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ABSTRACT 

This thesis reports some results from studies of the Generalized
 
Likelihood Ratio (GLR) technique to the detection of failures in an air
craft application. The GLR method can be used for detecting and identi
fying abrupt changes in linear, dynamic systems. It is designed to deter
mine simultaneously whether a change has taken place, the time that the 
change occurred and an estimate of the extent of the change. 

The technique is presented and its relationship to the properties of 
the Kalman-Bucy filter is examined. under the assumption that the system 
is perfectly modeled, the detectability and distinguishability of four 
failure types is investigated by means of analysis and simulations. 
Detection of failures is found satisfactory, but problems in identifying 
correctly the mode of a failure may arise. These issues are closely 
examined as well as the sensitivity of GLR to modeling errors. The ad
vantages and disadvantages of this technique are discussed and various 
modifications are suggested to reduce its limitations in performance 
and computational complexity. 
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CHAPTER 1
 

INTRODUCTION
 

1.1 Motivation
 

This thesis is concerned with the detection of abrupt changes in
 

linear dynamic systems. The problem is one with many implications for
 

estimation and control.
 

In many applications with Kalman-Bucy filtering [ 1 J, very good
 

performance can be achieved when the modeling of the dynamics is suffi

ciently accurate. For a number of important applications, however, a
 

linear model is only a good approximation to the actual system dynamics
 

over short time intervals. In others, a filter may be desired of lower
 

dimension than that of an accurate model. The use'of the Kalman-Bucy
 

filter in such cases frequently results in the divergence of the state
 

trajectory of the system. Another important situation which also presents
 

difficulties for estimation and control is the occurence of failures in 

a system. Such events can be troublesome even for systems which are other

wise modeled with high accuracy.
 

One practical approach to the divergence problem is the use of
 

adaptive estimation and filtering techniques which have been developed,
 

as in [2 ], [3 ]. Although these techniques abound in the literature
 

for cases where the changes in a system are slowly time-varying, only
 

in the last few years has the problem of detecting sudden changes been
 

addressed.
 

Linear models of systems subject to abrupt changes can be used
 

to study these problems involving modeling inaccuracies. They can also
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be used to represent systems which may undergo failures in some of its
 

components, such as sensors or actuators. The word "failure", as used here,
 

refers-to abrupt changes in a system which need not be physical failures -

e.g., a sudden, but infrequent, acceleration in a system when the esti

mation is based on a constant velocity model.
 

With the greater availability and lower costs of digital hardware 

and software, more sophisticated design techniques can be studied in order 

to improve overall system performance and reliability. A recent survey by 

Willsky [ 4J describes a number of failure detection-techniques and men

tions some of the characteristics and tradeoffs involved in the various 

methods discussed. The class of problems considered in [4 J is that of 

linear systems, where some analysis is possible. In this thesis we look 

in some detail at the Generalized Likelihood Ratio technique E5 1, [6]. 

The Generalized Likelihood Ratio (GLR) technique consists of per

forming hypothesis testing on the residuals, or innovations process, of 

the optimal (Kalman-Bucy) filter. The different hypothesis correspond to 

the behavior of the residuals assuming various failure models (including, 

of course, the 'no-failure' situation under normal conditions). The GLR 

formulation results in decision functions which allow us to extract a 

large amount of information (such as estimates of the failure mode, size 

and time of occurrence) about a failure, in addition to indicating whether 

a failure has occurred or not. A detailed analysis of the detection and 

identification performance of this technique is possible. In the following 

chapters we examine the performance of the GLR technique in a simple appli

cation. Finally, by offering a flexible set of implementations, the GLR 
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provides a practical method with which to study the many issues and trade

offs in the design of a reliable failure detection system. Some related
 

work which this researcher has come across may be found in [7 ], E ]
 

[9], [101. 

Some important question concerning the capabilities of GLR for 

failure detection are of interest. In particular, we will look at several
 

performance indices such as
 

- false alarm rates 

* delays in detection 

- ability to distinguish among a variety of failure modes 

* sensitivity to modeling errors
 

The tradeoffs to be resolved in obtaining optimum performance, with these 

considerations in mind, are trade-offs between complexity (of the failure 

detection design) and performance. For a technique like the GLR, issues 

such as these must be understood before the relative merits of hardware 

redundancy vs. 'analytical redundancy' can be' appreciated. The ad

vantages and disadvantages of using hardware redundancy with voting 

decisions -- e.g. comparing two or more sensors to determine their 

reliability -- versus the use of more sophisticated (and generally, with 

higher computational costs) techniques must be considered. This work,
 

hopefully, is a small step in such a direction. Further research should 

help-identify situations where the added complexity is warranted.
 

Basic to the GLR method is the formulation of the alternative hy

pothesesby means of different failure models. It is therefore important 

to consider the relative distinguishability between failure of different
 

modes when implementing the GLR detectors. It is important, for example,
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to distinguish a sensor failure from an actuator failure. Correct identi

fication of the mode of a failure is examined here, as well as the effects 

of errors in the modeling of the dynamic system. The performance of the 

detection system under various conditions is examined in the following 

sections in order to indicate where the main limitations of this approach 

lie. At this stage in the developments of a methodology for the design 

of GLR failure detection systems, it was felt that it is important to con

sider these questions in the context of a simple but meaningful example.
 

We have chosen a simplified model of the F-8C aircraft.
 

It must be pointed out that in the following chapters the dis

cussion is concerned with a "worst-case" kind of situation. We are as

suming that there is only one set of measurements with which to work with.
 

This is in contrast to the case where measurements are available from a
 

set of redundant sensors [9 J, [10].
 

Note: Some inaccuracies exist in the reported vaiues of various quantities
 
in [12] and [13). This work should correct such instances, until
 
a further update is 'deemed necessary.
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1.2 THE GLR METHOD
 

1.2.1 The Generalized Likelihood Ratio (GLR)Technique
 

We will now describe the generalized likelihood ratio (GLR) tech

nique and the modifications which provide simpler formulations. The
 

modifications allow some flexibility in the application of this approach
 

to failure detection. 

Consider the dynamical system model 

x(k+l) = (k)x(k) + B(k)u(k) + w(k) + fD (k,6) (1.1) 

z(k) = H(k)x(k) + J(k)u(k) + v(k) + fs(k,O) (1.2) 

where x(k) S Hn , u(k) s R7, z(k) E RP are the 'tate, input and output, 

respectively. The independent, Gaussian, white noise sequences v(k) and 

w(k) have statistics 

E(w(k)) = 0, E(w(k)w(j)') - Q(k)dkj (1.3) 

E(v(k)) = 0, E(v(k)v(j)') = R(k)dkj (1.4) 

where 6. is the Kronecker delta (in this context representing the unit 

pulse at time i=j). The terms fD and fs are used to model a variety of 

abrupt system changes. By 6 we denote the unknown time of occurrence
 

of the failure. 

The types of changes which are the subject of this thesis are:
 

1. Dynamics or State Jump
 

fD(k,0) = v6k+l, (1.5)
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where V C e denotes the unknown direction and magnitude of the failure in
 

state space and 6..is defined above. This model can be used to describe
1) 

the occurrence of a brief disturbance in the system such as a sudden noise
 

spike well outside the given statistics for w(k) in (1.3), for example.
 

Or, it can also describe momentary deviations of the control action away
 

from the expected B(k)u(k). Notice that this includes possible changes
 

in either the control signal u(k) or the gain through which it enters
 

the system B(k), or both. The modeling of V will be discussed later. 

2. Dynamics or State Step
 

fD (k ' ) 
= 'ork+l,0 (1.6) 

Here U.. is the unit step function
 
iJ
 

0 i < j
 
= 1 >(1.7)
 

This model can be used to represent the effect of a failed actuator in a
 

control system, whereby an additional constant, driving signal enters the
 

system thus causing the state to move away from a prescribed trajectory.
 

For example, a sudden increase in demand in a power generating system,
 

where the demand acts as a control, due to an emergency situation perhaps
 

due to a failure or shutdown in one of the plants. Or, a constant bias 

in the control signal of a digital flight control system of an aircraft 

which can be the result of some component malfunction. In addition, in
 

many cases more complex failures (such as scale factor changes) resemble
 

steps over periods of time, and a detector looking for a step can be used
 



to detect them.
 

3. Sensor Jump 

f s(k,) = ke (1.8) 

This can be used to represent bad data points (outliers) in the measure

ments of the output variables. By detecting such points one can prevent
 

the error in the state estimates that otherwise results in the estimation 

subsystem (e.g., a Kalman filter).
 

4. Sensor Step
 

fs (k,e) = Vk (1.9) 

This models the onset of a bias in a measuring instrument. Again, this is 

an important situation where detection of the failure makes possible the 

removal of the consistent errors which result in the estimation of the 

process variables. The importance of being able to detect failures in 

the measuring system grows if one considers the use of feedback involving 

the estimated state variables. Again, one can use a model such as (1.9)
 

to approximate a scale factor change over a period of time.
 

We recognize that these models are highly simplified descriptions
 

of actual failure situations. However, they allow for detailed analysis
 

in the GLR context and thus provide the opportunity to gain valuable in

sight into the workings of this technique. This is necessary before we
 

can move on to analytically more complicated failure models.
 

Other failure modes that are of interest and that can be the subject 

of future study are:
 



5. Hard-over Actuator
 

fD(k,O) = AB(k)u(k)ak+l, (1.10)
 o 


Here AB(k) is an unknown change in the effectiveness of one or more of 

the actuators. 

6. Increased Actuator Noise
 

f (k,e) =(k)0kl, (1.11)
 

where is a zero-mean, white noise sequence with unknown covariance HE

7. Dynamics Shift 

fD(k,O) = A'x(k)k+l,0 (1.12) 

where AO is an unknown shift in the plant dynamics. 

8. Hard-over Sensor
 

fs(k,O) = EAx(k) + AJu(k)]ak'e (1.13) 

where AH, Acw-represent scale factor changes in the sensors. 

9. Increased Sensor Noise 

fs(k,O) = (k)k,e (1.14) 

This list of possible failure models is not intended to represent 

all cases of interest. Nevertheless, it is clear that these cases and 

combinations of them provide a fairly broad range of failure modes on 

which to base a study of failure detection techniques. It is also worth 

reiterating that failure models 1-4 may be viewed as having models 5-9 

embedded in them, although admittedly not in a trivial way. For example, 

http:AB(k)u(k)ak+l,(1.10
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models 5, 7 and 8 are, in some sense, 'dynamic biases' which are not radi

cally different from models 2-and 4 when x(k) and u(k) remain approximately
 

constant over the detection interval. This may be the case in systems
 

with very slow dynamics. Alternatively, the increased noise models 6 and
 

9 can be thought of as random sequences of jumps, as in modes 1 and 3,
 

given the proper distribution of their magnitudes V and times of occurrence
 

e. 

Let us now consider the detection of such failures. The 'basis for 

the GLR approach, given in vWillskIy-Jones [6-1, is as follows. Design a 

Kalman filter based on the "no failure" hypothesis (fD = 
D f s = 0). The 

filter equations are
 

x(k+llk) = 0(k)x(klk) + B(k)u(k) (1.15) 

2(klk) = 2(klkl) + K(k)y(k) (1.16) 

y(k) = z(k) - H-(k)(klk-l) - J(k)u(k) (1.17) 

where (ilj) is the optimal (minimum mean -squared error) estimate of the 

state at time i based on measurements up to, and including, time j. The
 

y(k) are the zero-mean, Gaussian innovations process (the residuals) 

associated with the optimal filter. The optimal filter gain sequence
 

K(k) is calculated from the equations
 

P(k+lIk) = (k)P(kfk)t (k) + Q(k)' (1.18) 

P(kjk) = P(kik-1) --K(k)uk)P(k Jk-l) ('1.19) 

V(k) = H(k)P(k k-l)H'(k) + R(k) = E(y(k)y'(k)) (1.20) 
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K(k) = P(kjk-1)H'(k)v(k) (1.21) 

with the appropriate initial conditions 

A(010) = E(x(O)) = x0 (1.22) 

'P(010) = E([X(O) - X0] [x(0) - r 0 ] ) = - (1.23) 

Now suppose that an abrupt change, corresponding to one of the
 

above models, takes place at time 0 and from then on the system is 

described by (1.1) and (1.2). 

By the linearity in the assumed system model one can then obtain 

an expression for the filter residuals 

y(k) = (k) + s(k,0) (1.24) 

where y is the "no failure" innovations with the statistics given above, 

and s(k,e) is the effect of the failure on the residual. The form that 

s(k,8) takes is different for each of the failure models. In particular, 

for models 1-4 which concern us here, one can write 

s(k,0) = G.(k,e)V (1.25)
 

1 

where i e {1,2,3,41 denotes the failure type, and G. (k,0), called the
 

failure signature matrix, can be precomputed (see Appendix A). This matrix 

gives the effect of the failure on the residual and, as one wotId suspect,
 

plays a crucial role in the development and analysis of the GLR system.
 

The failure detection problem can be formulated as a decision
 

to be made between competing hypothesis (Schweppe [14], Van Trees [15]).
 

H0 : no failure has occurred (e > k) 
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H. a failure of type i has occurred (e < k)
 

where 0 and V are regarded as unknown parameters (i.e., no prior distri

butions are postulated). The GLR approach attempts to isolate the differ

ent failures by using knowledge of the different effects that such fail

ures have on the system residuals. An equivalent formulation of the
 

problem, which is more useful for our purpose, is the following:
 

H0 : y(k) = 1(k) (1.26) 

H. : y(k) = Y(k) + Gi (k,6)V (1.27) 

The generalized likelihood ratio test (Van Trees [15]) can now 

be applied and we obtain a decision function based on the innovations
 

sequence. Given this sequence, the procedure consists of computing the 

maximum likelihood estimates (MLE's) of 0 and V assuming that a failure 

has occurred (for each type of failure). Substituting these values into 

a likelihood ratio test, ,one can then proceedsto decide on the hypotheses. 

In other words, given the estimates
 

6(k), V(k) = argrax p(y(1), ... , y'(k) IHi,=@,V=) '(1.28) 

where p denotes the probability density function, the generalized likeli

hood ratio is, defined by
 

AA 

Th (k) = p(y(l), ... ,,y(k)jH i , 0=0(k), v=V(k)) 1.29
1 p(y(1), ... , y(k) IH6) 

A decision between H0 and H. can then be made by means of a decision rule
0 1 
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H. 

max L (k) f (1.30)
1 
i < 

Ho
 

where flis appropriately chosen as a design parameter in comformity with
 

the goals of the detection system.
 

Without loss of information, one can simplify the decision function
 

(1.29) by taking logarithms 

Z (k) 2 n L. (k) 
1 1 

k 

(1.31)= Y'(j)v-l(j)y(j) 

k 

[.(3) - Si(3,O())V(j)J t V (j) [y(j) - Gi(j,e(j))v(j)] 
j=l
 

A A 

Here V(k) can be expressed explicity as a function of e.1 (k)
 

V.(k) = C.-l(k, e (k)) d (k, 6 (k)) (1.32)

11 1 

where C (k,6) is the deterministic matrix
 

I ( 9 ) G Ci (k,6) = t !(j,6)V-
i j , ) (1.33) 

and d1 (k,8) is a linear combination of the residuals 

k 

d.(k,O) = !(jo)V-'(j)y(j) (1.34) 

j=1 
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Finally, the log-likelihood ratio can be given by 

t.(k,e) = d(ke)cl(ke)d.(kO) (1.35) 

and the MLE 6. (k) is the value of 6 < k that maximizes
1 

t(k,6.) max d'(k,)C (k,0)d(k,6) (1.36) 
A6 

The decision rule becomes 

H.1 

max t.(k, a.(k)) < e = 2 inn (1.37) 

i H0 

A 

A failure of type i is declared if 2i(k,0(k)) exceeds the threshold C.
 

Some remarks are in order here.
 

* In equations (1.33) and (1.34) many of the terms are zero,
 

since G(j,0) = 0 for j<e.
 

* The signature matrices G i (k,6) can be precomputed and stored,
 

or they can be generated recursively (see Appendix A).
 

* The equations for d. (k,0) can be interpreted as defining
1 

matched filters for a failure of type i (for more on matched
 

filters, see Van Trees [15], Schweppe [14]).
 

* As Figure 1.1 illustrates, this detection scheme involves
 

the implementation of a growing bank of matched filters for 

different 0. To avoid this complication, the maximization 

in (1-36) is restricted to a "data window" such that 6 lies 

in the interval
 



G(k;0), c-1(k;O) 

Compute 

e=0 M (k;0) 

G(k;l), C-l(k;l) 

ooa

Computeto 

F F(k;l) 

Kamn Bucy Choose 
ilter ++ •(k) 6 

To Compensator 

G(k;k), C- (k;k) 

ek Compute 

M(;k) 

Figure 1.1 Full GLR Detector Scheme with Growing Bank of Filters 
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k-M < 0 < k-N (1.38)
 

More on this and on the selection of M, N follow.
 

The t . (k,0) can be updated, by means of a recursive algorithm,1 

for every new residual y(k) produced in the Kalman filter.
 

The basic recursion is given by
 

Ci(k,0) = C.(k-l,8) + G'(k,0)V-l(k)G(k,e) (1.39)

1 2. 2 1
 

d.(k,0) = d.(k-1,0) + G!(k,0)v -(k)y(k) (1.40)
1 1 1
 

for each 8 in (1.38). Note that the C. (k,6) does not depend
1 

on y(k) and can be precomputed and stored.
 

* If the system and filter are time-invariant, G(k,e) and 

C(k,0) depend only on r = k-0. This means that only M-N+1 

of each need to be generated when a window (1.38) is used.
 

This reduces the computational burden significantly.
 

* The information generated by the GLR system can be very use

ful for compensation schemes 'to follow the detection of a

A A 

failure. The estimates 0 and V in particular can be used 

to determine updates for the filter estimate and covariance 

matrix, for example, in order that accurate functioning may 

continue. This would allow for the detection of multiple
 

failures since the residuals are made to conform to the new
 

situation which has been compensated for. More on the esti

mate and covariance incrementation can be found in Willsky-


Jones [ 6 ]. 



-27-


As mentioned at the beginning of this section, there are modifications
 

which can be incorporated into the GLR method. Each of these reflects
 

different assumptions made on the types of failure of interest. In the
 

preceding, the failure vector has been allowed to take on any value in
 

Rn or Rp , for dynamics or sensor failures respectively. It is often
 

the case however, that one has additional information concerning the pos

sible failure modes.
 

In some cases one may, by physical considerations, conclude that a
 

particular failure mode must necessarily be restricted to one of a par

ticular set of directions in state or output space. iThis is the case,
 

for example, when we know that only a particular actuator or sensor is
 

subject to the assumed possible failures. This leads to the constrained
 

GLR (CGLR) formulation, in which we constrain % in the form
 

V= Of f. C ff' ... ,I fr1 (1.41) 

where the f. are the hypothesized failure directions and a is the un] 

known failure magnitude. One then computes 

'C.(k,6) = f!d.(k,e)1 2 

_-1i (1.42) 
fC. (k,6)f. 

which gives the log-likelihood ratio for a failure of type i in the di

'rection f . (There may be different failure directions for differentJ 

failure types, which implies that not all i-j pairs need be considered.) 

We then compute the maximum likelihood estimates (MLE's) i, j, e and the 

MLE of the failure magnitude 
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A 

A f" (k) di ( k,k)) 
8(k) = f ()) (k) (1.43) 

D(k) i (k) 3 (k) 

By further constraining the failure such that the magnitude is also
 

fixed
 

v S { 1 ... vs} (1.44) 

we obtain the Simplified GLR (SGLR) formulation. Here one computes
 

9i (k,Q) = 2v!d. (ke) - VIC (k,) . (1.45)
1J JJ1 Ji J 

and uses the largest of these to determine the presence of a failure and 

the best estimates of i, j and e. In contrast to these two restricted
 

GLR techniques, we will refer to the original version, where no infor

mation about V is assumed, as 'full' GLR. 

This completes the introduction of the GLR-based approach to the 

detection of failures. The basic modeling assumptions, concerning the 

types of failure modes to which our attention will be directed, were
 

presented. A hypothesis testing problem was formulated, a solution to 

which resulted in what we will refer to generically as the GLR system.
 

It was also seen how variations of the main formulation result by im

posing some further constraints on the failures to be detected. This 

provides a useful way to incorporate additional information that one 

might have on the possible failures in a manner which may simplify the 

procedure and alleviate the computational requirements. 

We have not yet suggested what the expected performance of such a
 

system might be or what appropriate measures of such performance are.
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We will be dealing with questions like these throughout the rest of this
 

thesis. But first we will present the system to which we will apply our
 

failure detection scheme and on which our results are based. This problem
 

has, in effect, been the "test-bed" for assessing GLR performance character

istics.
 

1.2.2 Application Problem: The Reduced F-8C Model 

The essential concepts in the GLR technique for failure detection
 

have been introduced in the previous section. In addition to our analysis 

of the performance, and limitations, of such a system, extensive use of
 

simulations has been made. No attempt was made to generate complete
 

-and statistically significant data, or to provide any kind of final test 

of the system. The simulations did provide some confirmation of the
 

analysis and helped us to develop intuition into GLR behavior. Consider

able insight into the dynamics of failure detection was the result. 

The simulations were made by applying the GLR system to a simplified 

model of the longitudinal dynamics of the F-8C aircraft. The model on 

which the detector design was based is a second-order, discrete-time version 

of the aircraft longitudinal dynamics at several particular flight con

ditions.
 

The motivation for using this model lies in the need to have a model
 

of a concrete, physical system on which to implement the GLR detectors that
 

would provide some common grounds for comparisons. This model provides
 

a compromise in complexity between realism on the one hand and the
 

amount of computation and ease of interpretation on the other. At this
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stage in the development and study of the GLR approach to the detection
 

of failures, some qualitative results were needed in order to understand
 

its structure and performance characteristics.
 

Our model is derived from the continuous time representation of the
 

F-8C longitudinal dynamics, linearized about flight condition 11. Flight
 

condition 11 corresponds to level flight at an altitude of 20,000 feet,
 

at a speed of Mach 0.6 in cumulus clouds. It can be represented by a 7

dimensional model:
 

x(t) = Ax(t) + Bu(t) + Ggt) (1.46) 

where
 

xI = q, pitch rate ........................................... rad/sec
 

x2 = v, velocity - V 0[V = Mach no. x speed of sound] ......... ft/sec
 

x3 = a, (angle of attack) - (trim value)......................rad.
 

x4 = e,pitch attitude ......................................... rad.
 

x5 = 6ee, (elevator deflection) - (trim value) .................rad.
 

x6 = 6e , commanded elevator angle ............................rad.
 
c
 

x7 = w, normalized wind disturbance ......................... rad.
 

State variables = ' and x = 'e take into account the actuator dynae e 6 e 
c 

mics. The control variable is 

ut)= e ( -................................... 
e rad/sec (1.47) 
c 

The matrices A, B and G are 7x7, 7xl and 7xl, respectively. The wind
 

disturbance, x7=w, is modeled by the output of a first-order linear system
 

driven by the white noise process (t). The wind model arises from a
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given power spectral density 

T ) 2h - 4 1[W /- w = x 7 ] (.8 
= k (1.48)_(______[)wx 

rV0 4 + h W2 

livv 2
 

For flight condition 11, which is considered here, we have
 

h = 2,500 ft. (for altitudes > 2500 ft.)
 

V0= (0.6)(1,036.93 ft./sec) = 622.15 ft./sec
 

* = 15 ft./sec (cumulus clouds)
 

c (rad/sec)
 

which determine the values of G and statistics of E(t) in (1.46).
 

There are five sensor outputs given by z
 

(t) = Cx(t) + n(t) (1.49) 

where 

z2 = z , pitch rate measurementq 

z2 = zv , velocity error measurement
 

z 3 z , pitch attitude measurement 

z4 z 6 , elevator angle measurement
 
e 

z5 -z , normal acceleration measurement
 
z
 

C is 5x7 matrix and 1 (t) contains the five measurement noises which are
 

white, mutually independent random variables with given statistics
 

E((t)) 0 (1.50) 

E(T (t)'(t)) = (t-s) 

http:0.6)(1,036.93
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Reduction to a Two-Dimensional Model
 

Given this model, a simplified two-dimensional representation was 

obtained. (More on the F-SC model can be found in Athans & Dunn [6]). 

Some of the steps and considerations taken in the reduction of order of the 

model were: 

* 	ignoring the input dynamics represented by x5 and x6 , as they 

are not the main variables of interest in an aircraft dynamics
 

model.
 

* eliminating x7, the wind disturbance, as a variable and modeling
 

its effects on the remaining ones by a white noise process (i.e.,
 

we ignore correlation in the wind).
 

* selecting the variables with the highest signal-to-noise ratios 

among the observations and ignoring the rest. 

* 	using common sense and engineering intuition to correct and/or 

add for any other significant interactions. 

The two state variables which were finally selected are 

x7 = q, the pitch rate
 

x2 = a, angle of attack - trim value
 

The last step Wqas obtaining-the corresponding discrete-time model
 

to facilitate implementation on the digital computer as well as being
 

consistent with our intended discrete-time analysis. A discretizing time
 

step of T = 0.03125 sec (1/32 sec) was used. The resulting model for
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flight condition 11 was 

x(k+l) = 0 x(k) + Gw(k) (1.51) 

z(k) = Hx(k) + Dv(k) (1.52) 

where 0, G, H and D are the 2x2 matrices, 

[0.98258 
 -0.14649- [0.022596 0.0
 

0.03059 0.97193 0.004328 0.000226
 

H = ],D =[.00873 (1.53) 
0.0 16. 154 0.0 0.06 

The eigenvalues ofA0 are 

X(O) = 0.977 + j(0.0667) (1.54) 

and so the system is a stable one. The sequences w(k) and v(k) are zero 

mean, independent, white Gaussian sequences with unit covariance 

E(w(k)w(j)') = 16 kj ' 
6kj = k = j 

E(v(k)v(j)') = Z8kj (1.55) 

Note that the system (1.51), (1.52) is'equivalent to that of (1.1), (1.2) 

if we set Q and R from (1.3), (1.4) to be 

Q=GG' , R = DD' (1.56) 

The first step in designing a GLR system is obtaining the Kalman-

Buoy filter (KBF) corresponding to the unfailed system. For the system 

given by (1.51)-(17.55), the steady-state version of the filter described 

http:1.51)-(17.55


-34

by equations (1.15) - (1.21) of the previous section gives us
 

x(kjk-l) = x-(k-lk-l) (1.57)
 

&(klk) = x(kIk-1) + Ty(k) (1.58) 

with 

y(k) = z(k) - H2(klk-1) (1.59) 

1 (1.60)i = P,-

The filter error covariance matrix P =lim P(klk-i) is the steady-state
k4

solution of equations (1.18), (1.19) and gives K, the constant, steady

state Kalman gain matrix. The covariance matrix for the residuals, V, is
 

then given by (1.20)
 

V = HPH' + DD' (1.61)
 

The resulting matrices F, P and V are as follows for flight condition
 

11.
 

2
 
[7.5351 x 10

-1 4.6257 x 10


10-1 1.2748 x 10-2j
L1.3527 x 
4- 4[5.6311 x 10 1.0891 x 10 

1.0891 x 10 2.2130 x 10 J
 

4 10 - 3
 
1.7593
10F6.3933V -1 

1.7593 x 10 - I 9.3747 x 10-3J (1.62) 

The predicted estimate, as given by equations (1.57)-(1.59), can be put
 

in its recursive formulation
 

http:1.57)-(1.59
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A(k+lIk) = kk-1) + 4K[zCk) - HiCk k-1)]
 

- '(I---h)X2CkIk-1) + KzCk) (1.63)
 

with (D(I-KE) given by 

r0.2620 -0.85051 
'Z(I-H) = (1.64) 

[-0.1239 0.7489J 

The 	eigenvalues of the filter are
 

I 	
3 

0.09966 i=l

X. ((I-k))=(1.65) (ID(I-TH),)=0.91188 i=2
 

Notice the absence of the control terms in the system (1.51), (1.52)
 

and filter (1.57) - (1.59). They were not included ,since their effect on the
 

residuals is cancelled in the KBF. The detector is therefore not affected
 

and the analysis is simplified somewhat.
 

As 	was stated in section 1.2.1, our discussion on the performance
 

of the GLR system will be liwited to the detection of failures that can
 

be represented by the failure models 1-4. Recall the four basic failure
 

modes as applied to the simplified aircraft model.
 

1. 	State (Dynamics) Jump
 

x(k+l) = x(k) + Gw(k) + V6k+, (1.66)
 

2. 	State (Dynamics) Step
 

x(k+l) = x(k) + Gw(k) + Vk+l, (1.67)
 

3. 	Sensor Jump 

z(k) = Hx(k) + DV(k) + V k,e (1.68) 

http:I-k))=(1.65
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4. 	Sensor Step
 

z(k) = Hx(k) + Dv(k) + Vk,6 (1.69)
 

where V is the failure and ethe time at which it occurs.
 

In the design of a GLR system under the assumptions of these failure
 

models, some thought should be given to the proper use and interpretation
 

of the failure vector V. For the cases where the constrained or simpli

fied GLR are adequate or desirable this question is of particular im

portance. As their formulations implicitly depend on the hypothesized
 

direction and/or magnitude of V, it is reasonable to expect that the
 

careful selection of this failure vector will result in improved overall
 

performance of the detection system. Ultimately, this is a question of
 

physical and engineering considerations.
 

For the simulations, the failures were taken in orthogonal directions 

in failure space, V C R for 1, 2 and V 6 Rp for 3, 4 (n=p=2 for our

simplified model)." Thts, vectors of the form (V1 0) 'afid (0 V2) were 

considered for a range of values of 1 ' V2 thought to be of most interest. 

Let 	us take a closer look at the kinds of situations that these failures 

might represent in the case of the simplified F-SC modl.
 

Recall that x, = q is the pitch rate and that x. = a is the angle 

of attach deviation from the trim value. Thus a state jump of the form 

(V, 0)T or a state step of th& fotrm (0 V2)
T might be used to model the' 

effect of a -sudden -windshear that leads to an increasing angle, of attack. 

On the other hand, a jump of the form (0 V2) could be used to model a 

relatively long-term upward or downward gust that initially manifests 
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itself as a shift in U. A step of the type (N1 0) could arise from an 

elevator failure. 

In the observation equation, failure models 3 and 4, we have a simi

lar situation. A failure i 0) may
1\

model a bad data point in the measure

ment of q for the jump case (3), or it may represent a permanent bias in
 

that measurement for the case of a step (4). 
 Such a bias might be the
 

result of a component failure in a sensor, for example. 
By analogy, the
 

same may be said about a (0.V2 ) failure', which then refers to the measure

ment of a.
 

Table 1.1 summarizes the failure schedule implemented in the sima

lations. State and sensor failure magnitudes are given in terms of the 

standard deviations of the noises affecting each variable (1 a equals
 

one standard deviation of the noise). For clarification purposes U , a
qa
 
will denote the standard deviations of the noise in the dynamic equations 

for q and a,qanrespectively, and a'qn aqfo rspctvey, 0' will denote the analogous noise
 

level for the measurements of q and a. In table 1.2 the values of these 

10 noise levels are given. 

DETECTOR AND
 
FAILURE TYPE (N )T (0 V. 2 )T1 0 

STATE JUMP lq, 5q, 109, 
20q la, 50, I0, 20U0
 

STATE JUMP .la0, .5aq, 10 , 5a .iY , .5a, ia, 
5a 

SENSR JUPl q SaIOUq 5a,q 20U'lir, IOU', 20aq a
 

.0' , .5a', la' .1a', .Sal , la'
SENSOR STEP q q q a a a
 

5c' , 10a', 200' 5 10,', 200'
 
q a a
 

TABLE 1.1 Set of Failures Simulated
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STATE NOISE SENSOR NOISE
 

1 std. dev. = 1 std. dev. = 1 std. dev. = 1 std. dev. = 

- 3 - 2
 
2.2596 x 10- 2 4.3335 x 10 - 3  8.7298 x 10 6.0 x 10 

TABLE 1.2 Noise Levels in Standard Deviations
 

For jump failures nothing under lC was looked at since those jumps
 

would be undistinguishable from the noise. Such failure magnitudes were
 

considered for step failures since they are detectable because their sus

tained presence provides more information as time passes. Thistwill'be
 

seen in more detail when we examine the signature matrices G. (k,W) for
 

the various failure modes.
 

This completes our presentation and description of the system
 

model with which our numerical results of the simulations were generated.
 

We will have more to say as we go along.
 

1.3- SUMMARY OF THE GLR APPROACH AND OVMRVIEW
 

In the introduction we tried to define the goals of this effort:
 

to evaluate the performance of the GLR-based technique for the detection
 

of failures in the light of some analysis, and 'experience' via simulations
 

of its application to a specific dynamical system.
 

In section 1.2.1 the basic modeling assumptions and issues that will
 

concern us here were presented. A number of failure models were intro

duced, and what we will refer to as the GLR system was developed for the
 

cases to which this work will be restricted. A simple but adequate (for
 

our purposes) dynamic system model was discussed.
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In the following we examine the performance of a GLR detection 

system as applied to a specific example. In combination with some anal

ytic performance measures developed by Chow [12] and Willsky-Jones [5 J, 

the aim here is to develop insight into the practice of failure detection 

and the difficulties that arise. 

Chapter 2 will present some results obtained by a straightforward
 

application of the method in section 1.2.1 to the system presented in
 

.1.2.2. In a sense, conditions are set to be ideal: the GLR detection
 

system is based on exactly the same dynamics as the system which under

goes the failures. Furthermore, the correct detectors for the particular
 

failure modes treated are implemented. After some discussion in section
 

2.2 on the question of performance measures and GLR characteristics,
 

in section 2.3 some actual results are presented and interpreted,,providing
 

an initial evaluation of the failure detecting capabilities of the GLR.
 

Chapter 3 takes a look,at some of the limitations on the capability
 

of the GLR technique to correctly detect and identify the actual failure
 

mode present in a system. The question of distinguishing among several
 

possible failure modes is of central importance here. Some simulation
 

results from the GLR implementation in Chapter 2 are discussed. Knowledge
 

of these limitations obtained by increasing our understanding of the
 

method, suggests ways of'overcoming some of the difficulties and of
 

realistically evaluating our ability to handle failures.
 

After some familiarity with the GLR system performance character

istics is developed in Chapters 2 and 3, in Chapter 4 our attention
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focuses on the sensitivity of such performance to modeling errors. Im

portant questions on the final relevance of the GLR system for reliable
 

failure detection in applications where modeling errors may be substantial
 

are raised and an attempt is made to look for a way out of the difficulties.
 

Finally, in Chapter 5, we try to put our results in perspective and
 

to draw some conclusions. Discussion of the merits and drawbacks of the
 

GLR approach is followed by specific suggestions on means to overcome
 

the ma3or limitations on the achievable performance levels. Areas of
 

potential and of promising future work are pointed out.
 



CHAPTER 2 

CORRECT DETECTION UNDER MATCHED CONDITIONS 

2.1 MATCHED CONDITIONS AND CORRECT DETECTION 

The motivation for the use of the GLR technique was explained in
 

Chapter 1 and a framework for its use in the area of failure detection
 

was developed. As a tool for detecting and identifying the events that
 

we characterize as failures, the GLR technique offers some advantages.
 

The estimation of 0 and V, for example, provides some essential information
 

if compensation is required subsequent to the detection of a failure.
 

The possibility of some analytical evaluation of the anticipated per

formance is another reason for the appeal of this approach. 

In this chapter we examine the performance of an application of
 

the full GLR technique of section 1.2.1 to the detection and identifi

cation of failures in the system presented in section 1.2.2. The terms
 

'matched conditions' will be used to denote the modeling assumptions on
 

which the detection system design is based. We assume perfect knowl

edge of the system parameters and noise statistics. This is in con

trast to the situation referred to as 'mismatched conditions', considered
 

in Chapter 4, where modeling errors are allowed.
 

The main purpose here is to develop some intuition on the theoreti

cally optimal performance that can be extracted from a simple appli

cation of the GLR method to the detection of failures. Our approach is
 

qualitative in nature. It is meant to complement the work done by Chow 

[12] of a more quantitative kind. In addition to the overall understanding
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we expect to develop, this will also provide a reference performance level
 

with respect to which one can measure the degradation in detection and identi

fication.which takes place in a more realistic environment, where the system
 

does not perfectly correspond to the model.
 

Furthermore we also explicitly assume that the failure mode is 

known and, consequently, that we are able to implement a GLR detector
 

based on that mode. This is what is meant by correct detection, and
 

no judgment on the resulting performance is implied. It is clear that 

if we are certain about the kind of failure anticipated, then we can do 

at least as well, if not better, as when the failure type must first
 

be isolated. Chapter 3 considers the difficulties that may arise when
 

the failure mode is unknown.
 

The results under these conditions indicate how well the GLR
 

detection system can perform in under ideal conditions. Therefore 

expectations about what can,band cannot, be achieved will be firmly 

grounded. Section 2.2 presents some measures with which to evaluate 

the detection performance of the GLR technique. In addition, we begin 

to look at some questions on the detectability of the different failure 

modes. Then, in section 2.3, some results are shown from an application 

to the simplified F-SC model. Section 2.4 summarizes the results.
 

2.2 THE DETECTION PERFORMANCE OF THE GLR 

2.2.1 Performance Analysis 

We now begin our study of the performance of a GLR failure detection 
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system. In order to evaluate the performance and reliability of such a 

system, we need to select some indices that measure its quality. We look at 

the decision procedure in the GLR technique and at ways to characterize 

its dynamic behavior. This helps us to choose the detector parameters 

and to -resolve tradeoffs which are inherent in this method. Our aim is 

to understand well how the GLR technique works. 

If a condition of failure exists, changes are induced in the
 

behavior of the innovations of the Kalman filter. The GLR detectors
 

continually compute the correlation between the actual residuals and
 

their anticipated behavior under each of the failure hypotheses. This
 

concept is expressed by equations (1.26), (1.27) and (1.33)-(1.37), 

which describe the GLR detectors and procedure. The quantity C(k,)
 

is a normalized measure of that correlation between the system residuals
 

and the residuals under the best estimate of the failure mode. 

It is clear that for any configuration of the parameters
 

{M, N, i, e} which specify the GLR detectors, it is the statistical be

haviorof the random variable Z.1 (k,G) which defines the performance 

of the system. Some of the. features or characteristics of this behavior, 

such as delay times to detection and false alarm rates, for example, 

can be studied by examining)the evolution in time of the distribution 

of values that this variable takes under various conditions. Many in

teresting and important questions can be formulated in terms of certain 

events. These questions can then be transformed into the calculation of
 

probabilities. Such an analysis allows us to study in detail the numerous 

http:1.33)-(1.37
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tradeoffs that one faces in designing an acceptable failure detection
 

system.
 

Consider now a situation where a GLR detector is designed for
 

the failure mode which coincides with that of the actual failure taking
 

place. For simplicity we will drop i E {1, 2, 3, 41, the failure type,
 

in the following discussion. In (12J Chow shows that for the full'GLR
 

t(k,0) is a non-central, chi-squared (X2) random variable with n degrees
 

of freedom for state failure detectors, or p degrees of freedom for sensor
 

failure detectors (n is the dimension of the state and p the number of
 

measurements). The mean or expected value of t(k,0) is n + 62 (or
 

p + a2 for the sensor cases) where 6 2, the non-centrality parameter, is
 

given by
 

2 2
6= 62(k,e) = V'C(k,O)v (2.1) 

when a failure of size V occurs. 

This can be readily seen by examining the equations from the 

GLR. From section 1.2.1 we recall 

y(k) = y(k) + G(k,Q)v (2.2) 

d(ke) G' (j,)v-l (j)y(j) (2.3) 

k 

C(k,) G' (j,0)V- (3)G(j,) (2.4) 

and
 

- lZ(k,O) = d'(k,)C (k,6)d(k,O) (2.5) 
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Notice that in (2.3) and (2.4) the, lower limit in the summation has been 

replaced by 0.
 

By expressing (2.3) in terms of Y(k) one gets 

d(k,8) = d(k,8) + C(k,0)v (2.6) 
k 

d(k,0) = G'(J,0)V (i)(j) {d(k,e)ly =- (2.7) 

j=6 

This follows by simple substitution of (2.2) into (2.3). Here d(k,0) 

is a zero mean random vector with covariance matrix C(k,0), as may be 

easily verified given the properties of y(k). When a failure is present, 

d(k,e) has the same covariance, bit the mean value becomes C(k,e)V as 

(2.6) shows. Finally, using (2:6) in equation (2.5)
 

Z(k,O) = [d(k,e) + C(k,)vJ]'c-l(k,O)[d(k,0) + C(k,0)vJ 

= d' (k,P)c- (k,e)d(k,0) + v'C' (k,)c- (k,0)d(k,0) 

+ d'(ke)c- (k,8)C(k,O)v + \'C'(k,0)c-l (k,0)C(k,0)V 

= .(k,e) + 2VPd(k,8) + v'C(k,O)v (2.8)
 

where
 

t(k,e) = d'(k,8)c- (k,e)d(k,e) 

= {(k,e) ly=y} (2.9) 

and where use is made of the fact that C(k,0) is a symmetric matrix.
 

Using our knowledge that d(k,0) has zero mean value and taking 

expectations on both sides of equation (2.8),
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E(Z(k,e) = E(Z(k,e) + 2V-d(k,0) + V'C(k,0)v) 

= E(Z(k,0)) + 2V!E(d(k,0)) + v'C(k,0)V
 

= E'(Z(k,0)) + V'C(k,0)V (2.10) 

The linearity property of the expectation operator has been used here.
 

By identification with the result from (12] previously mentioned and (2.1)
 

we conclude
 

E((k,G)) = n + 62 (k,0) (2.11) 

If we remember the decision rule which completes the GLR procedure 

from (1.37), we can make some immediate observations. Given the updated 

d(k,0), once y(k) is computed, as in (1.40) for e in the range k-M < e
 
A 

< k-N as in (1.38), then 6(k) is chosen to be the e which maximizes the 

log-likelihood ratio in (1.36). A failure is declared to have, occurred 
AA 

at time 0 if Z(k,6(k)) exceeds a threshold E:
 

failure declared
 
A >C (2.12) 

no failure 

By studying the average behavior of 2(k,0) as given by (2.11) it 

is possible to develop some ideas on how well the decision rule (2.12) 

responds to failures of different kinds. This, in combination with the 

estimate of the failure in (1.32), can provide a picture of how the GLR 

system works and of its reliability. This means. that one must study 

in detail the changes in 62(k,6). By assuming for the moment that the 

value of the threshold s has been selected in some appropriate manner, 
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this kind of analysis will in the end provide the knowiedge necessary to 

choose C in a way that assures the best detection performance. 

The two quantities that determine,the evolution in time of 

2(k,O), V and C(k,e), illuminate some basic features of the GLR technique. 

The expression for 52
 

162(k, ) = v'C(k,O)V (2.13) 

already indicates two important facts. The way the failure vector V
 

comes into play appeals to our intuition that somehow larger failures should
 

be easier to detect. This quadratic dependence of 62 on the actual
 

failure is modulated by the generally time-varying matrix C(k,e). It is
 

this quantity, the information matrix, which brings to light how the
 

GLR approach uses information about the dynamic effect of failure on
 

the system residuals. Here lies the essence of the flexibility that
 

the GLR approach can bring to the failure detection problem: full use
 

is made of the characteristic response of the physical system and Kalman
 

filter to each failure mode.
 

The matrix C (k,O), given by equation (2.4), measures the in

formation available in the residuals at time k from a failure of type 

i occurring at time 8. It is therefore worthwhile to study how it 

changes for varying k and 8 for the different failure modes. Such a 

study will show how much impact each failure mode has on the GLR de

tectors and, consequently, the degree of detectability of various 

failures. In fact, this quantity-can be shown to be an observability 

matrix. For these reasons in the next section we take a closer look 
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at C (k,0). 

Complementary to the study of the average performance of the
 

GLR by way of the non-centrality parameter 62, one can define and com

pute various probabilities of the event that Z(k,G) takes on certain 

values or follows given patterns with k or 6 varying. Three useful
 

probabilities defined in [12] by Chow are: correct detection, wrong time
 

and false alarm probabilities, given respectively by
 

=PD Prob {.(k,e) > eIv, e=6t (2.14) 

P = PWT = Prob {Z(k,6)jv, e e t (2.15) 

t 

PF = Prob {Z(k,6) > s[Q=o} (2.16)
 

The correct detection probability PD measures how sensitive the detectors 

are by giving the probability at time k of detecting a failure V which 

started at time t . The wrong-time probability gives some idea of the 

detectability of a failure by indicating the accuracy of GLR in esti
mating the time of failure 6t and the persistence of the failure effects
 

for a > t. Finally, PF gives the probability that a failure will be de

dlared when no failure is present. It shows the sensitivity of the GLR
 

detectors to the noises in the system.
 

Although the fact that for the full GLR the t.(kO) are chi

squared random variables makes analysis difficult, one can compute the
 

values of these probabilities for cases of interest (see the appendix
 

in [12]). Figure 2.1 gives an example of how useful such computations
 

can be. It is a plot of PD for different values of the threshold and of
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2 
the non-centrality parameter for a X random variable with two degrees 

of freedom. This is the case for our example, which consists of two 

states and two observations. Notice that the curve corresponding to
 

2
2 = 0 is that of P., which is fixed once the threshold is specified.
 

The correct detection probability, however, is an increasing function of
 

62 as shown. For a given threshold, it is the value of 62 that determines 

the probability of detection.
 

Figure 2.1 points out one of the basic tradeoffs in the GLR
 

technique. By selecting C large enough the false alarm rate can be reduced
 

significantly, an appealing feature for failure detection. In doing so,
 

however, PD is also reduced for any value of 62 as the curves show. Thus
 

one is only able to detect failures for larger magnitudes of V. This
 

is true at a particular time step, since over a tine interval 62 (k,e) 

may grow enough to exceed the threshold. Two important concepts in inter

play can be observed here. In eliminating false alarms via a higher 

threshold, the same degree of detectability is achieved for larger failures 

only. On the other hand, the dynamic character of .?(k,e) for a given 

failure mode may be such that the value of t(k,e) required for detection 

is reached rapidly. This points out how studying C(k,O) in (2.13) is 

valuable for understanding GLR failure detection and also, in particular, 

for selecting the optimal value of the threshold.
 

We have-only mentioned-some of the possible performance measures 

which are useful to evaluate and understand a GLR detection system. 

Different indices can be used to study other aspects of detector performance, 



such as correlations of the ti(k,O) in time for various i, k and e,
 

for example. We will introduce some of these as we touch on the areas
 

where they are most relevant. The next section examines some important
 

elements of the GLR technique in more detail.
 

2.2.2 The Signature and Information Matrices
 

The last section.focused on the characteristics 8f t.(k,O) and
I 

on the way these change under different failure situations. It was seen 

that this random variable can be studied by examining how the non

centrality parameter 6 (k,6) responds to different failures. Thus one 

can develop some qualitative understanding of the dynamics of GLR-based 

failure detection and the detectability of the various failure modes. 

Also of practical interest is the development of some criteria for 

selecting those detector parameters, such as the threshold and the di

mension of the sliding time window, which greatly affect the performance. 

With these concerns in mind, we will concentrate on the information mat

rix, Ci(k,S). 

We have already commented on why this quantity is of importance 

in relation to 62(k,O) and, consequently, to the statistical behavior of
 

the log-likelihood ratio. In this section we will take a close look at
 

the values of this matrix for different i, k and 0. We will proceed
 

by first looking at Gi (k,e), the failure signature matrix, which is cen

tral to a study of C.i'(k,0), as (2.4) makes evident,
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The Failure Signature Matrix, G.(ke)
 

The basis for the GLR approach to failure detection lies, as
 

seen in Chapter 1, in the changes that failures induce in the residuals
 

of the filter in the system. These changes are specific to each failure
 

mode and, for the cases being considered here, they can be expressed
 

as the alternative hypotheses. 

H. y'(k) = y(k) + Gi(k,O)v i = {l,2,3,4} (2.17) 

where V is the failure vector and G0 (k,e) A 0 for all k and e. Hence, 

the time histories of these signature matrices are very informative with
 

respect to the degree of detectability of each failure mode. For a
 

given failure v we can anticipate the capability of the GLR to accurately 

detect-and estimate it if we understand how the Gi(k,0) behave. Ex

pressions for the signature matrices for the four failure modes are in

cluded in Appendix A. 'These show the dependence of Gi (k,8) on the system 

and filter parameters. 

We have computed the G. matrices for failure modes i = {1,2,3,4)

1 

for the reduced F-8C model. They are plotted in Figures 2.2-2.5 as a 

function of r=-k-0 for the steady-state filter case. Before discussing 

these curves, let us concentrate briefly on the elements of these matrices. 

Consider AY, the deviation in the residual due to a failure V,
 

from the expression (2.17)
 

Ay(k) = y(k)- (k) = Gi(k,0)v (2.18) 
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or, in more detail,
 

(219
 
92 (k-6~M- )
11nk
:A1(k J 

i t h The row of G(k-O), gil and gi2' gives the effect of the failure on 

the it h component of the residuals. Alternatively, the ith column of 

the signature matrix, g1j and g2j , gives the effect of the jth failure 

component, V , on the different elements of the vector of residuals. 

For the two-dimensional F-8C model with failures taken in 

orthogonal directions, we get the following. For pitch rate failures 

of the form V = [V1 0)', 

AYk) = g1 1 (k-)V1 (2.20) 

Ay2(k) = g2 1 (k-O)v 1 (2.21) 

while for angle-of-attack failures, V = [0 V ]' 

AYI(k) = g1 2 (k-O)V2 (2.22)
 

AY2 (k) = g2 2 (k-G)v2 (2.23)
 

Comparing the gij (k-6) for different failure modes provides in

formation about the distinguishability of failures of different modes.
 

This is a very important consideration and will be discussed in more
 

detail in Chapter,3.
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Figure 2.2 and 2.3 are plots of the signatures for the aircraft
 

example, where the failure modes correspond to state jump and sensor
 

jump respectively. Notice, first of all, that the elements of both
 

matrices die out as r, the elapsed time from the occurrence of a failure,
 

increases. This is not surprising since both the system and the filter
 

are stable. So, for the jump failures, the signatures reflect the im

pulse reponse of the system and filter. A sensor failure enters the
 

filter directly while a state failure does so only in proportion to its
 

effect on the output of the system. The figures indicate that the sensor
 

jump signatures tend to zero much faster than those of a state jump
 

failure. This is in agreement with the fact that the time constants of
 

the filter are smaller than those of the system for the reduced air

craft model.
 

The signatures for the cases of state step and sensor step
 

failures present a different picture however. Figures 2,4 and 2.5 con

tain plots of their respective elements (for a longer interval in r).
 

Some of these curves now grow with r, rather than dying out. This is
 

a reflection of the different nature of these failure modes, The sus

tained effect of a step failure on the residuals is in marked contrast
 

to the case with jump failures. Given that the residuals are the inputs
 

to the detectors, this implies that step failures are more detectable 

than jump failures. Recall that in the GLR detectors, weighted sums
 

of the residuals are sequentially computed over the interval determined by
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the moving window parameters M and N, as in equation (2.3). The per

sistent, if Aot increasing, deviations in the residuals apparent in
 

Figures 2.4 and 2.5 suggest that higher values of ti (k,G) are achieved
 

and that, in fact, these likelihood ratios grow in time. Consequently,
 

better detection should follow, for a fixed threshold, than for the case
 

of jump failures. By the same token, it is reasonable to expect that
 

the estimation of V will be better for step failures than for jump failures.
 

It is important to realize what the shapes of the different
 

signatures tell us about the system and the failures. Recall that the
 

signatures indicate how the Kalman filter yields dynamically-reiated
 

estimation errors when a failure is present. These properties of Gi (k,e)
 

translate directly, as will be emphasized, into the properties of the
 

detection performance of the GLR.
 

Consider again the plots of G.1 (k,6). Notice how for the state 

failures (Figures 2.2 and 2.4) the dominant values corre'spond to g22
 

and g2 1 ' in order of importance. As equations (2.20)-(2.23) indicate,
 

these g's give the components of the prediction error in a due to failures 

a (g2 2 ) and q (g21). It is interesting that the main error caused
 

by the q failures is in the estimate of a (as g2 1 > g 1 1 ). 'This reflects 

the way in which the effect of the failure propagates through the system
 

and the filter. What the relative magnitudes of the curves for g2 2 and 

g2 1 imply is that state failures in a are more detectable than similar 

failures in q. Or, the same degree of detectability is achieved only
 

In the case of sensor
 

-in 


for relatively larger failures in q than in a. 


http:2.20)-(2.23
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failures (Figures 2.3 and 2.5), on the other hand, the converse is true:
 

failures in q are more detectable than those in a. (Notice that, in
 

-
general, gil > gi2' i = 1,2). Here again, the off-diagonal elements of 

the signatures (g2 1) play an important role for failures in q. For 

these failures the increase in q (the pitch rate) slowly integrates into 

a (angle of attack) in the filter. Thus, the estimate of a becomes in

correct to the extent that it leads to the dominant error. So the failure 

in q actually manifests itself mostly in the inconsistency between the 

true and predicted values of a. The GLR technique exploits these dyna

mic characteristics which are a consequence of the properties of the 

Kalman filter. 

The failure signatures also provide information concerning the
 

capability of the GLR to correctly identify and estimate et, the true 

failure time. The plots suggest that jump failures might lead to better 
A 

estimates e than step failures. This is due to the largely localized 

effect on the residuals at the initial times. For step failures, which
 

may become more detectable with time, the initial values of the signa

tures are not the largest in general.
 

That is, the fact that the effects of some step failures per

sist in the residuals is clearly seen by a signature that persists.
 

However, by its very nature, a persistent signature has an autocorrelation
 

function that is not particularly peaked. Thus, for such failures we
 

expect good detection performance but anticipate inaccuracies in our
 

estimate of 8t - To see this point, the reader may want to compute the
 



autocorrelation functions of g2, in Figure 2.3 and g2 1 in Figure 2.5.-


This clearly indicates the increased detectability of step failures (as
 

indicated by the magnitude of the autocorrelation), and the increased
 

problem in resolving.the failure time e (as indicated by the peakedness
 

of the autocorrelation).
 

Finally, the signatures tell us about the relative distinguish

ability of the failure modes. If two different failure modes have simi

lar signatures, potential difficulties arise in discriminating between
 

them. In full GLR the estimate V is free to take any value in failure
 

space (e.g., a combined a and q sensor failure). Hence, the incorrect
 

detector can select V as that V which would best account for the ob-

A 

tained likelihood ratios although this V might not be physically mean

ingful. This suggests that other GLR formulations (such as CGLR or
 

SGLR, Chapter 1) might have less of a problem in choosing the correct
 

failure mode for these cases. Since the failure estimate is constrained
 

in direction and/or magnitude, different values of the likelihood ratios
 

should result. Looking at the-signatures, for example, one can anti

cipate possible difficulty in telling apart a sensor step in q from 

a state step failure in either q or a. The signature curves for these 

cases can look somewhat alike with proper scaling (which is done by V). 

Also, there is a potential problem in distinguishing~hetween a q state 

jump and an a sensor step. Notice the qualitative similarity between 

g2 2 ' g12 in Figure 2.5 and g11 , g2 1 in Figure 2.2 (with the proper scaling).
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This distinguishability problem clearly involves-cross-correlations of
 

the various signatures. We will discuss this topic further in Chapter
 

3. 

The Information Matrix, C.M(k,)
 

One way to interpret the statement that C.1 (k,0) measures the 

information in the residuals at time k from a failure of type i at time 

S is to view it geometrically. C.1 (k,O) has the form of an ,inner pro

duct or projection operator. For example, the non-centrality parameter
 

can be expressed, using (2.4), 

2(k,6) = v'c (k,@)v 

k 

= Vt Si(j,O)v-l(j)Gi(J,)v 

k 
Z 'Gi ' (j)Gi( , O)t(je)v-l 

j=0 

= <G.(., 8)V, G.(-,e)v> -1 

= JIGi (- ' 2 1V .( ) (2.24) 

where the symbol (,) represents the time index which runs from j=e to
 

j=k. In this case the projection of the failure signature onto itself
 

gives a squared-norm measure of the deviation Ay in the residuals over
 

the time interval from 6 to k. It is reasonable then that a failure 
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mcde-resultingin a lasting presence in the residuals process, such as
 

one of the step failures, will lead to large values of the non-centrality
 

parameter. This corresponds to a high degree of detectability as the
 

probability of correct detection PD increases rapidly. 

Suppose the failure vector N is in a given direction, V=[V1 0]'. 

Then 62 (k,e) is just a particular element of the information matrix 

with a scaling factor
 

2(k,e) tV, oj [ 11(ke) C12(k~) 1 [V
 

C22(k, ) J
 
121(k, ) 


(2.25)
= VC2l (k,6)
1 11
 

Similarly for the other direction in the two-dimensional case. This
 

means that the elements of Ci (k,e) give the directional sensitivity of
 

a detector for failure mode i'to different failures V. The off-diagonal
 

terms measure the effect on detectability of non-orthogonality in the
 

failure directions. The study of the changing values of the information
 

matrix is then an additional way of learning about the failure modes
 

and the capability of the GLR method for detecting them.
 

If the signatures for the jump failures tend to zero as the
 

elapsed time increases, then the information matrix reaches a steady

state at a fast rate. This is due to the quadratic form of C (k,e)
 

and to the fact that additional terms contribute less as r increases.
 

The contrary is true in the case of step failures, where the signatures
 



-64

either grow or remain at non-zero values. Here the information matrix
 

does not necessarily reach a steady-state, as more information is ac

cumulated with every term in (2.4).
 

Figures 2.6 - 2.9 illustrate this. They are plots of the non

centrality parameter and correct detection probability versus the elapsed
 

time r. They correspond to jump failures (Fig. 2.6, 2.7) of magnitude
 

5a and 5a' for the state and sensor detectors and to step failures
 

(Fig. 2.8, 2.9) of i0 in the state and 5G' in the sensors. Figures 2.6
 

and 2.7 are related to the failure signatures in Figures 2.2 and 2.3.
 

We see that in fact 62 reaches steady state almost immediately for the
 

sensor 3umps while it grows at a diminishing rate for the state jump
 

failures. 

Similar comments can be made about the curves in Figures 2,8 and 

2.9 in reference-to the signatures in Figures 2.4 and 2.5. The dif

ferences and similarities among these curves are very informative of
 

the performance of the GLR detectors. Careful analysis and observation
 

reveals how the specific and characteristic dynamics of the system

filter combination are reflected in these varying degrees of detectability. 

For example, consider the &2 curve for a sensor step in a,
 

shown in Figure 2.9. While the 62 curves for the other state and sensor
 

step failures show a non-diminishing rate of increase, this one reaches
 

steady-state eventually, for the same time interval. The angle of
 

attack a is approximately the integral of the pitch rate q. To the extent
 

that this is true, a state jump in q is similar to a step increase in the
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value of a at the input to the filter. This can be seen qualitatively 

in the fact that the sensor step 62 curve for a in Figure 2.9 is not 

unlike that of a state jump in q in Figure 2.6. Analogous comments 

hold for the signature curves g1 2 (r) and g22(r) in Figure 2.5 and the
 

curves g1 1 (r) and g21 (r) in Figure 2.2, as was mentioned in discussing
 

the signatures. This points out how the similarity in the signatures
 

for two different failure modes, as suggested earlier, may lead to
 

problems in distinguishing failures. The same comment can be made from
 

these curves about sensor step failures in q and state step failures
 

of both kinds. The similarity in the growth of 62 with time is re

markable, although not surprising considering the corresponding signa

tures.
 

For linear time-invariant systems, it makes sense to speak of
 

a steady state. The rate of convergence of C. (k,e) to such a limit is
 

a useful indicator of the length of the window to e chosen, over which
 

6 is to be selected in maximizing Zi (k,6). For jump failures in the
 

sensors it is clear that if they are not detected right away, the odds
 

on doing so are not improved by waiting. The non-centrality parameter
 

and PD reach their final values almost immediately. In contrast to
 

this, for step failures 62 is increasing in general with the elapsed
 

time and, therefore, a longer window length would indeed enhance the
 

possibility of detection significantly. It must be noted of course,
 

that the value of the parameter M thus selected depends also on other
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considerations. The actual size of the failure V must be taken into 

account. For a large enough N detection can be immediate for any
 

failure mode and implementing a large sliding window (large M) is waste

ful and unneeded computationally.
 

All references made in the above discussion to the non-centrality
 

parameter 62 (k,@) assume we know 6 to be the time of failure. If so,
 

then 62(k,e) is a measure of the average behavior of Z(k,O= t). In fact,
 

however, 0t is considered unknown by the GLR detectors until the decision
 

is made by first maximizing .(k,O) over k-M<O<k-N. For each 8 in the
 

moving window there is a matched filter d(k,6) which will give the
 

likelihood t(k,0) that a failure began at that time. The d(k,k-N),
 

d(k,k-N-l), ... , d(k,k-M) "scan" the recent past for possible failures. 

In the maximization operation ,(1.36), the GLR detector in effect 'slides'
 

the signature Grk,6) over the time history of the residuals in the inter

val given by the window. Then 6(k) is selected as the 'starting' time 

for which the best correlation is achieved. This correlation is given
 

by Z(k,6(k)). 

Here we have exposed the dual nature of the dependence of Z(k,e) 

on its arguments. For a fixed 8, S(k,8) for increasing k predicts the 

behavior of t(k,6), as long as that e remains in the moving window (the 

window k-M<6<k-N is referenced to k, the 'present' time). So, if 6=6t 

then 2(k,6) gives the growth pattern of the correlation as it evolves 

in time. However, for a fixed k, t(k,6) with 6 varying over the window 
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is a measure of that correlation for different possible 'starting' times 

(in a sense an autocorrelation, assuming a failure has occured). The 

values of Z(k,O) for neighboring O's reflect the time structure of the 

failure signature. Therefore it will be different for the various failure
 

modes. We will have more to say on this in section 2.3.4.
 

The non-centrality parameter for t(k,6) when e y8 t is given
 

[12] by 

62 (k,elt (2.26)
eC'(k,6Iet)c-1(k,0i@)C(k,eJO)V 


with k 

C(k,810t) E o (j,)v-l(j)G(jOt) (2,27) 
j=e

and 

0 = max(0,O ) (2.28) 

Notice that for 8=0t this reduces,to 62 as in (2.13). The expression 

in (2.26) is in effect an autocorrelation function for the residuals. 

It gives the sensitivity of the detector to the error in the estimate 

of et . If 62(k,6 et) does not vary much for small T=O-Ot, the GLR 

detector is likely to choose the wrong 0 as often as the correct one. 

We have already suggested that this might be the case for step failures 

in general. But if 62(k,1lt) drops sharply in value for small T, the 

detector will have little trouble 'in consistently choosing 0=6t. By 

selecting 6 as the 0 for which Z(k,O) is largest, this is almost assured. 
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Consider the expression for C(k,OIet) in (2.27). If we let
 

r=k-e and sk-8t we can write
, 


in(rs)

C (k,el@ t ) =E G I (Y-)V-IG (Z+T)
 

t-0
 

= C(rs) (2.29) 

for tha time-invariant case, with T=s-r. This gives the value of the 

autocorrelation in the signatures for a fixed T. When T=0 we get back 

the original information matrix
 

C(k,6) = C(r,r) (2.30) 

Thus the non-centrality parameter in (2.26) is a normalized autocorrelation 

function for the failure V when viewed as a function of T (i.e., with 

6 as the variable since T=8-t). 

- 1 62 (k,! Ot) "=V'C'(r,s)C (r,r)C(r,s)v 

- 2 (rs) 

= &2(r,r+T) (2.31)
 

Going back briefly to the failure signatures with equation (2.29) 

in mind, we can see how the wrong-time information matrix reveals the
 

time structure of the different failure modes. Clearly the jump failures
 

(Figures 2.2 and 2.3) lose correlation rapidly as T, the time shift, 

increases. This is more pronounced for the sensor jump, where the tran

sients disappear very quickly. Then 82 (k,6f8t ) drops sharply in value, 
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for a fixed k, as e varies. For the step failures (Figures 2,4 and 2.5) 

this is no longer the case, As T increases C(kOI t) in (2.29) changes 

little because of the larger, if not- increasing, values of the signatures. 

Thus 62(k, Clot) does not change drastically for small T=-et. Since 

2 is a function of the failure, these results are modified depending
 

on V. For example, the signature for sensor step failures (Figure 2.5)
 

indicates that-the autocorrelation for a failure in q is higher than for
 

one in a. For a q failure the situation is much like that for the
 

state steps while for a it is more like for the state jumps. We will
 

discuss this further in the next sections and in Chapter 3.
 

One other consideration in deciding on the selection of the 

detector parameters is the desired quality of the failure estimate V. 

In some cases this might not be an issue at all, but if, for example, 
A 

the value of V will be used in compensation adjustments following de

tection, the estimation accuracy gains in importance. In 112] Chow
 

showed that the error covarirnce of the estimate V(k), which has mean
 

value V, is given by
 

A A-

E([V-V] [V-V]') = c-(k,0) (2,32) 

under the assumption that the full GLR detector has selected the true
 

failure type and time of failure 0.
 

In Figures 2.10-2.13 the elements of C- (k,e) are plotted for
 

r=k-, based on the simplified F-SC model. One can see that for the jump
 

failures, in both the state and the sensors, the best estimation accuracy
 

http:2.10-2.13
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is achieved in less than five time steps. For step failures however,
 

Figures 2.12 and 2.13 indicate that waiting up to twenty time steps can
 

result in improved estimation. Again, this all agrees with the notion
 

that those failure modes leading to more persistent effects on the
 

filter residuals provide more information with time. Since the GLR
 

detectors are computing the correlations between these residuals and their
 

hypothesized values for each failure mode, better estimates result from
 

having more data available. The signal-to-noise ratios are inherently
 

much higher in some failure modes than in others, Notice, for example,
 
-l
 

that for the sensor failures (Figures 2.11 and 2.13) the element C22 

of the covariance matrix is the largest consistently. This means that 

less confidence exists on the estimate of the second component, 2'
 

of the failure; the angle-of-attack component. In equation (1.52) in
 

Chapter I we can see that the measurement of a has a higher noise con

tent than that of q,. This, incidentally, is reflected in the Kalman
 

gain matrix in the filter, where the larger gains are in the first
 

column (see (1.61)), More weight is given to the information in the i 

residual than to that of a. Going back to the signatures, Figures 2.3 

and 2.5, the sensor failures in q lead to the largest values of the 

gij for both jumps and steps, On the other hand, Figures 2.2 and 2.4 

indicate that a state failures have the largest signatures. Figures 

2.10 and 212 show 22 to be the smallest values accordingly.
 

Before leaving this section, some remarks on the invertibility
 

of the information matrix point out some interesting connections to
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other results. Given the GLR technique, for a failure to be detectable
 

it must be able to influence the output of the system. For this reason
 

all sensor failures are detectable, although the degree of detectability
 

may be small for a particular failure. The noise disturbances in the
 

system in fact impose a lower limit on the detectability of some sensor
 

failures. The question is really one concerning the observability of
 

the system in the absence of failures, Clearly, failures originating
 

in an unobservable region of the state space will go undetected by a
 

detection system that uses the output measurements, or the residuals
 

of the Kalman filter (which is equivalent), as the information input.
 

In [12] it is shown that the information matrix is invertible 

if the system is observable and, in fact, C(k,6) can be interpreted 

as an observability matrix. For sensor failure modes C(k,6) is always 

invertible while for state failure C(r) is invertible if the system is 

observable in r steps or less, If the system is time-varying, the re

lation to observability still holds, although with some modifications 

(see Chow [12]). The result on invertibility may be used in the se

lection of the other window parameter, N. One can choose the value of
 

N in the window k-M<e<k-N such that C- (N) exists.
 

Finally, it must be mentioned that one may study the detectability
 

of different failure directions by looking at the behavior of the
 

eigenvalues and eigenvectors of C. (k,e). It has already been mentioned
 

that the elements of Ci (k,O) give the directional sensitivty of the
 

GLR detector for the ith failure mode. The eigenvalues and eigenvectors
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of this matrix also provide useful information in this area. For a fail

ure aligned with one of its eigenvectors, the non-centrality parameter
 

of interest is proportional to the corresponding eigenvalue while the
 

covariance of the estimate is inversely related to it. For more on this
 

see Chow [12].
 

This concludes our comments on the failure signature and infor

mation matrices. We have tried to understand some of the structure of
 

the GLR technique in order to develop some intuition into the performance
 

that one can expect under various failure situations. We will utilize
 

this intuition again when we discuss the problem 6f cross-detection in
 

Chapter 3.
 

2.3 SIMULATION RESULTS FOR CORRECT DETECTION
 

At this point we are in the position to-study some simulations
 

of a GLR system. The results in this section conform to the assumptions
 

behind the correct detection formulation under matched conditions.
 

2.3.1 Detector Implementation
 

The simulations were carried out on an IBM 370 digital computer,
 

under the two-dimensional, discrete-time model of the F-SC aircraft.
 

The noise disturbances were taken from a random number generator with
 

standard normal distribution 113].
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Since numerous simulations were done, a specially designed 

Fortran program, the Multiple Detector Simulation Program (MDSP), was 

used for these purposes. MDSP simulates linear, time-invariant, discrete

time systems with their steady-state Kalman-Bucy filters. Up to four
 

GLR detectors can be implemented at a time for failure modes 1-4, in
 

any combination and window sizes. Once the system, filter and detectors
 

are specified, any of the four kinds of failures can be introduced. The
 

output can be selected to display different quantities of interest.
 

These include the state, its estimate, the residuals and the output of
 

the detectors. The detector performance is available in terms of the
 

Z.(k,e)ts, the detection decisions and the estimates e(k) and V(k).
1 

Different combinations of this information can be displayed or suppressed
 

for any run. A description of MDSP and its user options is contained
 

in [13]. 

In Figure 2.14 a flowgraph illustrates the implementation and
 

,operation of the detection scheme. Once the system data (in the form
 

of parameter matrices, noise statistics and filter gains) are read
 

in, MDSP proceeds to compute and store the Gi(k,e) C (k,e), C. (k,G)
 

and V-1 for the length of the windows to be implemented, M-N+l. The
 

simulation then begins with specified initial conditions and thresholds
 

for the detectors. At the chosen 0., the failure V from the selected
 

failure mode is introduced into the system. Meanwhile, at every time k
 

the filter residuals enter the detector algorithms. The matched filters
 

are updated and the log-likelihood ratios are computed for each e in
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the range of the moving windo&."
 

d. (k,e) = d. (k-1,e) + G (k,)v-l (k)y(k) (2.33)
1. 1 1 

e C S = {Ojk-M<0<k-N} 

ti(k,e) = d!(k,)Cl (k,O)d (k,0) (2.34) 

Detection is declared when
 

ck,e) (2.35)max ( > e
OsS 1
 

for each detector, in which case the MLE's of 0 and V are produced
 

o (k) = arg(max l(k,O)) (2.36) 
s
 

V . (k) = C l (k,e(k )) d. (k,(k)) (2.37) 

The threshold 6 was set to C=5, a relatively low value, in order
 

to study the effect of the noises on detection (i.e., false alarms,
 

estimation accuracy, delays, etc.). In addition, this allowed the per

formance forhigher thresholds to be inferred from the data since all
 

the necessary information (the Z's) was available. The moving window
 

for 0 was chosen as follows:
 

Jump Detectors (i-1,3)
 

M =10, N=0 (2.38)
 

Step Detectors (=2,4) 

M = 30, N=O (2.39)
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The value of N is justified since this is an observable system. The
 

parameter M was chosen with the discussion in 2.2.2 taken into considera

tion. That is, for jumpfailures a longer window in the detectors would
 

provide no further information. Figures 2.2-2.3, 2.6-2.7 and 2.10-2.11
 

indicate that the short-lived effects of these failures are detectable
 

immediately following their occurrence or not at all, On the other
 

hand, a look at Figures 2.4-2.5, 2.8-2.9 and 2.12-2.13 shows how the pro

longed presence of the step failures leads to improved detection. The
 

detectability and accuracy in the estimates for these failures benefits
 

with the passage of time. The value of M selected represents a com

promise between these factors and the computational and storage require

ments. 

The failures were simulated one at a time for the range of magni

tudes and directions shown in Table 1.1. The motivation and interpretation 

of the failure events modeled by these vectors were discussed in Chapter 

1. Consideration of these failures in the different state variables and
 

sensors enables us to appreciate the way the system dynamics and detector
 

response are related, For each failure simulated in this section two
 

different realizations of the noise sequences were considered. While
 

this does not statistically validate the results, it does provide insight
 

into GLR performance.
 

2.3.2 False Alarms:Detector Sensitivity
 

We begin the evaluation of the simulation results by looking
 

at false alarms. This is an important issue in the design of the GLR
 

http:2.12-2.13
http:2.10-2.11
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detectors since detection cannot be reliable if they are overly sensitive
 

to new data. 'Detection' in the absence of failures is no better than
 

neglecting to detect one when it is present, A study of the resulting
 

false alarm rates for a given implementation of the GLR detectors is
 

therefore crucial. Dealing with this problem involves one of the main
 

tradeoffs in the design of a failure detection system. Its resolution
 

lies in the selection of the threshold. A large value of the threshold
 

can eliminate most or all false alarms, but at the expense of other
 

factors in the quality of detection.
 

Figure 2.15 shows a plot of
 

Z(k,6) = max Zi(k,6) 	 (2.40) 

/ 

for the state jump and state step (1=1,3) detectors for a run with no
 

failure. At a time k, Z*(k,6) is the largest log-likelihood ratio for
 

all the 8's included in the window, The data corresponding to the state
 

3ump detector stops at k=20. Two facts are noteworthy here:
 

" 	a relatively small change in the threshold can reduce
 
the number of false alarms very effectively
 

" 	the jump detector is more sensitive to the noise on
 
the average, than the step detector
 

The first point is encouraging since most failures of interest
 

are likely to still be detectable after a small change in the threshold.
 

Large values of the non-centrality parameter are not uncommon (see the
 

62 plots in section 2.2.2), thus assuring a good probability of detection.
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With respect to the second remark; jump failures can be thought of as 

noise spikes or outliers outside their statistical distributions. Con

sequently, the jump detectors can be "fooled" by a noise sequence with 

large spikes. By the same token, step failures involve persistent effects 

and thus are less susceptible to short bursts of noise. 

In Table 2.1 we compare some results from false alarm (V=0)
 

simulations with previously computed values of the false alarm pro

babilities for different thresholds, Recall the definition of P

F 

P= Prob {z(k,e) > 6IH0 } PF0 

=f p((k,)IH0)dC (2.41) 

The numbers offerred for comparisons are ratios of times when Z(k,e) 

exceeded the threshold to the total number of time steps, NTS, for 

each particular run. NTS equals 20 for the jump detectors and 40 for the 

step detectors. By ND we represent the number of times that detection 

was declared, iae., times k for which t 1 (k,6) > E. NDD however, is a 

more meaningful measure of false alarm rates than ND. It is the total 

number of distinct detections: detections declared as different events. 

This was determined by the estimate 6 of the "failure" times (different 

O's corresponding to distinct detection). So, for example, three detec

tion decisions in a row at times k-1, k-1, k declaring a failure as having
 
A 

occurred at some 1 is counted as 1 for NDD but as 3 for ND. While ND/NTS 

1l)-' 



State Sensor State Sensor 

Threshold Computed 
p 

Jump 
ND/NTS 

.. 

NDD/NTS 

Jump 
ND/NTS 

, 

NDD/NTS 

Step 

ND/NTS NDD/NTS 

Step 

ND/NTS NDD/NTS 

6=5 0.082085 0.575 0.700 0.475 0.7625 
0.125 0.100 0.150 0.150 

E=7 0.030197 0.175 0.575 0.3375 0.300 1 
0.100 0,075 0.0875 0.125 1 

t=10 0.006738 0.0 0.300 0.2625 0.1125 
0.0 0.050 0.025 0.0625 

c=14 0.000912 0.0 0.175 0.1625 0.0 

0.0 0.025 0.0125 0.0 

Table 2.1 False Alarm Rates for Different Thresholds 
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says something about the accumulated effect of the noises on the sensi

tivity of the detectors, NDD/NTS in a sense sifts out the effect of
 

particularly large noise values once they result in a detection decision.
 

Although admittedly primitive, these counts qualitatively confirm
 

the anticipated relationship to the value of the threshold. One would
 

need a much larger data set over which to obtain a truer image of the
 

noise handling capabilities of the GLR detectors. As previously sug

gested, state jump and step detectors show a tendency to be less affected
 

by the noise than the sensor detectors. The reason is that the system
 

acts as a low-pass filter on the plant noise. In this sense then the
 

measurement noise is potentially the bigger problem for detection, A
 

different kind of failure detection criterion - one which checks for
 

persistence in the e(k,e)'s - would show greatly reduced false alarm
 

rates. One such test might, for example, count only when Z(k,o) re

mains above the threshold or grows in time. This would take advantage 

of the patterns in the likelihood ratios, as a function of k and 6. 

We will talk about this further in section 2.3.4.
 

2.3.3 Failure Detection
 

We have seen the response of the GLR detectors in the absence
 

of failures. The next question is, how well can the GLR system spot
 

and track a failure once it has taken place? With good performance
 

we associate fast detection following a failure and reasonable accuracy
 

in the estimates for the time of failure and of the failure itself. The 
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identification of the correct failure mode is not an issue here, but it
 

is the topic in Chapter 3. complementing the discussion on the detect

ability of different failures, we now look at the simulations with failures.
 

One must keep in mind that the failure size is measured here in propor

tion to the intensity of the corresponding noise disturbance that affects
 

the system in the same way that the failure does,
 

One good piace at which to begin an evaluation of the detection
 

performance of the GLR in the simulations is with the delay times. If
 

a failure occurs at time Ot, then the delay time, T=k-8t, until the de

tector declares a condition of failure is a good indication of the sen

sitivity of the detection system. If the delays are too long the detec

tion system may be useless. This presents the other side to the trade

off in the selection of the threshbld, For a given application one must
 

reach a decision which is a compromise between tolerable false alarm
 

rates and delay times in detection. No general rules can be put forth
 

since the criteria change with the system and the failures that are con

sidered important.
 

We have computed the delay times in the detecti6n of the failures
 

simulated. Table 2.2 includes the detection delays for all the state
 

and sensor jump failures simulated for the threshold set to the values
 

5, 7, 10 and 14. They are grouped by failure mode and by the direction 

of the failure vector: pitch rate and angle-of-attack (and their measure

ments). The columns in Table 2,2 show the delays for all the failures
 



STATE JUMP: (V,0) 	 SENSOR JUMP: (V,0) 

V C=5 e=7 e=10 e=14 v E=5 e=7 P=10 e=14 

5 Icr 2,4 3,4 3,5 7,9 la 0,0 0,W 0, 4,w
 

0,5 0,w

5a 0 0 0,0 0,0 0 ,i 501 	 , U : 

0 ,i 


20cr 0,0 0,0 0,0 0,0 20a' 0,0 0,0 0,0 0,0
 

10u 0 ,0 0 0 0 0 0 0 i0u ' l 0 , ,w ,W
 

STATE JUMP: (0 V2) 	 SENSOR JUMP: (OV 2 ) 

ia 0,0 0,0 15,0 W,2 10' 0,0 0,0 0,0 7,w 

5a 0,0 0,0 0,0 0,0 50' 0,0 0,0 0,0 0,0 

10G 0,0 0,0 0,0 0,0 10a, 0,0 0,0 0,0 0,0 

200 0,0 0,0 0,0 0,0 200' 0,0 0,0 0,0 0,0 

Table 2.2 	Delays in Detection for Different Thresholds:
 
Jump Failures.Measured in time steps from eT
 

(One time step = 1/32 of a second).
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with a fixed threshold while the rows select a particular failure for 

the various thresholds., The -twojentries at each point,in the table 

indicate the delays fori two differen sample runs,.i.e., .wih diltinct 

noise sequences. An entry of: symbolizes no detection, for,the length 

of the simulation 'and the-windows imlernented. This-does. not neessarily 

mean that the falure is undetec~able, although, for the jump failures
 

it is doubtful that a llnger-window )wouldimpr vematerts much because
 

of their t3-ansient nature.
 

Withholding judgment on;thIn tatistlcalisignificance of the data, 

we may observe trends which are not totallyunexpected. if, forlwhatever 

reason is necdssary, th& threshold must havefa higher value thanlinitially 

thought, the price is paid!inadded delay before detection takes'place.
 

This, however,A is-true mainlyl for the smaller failure sizes' Ifathe
 

failure is :sufficientlyl strong, its impact on theres±&ads rapidly 

brings about large values in thelikelihood ratios, thus ensuring quick 

detection. The differences in de'ays for the varilus thresholds 'in 

Table 2.2 between q andct failures deendjonlthe s&gnaturesland on the 

failure size. Figure 2.2 suggests that alfailtfres (g.t),should be quicker 

to detect than q 	failures g) becase ote Ahiger initial values. For 

(iue2 ,3)-it is not socat 
sensor jumps (Figure clear-However,,as equation (2.17) 

illustrates the failure vector i eqfally important since it scales up or 

im'Ii 
down the effect shown by'the'sitgItui s.-- since the failure'magnitudes 

have been referenced to the noises, the relative values of the signatures 
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for q and a failures must be seen in light of the relative values of the
 

the failures in q and a also, This, for example, accounts for the
 

marked difference in the values of 62 for q and a sensor jumps
 

in 	Figure 2.7. The corresponding signature in Figure 2.3 shows somewhat
 

larger values for q failures (gi ) than for a (gi2). The noise intensity
 

in a, however, is distinctively larger than that in the q sensor, as
 

Table 1.2 points out.
 

This is perhaps easier to see by looking at the growth of .t(k,e)
 

(see (2.40)) after a failure takes place. Figure 2.16 is a logarithmic
 

plot of *(k,O) for state and sensor jumps of 5c and 5U', respectively,
I 

in 	 both q and a. Here we can observe that 

State jumps give rise to higher values in the GLR than
 
sensor jumps. This is in agreement with the more pro
longed effect on the residuals. The signatures, we have
 
seen, clearly illustrate this (see Figures 2.2 and 2.3).
 

* 	 While Z(k,O) grows with time for the state jdmp failures, 
the aximum values for the sensor jumps is reached almost 
immediately. Notice the similarity to the growth in 62 
shown in Figures 2.6 and 2.7. 

" 	The failure:in the q sensor suffers more severely than 
one in a in loss of detectability for an increase in 
the threshold. We have just discussed this (see Figure 
2.7). 

" Zt(k,e) drops in value much more sharply for the sensor
:1 

failures once he time of failure 6t is no longer a 
candidate for G in the window, 

The last observation points out again how the kind of correlation pre

sent in the residuals from time to time, which differs for the various
 

failure modes, plays an important role in determining the detector
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response. For the sensor jump failures the signature (Fig. 2.3) shows
 

a quick transient, well localized in time. This implies that the in

formation in the residuals for two overlapping time intervals becomes
 

uncorrelated for very small shifts in region of overlap. This is not
 

the case for state jumps where the failure is integrated into the state
 

of the system and its effects last longer. These kind of structural
 

differences in the impact of different failure modes can and should be
 

exploited in seeking the most reliable detection system.
 

Figure 2.17 is a similar plot of Z(k,6) for state and sensor
 

step failures. Notice that the data for the state step failures is for
 

a magnitude of .5a in q and a while for the sensor steps it is of 5cr'
 

in the measurements of q and a. The state step failures, in general, have
 

a much stronger impact on the residuals, and consequently on the GLR,
 

than comparable sensor failures. The reasons are the same discussed in
 

connection to the jump failures. The steps in the state are integrated
 

into ramp-like behavior in the output of the system (see the signatures
 

in Figures 2.4 and 2.5).
 

It is worth comparing the curve for tu (k,) corresponding to
1
 

a sensor step in a with that for the non-centrality parameter for the
 

same failure in Figure 2.9. This corroborates our analysis of 62 as
 

a measure of the dynamic behavior of the log-likelihood ratio and the
 

performance of the GLR system. One might also .note the difference in
 

the growth rates and actual values of Zl(k,O) between jump (Z, Zt) and 
1s 1 2
 

step (t*, Z*) failures. The sustained presence of step failures results
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in an order of magnitudes difference in these values,
 

Figures 2.16 and 2,17 verify our analysis of the wrong-time non

centrality parameter in Section 2.2.2. Consider the behavior of Zt(k,O)
1
 

when 0t drops from the moving window (k=15 for jumps and k=35 for steps).
 

After this time, 6 is chosen as the most likely of the remaining 0's.
 

In general the next 0 chosen is t+1, t+2, etc. So we are looking at
 

the Y*'s corresponding to-62(r, r+T), where both r and T are increasing.
 

The fact that r is also increasing in addition to T=8-0 t accounts for
 

the continuing increase in .Z for some of the curves in Figure 2.17.
 

For step failures 62(k,610t) increases with k for all the 6s in the
 

window (although, for a fixed k, 62 decreases with T). As discussed earlier,
 

the sensor jumps lose correlation in the Z's rapidly for the wrong 0's.
 

The same is true for state jumps, although it is less pronounced. Finally,
 

notice how the A-s for an a sensor step indicate wrong-time correlations
 

not unlike the state jumps. This is further evidence of the way in which
 

the differences among the failure modes seen in the signatures translate
 

into distinctive, patterns in the likelihood ratios. We will see this
 

in more detail in the following section,
 

Finally, Figure 2.17 tells us that we can expect for step failures
 

shorter delays in detection in general
 

less sensitivity of detection to changes in the
 
threshold
 

In Table 2.3 the delays in detection are presented for two sample runs,
 

for state and sensor step failures. Notice that data is included now for
 



STATE STEP: (v,0) 	 SENSOR STEP: (%),0)
 

IV =5 e=7 6=10 -=14 v 6=5 P=7 E=10 e=14
 

1/10 3,0 4,0 7,5 17,13 1/100' 0,0 --3,0 4,w 06,M
 

1/20 2,0 3,4 3,4 3,4 1/20' 0,0 2,0 4,9 w,26 

19 1,1 2,1 2,3 2,3 1qt 0,0 2,.5 3,5 7,9 

50 0,0 0,0 0,0 0,1 50' 0,1i 1,3 1,3 2,4 

100 - - - 100' 1,0 0,1 0,0 0,1 

200 - - - 200' 0,0 0,0 0,0 0,0 

STATE STEP: (0 2) 	 SENSOR STEP: (0 N)2
 

1/10 13,0 14,0 14,33 14,33 1/100' 0,0 3,0 15,- 27,

1/20 5,0 5,0 6,0 6,2 1/20' 0,0 0,0 15,0 27,

10 1,0 2,0 2,0 3,2 1' - 0,0- 0,0 15,0 27,2 

5U 0,0 0,0 0,0 0,0 50' 0,0 0,0 0,0 0,0
 

100 - -	 - 10' 0,0 0,0 0,0 0,0 

20C -	 - 200' 0,0 0,0 0,0 0,0 

Table 2.3 	Delays is Detection for Different Thresholds:
 

Step failures. Measured in time steps from eT '
 
IT
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failures of magnitudes .5ar .RY and .59', .1'. The two points mentioned
 

above are clearly indicated by the (limited) data for step failures of
 

ia (or i0') and larger, in comparison to the jump failures. Even for,
 

the case of most small failures here, detection is fast for high thresholds.
 

Although somewhat sensitive to increases in 5, the growing nature of
 

62 for these failures means that for a larger window detection is assured
 

after some time. In order to provide some additional insight into these
 

results, we point out that with a threshold set at E=7 the longest delay
 

in the simulations for .iU and .1c' step failures was 14 time steps (about
 

.44 seconds). This was the case for a .1a state step in a, which trans

- 2

lates into a magnitude of 4.3335xi0- 4 radians, 6r approximately 2.4831xi0
 

degrees. The same failure with s=14 doubles its delay time, still under one
 

second, and eliminates almost all false alarms, as seen before. Thtjs we see
 

that the GLR performance underperfectly matched conditions can be extremely
 

good. The limitations come in, of course, as we consider some of the
 

more realistic constraints -- i.e., when the type of failure is unknown
 

or when the system model is in error. These issues will be addressed
 

in Chapters 3 and 4.
 

2.3.4 The Failure Estimates: V and e 

The simulation results seen so far tentatively corroborate our
 

prior qualitative analysis of the GLR performance. Another component
 

of the performance of a failure detection system is the estimation of
 

the failure event. For a technique such as the GLR which takes into
 

account the dynamic propagation of the failure through the system, the
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estimates of the failure and of its time of occurrence are good indicators
 

of the quality of the detection. These estimates can provide crucial in

formation, as we will see, in the event that complications arise in de

tection. Specifically, they will be useful in providing information that
 

will allow us to determine the failure type (Chapter 3), or to identify
 

the presence of significant modeling errors (Chapter 4). For the moment,
 

let us take a look at the performance of the GLR detectors under matched
 

conditions and correct detection of failure modes, by way of these esti

mates.
 

From (2.37) the estimate of the failure at time k is given by 

A A A 

V(k) C (k,8(k))d(k,0(k)) 	 (2.42) 

once 0(k) has been selected. Assuming that 0 is the correct estimate,
 
A 

8=t o
 

E(V(k)) C (k,e) E(d(k,0)) 

= 	 c-(k,e) E(d(k,0) + C(k,0)v) 

C-1 (k,^) - -1 
= E(d(k,0)) + C (k,0)c(k,6)v 

0 	+ IV 

=9(2.43) 

So V is an unbiased estimate of the true failure if 0 is accurate. Noticethat 

VW(k) in (2.42) is the unique solution of 
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A A
 

C(k,e)V - d(k,e) (2.44)
 

where V is considered unknown. The GLR detectors actually solve for the
 

failure which best fits the mean value of the matched filter for the
 

selected time e.
 

If the estimated failure time is incorrect, e7et, then
 

E(V(k)) = c (k,8) E(d(k,e) + C(k, e )v) 

= C (k,e)c(k,t)V (2.45) 

The bias inV introduced by the error in e can be examined for different
 
e-et in much the same way as the wrong-time non-centrality parameter
 

t1t) 
6(k, e16et). 

With these ideas in mind we now look at what the simulations
 
A 

show about the GLR estimates. First we consider the estimate 0 of the
 

time of failure. The general trends in the simulations of the GLR de

tedtors for the four failure modes are discussed, first for the state
 

jump and state step failures.
 

State Failures
 

for statejump failures of size IU and higher, the
 

estimate 6 is accurate in general.
 

for state step failures larger than .5a, e=O almost
• t 
immediately; for v<.5a, 'eundergoes an initial transi
ent but soon coverges to t (+ 1 or 2 time steps). 

once 0t is no longer in the range for 0 in the window, 
GLR chooses the point farthest in the past that is in 
the window. 
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Looking at the growth of 62(k,6) for these failure modes in 

Figures 2.6 and 2.8, the initial rate of growth for the step cases is not 

very large. So for small failures it is possible for the noises to 
A 

incorrectly influence 8 until enough time has passed and larger values
 

in 62 are achieved. For the state jumps the situation is different
 

and there is, in general, good estimation of 8t (but for larger size
 

failures). Fig.ures 2.18 and 2.19 illustrate this. They are three

dimensional plots of Z(k,e) as a function of its two time arguments. For
 

these the detector windows were set at M=50, N=O; the total length of
 

the run is 60 time steps and 8t = 5. For each time k, the values in the
 

(Z,e) plane are the Z(k,') for k-50<8<k. Alternatively, for a fixed 9
 

the projection on the (t,k) plane gives the growth in time of t(,,), 

k=0,1,..., 60. The values along the diagonal k=O correspond to t(k,k)
 

and moving parallel to the 0 axis toward 0=0 shows the output of the 

detectors at a time k for the whole window. Figure 2.18 is the output
 

of the state jump detector for 5a jumps in q and a. The output of the
 

state step detector is shown in Figure 2,19 for ia failures in both state 

variables also.
 

Consider first the state jump failures in Figures 2.18. We see 

that after the failures take place at k=5 the t(k,O) quickly grow , reaching 

the final values after about 20 time steps (5/8 sec.). Notice how well 

the failure time is isolated, with (k,6!0t) for 8#0t having much smaller 

values than -(k, t). As k increases e*(k, t ) recedes from the diagonal
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t(k,6) 

Ym 5,145
max
 

WIIIW 

Fig. 2.19(a) Likelihood Ratios: la q State Step
 
Failure; State Step Detector
 

t(k,e) 

tmx 5,615
max 

Fig. 2.19(b) Likelihood Ratios: 10 a State Step
 
Failure; State Step Detector
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A 

as the correct estimate 6=0 is maintained. Notice what happens after
t 

time k=55. The true failure time at is no longer in the window so t+1, 

St+2, etc. are chosen as the values of 8. The G! detector chooses the 

earliest time in the window as the most likely starting time for the 

effects of the failure on the residuals. It is clear in Figure 2.18 

that, for the jump failures, after some time the t(k,0) for the remainding 

a's in the window will be smaller. Eventually the detector will not see 

the failure at all any longer. As the signatures show, the effect of a 

3ump failure in the state diminishes with time. 

The situation for the state step failures is different in many 

ways, as Figure 2.19 indicates. Here the growth of the log-likelihood 

ratios is slower initially,but much larger values'are reached and no 

steady-state is seen. The distribution of t(k,.) over the window shows 

a very different response. While the wrong-time Z(k,6 lt) grow in the 
same way as Z(k, t), for a given interval in a the drop in the £'s is 

not as dramatic as in the state jump detector. Although the same be

havior is observed for 6 once 6t leaves the window at time k=55 (hidden 

by the angle in which the plots are done), the increasing values of 

ZMk,GG t ) with k mean that detection can occur long after, for k 6 

This illustrates the central difference between the two failure modes. 

The continued presence of a step failure leads to a very different re

sponse pattern of the t(k,e). As a function of k, the composition of 

Z(k,a) tells us about the detectability of the failures as time progresses. 
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As a function of 8 the same response shows the kind of correlations in 

time which characterize the temporal evolution of a failure mode in the 

system. That is, the transient nature of the jump leads to highly peaked 

Z's as a function of e, while the persistence of a step leads to large 

Z's over a range of O's. 

Sensor Failures
 

The following summarizes general trends in the simulations
 

corresponding to sensor jump and step failures:
 

" 	much more sensitivity to the noises in the system than for
 
comparable state failures
 

* much lower values of t*(k,8), implying greater sensitivity
 
also to changes in the threshold for the detection of
 

small failures
 

. for sensor jumps 6 is very erratic once 6t leaves the moving 
window (as one might expect for such a transient failure) 

We can discuss these features by referring to Figures 2.20 and
 

2.21. They show the corresponding plots of t(k,O) for 5a' sensor jumps
 

and la' sensor steps, respectively. Several things stand out immediately.
 

First consider Figure 2.20. As a function of k, £(.,) reaches its
 

maximum value almost instantly. This is just as suggested by the non

centrality parameters in Figure 2.7. The magnitudes of these likelihood
 

ratios are relatively low and keep the proportions seen for the 62, 

with higher values for the 5C' sensor jump in a. Notice that these plots
 

are scaled to the maximum value of £*(k,6) (this must be kept in mind
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since, for example, the values of .(k,6) for the Dump in q are of the
 

order of the noise level in e(k,@) which are therefore scaled up in the
 

plot). With respect to e, Z(k,e) behaves similarly to the jump in the
 

state case, although the change in value for O's neighboring Bt is more
 

pronounced. The ratio Z(k, t)/Z(k,016t) can be large even for e-0t small.
 

This reflects the very short duration of the failure effects on the re

siduals, as is clear in its signature. Once 6t leaves the window 6 is
 

randomly directed by the noise.
 

In Figure 2.21 we have the detector output for la' sensor failures
 

in q and a. Again we find that the values of t(kG8) 
are much smaller
 

than those for state step failures. Furthermore, the t(k,e) look very
 

different for a q sensor step and one in a. 
All this was indicated by
 

the non-centrality parameters and the signatures in section 2.2.2. 
Fin

ally, the response to a sensor step in a is qualitatively similar to that
 

for the state jump in q (see Figure 2.18) as was argued earlier in the
 

Chapter. This similarity is even more striking if we consider larger
 

sensor failures where the noise effects are small in comparison. Figure
 

2.22 makes this more evident. It gives the response to sensor step
 

failures of magnitude l0' 
 in both q and a. Except for the values reached,
 

by t(k,O), notice the resemblance of the PCs for a sensor steplin q to
 

those for state steps in Figure 2.19 and between the Z's for a sensor
 

step in a and those for state 3umps in Figure 2.18.
 

This last fact already anticipates a source of possible trouble.
 

If we do not assume, as we have done in this chapter, that the failure
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mode is known, then these plots suggest that other failure modes might
 

trigger similar responses in the detectors. It must be pointed out,
 

however, that the shapes of correct detector t's being the same does not
 

necessarily mean that there will be cross-dection problems. These im

portant issues are the topic of Chapter 3.
 

We now come to the estimates of the actual failures, V. We have
 
AA
 

seen that if e is a correct estimate, V has as mean value V,
 

Let us consider first the state jump and step failures.
 

State Failures
 

The estimation performance of the GLR detectors observed in the
 

simulations, for all the state failures tried, show:
 

for jumps,the best estimates are obtained in less than
 
5 time steps (- 1/6 sec.). When e leaves the window
 

At
 

V degrades soon after,
 

for step failures of magnitude .5Y or less, the estimates 
are not very accurate and lose quality wth time. For 
larger failures there is improvement in V, with the best 
estimate occurring after a wait of about 15 time steps 
(- 1/2 sec.).
 

It is not surprising that for state jump failures the estimate
 
A 

V does not improve much after its initial values. The covariance of the
 

estimate error, C- 1 , remains near constant in time (Figure 2.10). The
 

initial estimates are as accurate as any others which may follow. When
 
A
 

et is outside the window -- so that 6$St necessarily -- the estimate
 

t. A AV(k) = c-ld(k,e), ee (.6 
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degrades rapidly. The reason is that d(k,6 t ) and d(k,e) in (2.46) cort 

relate poorly except for very small 16-6tJ. This is not the case for state 

step failures. As the 3-D plots just seen indicate, for state steps the 

d(k,e) for G's after et are highly correlated with d(k, t). This is 

evidenced by the relatively close values of Z(k,6t ) and e(k, 616t), as 

long as ID-t j°remains moderate. Furthermore, Figure 2.12 shows how much 

the error covariance for V is reduced by a wait of about 15 time steps. 

Afterthat there is .little improvement. These results are thus consistent 

with our prior analysis. 

Figures 2.23 and Z.24 'illustrate these ideas. The first one 

is a plot of the estimates produced by the jump and step detectors for 

lojunp and step state failures in q. The jump detector has window 

parameters M=I0, N=O while the step detector has a window M=30, N=O. 

Notice that for the 3ump 'detector the estimate V after k=15, 'the last 

time that 6t is in ,the window, quickly moves in the wrong directions. In
 
A 

addition, there is little change in V 'while 6t remains 'inthe window. 

The state step estimate, however, does tend to converge slowly toward 

the actual failure. Convergence is faster initially, coinciding with 

the changing C-(k,6) in Figure 2.12. For very largo jump and step 

failures, the V's are much better in that we have the same standard de

viation for the estimate errors, but these are smaller in relation to
 

the larger sizes of the actual failures.
 

Sensor Failures
 

For the sensor jump and step failures, the simulations allow for
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the following observations:
 

A 

* the difference in the quality of V between small and large
 
failures is more significant than for the state failures'
 

* sensor jumps of up to 5a in size have estimates which are
 
very sensitive to the noises
 

* for step sensor failures of 5c' or larger in magnitude,
 
the accuracy achieved can be very good. One can achieve
 
improvement in the estimates by waiting: the best esti
mates are obtained after more than 10 time steps (> 1/3
 
sec). 

* rapid degradation in V occurs when 8 drops out of the 
window in the jump detector. For the step detector
 
the degradation is gradual.
 

At this point it should not be unexpected that for small failures
 

in the sensors the estimates are very sensitive to the noise disturbances.
 

The information matrices do not reach as large values as their counter

parts for state failures. Therefore in
 

d(k,6) = d(k,6) + C(k,Ot)v 

k-M<e<k-N (2.47)
 

the first term, d(k,O), can greatly affect the estimate V in (2.42) for 
A 

the failures which are not very large. Since V is computed to solve 

equation (2.44), the effect of that term is negligible by comparison 

for large V. Another factor involved in this question has to do with 

the dynamic-natureof the-system response to the failure. Clearly, for 

a sensor step for which C(k,8 )V is increasing, one can expect improved 

estimates after some time. The error covariance for the estimate in 
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this case, shown in Figure 2,13, indicates the improved confidence in
 
A 

the estimate after a waiting period. In Figure 2.25 a plot of V is given
 

for 5c' jump and step failures in the q sensor. Notice how the estimate
 

for the step finally converges near V after.a very erratic beginning.
 

2.4 SUMMARY OF CORRECT DETECTION
 

The GLR technique for failure detection has been examined in 

detail in this Chapter. Under the assumption of perfect knowledge of 

the model parameters and of the failure mode, the performance of the 

GLR detectors is quite good. We have seen that the detectors are very 

sensitive and, therefore, that detection is guaranteed for all meaningful 

failures (a sensor jump, for example, of less than 35' does not make
 

much sense).
 

While this kind of sensitivity might suggest difficulties arising
 

from the noise disturbances in the system, we have seen that this is not
 

the case. The reason f6r this is the very concept of hypothesis testing
 

inherent in the GLR -- i.e, the GLR detectors take full advantage of the
 

structured and dynamic effect of the failures by correlating the observed
 

residuals with the failure signatures.
 

The differences observed in the performance of the GLR detectors
 

for the four failure modes studied here have been linked to the charact

eristics of the failure signatures for those modes. A detailed analysis
 

of the signatures G(k,6) and of the information matrix C(k,9) associated
 

with'them has shown that a study of the average behavior of the likelihood
 



ratios and failure estimates 8 and V is feasible and reasonably accurate 

in predicting the performance of the detectors. The simulations presented
 

corroborate the previous analysis based on knowledge of the signatures.
 

One of the key quantities in our analysis is the non-centrality
 

parameter 62, which gives the failure-induced component of the expected
 

value of the likelihood ratios. This 62 captures all the information
 

concerning the failure and its dynamic effect on the filter residuals.
 

Its study for different failures in the four modes of interest allows
 

us both to predict the detection performance for a given detector con

figuration and to systematically select those detector parameters to
 

achieve optimum performance. 

By means ,of 62 Ck,6) we can look at the patterns in the behavior
 

of the likelihood ratios, for different failure modes, as a function of
 

k and 6. We saw how, ultimately, all these features can be relatbd back
 

to the signatures of each failure mode. For example, we saw that for
 

jump failures, especially sensor jumps, 62 grows toward a steady-state
 

value (as does the probability of detection) for the correct e, while
 

falling sharply in value for the wrong time 0 in the detector
 

window. Figures 218 and 2.20 in section 2.3.4 illustrate this vividly,
 

This reflects the transient nature of the filter response to these
 

failures (Figures 2.2 and 2.3).
 

In the case of most step failures 62 increases indefinitely with
 

k after the failure takes place, Furthermore, the wrong-time 62 also
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attain large values with time, especially near et. The exception is a
 

sensor step failure in a which looks like a state jump (Figures 2.2 and
 

2.5), a fact which is clearly indicated by comparing Figures 2.19 and 2.22
 

with Figure 2.18. In contrast to the jump cases, the rest of the signa

tures for these step failures grow with the elapsed time thus providing
 

more information in the residuals as time passes. Since the residuals
 

over any time interval (after t ) show increasing values, especially
 

near et, the GLR detectors for these modes in general have more of a
 

problem with wrong-time estimates 6, although detection for some 0 is
 

far easier than in the jump case, This is also shown by Figures 2.19
 

and 2.21(a), 2.22(a).
 

All these observations about the failure modes and the likelihood
 

ratios point out the role played by the selection of the threshold. As

mentioned earlier, false alarms can be effectively removed by a raised 

threshold. This, in turn, implies longer delays in the detection of 

faildres since the likelihood ratios must reach the new value. The
 

analysis and simulations show, however, that for most failures of interest
 

the delay is minimal. In general, failures of all four modes are quickly
 

detectable if their magnitudes are of the order of the noise intensity
 

or greater. The most troublesome failures are sensor jur~ps, which are
 

nevertheless easily detectable for larger failures (e.g., sensor jumps
 

of magnitude 5C' or greater).
 

While the probabilities used as performance measures, PD and PF'
 

are valuable indicators of the detection quality of a specific GLR scheme,
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they are by no means the only important ones or the definitive ones. Other
 

probabilities can be defined on events which relate to the evolution of
 

the likelihood ratios over intervals of time,, rather than for given values
 

of k and e. In this sense PD and PF are static measures which must be
 

computed for a sequence of times. One can, for example, define the time

to-detection probability
 

PTD(T,E:,8,tv) 4 Prob(Z(k,e)> S for some k < TltV) (2.48) 

of the event that detection takes place for a given e in T time steps or
 

less. This quantity is clearly of importance in determining detection delay
 

as a function of the threshold. The only drawback to this kind of analy

sis is that correlations between likelihood ratios are involved and for
 

full GLR (and CGLR) it becomes difficult. The reason is the chi-squared
 

nature of these random variables. Thus, a shift in focus to the simpli

fied GLR (SGLR) might be rewarding in trying to obtain this kind of infor

mation. For the SGLR, recall, the likelihood ratios become Gaussian
 

random variables. The evaluation of interval-related quantities such as
 

(2.48) is still involved in this case but is somewhat more tractable.
 

Further work in this area is needed. It is felt that such SGLR analysis
 

will also shed light on full GLR and CGLR performance, since the de

tectors have performance characteristics that are similar to SGLR (e.g.,
 

wrong-time 	and detectability conditions are the same for all three).
 

The tools with which we have examined the performance of the
 

GLR detectors have been adequate, nevertheless, for the task of uncovering
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the basic mechanisms at work. On the one hand we have seen the inter

action between failures of different modes and the responses they induce
 

in the Kalman filter residuals. On the other, this interplay between
 

failure modes and residuals has been related to the relative detectability
 

of these modes via the GLR technique. These tools allow, at this stage,
 

for a systematic consideration of the different tradeoffs which must be
 

taken into account in implementing a reliable detection system. Once the
 

threshold has been chosen (a compromise in delays and false alarms), the
 

length of the windows can be arrived at (for example, by computing the
 

waiting times necessary for a specified probability of detection: e.g.,
 

P D =.95 or PD = .99). 

In the next chapter we relax one of the assumptions held up to 

now. We consider the problem of isolating correctly the mode of a failure,
 

if and when detection has taken place. This will provide an opportunity
 

to determine some of the limitations of the GLR technique in a more
 

realistic environment.
 



CHAPTER 3
 

IDENTIFIABILITY OF FAILURES WITH THE GLR
 

3.1 MATCHED CONDITIONS AND THE CROSS-DETECTION PROBLEM
 

This chapter considers an important question concerning failure
 

detection which has not been directly addressed yet: the distinguish

ability of the various failure modes. The discussion of the performance
 

of the GLR technique in Chapter 2 was restricted to the situation where
 

the failure mode is known. Consequently, the emphasis was on the capa

bility of a GLR detector to correctly identify when a failure in a speci

fic mode occurs and to estimate it. We will now consider the case where
 

the mode of the failure is not known in advance. Given the decisions
 

and output of a set of GLR detectors corresponding to different failure
 

modes, the problem is to isolate the correct decision with the highest
 

possible degree of certainty. The assumption is made that if a failure
 

does take place, its mode is that of one of the detectors.
 

This problem may be viewed in a different way. Suppose that a
 

GLR detector has been implemented based on the hypothesis of a particular
 

failure mode. While in operation, detection is declared for a number
 

of consecutive times over an interval. Complementing these decisions
 

are sequences of estimates of a failure and its time of occurrence, 
AA 

V(k) and e(k). We can &ssume that the threshold has been chosen to 

eliminate the possibility of f'ise alarms. The question is the following: 

with what degree of confidence can we accept these decisions, L.e., how
 

certain can we be that in fact a failure of that type has occured? The
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-problem is-an important one, especially if compensating action is to fol

low such a decision. Clearly, compensation for the wrong type of failure
 

will, at best, not correct the source of failure.
 

For example, in Chapter 2 it was pointed out that failures which 

can be modeled by a sensor step in a alter the residuals in a way not 

unlike a state jump failure in q. If, in response to detection declared 

by the sensor step detector, a new sensor is activated when the actual 

failure originates in the actuator affecting the pitch rate, nothing is 

achieved. The question involves looking at some of the fundamental 

limitations of the GLR method. 

In many situations additional information may be available which
 

may resolve the ambiguity about the failure mode. One may, for example,
 

have sufficient reason to believe that the a sensor in the above hypo

thetical situation is functioning properly (e.g., we may have two a sensors
 

that agree). For the rest of this chapter the assumption is made that
 

no such extra information is available, and thus'we are considering
 

what is decidedly a worst-case situation.
 

Given the way the GLR technique works, one can expect that any
 

non-random development in the innovations sequence y (k) will result in
 

increased values of Z. (k,O) for the different i. Depending on the selec1 

tion of parameters in the detectors, this may be followed by detection
 

and estimation of the possible failures. In Chapter 1 the decision rule 

max 
i 

= 
I 

_i (k,. (k)) > E (3.1) 
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was given,for a set of GLR detectors based on different failure mode
 

hypotheses. This decision rule is very straightforward and appealing
 

in its simplicity. Simulations for different failure conditions in

dicate, however, that it does not always choose the correct failure
 

mode. In a number of cases the t*(k,e) for two different detectors
 

are close enough in value that the random influences from the noise be

come decisive. Although the correct failure mode may be selected, that
 

decision carries a degree of uncertainty which might not be tolerable
 

for many applications.
 

The source of this cross-detection problem lies in the fact
 

that failures of different modes may have signatures which are close,
 

in some sense, to one another. An example has already been given. A
 

decision rule such as (3.1) will work adequately in separating most
 

jump failures from step failures. A step detector'will, in general,
 

indicate less correlation (i.e., lower values of Yi (k,e)) with a jump
 

failure than a jump detector would. Conversely, a step-like failure
 

will correlate much better with both step detectors than with any jump
 

failure signature. But one step failure of a particulat mode may cor

relate almost as well with signatures for either state or sensor step
 

failures. Thus, a real distinguishability problem exists between these
 

modes.
 

We saw in Chapter 2 how the patterns in the log-likelihood
 

ratios £i(k,O) with respect to both arguments reflect the characteristics
 

of the failure responses (the signatures) of the system to the various
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modes. The analysis of the performance of the GLR system via the esti

mates and 62(k,e) for the correct and wrong times shows how those char

acteristics relate to the detectability of the failures. In section 3.2
 

we observe how these quantitites change when the detector does not cor

respond to the correct failure mode. Then in section 3.3 some results
 

from the simulations of the aircraft model are presented. A thorough
 

study of the cross-detection problem is beyond the scope of this work,
 

but we are able to shed light on this crucial issue and on some of the
 

fundamental limitations of GLR. In section 3.4 is a brief discussion 

evaluating what other GLR formulations, the Constrained GLR (CGLR) in 

particular, may offer as a way out of this difficulty. Finally, section 

3.5 sums up our treatment of the identifiability factor in the GLR and
 

suggests the need for better decision rules.
 

3.2 SOME ANALYSIS OF THE CROSS-DETECTION PROBLEM
 

We begin our brief analysis of the identifiability of the dif

ferent failure modes by considering the response of the incorrect de

tector to a failure. Consider a GLR detector based on the hypothesis 

HI y(k) = y(k) + Gi (k,t)V (3.2) 

for a failure of type i starting at k=6t. Suppose that the actual failure
 

which occurs is of a different mode, j. Then the actual innovations
 

in the filter will be
 

y(k) = y(k) + G (k,et)N (3.3) 



In order to understand what takes place in this situation, let us follow
 

these residuals into the detectors and observe how their outputs are
 

affected.
 

First, we look at the matched filters for the times in the win

th
 
dow. The subscript i/j will denote quantitites in the i-- detector when
 

the residuals contain information from a failure of type j. So we have:
 

k 
diI jj(k,eje1 t ) GG (m, 0)v-l(m)Y Wm 

m=e 

EG! (m,O)V-lm) [(m) + G (m,et)vJ 
m=6 

Sdi (k,6) + ci(k,eI6t)V (3.4) 

for each e in the window, k-M<e<k-N. This has the same form as in 

the correct detector situation (see (2.6)) but now
 

k 

Cijk, t ) = G!(m,G)V- (m)Gj(m, (3.5) 

m--max(e ,O t ) 

is the wrong-time, cross-detection information matrix. The mean value
 

of each di for all the O's in the window at a given time k is shaped
 

by the values of this matrix with evarying. For any e
 

E(dil j (k,8et0)) Ci 3 (k,eOet)v (3.6) 
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and the log-likelihood ratios become
 

ti l j (k,OlOt) = d1Ij (k,8Ot)c. l(k,e)dil (k,Oe t ) -(3.7) 

where C- (k,e) is the same as in (3.5) with e=8 and i=]. We will use 
1 t 

this notation for simplicity
 

C(k,O) AC(k,OO) (3.8) 

s 2 (k,O) 622(k,ele) (3.9) 

when e=e t . 

The wrong-time, cross-detection iion-centrality parameter for
 

the likelihood ratios (3.7) in the detector window, using (3.9), is
 

then
 

6i j Ole) (k,elet))c-1l(k,8)E(di j ( k , O l Ot )Wk, E(dil 

22
 
VIC l'ij(k,01Ot)cil1(k,O)Ci (k,016t)V (3.10) 

which for i=j reduces to the wrong-time (correct detector) 62 in (2.26)
 

and if O=et it equals 62 in (2.13). The evolution of this term under
 

different conditions gives us the sensitivity of the detectors to
 

failures in other modes. As in the correct detection situation, such
 

performance indices as delay times, false alarms and correct time
 

detection are related to the behavior of 62
 

In a similar fashion, the estimate V of the failure under these
 

conditions is given by
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V il (k) = C (k,eill)d l j (k,Oil j 

= Ci (kOeij)[di(k, ilj) + Cilj(k,Oil.IOt)vJ (3.11) 

with the expected value
 

E(Nil(k)) = C i (k,8ij)Cl j (kOilIOt )v (3.12) 

where ilJ. is the estimate of the failure time obtained in the maximiza

th
tion of the likelihood ratios over eby the i-detector:
 

A 

e (k =(ag m .l j (k,ele , s={(lk-m<e<k-N (3.13)
8ES
 

All these quantities differ from their counterparts for the cor

rect detectors only in the role which the cross-detection information
 

matrix plays. This quantity captures the relevant information concerning
 

the correlation which exists between the modes of the detector.and fail

ures. The nature of the response of a GLR detector to the "wrong" type 

of failure is largely determined by the characteristics of Cilj(k,ee t ) 

as a function of its arguments. Its behavior as e and 0t vary can tell 

us the way the estimate eil will react, if detection takes place.
 

2

We saw in Chapter 2 how the behavior of 62, with e changing, reflects 

intrinsic properties of the mode of a failure. As a function of k, 

Cil (and therefore 62ii) indicates the sensitivity of the ithdetector 

to the failure as time progresses. 

It is expected that if full advantage is taken of these charac

teristics of the cross-detection responses, modified decision rules may 
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be constructed which lessen the difficulties with distinguishability for
 

the detectors. AS Chapter 2 showed, detection may be very good assuming
 

that the correct failure mode can be established (still with perfect
 

knowledge of the parameters of the model).
 

The problem is illustrated in Figure 3.1. It presents the
 

26[2 (k, Oet ) and (k, Oet)tprofiles across a detector window 

k-40<<k, for fixed k. A .1U q state step failure is assumed to have
 
~2
 

occurred at et=k-30. Notice that 6212' for the state step detector,
 

has a clear peak at e=eO while 62 does not in the sensor step detector.
 
t w 412 

Also note that for e3e t the wrong-time, cross-detection 62 can actually 

be greater than the wrong-time correct detector s2. "The physical in

terpretation of the situation is that a particular'failure mode may not 

look much like another one occurring at the same time, but it may be 

highly correlated with the other mode started at a different time . ", 

[12]. As k varies, the S2 profiles over the window will vary for both 

detectors. It is this kind of information about the patterns in the 

T's for different detectors which can be used in modifying the GLR 

system to alleviate.cross-detection problems, Some other examples are 

given in section 3,3. 

t6 12 and 64I2 are the non-centrality parameters of the state step (type
 

2) and sensor step (type 4) detectors for a state step failure, as
 
-given by the notation introduced in relation to equation (3.4)
 



TRUE FAILURE IS A q STATE STEP AT e k-30 

20 

10 

o I - I 

k k-10 k-20 k-30 k-40 

6 

Fig. ?.1 Wrong Time Cross Detection Noncentrality Parameter
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Following the geometric interpretation of 62 in (2.24),
 

vcil3(ktlOYv2 can be thought of as an inner product between the signa

ture of a type i failure at time e and a type j failure at et , 

, e)v 2 <G (-,e)v1 , ,t)V ( V!Cill(k 06 t = Gj( 2 >V
I ) (3.14) 

Thus, two failure modes having a large value in (3.14) (e.g., i=2 and
 

j=4, state and sensor steps) are likely to have distinguishability
 

difficulties. When' lCil V2 is small (for example, i-2, j=3, state step
 

and sensor jump), we expect little or no problem with cross-detection.
 

Performance probabilities can be defined in much the same way
 

as in the case of correct detection. These now involve the distribution
 
2 

values of Zj(k, Olet) around its expected value: dij, plus the di

mension of the failure space. The cross-detection probability PCD is 

the probability that Z.ill3 exceeds the threshold for some failure of 
type j. PCD is a special case -- where 8= t -- of the wrong-time, 

cross-detection probability PCW Both of these are defined as follows.
 

P (k,i,j,e,V) Prob(.lj(k-,O) > sjHj,,v) (3.15)
CD Ij3 

Pcw(k,ijj,O,@t,V) Prob(t,13 (k,O) > ClHjlet, ) (3.16) 

2 

These probabilities are incre&sing functions of 6iljas given in (3.10).. If 

PCD is small (e.g.±PD < PF) the modes are easily distinguished. If 

PCD >PD' the two modes in question are highly correlated. Since the 

full GLR selects the most likely failure without restrictions, it may 

have difficulties with cross-detection. When the failure estimate is 
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constrained to a specific set of directions (CGLR) or magnitudes (SGLR),
 

these probabilities will be restricted accordingly and the cross-detectlon
 

problem may be greatly reduced. Thus, incorporating into the GLR formula

tion reasonable expectations about realistic, possible failures (directions
 

and/or magnitudes) can result in improved overall performance in isolating
 

failures. We will expand on this in section 3.4.
 

3.3 CROSS-DETECTION SIMULATIONS
 

3.3.1 The Likelihood Ratios
 

In order to gain some concrete understanding of the difficulties
 

of the GLRwith failure mode distinguishability, we have made a number
 

of cross-detection simulation runs. In addition to the correct GLR
 

detector, other detectors based on different modes were implemented
 

simultaneously. As the failures in different modes were simulated, the
 

output and decisions of all detectors were recorded. Particular emphasis
 

was placed on the distinguishability between state and sensor step failures.
 

These are failure modes whose signatures are, in most cases, highly
 

correlated (and which are modes that model failures of great practical
 

interest).
 

If the correlation between the signatures of two failure modes 

is mot too pronounced,, simple decision rules,, such -as (3.1), which com

pare the V's of the detectors can effectively isolate the correct fail

ure mode. When the cross-detection difficulties are more severe, how

ever, more sophisticated decision rules must be used. These must utilize 
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the information about the patterns in the t's of each detector. 
The
 

availability of the values of the V's for all the e's in the window sug

gests that window decision rules should be used. A detection decision
 

would then be made conditional on (k,6) having a certain shape across
 

the window (k-M<6<k-N) for any k. For example, a window decision can
 

declare a failure at time k if K of the t's in the window exceed the
 

threshold at that time. Then e can be chosen as that value of e in the
 

window with the largest t. Other rules can be similarly designed.
 

Another reason for looking at window decision rules is to take
 

full advantage of the structured behavior of the t's as a function of
 

0. 	It is clear from Chapter two that t(k,e) -- for fixed k and varying 

-- displays the differences between the signatures of the different 

modes.
 

Decision rules that look at Z(k,e) as a function of k are also
 

possible. 
These rules can check for the growth in time of the likelihood
 

ratios, which differs for the various failure modes. They can be de

signed to search for continued increase in the Z's -- as for most
 

step failures -- or, for steady states -- as for jump failures (or a
 

sensor steps). The price, however, is that a certain waiting time is
 

necessary before a decision can be made, since the t's must be monitored
 

over some specified interval of time. Also important is the e ( or O's)
 

in the windows for which this test applies. We have seen (in Chapter 2)
 

how different the growth in t can be, for some types of failures, for
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two e's wide apart in the window.
 

Let us look at the cross-detection problem between state step
 

and sensor step failures. The generally persistent effects of these
 

modes (Figures 2.4 and 2.5) on the residuals leads to indistinguishability
 

difficulties. It is possible for both kinds of failures to elicit a
 

similar response in the detectors for either mode. Figure 3.2, (a) and
 

(b), are plots of t214 (k,e) for simulation runs of .lo' sensor step 

failures in q and a (8t=5). Compare these with the response of this 

same state step detector to state step failures in q and a shown in Fig

ure 2.19, (a) and (b. Notice the similarity in the patterns of the 

likelihood ratios in Figures 2.19 (a)and 3.2 (a), and, their differences 

in Figures 2.19 (b) and 3.2 (b).
 

A decision rule for the state step detector which declares a
 

failure only if the 's across the window at time k have the shape of
 

the correct detector response (Figure 2.19, (a) and (b)), would work
 

as follows if excited by a sensor step. If a sensor step in a (Fig

ure 3.2 (b)) occurs, it would not satisfy the test and the state step
 

detector would not declare a failure. The failure mode is easily dis

tinguished in this case. However, if the failure is a q sensor step,
 

Figure 3.2 (a) indicates that it would be accepted by the state step
 

detector and detection declared. Here the indistinguishability is more
 

severe. Yet, the response of the correct detector (sensor step) to this
 

same failure -- shown in Figure 2.22 (a) -- shows larger values for t
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12,0 max 2,523 

Fig. 3.2 (a) Likelihood Ratios: 1OW q Sensor Step 
Failure; State Step Detector 

I(k,0) 

k 38 

Fig. 3.2(b) Likelihood Ratios: 10V a Sensor Step 
Failure; State Step Detector 



-136

than the incorrect detector does. Hencea comparison of the Z's for
 

the two detectors can resolve the problem.
 

Unfortunately, it is not always as simple as indicated. Figure
 

3.3, (a) and (b), are plots of £214 Ck,e) when the failures are la
 

sensor steps in q and a (t=5). The situation remains the same for the
 

a failure: the wrong failure does not meet the requirement of the con

cave shape of the -Vs across the window. But things are different for
 

the q sensor step failure. Figure 2.21 (a) has the response to this
 

failure of the (correct) sensor step detector. A simple comparison
 

of the Z's in both detectors will not necessarily select the correct
 

failure mode. The reason is that the difference between the non

centrality parameters of the correct and incorrect detectors, for a
 

given failure, is proportional to the square of V (see equatiohs (3.10)
 

and (2.26)). Thus, this difference is larger in the case of the l0'
 

sensor step failure.
 

All this suggests is that information about the structure of
 

the likelihood ratios cannot be used to resolve cross detection problems
 

for all cases (perhaps their behavior with increasing k is also necessary).
 

We have seen that there are different degrees of indistinguishability.
 

In particular, separating state steps from q sensor steps requires even
 

more than testing the shape of the V's across the window. Other infor

t
 That is, the Z of the state step detector in response to a sensor step
 

failure.
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Fig. 3.3(b) Likelihood Ratios: l r' a Sensor Step
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mation must be used.
 

For example, compare the values-of the t's achieved in Figures
 

3.2 and 2.19. A state step failure with magnitude of the order of the
 

noise in the dynamics actually results in much larger values than a sen

sor failure ten times the measurement noise.
 

Thus, using a priori information as to what are physically mean

ingful failure sizes, we may set the threshold for the state step de

tector at a very high level -- allowing for detection of reasonable size
 

state step failures, but avoiding cross-detection of all except very
 

large q-sensor step failures. The point here is that additional in

formation is available which can be used to distinguish modes. In the
 

next section we look at another fact which helps alleviate the cross

detection difficulties.
 

This discussion can be illustrated with the aid of Table 3.1.
 

It summarizes the shapes of the likelihood ratio profiles over the window
 

of the state and sensor step detectors (i.e., t(k,O) versus 8 for fixed
 

k), for the correct and cross-detection combinations. We have char

acterized these, for simplicity, as either concave (as in Figure 3.2 (a))
 

or convex (as in Figure 3.2 (b)). The shape of the t's in the correct
 

detector/failure combinations are underlined (entries #1, 2, 7 and 8).
 

A decision rule which tests the t's for consistency with the correct
 

patterns would easily distinguish a failure with a different shape
 

(e.g., between entries #2 and 4 or between # 6 and 8). The real dis

tinguishability problem is then reduced to that between a q sensor step
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and a q state step (entries # 1 and 3 or 5 and 7).
 

FAILURE STATE STEP DETECTOR SENSOR STEP DETECTOR
 

state step 1 
 5
in q cncy concave
 

state step ** 62 ** in a _ concave 

sensor step 3 7
 
sn s concave 
 concave
in q
 

sensor step ** 4 ** 8
 
in a convex 
 convex
 

TABLE 3.1 Likelihood 'Ratio Profiles Over Window
 

The situation-for sensor step detectors is illustrated in Figure
 

3.4 (a) and (b). They are plots of t 4 12 (ktet=5) when the failures are 

q,(a),and a, (b), state steps. These correspond to entries no. 5 and 6 

in Table 3.1. The response of this detector to sensor step failures can 

be seen in Figure 2.22 (corresponding to entries no. 7 and 8 in Table
 

3.1). A similar decision rule would have no difficulty distinguishing 

a sensor step in a from the other failures. Again, it is a sensor 

step in q which gives rise to indistinguishability, 

We conclude that the indistinguishability between failure modes
 

can be reduced in many cases by exploiting the distinctive patterns in
 

the likelihood ratios. Thus the cross-detection problem is narrowed
 

down to the more fundamental causes of difficulty. Other information
 

in the GLR still remains unexamined which can further contribute to
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P,(k, e 

Zmx 5,150 
max
 

k$1k 

Fig,. 3.4(a) Likelihood Ratios: I q State Step 
Failure; 'Sensor Step 'Detector 

'Z.(k,O@) 

9, : 5,691 
max 

Fig. 3.4(b) Likelihood Ratios: la q State Step
 
Failure; Sensor Step Detector
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alleviating these limitations. In the next section we look at the fail

ure estimates.
 

3.3.2 The Failure Estimates
 

In addition to the likelihood ratios, the estimates of the fail

ure have something important to say about cross-detection. We have
 

seen that on the basis of the Vs -- using all the available information
 

in the detectors -- the distinguishability between different failure
 

modes can 1e enhanced. Since the estimates of the failure (in the event
 

of detection) are readily accessible, they offer a convenient source
 

of information. The quality and behavior of V(k) was seen in Chapter 

2 to reflect some of the characteristics of the signatures of the dif

ferent modes. In the case of an incorrect detector one might also expect
 

.tosee the estimates provide information indicative of the mode of a
 

failure.
 

In the simulations of the correct and incorrect detectors, the
 

failure estimates were recorded whenever detection took place. Figures
 

3.5 and 3.6 show the behavior of the failure estimates for the state 

and sensor step detectors when ia state step failures were simulated 
A 

in q and a. The correct estimate V2 12(k) slowly coverges to the vicinity 

of the true failure in the phase plane. The incorrect estimate 

V412 (k), however, behaves quite differently. First of all, it con

verges to a point which indicates contributions to the failure from 

from q and a while e remains in the window. A decision rule which 
t
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only accepts failures that are physically meaningful -- e.g.,
 

failures only in q or in a -- by monitoring the convergence of V, can
 

be a substantial aid in identifying the correct failure mode. Notice
 

that what such a rule amounts to is CGLR.
 

Also bf interest is the reaction of V when 6t is no longer in
 

the window. In these simulations (M=50, N=O, t=5) this occurs at k=55.
 

Notice that while V2 12 (k) changes slowly after 0t is out of the window,
 

V4 12(k) goes through a sharp reversal in direction as soon as that time
 

is reached. Also, the correct estimates tend to vary less before the
 

end of the window is reached. This information about the incorrect esti

mate can be used if one is willing to wait the time necessary for 6t to
 

leave the window (M-N+l time steps) before making a decision based on a
 

particular t(k,6) for a fixed 6 and varying k. 

The kind of behavior shown here by the correct and incorrect
 

failure estimates. shows clearly that this information can further con

tribute towards identifying the true failure mode. Together with modi

fications which make use of the patterns in the 's, the cross-dtection
 

problem can be systematically studied, ameliorated, and possibly,
 

eliminated.
 

3.4 DISTINGUISHABILITY WITH CGLR
 

The observation made in the last section, concerning the behavior
 

of the incorrect failure estimate, merits a closer look. In Figures
 

3.5 and 3.6 it was seen how for the full GLR the incorrect estimates
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vil j differ from the correct detector estimates (for a sensor step de

tector and state step failure). The failures simulated were orthogonal:
 

failure in either q or a. Yet, the incorrect estimates approached -

while 8t remained in the window -- an estimate indicating substantial
 

components in both q and a. The full GLR detector chooses the estimate
 

V which is most likely to have resulted in the maximum (over the window)
 

likelihood ratio, assuming the particular failure mode hypothesized by
 

the detector in fact occurred. It is free to choose V as any point in
 

the failure space of appropriate dimension. This raises the following
 

question: how much better would the constrained GLR (CGLR) or the
 

simplified GLR (SGLR) perform with respect to distinguishability problems?
 

The assumption that these formulations will, in fact, do at least as
 

well as the full GLR is discussed below. The comments in this section
 

refer to the CGLR and it is expected that many of them carry over to
 

SGLR as well.
 

The CGLR (and SGLR) formulation was discussed briefly in Chapter
 

1. We saw that it consists of computing, for each failure mode, the
 

likelihood ratios and failure estimates along slecific directions:
 
AA
 

Mwhere f 


is an estimate of the magnitude of the failure along fm (i.e., a
 

scaling factor). We note that when a failure occurs in the assumed
 

direction, fr the inf the CGLR corresponding to that drection should
 

=fm' is one out of a set of possible failure directions and
 

22
 
be the same as for the full GLR (In CGLR a 2 (M) is associated with
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every direction f ). This is true assuming that the correct mode is
m 

in the full GLR, the expressions for 6 and E(v) coinknown. When v=Sf 
m 

cide with those for CGLR.
 

In most applications the physically meaningful failures are not
 

likely to be "free" -- i.e., with V totally unknown. For example, a
 

failure in a particular sensor may be independent of the other measure

ments. Restricting the search for failures to a set of specific directions
 

should reduce the uncertainty in identifying the actual failures. In
 

a cross detection situation between modes with considerable distinguish

ability problems, the potential gains in using CGLR are very appealing.
 

Suppose, in reference to the results in Figures 3.5 and 3.6, that the
 

incorrect detector had teen constrained to pure q and pure a failures. 

In all probability, then the incorrect Zi Ws along those directions
 

would be appreciably smaller than the V's for the correct detector.
 

The reason for this is the following. For the full GLR the incorrect
 
A 

detector estimate ViljI - the most likely type i failure which accounts
 

for the ti j achieved -- required a mixed q and a failure. Constrained 

to orthogonal failure directions, the likelihood ratios would have to 

be lower in value, and hence they would be smaller than the t's in 

the correct detector, which should not change too much (as they tend 

toward predominately q or a failure estimates. 

Thus, a comparison between the capabilities of full GLR and 

CGLR should be investigated in order to gain a better understanding of 

the tradeoffs vis a vis cross-dection. Since the dominant failure modes 
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and directions in any application are given to us, the design limitations
 

of the GLR are very much context-dependent. Hence, further work on this 

question should concentrate on developing a systematic treatment of these
 

limitations and tradeoffs between full GLR and CGLR (and, by extension,
 

SGLR).
 

The likelihood ratios and failure estimates in CGLR are computed
 

only for failures in certain directions which are specified beforehand
 

(see Chapter 1, section 1.2). Thus, for every failure mode the cor

responding COLR detector searches along these directions and selects
 

the one in which a failure is most likely to have occurred. A scheme
 

in which the outputs of all detectors are compared for each failure 

direction can then be studied by means of analysis and simulation. For 

example, one can evaluate 62 for the state step and sensor step detectors
 

in the q and a directions in CGLR and compare them to 62 in the full GLR 

for those same detectors. The wrong-time, cross-detection version of 

these quantities then tell us what can be gained by using CGLR as far 

as failure mode distinguishability is concerned. 

The general expression for the wrong-time, correct detector
 

and failure estimate in CGLR are
 

b2 (k,elet,m) 
Z (kIIOt,0() a(k,91m) (3.17) 

bo,@e[et, m)A 

(k) = ak m)(3.18)
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where
 

b(k, eje m) = fmd(k,elet (3.19) 

a(kOlm) = f'C(kO)f (3.20)
m m
 

th

and f is the tmn-failure direction (i.e., v=Sfm). The actual failure m a 

leads to a residual sequence 

y(k) = y(k) + 8G(k,6tYf (3.21) 

Corresponding to (3.17) and (3.18), we have
 

2 (m) 8 (-C'(ke'le )f 2 
f'C(k,0i% 
In in 

- 82a2 (k,8o6t '(3.22) 

a(k,Q)
 

and
 

^ S a(k.,ete

= (3.23) 

,a((k, 0,) 

In a cross-detection situation, for a fixed direction, the
 

expressions for these quantities become
 

2 (m) 2 (fmcdj(k@,'el )2ii = f=C k,8t) mfkef(3.24)
 

andm
 

and
 

http:fkef(3.24
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A PC 1.(k,Olet)f
 
E = S cI1j (k etf.(3.25) fVC (k,e)f
 

Comparing these quantities with those given by (3.17) and (3.18) 

for f m in the q and a directions will tell us how well the CGLR handles 

distinguishability between failure modes with correlated signatures. 

Comparing them to the corresponding ones in full GLR then indicates the 

relative advantages in cross-detection between the two GLR formulations.
 

A similar kind of analysis can be performed with respect to simplified
 

GLR to see how further restriction to include the magnitude of V affects
 

distinguishability. Finally, we note that (3.24) and (3.25) can be
 

expanded to include the case where, in addition, the failure is in a
 

direction f other than the one hypothesized in the detector.
n 

3.5 CROSS-DETECTION: DISCUSSION
 

This concludes our brief look into the difficulties with the
 

GLR technique in distinguishing between several failure modes. We have
 

seen some of the fundamental limitations of this approach. The nature
 

of this indistinguishability -- similar behavior of the residuals under 

different failure conditions -- is built into the GLR technique since 

it searches for specific developments in the residuals. 

There are several ways to deal with these difficulties in de

termining which is the true mode of a failure. The main consideration
 

common to all is the realization of the fact that the principal design
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limitations with the GLR are very much context-dependent. Therefore,
 

efforts to improve detection must take advantage of the way in which
 

these dependencies are displayed in the various quantities computed
 

in the detectors. In one approach, full use should be made of all
 

available information concerning the 's and the estimates. The patterned
 

behavior of these quantities for the correct detector can be used ef

fectively to provide increased distinguishability. The design of "smart"
 

decision rules, which check for this distinctive kind of behavior con

sistent with the hypothesized failure mode, can eliminate or restrict
 

many of the limitations of this method.
 

Another approach, complementary to the use of modified decision
 

rules, is the search for the most applicable GLR formulation for the
 

problem at hand. The flexibility offered by full, constrained and
 

simplified GLR allows us to provide a better match to our knowledge
 

about the system and failures. The assumptions about the failures which
 

can be made on physical considerations motivate the various restrictions 

on V madeby SGVk, CGLR and full GLR. If only a particular failure can 

occur,, or if its origin must necessarily be related to specific points 

in the systems, such information should be acknowledged explicitly in 

selecting the detector formulation. rurther work with the GLR techni-

que should concentrate on development of a methodology with which to
 

select the best design, for a given situation, in a systematic fashion.
 



CHAPTER 4
 

SENSITIVITY TO MODELLING ERRORS
 

4.1 DETECTION UNDER MISMATCHED CONDITIONS
 

In this chapter we consider the sensitivity of the performance of
 

the GLR detectors to modeling errors. Up to now we have assumed that the
 

model of the system used to compute the Kalman filter gains and detector
 

matrices is exact: all parameters are perfectly known. In previous chapters
 

we have examined the detection performance of the GLR under this assumption.
 

The concern over the issue of modeling errors is motivated by two
 

important considerations:
 

.	 one can never really measure the model parameters exactly,
 
and, in fact, the model is often a vast mathematical
 
simplification of the physical system
 

. even if one could, the true system parameters are likely to
 
have some time-varying behavior
 

With respect to the first of these, one would like to know the relation

ship between quality of detection and the accuracy to which the system
 

parameters are known. Perhaps of more importance, however, is the-second
 

observation. In many'applications the true system drifts slowly away
 

from the dynamical system specified by the model. Or, the true system
 

is only approximated by the model for certain regions in the state space.
 

For example, the F-8C model used 'here consists of a sequence of linear,
 

time-invariant systems corresponding-to different flight conditions
 

along the flight tra3ectory. A more exact representation of the air

craft would be a nonlinear dynamic system [161.
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In order to develop some intuition into the possible implications 

of modeling errors for reliability in detection via the GLR, some analysis 

and. simulations were carried out. These results are only preliminary, 

and much more work remains to be done. However, we feel that some of 

the basic issues have been identified and that it is possible to deal 

with the problem of parameter errors in a number of ways. 

Finally, we view the subject of this chapter as a further look
 

at the basic limitations of the GLR technique. Some of the difficulties
 

in distinguishing between failure modes were demonstrated in Chapter 3.
 

In fact, it will be seen that an analogous situation exists between cer

tain other failure modes -- hard-over sensor failures in particular -

and the kind of modeling errors considered here. Therefore, on the one
 

hand we learn about the effect of these errors on performance and on 

the other we can view this as providing insight into 'ailures (Chapter 

1, section. 1.,2) using detectors'based on the sinmplerxmodels -- such as 

the step detectors.
 

Reference to the term 'mismatch' in this chapter denotes the
 

situation where some or all of the model parameters on which the de

tectors and the filter are Eased are in error.
 

4.2 THE FILTER MATCHED TO THE DETECTOR 

4.2.1 Description of Mismatch 

In approaching the sensitivity of GLR performance to modeling 

errors, an analytical treatment becomes intractable very quickly. We 
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therefore rely substantially on the use of simulations. The simulation
 

program MDSP ([13] and Chapter 2, section 2.3.1) easily accomodates
 

vatious forms of mismatches. The detectors and filter can each be com

puted based on the same model of the system as the true one, or, on
 

another one which can be specified. For our purposes reduced-order models
 

for the F-8C aircraft were used, for flight conditions 10 and 12 (chapter
 

1, section 1.2.1 and [16]). These correspond to flight at Mach 0.4 and
 

Mach 0.8, respectively, with the same altitude and weather conditions as
 

flight condition 11 (20,000 feet and cumulus clouds).
 

The most significant differences between these three models are:
 

* the H term changes approximately by a factorof 2 from each 
flighWcondition to the next (due to marked changes in dyna
mic pressure)
 

* the q matrix changes ,so that the period of the aircraft os
cillations increases by almost 50% from condition 12 to 
condition 11, and again from condition 11 to condition 10. 

We note that these are fairly large modeling errors and therefore we are
 

considering extreme, but meaningful, situations. Table 4.1 summarizes
 

the parameters of the model and Kalman.filter corresponding to flight
 

condition 12 (the parameters for flight condition 11 are given in 

section 1.2.2). All the results reported in this chapter involve a 

mismatch between flight conditions 11 and 12. 

The period of oscillation of these two models are approximately
 

92 (3 sec.) and 67 (2 sec) time steps respectively. The H term, 

which doubles from flight condition 11 to condition 12, depends on the 

dynamic pressure and thus the velocity. We use flight condition 12
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Table 4.1 System and Filter Parameters for Airciaft
 

Model at Flight Condition 12
 



rather than 10 for the real system because 12 has a shorter period. Hence,
 

the effects that depend on this are likely to happen faster.
 

4.2.2 Complete Mismatch
 

We first look at the case where the detector and the filter are
 

calculated based on the same flight condition which differs from the
 

true system (on which the measurements are made). This is a realistic
 

situation since the filter gains anddetector matrices must be either
 

generated on-line or kept in storage. However, it is an idealization
 

of the actual situation since the true system is likely to be gradually
 

changing. It is impossible to obtain them for every change in the
 

actual system. So we only assume that the system model is "near enough"
 

to the real system to'be meaningful. The case where the filter gains,
 

but not the detectors, can be matched to the true system is discussed
 

briefly in section 4.4.
 

In order to understand how detection performance is affected by
 
A A 

the modeling errors we look at the way y, Z, e and V change. We can 

then infer the probable rates of false alarms,, detection delays, etc. 

We begin with the behavior of the residuals under mismatch. Since the 

Kalman filter is not matched to the system, these innovations need no 

longer be a white noise process in the absence of failures (although 

whiteness in the residuals is not a sufficient condition to,declare 

a model exact, as is pointed out in [17]). 

Figure 4.1 gives plots of the residuals for simulation runs
 

where the true system is at flight condition 12 while the filter and
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detector are computed for flight condition 11. Figure 4.1 (a) shows the
 

actual residuals generated, and in 4.1 (b) the same residuals are shown
 

for a deterministic run (all noises equal zero for all k). Both are the
 

residuals of the unfailed system. The latter indicates how the mean val

ue of the residuals responds to the mismatch. Both of these correspond
 

to the system started at an initial condition with q(O)=O and c(O)=50 ,
 

the reason for which,will be discussed shortly. By deleting the noises
 

we have isolated the pure effect of the mismatch on the residuals. The
 

relationship between this oscillatory behavior in y and the system dy

namics is explored later on in this chapter.
 

This kind of behavior in the residuals suggests how the GLR de

tectors will be sensitive to modeling errors. To the extent that the
 

residuals over some interval of time resemble the failure signatures for
 

some mode, false alarms will increase. The likelihood ratios in the
 

state step and sensor step detectors for these residuals are plotted
 

in Figures 4.2 (a) and 4.2 (b). Notice, first of all, the large values
 

of the 's in both detectors. Thus, false alarms will surely occur
 

(assuming the use of an instantaneous decision rule). Furthermore,
 

notice the peculiar nature of the patterns in the k's, involving os

cillatory behavior in both k and 0.. The latter fact should not sur

prise us, given the oscillations in the residuals and that L(k,e) is
 

a quadratic function of '(k).
 

Consider the 's in Figure 4.2(a) as they develop with increasing
 

k. At first only the first peak is in the window and a 0 will correspond
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to its largest value. Later, as the first peak dies out and a new one 

appears for later e's, 6 undergoes an abrupt shift. As we know, V also 
A 

changes sharply for such behavior in 0. The correlation between the
 

's for e's wide apart can be quite small. In Figure 4.3(a) we have
 

plotted 0(k) corresponding to the likelihood ratios, shown in Figure
 

4.2(a), for the state step detector under mismatch. The estimate 0 for 

the sensor step detector, under similar conditions, is shown in Fig.
 

4.3(b). In the first case, the estimate of the declared failure under

goes a large discontinuity. This increase equals the distance in 0
 

between the two peaks observed in the 's in Fig. 4.2(a). The estimate
 
A 

6 in the sensor step detector behaves quite differently, as do the
 

Vs shown in Fig. 4.2(b).
 

Two comments 
can be made based on these observations. In the
 

case of the state step detector, Figures 4.2(a) and 4.3(a) suggest
 
A 

that sudden, large shifts in 0, corresponding to times within the
 

window, are indicative of a mismatch situation. Furthermore, the size
 

of the shift A0 is a function of the period in the Vs and thus, is
 

directly related to the oscillations in the residuals. The importance
 

of this fact should become clear in the discussion which follows. On
 

the other hand, in the case of the sensor step detector (Figures 4.2(b)
 

and 4.3(b)) 6(k) is indistinguishable from the estimated time of an
 

actual failure, as it consistently selects the same value for 0(k).
 

Hence, other information must be used in this case to distinguish be

tween a real failure and simply a condition of mismatch. This information
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must come from the failure estimates 'V(k) and/or from the patterns of
 

the likelihood ratios (from this detector and from the state step detector).
 

The distinctive shapes of the Vs in Fig. 4.2 indicates that the
 

kind of decision rules suggested in the last chapter (in relation to
 

cross-detection) might prove useful here also. For example, under mis

match the V's at times exibit more than one peak across the window simul

taneously. This was never seen before in detection of failures of any
 

kind under matched conditions. Similar comments apply to decision rules
 

which 	look at the behavior of the 's with time.
 

Let us consider the nature of the changes in the residuals in re

sponse to the mismatch. Suppose that the real system can be described
 

by
 

x(k+l) = 0ix(k) + rlw(k) (4.1) 

z(k) = Hlx(k) + v(k) (4.2) 

where w(k) and v(k) are the same Gaussian white noise sequences given in 

Chapter 1.
 

If the Kalman filter is based on a system model with 0, H and
 

r instead of 1H1 and r1 I the estimates in the filter are given by
 

A 	 A 

x(k+l) 	 = O(I-KH)x(k) + QKz(k)
 

- O(I-KH)x(k) + 0 KH 1 x(k) + OKv(k)
 

= Q(I-KH)x(k) + QKHx(k) + OKAHx(k) + OKv(k) (4.3) 

where
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2(k) = 2(kjk-1) (4.4) 

and z(k) in (4.3) comes from (4.2). If we now let 

(D = ' + Al (4.5) 

H1 = H + AH (4.6) 

rI = r + AF (4.7) 

we can express the residual in the filter: 

y(k) = z(k-) - Hx(k) 

= ,(H + AH)x(k) - H2 (k) + v(k) (4.8) 

Letting e(k) denote the estimation error 

A 

e(k = x(k) - x,(k) (4.9) 

then 

e,(k+l) = 'b'(I-KH)e(k) + (r+Ar)w(k)+ Ax(k) 

- (DKv(k) - OKAHx(k) (4.10) 

and 

y(k) = He(k) + AHx(k) + v(k) (41) 

Thus, we can think of the residuals as the output of an augmented 

system with state vector
 

e(k+l) 4'(I-KH) A"-($!A1 fe( ) w(k)-$Kv(k) l 
. . . . . . .J.(4.12) 

x(k+1)j 0 '+A I Lx (k)] rw(k) 
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y(k) = [H AH] 	[e(k)] + v(k) (4.13) 

1x IU
 

Assuming that tD(I-KH) is a stable matrix with real eigenvalues, e(k)
 

and y(k) oscillate when forced by x(k), and therefore at a frequency
 

determined by D+A =$D.' i.e., the real system. If the eigenvalues of
 

are not real, then the previous statement still holds, but the
 

behavior of e(k) in equation (4.10) will show mixed oscillatory modes.
 

Returning to our example, 0(I-KH) for flight condition 11 is a
 

stable matrix with real eigenvalues as shown by equation (1.65). The
 

residuals in Figure 4.1 in fact oscillate with a period close to
 

that of ( in flight condition 12. The initial condition in a was chosen
 

to provide the maximum possible effect, as AH in equation (4.11) is of
 

the form: t
 

AH 	 (4.14)
 

It should be pointed out that the value of that initial condition
 

(q(0)=0, (0)=50 ) is quite large: a(0)=50 has a value twenty times the
 

standard deviation of the noise in,the a dynamics. Therefore, it is
 

expected that the effects of mismatch will be less apparent for a more
 

subdued state trajectory.
 

Finally, in Figure 4.4(a) and 4.4(b), we present the 's under
 

mismatch between the same two flight conditions -- and for no failures -

when the initial condition is one in q: q(O) = 260/sec (200) and
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a(O) = 0. Although there are some differences in the magnitude of the
 

Z's achieved and, for the sensor step detector, in their shape, all our
 

earlier observations apply equally well here. The interaction between
 

q and a through the dynamics results in similar responses in the detectors,
 

as the pitch rate q is integrated into angle-of-attack a.
 

In the next section we consider the case when failures occur while
 

a condition of mismatch prevails.
 

4.2.3 Failure Detection Under Complete Mismatch
 

In the last section we saw how the sensitivity of the GLR detectors
 

to modeling errors can result in large values of the likelihood ratios,
 

and consequently in false alarms. The response of the detectors to the
 

mismatch was seen to have very definite characteristics, as well as to
 

be quite dependent on the state of the system.
 

In order to determine how detection might be affected when a failure
 

does occur under these conditions, a number of simulation runs were made
 

for different failures and initial conditions. Figure 4.5(a) shows the
 

's in the state detector in response to a 1cr state step failure in q.
 

The initial condition was q(O)=O, c(O)=50 and t=5 was the failure time.
 

The 's in Figure 4.5(b) correspond to the same kind of failure and
 

0
mismatch, but for q(O)=0 and a(O)=-5 . The unfailed, mismatched response
 

of the same detector, for comparison, was given in Figure 4.2(a). While
 

the oscillatory behavior of the 's due to the mismatch are clearly
 

present, it is worth noticing that they (the 's) are actually growing
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with time. This is in contrast to the unfailed case where they are
 

expected to decrease with time, in line with the decaying tendency shown
 

by the residuals in Figure 4.1. The reason for the decrease in the
 

residuals is that these oscillations depend on x(k) (see equations
 

(4.10) and (4.11)). Since the system is stable, the effects of the
 

initial conditions diminish with time, in the absence of any forcing
 

input. Notice that this "free" response of the system is mainly de

termined by the initial state (the noise disturbances are the other
 

factor).
 

Figure 4.5(b) shows the 's,also from the state step detector,
 

for the same failure when the system is started at a different value
 

of the state. While the same comments apply, note the larger values
 

of the 's and the apparent change in the oscillations. Figures 4.6(a)
 

and 4.6(b) show the 's in the sensor step detector in response to a
 

i1' q sensor step failure, with the same two initial conditions. Notice
 

that observations can be made analogous to those for the state step
 

detector. One difference is that for the initial condition with
 

ct(O)=-5 0 , the likelhood ratios are actually smaller than in the unfailed
 

case shown in Figure 4.2(b). The effect of the q failure on the value
 

of a is opposite that of the negative initial conditions. Both tend to
 

cancel out somewhat the effect on the residuals.
 

These simulations indicate that detection is still possible under
 

mismatch, although not without difficulties. The increasing, although
 

oscillatory, nature of the 's for failures under these conditions imply
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continued detectability of the failure. By raising the threshold to a
 

very high value we can insure that only failures can lead to detection.
 

The large thresholds necessary to guarantee this will lead to increased
 

delays before a failure can be detected, or decreased probability of
 

detection. However, we have seen in Chapter 2 that step failures, state
 

steps in particular, of moderate size result in extremely high values
 

of the Z's very quickly. Therefore the real problem is that modeling
 

errors may limit the smallest failures we can hope to detect.
 

The dependence of the k's on the values of the state of the
 

system is a factor which is unique to the condition of mismatch; it
 

was not seen before in matched detection analysis and results. As with
 

the likelihood ratio, the estimates of the failure and failure time
 
A A 

V and 0, also depend on the state. 

Since some of the failures enter into the state of the system -

state jump and state step failures -- the behavior of the outputs of
 

the detectors for those failures is more sensitive to the state tra

jectory than the detectors for the sensor failures.
 

Figures 4.7 and 4.8 display the likelihood ratios under the mis

match between flight conditions 11 and 12 for a step failures (6t=5)
 

in the state and sensors. Figures 4.7(a) and 4.8(a) show the Vs in 

both the state step and sensor step detectors for an a initial condition 

of 5'. The corresponding detector response to the same failures for an 

initial condition of a=-50 is shown in Figures 4.7(b) and 4.8(b). As 

before, the differences in the state lead to changes in the Vs. However, 
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compare-the resulting changes in the i's due to the different state of
 

the system in Figures 4.5 and 4.7 to those changes observed in Figures
 

4.6 and 4.8. We can see that
 

" the way in which the Z's respond to the differences in the
 
state is not the same for both detectors: in one case they
 
increase and they decrease in the other
 

" the Z's in the state step detector change by as much as 100% 
depending on the state, for the same failure; the 's in the 
sensor step detector only differ by about 25% (the value of 
the state can tend to cancel out part of the failure when it 
is a state failure -- but not when it is a sensor failure) 

Knowledge of these characteristics of the detector responses in the pre

sence of modeling errors can be used to advantage, once understood in more
 

detail.
 

Just as in the case of cross-detection (Chapter 3), the best way
 

to deal with these difficulties is the full use of the behavior of the
 
A A 

's, and the -estimates V(k) 'and e(k). The maximum likelihood inter

pretation of these quantities for the various detector hypotheses can 

tell us something about the activity of the-residuals, and, hence, also 

about the behavior of the real system. It may be possible to use all 

this information in an integrated manner in connection with a scheme for 

system identification.
 

Finally-, in Figures 4.9, (a) and (b),, we show the estimates of the 

failure time for the state step detector. The failures are a la q state 

step (Figure 4.9 (a)) and a la a state step (Figure 4.9 (b)) and e = 5t 


.
for both. They are given the initial condition in a of 50 and also -50
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We notice that the kind of failure -- failure in q or in a -- can enhance 
A 

or diminish the differences between the resulting 6(k)'s for two different
 

values of the initial state. Compare these plots to the unfailed response
 

of the same detector for an initial condition in a of 50, shown in Figure 

4.3(a). 

First of all, notice that the failure in a (Fig. 4.9(b)) overrides 

the effect of the mismatch to some extent and maintains a consistent
 

6, for both state trajectories. The failure in q, on the other hand
 

(Fig. 4.9(a)), shows erratic estimates not too different from the unfailed
 

estimate in Figure 4.3(a). It must be kept in mind, however, that these
 

are small failures and thus the problem is expected to be less severe for
 
A 

larger failures. Also of interest is the way that the sequence 0(k) dif

fers, for the same failure and detector, for two separate state paths. 

This is particularly evident in Figure 4.9(a). A more detailed analysis 

of this state dependence might prove fruitful. It may tell us if we may 

corroborate a detection decision by deliberate perturbation of the actual 

flight trajectory. 

Although the data presented here is limited to a few situations
 

of special interest, we feel that our observations can be generalized. A 

more complete study of this sensitivity to modeling inaccuracies should
 

be rewarding. In the next section we look at another possible approach
 

to improving detection under mismatch.
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4.3 PARTIAL MISMATCH: AH
 

4.3.1 Compensation for AH
 

It was pointed out in section 4.2.1 that one of the major parameter 
errors in the mismatch between flight conditions corresponds the H term 

of the observation matrix. A number of simulations were made where the
 

only mismatch between the system model and the actual system consisted
 

of the difference in the H. The detector and filter were based on flight
 

condition 11. The real system was the same, except that the H was that
 

of flight condition 12.
 

Figures 4.10(a) and 4.10(b) show these t's under the same conditions
 

.
as in Figure 4.2: no failure and an initial condition in a of 50 The
 

great similarity to the previous likelihood ratios, under the complete
 

mismatch between the flight conditions, makes it clear that it is in fact
 

H which contributes, in our case, to the main effect. Thus, if one could
 

correct for this parameter error, one would expect to be able to miti

gate greatly the sensitivity to the mismatch.
 

It was mentioned earlier that the H term, which is the only one
 

contributing toward AH (see equation (4.13)), is a function of the dyna

mic pressure. Hence, if one can determine the actual H by some means 


such as measuring dynamic pressure directly -- one may be able to com

pensate for AH. Figures 4.11 and 4.12 display the Z's in the state step
 

and sensor step detectors for a complete mismatch where AH has been
 

compensated for (i.e., the actual AH=o). There is no failure in either
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Fjig. 4.10(b) Likelihood Ratios under H Mismatch: No 
Failure; Sensor Step Detector
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£(k,e 
P£ 25 

max 
qq(0) =0 

(0) =50 

Fig. 4.11(a) Likelihood Ratios for Partially Compensated
 
Mismatch: No Failure; State Step Detector
 

9,(k, e) 
£ : 26 

max 

q(0) = 0 

a(0) --50
 

Fig. 4.11(b) Likelihood Ratios for Partially Compensated
 
Mismatch: Ho Failure; Sensor Step Detector
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91 : 212 
max 

q(O) = 260/sec 

a(0) =0 

Fig. 4.12(a) Likelihood Ratios for Partially Compensated
 
Mismatch: No Failure; State Step Detector
 

(k,O) 

S :212 
max 

q(O) = 26/sec 

a (0) =0 

Fig. 4.12(b) Likelihood Ratios for Partially Compensated
 
Mismatch: No Failure, Sensor Step Detector 



case. The Z's in Figure 4.11 correspond to the system started at an 

a (200) initial condition and for the 's in Figure 4.12 the system 

started with a 20a q initial condition (0t-0). Note that in both cases 

the values of the t's are significantly smaller than in the cases where 

there was no such compensation (Figures 4.2 and 4.4). Selecting a high 

threshold can eliminate the false alarms without significantly diminishing 

the capability for detecting failures. 

If we recognize that our example consists of relatively large 

modeling errors and initial conditions, these results suggest that in 

many cases it may be possible to isolate the main source of the dif

ficulties and to eliminate them. 

4.3.2 Approximate Analysis of Complete Mismatch
 

We mentioned earlier that analytical treatment of the sensitivity
 

of GLR performance to modeling errors is in general intractable. To
 

consider changes in all parameters of the system and their effects on the
 

filter residuals results in too large a burden which overrides any gain
 

in clarity or understanding of the situation. However, some analysis
 

may be possible in those cases where adequate approximations can be made.
 

In this section we present some expressions obtained, for the aircraft
 

example, by recognizing the dominant sources of the mismatch.
 

In section 4.3.1 it was pointed out that for our example the
 

dominant parameter error was AHt' This term accounts for the major trends
 

in the behavior of the residuals under mismatch. Figure 4.10 shows that
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AH alone produces a response in the L's of the GLR detectors which is
 

qualitatively similar to that shown in Figure 4.2 for the complete mis

match. In Appendix B we have calculated the change in the residual due
 

to the presence of the AH between the true system and the model in the
 

filter (which is the same as for the detector). 

The residuals in the Kalman filter, expressed in terms of the resid

uals for the matched, unfailed case (yck)), are then given by 

k 

Yk) = y(k) +' A(kP)x(k) (4.15) 

L=o 

where
 

A(k,k) = AH (4.16) 

A(k,k) = -HGk-k-IDKAH, Z<k (4.17) 

and 

E = D(I-KH) (4.18) 

S is recognized to be the transition matrix of the K&lman filter. 

Note that this is another expression for the'residuals in (4.13) 

and that the dependence on the past and present values of the state is 

made explicit. The quantities which go into A(k,k) are all known and 

thus it is not hard to compute A for increasing values of T=k-Z. If 

knowledge of AH can be obtained, or if we can estimate it it ,may be .possible 

to filter out a large part of the non-white component of the residuals in 
I 

(4.15) by subtracting out values computed with an approximation with a 

small number of terms in that convolution. This pre-filtering would pro

vide the new residuals to be used by the detectors:
 



k 

ynew(k) = Yold (k) - A(k,Z)x(ZjZ) 	 (4.19) 

where A and T are to be optimized. We must use the estimate x(klk) since
 

we do not have x.
 

Otherwise, the effect of the residuals in (4.15) on the likelihood
 

ratios of the GLR detectors (for AH) can be calculated, as in Appendix
 

B, to bet
 

E(PMk,6)) = tr L(k,O; j,j)g(3)
 

kj min(Z,-l,h-l) 

+ 	 2tr E L(k,O;h,j)A(, - F F' (Hoh 

23= 9=0 i=O 

+ trf 	 L (k, e; j,m)A(mn) enx X(A ,) 

-1S
-k
-1 


P(j) = E(e(j)e(jE) (4.22) 

L(k,0;h,j ) = v-(h)G(h,0)c-(k,O)G' (j,)VI(j) (4.23) 

e(k), 0 and A are given by equations (4.9) and (4.15)-(4.18) and x0=x(0). 

Thus we find that even for the idealized mismatch with only LH, 

http:4.15)-(4.18
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the analysis of the likelihood ratios is not a trivial exercise. Hence,
 

our heavy reliance on simulations is DustLfied as the more immediate and
 

useful approach. Based on the observed patterns in the behavior of the
 

various detector outputs, 'smart' decision rules must be designed and
 

tested for improved performance. Otherwise some form of compensation
 

must be implemented either by the pre-filtering suggested above or by
 

means of the suggestion in section 4.3.1 (correcting for the dominant
 

parameter by directly measuring it, whenever possible).
 

In the next section we look briefly at another kind of mismatch
 

where the analysis becomes somewhat simpler.
 

4.4 TIM- FILTER MATCHED TO THE SYSTEM
 

- So far in this chapter, all the discussion on the limitations of
 

the GLR technique arising from inaccuracies in the modeling of the system
 

of interest has been related to what we call complete mismatch (section
 

4.2.2). The same model is used to calculate the detector matrices and
 

the gains in the Kalman filter.
 

Another possibility is having the filter gains matched to the
 

dynamics of the real system and the detector quantities based on the
 

system model. This becomes feasible if the OLR detection system operates
 

simultaneously with an identificatign scheme -- e.g., the multiple model 

adaptive control method (MMAC) 118], which is capable of.choosing a Kalman 

filter for the correct flight condition. The detectors for a given flight 

condition consists of a sequence of matrices (G(r), C(r); r=O,1, ... , M-N+) 
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for the interval in the window. Therefore it is desirable to have detectors
 

for a limited number of'flight conditions.
 

Consider the system given by equations (4.1) and (4.2),. Suppose,
 

again, that the only difference between this system and its model in the
 

detector is that the latter assumes a value Hd while the actual observation
 

matrix is
 

H = H + AH (4.24)
s d
 

The subject (*)s denotes quantities corresponding to the real system while
 

() denotes quantities based on the model of the detector.
 

The Kalman filter is matched to the system -- i.e., it is based on
 

H.s 

In the absence of failures, the filter residuals will form a white 

noise process. However, let us express y(k) in terms of the model in the
 

detector:
 

Y (k) = z (k) - H x,(k) 

= (Hd + AH)x(k) - (H + AH)x(k) + v(k)
d 


= Hde(k) + v(k) + AHe(k) 

= Ya(k) + AHe(k) 

=y (k) (4.25)
 

Or,
 

YS (k) = Yd(k) + AHe-(k) (4.26) 
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where x(k) and e (k) -- the predicted state estimate and estimation error -

are defined in equations (4.4) and (4.9).
 

If we compute the expected value of the likelihood ratios in the 

GLR detectors, based on Hd ,for these residuals corresponding to Hs, we 

obtain (in the absence of failures):
 

k 

EMdjs(k,)) = tr ZE L(k, ; j) Vs(3) (4.27) 

j=e
 

where L(k, e; j) --L(k,6; j, j) (4.28) 

V = H PH' +R s s s
 

= (Hd +A H) P(H d + AH)' + R 

= H PH' + R + H PAH' + AHPH + AHPAH'd d d d
 

= Vd + Av (4.29)
 

AV = HdPAH' + AHPHE + AHPAH' (4.30) 

L(k, e; j, j) is defined in (4.23), P in (4.22), and Vd is as in (4.21). 

-The expression Pdjs refers to the unfailed likelihood ratio as described 

.above and is derived in Appendix C. Thus, we have 

E(Mdls(k,e)) tr[ L(k, 6 j) VS()= trtL(k, 6; J)(Vd(j) + AV(iO) 

= tf L(k, 6; J)Vd(0 + trF L(k, 6; j)Av(j 

= E(Rd(k, 0)) + A = n + A (4.31) 
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The last equality follows from the result in Chapter 2 for the matched
 

detection case. Hence, the difference in the 's in the detectors, due
 

to the error in their model value for H, leads to an increase in the
 

value of the unfailed likelihood ratios. To the extent that AH is the
 

most significant modeling error,
 

A = E(idls(k,G)) - E(Pd(k,O)) 

= tr L(k, e; j)AV(j)J (4.32) 

predicts the changes needed in the threshold in order to maintain the
 

same detection probabilities (Pd and PF) as in the case when the detector
 

is perfectly matched to the system. Notice the AV, and thus A, can be
 

precomputed.
 

In contrast to the complete mismatch situation in the previous
 

part of this chapter, the approximate analysis for this other kind of
 

detector mismatch is feasible. An analysis of the failure detection
 

performance of the detectors under these conditions can be developed
 

much like in the case of cross-detection in Chapter 3. In Appendix C
 

the following expressions are also derived:
 

k 

0dds(e)) = E( : ( ,)V ( s)Y(j)) = Cdls (k,)v (4.33) 

J=8 

62j()te l= ,,sC - 4.34)cl sOe (eC'
2(k,) ='C~lj(kO)Cd1 (ke)cdj(k,e) 
 (.4
 



E(Vds(k)) = (k, edis (k))Cdls(k, 6d1s(k))V (4.35) 

and 

GdIs(ke) = arg max YdIs (k,e) (4.36) 

where
 k
 

j=e
 

and Gd is the signature based on H=H d. Notice the similarity in form to
 

the same quantities in cross-detection given by equations (3.6), (3.10),
 

(3.12), (3.13) and (3.5), in that order.
 

Thus, if one can isolate the parameter error which contrlbutes
 

the most to the detector sensitivity, a thorough, although approximate,
 

analysis of the effects on detection is possible. In conjunction with
 

an adaptive estimation control system such as MMAC [18], this may be an
 

attractive approach to dealing,with the sensitivity to modeling errors.
 

4.5 DISCUSSION OF MODELING ERRORS AND THE GLR
 

In this chapter we have examined some of the implications of in

accuracies in the model parameters used to compute the Kalman filter 

and detector matrices. This completes our discussion of the limitations 

inherent in the GLR techniques, which we began in Chapter 3 by looking 

at distinguishability between the failure modes. 

We have looked at the complete mismatch situation i.e., where 

the filter and detector are computed for the same model -- and found that 
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indeed detection is very sensitive to such errors. However, in view of
 

the large parameter errors assumed, and in the manner in which performance
 

is affected, it is felt that the degradation in detection which may re

sult can be dealt with effectively (i.e., compensating for the modeling
 
A 

errors). It was seen that the detector outputs -- the 22s, e(k) and
 
A 

VW)-- are affected by the mismatch in a way which is characteristic
 

of the true system. Thus, "smart" decision rules can be constructed
 

which minimize the possibility of false alarms, much as in the case of
 

cross-detection. In addition, some of the information in these outputs
 

may be useful for an identification system.
 

The correlations in the residuals induced by the parameter errors,
 

even in the absence of failures, are very distinctive. Although analysis
 

of this kind of mismatch is not tractable, it may be possible to isolate
 

the dominant source of error by means of simulations. The results pre

sented with our example indicate that some form of compensation for such
 

errors can reduce the difficulties significantly. In any event, it was
 

seen how parameter errors lead to residual signatures much like those
 

of actual failures. In fact, some modeling errors are equivalent to
 

some of the more complex failure modes mentioned in Chapter 1 -- e.g.,
 

an error AH is seen to be the same as the hard-over sensor failure. Un

like the simpler failures considered throughout this thesis, the likeli

hood ratios now depend on the state of the system. This is one of the
 

reasons for the distinctive manner in which the GLR detectors react,
 

corresponding to the actual dynamics associated with the state trajectory.
 



Viewed in this light, we see that it is possible to detect, and perhaps
 

identify, the more complex failures with detectors based on elementary
 

additive failure models.
 

Finally, another kind of mismatch was briefly considered where
 

analysis and compensation seems tractable. If in conjunction with an
 

identification technique the filter gains can be made to correspond
 

to the true system, the residuals may remain nearly uncorrelated. We
 

examined an example where the dominant parameter error was assumed to be
 

the only mismatch. The unfailed response of the detectors can then be
 

corrected by a simple change in the threshold. In the event of failure,
 

the characteristics of the detector outputs can be studied analytically,
 

much as in the cross-detection problem considered in the last chapter.
 



CHAPTER 5
 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH
 

5.1 CONCLUSIONS
 

We have examined in detail the performance of the generalized
 

likelihood ratio (GLR) technique for failure detection. In particular,
 

we 	have looked at the full GLR formulation (in which no information about
 

the failure vector V is available) and have applied it to a reduced-order 

model of the longitudinal dynamics of the F-8C aircraft. A number of failure 

models have been introduced and the performance of the GLR detectors cor

responding to four basic failure modes has been discussed at length. 

A qualitative examination of the performance of the full GLR for 

this application has been made. It has been directed toward an evalu

ation of the capability of this technique to extract information about
 

the failure, and to the degradation which results from parameter uncer

tainties. Extensive use of simulations has complemented the analysis
 

of 	this method.
 

The failure signatures and GLR detectors for some simple failure
 

modes -- state jumps and steps, sensor jumps and steps -- have been
 

analyzed and discussed in detail. The performance of the full GLR, as
 

measured by such indices as
 

false alarm rates
 

" detection delays
 

* 	ability to distinguish among the various failure modes
 

sensitivity to modeling errors
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indicates great sensitivity to failures. In most cases (including very
 

small failures) the thresholds can be chosen to guarantee fast detection
 

with few, if any, false alarms. This is true as long as the modeling
 

is accurate. Nevertheless, even under these conditions there are cross

detection problems, i.e., difficulties in selecting the true mode of a
 

failure from among failure modes with correlated signatures. The problem
 

exists if one simply looks at the values of the likelihood ratios for
 

single times (as opposed to their values over intervals-of time).
 

The simulations verify the analysis under matched conditions (exact
 

modeling) and suggest ways to deal with the difficulties. The distinctive
 

patterns in the likelihood ratios indicate that it is possible to develop
 

more sophisticated, or "smart", decision rules which make full use of the
 

available information. These rules -- which remain to be formulated -

should be able to improve detection performance. The basis for these
 

rules is to look for specific behavior of the likelihood ratios, and of
 

the estimates of the failure and its time of occurrence, which is char

acteristic of each mode. The joint detection, isolation, and estimation
 

of failures can greatly improve overall detection performance (i.e.,
 

lower false alarm rates, etc.). When looked at as simultaneous tasks,
 

rather than sequential operations -- i.e., first detect, then isolate
 

the failure mode an& finally estimate the failure -- better use is Iffade
 

of the available information.
 

These comments apply whether distinguishability between failure
 

modes or the effects of parameter errors is the main concern. The
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development of such modified decision rules is related to the use of other
 

GLR formulations. It was seen that where full GLR can have serious dis

tinguishability difficulties, the CGLR (and possibly the SGLR) can be of
 

great utility.
 

Our experience with the GLR method up to now suggests that it is
 

a useful and reliable technique for the detection of failures, or abrupt
 

system changes. The performance of the GLR method can be studied an

alytically [12]: the analysis becomes simpler for the more restrictive 

formulation of SGLR. In addition, we have seen that GLR can be success

fully examined by way of simulations. Using both approaches, the GLR
 

offers ample flexibility in the range of implementations possible. This
 

allows us to match the technique to the available information about the
 

system and the failures of interest.
 

5.2 SUGGESTIONS FOR FURTHERWORK
 

Based on the results obtained, it is felt that future efforts should
 

concentrate on the following immediate issuest
 

" The study of the correlations between the k (k,e) for the
 

different failure modes. New analytical techniques and per

formance measures are needed with which to develop and evaluate
 

the suggested "smart" decision rules.
 

* 	The development of modifications to the signatures in order
 

to increase the distinguishability of the failure modes.
 

The concepts of "orthogonal" signatures on the one hand (to 

minimize cross-detection effects) , and "universal" signatures 
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(signatures which can detect all or groups of the failures
 

of interest) on the other should be explored further.
 

Computational and storage savings are issues which can
 

also be dealt with by means of modifications in the de

tectors.
 

* Further study of the sensitivity to parameter errors and of
 

the more complex failure models is needed. Their inter

connections are important to understand and can contribute
 

to the analysis of "smart" decision rules.
 

* Work should continue with CGLR and SGLR. It may be possible
 

to obtain improved failure mode distinguishability and reduced
 

sensitivity to parameter errors by looking for failures in
 

specific directions (and/or magnitudes) only.
 

On a more distant horizon, work should continue toward:
 

* 	 An integrated study of the options offered by the various 

GLR formulations, as part of an overall design methodology 

for maximum utilization of the characteristics of each system. 

* The study of tradeoffs between the use of these techniques
 

which rely on analytical redundancy and simpler detection
 

systems relying on hardware redundancy. These complexity

performance tradeoffs should be examined in the light of 

the GLR and compared to other methods for failure detection. 

* Finally, an evaluation of the performance of such failure
 

detection systems within an overall scheme of self-organizing
 

control systems which automatically restructure themselves
 

as compensation to failures in the system. The criteria
 

with which to critically consider the performance of failure
 

detection systems can be different for closed-loop operation.
 

For example, the "price" of a false alarm or delayed detection
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can be quite different (from an open-loop situation) if these
 

decisions are used in a feedback control system.
 



APPENDIX A
 

THE FAILURE SIGNATURES FOR FAILURE MODELS 1-4 

The failure signature matrices G. (k,O) are presented here for
1 

the following failure modes: state jumps, state steps, sensor jumps
 

and sensor steps (failure models 1-4 in Chapter 1). These expressions
 

are derived by Chow ([12J, Chapter 2).
 

For the linear dynamic system 

x(k+l) = (k)x(k) + w(k) (A. 1) 

z(k) = H(k)x(k) + v(k) (A.2) 

and Kalman-Bucy filter based on the no-failure hypothesis, 

x(k+llk) ((k) (klk) (A.3) 

x(klk) = (klk-l) + I(k)y(k) (A.4) 

with K(k), the optimal gains (see (1-18)-(1-21), the measurement 

residuals are 

y(k) = -y(k) (A.5) 

where y(k) is a white noise process. In the event of a failure V at 

time 0 in one of the above modes we can write, by linearity, 

y(k) = y(k) + s(k,v,0) (A.6) 

s(k,V,O) = G(k,0)v (A.7) 

where G(k,0) is non-zero for k>e and satisfy the following recursive 

equations. The matrix F(k,0) used below is defined by 

(klk) = -1 (klk) + 2(klk) (A.8) 
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2c (A .9)x2 (klk) = r(k,e))v(A9 

where l(kjk) is the 'unfailed' estimate and X2 (kik) is due solely to 

the failure. 0(k,k-l) is the filter transition matrix for the updated 

estimated in (A.4).
 

G(k,k-1) = e(k-l) = [I-K(k)H(k)](k-l) (A.10) 

E(k,j) = e(k-l)E(k-2) ... e(j) (A.11) 
0 

$(k,j) = (k) (k-l) ... 'D(j) (A.12) 

The signatures are:
 

State Jump Failures (Mode 1)
 

0 k<O 

1l (k , O) = E S(k,j)K(j)H(j) (je) k> (A.13) 

0 k<e 

G1(kQ) = fH(k)[,(k,O)- '(k,k-l)F (k-l,e)] k>6 (A14) 

State Step Failure (Mode 2)
 

(0 e
 

k k
 

F2 (k'8) E E j(k,j)K(j)H(j) ( (j,i) k>(A.15)
 

\i=6 j=i
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G2 (k,e) 

0°k<6 

H(k) (k,j) 
1k(A.16)

- D(k,k-l)F 2(k-i,0) k>e 

Sensor Jump Failure (mode 3) 

F3 (k , e ) = 

) (k,e)K(e) 

k<0 

k>8 

(A.17) 

G3 (k,0) = 

-H(k) (k,k-i)F3 (k-4,e) 

k=8 

k>e 

(A.18) 

Sensor Step Failure (mode 4) 

0 k<e 

F4 (ke) = 

k 

j=6 

G(k,j)K(j) k> (A.19) 

0 k<O 

G4 (k,e) I 

I-H(k)(k,k-l)F4 (k-1,0) 

k=8 

k>O 

(A.20) 
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APPENDIX B
 

Approximate Analysis of the Likelihood Ratios: Partial Mismatch
 
(in H) with the Filter Matched to the GLR Detectors
 

I. The Residuals
 

Consider the following dynamical system: 

x(k+l) = 'Dx(k) + Fw(k) (B.1) 

z(k) = Hx(k) + v(k) (B.2) 

with w(k) and v(k) uncorrelated, white noise sequences with zero 

mean value and covariance matrices: 

E(w( w'(j)) = 16.. (B.3) 

E(v(i)v'(j)) = 16ij (B.4) 

The corresponding residuals in the optimal Kalman-Bucy filter for
 

this system, with z(k) as input to the filter, are given by
 

y(k) 	 = z(k) - z(klk-l) 

= z(k) - Hx(klk-l) (B.5) 

where 	K(kjk-l) is the (one-step) prediction of the state which is the 

optimal estimate of x(k) based on the values of z(i) up to and including
 

z(k-l). When the filter has reached steady-state, it evolves with the
 

following dynamics:
 

(k+lIk) = qZ'(klk-l) + _Kz(k)-HA(klk-l)J 	 (3.6) 

where K is the steady-state optimal gain (see equations (1.15)-(1.17)).
 

Rearranging terms we obtain the equivalent formulation:
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(k+lIk) = [#-@IH](k~k-l) + DKz(k) .7) 

or, letting
 

0=0(1-KH), (B.8) 

the filter transition matrix, we obtain,
 

(k+lIk) - E(klk-1) + 'DKz(k) (B.9) 

which is the steady-state equation for the optimal estimate.
 

The (non-recursive) solutions of (B.1) and (B.9) express x(k) and
 
A 

x(klk-1) as follows:
 

k-i
 

x(k) = ekx0 + E ,kZ-Fw(£) (B.lO) 
i£=o 

x(klk-l) = ex^0 + k-i -- lKz (9) (B.11) 

where 

x 0 = x(O) , 2(0) = X(01-l) (B.12) 

If, instead of the observations given by (B.2) , the actual input 

to the filter is 

z (k) = (H + AH) x(k) + v(k) 

- Hx(k) + v(k) + AHx(k) 

= z(k) + AHx(k) , (B. 13) 

then and (B.11) changes to 

k-i 

S1 (kik-i)= 0 kA + E Ek--lscK[z (Z) + AHx(Q] 

k0
 
k-i
 

=£(kik-1) + E Gk-'-l DYAHX() (B.14) 

k=0
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The actual residuals in the Kalman Bucy filter can now be ex

pressed (using (B.5), (B.13) and (B.14)) as
 

l(k) = zl(k) - HIl(klk-1 ) 

k-I 

= z(k)-Hx(kk-1) + AHX(k) - HE 0 k-'- 1$AHx(Z) 
P=O 

k-i 

= y(k) + AHx(k) - HE ek-j-lIDKAHx(t) (B.15) 

2=0
 

or, more generally,
 
k 

yl(k) = y(k) + A(k,t)x() (B.16) 

9-=0
 

with 

AH , k=9. 
A (k,k) = (B.17) 

-HGk--KA , k> 

II. The Log-Likelihood Ratios
 

The detector equation giving the log-likelihood ratios, we recall
 

from Chapter 1,
 

(k,0) = d'(k,0)c-l kO9d(k,i) (B.18) 

k 

d(k,0) = G' (j,)V-l(j)y(j) (B.19) 

j=O 

k 
-C(k,O) = ZG'(j,)V (j)G(j,) (B.20) 

j=0
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in $B.2) but, instead,
When the GLR detectors are computed assuming z(k) as 


we have z (k) as in (B.13), we can compute the effect or change in E(Q(k,O)).
 

(B.19),
Substituting y1 (j) from (B.16) for y(j) in 


k j 
d (k, 8)=jG' (j, )V-i (j) [Y (3) + YA(j,9')xMI) 

j=6 9-o 

k k j 

= G, (jO)V1(j)y(3) + '(j,)V- (j)A(j,2)x(2)
j=0 j=8 Z=o 

k j
tO j=6 £=o 

-d(k,G) +I 2'LG 8ivv (JiAij~)%Zs (B.21) 

where d(k,6) denotes the quantity that would be obtained were everything
 

matched (i.e., if AHEO). 

From (B.18), the log-likelihood ratios can be evaluated with the
 

use of (B.21):
 

+ ZE G' (jr)Vl (3)A(J)x( j'c-l(k,e)R(k,6) = [.o 


j=6 £=0
 

(k,0) + E YG'(j,elV- (j)A(jk)x(z) 

j=6 £=o 

( j ) A QQ ) x (= £(k;0) + 2d'(k,O)C-l(k) ZG'(3,)V -l j 

Lj-e --o 

+I G' (i,0)v-l (J)A(j,Y,)x() -C1(k,O)• 

G'1(j,6)V-(3)A(jk)x(9, (B.22) 

Z=o
L ±j=o 
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where t(k,G) denotes the log-likelihood ratios corresponding to d(k,6). 

In order to evaluate the expected value of £(k,e), E(2(k,e)), 

we proceed with one term at a time. Let us express (B.22) as 

E(k(k,e)) = E + 2E 2 + E3 (B.23) 

then, 	 taking the terms in order: 

El = E(Y(k,e)) 

-
= E(d~k,6)C i (k,)d(k,6)) 

\ i = o OI
 
k k Ij--
ij-l -I1
 

L(k,E; Yj) V-(i)G(i,e)C- (k,e)G' (j,)v-()4 	 (B.25) 

for simplicity.
 

Continuing with (B.24), applying the expectation to each tern in
 

the sum, 

E1 = E(Z(k,0))
kk 


'
 E 3 E(' (i)L(k;ij)y(j)) 

= ketr [(k,;i,j)E(yui)y'(j))] (B.26)
 

i--e j=e 
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where we have used the property of the expectation operator by which 

E(x'Ay) = tr[AE(yx')] (B.27) 

Since the residuals in the Kalman-Bucy filter are uncorrelated, we have 

~(0 	 i3-J 

E(y(L)y' j)) =( 	 (B28) 

v(j) i=j 

and consequently,
 

k 

E. 	 Dtr L'(k,6; j,j)V(j)
 

j=O
 

=tr (k,O;j,j)v(j 	 (B.29) 

Proceeding to the second term in (B.22): 

ii) E2 '(k )c- (k)f (Z,)v-i (j)A(j,)x 

2 h= I(k(--e 
k
 

-Zk, 	 JV (h)L(k,0;h,j)A(jZ)x(L) 

= E EE 	 .3B.30) 
=0 j=8 k=o 

where use was made of (B.25). Continuing, 

k k j 

E2 =E Z8 tr[LC,6;hj)AJz)Ex()yz (h))] (B.31) 
h=e j=e 9=0O 
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where, using (B.10),
 

E(x()y' (h)) = E(P x0 y' (h)) + E t ( -tilrw(i)Y (h) 

E 
k-i	 

0 -i-lrE wiy(h)) (B.32) 

i=0
 

by linearity of the expectation, and assuming that x0 and y are un

correlated (since x0 is assumed uncorrelated with both w and v in (B.1) 

and (B.2)). 

In order to obtain the value of E(W(i)y' (h)) we need the following 

expressions:
 

y(k) 	 = z(k) - Hx(kIk-l) 

= Hx(k) + v(k) - H2(kk-l) 

= He(klk-l) + v(k) (B.33) 

e(klk-1) = x(k) - -(kjk-1) 	 (B.34)
 

and
 
k-i
 

ke(k k-i) = e 0 + E k-r-l[rw(r) - OKv(r)] 	 (B.35) 

r=0
 

Equation (B.35) can be derived from equations (BR.1), (B.2), (B.7) and 

(B.34). Then, by (B.33), 

E(w(i)y' (h)W = E w(i)e' (hlh-l))H' + E(w(i)v' (h)) 

= E(W(i)e'(hjh-l))H' 	 (B.36) 
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since the noises 63 and v are uncorrelated for all times. Therefore,
 

E (i)y(h)) = E(w(i)et)[Oh]IH 
h-i 

+ E(w(i) Ew' (r)r' ( 0h - r -l) '])H' 

r=0 

h-i 

+ E(w(i) v (r)K'" (hr- '])H 

r=O 
h-I 

=E E ( (i)w ' (r)) ( - r - 1PH' 

r=0 

r=i, i<h-l
 

otherwise (B.37) 

due to the fact that: 1) w and e0 are uncorrelated, 2) equation (B.3).
 

Consequently, (B.32) becomes
 

Z-i
 

h - i -E(x(M)Y' (h)) = rre (i-l 1 )'H' (B.38) 

i=0 

and E2P fro'm (B.31), is given by 

k k j rin P,-l,h-1) 
]'H'
opiF-i-l i-lto.2E EZ2i=1r[L(k,6;h,i)A(j,P,)'E h-i-i 

h=e j=e z=b i=O 

k k j rin(.-l,h-l) 

tr F l: L~ke~hj)A~~k)DRi-1 h-i-iH 

h=8 j=6 9-=0 i--0 
(B.39)
 

where the limits on the sums are constrained to values such that the
 

expression makes sense. Finally we get to the third term, E3' in (B.23). 
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iii) We will need the cross-correlation function for x(k). For x(k)
 

as given in (B.1), with X0 = Ex0x0',
 

n-l1 -1 

E(x(n)x'(Z)) = E nx + E' 0n-s-lrw(sh 5Xo rw(t 
(l =0 It=O 

m.n (n-l,k-l) 
= Dnx0(RPI, + Fa 0n-s-lrr ,(#-s-l),o (B.40)
 

s=0
 

There, 	using (B.22), E3 becomes
 

E = E 	(>Z E x' (9)A' (j,)L(ke;j,m)A(mn)x(n 

rj= m=e £ n=0 

=tri i:d L(k,O;j,m)A(m,n)E(x(n)x'(z))A'(j, ) 
=O m=O b=o n=0 

Fk k j m
 

=trL Et_ (k,L;j,m)A(men)
 

j=e n-e k=0 n=0
 

min(P,-i,n-l) 

e• o I+ E' 	 r (#-s-l) A-(j,k,O) 	 rn-s-l, 

st=O
 

(B.41)
 

We now 	have a full expression for E(z(k,e)) for a.mismatch in H,
 

as given by (B.22) and (B.23). El, E2 and E3 are given by (B.29), (B.39)
 

and (B.41), respectively. 



APPENDIX C
 

APPROXIMATE ANALYSIS: PARTIAL MISMATCH (IN H) WITH
 
THE FILTER MATCHED TO THE SYSTEM
 

I. 	Without Failures
 

Suppose that for a system represented by
 

x(k+l) x(k) + w(k) 	 (C.1) 

zd(k) = HX(k) + v'(k) (C.2) 

GLR detectors are computed for some failure mode. However, let us 

assume that the actual system observations really correspond to 

z (k) = H x(k) + v(k) 
s s 

= (Hd + AH)x(k) + v(k) 

= Z(k) + AHx(k) (C.3) 

with H also being the value used in the Kalman-Buoy filter equations
SI 

for the estimates and optimal gains.
 

The residuals in the filter form an uncorrelated, white noise
 

process with zero mean and with covariance 

Cov(y(k)) = E(y(k)y t (k)) 

= H P(klk-l)HT + R 
5 S 

= V (k) (C.4) 

where P(k k-i) is the predicted covariance of the estimate error, and 

R, the covariance matrix of v (k). We have 
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ys(k) = zs(k) - HsX(kk-l) 

= (Hd + AH)x(k) - (Hd + AH)x(k) 
A A 

- H (xk)- x(klk-l)) + AE(X(k) - x(kik-l)) + v(k) (C.5) 

or, 

ys W) = ydC) + AH(x(k) - x(kk-l)) (C.6) 

where yd denotes
 

Yd W) = Hd(x(k)-x(klk-)) + v(k)
 

= ZCdR) - H dX(klk-i) (C.7) 

which would be their value if AH=0.
 

We will now see the effect on the GLR detectors. The subscript
 

d/s will indicate quantities in a detector (which is based on Hd ) 

when the residuals for its input are y s ). First, in the absence 

of failures (from (B.18) - (B.20)), 

k 
d k,O) = G l(j,e)v (j)y (j)
 
a/s E C
 

j=8
 

k 

= %(j,i8)Vd(j) [yd(j) + AH(x(j) - x(jlj-1))] 

j=e 

k= %aj,e)Vdl €> j k2+GA( € ,O)V- xCj)-X( Ij-1) I 
9=e j=o
 

= d (k,e) + Ad(k,e) (C.8) 



where we let
 

k 

Ad(k,e) =LG (Jv)d (j)Ay(j) 	 (C.9) 
J=e
 

Ay(j) = AHEx(J) - x(jlj-i)] 

= AHe(j3-i) (C.10)
 

Then the log-likelihood ratios become
 

k 	 I(k,e) = d jke)cd-*1
(ke)ddI (ke) (C.11) 

= 	 rdd(k[e) + Ad(k)]'C (ke)[dd(kO)+ Ad(k,O)] 

= (,OC 1-l O~ (k,6) + d'(k,e)C' (k,8)Ad(k,6) 

+ Ad' (k,O)Cd(k,e)dd(k,O) + Ad'(k,S)C d(k, o )Ad(k,O) 

or 

£ds(ke) = 9d(ke) +AZ(k,e) + A'(k,6) + A%2(k,) (C.12) 

with 

A(k,6) d' (k,O)cdal(k,)Ad(k,e) (C.13) 

A2£(k,e) = Ad' (k,O)Cdl(k,O)Ad(k,6) (C.14)
d 

c d is the detector information matrix and dd' d are d and Z for 

AH=o.
 

If we take expectations in (C.12),
 

EMds(ke)) = E1 + E2 + E' + (C.15)
E3 

where
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E 1 = E(d(k,6 )
 
k
 

= tr[>3 L(ke;j,j)Vd(l)] (C.16)
 

j=e
 

E2 = E(AZ(k,e)) (C.17) 

E3 = E(A2(k,O)) (C.18)
 

The expression for L in (C.16) was given in Appendix B, (B.25).
 

If we proceed to evaluate E2, using (C.13):
 

E2 = E(d (k,e)Cdl (k,6)Ad(ke))
 

k k
 

= EuZ[iEGA(Ovd'(3)Yd ()1'c 1 ck,e)IEIiO)V i)Ay(i)]) 

i=O j=e 

= EC(()a3 (iG6 ie (k,e0) GACj, 0)V-1i)Ay(j)) 
i=e j=e 

k k 

= E( E E yd(i)L(ke;i,j)Ay(j)) (C.19) 

i=e j=e 

With the use of (C.10) we obtain, by linearity,
 

k k
 
E2 E(( (i)L (k, @;i,J) AHIx (J)-x(JjIj-l) ]
 

i=6 j=e
 

k k 

=Fa3>tr[L(k,e;3,j)AHE[x (3)-'(j Ij-1) J(i))]
 
i=e j.=e
 

k k 
=tr i2: 3;= L(k,e;i,j)AHE(e(jjj-I)YA(j))] (c.20) 
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where
 

E(e(3 j-l)yA(i) = E(e(j liJ-) [Hae (ill-l) + v(i) ') 

B(e(jfj3-1)e'(iji-l))H' + E(e(j lj-l)v' (i)) 

p(j I j-1)H 

0iVi (C.21) 

-- i=j 

We have made use of the facts that the optimal error is not correlated
 

with itself shifted in time, nor with v(i) for any time.
 

Consequently, the expression for E2 becomes
 

k 
E2 = tr[EL(k,O;j,j)AHP(jjj-1)H ] (C.22) 

jt6
 

and similarly,
 

k 

E2 = trrZL(k,;j,j)HdP(jj-l)AH'] (C.23)

j=e 

Finally, E3 is given by
 

B 3 = E(Ad' (k,8)CdI (k,O)Ad(k,G)) 

k k 

= EC[ A. (i)Vd (i)Gd (i, 0)1Cd I (k,)[ZGA(j,)Vd'(j)Ay(j)]) 

i=O j=O
 

k k.
 

SZLE(e' (iji-l)AR'L(k,e;i,j)AHe(jfj-l))
 

i=6 j=e
 
k k 

=- trEL(kG;1,j)AHE(e (J Jj-l)e' (ili-1)A4'J] 

i--e j=e
 

k
 
=tx[E L k 8 3 3 A 3 3 1 A (C.24) 

j=8 
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where we have used 
(C.9), (C.10), and since E(e(31j-l)e'(i i-l)) = 0 

for iFj. 

Collecting E1., E2 E; and E3 for E(dIs ) in (C.15), we obtain
 

(with (C.16), (C.22)-(C.24)),
 

k
 

E(zdIs(k,6)) = tr[L(kO;3,j) (Vd(j) + AHP( I1)H
3 13 

j=e 

+ HdP(JlJ-1)AH' + AHP(jI3-1)AH')] (c.25)
 

and by substituting the expression for V d(J) 

Vd(J) = HdP(JIj-I1)H + R (C.26)
 

and regrouping terms in (C.25),
 

k 

E(Zds (k,B)) = tr[ZL(k,;j,j) (R + [H+AH]P(JI-1) [Hd+AHJ ' ) ] 

j=8
 

k 

= trZ L(k,B;j,j) (HsP (Jj-1)H' + R)]
s s 

k 

= tr[Z'L(k,;j,j)V s )] (C.27) 
J=e
 

by use of (C.4).
 

II. With Failures
 

If a failure v takes place at time 8 the residuals change and 

can be represented as 

http:C.22)-(C.24
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'Ys(k) = y () + Gs(k,6)v (C.28) 

where 'y are the unfailed residuals in (C.5) when the input to the
 

filter is z (in (C.3)).

s 

In the detectors we get
 

k
 

ddl (k,) = G, Vad is (j)
 

j=e
 

k
 

=1 
 +G(j,e)VI
 

j=e
 

= dds(k,) + Cds (k,G)v (C.29) 

where 

k 

C (k,G) = DA(te)Vd1(i)G 016) (C.30) 

j=8
 

and dais was given in (C.8), by which we can see that
 

E(dds(ke)) = C ds(ke)v (0.31)
 

The log-likelihood ratios for the failure V now becomes:
 

zdl s(k,G) = dAis(k,6)cd1 (ke)ddks (,G)
 

' 
= Edom (kd)ac-1 (rk )VA d (k,6)ECdaI(k'O)+Cdj (kO)VJ 

=d~js(ktO)Cd (ke)ddj (k,e) + 2v10AIj (ke)cd (kiO)dal~s(k,6) 

+ VI-j (0,)keCd1 j kev(.32)
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Recognizing the first term as £d~s(k,8) in (C.11), with its expectation
 

in (q.27), and noticing that ddjs has zero mean value (see (C.8)-(C.l0))
 

we can write,
 

E(Ydj s (k)) = (Pdi s (k , O) ) 

+ 'Cjs¢k,')c-k,1)V js (C.33)(k,e)c 

In analogy to the matched case, we call the non-centrality parameter
 

' cdjs(k')= tC, (k °)C k ke (c.34) 

This expression is similar to the cross-detection 62 and can be re

arranged
 

2ils(ke) = V'Cis(ke)Cdl(k,O) - I d (k,O)v 

= (VIc (kOe)c' (k,9)c 1 (k,e) r01ke)C (k,e)v1 
aj ad djs 

= vjsCa (k,e)vdIs (C.35) 

where
 

Vals = Cd (k'8)CdiS (k,0)V = )dls(k,e) (C.36) 

is a transformed failure vector.
 

Finally, the failure estimates can be seen to be
 

0dS (k) = arg max Rdl (k,@) (C.37) 

and
 

http:C.8)-(C.l0
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A-1 

VdIs(k) = Cad(k, 
1 

()dal kdI(k, edIs(k)) (C.38) 

Evaluating its expectation using (C.31) and (c.36), 

E(V ds(k)) = Ca (k'%d Is (k))E(dd s (k d ls (k))) 

= Cd (k,6ds(k))Cds3(k,)ds(k))V 

= V js J-1 0)(c. 39) 



-215-


REFERENCES
 

[1] 	 Jazwinski, A.H., Stochastic Processes and Filtering Theory, Academic
 

Press, New York, 1970.
 

[2] 	 Tsypkin, Ya. Z., "Adaptation, Training and Self-Organization in
 
Automatic Systems",-Automation and Remote Control, Vol. 27, No. 1,
 

Jan. 1966, pp. 16-51.
 

[3] 	 Jazwinski, A.H., "Adaptive Filtering", Automatica, Vol. 5, 1969,
 
pp. 475-485.
 

[4] 	 Willsky, A.S., "A Survey of Design Methods for Failure Detection
 
in Dynamic Systems", Automatica, November, 1976.
 

E5] 	 Willsky, A.S. and H.L. Jones, "A Generalized Likelihood Ratio
 
Approach to State Estimation in Linear Systems Subject to
 
Abrupt Changes"; Proc. of the 1974 IEEE Conference on Decision
 
and Control, Phoenix, Arizona, November 1974.
 

[6] 	 Willsky, A.S. and H.L. Jones, "A Generalized Likelihood Ratio Approach
 
to the Detection and Estimation of Jumps in Linear Systems", IEEE
 
Trans. on Automatic Control, AC-21, No. 1, Feb. 1976, pp. 108-112.
 

[7] 	 Beard, R.V., Failure Accomodation in Linear Systems Through Self-

Reorganization, Rept. MVT-71-1, Man Vehicle Laboratory, Cambridge,
 
Massachusetts, February 1971.
 

[8] 	 Jones, H.L., Failure Detection in Linear Systems, Ph.D. Thesis, 
Dept. of Aeronautics and Astronautics, M.I.T., September 1973. 

[9] 	 Chien, Tze-Thong, "An Adaptive Technique for a Redundant Sensor
 

Navigation System", Sc.D. Thesis, Dept. of Aeronautics and Astro
nautics, M.I.T., January 1972.
 

[10] 	 Lumel'skii, V.Ya., "Algorithm for Detecting the Time of Change of 
Properties 	of a Random Process", Automation and Remote Control,
 

October 1972, pp. 1620-1625.
Vol. 	33, No. 10, Part 1 


[11] 	 Deckert, J.C., M.N. Desai, J.J. Deyst, and A.S. Willsky, "Dual
 
Redundant Sensor FDI Techniques Applied to the NASA DFBW Air
craft", IEEE Trans. on Automatic Control, to appear.
 

[12] 	 Chow, E.Y., Analytical Studies of the Generalized Likelihood Ratio
 
Technique for Failure Detection, S.M. Thesis, Dept. of Elec.
 
Eng. and Comp. Sci., M.I.T., February 1976.
 



-216

[13] 	 Bueno, R., E.Y. Chow, S. Gershwin and A.S. Willsky, "Research Status
 
Report to NASA Langley Research Center: A Dual-Mode Generalized
 
Likelihood Ratio Approach to Self-Reorganizing Digital Flight
 
Control System Design", M.I.T. Electronic Systems Laboratory,
 
Cambridge, Mass., Paper No. P-633, November 1975.
 

[14] 	 Schweppe! F.C., Uncertain Dynamic Systems, Prentice-Hall, New Jersey,
 
1973.
 

[15] 	 Van Trees, H.L., Detection, Estimation and Modulation Theory,
 
Part I: Detection- Estimation and Linear Modulation Theory, John
 
Wiley and Sons, Inc., New York, 1971.
 

[16] 	 Athans, M. and K.-P. Dunn, "Linearized Equations for the Continuous
 
Time LQG Problem for the F-8 Aircraft Longitudinal Dynamics",
 
Interim Report #1, ESL-IR-549, E.S.L. M.I.T. April 1, 1974.
 

[17] 	 Boozer, D.D. and W.L. McDaniel, Jr., "On Innovation Sequence Testing
 
of the Kalman Filter" IEEE Trans. on Automatic Control, AC-17,
 
No. 1, February 1972, pp. 158-160.
 

[18] 	 Athans, M., K.-P. Dunn, C.S. Greene, W.H. Lee, N.R. Sandell, I.
 
Segall and A.S. Willsky, "The Stochastic Control of the F-8C Air
craft Using the Multiple Model Adaptive Control (MMAC) Method,
 
"Proc. 1975 IEEE Conf. on Decision and Control, Houston, Texas,
 

December, 1975.
 



FROM NATIONAL TECHNICAL INFORMATION SERVICE 

An Inexpensive Economical Solar Heating System for Homes Analysis of Large Scale Non-Coal Underground Mining
 
N76-27671/PAT 59 p PC$4 5O/MF$3 00 Methods
 

PB-234 555/PAT 581 p PC$13 75/MF$3 00
 
Viking 1: Early Results 
N76-28296/PAT 76 p PC$2 O0/MF$3 00 Who's Who in the Interagency Energy/Environment R and D 

Program
Energy Fact Book 1976, Chapters 1 through 21 PB-256 977/PAT 35 p P054 00/MF$3 00
 
ADA-028 284/PAT 432 p PC$11 75/MF$3 00
 

Security Analysis and Enhancements of Computer Operating 	 Local Area Personal Income, 1969-1974. Volume 2: Central 
and Northeastern StatesSystems 


PB-257 087/PAT 70 p PC$450/MF$300 PB-254 056/PAT 578 p PC$13-75/MF$300
 

Evaluation of the Air-to-Air Heat Pump for Residential Space Feasibility of Considerably Expanded Use of Western Coal 
Conditioning by Midwestern and Eastern Utilities in the Period 1978 
PB-255 652/PAT 293 p PC$9 25/MF$300 and Beyond 

PB-256 048/ PAT 61 p PC$4 50/MF$3 00
 
Monitoring Groundwater Quality. Monitoring Methodology
 
PB-256 068/PAT 169 p PC$675/MF$300 Availability of Potential Coal Supply Through 1985 by
 

Quality CharacteristicsAn Air Force Guide to Software Documentation Requirements P8-256 680/PAT 121 p PC$55 50/MF$3 00
 
ADA-027 051/PAT 178 p PC$7 50/MF$3 00
 

The Production of Oil from Intermountain West Tar Sands Flat-Plate Solar Collector Handbook. A Survey of Principles, 
Deposits Technical Data and Evaluation Results 
PB-256 516/PAT 98 p PC$S 00/MF$3 00 UCID-17086/ PAT 96 p PC$6 00/MF$3 00 

R 	 or your order will be manually filled, insur- You may also place your order by tele
ing a delay You can opt for airmazi dehvery phone or if you have an NTIS Deposit Ac
for $2 00 North American continent, $3 00 count or an American Express card order 
outside North American continent charge per through TELEX The order desk number is 
item Just check the Airmail Service box If (703) 557-4650 and the TELEX number isWhen you indicate the method ofn pay-pls 	nyou're really pressed for time, call the NTIS 89-9405

meat, please note f a purchase order is notaccompanied by payment, you will be billed Rush Handling Service (703)557-4700 For a Thank you for your interest in NTIS We 

an additional $5 00 slip and bill charge And $10 00 charge per item, your order will be apprecite your order. 
please include the card expiration date when airmailed within 48 hours Or, you can pick 

up your order in the Washington Informausing American Express 
tion Center &Bookstore or at our Springfield 

Normal delivery time takes three to five Operations Center within 24 hours for a 
weeks It is vital that you order by number $6 00 per item charge 

METHOD OF PAYMENT 

El Charge my NTIS deposit account no 
El Purchase order no. 

NAME-Dl 	 Check enclosed for $. 
BHill me Add $5 00 per order and sign below (Not avail-

ADDRESS
able outside North American continent ) 

5 Charge to my American Express Card account number 
I I Il l lCITY STATE ZIPI I 	I I 

Card expiration date Quantity
 

Signature Item Number Paper Copy Microfiche Unt Price* Total Price'
 

O 	 Airmail Services requested (PC) (MF) 

Clip and mail to 

National Technical Information Service
 
US. DEPARTMENT OF COMMERCE All prices subject to change The prices Sub Totl
 

3/77 4,dditional ChargeSpnngfield. Va. 22161 above are accurate as of 

Enter Grand Total
(703) 557-4650 TELEX 89-9405 Foreign Prices on Request 1 1 


