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INTRODUCTION

This report is on heat-pipe research carried out for Ames Research
Center under contract number NAS 2-8310. The wo-k focuses on the mathe-
matical modeling of three critical mechanisms of heat-pipe operation.

In particular, Section 1 is on the effect that excess liquid has on heat-
pipe performance; Section 2 is concerned with the calculation of the
dryout limit of circumferential grooves; and Section 3 is on an efficient
mathematical model for the calculation of the viscous-inertial interaction
in the vapor flow. These mathematical models are incorporated in the com-
puter program GRADE II, which is described in Reference (4).
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1.0 EXCESS LIQUID IN HEAT-PIPE VAPOR SPACES

There are several reasons why heat pipes often operate with more liquid
than necessary to just saturate the wick structure. For example, when a
heat pipe is designed to operate over a wide temperature range, it is neces-
sary to calculate the fluid charge for the temperature extreme that requires
the most fluid. This usually occurs at the lowest operating temperature due
to the increase of liquid density with a decrease in temperature; however,
it may occur at the highest operating temperature due to the increase of
vapor density with an increase in temperature. In either case, for operating
temperatures other than the extreme for which the charge just saturates the
wick, excess liquid will be present. This source of excess liquid can be
particularly significant for gas-loaded variable-conductance heat pipes for
use with spacecraft radiators. A relatively high fluid charge is required
when the gas blocks a large fraction of the total heat-pipe length and the
liquid in the gas-blocked region falls very low in temperature.

Even when the entire heat pipe operates in a narrow temperature range,
excess liquid is often intentionally introduced as a safety factor. For
some wick types such as axial grooves, a small undercharge can significantly
degrade the transport capacity while a small overcharge has little adverse
effect. It is particularly important to ensure sufficient liquid in arterial
or tunnel-wick heat pipes because even a slight undercharge makes priming
impossible.

Excess liquid affects heat-pipe performance in various ways. It resides
in the heat-pipe vapor spaces and forms liquid fillets along corners and a
puddie along the bottom. These fillets and puddles provide low-permeability
flow paths in parallel with the wick structure. Their size at a given axial
location depends on the local value of the vapor-liquid pressure difference,
or capillary stress. Thus, excess liquid usually has the greatest effect in
the condenser region where the stress is low.

In addition to contributing to the axial transport of liquid, a puddle
reduces the hydrostatic stress that the wick must support. Although excess
liquid increases axial-transport capacity, it degrades the heat transfer,
because fillets and puddles block condensation surface. The condenser end
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of a vapor space can even completely fill a liquid slug that blocks con-
densation heat transfer in that region altogether. An accurate mathematical
model of excess-liquid behavior is particularly needed for the graded-
porosity-wick heat pipe, where to maximize its capacity the wick is begun
at the condenser end with the highest possible porosity. I7f the porosity
is too high, however, the wick will not generate a sufficient capillary
pressure to prevent a liquid slug from forming.

The mathematical modeling of excess liquid is complicated by the fact
that for typical heat pipes one cannot neglect variations of hydrostatic
pressure with position on the free surface of the liquid. An earlier
mathematical model in the heat-pipe computer program MULTINICK(]) neglected
these variations. Although the resulting simplification allowed application
quite general heat-pipe cross-sectional geometries, at low values of capil-
lary stress the results are only qualitatively correct. To retain the
hydrostatic pressure variations in the present work, it is necessary to
select specific types of cross-sectional geometries for the vapor spaces.

We have selected the circular vapor space which occurs in axially-grooved
heat pipes and simple heat pipes with wick-lined wall, and "Dee-shaped"

vapor spaces formed by siab wicks in circumferentially grooved tubes.

Section 1.1 presents methods for calculating the contribution of excess
liquid to axial transport, and Section 2.2 presents both theoretical and
experimental results for conditions under which liquid slugs form in the
vapor spaces. These results also apply to arteries, so we digress in Section
1.2 to discuss criterion for the priming of open-and-closed arteries.

1.1 FILLETS AND PUDDLES IN VAPOR SPACES

The three geometries considered are shown in Figure 1-1, where typical
fillets and puddles are drawn as they might appear at a specific axial
location of a heat pipe operating in earth gravity. The key parameter that
governs the configuration of the excess liquid is vapor-liquid pressure
difference. Since it varies hydrostatically transverse to the heat pipe,
in order to have a unique value at every axial location, we take its value
along the centerline of the heat pipe anc define it as the capillary stress.

_2-
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PUDDLE

EXCESS
LIQuUID

FILLETS (TYP)

CIRCUMFERENTIAL GROOVES

Figure 1-1. The three geometries considered for the excess -
Tiquid model - (a) circular vapor space, (b)
horizontal slab wick, (c) vertical slab wick.
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As the stress decreases, the size of the fillets and puddles increases. If
the stress is sufficiently Tow, the vapor space will bridge and a 1iquid
slug will form, which is the subject of the next section. We now present
methods for the calculation of the free-surface shape of a fillet or puddie,
its cross-sectional area, and its free and wette' perimeter.

The equation governing the free surface of a liquid under the action
of surface tension is

AP = o(]/R] + 1/R2), (1.1)

where AP is the local pressure difference between the gas and liquid, ois
the surface tension, and R] and R2 are the local radii of curvature in any
two orthogonal planes that contain the normal to the surface. As the first
of these, we take the x-y plane of the heat-pipe cross section. By assuming
that the cross-sectional shape of the fillet or puddle changes gradually
with distance along the heat pipe, we can negiect the reciprocal of the
second radius of curvature compared to that of the first, and Eq. (1.1)
reduces to

AP = of/R (1.2)

A differential equation is obtained for the free-surface shape by
substituting for AP the hydrostatic pressure variation with y and by sub-
stituting for R the Cartesian formula for the radius of curvature, which
results in

2 2
_ d y/dx
PQy = (1.3)
[1 + (dy/dx)?7¥/2

Here p is the difference in the liquid and vapor densities, and g is the
gravitational acceleration. Also, the location of the coordinates is
chosen such that the gas-liquid pressure differeace is zero when y = o,
Equation (1.3), however, presents difficulties because one cannot integrate
readily through regions where dy/dx is infinite. To remedy this, we use
the transformation

dy/dx = tan a (1.4)
to transform Eq. (1.3) into two differential equations where the dependent
variables are x and y and the independent variable is the inclination a of
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the free-surface curve. The resulting equations are

2y dx/da = a% cos a, (1.5)
2y dy/da = a2 sin o, (1.6)
where a =% /o (1.7)

is the capillary constant. Equation (1.6) is readily integrated, which
results in

y = /902 - a% (cos a - cos ag) (1.8)

where the curve has an inclination o at a point (xo, yo). With the
solution (1.8), we can eliminate y from Eq. (1.5), which gives

dx/da = a2 cos o (1.9)
2
2 v§0 ~ a“(cos a- cos ao)
This equation can be integrated in terms of elliptic integrals by first
using the transformation = 2¢-7, which allows us to rewrite Eq. (1.9) as
. 2
dx = %Z a k[-2 St ; ]ds, (1.10)
ﬁ - k™ sin¢
where 2
K = 2a 5 (1.11)

a2(1 + cos ao) *Y,

One can easily verify that the solution to Eq. (1.10) in terms of elliptic
integrals of the first kind F(k,4) and of the second kind E(k,s) is

x = (/2 a/k) {{1-k2/2)[F(¢,k)-F(s,,k)]
- [E(4,k) - E04,k) I} + x4 (1.12)

where % is the value of ¢ when o = %
Equations (1.8) and (1.12) define a single free-surface curve that
passes through the point (xo, yo) at an inclination %y The task now is to
fit a segment of that curve inside the cross-sectional geometry of the heat
pipe such that it represents a fillet or puddle. As seen in Figure 1-1, in
the case of a fillet the boundary conditions require that, for a zero wetting
angle, one end of the segment is tangent to the slab wick and the other is
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tangent to the tube wall. We will describe how the solution is found for
the puddle and for one particular fillet. The method for the other fillets
is the same except for the details.

Consider first, as shown in Figure 1-2, the solution for the puddle.
The point at the bottom of the puddle is taken as the point (xc, yo). where
X = 0, ag = 0, and Yo? which sets the gas-liquid pressure difference at
the surface of the puddle, is a selected positive value. Points (x,y)
along the free-surface curve which are calculated from Eqs. (1.8) and (1.12)
for increasing values of a, are checked to see if the condition of tangency
with the tube wall is met, which is

X - RT sina =0 (1.13)

Figure 1-2(b) shows that there is a second tangency condition for which
Eq. (1.13) is satisfied. Thus the same free-surface curve can represent
two puddles.

Figure 1-2. Tangency Condition: x = RT sin o
(a) a < n/, (b) a > n/,
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The capillary stress (gas-liquid pressure difference at the center of
the tube) is given by

POy, = pgly + RT cosa) (1.14)

where y and a are the values at the point of tangency. A series of puddles
are calculated for different values of capillary stress by starting with
different values for Yo

The bottom fillet that forms in a heat pipe with a vertical slab wick
[Figure 1-1 (c)] is calculated exactly the same as a puddle with Egs. (1.13)
and (1.14) applying except that the initial condition is X, = T/2 and
@y = - of/2. Again two fillets are possible from a given free-surface curve,
The other types of fillets depicted in Figure 1-1 are calculated by a simi-
lar method except for these only a single fillet is possible for a given

free-surface curve.

We now turn to the calculation of areas, wetted perimeter and free
perimeter. Although the free perimeter is not used in the calculation of
the effective permeability of the excess liquid, it is an important para-
meter for future work on vapor-liquid interaction. An elemental length
de of the free perimeter Sf is given by

ds. = /A + dy (1.15)

With the use of Eqs. (1.5), (1.6) and (1.8), we rewrite Eq. (1.15) as

azda

- dZiCOSa - €os ao) (1.16)

ds¢ = 2402

As in the solution of Eq. (1.9), we use the transformation a = 2¢-7 to
write de as

ds, = /z‘ka/r—ﬁ’%: (1.17)
-k sin ¢

where k is given by Eq. (1.10). Equation (1.16) integrates to
S¢ = /2 ka [F(o,K) - Flo k)] (1.18)

-7-
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For the calculation of the area, refer to Figure 1-3 (a). Although a
particular fillet is shown, the expressions derived below apply directly
to the puddle and other fillets as well. The area desired is Af = Aoa2b3’
where the subscripts denote points and 1ines bounding the area. It is
more convenient, however, to calculate Aoa2' Then, the desired area is

A. = A A

123 ~ M23) - Aoaz (1.19)

023 * |

f

(a)

(X+dX, y+dy)

Figure 1-3. Calculation of the fillet area Af.
(a) Diagram defining points, lines and vectors.

(b) A blow-yp of Figure 1-3 (a) showing the
vector q that connects (x_, y.) to a point
(x,y) on the free-surfce furve.

The area of triangies A023 and A]23 are calculated in terms of the
coordinates for their vertices:

Mas = %-l(x2y3 - YoX3) = (Xqy3 = ¥1%3) *+ (xy, - yyxo) | (1.20)

Ro23 - %—((x2y3 - Yox3) = (Xgyg = YoX3) + {xg¥p - yoxp) | (1.21)
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The area nf the sector A12b3 is 1/2 ¢ RTZ, where 0 is the angle bztween
+

vectors 32] and P3]:

cos'] Pyy -

[

0 21

Oy| Oy

21!

= (X3 - X])<x2 - X]) + (.Y3 - Y])(.VZ - .Y])

Axg - 502+ (yq - v 000xy - 108+ 1y, - y)2 (1.22)

It remains to calculate Aoaz.{”Conaider Figure 1-3 (b) where the vector q

' connects the point (xo,yo) to a general point along the free-survace curve.
The area between 3 and the curve is A, We now calculate the increase in

area dA when a is incremented an amount corresponding to the increment du.

The incremental area dA is the area of the triang?c bounded by a and dg,

thus
| 4 x dd | (1.23)

dA = 5|dy(x - Xo) - dx(y - y.)| (1.24)

Equations (1.5) and (1.6) are used to obtain

3
dA .
Ja - %;— (x - xo) sina - (y - yo) cos 2 (1.25)
Since x is given in terms of elliptic integrals, there is no hope of
obtaining an analytic integral for A. Therefore, the integration is
carried out numerically from oy to the point where the boundary condition

on the tube wall is met.
Referring to Figure 1-3 (a), we see that the wetted perimeter is given

simply by Sw =Yy - Y3t Ry 6. (1.26)

The computer FILLET(Z) was written to carry out the calculations
outlined in this section. Since we could not find a general-purpose sub-
routine for elliptic integrals, Eqs. (1.9) for x and (1.17) for Sf are

-Q-
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integraied numerically along with Eq. (1.24) for A. The output from
FILLET is a table of effective hydraulic diameter and the total area

of fillets and a puddle for the range of capillary stress that can exist
in a heat pipe.

To illustrate the calculations, we focus attention on the puddle in
a circular vapor space. Two parameters are required to fix the puddle
configuration. The first is the Bond number

B = 09R$/°, (1.27)

which is the ratio of hydrostatic forces to surface tension. The second
parameter is the dimensionless capillary stress

S= PO/pgRT, (1.28)

where P0 is the gas-liquid pressure difference at the center of the tube.
For a geometrical interpretation of the dimensionless stress, imagine that
it is due solely to hydrostatic pressure P0 = pgh. Thus, the stress is
simply the ratio of the height h of the tube center above the flat surface
of a liquid reservoir to the tube radius RT' Wren the stress is negative,
the tube center lies below the reservoir surface. For the case of fillets
in a heat pipe with a slab wick, a third parameter, the ratio of the wick
thickness T to the tube radius RT’ is required.

The results for a puddle are displayed in Figure 1.4 (a) - (d) for
values of the Bond number of 0.1, 1., 10., and 100. For each Bond number,
the puddie configuration, its area, free perimeter and wetted perimeter
are shown for a range of stress. The puddle area is made dimensionless
by dividing by the cross-sectional area of the tube, and the free and
wetted perimeter are made dimensionless by dividing by the circumference.
Thus we see that the dimensionless area and wetted perimeter approaches
unity as the puddle nearly fills the tube. For high values of stress when
the puddle is shallow, the free perimeter and wetted perimeter are nearly
equal.

=-10-



“|

(=]
e
%00

1.00

20.00 40.00 60.00 80.00
OIMENSIONLESS STRESS V1/R

-1
100.00

P00

.00

q{ﬂ}ﬂﬁAﬂ;'PAﬁ}E:Is
 POOR QU

FOLDOUT FRAME |

.00 .00 .
DIMENSIONLESS STRESS VI/R

T Y T
2.00 4 8.00

—
10.00

0.60 0.80 .00

0.40

.20

,0.00

n.2n .40 0.60 0.80 1.00

nn



26263-6025-RU-00
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Fillet configurations in horizontal circular cylinders.
Dimensionless fillet area A, wetted perimeter’S, and free
perimeter 5. are plotted as a function of dimensionless
stress V]/R. An asterisk denotes the neutrally stable

meniscus.

Figure 1-4.
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As will be discussed in the next section, those liquid configurations
for which the fillet area increases with increasing stress are unstable
and cannot exist. Note that this is the case for all puddle configurations
when B = 0.1. The critical-free surfaces, which are neutrally stable are
denoted in the figure. For stresses below the critical stress, a liquid
slug forms,

1.2 EXCESS LIQUIC SLUGGING OF VAPOR SPACES AND THE PRIMING OF ARTERIES

In this section we focus on the conditions under which a liquid slug
forms in a vapor space, which, as mentioned previously, also applies to
the priming of arteries. There are two distinct situations to consider;
vapor spaces with and without solid end boundaries. The former occurs in
most simple heat pipes, such as an axially grooved or a slab-wick heat
pipe that have end caps. The latter occurs primarily in gas-loaded heat
pipes where the condenser end protrudes into a gas reservoir and is other-
wise uncapped. We consider this situation first.

1.2.1 Slugging of Open Vapor Spaces

Consider an experiment, as shown in Figure 1.5, where a horizontal
open-ended porous tube is lowered into a 1iquid pool. The capillary stress
is measured by the elevation h of the tube center above the pool. If the
Bond Number is sufficiently large, a puddle of cross-sectional area A will
form before the tube slugs with liquid. As h is decreased A increases.
The tube will abruptly slug with liquid when dA/dh = =, This slugging
criterion, shown in Figure 1-6 by the dashed line, is found from the cal-
culations of the program FILLET such as those displayed in Figure 1-4,

In Figure 1-6, instead of plotting the critical height to the center of
the tube, we plotted the critical height to the top, which eliminates
negative values and allows the use of logarithmic graph paper.

If the Bond number is sufficiently small, then dA/dh is positive for
all puddies, and hence none are stable. Therefore, slugging abruptly occurs
as soon as a puddle begins tc form on the bottom of the tube. Such a puddle
has a radius of curvature nearly equal to the tube radius and thus, by
Eq. (1.1) the gas-liquid pressure difference at the tube bottom is o/RT:

-12-
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rg (h - RT) = a/RTs

or in dimensionless form

h/RT -1=1/8B. (1.29)

POROUS TUBE

"-—7’—’1

~ POROUS STEM

Figure 1-5. When the cylindrical tube is lowered sufficiently, a liquid
slug will abruptly form.

-13-
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This criterion for slugging is displayed in Figure 1-6 by the solid line.
The intersection of the dashed and solid lines at a Bond number of .33
represents the point at which a stable puddlie is just possible. The ana-
lytical calculation of tnis critical Bond number poses an intriguing
academic challenge. Also displayed in Figure 1-6 is data taken by Johnson
and Saaski(3)
ranging from 0.51 mm to 3.2 mm with 2-propanol and Freon 113 as the liquid.

on the priming of open-ended glass and screen walled tubes

The condition for open-ended slugging of "Dee-shaped" vapor spaces
can also be found by the program FILLET, which calculates the fillet areas
Af as a function of stress S. Slugging occurs when one of the two fillets,
or the puddle if one is possible, becomes unstable, that is dAf/dS = w,

1.2.2 Slugging in a Closed Vapor Space

In a vapor space with a closed end, a slug first begins to form at
the end, and then grows progressively longer. Such a slug is depicted
in Figure 1-7. The closed-vapor-space slugging criterion is more import-
ant than the open criterion, therefore, in this section we present detailed
results for the "Dee" shape as well as the circular vapor space.

The critical capillary stress for the formation of a slug is higher for
the closed vapor space owing to the fact that the free surface develops
curvature in two orthogonal planes rather than just one. In fact, if the
stress is sufficiently low for a liquid slug to form in an open vapor space,
then to clear the slug the stress must be increased to the critical stress
for slugging of the closed vapor space. For example, in the design of a
graded-porosity wick, even if the condenser end opens into a gas reservoir,
the slugging criterion for a closed vapor space should be used, because the
condenser-end porosity must be low enough to generate a sufficient capillary
pressure to clear an existing slug. Similarly, while the maximum stress to
initiate priming of an open artery is set by the slugging criterion for open
vapor spaces, the capillary pumping, that is, the stress necessary to initiate
emptying, is set by the slugging criterion for closed vapor spaces.

-15-
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The mathematical modeling of the slug that forms in the closed vapor
space is difficult because the free surface varies in three dimensions.
We consider first the circular vagor space and employ an approximation
suggested by Johnson and Saaski(3 to reduce the problem to a two-
dimensional one. Applying Eq. (1.1) to the free surface shown in Figure
1.7, we take R1 as the local radius of curvature in the y-z plane which
bisects the tube verticallv and Ry as the local radius of curvature in
plane orthogonal to the y-z plane that contains the local normal to the
surface. The approximation is to use a constant characteristic value for
Ry, and for lack of a better candidate this constant value is taken as
the tube radius Ry. The equation governing the meniscus shape in the z-y
plane is developed exactly the same as Eqs. (1.5) and (1.6), except the
constant term 1/RT is carried along. Thus, instead of Lq. (1.6), we obtain

(2y - 1/Rp) L= a2 sin o (1.30)

Referring to Figure 1.7, we see that the boundary conditions for the free
surface curve 1is

Qa

and (1.31)

oaty="h- RT +d

a

-naty=h+ RT

In case slugging occurs without a puddle forming first, we take d = o.
Integration of Eq. (1.30) between the above boundary ~onditions results in

d2 + d[2h - 2Ry - a2/Rq] + 4[a% - Rth] = 0 (1.32)

The no-puddle slugging condition is (d = o)

h/Ry = 2/B (1.33)

Equation (1.29) gives the condition for a puddle just about to form. The
two curves given by Eqs. (1.29) and (1.33) intersect at B = 1. Thus, for
B < 1, the slug forms without a puddle and Eq. (1.33) is the appropriate
criterion. For B > 1, we use a modification of the program FILLET to
calculate the puddle depth as a function of h/Ry and B:

-16-
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d/Ry = f(h/Ry, B) (1.34)

This relation is used to eliminate d from Eq. (1.32). The resulting slug-
ging criterion for B > 1 alc.y with the criterion for B < 1 given by &q.
(1.33) are displayed in Figure 1.8.

i G
k ~E .
L ; I

LIQUID

Figure 1.7. Liquid Slug with a Puddle of Depth d on
the Bottom of the Tube

The validity of the approximation of Johnson and Saaski can only be
assessed by comparing the resulting slugging criterion to experimental
results or to an exact numerical solution. We carried out an experiment
with a series of glass tubes that varied in diameter from 2 to 30 mm. As
shown in the Figure 1.9, one end of each tube was drawn down to half the
original diameter and the tapered section was bent 90°. The set of tubes
were placed on a level platform inside a large glass jar with the tapered
sections down. The jar was slowly filled with acetone. At a critical
level, a liquid slug, which initiated in the tapered section, moves ra-
pidly through the smallest tube. The height of the critical level is
measured with a cathetometer. The jar is slowly {illed again until the
slug moves through the second tube, and the height is measured again, and
so forth. From these data, the critical values for h can be calculated
for each tube.

The experimental results are displayed in Figure 1.8. There is
excellent agreement except at large values of B, where the theory under

-17-



26263-0025-RU-00

under-predicts the critical stress. One expects this, because at these
large values of B the puddle itself nearly fills the tube before slugging
occurs. As seen in Figure 1.4(d), when the puddle level is near the top,
the transverse radius of curvature R, is on the average much smaller than
the tube radius Rt that is used to approximate it in the theory.

The slugging criterion for "Dee-shaped" vaper spaces was measured
experimentally for shapes corresponding to a typical ratio of the wick
thickness to tube diameter of 0.465. Long stainless-steel strips of the
appropriate width were inserted into each glass tube and held in place
with a spring. Slugging of the resulting "Dee-shaped" vapor space was
measured with the "Dee" on the top and the bottom, which corresponds to
a horizontal wick, and on the side, which corresponds to a vertical wick.
The results are displayed in Figure 1.10. In the case of the "Dee," the
Bond number is based on one-half of the hydraulic diameter Dy, instead of
the tube radius. The faired lines through the data of Figure 1.9 are
given by an empirical data fit

/Oy = g+ & (1 - )

BB
where the empirical constants are given in Table 1.1. These empirical
results are incorporéted in the computer program GRADE(4) so that optimum
graded-porosity wicks can be designed that just prevent the occurrence of
a liquid slug.

Table 1.1. Constants for the Empirical Curve Fit for
the Slugging Condition for "Dee-Shaped"
Vapor Spaces

hi/Dp = 1/8 + (o/85)(1 - n e'F)

& 3 Y n
Dee on top .820 .40 1.5 2.9
Dee on bottom .68 .40 1.5 1.9
Dee on side 1.5 .5 1.0 1.2
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Figure 1.9. Schematic Diagram of Apparatus to Measure
the Slugging Criterion for Closed-Ended
Cylinders. Slug is shown formed in the
smallest tube.
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2.0 THE CAPACITY OF CIRCUMFERENTIAL GROOVES

Many heat pipes use a wick structure for the axial transport of
1iquid, and circumferential grooves for the transport across the inner
tube wall in the evaporator and condenser regions. This combination
provides both high axial transport and heat-transfer coefficients.

Our particular interest is the use of ciriumferential grooves with the
graded-porosity slab wick; however, the results of this section apply
to any heat pipe that uses circumferential grooves.

A sound mathematical model of circumferential grooves is required
for the program GRADE(4)
the evaporator grooves are the limiting factor vor the transport capacity.
GRADE repeatedly integrates the governing differential equations. Each
integration uses an assumed value for the axial heat-transport rate, and
a subroutine DRY reports whether the circumferential grooves fail. If
they do, the assumed heat-transport rate is reduced, and if they don't
the rate is increased. Then the integration is repeated. A binary
search on the rate is used to design a graded-porosity wick with the
highest axial heat-transport capacity that will not fail the circum-

. which designs graded-porosity wicks, because

ferential grooves.

In this section, we present the mathematical model for the sub-
routine DRY. The method used is similar to that used by Gier and
Edwards(s)
than the triangular groove is considered, and a general wick structure
is considered rather than one that feeds the grooves only at the bottom.

, except that here the more general trapezoidal groove rather

Figure 2.1 depicts the geometry under consideration. To te
specific, a vertical slab wick is shown. However, the method applies
to any wick configuration. We focus attention on a single region of
grooves that is fed 1iquid from the wick at angular locations 6, and
8, that are measured from the top (positive in the counterclockwise
direction). The total heat input per unit length along the heat pipe
is Q, and a fraction FQ is assumed to enter between 6; and @,.
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CIRCUMFERENTIAL
GROOVES

Figure 2.1. Liquid Enters a Groove ¢ . the Rate M]
at Location ey ar ' it tb Rate Mp at
Location 02. It s uniformly evaporated
between 871 and 2.
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We assume that the heat is evaporated uniformly along the groove,
thus the amount of liquid evaporated between location 6 and 6+de is

dm(s) = -(FQ Q/AN) [de/(8,-61)] (2.1)

where m(9) is the local mass flow through the groove assumed positive
in the counterclockwise direction, N is the number of grooves per unit
length and A is the latent heat. Integration of Eq. (2.1) over the
interval (e, , 8,) yields

(my +mp) = Fy Q/>N (2.2)

where m; and m, are the absolute values of the flow rates into the
groove at ¢, and 6,. One location 0 between 6; and 6, is a stagnation
point where the flow rate is zero. By integrating Eq. (2.1) from ©, and
then 6, to 8> We obtain the result

my/my, = (65-91)/!92'95) (2.3)

Unless the region of grooves under consideration is situated symmetrically
in a gravitational field or they are operating in zero gravity, in which
case m; equals my, then one does not know a priori the values of m; and
m,. Their sum is given by Eq. (2.2) and the unknown location of the
stagnation point fixes their ratio by Eq. £.3). Combining these equations
we obtain expressions for m; and m, in terms of CHE

(Fy Q/aN) (og-61)/(02-01), (2.4)

H

my

m;

(FQ Q/AN) (82-8.)/(62-01). (2.5)

Thus our lack of knowledge of the values of m; and m, is shifted to the
unknown location 0 of the stagnation point. Integrating Eq. (2.1) from
6, with the use of Eq. (2.4) we obtain for the mass flow rate

m(e) = (Fy Q/AN) (64-6)/(62-6) (2.6)
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As 1liquid flows through the groove, its pressure drops relative to
that of the vapor. The pressure difference is sustained by the curvature
of the free-surface meniscus. The rate of increase of the liquid-vapor
pressure difference P is governed by the expression

%g = - R ég (1/2 o U2)/D, - ogRy sin 6 (2.7)
where RT is the inside radius of the tube

K is the friction-factor coefficient
R is the Reynolds number based on the hydraulic diameter Dh
p is the liquid density
U 1is the average liquid velocity.
In terms of the mass flow rate given by (2.6), we write
Rt K v

@ _ N
de 20,2

(FQ Q/xN)(es-e)/(ez-el) - pg Ry sin (2.8)

This equation must be integrated numerically because K, Dh’ and A vary
depending on the shape of the meniscus, which in turn depends on P.

Since typically the Bond number is very small, we assume that the meniscus
is circular, and thus the liquid in the grooves is as shown in Fig. 2.2.
The radius is given in terms of the local !iquid-vapor pressure differ-
ence P and surface tension o by:

R = g/P (2.9)

When the vapor-liquid pressure difference is low, the meniscus is attached
to the top of the groove. As the pressure difference increases, the radius
of curvature of the meniscus decreases. When the contact angle ) reaches
the wetting angle a, a further increase in the pressure difference results
in the meniscus receding into the groove as shown in Fig. 2.2(b). Groove
failure is taken to occur when the meniscus reaches the groove bottom.
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Figure 2.2. Cross Section of a Groove
(a) Meniscus of liquid attached to top
of groove with contact angle ).
(b) Meniscus receded into groove (contact
» equals wetting angle o).
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The area A and hydraulic diameter Dh are easily calculated for
a given value of P once R is calculated from Eq. (2.9). For the
calculation of the friction factor coefficient, we rely on the work by
Hsu(s) who used numerical techniques to calculate the friction factor
for a circular meniscus in a trapezoidal groove. The subroutine DRY
contains a subroutine FACTOR that is devoted to producing an empirical
curve fit to Hsu's numerical results.

The boundary conditions for Eq. (2.8) are the values of the vapor-
1iquid pressure difference at the two feed locations, which are related
hydrostatically to the stress S at the tube center;

P, S+ pgRT cos 8y ,

P, = S+ ogR; cos 6 , (2.10)

Equation (2.8) with the boundary conditions (2.10) constitute a two-
point boundary-value problem where the unknown stagnation point 0 is an
eigenvalue. One can attempt a solution by repeatedly integrating from
9, to 8,, each time adjusting the value of O until both boundary condi-
tions are met. A solution will be possible if the heat input Q is below
the critical value at which the groove fails. Such an iterative search
for a solution is time consuming, especially when the computer subroutine
that would carry it out is itself called repeatedly. It is often possible
to decide whether or not Q is above the critical value based nn a single
integration. Consider a curve constructed as follows. We assume a

value for 6. and then integrate fq. (2.8) from 6; to o,. In Fig. 2.3 we
plot the vapor-liquid pressure difference PS at the stagnation point as

a function of B The curve ends when PS is sufficiently high to fail
the groove. Similarly, we integrate from 8, to b and again plot Ps as

a function of es. If Q is below the critical value for groove failure,
the two curves will intersect at the actual stagnation point, as shown

in Fig. 2.3(a). If, on the other hand, Q is above the critical value,
they will not intersect as shown in Fig. 2.3(b).

We now can describe the procedure used to assess whether or not the
groove has failed. A trial value of 8 is assumed half way between ¢, and
8,, and we attempt to integrate to it first from ¢, and then from ¢,. If
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H

CRITICAL PRESSURE DIFFERENCE FOR GROOVE

(0)

ACTUAL STAGNATION POINT

AT THE STAGNATION POINT

VAPOR-LIQUID PRESSURE DIFFERENCE P

0 ©2
ASSUMED STAGNATION POINT LOCATION ©_

H

CRITICAL PRESSURE DIFFERENCE FOR GROOVE

(b)

VAPOR-LIQUID PRESSURE DIFFERENCE P

AT THE STAGNATION POINT

e] 62
ASSUMED STAGNATION POINT LOCATION Gs

Figure 2.3. Plots of the Vapor-Liquid Pressurs Differ-
ence at an Assumed Stagnation Poirt Location
0g by Integrating from Both o7 and 0, to og.
(a) Case where grooves function, (L) Case
where they dry out.
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two values of PS are successtully calculated without groove failure, then
evan if they are not tie * me we have duadvnoucated oot the two curves

are as in Fig. 2.3(a) and they must intersect. Therefore, we conclude that
the groove has not failed. If both attempts to integrate to 8 fail, then
we have demonstrated that the two curves are as in Fig. 2.3(b) and they

do not intersect. Therefore, we conclude th:¢ the groove has failed.

Only when integration to the trial value for B¢ is successful from one
direction but not from the other, can we draw no conclusion. When this
happens, a new trial value for 0 is selected, and the procedure is repeated
until a conclusion can be drawn. Usually only a few trys are needed at

most.

The procedure just described is incorporated in the computer sub-
routine DRY, which reports whether the grooves have failed for a given
heat input and capillary stress at the tube center. Sample results are
shown in Fig. 2.4. The primary input to DRY, besides parameters describ-
ing the groove geometry and fluid properties, is the heat input per unit
length of heat pipe QL and the capillary stress, which is specified by
the radius of curvature Rca
capillary stress S:

D of the ‘ree surface in a groove under the

S = O/Rcap'

The region above the curve inr Fig. 2.4 corresponds i -.lues of Rcap and
QL where the grooves are failed, while the region beiow it corresponds to

values where the grooves are not failed.

-29-



HEAT INPUT (KW/M) AT DRY-UP

26263-6025-RU-00

100,

80.

60,

40,

20,

2em 1D GROOVE X-SECTION

HP X-SECTION
40 GOOVES/cm
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MENISCUS RADIUS AT TUBE CENTER RCAP

Figure 2.4.

(1074 M)

Sample of Groove Dryout Calculations
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3.0 VAPOR FLOW IN HEAT PIPES

We consider in this section the effect of vapor flow on wick-
limited heat pipes. Vapor flow is often an important design considera-
tion since the vapor-liquid pressure difference that must be supported
by the capillary pressure of the work is the sum of the pressure drop
in the vapor as well as in the liquid. If a heat pipe has a negligible
vapor-flow pressure drop at its maximum heat-transport rate, then it is
often possible to increase its capacity by increasing the cross-sectional
area of the wick. In the limit of this process where the wick completely
fills the heat-pipe cross section, the capacity, of course, falls to zero.
Therefore, an optiuum cross-sectional area for the wick exists and when
other factors such as radial heat transfer and vapor-space slugging are
not a consideration, this optimum occurs when the vapor-flow and liquid-
flow p-essure drops are of the same magnitude. An accurate calculation
of the vapor-pressure profile is especially important for a graded-
porosity wick because it is designed to just sustain the vapor-liquid
pressure difference along its length rather than only at the evaporator
end.

The vapor-flow calculation is difficult because heat pipes often
operate in a regime where there is an essential interaction between
viscous and inertial forces. This has been the subject of considerable
study which has been reported in the literature. Bankston and Smith(7),
and Tien and Rohani(g), for example, resorted to a numerical solution
of the full Navier-Stokes equations, while Busse(g), Galowin et 31(10,11),
Quail and Levy (12,13) and Gupta and Levy(]4) based *their analysis on
the boundary-layer equations. Their solutions are limited to either
circular, plane-parallel or annular vapor-space cross sections. We are
primarily interested in, rather, the "Dee-shaped" vapor space formed by
a graded-porosity slab wick in a circular tube. Also, the mathematical
complexity of the solution of either the Navier-Stokes or the boundary-
layer equations makes such an approach unsuitable for routine computer-
design calculations. In section 3.1 we present a simplified approximate

mathematical model that is based on the results of earlier more exact
theories. It has the virtue of providing a fast calculation of the
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static-pressure profile of the vapor in a Dee-shaped vapor space while
retaining the effect of the inertial-viscous interaction. In section
3.2, we present the results of an experiment that actually measures the
pressure profile in the vapor.

3.1 THEORETICAL MODEL FOR VAPOR FLOW IN A DEE-SHAPED SPACE

3.1.1 Flow in the Adiabatic Section

A rigorous analysis of the actual Dee shape would require at least
a three-dimensional solution of boundary-layer equations, which is far
beyond the scope of a design-oriented subroutine. Therefore, as our
first step we approximate the Dee shape by a two-dimensional configuration
that consists of two flat parallel plates. One is always adiabatic and
models the surface of the wick. The other, which models the tube wall,
is either a surface of evaporation, condensation, or it is also adiabatic.
A question arises as to the plate separation that will best approximate
a Dee-shape. The criterion that is used requires that the flow in both
the actual Dee-shaped passage and between the parallel walls have the
same average velocity and the same pressure gradient dP/dx in adiabatic
regions of fully developed flow. If we let the subs.ript ( )D refer to
the Dee-shape and ( )ll refer to the parallel plates, then the criterion
for the plate spacing is

& _ 96 1/20u _ (Fp Rep) 15 42

(3.1)
'r8| | j)l I F&D DD

where fD is the friction factor, Re is the Reynolds number based on the
hydraulic diameter D, p is the vapor density and u is the average
velocity. After we have substituted twice the plate spacing b for the
hydraulic diameter of paraliel plates, equation (3.1) reduces to

b = 2 /6/f, Re, D (3.2)

D
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The friction factor fD depends on the ratio of wick thickness to
tube diameter, and in general it must be found from the numerical
solution of Poisson's equation:

%g _— {23! 4-23!} ) (3.3)

ax2  ay?

where here the z axis is taken as the flow direction, x and y are trans-
verse coordinates, u is the flow velocity, p is the pressure and u is
the viscosity. Equation (3.3) is written in dimensionless form by
introducing the dimensionless variables

U = -u [%% gf'] ’ (3-4)
X = x/d, (3.5)
Y = y/d, (3.6)

where d is the tube diameter, and we obtain,

2 2
3y, 3% ., (3.7)
axe ay?

The boundary conditions require U to vanish on the boundary. Once we

obtain a solution, the friction factor is related to the average

dimensionless velocity Uave by

fDReD = 2/Uave . (3.8)

Equation 3.7 is written in a finite-difference form by overlaying the
flow region on an N x N rectangular grid. By sywmmetry, only half of
the region must be used. Solution for the velocity Uij at the (i,j)
node is obtained by Gauss-Seidel iteration of the finite difference
approximation to Eq. (3.7). The resulting friction-factor is shown
in Figure 3.1.

Analytical results are possible for w/d = 0 and asymptotically for
w/d+1. The result of fDReD = 62.8 for w/d = 0 is a special case of an
[ 4
analysis by Sparrow(]“). An asympt- ' ‘¢ solution is possible in .he
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Figure 3.1 Friction-Factor For A "Dee-Shaped" Conduit
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1imit w/d+0 because in Eq. (3.7) 32U/3Y2 can be neglected. The result-
ing friction factor i<

limit £

W/ d+0 oRep = 590/9 = 62.2 (3.9)

The numerical solution in Fig. 3.1 does not quite agree with the analytical
results for w/d = 0 and 1. This is attributed to the approximation of

the exact Cifferential equation by the finite differerce equation. In
fact, the friction factors shown in Fig. 3.1, which were calculated for

a 30 x 30 mesh, increased somewhat as a finer mesh was used.

We were surprised to find that the friction-factor is practically
independent of w/d. For practical calculations, the average of the
analytical results for w/d = 0 and w/d = 1 is recommended. This value is
62.5/ReD.

3.1.2 Flow in Condensing Sections

In the condensing section the continual loss of mass flow to the
condenser wall requires a decel:ration of the main flow which is brought
about by a positive pressure gradient in the direction of flow. The
positive pressure gradient tends to cause a flow reversal near the wall,
where viscosf%@ E?ings the tangential velocity to a low value so that
inertia effects are overcome by the positive pressure gradient. This
behavior is particularly true near a noncondensing surface, such as that
of the slab wick. The tendency toward flow reversal lowers or indeed
reverses the viscous shear stress which otherwise acts against the flow.

Consider an element dz long of a heat pipe with walls forming a
cylinder in the general mathematical sense, i.e., parallel wali elements
but not necessarily with a circular cross-section. A force-momentum
balance requires the following:

4 [wda = - pdn, - frd (3.10)
dz Jp c dz A c e W

where A {s cross-sectional area, T, js wall shear stress and C is
perimeter. The area-integrated terms will be written as overscored
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quantities as frllows

fow o =5 a (3.11)
A
]A‘ pdAi = pA (3.12)

Additionally, & velocity-squared shaped factor is introduced

Foe TR (3.13)

A circumferentially averaged friction factor f (not to be confused with
friction-factor coefficient to follow) is defined:

fcrw & = c% 002 (3.14)

Hydraulic diameter is also introduced
D = 4 A/C (3.15)
With these definitions Eq. (3.10) takes the form

o

€. .4 Fo-f o (3.16)

Equation (3.16) car be integrated over an entire length of a condenser
with closed end at x = L to yield

L
- - 32 - f{z) 1 =2
PL - P FS,O pUS J(; 5 Pl dz (3.17)

For a condenser with a uniform rate of condensation

u(z) = Uo [1 - z/L] (3.18)

Hence, Eq. (3.17) becomes

1
PL-Py = Fgo °U%- 55 o3 .£ f[1-6] de (3.19)
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where

£= x/L. (3.20)
A pressure-recovery coefficient is defined by

o= (p-py)/ (5 o02) (3.21)
and a friction-factor coefficient K is defined by

f = K/Re (3.22)
where Re is Reynolds number

Re = — , (3.23)
and v is the kinematic viscosity. Equation (3.19) can thus be written

!
_ L]
AL B L K [1-¢] de (3.24)

Finally an average value of friction factor coefficient K can be defined by

1
X = Zf K [1-£] de (3.25)
0

Equation (3.24) can then be written

= L ¥
r = 2 FS,O ) EE; (3.26)

Inlet Reynolds number Re0 and radial Reynolds number

u D

Re,, = —“')— (3.27)

may be used interchangeably, because

u A =17, CL = 4 u, AC L/D (3.28)

Re. = 4(L/D) Rer (3.23)
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Hence, Eq. (3.26) can be written

ro= 2F - E"FE: (3.30)

or

>
"

8 Rer [2 Fs,o -r] (3.31)

It is clear that, given a value of pressure recovery coefficient
r from the literature, as a function of Rer or Reo alone for a complete
condenser, and given the inlet velocity distribution so that Eq. (3.13)
can be used to fix Fs,o Eq. £3.31) can be used to find-the average
friction factor coefficient K . It is suggested that K be used in
approximate local pressure-distribution calculations merely by employing
it in Eq. (3.16) in place of the true K, as follows:

£k, & -k .30
A constant value of FS is also used for simplicity, which is taken as
the value for fully developed channel flow. While only an approxi-
mation, Eq. (3.32) will integrate to yield the correct result for PL>
since that result is built in. It is recommended that calculations be
made with the approximate Eq. (3.32) and compared to more exact numerical
or experimental results.

Gupta and Levy(]a)

silicone oil flowing between a solid outer cylinder and a porous inner
one. Results were obtained for an inner to outer radius ratio of 0.83.
Due, presumably, to flow separation and turbulence, r achieved a value
of only + 0.5 as radial Reynolds number Rer becomes large. The form of
Eq. (3.30) and the behavior displayed in Figures 10 and 11 of Ref. (14),
suggested fitting the results with the following form of equation

report experimental results obtained with

r = A- ﬁ%‘ exp {-[a Re,. + b Rerz]} (3.33)

r
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In the limit of large Rer this relation goes to the constant A (equal
to 0.5 from the experimental results). At small values of Rer, r goes
to -B/Re, so that Eq. (3.31) gives K = 8B; hence B must be the ordinary
Poiseuille value of K divided by 8: B=12 for parallel plates and 8 for
the circular tube. The constants a and b govern the rapidity with
which the relation goes from the -B/Rer asymptote to the constant A
asymptote. Gupta and Levy(]4) also report calculated values for

parallel plates.

Table 3.1 shows their values and the fit according (0 Eq. (3.33).
The fit is within the error in reading the curve in Ref. (14). Table 3.1
also shows the values of R corresponding to the values of r according to
Eq. (3.31). The values show that, due to the fact 2Fs,o is considerably
larger than A, K increases strongly with increasing Rer.

3.1.3 Flow in the Evaporating Section

In the evaporating section of a heat pipe the continual addition of
mass flow requires an acceleration of the main flow which is brought
about by a neqgative pressure gradient in the direction of flow. Viscous
drag by the wall increases the magnitude of the pressure gradient. At
very high rates of evaporation this factor becomes unimportant, as the
velocity gradient at the wall tends to zero. At low rates of evaporation
the viscous drag governs.

The analysis proceeds in the same manner as in the case of condensing
regions to the approximate governing equation

- K o2
£t gom -k g 5.3

Where FS L is the value of FS at the exit of the evaporator and K is
given by

1
K = 2 J. Ke de (3.35)
()

In this case, the subscript ( )o refers to the closed end of the
evaporator and ( )L refers to the exit. The overall pressure drop
coefficient defined by
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Radial Recovery Coefficient r Average Friction
Reynolds Factor Coefficient
Number Gupta & ok - *
Re, Levy [14] Eq. (3.33) K (Eq. 3.21)

0 N.A. -12/Re,, 96
1 N.A. -9.9 98
2 N.A. -3.9 100
3 N.A. -1.92 104
4 -0.9 -0.97 108
5 -0.4 -0.43 113
6 -0.1 -0.09 119
7 0.1 0.13 127
8 0.3 0.28 136
10 0.5 0.45 156
12 N.A. 0.53 179
14 N.A. 0.57 205
16 N.A. 0.59 232
® 0.60 14.4 Re,.
* FS,o

** A =0.6, B=12, a=0.13, b = 0.008
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ro= (pgp /g ol (3.36)
is related to K and FS,L by

K = 8Re. [r-2Fg,] (3.37)
We again fit Gupta and Levy's(]4) results this time with the equation

ro= A+ % exp (- [a Re_ + 6 Re2 1) (3.38)

As in the case of the condensing region, B is taken as the Pouiseuille
value of the friction-factor coefficient (96 for flat plates) divided
by 8 in order to recover Pouiseuille flow in the limit of small Rer.
Unlike the condensing region, however, in the evaporator at large values
of Rer the viscous term should vanish, thus we take

A= 2Fg, (3.39)

Table 3.2 shows values of r from Ref. (14), the fit of Eq. (3.38), and
K according to Eq. (3.37).

3.2 EXPERIMENTAL VERIFICATION OF THE VAPOR-FLOW MODEL

In order to verify the theoretical model of vapor flow that is
incorporated in GRADE II, a task was undertaken to experimentally
measure the vapor pressure profile in a heat pipe that closely resembles
ones typical of a spacecraft application. Figure 3.2 depicts the cross
section of the experimental heat pipe. It is 188cm (74 in.) long with
19 pressure taps spaced 10.16 cm (4 in.) apart starting one inch from
the evaporator end.

The pressure taps present a unique design challenge. The usual
practice in measuring the static pressure of a gas stream at a wall is
to drill a small-diameter hole on the order of 0.025 cm (0.010 in.) in
the wall, which is connected to a pressure transducer by means of tubing.
Such a small hole in a heat-pipe wall, however, would fill with 1iquid
and the resulting capillary pressure would influence the measurement.
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Radial Pressure Drop Coefficient Average
Reynolds Friction Factor
Number Gupta & Levy [14] Eq. (3.38)* Coefficient**
0 12/Rer 96
2 8 8.21 78.6
3 6.4 6.26 n.a
4 5.5 5.3 64.4
5 4.9 4.76 58.2
6 4.4 4.40 52.7
7 4.1 4.15 47.7
8 3.9 3.97 43.1
10 3.7 3.74 35.3
12 3.6 3.€0 28.9
14 3.5 3.51 23.7
16 3.4 3.45 19.4

* A=33,8B8=212,a=0.10,b=20

** Based upon FS L= A/2 = 1.65
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WITH 100 1. P, |,

Figure 3.2 Cross Section Through Pressure Tap of Experimental Heat
Pipe for Measuring Vapor-Pressure Profile
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As shown in Fig. 3.2, our solution to the problem is to use a large-
diameter pressure tap whose capillary pressure is insufficient to support
a liquid slug. The mathematical criterion in terms of the surface
tension o, liquid density p, pressure tap 1.D., d, and heat pipe I.D.,
D, is

40/d < pgD.

(We have assumed that the heat pipe is not overfilled, that is, there
is no puddle along the bottom.) The wall hole is covered on the inside
by a patch of 0.00127 cm (0.0005 in.) foil with an 0.010 inch diameter
hole in it. The hole stays clear of liquid by menisci coalescence,
which is the same mechanism on which the priming foil is based. A
sample pressure tap was fabricated and tested. A liquid slug inten-
tionally introduced into the tube was observed to drain away and the
foil hole cleared itself by menisci coalescence.

The pressures at each tap were measured relative to the first
pressure tap at the evaporator end with a Validyne variable-reluctance
differential pressure transducer (0.1 psid full scale). One side of
the transducer was connected to the evaporator-end tap, and the other
side was connected to each of the other taps via a valve. A differ-
ent’al pressure measurement is made to a particular pressure tap with
only the valve to that tap open.

The experimental results and the corresponding theoretical cal-
culations by GRADE II are displayed in Fig. 3.3. Methanol is used as
the working fluid since its low vapor density at room terrzrature
results in a high vapor velocity and hence a relatively high pressure
drop. Figure 3.3 shows good agreement between theory and experiment
at a 20 watt heat-transfer rate and 10°C vapor temperature. The radial
Reynolds number of 0.256 in the condenser section and 0.235 in the
evaporator section shows that the flow is dominated by viscous effects.
To increase the inertial effect, the heat transfer rate was increased
and the vapor temperature was decreased. The results for 30 watts and
10°C shown in Fig. 3.3 was the highest radial Reynolds number that was
obtained before the pressure readings in the condenser section became
unstable and large fluctuations occurred.
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Instability of the flow field in the condenser region has been
measured previously(]3’]4), but at higher radial Reynolds numbers.
We cannot completely account for the instability at such low Reynolds
numbers. One factor that couid strongly contribute, however, is the
fact that the vapor-space surface is very rough, especially the slab
wick surface. Such roughness would be expected to induce unsteady
flow at a much lower Reynolds number.

-46-



10.

1.

12.

26263-6025-RU-00

4.0 REFERENCES

Edwards, D. K., Eninger, J. E., Marcus, B. D., "User's Manual for
the TRW MULTIWICK Program," TRW Report 20509-6027-RU-00, prepared
under NASA Contract NAS-11476, 1974.

For a description of FILLET and an example of its use, see "User's
Manual for GRADE II," Ref (4).

Johnson, G. D., and Saaski, E. W., "Arterial Wick Heat Pipes,"
ASME publication 72-WA/HT-36, 1972.

Eninger, J. E., "User's Manual for GRADE II," NASA CR 137954, 1976.

Geir, K. D., and Edwards, D. K., "Flooding and Dry-up Limits of
Circumferential Heat-Pipe Grooves," AIAA Paper No. 74-722, 1974.

Hsu, Wan-Chuan Joeseph, "A Numerical Analysis of Capillary Flow in

Trapezoidal Grooves during Evaporation and Condensation," Master of
S~ience Thesis submitted to the Energy and Kinetics Dept., University
of California at Los Angeles, 1976.

Bankston, C. A. and Smith, H. J., "Incompressibie Laminar Vapor
Flow in Cylindrical Heat Pipes", ASME Paper 71-WA/HT-15, 1971.

Tien, C. L. and Rohani, A. R., "Analysis of the Effects of Vapor
Pressure Drop on Heat Pipe Performance," Int. J. Heat Mass Transfer,
Vol. 17, pp. 61-27, 1974,

Busse, C. A., "Pressure Drop in the Vapor Phase of Long Heat Pipes,"
presented at the 1967 Thermionic Conversion Conference, Palo Alto,
California, October 30-November 1, 1967.

Galowin, L. S. and Barker, V. A., "Heat Pipe Channel Flow Distri-
butions," ASME publication 69-HT-22, 1969.

Galowin, L. S., Fletcher, L. W. and De Santis, M. J., "Investigation
of Laminar Flow in a Porous Pipe with Variable Wall Suction," AIAA
Paper No. 73-725, 1973.

Quaile, J. P. and Levy, E. K., "Pressure Variations in an Incom-
pressible Laminar Tube Flow with Uniform Suction," AIAA Paper No.
72-257, 1972.

-47-



