Z e e (v () (B.32)

i=0

by linearity of the expectation, and assuming that X and Y are un-
correlated (since xo is assumed uncorrelated with both w and v in (B.1)

and B.2)).

In order to obtain the value of E{(w(i}Y' (h)) we need the following

expressions:
Y(k) = z(k) ~ Hx(k|k-1)
= Hx(k) + v(k) - BR(k|k-1)
= He(k[k-1) + v(k) (B.33)
e(k|k-1) = x(k) - &(x|k-1) (B.34)
and
k-1 .
etk k-1) =05 e+ 2 O Ty () - e ()] (B. 35)
r=0

Equation (B.35) can be derived from equations (B.1l), {(B.2}, (B.7) and

(B.34). Then, by (B.33),

Ew (i)Y' (b))

Elw(i)e' (h|h-1))H' + e@w (1)v' (h)) ‘

It

Ew(i)e' (h]h~1))H" (B.36)
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Therefore,

gi1nce the noises ® and v are uncorrelated for all times.
EM{(L)y(h)) = MMﬂe)W]H'
h—l
+EM@E Y v @@ T e
=0
h-1
+ Bly (1) E v (xR e @ ha
r=0
h-1
= z ’ EW w? (@)D (@ 1y me
r~0
me™ g =i, i<h-1
0 otherwise {B.37)

due to the fact that: 1) w and e, are uncorrelated, 2) equation (B.3).

Consequently, (B.32) becomes
2-1
E(x(2)7* () = z o¥-1pps @171y iy
i=0
and E2, from iB.Bl), is given by

B, = ZZZtr[L(k 8:h,1)A (G, 2) Z o

i=0

k¥ j min{-1,h-1)

tx EZ ZZ L(k,8:h,5)A(5,0)®

h=6 j=8 2=0 i=0

it

L-i-1

L-i-1

{B.38)

h-i-1

T e

PF'(@h-l-l

!

) IHI

{B.39)

where the limts on the sums are constrained to values such that the

eXpression makes sense. Finally we get to the third term, E

N in

(B.23).
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iii) We will need the cross-correlation function for x(k). For x(k)
as given in (B.l), with XO = E{xoxo'),
n-1 2-1
_ n z : n-s-1 % f-t-1
E(x(n)x' (L)) = 5[ | %, + @ Twis)||2® x0-+ E & Tw (£)
§=0 t=0
min (n-1,%-1)
- @nxo(@”')' + 2 ™57l 65 h e (5.40)

=0
There, using {(B.22), E3 becomes

k m

j .
2 E 2 (VAT (3,00 (k,08;:F,m)A{m,n)x(n)

£=0 n=0

=
1t
=

(S
I
fa]

i
iy
M=~ 1M~ M-

Lk,9:;3,mAmMEXxMmIX (2))A(5,%)

. fM .
o
=]

= PV

556
B
= tr L{k,0;:3,m)A(m,n) -
| =0 m=0 2=0 n=0
. min(f-1,n-1) .
x (0% + z : o™ S=Ipps (@57 |10 (5, 0)

s=0
(B.21)

We now have a full expression for E(L(k,8)) for a mismatch in H,

as given by (B.22) and (B.23). E., E

1 5 and E3 are given by (B.29), (B.39)

and (B.41l), respectively.

PN



APPENDIX C

APPROXIMATE ANALYSIS: PARTIAL MISMATCE (IN H) WITH
THE FILTER MATCHED TO THE SYSTEM

I. Without Failures

Suppose that for a system represented by

It

x(k+1) x(k) + wik) (c.1)

zd(k) de(k) + v{k) {c.2)

GLR detectorgs are computed for some failure mode. However, let us

agsume that the actual system ocbservations really correspond to

H

z (k) H x(k) + v(k)
5 s

i

(Hd + AH)x(k) + v(k)

z(k) + AHx(k) {c.3)

with Hs also being the value used in the Kalman-Bucy filter eguations
for the estimates and. optimal gains.
The residuals in the filter form an uncorrelated, white noise

process with zero mean and with covariance

~

E{y(k)y* (k)

Cov (y(k))

B P(k|k-1)H + R
5 S

v (k) (c.4)

where P(k k-1) is the predicted covariance of the estimate error, and

R, the covariance matrix of v(k}). We have
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Y (k) = z_(k) - H_x(k|k~1)
= (Hy + AH) x (k) - (Hd + AH) x (k)
= H (x(k) ~ x(k|k=1) + AH(x(k) ~ x({k[k-1)) + v(k) (C.5)
ox,
Y () = Yg(k) + AH(x(R) — x(k[k-1)) (c.6)

~

where Yd denotes

~

Yd(k)

]

Hy(x () -x(k|k-1)) + v(k)

u

z (k) - Hgx(k [k-1) (c.7)

which would be their value if AH=0.

We will now see the effect on the GLR detectors. The subscript
d/s will indicate gquantities in a detector (which is based on Hd)
when the residuals f?r its input are Ys(k). First, in the absence
of failures (from (B.18) - (B.20)),

k
3 P R
8oy 06:8) = D GLI5,OVE GV, ()
j=0
k
_ AR S T
= D CLG.OVIIG) I, () + BRG) = 5(G]3-1)]
30
k k
O - ~
D 635,67y (:)Yd(j)+>:cé(3,e)vdlcj)AH[x(j)—x(J|j—1)]
3=0 §=60

dd(k,B) + Ad(k,0) (c.8)
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where we let
k
Da(,0) = 63,0V, () Ay () (c.9)
3=0

AH[x(3) - =(3|3-101

Ay (i)

AHe (3]3-1) (C.10)

Then the log-likelihocod ratios become

~ ~

1 -1 ;
£d|5(k,8) ddls(k,e)cd (k,e)ddls(k,e) (C.11)

[d (k,8) + Aack,e)}'c;?(k,ea[ad(k,e} + Ad(k,8)1

pe -1 - s -1
%&mmdmﬁm5mm+a$mm%(mmmmﬁ)

+ Adf(k,B)C;l(k,G)q5k.9)+ Ad’(k,e)cgl(k,e)Ad(k,B)

cr
Edls(k,el = Ed(k,e)-+Az<k,e) + AL (k,8) + A% (k,0) (c.12)
with
A% (X,0) = Ed'(k,e)cél(k,B)Ad(k,e) (C.13)
A*2(x,8) ~ A" e, 00c; 0, 0) 040k, 6) (c.14)

Cd is the detector information matrix and dd' Ed are d and £ for
AB=0,

If we take expectations in (C.12),

E(Edls(k,e)) = El + E2 +* Eé + By {Cc.15)

where
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B, = E(,(k,6)
k
= tr[Z L(k:eijrj)vd(:l)] (C.16)
s
E2 = E{(AL(k,8)) (c.17)
E, = E(A%%(k,0)) (c.18)

The expression for I in (C.16) was given in Appendix B, (B.25).

If we proceed to evaluate E2, using (C.13):

~ 1
E E(dd(k,e)cd (k,0)Ad(k,9))

2
k k
= 20y e (i, v )y, (w1e Tk e)'[“ZG'(' OV AY () 1)
d r d ‘Yd d r d jf d 3 3
i=8 329
k k
- E(ZZ Yy v ye. (1,00t k,0)al G, 0V () Ay (5))
d d d r d ¥ d 3? d 3 Y J
1=8 50
k k -
= B( Z Zyé(i)L(k,S;i,j)A‘Y(j)) (C.19)
i=0 =0

With the use of (C.10) we obtain, by linearity,

- k k )
E:z:Z Z E(y4(1)D(k,0:4,3) M (5)-%(] |9-1)1)

i=0 =0
k k

DD err e, 8ia, 3 B x )RG35 1Y (D)1
i':e j|=e

k k
=tr E E :L(k,G;i,j)AHE(e(j|j-1)Yé(j))] (C.20)
i=g J=
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where

It

E(e(2]3-1)y; W) E(e(ij"l)[Hde(ili*l) + v{i)]1")

il

P(j]j—l)Hé i=3

il

0 i#5

Ele(§[3-De Gli-10m] + BleGl3-Lv Gy

(C.21)

We have made use of the facts that the optimal error is not corxelated

with i1tself shifted in time, nox with v(i} for any time.
Consequently, the eXpression for E2 becomes

k
E, = tr[z T 0, 0:3,3) Ame (3] 3-1) )
5=6

and similarly,
K
By = trl )} LG 8:3,)EL(]3-1)a0"]
=6

Finally, E3 is given by

{C.22)

{C.23)

B, = E(Aa'<k,e)c;1<k,e)Ad<k,e))
k k
- E([E Ay GV )e, (d, 91C T 6,8 T 66,0V (H)AYG)T)
a gt a " gadr¥ivg
im0 s
kK,
- Z ZE(e'(i[i-l)AH'L(k.G;i,j)AHe(jIj—l))
i=0 =60
k k
= ZZ triL(k,0;2,3)AHE (e (3 [§-1)e* (i]|i-1)AH"]
ie0 =0

k
= tr[ ) Lk 0:;3,3)A8R(5]5-1)40"]
=8

{c.24)
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where we have used (C.9), (C.10), and since E(s(3|3-1)e’(i]i-1}) = o
for i#j.

Collecting E,, E., E! and E

1" 727 T2 7T 73
(with (C.16}, (C.22)~(C.24)),

for E(Rdls) in (C.15), we obtain

k
E(E,dls(k,e)) = trl(y Lk,6:3,3) (Vd(j) + AHP(3|J_1)HC-1
3=0 :

+ HP (3]3-1)AR" + AHP (3]3-1) A"} (C.25)
and by substituting the expression for Vd(j)
‘o . 2
vy () HdP(JIj 1HY + R (C.26)
and regrouping terms in (C.25},
k

tr[E L0k,8:3,3) (R + [A+HAHIE (5 ]5-1) [H +AH] ') ]
3=

E(les(kfe))

k .
tr E L{k,5;:3,9) (HSP(jlj—l)Hs'; + R)1
j=6

k

tr[E L(kreijrj)vs(j)] (C.27}
=0

by use of (C.4}.

II. With Failures

If a failure Vv takes place at time 0 the residuals change and

can be represented as


http:C.22)-(C.24
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H

Ys(k) Ys(k) + Gs(k,e)v

~

(C.28)

where YS are the unfailed residuals in (C.5) when the input to the

-

filter is zs (in (C.3)).

In the detectors we get

k
Gq)s0r®) =D G5OV ()
j=6
..k ~r
:z:: AU | . ,
= Gd(J,e)vd (j)[YS(J) +—Gé3,6)v]
I=B -
= dd[s(k’e) + Cd‘s(kfe)v
where
x
; }E:, . -1,. .
Cdls(kre) = Gd(j'e)vd (j)GS(JrB)
j=6

~

and dd|s was given in (C.8), by which we can see that

E(dd{s(k,e)) =C S(k,e)v

q

The log-~likelihood fatios for the failure V now becomes:

L (k,8)

I

1 . "‘l
dls(kfe) dd[s(k'e)cd (kre)dd]s

1

~

i

+

ot -1
v cdls(k,e)cd (k,B)Cdls(k,e)v

{c.29)

(C.30)

(c.31)

- ) -
Mﬂsmﬁhqﬂgmewlgimﬁ)mﬂsmﬁHqﬂgkﬁw]

. -1 ~ o -1
dd[s(k'e)cd (k,e)dd|5{k,8) + 2V cd]s(k’e)cd (k,e)ddls

(Cc.32)

(k,0)
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~

Recognizing the first term as Rdls

in (C.27), and noticing that ddls has zero mean value {see (C.8)-(C.10))

(k,8) in (C.11), with 1ts expectation

we can write,

E{L

-1
L} 1

+ v cd[s(k,e)cd (k,e)Cdls(k,e)\) {C.33)
In analogy to the matched case, we call the non-centrality parameter

2 . -1
6dls(k,e) = V cdls(k,e)cd (k,e)cdls(k,e)v (C.34)

. . . - 2
This expression is similar te the cross—detection §° and can be re—

arranged
8%, (,0) = vicr, (k86 T (k,0) ¢ I+ C,y (k,8)V
als*"r als Vg dls "’
= el (k,8)Ci (k,8)1c T (k,8) [citk,8)C. (k,0)V]
als 7 e a’ a i dls
- Yl
vdlscd(k,e)vdls (C.35)
where
-1
. = ,0 = .36
vdls Cd (k,ﬂ)cdls(k JRY vdls(k,ﬁ) (C.36)
is a transformed failure vector.
Finally, the failure estimates can be seen to be
= .37
Bdls(k) arg max Rdis(k,e) (.37

8

and


http:C.8)-(C.l0
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~ ~

-1 ~
Vd[s(k) = Cy (k. 8d|s(k))d (k, eals(k” {C.38)

dls

Evaluating 1ts expectation using (C.31) and (C.36),

Fal -‘l ~
E(\)dls(k)) =c. (k,0

a (kfedls(k)))

(k))E(4
s

a| dls

"l Fal ~
Cd (k:edls(k))Cdls(kpedls(k))\)

vd[s(k"m (. 39)
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