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CONSIDEHA'l'IONC lrOH 'l'lfE APPLIC1\'l'ION OF' F'INITE-EIJEM}~NT BEAlv! MODELING 

'1'0 VIBRATION A1~ALYSIS OF FLIGHT VEHICLE STRUGTURES* 

Raymond G. Kvaternik 

Langley Research Center 

SUIvlll,ARY 

The manner of representing a flight vehicle structure as an assembly of 

bearn, spring, and :r:igid-body components for vibration analysis is described. 

'l'he development is couched in terms of a substructures methodology which is 

based on the finite-element stiffness method. The particular manner of employ-

ing beam, spring, and rigid-body components to model such items as wing struc-

tures, external stores, pylons supporting engines or external stores, and 

sprung masses associated witt launch vehicle fuel slosh is described by means 

of several simple qualitative examples. A detailed numerical example consist-

ing of a tilt-ro"i:.or VTOL aircraft is included to provide a unified illustration 

of the procedure for representing a structure as an equivalent system of beams, 

springs, and rigid bodies, the manner of forming the substructure mass and 

stiffness matrices, and the mechanics of writing the equations of constraint 

which enforce deflection cbmpatibility at the junctions of the substructures. 

Since many structures, or selected components of structures, can be represented 

in this manner for vibration analysis, the modeling concepts described and their 

application in the numerical example shown should prove generally useful to the 

dynamicist. 

*The information presented herein is based on a portion of a thesis 
entitled "Studies in Tilt-Rotor VTOL Aircraft Aeroelasticity," which was sub
mitted to Case Western Reserve University, Cleveland, Ohio, in partial fulfill
ment of the requirements for the degree Of Doctor in Philosophy in Engineering 
Mechanics, June 1973. 
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INTRODUCTION 

Customary engineering practice in dynamic analyses of complex aerospace 

structures consists of introducing some type of physical idealization to 

simplify the structure, establishing a finite-element lnathematical model of 

the idealized system, and solving the resu:i.tant equations of motion. Finite-

element IT.odels required for static analyses are usually quite complex in order 

to predict the stresses satisfactorily. For dynamic analyses, however, simpler 

models based on the use of (one-dimensional) beam elements to represent either 

the entire structure or selected components are often adequate (refs. 1 to 11). 

A self-contained treatment of the practical aspects of applying finite-

element beam modeling techniques in dynami~ analyses is, for the most part, 

either lacking in the literature or of a fragmentary nature. The purpose of 

this report is to present a unified treatment of several aspects of finite-

element beam modeling as might be applied to vibration analyses of flight 

vehicle structures. Herein, beam modeling is used in the general sense to 

include the use of heam, spring, and rigid-body components. The discussion is 

couched in terms of the substructures approach to vibration analysis as devel-

oped in reference 12. Several simple qualitative exrunples illustrating the 

manner of employing beams, springs, and rigid bodies to model such items as 

wing structures, external stores, pylons supporting engines or stores, and 

sprung masses associated with launch vehicle fuel slosh are given. A detailed 

numerical example consisting of a tilt-rotor VTOL aircraft structure is employed 

to illustrate the manner of representing a structure as an equivalent system of 

beam, spring, and rigid-body substructures, the formation of the substructure 

mass and stiffness matrices, and the mechanics of writing the equations of 
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constraj,nt which enforce deflection compatibility at the junctions of the sub-

structures. The direct method of vibration analysis as described in refer-

ence 12 and,implemented in a special-purpose computer program designated SUDAN 

(SUbstructuring in Direct ANalyses) is used to solve for the modes and 

frequencies . 
.. 

The present report relies on reference 12 for a complete understanding of 

the theoretical basis of the procedures implemented in the SUDAN program. For 

this reaso.n it is recommended that reference 12 be used in conjuncti.on with 

this report. 

3 

..> 

~~-----------=-==-=~-=~~=-~------- -------- .l1li 



I~-~ ~ T" . -.. ~. '."" .......... ,. ",.~,,,.~.~ .... '. ~~I~. '--=~r 

l 

J 
.. 
~".-= ...... _/' . 

[A], [B] 

AE. 
l. 

[c] 

e. 
l. 

EI. 
l. 

GJ. 

I. 
l. 

J. 

[j{] 

[k](i) 

L. 
l. 

M 

SYMBOLS 

submatrices of [K]B 

extensional rigidity of ith beam element 

submatrix of [K]B; also matrix of coefficients of constraint 
equations expressed in discrete physical coordinates 

offset of ith mass from beam elastic axis 

flexural rigidity of ith beam element 

torsional rigidity of ith beam element 

lumped. torsional inertia at ith beam station 

components of rigid body inerti.a tensor (See eq. 15.) 

composite matrix containing free-body stiffness matrices of 
substructures as submatrices on the principal diagonal 

stiffness matrix for beam bending 

stiffness matrix for be~~-spring 

stiffness matrix for beam torsion 

matrix of additional spring stiffness terms 

stiffness matrix for beam extension 

co~posite matrix containing the free-body modal stiffness 
matrices of substructures as submatrices on the principal 
diagonal 

stiffness matrix of ith substructure regarded as a free-body 

longitudinal and lateral hub flapping spring rates 

lengths; length of i th beam element 

mass of rigid body component 

composite matrix containing free-body mass matrices of substruc
tures as submatrices on the principal diagonal 
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; 

I 

m. ,til. 
l. l. 

[u\Jt] 

[M]B+T 

[M]PYLON 

[M]RB 

[m](i) 

{p}(i) 

q 

[R] ,[T] ,[L] 

RI. 
l. 

RI 

T 

lumped mass at ith beam station 

mass matrix for beam bending 

mass matrix for beam torsior). 

mass matrix for beam extension 

composite matrix containing the free-body modal mass matrices of 
substructures as submatrices on the principal diagonal 

beam + rigid body mass matrix 

coupled bending-torsion mass matrix 

mass matrix of wing carry-thrqugh structure 

mass matrix of rotor 

maS1? matrix of pylon 

mass matrix of rigid body 

mass matrix of ith substructure regarded as a free body 

column matrix of discrete, physj,cal coordinates for ith sub
structure regarded as a free body 

generalized coordinate 

jth nodal degree of freedom 

column matrix containing the discrete, physical coordinates of 
all the substructures 

connection coordinate transformation matrices 

lumped rotary inertia at ith beam station 

rotary inertia of rigid body about its center of gravity 

kinetic energy 
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I 

T. 
1. 

[U] 

u 

U. 
1. 

v 

w 

W. 
1. 

{x} 
r 

x,y,z 

a,i3,y 

{x} 

8 

8. 
1. 

{t,J 

<1>. 
~ 

r 

kinetic energy of ith wing section 

uncoupled system modal expansion matrix containing sUbstructure 
modal subsets on principal diagonal 

extensional displacement of beam 

extensional displacement of beam at ith station 

potential energy 

bending displacement of beam 

bending displacement of beam at ith station 

column vector of junction coordinates, r = 1,2, ..• ,15 

column vector of auxiliary coordinates, s = i, ii, . . ., vii 

displacements 

connection coordinate displacements 

rotations 

connection coordinate rotat.ions 

proprotor disc coordinate vector 

bending slope of beam 

pylon tilt angle forward from vertical position 

angles; bending slope of beam at ith station 

column matrix containing all substructure modal coordinates 

twist of beam at ith station 

Physical quantities in this report are given in the International System of 

Units (SI). The calculations were made in Customary Units. 
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SUBSTRUCTURES APPROACH TO DYNANIC ANALYSIS 

Three distinct steps may be identified with dynamic analyses based on a 

substructures approach: partitioning into substructures, discretization of the 
substructures, and assembly of the mathematical models of the substructures. 
Structural partitioning consists of dividing the structure into a collection of 
smaller components or substructures which can be more easily handled. An illus-

tration of such a partitioning is depicted in Figure 1. Discretization involves 

establishing a finite-element mathematical model of each isolated substructure 

based on the known inertial and elastic properties of the substructures. Detailed 
considerations relating to finite-element modeling are available in several 

books. (See, for example, references 13 to 17.) Application of the finite-

element stiffness matrix method to each substructure regarded as a free body 

leads to a discrete mass matrix [m], a discrete stiffness matrix [k], and a' 

vector of discrete coordinates* {p} for each substructure. The free vibration 

equations of motion corresponding to each substructure can be collected into one 

partitioned diagonal matrix equation having the uncoupled form 

[m](l) {j;}l [k](l) 

[m](2) (p}2 [k)(2) 

+ 

[m](IlS) {j;} (NS) 

*Discrete coordinates define the translations and rotations at a set of discrete points. 
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where NS is equal to the number of substructures into which the structure has 

been divided. For notational convenience equation 1 is written in the compact 

form 

[M] {z} + [K] {z} = {oJ 

For the substructures shown in Figure 1 ,:f.'or example, the composite matrices 

[M] and [K] appearing in equation 2 each would have the form given diagram-

matically in Figure 2. Each block in Figure 2 represents the mass or stiffness 

matrix appropriate to a substructure. The ordering of the submatrices within 
I 

[M] and [K], though required to be consistent, is arbitrary. For component 1 
I 

1 

mode synthesis the modal equivalent of equation 2 is 

[uU] {~} + Iffi] U;} = {oJ (3) l 

where [JA] and [g(] are the composite matrices containing the substructure 

modal mass and stiffness matrices as submatrices on the principal diagonal. 

A consequence of any substructuring procedure is the introduction of coor-

dinates which are not generalized coordinates but are related by equations of 

constraint which must be imposed to restore geometric compatibility at the 

interfaces of the substructures. Since the matrices [M] and [K] in equa-

tion 2 and [vU] and [tR] in equation 3 are established on the basis of such 

a substructuring procedure, neither the coordinates forming the vector {z} nor 

those forming the vector {~} are independent. The dependency equations relat-

ing the various discrete coordinates in {z} can be put into the matrix form 

[c] {z} = {oJ (4) 
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and those relating the various modal coordinates in {~} can be put into the 

form 

[C] [U] {~} = {O} 

where [C] is a constant matrix depending solely on the geometric configuration 
of the interfaces and [U] is the uncoupled system modal expansion matrix. A 
set of independent coordinates consistent with the appropriate equations of con-
straint must be established. Usual practice when dealing with equations of 

constraint (see ref. 18, for example) is to select certain of the coordinates 

as independent coordinates and express the remaining dependent coordinates in 

terms of those which have been selected to be independent by solving the con-

straint equations as simultaneous equations. A different approach to establish-
ing independent coordinates in the presence of equations of constraint is an 

algorithm (ref. 19) which is based on solving an eigenvalue problem associated 
with a symmetric matrix formed from the coefficients of the constraint equations. 
The basis of these procedures is summarizc0 in reference 12. 

BEAM MODELING OF SUBSTRUCTURES 

General Considerations 

Since the substructures are treated as distinct and separate components in 
a substructuring methodology, their structural properties are most conveniently 
defined relative to axes local to each component. The specification of the 

mass and stiffness matrices corresponding to each of the three types of struc-

tural members employed in the beam modeling of a structure is the subject of 

the following subsections. 
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Substructures treated as beams.- The elastic properties of substructures 

treated as beams are taken to be defined in terms of the distribution of 

flexural, torsional, and extensional stiffness (EX, GJ, and AE, respectively) 

along a theoretically defined elastic axis. The continuous distortion of the 

beam in extension, torsion, and bending in two perpendicular planes is approxi-

mated by specifying appropriate deflections and rotations at a number of dis-

crete points or stations along the elastic axis of the beam. A beam segment or 

element is defined to be the length between two such stations. The stiffness 

of each element is assumed to be constant and given by the average value of the 

stiffnesses at the two adjacent stations. The distributed mass of the beam is 

discretized by replacing the distributed mass within mean locations on either 

side of the stations established by statically e~uivalent concentrated masses 

at each of the stations along the beam. In general, each mass has three com-

ponents of translational inertia and three components of rotationa,l inertia. 

Mass static unbalance about the local elastic axis is also preserved. 

The mass and stiffneiSs matrices of an unrestrained, arbitrarily oriented 

beam element are each of order 12 x 12, three translational and three rotational 

degrees of freedom being associated with each of its two ends. If the local 

coordinate axes are chosen to coincide with the principal axes of the cross 

se~tion, the 12 x 12 stiffness matrix can be expressed in terms of uncoupled 

4 x 4 and 2 x 2 submatrices located on the principal diagonal (ref. 13). A 

similar partitioning is possible for the mass matrix if the centers of gravity 

of the sectional masses are located on the elastic axis of the beam. In general, 

however, the sectional. centers of gravity of the original component will not lie 

along its elastic axis. This will lead to additional, off-diagonal, mass terms 

which will couple bending and torsion and/or bending and extensional motion. 
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It will be assumed th~t the sectional centers of gravity lie on the elastic 

axis for the present and later in the report it will be shown how to accoilllt 

for any mass coupling terms. The form of these submatrices fo+ a beam sub-

structure is shown below for the two-element beam shown in figure 3. 

Beam bending.- The stiffness matrix for vertical bending is put into the 

partitioned form: 

w 
r 
I e 
I 

I 
[A] I [B] 

I 

------~.,..-----
I 

[B]T I [C] 
I 

where, for a beam modeled using two elementf3, 

"1 
,,'.) 

' ... 

I 12E1, 12E1, 

L3 
1 

~ 1 

.12E1
1 12E11 12Er2 [A] = -~ --+--

L3 L3 
1 l 2 

12EI2 
0 -~ 

2 

11 

w 

(6) 

e 

"3 

n 
u "1 

12Er
2 (7) 

-~ "2 
2 

12E12 .-. 
~ "3 -'~--.- . -- .' 
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82 °3 
t· 

6El1 
6E1l 

7" 7" 
1 1 

i~ 
0 W1 

1" 
~ ~ 

! 
1 
r 
I: 

~ : 

[B] = 
6E1l 6El

1 
6EI2 

-- --+-
L2 L2 L2 

1 1 2 

6EI2 (8) " 

-;} W2 
~!. 

2 

6E~2 
0 - "'"2'"" 

L2 

6EI2 -7 W3 

I 2 

i 

[ 81 
6

3 J 

0 8
1 

4El1 

L1 

2EI 
[e] = 

__ 1 

L1 

4El1 4EI2 
-+-

L1 L2 

o 

The bending displacements and slopes have each been grouped together and placed 

in the order shown in equation 6 for convenience in their computer implementation. 

Extension to additional elements is apparent in the distinc:tive forms of [A]. 

[E], and [C]. The corresponding inertia matrix is given by 
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IWI w2 w3 I 6 
I 1 

62 63 

Ml 
I wI I 

M2 
I w

2 I 
M3 I w3 

[MJ B = - - ~ - - - -1-- --.- - - -- (10) 

" 
I Rll 61 
I 
I RI2 82 

I RI3 8
3 , 

where the matr-ix elements not shown are zero. Similar matrix ~xpressions des-

cribe lateral bending. 

Beam torsion: The torsional stiffness matrix is given by 

I <PI <P2 <P3] 

r 
GJ1 GJ1 

_ G:2l F L1 
-y 

1 

GJ1 
GJ1 GJ2 

I 

[K]T = - Ll 
-+- <P2 Ll L2 L2 

(11 ) 

0 
GJ2 

GJ2 
<P3 - L2 .L2 

and the torsional inertia matrix by 

j 



4>1 cf>2 4>31 

II 4>1 

[M]T = 12 4>2 
(12) 

13 ¢3 

Extp.nsion to more e1emepts is obvio~s. 

Beam extension: The stiffness matrix describing extensional (axial) 

deformation has the form 

U1 u2 u
3 

AE1 AE1 
0 

L1 - L1 u1 

[K] = 
AEl AEl AE2 AE2 (13) 

- L1 -+-
- L2 

u
2 E L1 L2 

0 
AE/2 ~2 -- T U3 II 

L c c..J 

and the corresponding inertia matrix is 

tl u
2 

u
3 

~ ul 

[M] = 
E M2 u2 (14 ) 

M' 
3 

u3 

Again, the extension to additional elements is obvious. 
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Substructures treated as springs.- In many inptances actual springs may 

comprise some of the components of a structure or members may be treated as 

one- or two.."degree-of-freedom springs depenp-ing on whether they have one end 

tied to ground or both ends free. These springs are defined by 1 x 1 or 2 x 2 

stiffness matrices having spring constants as matrix elements and associated 
.-

1 x 1 or 2 x 2 inertia matrices which are null (zero). 

When modeling short strllctural compone,nts as beams it is sometime::; con-

venient to account for their elastic characteristics in the definition of the 

substructure but to include their inertial properti~s with adjacent components. 

A massless, uniform beam segment is employed for this purpose~ Since only the 

elastic properties of this beam segment are considered it has the character of 

a spring and it seems appropriate to inGlllde it~ des~ription here. For descrip-

tive purposes this massless beam segment will be referred to as a "beam-spring" 

herein. The 12 x 12 stiffness matrix for the beam-spring having the coordinate 

ordering shown in figure 4 has the form given in fi~ure 5. The corresponding 

inertia matrix is t~en to be null. 

Substructures treated as rigid bodies.- Components such as ordnance, 
; , 

external fuel tanks, engine/nacelle combinations, etc., co.n often be treated 0.0 

rigid in dynamiC analyses. The inertia matrices of such rigid bodies with 

respect to local body axes at the cent~r of gravity have the general form 
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x y z ct y 

M x 

M y 

M • z 
[M]RB • (15 ) = --.---~---------,-~-----.--------I 

I I I I C/. 
I JQI: xy xz 
I 
I I I I S I 
I yx yy yz 
I " 
I I I I Y I 
I ZX zy zz 

where the elements not shown are zero •. The correspondin~ stiffness matrices 

are null since a rigid body has no strain en~rgy aSE?ociated with its motion. 

Oftentimes, while it may be necessary to account for the translational or 

rotational, rigid-body motion of a be~ substructure in some direction, the cor-

responding deformation can be neglected. This situation is easily accommodated 

by this rigid-body component. 

Once the mass and stiffness matrices fqr the substructures have b~en 

determined, the mass and stiffness matrices for 'th~ complete struct1,lre are given 

by the composite matrices formed by locating the substructure matrices along the 

principal diagonal. These composite matrices are denoted [M] and [K], 

respectively. F'or the "stick" model shown in ~;i.gure 6, for example, [M] and 

[K] would have the form shown in figure 7. It should be noted that the stick 

model of figure 6 and the particular freedoms indicated in figure 7 are appropri-

ate to a symmetric vibration analysis. Ea.ch block ,in figure 7 corresl(onds to a 

submatrix. The ordering of these submatrices within the larger substructure 

submatrices (indicated by braces) and the ordering of subst~ucture submatrices 
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within[M] and [K] must be compatib~e but is otherwise arbitrary. Since the 

mass and stiffness matrices for each substructure are generated independently, 

no inter-substructure coupling exists in [M] or [K]. However, intra-

substructure coupling (i.e., coupling between sub~atrices within a $ubstructure 

submatrix through off-diagonal terms) can exist. Situations in which such 

coupling arises will now be discussed. 

Specific Considerations 

If the sectional centers of gravity of the lumped masses for the beam sub-

structures do not fallon the elastic axis, there wil~ arise mass stat~c unbal-

ance terms which will couple two or more of the blocks in the mas.s matrix for 

the beam substructure. For example, if the sectipna~ centers of gravity of the 

wing or tail surfaces of the airplane in figure 6 were displaced, from their 

elastic axes in the plane of the surface the mass static unbalance terms would 

appear outside the block diagonal areas indicated in figure 7 and coup~e the 

vertical bending and torsion submatrices in the matrices fo~the wing or tail 

substructures in [M]. Mass coupling terms pf this type will 6,lso occur if a 

rigid body component is not treated as a unique substructure (as discussed 

earlier) but has its mass matrix combined with the mass ~atrix of the beam com-

ponent to which it is attached. If, for example, the main landing gear assembly 

of the aircraft shown in figure 6 were treated as a rigid mass and its inertial 

properties combined with the forward fuselage beam, the vertical bending and 

axial rigid body submatrices of the forwa'rd fuselage beam substructure 

in [M] would be coupled.* Coupling terms would ~lso arise within the vertical 

*For an anti-symmetric analysis the lateral bending and torsion blocks of 
the substructure would be coupled. 
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bending block, l~ading to a non-diagonal mass matrix for beam bending. Inter-

and intra-substructure coupling terms arise in the st~ffness matrix of the 

partitioned structure. [K], when the stiffness characteristics of springs 

which are not treated as substructures are combined with the stiffness matrices 

of members to which they are attachedrath~r than treated as separate substruc-

tures. These aspects, as well as 9thers~ are elucidated below in several 

simple qualitative examples. 

Treatment of mass static unbalance.- Consider the sectionalized 'Iving plan-

form shown in figure 8. The section (lumped) masses, bending inertias, and 

torsional inertias (about the e.g.) are denoted by M. , 
~ 

RI., and 
~ 

I., respec
l 

tively. The perpendicular distance bet'ween the se~tion c.g. locations (assumed 

to be in the wing chord plane) ~nd the wing elastic axis are denoted by e .. 
~ 

The kinetic energy of each section, T., expressed in terms of displacements 
~ 

and rotations of the elastic axis st~tion, has the form indicated at the bottom 

of figure 8, Substituting this expression into Lagrange's equation 

.£...(~_ ) _ ClV = 0 
dt oq dq 

(16) 

and performing the appropriate differentia-cions leaas to the coup.Led bending-

torsion mass matrix shown in figure 9. AssUfTling figure 8 is appropriate to the 

wing of the aircraft in figure 6, then eM] has the form shown in figure 7. 

The first two blocks of substructure #4 would be given by twice the mass matrix 

of figure 9. If the sectional center of gravities were also displaced vertically 

from the wing elastic axis (Le., not in the wing chord plane) additional coupl-

ing terms would arise and the vertical bending, torsion, and fore-and-aft 

bending blocks of substructure #4 would be coupled. 
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Al ternati ve treatment of rigid bodies. - As an alternative to treating a 

rigid body as a substructure, the inertial properties of the rigid body (total 

mass lumped at the c.g. and moments and products of ine!~ia relative to axes 

fixed in the body at the c. g.) can be combined with the inertia matrix of the 

elastic component to which it is attached. This treatment has the advantage of 

not explicitly introducing the degrees of freedom associated with the rigid 

body into the problem. 

Rigid attachment: If the rigid body is rigiQly attached to an elastic sub~ 

structure, the procedure consists in modifying the kinetic energy expression for 

the substructure to include the effects of the concentrated mass, inertia, and 

static unbalance about its point of attachment. For example, consider the 

situation depicted in figure 10. Suppose one wishes to combine the inertial 

properties of the center-line fuel tank, regarded as a rigid body, with the 

inertia matrix of the fuselage beam by regarding the tank as rigidly connected 

to the nth fuselage beam station. Assume that each fuselage mass has both 

vertical bending and longitudinal degrees of freedom. If the principal inertia 

axes of the fuel tank are parallel to the principal geometric axes of the fuse-

lage beam the kinetic energy of the tank expressed in terms of the motion at 

the nth mass station on the beam has the form given at the bottom of figure 10. 

Substituting this expression into Lagrange's equation gives the matrix of addi-

tional terms which must be added to the mass matrix (assumed to be diagonal) for 

the fuselage beam. The final mass matrix is given in figure 11. 

Flexible attachment: If the fuel tank of figure 10 were attached to the 
" 

fuselage beam through a flexible member which could be treated as a spring sub-

: . structure the inertia properties of the tank could be combined with the (null) 
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inertia matrix of the spring substructure using a procedure similar to that 

described directly above. 

Alternative treatment of springs.~ For convenience, springs can be divided 

into those which have one end tied to ground (one-degree-of-freedom springs) 

and those which have both ends "free" (two-degree-of-freedom springs) in the 

sense that while both ends are attached to some component, neither end is tied 

to ground. 

Springs having one end tied to ground: If the spring attachment point on 

the structure is on the elastic axis at a pol,.nt identified as a degree of free-

dom, the spring cOllstant(s) can be simply added to the appropriate diagonal 

term(s) of the stiffness matrix of the component. If the point of attachment is 

on the elastic axis but not at a point identified as a degree of freedom, coupling 

will occur. In the latter case it is sometimes convenient to introduce an aux-

iliary massless station at the spring attachment point. Similar considerations 

apply to the case where the spring is connected to the elastic axis through a 

rigid offset. These situations are depicted in figure l+a. The general form of 

the additional stiffness terms due to springs attached to the elastic axis at a 

station identified as a degree of freedom is indicated in figure 13a. 

Free-free springs: The spring constants of springs which have neither end 

tied to ground, such as given in figure 12Q, can be combined with the stiffness 

rnatrices of the substructures to which they are attached by writing the potential 

energy of the springs in terms of coordinates at the points of attachment. The 

general form of the additional stiffness terms due to the spring coupling of 

figure 12b is shown in figure 13b. A specific illustration of the use of this 

expedient in the realm of launch vehicle dynamics may be given with the aid of 

figure 14. 
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In dynamic analyses o~ launch vehicles the dynamic effects of sloshing 

propellants are usually included by introducing a dynamically e~uivalent mechani-

cal analogy, composed of fixed and oscillating masses connected to the tank by 

springs or pendulums, to account for each important vibration mode of the li~uid 

as a degree of freedom (ref. 20). This e~uivalent lumped-parameter mathematical 

model can then be combined with appropriate discrete-element representations for 

other components of the vehicle. A spring-mass analogy is shown in figure 14. 

One such spring-mass assembly is provided to represent the dynamic ef~ects of 

sloshing accompanying vertical bending (translation and rotation) and longitudi-

nal oscillation. For illustrative simplicity, all three sloshing masses are 

taken to be attached to the same (nth) beam station. The non-sloshing portion 

of the fluid woUld simply be combined with tht:! beam mass at the nth station 

o~ the beam. The potential energy of the springs, expressed in terms of the 

deflections of the nth beam station (Wn' en' un) and the deflections of the 

slosh masses (w, e, u), is given by V in the figure. Substituting this 

expression into Lagrange's e~uation leads to the matrix [6~] shawn in fig-

ure 15. [6K] is the matrix of spring stiffness terms which must 'be added to 

the sti~fness matrix for the beam. 

ILLUSTRATIVE EXAMPLE 

An example illustrating the manner of modeling an aircraft structure using 

beam, spring, and rigid body components, the manner of forming the substructure 

mass and stiffness matrices, and the mechanics of writing the e~uations of con-

straint ~or a structu:ral configul"ation of some engineering complexity is 

presented in this section. The subj ect configuration is the tilt-rotor VTOL 

aircraft design shOwn in figure 16. It should be emphasized that the 
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idealization of a complete aircraft as a simple "stickll model using Ii beam-type 

representation for all the structural components should be applied with engi

neering judgement. Such a simplification may be inadequate to account for the 

influence of such things as large structural cutouts in the airframe (e.g., 

doorways) and highly redundant struct,ural components (e .g., idng ca:cry-through 

box). The intent of the following example is solely to provide an illustratj,on 

of the practical aspects of the application of beam modeling which can be 

readily adapted to other configurations. 

Beam Model Representation of Aircraft 

The subject aircraft is depicted in silhouette form in figure 17 along iofith 

the idealized model established using the beam, spring, and rigid-body compo-

nents described above. The fuselage, wing, and empennage structures are 

replaced by non-uniform beams lying along the theoretical elastic axes of the 

respective components. Since the fuselage elastic axis has two changes in slope ~ 

three beams are used to represent the fuselage structure. The root ends of the 

wing and vertical tail beams are located at the periphery of fuselage cross~ 

section. The wing carry-through structure joining the root ends of the wings 

is idealized as a beam-spring, its (rigid-body) inertial properties being com-

bined with the inertia matrix of the second fuselage beam. The geometric offset 

between the second fuselage beam and the wing carry-through beam-spring repre-

sents the rusel.age depth between the fuselage elastic axis and the carry-through 

elastic axi::. The transition from the fuselage beam to the wing carry-through 

beam is made by equations of constraint to exp);'ess a rigid connection. A 

similar treatment is employed for the geometric offset between the aft fuselage 

beam and the ve:r-tical tail beam. The pylon strllcture, consisting of the 
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transmission/engine assembly, is treated as a rigid body while the mast (the 

portion of the drive shaft extending forward from the transmission) on which 

each proprotor is mounted is treated as a beam-spring. The geometric offset 

between the wing elastic axis at the wing tip and the position on the trans-

mission centerline through which the conversion axis about w'hich the pylon tilts 

passes is specified to be rigid via equations of constraint. The proprot.or 

blades are assumed to be rigid. Since the blades are rigidly attached to the 

hub in a gimbaled proprotor design (such as the design depicted in fig. 16) the 

proprotors (assumed to be non-rotating) are treated as rigid discs in the 

analysis. The hub is initially taken to be rigidly attached to the mast. How-

ever~ for illustrative purposes, the manner of treating a hub which is spring-

connected to the mast will also be desGribed. 

Since the substructures are treated as ipdependent components, their 

structural properties and deflection characteristics are most conveniently 

defined relative to axes local to each component. The existence of such local 

axes for the definition of these quantities is assumed herein. The local com-

~onent axis systems are also employed to establish the deflection compatibility 

equations at the junctions of the substructures. The set of right-handed local 

junction coordinate axes used in writing the equations of constraint is identi-

fiable by subscripts in figure 18. Each of the directions so indicated is taken 

to be positive. Vectors representing positive rotations 0'. , 
;r Yr 

(not 

shown) about xl' ' y r' z , respectively. are taken in the same direction as 
r 

vectors representing positive x r' z . 
r 

A shorthand notation for a column 

vector of these junction, or connection, coordinates is given by {x} where 
r 
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x X r 

Yr y 

z z (17) 
{X} 

r 
-r ex ex r 

8 .• 
J. 

(3 

Yr y 
r 

r ::: 1,2) ... ,15 

Several auxiliary right-handed coordinate systems ("Thich are not associated with 

degrees of freedom) are employed to facilitate writing the constraint eg.uations. 

These auxiliary coordinate systems are also shown in figure 18 and are distin-

guished by Roman numeral superscripts. A shorthand notation for a cOlwml vector 

of these auxiliary coordinates is given by {X}s where 

s s 
x x 

s y y 

s z z 
{X}s - - (18) 

s ex a 

(3s (3 

s 
Y Y 

s = i,ii, ... ,vii 

'1lhe struct UTul data for the fus~lage, wing, and empennage of this design 

were available (ref. 21) in the form of bar g:):.'aphs showing the distribution of 

mass, rotary inertia, and maSS static unbalance and CUrves showing the variation 

of El and GJ along the calculated elastic axis of each member. The wing and 

REPRO,DUCIBILITY OF TIn) 
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tail inertial data were based on cuts perpendicular to the elastic axis. Data 

for the proprotor and pylon consisted of lumped mass properties and selected 

EI/GJ characteristics. Employing these data, lumped-mass/stiffness discretiza-

tions were established for the fuselage, wing, and empennage beams. These are 

summarized in Tables ]. to 3. Inertial properties of components treated as rigid 

bodies and beam-springs are given in Table 4 while the elastic properties of 

beam-spring components are listed in T6.-ole 5. A summary of the pertinent geo-

metric quantities is contained in Table 6. Utilizing aircraft symmetry about a 

vertical plane through the center of the fuselage, explicit consideration need 

be given to oP~y one-half of the aircraft. A consequence of this separate 

treatment of the sywnetric and anti-symmetric problems is the identification of 
't ' 

displacements and rotations in each formulation which can be set to zero. It 

is convenient to distinguish the coordinates constituting the vectors {x} 
r 

from the actual nodal degrees of freedom. The nodal degrees of freedom are 

denot ed by qj herein. The column vector containing all these freedoms, {q) , 

may be directly identified with the vector {z} in equations 2 a~d 4. 

Symmetric Formulation 

For the symmetric analysis the airframe motions considered are pitch bend-

ing of the fuselage, bending and'torsion of the wing and horizqntal tail, and 

fore and aft bending of the vertical tail. The airc,raft WaS divided into 10 sub-

structures having a total of 144 degrees of freedom. The substructures employed 

and the corresPQ~ding degrees of freedom are identified in figure 19 and Table 7, 

respectively. 

Constraint~quations.- Connection of the various substructures is achieved 

through the use of equations of constraint which mathematically enforce 
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deflection compatibility at the. interfaces of the substructures. The deflection 

vectors of adj acent substructures at their point of attachment must be equal 
when expressed ;in a common local coordinate system. The common systems con-

sidered here are coincident with the local coordinate systems of the contiguous ~ 

I ~ 
~ 
~ 
~ 
M 
'1. 
i! 

sUbstructures. The deflection vectors of adjacent substructuxes at their point 
!t 
" ;-; 
1~ 

of attachment are related by a diagonally partitioned rotational transformation 
~ matrix [R]. Since small rotations can be tre~ted as vec'bors the rotations at lj 
}~ 

,t , 
1 

attachment points are related by the same matrix as the displacements. The two 
submatrices. comprising [R] are thus identj,cal and are denoted by [T]. For 

the general three-dimensional problem with six degrees of freedom associate'd 

with each station, [T) is of order 3 x 3 and [RJ is of order 6 x 6. 
In the remainder of this section figure 18 will be used in conjunction with 

auxiliary sketches, interspersed throughout the text, showing the substructure 

junctions and associated coordinate systems in order to aid in writing the 

equations of constraint. 

Beam 112 

Sketch 1.- J'unction of fuselage beam #1 and fuselage beam #2. 
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The expression relating the equality of the deflections at the ~eft end of 

beam #2 and the right end of beam #1 relative to coordinates local to beam #2 

has the form 

x I x 

y [T1J 
I 
I [0] y 

z I 
---L-_ z 

= (Rl]{X} 1 -
a I a (19 ) 

I 
S [OJ I [Tl] S 

I 
Y 2 I Y 1 

where the vectors {X}l and {X}2 are identified with degrees of freedpm 

according to 

x q24 x qll 

y 0 y 0 

z q12 z q5 
= = (20) 

a 0 a 0 

S -q18 S -Q.IO 

Y 2 0 Y 1 
0 

and the coordinate rotation matrix [T
l

] is given by 

r 
cos 61 0 -sin 81 

~lJ - 0 1 0 
(21) 

sin 61 0 cos 61 
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Since there are no displacements or rotations but of the vertical plane of 

symmetry in a symmetric formulation YI' aI' YI , Y2 , a2 , and Y2 are zero. 

The negative signs associated with and in equations 20 have been 

introduced in order to have the usual definition of positive slope. This has 

been done here merely for convenl.ence. Several sign changes of this type will 

be introduced during the course of this development for similar reasons. 

Expanding equation 19 using e~Qations 20 and 21, the resultant constraint equa-

tions at this junction are given by 

(22) 

For brevity, the remaining constraint equations to be developed will not be 

written out piecemeal in the expanded form analogous to equation 22. A summary 

of all the constraint equations in expanded form will be given in an appendix. . . 

Beam /12 

Z4~ 

Sketch 2.- Junction of fuselage beam #2 and fuselage berun #3. 
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At the junction of fuselage beams #2 and #3 

x x 
I 

y [T2] I [0] y 
I 

z I ~ 
= ---T--- (23) 

ct I ct 
j 

S [OJ 1 [T2] s 
'1 3 ' ~ y 4 

-where ..1 

j 

:It q24 

Y 0 0 

z q17 = = (24) 
ct 0 ct 0 

S -~3 f3 -q33 

3 
0 Y 4 0 

and 

cos 62 o -sin 62 

~2J = 0 1 0 

sin 82 0 cos 62 L 
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Beam 112 

Sketch 3.- Geometric offset between fuse.:j.age and wing carry-through. 

A rigid link is used to model the geometric offset between fuselage beam #2 and 

the wing carry-through beam-spring. The equations relating the deflections at 

the aft end of fuselage ,beam #2 to the deflections of the inboard end of the 

wing carry-through beam-spring are then 

where 

x 0 -1 0 , -L 
I 1 

0 0 x 

Y 1 0 0 I 0 -L 0 y 
I 1 

z 0 0 1 I 0 0 0 z 
= -----T-----

a 0 0 0 
I 

0 -1 0 a 
(26) 

S 0 0 0 I 1 0 0 S 
I 

y 3 0 0 0 I 0 0 1 Y 5 

rx 0 

r Q'42 

= q43 

l: 
ql~4 

q45 

5 q46 
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Hing root B.L. 
x '147 

Y6 
Y '148 

z '149 = (28) 

L2 
CI. '150 

x5 · S '151 ... 

Y ~ '152 
Y5 

B.L. 0 

Sketch 4.- Wine- cl.I.rry-UI!'ough str\lctu:re. 

Twisting of the wing carry-through structure was judged to be negligible in a 

symmetric mode of oscillation. Hence, the wing carry-through st~ucture is 

taken to be rigid. This condition may be specified by the constraint 

= 0 ('"'9' L..:. J 

Extensional deformations of thj s meTIlber a.r~ also a.ssumed tc· be negligj.bJe. 

Since x5 = 0 (cf. eq. 27) this implies the additional constraint 

= 0 (30) 

3:1. 
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Wing elastic axis 

Wing root BoLo 

y'5 ... t----~ 

~~y..et ell :; 0 - ruselage-wing j uneL ipn 0 

At the wing ela.stic: axis/wing carry-through elast.ic axis junction: 

(x , l 
I 

(x 

y [T3J I [OJ y 

z I 
= ----t--- (31) 

z 

a. I 

f3 [OJ I [T3J 
Y 6 

y 
T 
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where 

and 

x 

y 

z 

CI. 

S 

Y 6 

q47 

q48 

= 
q49 

<150 

<151 

~52 

cos 63 
sin 63 

o 

Wing elastic axis 

x <+88 

Y' <167 

z <153 
= 

CI. <181 

f3 -Q60 

Y ..., q74 

-s~n 6
3 o 

.j.i 
y 

cos 9 
3 o 

t:J 1 

}

' .' "-t 
x 

L iii 
~, 3. ,~y 

ii _ x _ 

L4 (CQnversion axis) 

Sketch 6.- Geometry of wing/pylon Junction. 
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The conversion axis is the Qenterline of the pylon conversion spindle which 

provides for tilting of the pylon. The geometric offset between the points of 

intersection of the wing elastic. axis and the' conversion axis with the wing tip 
\ 

rib (distance L
3

· ,in the sketch' #6) is taken to 'be rigid. The convers ion axis, 

represented by the distance Llj in sketch #6, .is also assumed tq be rigid. 

These rigidities are introduced by writing equations of constraint y,'hich relate 

coordinates {X}iii to coordinates {X}a' Tqesequence of steps in establis~

ing these equations .follow. 

An expression relating the coordinates at the last wing elastic axis 

station, {X}S' to the interm~diat() (auxiliary) coordinates {Xli is given b;r 

, i 
x x 

I 
y [T4] I [0] y 

I 
z. I z i = ------- - -- - [~\ ]{x} (34) I 
CI. 

I 
CI. 

S [0] I 
I 

[T4] s 
y 8 I y 

WLere {X}S and [T4] are given by 

x q88 

y q73 

z q59 
= 

CI. q87 

S q66 

Y 8 q80 
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and 

cos 8
3 

sip 9
3 

0 

[T4] ;::: -sin 6
S 

CQS 6
3 

0 (36) 

0 0 1 

As pointed out ear,lier, the auxiliary Gool:'dina.tes {Xli are not degrees of 

freedom qut are introduced for convert~ence in arriving a.t the equations of' con

straint. From sketch #6 above, the intermediate qoordinq,t.e vectors {xli 

and {Xlii are seen to be related as 

If the conversion axis (length Ll~ in the sketch 116) is taken to be flex-

ible and treated as a beam-spring 

{Xlii = {Q} CA 
I 

where {Q}CA is a column vector containing the degrees of' freedom associated 

I 
with the inboard end of the conyersiOl,1 axis beam-spring. The appropriate COl1-

straint equations would thep have the matrix forrr. 
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. 
Similarly, at the outbOard end of the. beam-apring represent~ng the ccnversion 

axis 

(40) 

where {Q}CA 
o 

is a column vector containing the degr~eE; oi' freedcm fo!" the out-

board end. If the conversion axis is taken as rigid and would 

not be identified with degrees of freedom but would be auxiliary coordinates 

related according to 

ii 1 0 0 I 0 0 0 x iii x 
I 

y 0 1 0 I 0 0 -L4 Y 
I 

z 0 0 J, I 0 L4 0 z 
[L ] {Xliii = -----1---· --- - 4 a. 000,100 a. 

S 0 0 0 I 0 1 P S 
I 

y 0 0 0 I 0 0 J, y 

Herein, the conversion axis is ass1.uned to be :rigid so that equation 11-1 is 

app1 icable. 

. iii 
Y 

Sketch 1. - Junction of :rotor shaft ax.i.r; and C .J:ivcr::;j.oll Hxi s. 
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The pylon structure, consisting of the transmission/engine ~ssembly, is treated 

as rigid. The intermediate coordin,ate vectpr 
i' . 

{xl ~+ at the outboard end of 

the conversion axis is related to the coordin,ate vector {XliV situated on the 

proprotor shaft axis according to 

(42 ) 

[T5] : [0] 

-'-1--
:Lv 

{x} = = 
[0] : [T5] 

where 

1 o 

= 

The intermediate coordinate v~ctor {Xliv is rel~ted to the pylon center-of-

gravity coordinate vector {X}9 by 

iv 
1 0 0 I Q L6 L5 x x 

I 
y 0 J, 0 -L6 0 0 y 

z 0 0 1 ... L5 0 0 z 
= ....... -- - ~,... - - - -.- ::; [ L5 , 6 ]{X}9 (44) 

a 0 0 0 1 0 0 

l: (3 0 0 0 0 1 a 

y 0 0 0 0 0 1 
9 
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I 

where 

x qS9 

y Q90 

z ~1 = (45) 
ex. Q92 

a 
-Q93 

y 
9 ~4, 

On the basis of considerations in the preceding subs~ction and directly above, 

{X}8 and {X}9 are thus related acco~dins to 

(46) 

The coordinate vectors {X}9 and {X}~o are related as 

0 -1 0 I 0 L7 X I -L6 
x 

1 
1 -L6 Y 0 0 'I 0 0 y 

z o 0 1 'I 0 L7 0 z 

= ____ - -1- - -' - - (liT) 

ex. 0 0 0 I 0 -1 0 Ct 

I 
s 0 0 0 ,I 1 0 0 ~ 

0 
I 

0 y 
9 

0 0 I 0 1 Y 10 

.There {X}'10' containing the degrees of freedom associated with the aft end of 

the beam-spring representing the mast, is given by 
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J 

~. 

and 

x q,95 
y q,96 

z q,97 
~ 

a. -q,98 

S -~9 

Y. 10 glOO 

{X}9 has already been given in eguf3.tiqn 45. 

Yll 

YIO 

Xu 

L f }~st 
.. __ --~+---------~--~----_r_Proprotor attachment point 

8 

-
:7{ 

xIO 

iv 
Y 

Conversion a~tuator 
attachment point 

rran&m~ssion/e~gine assemb~y 

~ ____ .. __ ~ ____ ~ ___ Conversion axis 
iv x 

Sketch 8.- Geometry of ~ylon structure. 

The pylon structure, consisting of the transmission and an underslung engine, 

(48) 

is supported by the conversion axis and the conversion actuator which attaches 
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j 

to the forward end of the transmission case, This is asswned to be rigid, The 

flexibility of the mast, the ;Palrtion of the drive shaft extending forward of 

the transmission case on which the proprotor is mounted, is represented as a 

beam-spring. However, the only elastic deformations of the mast which will be 

considered are vertical and lateral bending, motion in the other two directions 

being solely of the rigid body type. At the forward end of the mast: 

x '1101 

Y '1102 

z '1103 .., 

a -qlQ4 

8 -ClIO 5 

Y.11 '1106 

To suppress the longitudinal and torsional deformations of t~e mast whil~ allow-

ing rigid-body motions in these directions write 

= 0 

= 0 

These equations stipulate that the relative extensional and torsi9nal deforma-

tions between the ends of the mast are zero. 

The coordinates describing the proprotor disc, {X}R' are taken in the same 

sense as {X}ll' Hence 
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qlO7 

QlO8 

Q109 (51) 
{X}R = 

-QllO 

-Qlll 

'1112 

Assuming that the proprotor/hub combination is rigidly fastened to the mast, the 

constraint equations are given by 

vi x 

v 
x 

Sketch 9.- Attachment of vertical tail to fuselage beam #3. 
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At the aft end of fuselage beam #3 

and 

cos 8
2 

0 sin 82 

[T6] = 0 1 0 (55) 

-sin 6
2 0 cos e2 

Since the geometric offset between the fuselage and vertical tail elastic axes 

(distance L
9

) is taken to be rigid the intermediate coordinate vectors {xlv 

and {xf\"i are related according to 
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~~T' 
..•...•. 1" .. -

v I vi 
x I 0 0 0 -L x 

I 9 

Y 0 I 0 I L9, 0 0 y 

I 
z o 0 I 0 0 z vi (56) = - - - - -1- - - - - - [ L9 J{X} " I 0 a 0 0 0 I '0 ex 

S 0 0 0 I 0 I 0 13 I '" 
I 

ly 0 0 0 I 0 0 I Y 

At the base of the vertical tail elastic axis, {XlVi and {x}13 are related 

as 

vi 
x x 

y [T7] [OJ Y 

z z 
= ------ - [ R7 ]{X} 13 (57 ) 

ex ex 

(3 [0] [T7] S 

Y Y. 13 

where 

x 0 

y 
ql3 

z (58) = 
ex 

13 0 

;( 13 0 
". 
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and 

0 -cos8 5 sin8
5 

[T7 ] = 1 0 0 
(59) 

0 sin8
5 

cos8
5 

Assembling the series of transformation matrices indicated above the constraint 

e~uation is given by 

y vii ......... _...::J/I 

vii y 

vii 
x 

Sketch 10.- Attachment of horizontal tail to vertical tail. 

(60) 
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At the junction of the vertical and horizontal tail elastic axes, {X}14 and 

{Xlvii are related as 

vii 
x I x 

y [T8J 
I 
I [OJ Y 
I 

z I z 
[RS ] {Xlvii (61 ) = -------I -

CJ, a. 
I 

S [0] ! [TS] S . I 
.... y 14 ! Y 

where 

x °1 y Q,115 

z Q,123 = (62) 
a. -Q,120 

S 0 

.Y 14 0 

and 

1 o a 

o 

,1 
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while {Xlvii d {X} an. 15 are related according to 

vii x x 

y [0] y 

(64) I 

z z 

I "" 

y 15 

with {X}15 and (T
9

] being given by 

~l y rq141

! 
q132 

z '1124 (65) 
= 

CI. q140 

S -q128 

Y 15 q136 

and 

o 

o (66) 

o 0 1 

Equation::; 61 and. 64 imply the m~t:rix relation 
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This completes the derivation of the equations of constraint for the sym-

metric formulation. For easy reference these equations are smnmariz~d in 

Table 8. Since there are 49 constraint equations and 144 degrees of freedom, 

the matrix of coefficients of the constraint equations ([C] of eqs. 4 and 5) 

will be of order 49 x 144. 

It should be noted that one of the constraint equations involving q45 is 

redundant. (Compare eqs. 8 and 10 in Table 8.) In practice, such redund&ncies 

cannot be avoided and inadvertently appear in the equations of constraint, 

resulting in equations which are not linearly independent. Since such redun-

dancies are not usually idt"ntifiab1e by inspection. special consideration must 

. be ac'corded the constraint equations (ref. 22). The method advanced in refer-

enc~ 19 obviates the need to treat such redundant equations of constraint in 

any special ma."mer. Since this method is employed in the computational proced-

ure implemented in the SUDAN program which is used in the n~merical example, the 

redundant equation will rtot (and need not) be deleted. 

Structural properties of beam components.- The mass and stiffness matrices 

for the beams employed to represent the fuselage, wing, and empennage structures 

are established by substituting the data contained in Tables 1 to 3 into the 

appropriate matrix expressions developed earlier. The bending and torsion stiff-

ness matrices follow from equations 6 and 11) respectively, while the lumped-

mass inertia matrices 3 il1c:luding wing and tail static unbalance) assume the form 

given in figure 9. Since the g(';ueration of these matrices using the data of 

Tables 1 to 3 :U: stl:"iii.gh:I~.fol,ranl, tJ:!c fin."!.l numerical results are not shown. 

Wing carry-through: .A.lthour:h the elasticity of the wing carry-through 

structure is included, its inertitu vroperties are treated as though it were 
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rigid and combined with the inertia matrix of fuselage beam #2 by treating the 

center of gravity of the carry-through structure as rigidly attached to the last 

(right-hand) station of that beam. Assuming that the principal body axes at the 

center of gravity of the carry-through structure are parallel to axes x
3

, Y3' 

and z3' the kinetic energy of the carry-through structure in te~s of the 

motion of its poirlt of attachlnen'c is given by 

(68) 

where use has been made of the development shown in figure 10. Substituting 

equation 68 into Lagrange' 8 eClua'Uon and then malting use of the appropriate data 

in Tables 4 and 6 and equation 24 yields 

q17 q23 ~4 

154.1 0 0 

[M]C_T= 0 2.93x106 -1.81x104 (69) 

0 -1. 81x10 4 
154.1 

as the matrix of additional terms to be added to the diagonal inertia matrix of 

fuselage beam #2. 

Pylon: As indicated. ea.rlier, the rigid-body inertial properties of the 

pylon are defined relat:l. ve to a coordinate axis system at the center-of-gravi ty. 

Hence, the pylon inertia matrix follows directly from Table 4 and has the form 
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Ilb9.7 

1269.7 

1209.7 

where the minus sign associated with g93 (cf. eg. 45) has been absorbed into 

the inertia matrix. The corresponding stiffness matrix is null. 

Proprotor: The proprotor is treated as a rigid circular disc. Since the 

coordinate axes at the center of gravity of the proprotor disc are oriented 

such that they are principal axes the inertia matrix is diagonal and can be 

constructed directly from the data supplied in Table 4: 

ql07 '1108 ql09 QllO Q1U QU2 

637.4 QlO7 

617.4 Qlo8 

Ql09 (71 ) 637.4 
(M]Rotor ; 

3.22,,107 
quo 

1. 61xlO7 qUI 

1. 61"10
7 QU2 

The matrix elements not ~bovm ","re zero. The minus signs associated with gIl 0 
and gIll (cf. eg, 51) lluve l.:rel~:;:'!.L absorbed into the inertia matrix. The com-

panion stiffness matrix is null since the proprotor hub is taken to be rigidly 

l 
J 
1 
1 
1 

l 
'1 

I 
1 
] 
.l 
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attached to the mast. This matrix would not be null if the hub were spring-

connected to the mast, as will be demonstrated below. 

structural properties of spring components.-

Wing carry-through: Since has been set to zero (cf. eq. 27) the beam-

spring stiffness matrix is of order 11 x 11 and is given by that in figure 5 

with the first row and column deleted. This matrix is shown in figure 20 along 

with the ordering of the degrees of freedom. Tables 5 and 6 contain the neces-

sary data to evaluate the terms of the matrix. Constraint equations 29 and 30 

in conjunction with the 11 x 11 stiffness ma.trix given in figure 20 imply that 

twisting and both the elastic and rigid-body axial motions of the beam-spring 

representing the wing carry-through structur\;! are removed as degrees of freedom, 

in accordance with earlier discussions. 

Pylon mast: The stiffness matrix of the pylon mast beam-spring is given 

in figure 21 along with the ordering of the desrees of freedom. Again, Tables 5 

and 6 contain the data required to evaluate the individual terms of the matr~x. 

Some comments are included here to indicate the manner of treating a 

proprotor/hub assembly which is connected to the mast by springs. For illustra-

tive purposes assume that the proprotor/hub combination is allowed to flap 

longitudinally and laterally with respect to the mast, the flapping motion being 

restrained by rotational springs Kb ' respectively. 
1 

Since longi-

tudinal and lateral angular motions of the proprotor disc relative to the mast 

are permitted constraint equations 39 and 40 in Table 8 must be deleted. Recall-

ing the treatment of springs in the spring-mass analogy employed earlier to 

illustrate the manner of including fuel slosh in a launch vehicle vibration 

analysis, an expression for the strain energy stored in the springs is required. 

The appropriate expression here is given by 
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Substituting equation 72 into Lagrange's ~~qa~ion th~n leads to 

qlO5 q106 qlll qlli21 

K 0 .. K q10~ al a1 

0 ~l 0 qlOp 
[LiKJ = (73) 

-~ 0 K 0 Q.lll a
l &1 

0 -~ 0 ~l 11112 
1 

as the matrix of spring terms to be adde~ to t~e partitioned system s~iffness 

matrix, [K]. For the coord~nate numbering spown in fi~ure 19, it is to be 

noted that the off-diagonal terms in equation 7~ will couple the stiffness 

matrices for the pylon mast and proprotor ~ubstru~~ures. 

Anti-Symmetric Formijlation 

The considerations related to the symmetric formulation have illustrated 

the manner of establishing substructure mass and stiffness matrices and the 

mechanics of setting do~n equations of constraint. A corresponding d~rivation 

for the anti-symmetric case would, for the mpst part, be repetitious. For this 

reason a summary-type treatment, listing only f~nal results which are different 

from the symmetric case, is giyen here. 
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For the anti-symmetric analysis· the airframe motions considered are side 

bending and torsion of the fuselage and vertical tail and bending and torsion 

of the wing and horizontal tail. The .same substructures and stations used in 

the symmetric analysis are employed here, leading to a problem having 165 degrees 

of freedom. The substructures are "identified in figure 22 and the pertinent 

degrees of freedom in Table 9. 

Constraint equations.- For anti-symmetric motions of the airframe the twist 

of the wing carry-through structure was judged to be important and the beam-

spring representing it now also being permitted fre!2dom in twist. l\.lthough 

e1:tensional deformations of the wing carry.,..through are still negligible the 

ability to translate axially as rigid body must be provided for. The final 

constraint equations, 48 in number, are summarized in Table 10. The matrix of 

coefficients of the constraint equations ([C] of eqs. 4 and 5) is thus of 

order 48 x 165. 

structural proverties of beam components.- As in the symmetric case the 

mass and stiffness matrices fqr the beams employed to represent the fuselage, 

wing, and empennage structures are established by substituting the data in 

Tables 1 to 3 into the appropriate'matrix expressions developed earlier. Agai11, 

because the generation of these matrices is straightforvrard the final numerical 

results are not shown. 

structural properties of rigid body components.-

Wing carry-through: Here the vector {X}3 is given by 
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0 

~l 
0 

(74) {X}3 = 
q33 

0 

~7 

so that 

~l 9.27 q33 

154.1 4 0 -1.81XlO qel 

[M]C_T = 0 0 0 q27 (75) 

4 
0 2.11xI06 ",,1.81XlO 

q33 

Pylo",: The pylon inert:i,a matrix is identical to that given by equation 70 

for the symmetric case, with th~ degr~es of fr€f!;!~om shown ther~, q89 thro~gh 

q94' replaced by qlo6 through qlll' respe~tivelY. 

Proprotor: The proprotor inertia matrix is ,identical to that giveq py 

equation 71 for the symmetric case, with the qegrees of freedom spown t~re, 

Ql07 through Ql12' replaced by Q124 through q129' respectively. 

Structural properties of spring components.-

Wing carry-through: Since axial rigid-pody motion of the carry-through is 
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included in the anti-symmetric formluation the beam-spring representing it h~s 

a stiffness matrix of order 12 x 12. Its form is the same as that given in 

figure 21. However, the degrees of freedom shown there, q95 through qlo6' 

are replaced by q58 through q69' respectively. Tables 5 and 6 contain the 

data needed to evaluate the individual terms of ~he matrix. 

Pylon mast: The pylon mast beam-spring stiffness matrix is also given by 

figure 21 if are replace<;1 by through Q123' respec-

ti vely. Again Tables 5 and 6 provid~ the data required, to evaluate the j.ndi·· 

vidual terms of the matrix. 

The direct method of analysis ~s embodied in the SUDAN program was used to 

calculate the symmetric FIond anti ... symmetric free-free modes and f;l.·equenc-ies for 

several pylon tilt angles. A summary of these frequencies for the first five 

elastic modes is given in Table 11. The first five symmetric modes for the case 

in which the pylons are t'nted fully forward (ec = 900 ) are sketched in fig-

ure 23. For reasons of both pictorial clarit]{ al}d convenience i the changes in 

slope of thfl fURAl age plastiC' B.X1B and. the off::;ets of the w~ng and vertical tail 

elastic axes from "the fuselage elastic axis are not shown in the sketches. Tt 

should also be note~ that while all de~~ees of freedom contribute to a coupled 

mode shape the shape is oftentimes dictated by the motion in a relatively few 

of the degrees of freedom; Such is the case he~e and oP~y the predominant 

motion is indicated in the mode ~hape sketches given in figure 23. 
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CONCLUSIONS 

The manner of representing a flight vehicle structure as an assembly of 
beam, spring, and rigid-body components for vibration analysis has been des-
cribed. The development was couched in te~s pf a substr~ctures methodology 
which is based on the finite-element stiffness method. Basic concepts were ; i 

first introduced through several specific q~alitat~ve examples which ~PGluded 
the modeling of wing structures, external stores, pylons supporting engines or 
external stores, and sprung masses associated witp launch vehicle fuel slosh. 
A detailed numerical example consisting of a tilt-rotor VTOL aircraft was also 
given to provide an illustratiQn of the procedures fOr modeling a structure, the 
manner of forming the substructure mass and stiffness ~atrices, and the ~echanics 
of writing the equations of constraint which enforce deflection cQmpatibility at 
the junctions of the substructures. Since many structures, or selected compo-
nents, can be represented in this manner for viQration an~lysis, the modeling 
concepts described and their applications in the numerical ex~ple shown ~ho~d 
prove generally useful to the dynamicist. 
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TABLE 1.- FUSELAGE DISCRETIZATION 

Local 
--""~--~ -- -~-- - -L-~ 

Station Coordinate 
Mass 1 T~~:~~~ J Ve~~ical J__ __ S!~:_ GJ Position 

(em) (kg) I_(kg-em.~_) __ 1 _5~:e~=~._J.~ (kN-em2) (kN-em2) 

Beam #1 

1 0.0 18.2 5.65 x 105 9.75 x 107 8.61 x 107 lO.33 x 107 
2 88.9 21.0 l1.30 22.96 21.52 24.11 
3 152.4 52.5 45.19 45.92 43.05 57.40 
4 215.9 252.2 282.46 91.83 80.35 114.79 
5 304.8 378.3 175.12 ------

Beam #2 

1 0.0 378.3 175.12 x 105 229.58 x 107 l29.14 x 107 200.89 x 107 
2 1-01. 6 924.7 420.30 390.29 21-8.10 246.80 
3 190.5 357.2 271.16 459.17 269.76 252.,4 
4 254.0 42.0 124.28 416.39 2a6.98 252.54 
5 304.B l68.1 259.86 482.l3 29.8.46 254.54 
6 355.6 3..47.1 175.12 ---- --... _-- -----

Beam #3 

1 0.0 147.1 175.12 x 105 482.13 -x 101 299.89 x 107 252.54 x 107 -
2 88.9 328.9 412.39 476.39 298.1.~6 252.54 
3 160.0 507.9 429.34 - 418.99 252.54 252.54 
4 266.7 1849.3 463.24 258.28 172.19 232.45 
5 381.0 447.6 463.2"4 129.14 114.79 l72.19 
6 471.5 126.1 101.68 86.09 80.35 114.79 
7 596.9 61.3 67.79 51.66 51.08 74.61 
e 729.0 105.l 45.19 ------ ------ ------

- -- ---------

':otal. r'1ass: Beam #1 = 722.2 kg, Beam #2 = 2017.4 kg~ Beam #3 = 3573.3 kg 
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TABLE 2.- WING DISCRETIZATION 

Station 
Position I n ance About e.a. e lC 

co~~~~ateTNas~ T~i~:~~:- '~-~:~~~I' V ~;-al--"-'-
I-----+-~_( c~m_)~ I (kg) T (kg-C~ (~g:~~~)=L(~~~~m2)--l_ (~ 

I I -2304. ~o x 105 4.30 x 108 10. 1 0.0 154.3 

2 86.4 123.5 

3 190.5 90·7 
4 317.5 113.5 

5 439.4 62.5 
6 530.9 259.2 

7 563.9 0.0 

Total lJIass = 803.6 kg 

-2882. I 4.68 3.56 8. 

-2188. 2.78 

-2478. 2.61 

-2882. 2.84 

-4146. 5.94 

o. 0.00 

2.64 

1.72 

1.32' 

1.19 

6. 

5.1 

4. 
4. 

*Negative static unbalance indicates that section center of gravity 
elastic axis. 

---- ... ~---- .. ----.... ---,----, 

'" "" 

--

I 
EI 

GJ hord 

-cm2 ) (k..W-cm2 ) 

4 x 108 
3.53 x 108 

a 2.98 

9 2.35 

6 1.72 

0 1.32 

8 1.20 

- ----
~'-' 
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TABLE 3.- EMPENNAGE DISCRETIZATION 

I Local 
Static 

Torsional EI EI Station 1 Coordinate Mass 
Unbalance* 

Inertia 
Side Chord 

GJ 
Position About e.a. 

(cm) I (kg) (kg-em) (kg-cm2 ) (kN-cn:2 ) (kN-cm2 ) (kN-cm2 ) 
; 

Vertical 
7ail 

t; 
5.02 x 107 4.36 x 108 .., . 

1 C.O 15.1 751. 7 1.58 x 10'- 3.73 X 10' I 
" 1 92.4 22.9 622.8 1.23 1.86 2.30 c. I 2.27 
3 

I 
181.6 21.8 564.9 .98 .57 .98 1.15 

'+ 274.3 20.4 467.1 .72 .29 .52 .52 
c:; 3'~B. 3 14.6 353.6 .49 ---- ---- ----" 

?ctal !I~ass = 94.9 kg 

Horizontal 
':i:ail 

1 0.0 0.0 0.0 0.0 7 .86 x 108 1.15 x 107 1.29 x 10 
2 88.9 0.0 I 0.0 0.0 c:; .57 .43 .79 
3 165.1 63.0 0.0 .25 x 10" .34 .21 .29 
4 251..0 0.0 I 0.0 0.0 ---- ---- ----

Total Mass = 63.0 kg 

*Posit-ive static unbala:1ce indicates that section canter of gravity is forward of section 
elastic axis. 
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TABLE 4.- INERTIAL PROPERTIES OF COMPONENTS TREAT~D AS RIGID 

PROPROTOR 

Mass 

Flapping Inertia 

LongitudinAl 

I.Jateral 

Polar Inertia 

PYLOI) 

Mass 

C. G. Inertia 

Pitch 

Roll 

Yaw 

WING CARRY-THROUGH '1< 

Mass 

C. G. Inertia 

Pitch 

Roll 

YaTtT 

* 

637.4 kg 

1.6087 x 107 kg_cm2 

1.6087 x 107 kg_cm2 

3.2174 x 107 kg_cm2 

1269.7 kg 

7.852~ x 106 kg_cm2 

LI.2934 x 106 kg_cm2 

6.9146 x 106 kg~cm2 

154.1 kg 

8.1936 x 105 kg_cm2 

Not availa.ble 

Not available 

Treated as rigid inertially but not elastically 

61 
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TABLE 5. ,- STIFFNESS PROPERTIES OF COMPONENTS TREATED AS SPRINGS 

.!:G~ CarFl-Thr92:!:sE.* 

EI vertica.l = 4,.5056 x 108 kN-cm2 

EI 'lateral "'" 10.5898 x 108 kN_cm2 

GJ = 8 2 3.6733 x 10 kN-cm 

P;x:lon Ma.st t 

EI 7.1745 x 107 kN-cm 2 = vertical 

EI 7.1745 x 107 kN-cm 2 = lateral 

*AE is taken to be infinite 

t 
Both AE and GJ are taken to be infinite 
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TABLE 6.- GEOMETRIC QUANTITIES EMPLOYED IN VIBRATION ANALYSIS 

ANGLES 

e 1 

62 

6.., 
.:>. 

84 

6
5 

66 

LENGTHS 

L1 

L2 

L3 

L4 

L5 

L 6 

L7 

L8 

L9 

9.50 (.1658 Radians) 

5.60 
(.09774 Radians) 

4.50 (.07854 Radians) 

Varied 

250 (.4363 Radians) 

150 (.2618 Radians) 

117.1 em 

106.7 em 

43.2 em 

43.2 em 

79.2 em 

48.3 em 

60.4 em 

71.1 em 

38.1 em 

63 
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TABLE 7.- IDENTIFICATION OF DEGREES OF FREEDOM FOR 

SYMMETRIC VIBRATION ANALYSIS 

FUSELAGE 

Beam #1 

Beam #2 

q12 - q17 

ql8 - ~3 

q24 

Beam #3 

q25 - q32 

q33 - q40 

q41 

Wing Carry-Through Structure 

WING 

Displs. ~ 

Slopes , 

Axial rigid body 

Displs. ) 

Slopes f 
Axial rigid body 

DiSPIS,} 

Slopes 

Axial rigid body 

DiSPlS,} 

Slopes 

Vertical Bending 

Vertical Bending 

Vertical Bending 

Vertical Bending 

DiSPlS,} 

Slopes 
Fore and Aft Bending 

Torsion 

Axial rigid boely 

6l.J. 

., ,'~. ", " 
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TABLE 7.- Concluded. 

!?YLON 
• Transmission/Engine Assembly 

Mast 

PROPROTOR 

EMPENNAGE 

Vertical Tail 

qU3 - qllT 

qU8 - ql22 

ql23 

Hori.zontal Tail 

ql24 - ql27 

q128 - q13l 

11132 - q135 

q136 - ql39 

q140 - ql43 

ql44 

Rigid Body 'l'ranslations and Rotations 

Rigid Body Transla.tions and Rotations 

Displs } 

Slopes 

Axial rigid body 

DiSPlS.} 

Slopes 

Displs. } 

Slopes 

'l'orsion 

Axial rigid body 

Fore and Aft Bending 

Vertical Bending 

Fore and Aft Bending 

1 



TABLE 8. - CONSTRAINT EQUATIONS FOR SYNr.ffi'I'RIC VIBRATION ANALYSIS 

1. <111 cos 81 - <15 sin 81 - ~4 = 0 

2. <111 sin 81 + <15 cos 81 <112 = 0 

3. 

4. 

5. 

-<110 + 

<141 cos 

<l18 = 0 

8 -2 q25 

6. -q33 + <123 = 0 

sin 8" - q24 -- 0 
l"-

eos 80 - Q ::: 0 
<- """17 

7. <l42 + Ll <ll:h + ~4 '= 0 

8. -L <1' :: 0 1 45 

<l43 - <l17 
;;;; 0 

10. -<145 = 0 

1l. <144 + <l23 = 0 

12. <146 = 0 

13. <150 - <144 = 0 

Q47 = 0 

15. 

16. 

<188 cos 8
3 - <167 

<l88 sin 83 + <l67 

17. <153 - q44 =: 0 

sin 8
3 <147 = 0 

cos °3 <148 = 0 

18. <181 cos 83 + q60 sin 03 ~ q50 ~ 0 

19, <181 sin 83 - <160 cos 63 - <151 = 0 

20. <174 - <152 = 0 

21. <lS9 cos 83 + ~)O sin 8~s ~os Ei4 - q91 sin 83 sin 84 + q92 [15 sin 83 sin 84, 

- 16 sin 83 ccs 84) - q~; rJ6 cos 83 - sin 84 (14 sin 83 + L3 cos 83)] 

+ ~4 f5 cos 83 - cos C4 (L1t sin 93 + L3 cos 83)] - QS8 = 0 
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TABLE 8.- Continued 

22. -~89 sin 63 + ~O cos 63 cos 64 - ~91 cos 63 sin 64 + ~92[L5 sin 64 cos 63 

- L6 cos 63 cos 6~ - ~3 [-L6 sin 63 + sin 64 (L3 sin 63 - L4 cos 63)] 

+ ~4 [-L5 sin 63 + cos 64 (L3 sin 63 - L4 cos 63)] - ~73 = 0 

23. ~92 cos 63 - ~93 sin 93 cos 64 - ~94 sin 83 sin 84 - ~87 = 0 

24. ~O sin 84 + ~91 cos 84 + q92 [L3 - L5 cos 6)t - L6 sin 8~ 

- q93 L4 cos 64 - q94 L4 sin 84 - q59 = 0 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

35. 

36. 

37. 

38. 

39. 

40. 

~92 sin 63 + ~93 cos 63 cos 84 + ~94 cos 83 sin 64 - ~66 = 0 

-q93 sin 64 + q94 cos 84 - ~80 = 0 

-~96 + 1'7 qlOO - q89 + L6 q98 = 0 

q95 - ~90 + L6 ~99 = 0 

~7- L7 q99 - q91 = 

~99 - ~92 = 0 

-q98 + ~93 = 0 

~lOO - q94 = 0 

~lOl - q95 = 0 

~l07 - qlOl = 0 

ql08 - ~l02 = 0 

ql09 - ql03 = 0 

-ql10 + qlo4 = 0 

-qlll + ql05 = 0 

0 

41. ql:i3 [-cos 82 cos 85 + Gin 82 sin 85] + q123 [cos 82 sin 85 

+ sin 62 cos 85] + ql18 L9 cos 82 - q41 = 0 

I 
j 

1 

I 
1 
j , 
l 

1 

1 
1 , 
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TABLE 8.- Concluded 

42. ql13 ~in 82 cos 85 + sin 8
5 

cos 82] + q123 [-sin 82 sin 8
5 

+ cos 82 cos 85] - ql18 L9 sin 82 - q32 = 0 

43. -ql18 + Q40 = 0 

~4. (,1144 cos 86 ... q132 sin 86 = 0 

45. -q144 cos 85 sin 86 + q132 cos 85 cos 86 + q124 sin 8
5 

- ql15 = 0 

46. q144 sin 85 sin 06 - <1132 ;Jin e5 cos 86 + q124 cos 8
5 

- q123 = 0 

In. q140 cos 86 - q12A 'sin 8 t ... C!12J ~ 0 

48. 

68 

sin 8 = 0 5 
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TABLE 9.- IDENTIFICATION OF DEGREES OF FREEDOM FOR 

ANTI-SYMMETRIC VIBRATION Al~ALYSIS 

FUSELAGE 

Beam #1 

<1 -1 <15 

<16 - <110 

<111 - <115 

Beam #2 

<11 6 - <121 

<122 - <127 

<128 - <133 

Beam #3 

<134 - <141 

<142 - <149 

'150 - <157 

Wing Carry-Through 

'158 - '169 

WING 

'170 - '176 

'177 - <183 

'184 - '190 

'191 - ~7 

<198 - '1lOl} 

<1105 

Structure 

Displs. } 

Slopes 

Torsion 

Displs. } 

Slopes 

Torsion 

Displs. } 

Slopes 

Torsion 

Displs. } 

Slopes 

} 
Displs. 

Slopes 

Torsion 

Axial rigid body 

Side Bending 

Side Bending 

Side Bending 

Vertical Bendiqg 

Fore and Aft Bending 
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TABLE 9.- Concluded 

PYLON 

Transmisr>ion/Engi:le Assembly 

Mast 

<1112 - <1123 

PROPROTOR 

<1124 - q129 

EMPENNAGE 

Vertical Tail 

<1130 - <1134 

q135 - <1139 

q140 <1144 

Horizontal Tail 

<1145 - q148 

q149 - q152 

<1153 - q156 

<1157 - <11 60 

<11 61 - <1164 

Rigid Body Translations and Rotations 

Rigid Body Translations and Rotations 

Displs. } 

Slopes 

Torsion 

Displs. 

} Slopes 

Displs. 

} Slopes 

Torsion 

Axial rigid body 

'TO 

Side Bending 

Vertical Bending 

Fore and Aft Bending 

"' _.".~_.=".~ .. " __ .... _.~ .. 'r,~~.£ ... c .. ,~ .. ,"'c.' __ .. ~,_,._ .. _._~:"~-,~~~,~~~~, _._::-···-·~~~·-L"_ . ..:_"~ 
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16. 

17. 

18. 

19. 

20. 
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TABLE 10. - CONSTRAINT EQUATIONS FOR AN'I'I-SYMMJ!!THIC VIBRATION ANALYSIS 

q5 - q16 = 0 

q15 cos 61 - ql0 sin 81 - ~8 = 0 

q15 sin 81 + Ql0 cos 81 - q22 ~ 0 

q34 - q21 = 0 

q50 cos 82 - Q42 sin 82 - q33 = 0 

q50 sin 82 + q42 cos 82 - ~7 = 0 

q59 + Ll Q61 = 0 

q58 - Ll Q62 - q21 = 0 

q60 = 0 

q62 + q33 = 0 

q61 = 0 

q63 - q27 = 0 

q64 - q58 = 0 

cos 

ql05 sin 83 + q84 cos 83 - q65 ~ 0 

q70 - q66 = 0 

~8 cos 63 + q77 sin 83 - q67 = 0 

q98 sin 83 - q77 cos 83 q68 = 0 

q91 - q69 = 0 

ql06 cos 83 + Ql07 sin 83 cos 84 - ql08 sin 83 sin 84 
+ ql09 ~5 sin 83 sin 84 - L6 sin 8~ cos 64] - quo f6 cos 83 

- sin 84 (L4 sin 83 + L3 cos 83)] + Qll:}. [L5 cos 83 - cos 84 (L4 sin 8
3 

+ L3 cos 63)J - ql05 = 0 

71 
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TABLE 10.- Continued 

21. -ql06 sin 83 + ql07 cos 83 cos 84 - ql08 cos 83 sin 84 

+ ql09 [L5 sin 84 cos 83 - L6 cos 83 cos 84] ,.. qllO[-L6 sin 83 

+ sin 84(L3 sin 83 - L4 cos 83)] + qlll [-L5 ~in 83 + cos 84(L3 sin 83 

- L4 cos 83)] - q90 = 0 

22. ql09 cos 83 - qllO sin 83 cos 64 - qlll sin 83 sin 84 - ql04 = 0 

23. ql07 sin 84 + ql08 cos 84 + ql09 [L3 - L5 cos 84 - L6 sin 8~ 

- qllO L4 cos 84 - qlll L4 sin 84 - q76 ~ 0 

24. -Q109 sin 83 - qllO cos 83 cos 84 - qlll cos 83 sin 84 + q83 = 0 

25. -QllO sin 84 + qlll cos 84 - ~7 = 0 

26. -Q1l3 + L7 ql17 - Ql06 + L6 Ql15 = 0 

27. Ql12 - Q107 + L6 Ql16 = 0 

28. Ql14 - L7 Ql16 - Q108 = 0 

29. Ql16 - ql09 = 0 

30. -Ql15 + qllO = 0 

31. Ql17 - qlll = 0 

32. <l118 - ql12 :: 0 

33. ql21·· ql15 = 0 

34. q124 - ql18 = 0 

35. q125 - ql14 = 0 

36. q126 - q120 = 0 

37· -q127 + q121 = 0 

38. -q128 + Q122 = 0 

39. q129 - q123 = 0 

40. q130 - q135 L9 cos 85 + q140 L9 sin 85 - q41 = 0 
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TABLE 10.- Concluded 

41. q135 [-cos 62 cos 65 + sin 62 sin 65] + q140 ~oS 62 sin 6
5 

+ sin 62 cos 65] - q57 = 0 

42. q135 [sin 62 cos 65 + cos 62 sin 65] + q140 [-sin 62 sin 65 

+ cos 62 cos 65] - q49 = 0 

43. q165 cos 66 + q153 sin 66 - q132 = 0 

44. -q165 cos 65 sin 66 + q153 co~ 85 cos 66 + q145 sin 65 = 0 

45. q165 sin 65 sin 66' - q153 sin 65 qoS 66 + ~145 cos 85 = 0 

46. q161 cos 66 - q149 sin 66 = 0 

47. -q161 cos 65 sin 66 .- q149 cos 65 cos 66 + q157 sin 65 - q137 = 0 

48. q161 sin 65 sin 86 + q149 sin 65 90S ~6 + q157 cos 65 - q142 = 0 
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TABLE 11.- FREE-FREE ELASTIC MODE FREQUENCIES OF MODEL 266 TILT-ROTOR (Hz) 

Symmetric Mode Frequencies 

~ 0° 15° 30° 45° 60° 75° 90° 

1 2.114 2.138 2.168 2.199 2.224 2.235 2.229 
2 3.473 3.488 3.487 3.470 J.304 3.399 3.360 
3 5.727 5.698 5.661 5.628 5.610 5.617 5.644 
4 7.235 7.378 7.646 8.021 8.694 8.895 9.016 
5 11.490 11.509 11.522 11.523 10.802 11.046 10.661 

. ----- '------ -.. -- L.....-- _____ ~_ 

Anti-symmetric Mode Frequencies 

~ 0° 15° 30° 45° 60° 75° 90° 

1 3.882 3.882 3.884 3.883 3.875 3.856 3.825 
2 4.602 4.699 4.801 4.891 4.936 4.906 4.818 
3 5.702 5.645 5.569 5.492 5.446 5.464 5.528 
4 7.256 7.347 7.373 7.339 7.294 7.251 7.214 
5 7.633 7.624 7.775 8.073 8.456 8.860 9.136 
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Figure 1.- Partitioning an aircraft structure into substructur~s. 

75 

I 



_,"~ ...... _~~m.~"·~.n ...... "~."::~~---:_"",,,!~~_·""_~_"~_·_~· ____ ~ , 
... ~--~--,., 

,... -

Fuselage 

Wing 

Engine/ 
pylon 

\, 

~ '>' • ~ 

Horizontal 
tail 

Vertical 
tail/ 
engine 

L ..J 

Figure 2.- Block diagonal composition of [M] and [K] for aircraft of figure 1. 
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Figure 4.- Sign convention for end deflectipns of massl~ss uniform 
beam segment (beam-spring). 
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Figure 6. - "Stick" model of transport airc;raft for symmetric 
vibration analysis. 
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Figure 9.- Coupled bending-torsion mass matrix corresponding to the wing of figure 8. 
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Figure 23.- First five symmetric elastic modes of Model 266 tilt-rotor (Be = 900
). 
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