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ASTRONOMICAL POLARIZATION STUDIES AT RADIO AND INFRARED WAVELENGTHS 

Brian K. Dennison, Ph.D. 
Cornell University, 1976 

ABSTRACT 

In an astrophysical context the polarization of electromag-

netic radiation carries important information about the spatial 

properties of the regions of its origin or those regions through 

'Ihich it has passed. In this thesis two distinct cases are coo-

sidered. 

In Part I the gravitational field is probed io a search for 

polarization dependence in the light bending. This involves search-_ 

ing for a splitting of a source image into orthogonal polarizations 

as the radiation passes through the solar gravitational field. This 

search was carried out using the techniques of very long and inter-

mediate baseline interferometry, and by seeking a realtive phase 

delay in orthogonal polarizations of microwaves passing through the 

solar gravitational field. In this last technique a change in the 

total polarization of the Helios 1 carrier wave was sought as the 

spacecraft passed behind the sun. No polarization splitting was 

detected, and the most stringent uppe~ limits are ~ 5_x 10-8 arc 

seconds. This constitutes a unique confirmation of the equivalence 

principle. Future work involving compact objects may reveal a polar-

ization dependence in the gravitational scattering of electromagnetic 
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radiation. 

Part II of this thesis involves possible far infrared polar-

ization of dust clouds. The recently'observed 10 micron polarization 

of the Orion Nebula and the Galactic Center suggests that far infra-

red polarization may be found in these objects.. Estimates are made 

of the degree of far infrared polarization that may exist in t.he 

Orion Nebula. A first attempt to observe far infrared polarization 

from the Orion Nebula has been carried out. Fut'ure observations 

will be useful in deducing the detailed structure of dust clouds. 
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CHAP.rER IV 

THEORY OF FAR INFRARED POLARIZATION 

A. Short Wavelength Polarization 

Recent observations have uncovered significant linear polar-

ization in the 3-13 micron radiation from the Orion Nebula (Dyck, 

et a1., 1973; Dyck and Beichman, 1971~) and the Galactic Center 

(Dyck, et al., 1974; Capps and Knacke, 1976). In both cases the 

magnitude of polarization is correlated with the silicate absorp-

tion feature, while the polarization direction does not appear to 

change significantly over this wavelength range. Because of these 

features it has been argued that this polarization is caused by' . 

preferential extinction by aligned dust particles (Dy-ck and Beich

man, 1974; Capps and Knacke, 1976). At these wavelengths the cooler 

absorbing medium does not radiate appreciably. 

The observations of the Orion Nebula (Dyck and Beichman, 

1974) are particularly interesting. Their observations were 

centered on the Becklin-Neugebauer object (BN), an infrared point 

source, and made over the surrounding Kleinman-Low Nebula (KL). 

This nebula contains a number of compact objects, in addition to a 

diffuse component (Rieke, et a1., 1973). They observed roughly 

uniform alignment over the angular extent of their observation 

( ..... 1/2'). The magnitude of the polariZation was. as large as 15% in 

the silicate absorption band. 
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A simple model (Dyck and Beichman, 1974) is illustrated in 

Figure IV-l. The propagation is in the z-direction, and the x-

and y-axes are principal axes. As the rotation angle is varied 

the optical depth, T , reaches a maximum value or. The minimum 
y 

-val~e of T is Tx ' and this occurs for the orthogonal orientatio"n. 

Of course, this anisotropy in T is due to the alignment of elon-

gated dust grains in the cold cloud. The intensity transmitted 

through the cloud is 

"lhere Io is the intensity incident from the hot source. This hot 

source is optically thick and therefore emits unpolarized radiation. 

The resulting polarization by absorption is 

P 
a = = -

e~Tx e- Ty 

e-'Tx + e-Ty 

Further simplification results if we define the difference,- in 

optical depth, 

6. T - T - If • y x 

Then 

Pa = - tanh (~2T)_. 

, I 
-/ 

! 
I 
; 

-·1 



r c co, .. _--= ... cUU"'''.OUllOL ... cc-_. _ .. _=~=~= __ - c. ____ . _____ c 

hot source 

cold cloud 

-

long A 
rad i ation 

short A 
radiation 

FIGURE IV-i. The~retical model for produc~ng·polarized infrared raaiation. 
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By convention P is negative indicating polarization by absorption. 
a 

B. Long Wavelength PolarizatiO!'J 

At longer wavelengths this cold dust may contribute a 

significant fraction of the total emission. Therefore, vIe shall 

attempt to predict the polarization produced in emission. Initially, 

',Ie, shall just consider the emission by the extended cold cloud'. 

Later, the effect of the hot compact components vlillbe included 

in the discussion. Including the effects of radiative transfer the 

intensity emergent from the cloud is 

where Io is the intensity observed if the source were a blackbody 

('f ~ en). In this case, the optical depths co~respond to the 
x"y 

entire thickness of the cloud. The resulting polariz8'Gion' by 

emission is 

p 
e = -

.(1 - e-'I'X) - (1 - e-'I'y) 

(1 - e -'fX) + (1 _ e -'fy) 

We now define the mean optical depth as 

We then have 

. I 
<'1'>=-2('1' +,.). x y 

'"1 

/ 



p 
e = -

7S 

~ T 
2 - e- < T > (e 2 + e 

This simplifies to 

p 
e 

sinh (~2 T) 
= ---------~--~----

<T> e cosh (~2 "!') 

~ T ( By definition "2 < < T >. As long a:;; there is no stimulated 

emissiono) P is positive indicating a 900 
rotation with respect 

e 

to the absorption polarization. 

A model describing grain alignmen'G is needed to connect 

~ T and < T >. The picket fence model (Dyck and Beichman, 1974) 

gives 

",here f is the fraction of totally aligned grains, Qll) J. are grain 

extinction efficiencies parallel and perpendicular to the, symmetry 

axis) G is the geometrical cross section of a grain, N is the number 

density of grains, and t is the path length through the medium. '~e 

then find the simple relations 
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The extinction efficiency of a grain depends on which axis 

is aligned parallel to the electric vector of the incident radi

ation. For the j th axis of an ellipsoidal grain "Ie find that 

(van de Hulst, 1957) 

2 
= 1 a J r- m - 1 J 

Qj 3' ):. m ~ (m2 _ 1) + 1 
j 

m is the complex refractive index and L j is the shape factor for 

the jth axis. For spheres L. = 1/3, and the usual expression, 
J 

2 
Q = ~ J m nn 1J 

A. ~n2 + 2 

is recovered. If vIe define m
2 

:; E' + lE" then 

1 a [ E' + iE" - 1 J 
Qj = 3): <-9 ro -L.(E' + iE" - 1) + 1 

J 

Eventually we obtain 

1 a [ E" ] 
Qj = 3'): (L.(E' _ 1)2 + (L.E!I)2 • 

J J 

At short wavelengths Q. is a complicated function of A. because of 
J 

res onancesin E' and E". However, at long wavelengths' (A. > 4D -
microns) E' and en may take on the simple behavior E' ~ 4: E" F::$ 50 

microns/A. (microns), based upon studies of lunar dust (Perry, et a1.,' 
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1972) • 

We can no", use the short wavelength polarization for the 

Orion Nebula to predict the long wavelength polariz1ltion. Dyclt 

and Beichman (1974) ",ere able to fit their data ",ith a model in

volving prolate spheroids with an axis ratio of 0.2 and f ~ 1/4. 

From van' de Hulst, (1957) this gives Ll = 0.056 and L2,,= ,L3 = 0.472. 

Then 

and 

1 [ E" 'J 
, Q J. == Q2 = Q3 = 3" I ( 0 .472 (E' _ 1) + 1) 2 + (0.472 e) 2 ] 

The optical depth difference can now be written in termS of the 

optical depth. 

The second term in, the denominator of the expressions for the Q." s, 
J 

«L. E" )2), 'can be neglected since it is small compared to the other 
J 

term, «L:(E' - 1) + 1)2). This giv~s ~21 ~0.15 < 1 > independen~ly 
J , 

of wavelength. All that we nml neec'l to calculate P is < '1" > (~ 1). e 

The cloud may'be,come optically thin. at) A F::J 30 'microns (Forrest, et a1., 

-2 1976; Werner, et a1., 1976). For Q. a. A the res ulting polarization 
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is given in Figure IV-2 as a function of wavelength. 

Several features of the curve can be easily understood. For 

shbrt wavelengths the source is becoming optical~y thick as the 

polarization decreases. As T ~ ~ , Pe ~,O. For long ~avelengths 

T ~ 0, and in this limit ~e have 

P Qo =--=t::.,-,T,",-/2---:- = /). T I 2 
el + T - 1 T 

2 neglecting terms of order T or higher. We have calculated that 

t::.2 'fIT ~ .15, and that is the long wavelength limit appro'ached by 

the curve in Figure IV-2. 

Dyck and B~ichman (1974) used a model in which the opticql. 

depth to EN in the silicate absorption feature is TLO Il Qo 1.4. 

However, Aitken and Jones (1973) and Gillett, et a1. (1975) favor 

interpretations of the absorption spectra "lhich give TLO Il Qo 3.3. 

In Section A it was ShovlD that Pa = - tanh (/).2 T) , hence the 10 
.6. TlO 

mic.ron polarization observations fix the value of 2 \.l Now 

the relation 

applies generally. Therefore, T10 \.l Qo 3.3 implies a smaller value 

for the fractional alignment. Hence, alternative mOdels in which 

f F::1 1/10 will also be considered. The resulting P (A) curve is e 
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FIGURE rl-2 

Theoretical ~olarization of Orion. Upper- (positive) curves corres

pond to polarization by emission, ~ith f = 1/4 (solid line) and f = 
, ' 

1/10 (dotted 'line). Lower (negative). curves are the combined eff.ec.t 

of a hot source seen through the cold cloud. The follO'l-ling sets of 

parameters ,~ere used: f=l/lO, T = 75° C·· - •• - •• ), T = 50° 1 . 1 
C· _. _. -); f=l/l~, Tl,=75°C-----), Tl = 50° ~- - -' - -). Tl 

is the temperature of the cold cloud. The hot source \~as assumed 

to be at 1000IC. 
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also shmm in Figure IV -2. In this case the long ,·/avelength polar-

ization is P (A = eo) Do .06. 
e 

.These estimates ore also subject to beam size effects and 

depth effects. If the source is optically thin at long ~avelengths, 

then e;rain alignment must be maintained through the entire depth of 

the source, not just dovln to the hot 10 micron source se~n by Dyck 

and I3eichman. 

In the foregoing it has been assumed that the source is .1so-

thermal. Hov/ever, because of the present lack of data a detailed 

model for the radiation transfer is not ;)ret ,~arranted. As a simple. 

case a t\w-layer model with a hot optically thick region seen through 

a cooler surrounding medium ~as considered. Indeed, it has been· 

suggested that numerous clumps optically thick. out to 400 microns' 

can produce the observed spectrum (Houck, et a1., 1974). In the 

direction of a hot optically thick underlying region the total 
. 

emergent intensity is 

I. = Boe -'I"x,y + Bl(l 
x,y 

-'T' ) e x,y. 

,\-,here Bo is ? Planck function for the temperature' of the 'hot optic

ally thick .:r:egion, and Bl is the Plancll: function for the temperature 

of the surrounding medium. 'l"x,y are the optical depths to the inter

face separating the regions. The polarization in this direction is 
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P =: 

- 'r-x ( - 'rx ) - 'I" ( - 'l"y) 
B e + Bl 1 - e - B eY - B 1 - e 

o 0 ,1 

P = 

This simplifies to 

sinh (A2 'I" ) 

P = --~~--------~--~--------Bl 
".-...:;;,... ___ e < 'I' > - cosh 
Bo - Bl 

(A2 '1") 

When Bl ~ 0, the previous expression for the absorption polarizat~on. 

is recovered; and when Bo ~ 0, "Ie obtain the expression for the 

emission polarization. 

In evaluating P(A) it 11a8 assumed that the temperature of 

the underlying region is 100oK. Four models were considered. vIe 

used f = 1/4 and f =: 1/10, and considered the temperature of the 

extended region to be 50
0
K and .750

K. The resulting curves are. 

given in Figure IV-2. The extended region was assumed to have 

-2 
'I" "'" 1 at A =: 30 microns; and. Q 0, A • Polarization by absorption 

dominates und this is greatest for f = 1/4 and 50
0
K for the temper-

ature of the extended region. 

Toe observations may include in the beam both regions ,dth 

and without an l:l~derlying hot source. The observed polarization 
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"lOuld then be an appropriately '.Ieighted sum of the upper and 10vler 

curves in Figure IV-2. Integration over the instrumental bandwidth 

may also be necessary. 

Whether polarization by absorption or emission is the domi-

nant process can be distinguished observationally, through compa'ri- • 

son of the polarizatior, direction with that of the 10 micron polar-

ization. In this \-18y long wavelength polarization observations 

,dll be of considerable value in deducing the optical depth struc-

ture of dust clouds. Of particular interest vlOuld be polariz.ation 

observations over a range of \·lavelengths·. 
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CRAPrER V 

OBSERVATIONS 

A. Initial Experiment 

In the hope of detecting long wavelength polarization from 

the Orion Nebula a series of long 'wavelength polarization obser-

,vations were undertaken. The observations were carried out with 

the NASA Lear Jet 30-cm telescope} from an altitude of 13.7 km. 

At this altitude the aircraft ,ws above the tropopause thus mini-

mizing the effects of atmospheric ,~ater 'vapor absorption. The 

polarimeter consisted of a rotating wire grid polarizer (Cambridge 

Physical Sciences IGP 223) mounted immediately in front of a liquid 

helium cooled photometer. The overall system is shown schematically 

in Figures V-l and V-2. The pplarimeter employed a Ge:Ga photo-

conductive detector and the bandpass extended from 60 microns to 

130 mic:rons} with the short "avelength cutoff produced by a BaF 2 

filter} and the long wavelength cutoff by the detector itself. The 

effective band center ,~as "'"' 85 microns. A field optical system was 

designed by Dr. Dennis Ward tO'produce a flat beam profile} thus 

minimizing guiding errors. 

The polarizer ylaS rotated ,dth a stepping motor} and in this 

ylay the orientation was knoym at all times. This was also monitored 

,dth a continuous potentiometer connected to the gear train. The 

wire grid in the polarizer is embedded in a polyethylene sUbstr'ate} 
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FIGURE V-2. 'Block. diagram of the polarimeter electronics. 
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and the orientation of the lines is not immediately obvious. Subse-

quent to the observations the absolute' orientation of the· polarizer 

in the, "zero" position "18S accurately measured by diffracting visible 

laser light through the lines. First and second order diffraction 

spots ",ere c·Oserved dispaced in a direction perpendicular to the. 

lines. At long infrared Havelengths a wave· with the electric 

vector perpendicular to the lines is transmitted most readily. This 

measurement was repeated at three different radial locations in the 

polarizer. In this way it i'las seen t'hat the orientation of the 

lines "18S uniform.' The magnitude of the ·diffraction angle gives 

the spacing of the lines. Throughout the polarizer this did not 

appear to vary by more than a fe,~ percent. 

The polarimeter Vias tested by operating it attached to, a 

telescope simulator. The beam vl8s choppedbetvleen 77°K (liquid 

nitrogen) and 3000K (room temperature). rhe instrumental polar-

ization Vias measured by observing an unpo~arized source, and 

rotating the polarizer. This was found to be C>o 2.5%. The instru-

mental polarization is probably due to the non-normal incidence of 

radiation impingent upon the detector. This geometry ",as originally 

employed to make effective Use of the integrating cavity. The 

angle of incidence.at the field mirror is,C>o·11
0

• This produces much 

less than a percent of instrumental polarization at these wave-

lengths (Da11'oglio, et ai., 1974). Since two polarizers Vlere pur-

chased it "l8S possible to measure how much radiation "las transmitted 
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when the electric vector is parallel to the lines. This was 

accomplished by comparing the signal ,'lith the polarizers crossed 

with that obtained \'Ihen they were aligned. This gave"" 4%. 

vlith the polarimeter attached to the tear telescope, the 

beamwidth ,~as "" 6'. During the observations the beam was chopped 

on and off the source at a frequency of 30Hz. This was accomplished 

vii th a vlobbling secondary mirror. The chopper throw was 8 I. The 

signal ,~as synchronously demodulated "lith a lock-in amplifier. The 

lock-in amplifier output fed a voltage controlled . oscillator, and 

the frequency vias then counted over the integration time to provide 

a digital signal. The telescope was initially pointedt.o maximize 

the far infrared signal, vlith polarizer in the II II •• .' zero pos~t~on. The 

telescope \'Ias then gyrostabilized and the observer maintained the 

positioning by offset guiding on nearby star. Because the observ-

ing platform is not thoroughly steady, guiding errors are the 

dominant form of noise. o fhe polarizer was rotated through 80 

intervals and l.~ second integrations were carried out at each 

position. After 9 such rotations the polnrizer vias back in the 

original position, resulting in a series of measurements spaced at 

400 intervals. This procedurel'l8s adapted t·o minimize any systemntic 

effects of drifts due to guiding noise. 

To eliminate the telescope offset signal, this procedure was 

repeated ",ith the telescope pointed about 15' away from the source 

along a direction perpendicular to the chopper throvl. The offset 
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runs "Iere then subtracted from temporally adjacent runs on the 

source. The source and offset runs were alternated throughout the 

observations. 

To calibrate the total instrumenta 1 polarization (telescope + 

polarimeter), Venus "18S observed on each flight. 

Another significant instrumental effect was caused by the 

polarizer, apparently due to a slight·gradient in thickness across 

its cross section. As the polarizer ,~as rotated the -image of a 

celestial source described a small circular trajectory in the focal 

plane. This is illustrated schematically in Figure V-3. Image 

motion in and out of the entrance aperatlrre then produces signal 

variations as the polarizer is rotated. Fortunately thIs effect. 

manifests itself primarily over [j 3600 rotation of the polarizer, 

'-Ihercas source polarization exhibits a 180
0 

peri·od. Therefore, 

this ",~edge effect II is at least partially separable. We note, 

hOI-lever, that asymmetries in the beam and source structure could 

produce signal variations in the second harmonic, which would mimic 

source polarization. 

To fully understand this effect a series of laboratory exp.eri-

ments were undertaken. Firstly, the polarimeter was mounted on an 

optical bench which simulated far infrared observations with the 

same f-cone as that from the Lear telescope. Observations of sources 

of varying angular size could then be simulated by placing different 

apertures over the far infrared laboratory source. By moving a very 
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small aperture in its plane the beam profile could be probed. In 

this .... Jay the beam was mapped 'With the polarizer in the zero position, 

and rotated through 1800
• To avoid systematic differences bet'Ween 

the tlW beam maps, each array element 'Was measured first with the 

polarizer in the zero position, and then with the polarizer rota~ed 

through 1800 • The resulting maps are basically identica.l except 

for one important feature - there is ,..; 11 shift in' position beti-leen 

the maps. The zero position map is shown in Figure v-4. The beam 

center is marked, as in the corresponding beam center of the 180
0 

map. The 11 displacement is obvious. 

Since the displacement is "'" 1/5 the beam s'ize, 'We see that 

a point source could be kep~ in the beam as the polarizer is rot~-· . 

ted. To test this a· small source (E>\ 11) .... 18S peaked -up in the beam 

d . f t T'lere made at 400 
. t 1 an a ser~es 0 measuremen , ~n erva s. The result-

ing curve reflects only the instrumental polarization. (See Figure 

V-5.) \'le then expect that Venus, a source of small angular size, 

would not be severely affected. 

Another feature of the beam mBp is apparent. It is not 

circularly symmetric. Thus, as an extended source follows a 11 

circular trajectory through this beam variation in the signal, in 

the'second and higher harmonics may occur. 

Therefore, observations "lere simulated "lith an extended 

source of about the same size as the Orion Nebula,..; 51. For a 

source f1ith a size comparable to the beam the "wedge effect
ll 

should 
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FIGURE v-4. 

contour map of the polarimeter beam. The contour interval is uni

form, and all contours above the zero.level are shown. The beam 

center is marked <-t-). The corresponding location in the map ob-
o ' " tained with the polarizer rotated through 180 is also shown (1'). 
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be most pronounced. These simulntlons i"ere done twice for slightly 

different initial positionings of the source in the beam. The re-

suiting curves were dominated by a large amplitude fluc,~uation "lith 

3600 period •. To determine the relative strength of the IIwedge effectll 

in the all-important second harmonic, this 3600 
-period' component i~as . . 

isolated and removed by Fourier Bnalysis. The results are shown in 

Figure v-6. Although these Clrrves are of small amplitude, 'they 

differ from the instrumental polarization curves by typically ~ 4%. 

This then dictates the accuracy of the Orion measurements. 

Another simulation was carried out with the extended source 

very poorly positioned in the beam. This curve is also shown in 

Figure v-6 with the fundamental component removed. The amplitude in 

the second harmonic is "'" 8%. The pointing accuracy of the real ob-

servations if:1 far better than what was simulated in this case. 

As the f:i.nal confirmation of this effect measurements were 

made at optical wavelengths. A laser beam was passed through the 

polarizer. As the polarizer was rotated the laser spot followed a 

circular trajectory on a distant screen. The paths of spot are 

shown for the t"lo'polarizers in Figur,e V-7. The distance displace-

tnEmt has been calibrated in terms of an angular displacement. This 

was done with the laser directed through the center, edges, and inter-

mediate location in the polnrizers. The angular displacement pro-

duced by the instrument polarizer agrees with the ~ 1/5 entrance 

aperture motion implied by Figure v-4. This angUlar deflection 
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FIGURE v-6 

Polarization observations of M42. Upper horizontal scale denotes 

position angle on the sky. Arrow indicates approximate position 

angle of 11 micron polarization observed by Dyck and Beichman (1974). 
Solid line is the best fit to the d~taJ and the dash~d line is the 

Venus curve. Dotted lines are laboratory simulations of observations 

of sources ,\-lith the same angular extent as M42. The large amplitude 

curve was obtained ,.,hen the source and beam were intentionally inis

ali·gned. 
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FIGURE V-7 

The wedge effect in visible light. The, trajectory of a laser beam 

as a res~lt of polarizer rotation is shown. This was done for 3 

locations in'each polarizer. For the instrument polarizer the beam 
'. 0 

position at 40 intervals is shown. The lab polarizer has a much 

smaller wedge effect, and the beam traje~tory is simply shown. 
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indicates a thickness difference of - 1/10 mm across the 25 mm diam

eter of the polarizer. It is noteworthy that the lab(extra) polar-

izer has a wedge effect about three times smaller tban the instru-

.ment polarizer. 

The Orion Nebula and Venus were observed on three successive 

f lights on· December 9, 10, and 11, 1975. For each run (each con-

sisting of integrations at the eight polarizer positions) offsets 

were removed, and the amplitude normalized. The data taken over the 

three flights was then combined for each source. The results for. 

Venus and the Orion Nebula are shown in ~igures V -5, and v-6, 

respectively. The li'our ier component of period 360
0

, which is due 

~o the "wedge effect ", has been removed in both cases. If ,~e 

assume that Venus is unpolarized the total instrumental polarization 

is - 5% peaking at a phase angle ~ 1700
• The instrumental polar-

ization measured in tbe laboratory without the Lear telescope was 

tbe same phase but is smaller in amplitude. The best fit to the 

Venus data is shown by the dashed curves (in both Figures V-5 and 

v·-6) • 

The data from the Orion Nebula is plotted in Figure v-6. 

The best fit to the data is shown by tbe solid line. After correc-

ting for the instrumental polarization the net polarization is 2.5% 
. 0 

2:. 2.5% pealcing at a phase angle - 80. This should be considered 

an upper limit since the laboratory simulations produced curves of 
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similar amplitude. The positioning of the source ,,;ithin the beam 

con slightly Dltcr the second harmonic vledge effect curves. This is 

consistent ,dth the fact that the observed net "polarization" 

changed by more than the random errors over the three observing 

flights. 

Fourier analyses of the data from each flight are shm-/n 

graphically in Figures V -8 and V -9. The vectors plotted "Iith their 

expel' :!.mental errors repres~nting Fourier components', at phase 

angle, tp. For this analysis a non-linear least squares fit "Ias 

carried out ,.,ith the Fourier series suitably defined. The errors 

in each data point ",ere taken into account in the fitting procedure ~ 

The persistent 5% instrumental polarization is obvious in the Venus' 

second harmonic. In Figure V -9 we first note that the night -to-
. 

night variations in the second harmonic of the Orion Nebula data 

are greater than the error.s. Thus, the "Iedge effect is the dominant 

factor limiting the experimental accuracy. In the first flight, 

the fundamental harmonic is fairly small suggestinG that the Orion 

Nebula .vlaS ,~ell centered in the beam. 'For this f·light the second 

Fourier component closely reproduces the instrumental polarization 

obtaine(] from observing Venus. 

We conclude, therefore, that the 85 micron polarization 

measured here is sigriificantly less than the most optimistic pr~-

dictions calculated in the last chapter. 

This can be' explained in a number of ,·Iays. l!'irstly, radiative 
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FIGURE v-B 

Fourier analysis of the Venus data. Fourier vectors are shown for 

the first 3 harmonics for each flight. ¢:;:: 0 corresponds to a pure 

cosine component. Circles depict p.xperimental errors. 
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FIGURE V-9 

Fot~ieranalysis of the Orion data. Fourier vectors are shown for 

the first 3 harmonics for each flight. ¢ = 0 corresponds to a pure 

cosine C;0!llponent. Circles depict experimental erro.rs • 
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transfer' effects in u non-isothermal cloud could account for the 

lo",er polarization, as previously discussed. 

However, these observations may lack sufficient angular 

resolution. The 6' beamwidth is considerably larger than the 1/2' 

beam used' by Dyck and Beichman (197!~). At 100 microns only about 

30% of the flux comes from a l' region ("lerner et a1., 1976). 

Dilution of the 85 micron polarized flux and possibly cancellation 

effects could have greatly reduced the observed polarization. In 

the futur~ higher resolution observations are needed. With this, 

better guiding accuracy ,dll, of course" be needed. 

B'. Future Exper-iments 

The need for improved angular resolution dictates that larg~r • 

aperature telescopes be used, since the Lear jet observations are 

diffraction limited. The long "lavelengths call for highly elevated, 

observing platforms to escape "later vapor absorption. In the 

immediate future the obvious system to use is the C-l!~l Gerald 

KUiper Airborne Observatory operoted by NASA. This ,,"li11 proviqe a 

factor of three improvement in angular resolution. 

With ,this ,in mind a fe,~ specific suggestions can be made." 

The "ledge effect problem should be evalua>ced carefully beforehand. 

It can probably be circlUnventeq by using a polarizer which has been 

t'ested and shown to be fairly flat (such as the lab polarizer), and 

by placing the polarizer as close to the entrance aperature as ' 

'possible •. With the polarizer data presented in Section A the 
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magnitude of the "Iedge effect can be determined in the early stages 

of the preparation. 

Also the instrumental polarization can probably be greatly 

. reduced by carefully mounting the detector perpendicular to the 

incoming beam. 

Finally, i-Ie note that the instrumental polarization intro-

o . 
duced by the 90 reflection in the c-141 telescope should only be 

-0.1% (Dall'oglio, et al., 1974). Th~ polarized emission from this 

mirror should also be smalL 

Looking farther into the future vie can forsee investigations 

of this sort extended to numerous infrared objects. 

C. Conclusions 

Long i-18velength polariZation observations may. serve as a new 

tool for probing the distribution of magnetic fields in dense regions. 

This will aid in understanding the nature of collapsing regions, and 

possibly subsequent star formation. I 
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