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PREFACE

’ This report describes part of a comprehensive and continuing pro~
gram of research concerned with advancing the state-of-the-art in re-
mote sensing of the environment from aircraft and satellites. The
research is being carried out for NASA's Lyndon B. Johnson Space Center,
ﬁouston, Texas, by the Environmental Research Institute of Michigan
(ERIM). The basic objective of this multidisciplinary program is to
develop remote sensing as a practical tool to provide the planner and
decision-maker with exteusive information quickly and economically.
Timely informaticn obtained by remote sensing can be important
to such people as the farmer, the city planner, the conservationist,
and others concerned with problems such as crop yield and disease, ur-
ban land studies and development, water pollution, and forest management.
The scope of our program includes:
1. extending the understanding of basic processes
2. discovering new applicatious, developing advanced remote-
sensing systems, and improving automatic data processing to
extract information in a useful form
3. assisting in data collection, processing, analysis, and ground-
truth verification.
The research described herein was performed under NASA Contract
No. NAS9-14123, Task 16, and covers the period from 15 May 1975 through
14 May 1976. Andrew Potter (TF3) was the NASA Contract Technical
Monitor. The program was directed by Richard R. Legault, Vice President
of ERIM and Head of the Infrared and Optics Division, Jon D. Erickson,
‘ ﬁead of the Information and Analysis Department, and Richard F. Nalepka,
\Principal Investigator and Head of the Multispectral Analysis Section,
The authors wish to acknowledge the technical direction and
assistance provided by R. F. Nalepka and W. A, Malila. Peter

Lambeck was responsiblie for the calculations necessary for a realistic
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simulation of spatially degraded data. Wyman Richardson provided
cdmputer programming support and technical consultation. Finally,
E&win P. F. Kan of Lockheed Electronics Company, Inc., Houston, Texas,
wés very helpful in providing the digital data and ground truth infor-

mation required for this study. The ERIM number of this report is

© 109600~71-F.
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1
SUMMARY

The objective of this study was to determine the influence of
multispectral scanner (MSS) spatial resolution on the classification
of forest features at levels of detail appropriate to nationwide forest
surveys and detailed in-place inventories. Such levels of detail or
hierarchies might include vegefation unics differentiated on the basis
of physiognomy, forest cover types, and forest stand condition classes.

Our general approach was to acquire MSS data sets of varying spa-
tail resolution such that the minimum area resolved ranged from indi-
vidual components of forest stands to large areas apprcaching the

resolution of the present Landsat systems. We desired the results of

N
b

the study to be independent of complicating factors that might have

been caused by temporal effects, differing signal-to-noise properties,

differing number and placement of spectral bands, etc. Therefore, a

. single aircraft data set of inherent (2 meters)2 resnlution was

| degraded in successive steps to simulate 5 additional data sets .

having (4)2, (8)2, (16)2, (32)2, and (64 meters)2 spatial resolutions.

To degrade resolution as realistically as possible, we implemented an

algorithm that utilized typical MSS optics and electronics properties in

the form of two spatial weighting functions. System noise inherent to

the (2 meters)2 data was preserved in each simulated data set by insert-

ing a quantity of randomly generated high-frequency noise sufficient

to equal the amount of noise reduction caused by the weighting functions.
The MSS data set included 11 spectral channels collected from an

altitude of 2000 feet. The data were collected as part of NASA Mission

;_ No. 290 on 20 November 1974 over the Conroe Uanit of the Sam Houston

| National Forest in east Texas. Two segments of data providing ground

coverage of 2 km x 1,25 km (approximately 1 million resolution elements)
? : and 2.5 km x 1.25 km (approximately 1.2 million elements) were utilized
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for the study. Forest features on one data segment were grouped into

FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSIYY OF MICHIGAN

four hierarchies of generally decreasing detail that included condition
class (cover types differentiated into stands on the basis of age and
size class), cover type (areas having similar species composition),
growth stage (areas having similar age and size class), and physiognomy
(areas having similar vegetative end community structure as determined
by the major characteristics of its plants). Features on the second
data segment were grouped into the two hierarchies of condition class
and physiognomy. v

Prior to degrading spatial resolution, data quality was checked
by determining dynamic range, high and low frequency noise, and varia-
tions in signal associated with scan angle. Variation in low frequency
noise (observed as a shift in mean signal value along the flightline)
necessitated a preprocessing correction to the data that incorporated
a dynamic clamp algorithm. Assessment of signal variations associated
with scan angle showed a lack of strong variation in most channels.

We processed all data sets of varying resolution with a supervised
classification procedure that utilizes signatures extracted from train-
ing areas. Training areas for each forest feature covered equivalent
ground areas for each case of spatial resolution.

For each case of spatial resolution, we classified forest features
using a linear decision rule and all 11 spectral channels. For selected
cases of spatial resolution, we performed additional classifications
that included:

- the use of a single~element quadratic and four multi~element de«

cision rules for classifying (32 meters)2 data

- the use of a subset of 5 spectral channels most similar to the

proposed Thematic Mapper channéls for classifying (32)2 and
(64 meters)2 data with all above mentioned decision rules.
Classification accurgcies for each hierarchy of forest features

were determined for each case of spatial resolution. Accuracies were
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determined for training sets, total feature areas with boundary ele-
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ments excluded (boundary exclusive test sets), and feature areas includ-
ing boundary elements (boundary inclusive test sets). Area proportion
estimates by feature were determined for the physiognomy hierarchy of
each data segment., Accuracies were determined only for the region of
data located within 30° of the flightline nadir in order to avoid

large MSS view angles.

Major conclusions reached by this study are:

1. Classification accuracy improved, in general, as spatial resolu-
tion was degraded, when conventional single-element multispectral
processing procedures were used.

2. A standard processing approach which uses a constant decision
rejection threshold level can result in large numbers of
unclassified elements for coarser resolutions. For this
study, possibly due to the great increase in unclassified
elements at (64 meters)z, best results were obtained with a
spatial resoclution of (32 meters)z. Perhaps the standard

approach for setting rejection levels should be re-examined.

3. More general (aggregated) forest features had substantially
higher classification accuracies than the more specific

features.

4. The impact of boundary elements on feature classification
was shown to cauéé increasingly reduced accuracies for
boundary inclusive test sets relative to boundary exclusive
test sets, as spatial resolution was degraded.

5. Specialized classification techniques can improve classifi-
cation for a given spatial resolution and show promise for
inéreasing accuracies at all spatial resolutions. The
increases with nine-~point decision rules were most dramatic
whén classification accuracies were low, giving significant

improvement for the more specific forest features.
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6. Results with the subset of channels which simulated the pro-
posed Thematic Mapper channels compared favorably to results
obtained with all 11 M2s channels for physiognomies but not
for the more specific forest features.

7. Area proportions were well estimated at the level of physi-
ognomy for both data segments although the optimum spatial
vresolution was different for the two segments. To determine
what resolution is optimum for various types of features,

more data segments would have to be studied.

8. Differences in performance were noted for both classification
accuracy and proportion estimation between equivalent hier-
archies for the two data segments, indicating that per-
formance depends on the characteristics of the features in
the scene.

Specific recommendations regarding feature classification perfor-

mance, training approaches, multi-element processing, and area propor-

tion estimates are provided in Section 5.2.
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2
INTRODUCTION

Improper sensor specificaﬁion may be a major cause for inadequate
forest classification results frequently achieved from multispectral
scanner (MSS) data. One major aspect of sensor specification concerns
épatial resolution. The determination of optimal data spatial resolu-
ﬁion for classifying forest features will enable forest managers to
select the proper sensors and platforms to get the desired results.
Without such guidelines, there is a possibility that data with too much
or too little spatial resolution will be collected for particular
foréstry applications.

: This report documents the methods and results of an empirical

study to determine the influence of MSS spatial resolution on the
classification of specific forest features. Because forest inventories
can require vegetation classification for different levels of detail,
the study considered hierarchies of forest features at levels that might
be commensurate with nationwide forest surveys and detailed in-place
inventories. A total of 6 cases of spatial resolution were processed
that ranged from (2 meters)2 to (64 meters)2 in size. All degraded
cases of resolution were simulated from the (2 meters)2 data by in-
corporating an algorithm that utilized typical MSS optics and electronics
properties and that preserved inherent system noise. Through extensive
processing and analysis of the data, relationships were developed to
illustrate classification accuracies as a function of spatial resolution

} for each of the hierarchies of forest features studied.

2.1 BACKGROUND

Recent studies have shown improvements in classification accuracy
as a result of degrading spatial resolution of MSS data. Kan and
Ball [1] reported higher eléssification accuracies for forest features

2 .
as data resolution was degraded from (8 meters)  to simulated
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resoluticns of (16 meters)2 and (24 meters)z. The results, based only
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on statistical pairwise classification accuracies and divergence values
computed for signatures extracted from training areas, were credited

to a reduction in scene variation by virtue of averaging information
over larger units. Thomson, et al., [ 2] reported similar results

that were based on actual classification performance of agricultural
features. However, decreased mensurational accuracies resulted from
the larger areal impact of boundary element misclassification as spa-
tial resolution was degraded. This report is intended to provide a
more realistic and complete analysis of the effect of MSS spatial

resolution on the classification of forest features.
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3
APPROACH

3.1 TEST SITE LOCATION AND DESCRIPTION OF FOREST FEATURES

The test site for this study is the Conroe Unit of the Sam Houston
National Forest (SHNF), located in east Texas between Houston and
Huntsville. Physiographically, the Unit lies on a narrow zone of
indistinct depositional terraces that comprise a part of the Western
Gulf Coastal Plain. Low elevation and relief are characteristic of
the area. Soils vary greatly from deep loamy sands to heavy clays
with a range in ability to support vegetation from southern timber
types to open prairie types.

Extensive areas of pine and pine-hardwood forest vegetation
identify the Conroe Unit as part of the east Texas 'piney woods."
The major forest type is Loblolly Pine. Shortleaf Pine and bottomland
hardwood types are also present. Forest types are subdivided into
condition class on the basis of age and size of the majority of trees

in the stand.
Two separate ground areas within the Conroe Unit were addressed

for this study. Forest features in these areas, classified as to cover
type and condition class according to existing U.S. Forest Service:
(USFS) timber stand and compartment boundary maps, are listed in Table 1.
k Locations of the forest features in the two ground areas are
shown in Figures 1 and 2. The photographs illustrated in these two
figures were taken some 19 months prior to the date for which the MSS
déta processed in this study were collected. The features in Figure 1
"are displayed much as they existed for the MSS data, except for one
small open area ("A") in feature 1.3 made as a result of a bark beetle

salvage cutting. Several items in Figure 2 require update and/or ex-

planation. The two features labeled 7.1 appear on the photo as cut-over

but not site prepared; however, they were predominantly bare soil and

7



TABLE 1. - FOREST FEATURES WITHIN THE CONROE UNIT THAT WERE ADDRESSED IN THE STUDY. COVER TYPE
‘AND CONDITION CLASS DESIGNATIONS ARE FROM U.S. FOREST SERVICE TIMBER STAND AND
COMPARTMENT BOUNDARY MAPS

‘ ——— x . A
Physiognomic Formation  Cover - Condition -
or Other General Type Cover Type Class Condition Class
- Description ' No. Description No. Description
Conifer Forest ' 1 Shortleaf Pine 21.3 Sawtimber-immature
1.4 Sawtimber-mature
2 Loblolly Pine 2.5 Sawtimber-immature
o k ’ 2.6 Sawtimber-mature
Conifer Regeneration - 2 Loblolly Pine. 2.3 Seedling & Sapling—-—
‘ : adequately stocked
Hardwood Forest 3 Laurel Oak -- 3.1 Sawtimber-immature
: Willow Oak
4 Sweetgum -- Nuttal 4.2 Sawtimber-immature

e  Qak -- Willow Oak

Cut-over Land 7 None 7.1 Site Prepared and
S Windrowed
Physiognomic Formations -- vegetative community structure as determined-by-

the major characteristics of its plants.

T
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FIGURE 2. FOREST FEATURES IN GROUND AREA 2 (MSS DATA SEGMENT 2), CONROE

UNIT, SHNF.

Lettered areas were excluded from the study:

A, bark beetle salvage cut;

B, pasture; C, water; and D, untyped private land.

10



RIS P § A ety
: .

Ty Y

P 1

AR iy s

o

Z FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

herbaceous vegetation (site prepared and windrowed) for the MSS data.
Areas labeled "A" at the left side of the photo indicate large bark bee-

tle salvage cuttings that were made since the photo was taken. Area "B"

in upper right corner represents a small pasture (private holding).

Area '"C" at bottom center represents an arm of a new impoundment

that held water for the MSS data. And area '"D" at the right side

of the photo is untyped private land.

: All lettered areas in Figure 2 were excluded from consideration in
this study. Although salvage cut areas and pasture are legitimate forest
features, they were not included in this study because of their limited
éreal extent and their position along the extreme edges of the MSS data
(see Section 3.4). The water feature was considered not to be a forest
feature for this study. Finally, the large parcel of non-homogeneous

private land was excluded for lack of ground truth.

3.2 DATA DESCRIPTION AND QUALITY _

To provide for a thorough investigation into the effect of.MSS
spatial resolution on the classification of forest features, we
required data that provided several cases of varying spatial resclu-
tion. In addition, we required the range of resolution cases to vary
from minimum areas small enough to resolve individual components of
forest stands to areas large enough to nearly approximate the coarse
resolution of the present Landsat systems. Although the use of
several different data sets collected over a common test site might
éatisfy the spatial resolution requirements, results of such a study
would be dependent on inconsistent sets of variables caused by temporal
éffects, differing number and placement of spectral bands, signal-to-—
noise characteristics, etc., that might exist between data sets.
Therefore, we decided to degrade a single aircraft data set of inherent

(2 meters)2 resolution to simulate data sets having progressively larger

resolution elements ranging up to (64'meters)2 in size.

11
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MSS data utilized for the study included 11 spectral channels
collected by a Bendix-built Modular Multispectral Scanner (MZS) from an

altitude of 610 meters (2000 feet). The spectral coverages of the 1l

channels are provided in Table 2. The data had been collected as part
of NASA Mission 290 on 20 November 1974 and were supplied to us by
personnel of the Forestry Applications Project located at Johnson Space
Center, Houston, Texas.

Two segments of flightline 17, covering areas illustrated in
Figures 1 and 2, were converted from Universal to ERIM format fof pro-
cessing. Segment 1 (Figure 1) of data provided ground coverage of
about 2 km along the flightline and 1.25 km swath width and included
approximately 1 million resolution elements. Segment 2 covered about
2.5 km of the flightline and included approximately 1.2 million elements.

A check of data quality was made to determine the signal-to-noise
properties of the data and the need for preprocessing. We checked data
quality by assessing dynamic range, high and low frequency noise, and
variations in signal associated with scan angle. A substantial low
frequency signal variation along the flightline (a contrast variation
known as "banding') necessitated development of a preprocessing correc-
tion in the form of a dynamic clamp algorithm. By virtue of the dif-
ferences in magnitude and pattern of occurrence for the "banding" arti-
fact between the two data segments, the dynamic clamp correction was
applied separately td each segment. Differences in the mean level
adjustments made for each segment created some concern for the legiti-
macy of radiometric comparisons between the two segments. Thus, in
the subsiequent processing procedure, each data segment was classified
separately with its own set of signatures.

Lack of strong signal variations associated with scan angle for
most spectral channels were considered in detail relative to the atmos-
phere and the bidirecticnal reflectance properties of the scene compo-

nents., Details of the data quality analysis are contained in Appendix I.

12
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TABLE 2. SPECTRAL COVERAGE PROVIDED BY THE MSS DATA OF MISSION 290

Spectral Band
Limits (um)

at 50%
Sensor Response
Channel Points
1 0.41 - 0.44
‘2‘ 0{45 - 0.49
3 : 0.49 - 0.54
4 : 0.53 - 0.57
5 | 0.57 - 0.61
6 | 0.61 - 0.65
7 % 0;65 - 0.69
8 { 0.69 - 0.73
9 : 0.76 ~ 0.86
10 0.95 - 1.03
) 11 | 8 - 12

13
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3.3 DEGRADATION OF SPATIAL RESOLUTION
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The degradation of spatial resolution was carefully designed to
create each case of degraded resolution in as realistic a manner as
possible with inherent system noise levels preserved. Properties of
typical MSS optics and electronics were used in conjunction with the
(2 meters)2 data to calculate two spatial weighting functions. Each
weighting function was low pass filtered and truncated to span 5 suc-
cessive resolution elements in directions along the scanline and along
the flightline respectively. When quantized into 5 intervals and
combined into an X-Y matrix, the two weighting functions created an
array that, when successively centered on every other element in every
other scanline and when multiplied and summed over the surrounding
5 by 5 group of pixels to generate a replacing pixel value, yielded
a new data set having one-fourth the number of resolution elements
per unit ground area (Figure 3 ). The new data set, of simulated
(4 meters)2 resolutioﬁ, was thus an approximation of the original analog
data values as influenced by the assumed typical MSS scanning and re-
cording characteristics. System noise inherent to the original data
was preserved in the simulated data by inserting a quantity of randomly
generated high-frequency noise sufficient to compensate for the cal-
culated amount of noise reduction caused by the spatial weighting
érray. Further details regarding calculation and implementation of
the spatial weighting'functions are provided in Appendix II.

Application of the spatial weighting array to each successive data
set in turn enabled creating additional data sets for which the linear
spatial resolution was doubled in each successive case. Five cases of
spatial resolution were simulated in all. Thus, for each segment of
data, we processed 6 cases of spatial resolution that included the in-
herent (2 meters)2 data and simulated cases of (4)2, (8)2, (16)2, (32)2,
and (64 meters)2 data.

14
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3.4 SIGNATURE EXTRACTION
Our objectives for this study were concerned with the classification

of forest features that are acknowledged by the U.S. Forest Service

to be meaningful for forest management purposes. Forest type maps

showing compartment and stand boundaries provide for the identity and
location of such features. Our processing approach, therefore, incor-
porated a supervised classification procedure that utilized signatures
extracted from training areas to classify forest features in each data
segment. For each case of spatial resolution, signatures were extracted
anew. Thus, signatures used to classify forest features for each case
of spatial resolution were extracted from training areas located on that
respective case of spatial resolution.

We required the training areas for each feature to cover equivalent
ground areas for each case of spatial resolution. Because the number

of resolution elements decreased by approximately 75% for each case
of degraded spatial resolution, whenever possible the size of the

training areas on the (2 meters)2 data were made large enough that a sta-

tistically valid number of elements were available for computing signa-

tures in the (64 meters)2 data. For all but one signature, the number of

elements in the in the (64 met:ers)2 data used for computing each of the
signatures ranged from 17 to 79, Feature 2.5 in data segment 1 (Figure 1)

had only 6 within-boundary elements in the (64 meters)2 data. Thus, no

signature was computéd for this feature for this case of resolution.
The locations of training areas were confined to a region of the
data that avoided large scanner view angles. (This was not entirely
possible for feature 4.2 in data segment 2.) Analysis of scan angle
variations in the data (see Appendix I) led us to conclude that the
region of data located within 30° either side of the flightline nadir
had a reasonable degree of independence from scan angle variations.

By extracting signatures from this region, we strived to exclude

16
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sources of-variation among signatures that might stem from large
changes in atmospheric path length or bidirectional reflectance

phenomena,

3.5 DATA CLASSIFICATION AND PERFORMANCE EVALUATION
Forest features classified in each data segment are listed as con-
dition classes in Table 3. Classification performance for this hier-
archy of features represents the most detailed level of classification
for this study. These results were aggregated to provide a measure of
classification performance for features of more general hierarchies.
In data segment 1, condition clisses were combined into cover types
on the basis of species (pine regeneration was retained as a separate
feature), and alternately, into features based on maturity that we
called growth stages. For .the most general hierarchy, all pine saw-
timber features were combined into a single physiognomic class to be
compared with pine regeneration. In data segment 2, two condition
classes of hardwood sawtimber were combined into a single physiognomic
feature to be compared with pine sawtimber and cut—overbland. .
Each case of spatial resolution was classified using the ERIM lin-
ear decision rule (Appendix III) and all 11 spectral channels. For se-~
lected cases of spatial resolution, we performed additional classifica-
tion that included:
- the use of the quadratic and four multi-element decision rules
for classifying (32 meters)2 data from data segment 1,
(Appendix III provides a brief explanation of decision rules.)

- the use of a subset of 5 spectral channels most similar to the
proposed Thematic Mapper channels for classifying (32)2 and
(64 meters)2 data with all above mentioned decision rules.

All classification results were tallied to provide the number of
resolution elements correctly classified as a percentage of the total

number of resolution elements contained within individual and combined

17
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i TABLE 3., FOREST FEATURES AND HIERARCHIES IN EACH DATA SEGMENT FOR
: WHICH CLASSIFICATION PERFORMANCE IS REPORTED

b | DATA SEGMENT 1

Physiognomy Cover Type : Condition Class Growth Stage

1.3 Shortleaf Pine
Sawtimber - Immature

Shortleaf
Pine
1.4 Shortleaf Pine Immature Pine
Sawtimber - Mature Sawtimber
Pine
Sawtimber
2.5 Loblolly Pine Mature Pine
Sawtimber - Immature Sawtimber
Loblolly |
Pine
2.6 Loblolly Pine
Sawtimber - Mature
Pine Pine 2.3 Loblolly Pine Pine Seedling
Regeneration Regeneration Seediing and Sapling and Sapling
. DATA SEGMENT 2
A Physiognomy v ’ Condition Class
Pine Sawtimber 2.5 Loblolly Pine Sawtimber - Immature

3.1 Laurel Oak/Willow Oak Sawtimber -~ Immature
Hardwood Sawtimber

4,2 Sweetgum/Nuttal Oak/Willow Oak
Sawtimber - Immature

Cutover 7.1 Cutover - Site Prepared and Windrowed,

18
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feature areas. The percent of all resolution elements correctly classi-
fied in the data set was calculated, giving an overall classification
accuracy for hierarchies which was equivalent to combining feature per-
centages on a weighted area basis.

Classification performance was determined for three distinct re-
gions within each data segment that included training sets, total
feature sets with boundary elements excluded, and total feature sets
including boundary elements. Results for each respected region
‘illustrated:

- the ability of the signatures to uniquely characterize forest

features defined by their training areas.

- the ability of the signatures to characterize the total popula-
tion of resolution elements wholly within the boundaries of fea-
ture areas.

- the effect of the boundary pixels in reducing classification
performance.

In addition, we compared the proportions of features, classified within
the physiognomic hierarchy of each data segment with known grouﬁd
area proportions,

| To gﬁard'against undue influence to classification and proportional
area estimation performances that might be caused by the large range
of view angles inherent to aircraft MSS data, results are reported for
the region of data located within 30° either side of the flightline

nadir.

19
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4
RESULTS AND DISCUSSION

4.1 CLASSIFICATION PERFORMANCE

4.1.1 Classification Accuracies Versus Spatial Resolution
All cases of spatial resolution were classified with the ERIM

linear decision rule using a threshold corresponding to a 0.001 proba-

bility of rejection of signals from the assumed multivariate normal

distributions of the signatures. Use of this thresnold, which is common

practice in the data processing community, provided an unclassified cate-

gory for resolution elements too dissimilar from the signatures used for
“ classification.

Data Segment 1

For the cases of spatial resolution ranging from (2 meters)2 to
(32 meEers)z, 6 signatures were used to classify the 5 condition classes
(Table 3) in data segment 1. Because of the obvious difference in
the density of the pine regeneration (Feature 2.3, Figure 1), we found
it necessary to use two signatures -- one extracted from the more .
dense northern porti;n of the feature and the other from the less dense
southern portion -- to best characterize the entire feature. A single
signature was used for each of the other features.
For the (64 meters)2 data, the very small number of resolution
elements (6 within-boundary elements) for the immature Loblolly Pine
4 sawtimber (Feature 2.5, Figure 1) prevented computing a valid signature.
: Thus, only 5 signatures defining four features were used to classify
this data set.
Tables 4-6 summarize correct classification percentages for three

distinct regions of the data segment over which performance was deter-

mined; namely, training sets, total feature areas with boundary elements

;: excluded (boundary exclusive test sets), and total feature areas includ-

ing boundary elements (boundary inclusive test sets). Each table pro~-

vides the percent correct classification achieved for each of the forest

20
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TABLE 4. PERCENT CORRECT CLASSIFICATION OF TRAINING SETS IN DATA SEGMENT 1 USING ALL 11 M2s
- : SPECTRAL CHANNELS .

Spatial Resolution

* % of Total

@?  w® @? am?® cm? e’  _ Area

- Hierarchy: Condition Class

Conifer Regen. (2,3) 51.1 55.9 61.3 67.7 70.5 87.3 36.4
Loblolly-Imnm. (2.5) . 29.1 37.0 44.5 58.7 65.2 — 3.7
Loblolly-Mature (2.6) 16.9 15.5 16.8 21.9 19.6 44 .4 14.8
Shortleaf-Imm, (1,3) 38.1 31.4 33.0 27,6 35.6 71.4 20.2
Shortleaf-Mature (1,4) 40.9 54.0 57.3 63,2 75.6 85,0 24.8
Overall ' 40.0 43.8 47.4 51,6  57.4 76,9

Hierarchy: Growth Stage

Conifer Regen. (2.3) 51.1 55.9 61.3 67.7 70.5 87.3 36.4
Imm, Sawtimber 54.2 52.7 57.7 61.1 60.6 65.1 23.9
Mature Sawtimber 42,0 48,8 50.0 55.0 62.2 71.6 39.7
Overall 48.2 52.3 55.9 61.1 65.1 76.2

Hierarchy: Cover Type

Conifer Regen. (2,3) 51.1 55,9 61.3 67.7 70.5 87.3 36.4
Shortleaf Pine 66.7 66.7 67.0 65.6 75.0 90.7 45,0
Loblolly Pine 37.5 40.9 45.4 53.5 44,8 45.7 18.6
Overall 55.6 58.0 60.9, 64.1 67.8 80.7

Hierarchy: Physiognomy :

-Conifer Regen. (2,3) 51.1 55.9 61.3 67.7 70.5 87.3 36.4
Pine Sawtimber 84.2 83.5 84.9 87.1 88.0 90.9 63.6

_Overall 72.1 73.4 76.3 80.0 81.2 89.5

* The (64 metets),2 data set did not contain a signature for Immature Loblolly Pine (2.5)

Y
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-TABLE 5.

PERCENT CORRECT CLASSIFICATION BOUNDARY EXCLUSIVE TEST SETIS IN DATA SEGMENT 1 USING

ALL 11 M2S SPECTRAL CHANNELS

Spatial Resolution

W3 {

* The (6& nietets)z‘ data set did not contain a signature for Immature Loblolly Pine (2.5).

* % of Total
@?  @w? ew?  aen? em?® e’ Area

Hierar‘chy.:, .Condition Class

Conifer Regen. (2.3) 49.9 54.8 59,3 64.6 71.4 78.6 37.3

Loblolly-Tmm. (2.5) 26.3 32.3 39.1 49.6 56.8 — 3.8

Loblolly-Mature (2.6) 19.7 19.2 20.9 26.6 19.4 31.6 13.8

Shortleaf~Imm. (1.3) 33.3 24.2 23.8 22.7 31.6 39,5 29.6

Shortleaf-Mature (1.4) 40.8 54.4 57.2 63.3 73.0 82,1 15.4

Overall 38.5 40.0 42,4 46.2 52,2 ¢ 59.9

Hierarchy: Greowth Stage

Conifer Regen. (2.3) 49.9 54.8 59.3 64.6 71.4 78.6 37.3

Iom. Sawtimber 50.7 45.0 48.6 50.2 53.5 40.2 33.5

Macure Sawtimber 40.9 46.5 47,5 52.6 54,2 59.3 29.2

Overall 47.5 49.1 52.3 56.3 60.7 61.9

Hierarchy: Cover Type

Conifer Regen. (2.3) 49.9  54.8 59.3 64.6 71.4 78.6 37.3

Shortleaf Pine ' 64.4 62.6 60.6 61.6 67.0 80.0 45,1

Loblolly Pine 38.0 41.1 46.0 53.4 42,4 33.3 . 17.6

Overall ' " 53,9 55.8 57.6 61.1 64.6 71.8

Hierarchy: Physiognomy:

Conifer Regen. (2.3) 49,9 54.8 59.3 64.6 S 71.4 78.6 37.3

Pine Sawtimber 82.7 81.5 82.3. - 84.7 82.8 80.4 62.7
" Overall 70.5 71.4 73.6 76.8 78.3 79.6
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TABLE 6. PERCENT CORRECT CLASSTIFICATION OF BOUNDARY INCLUSIVE TEST SETS IN DATA SEGMENT 1 USING -

€z

ALL 11 M%S SPECTRAL CHANNELS

mﬁ_‘z

Spatial Resolution

2 2 2 2 2 2* © % of Total
(2M) (4M) (8M) (16M) a2 (64M) Area

Hierarchy: Condition Class

Conifer Regen. (2.3) = "~ 50,0 54.8 58.9 63.0 70.1 76.3 37.3
Loblolly ~Ymm. (2.5) 26.5 2.1 38.5 48,1 47.1 — 3.8
. Loblolly-Mature (2.6} - 19.7 19.1 20,9 26.5 17.4 36.6 13.8
Shortleaf-Inm, (1.3) 33,3 24.2  23.7 219 28.9 29.3 29.6
Shortleaf-Mature (1.4) 40.8  54.3  S57.4  63.9 73.7 74.1 15.4
Overall 38.5 39.9 42,2 45.4 50.1 54.3 . 56,2

Hierarchy: Growth Stage

Conifer Regn. (2.3) 52,0 54,8 58,9  63.0 70.1 76.3 37.3

Imm. Sawtimber 50,7 45,0 48.3 48,3 48,5 28.5 33.5
 Mature Sawtimber 40,9 46.4 47.5 52.8 53.8 58.2 29.2
Overall 47.6 49,1 52.1 55.2 58.2 55.8 57.8

Hierarchy: Cover Type

Conifer Regn. (2.3) 50.0 54.8 58.9 63.0 70.1 76.3 37.3
Shortleaf Pine 63.4 62,6 60,9 62.4 67.8 70.7. 45,1
- Loblolly Pine 38,1 41.0 45.9 53.5 40.3 37.9 17.6
Overall 53.9 55.8 57.5 61.0 63.7 67.5 69.9

Hierarchy: Physiognomy

Conifer B-gen. (2.3) 50.0 54.8 58.9 63.0 70.1 76.3 37.3
Pine Sawc.mber - 82,7 81.5 82.2 84.4 81.3 72.1 62.7
Overall 70.5 7:.4 73.5 76.2 77.1 73.8
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* The (64 meters)z data set did not contain a signature for Immature Loblolly Pine (2.5).
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features in the respective hierarchies and the overall percent correct
classification accuracy is also provided for each hierarchy.

Results for individual features within the various hierarchies
show that classification accuracies can vary widely from feature to
feature for any one case of spatial resolution. For example, in Table 4
for (2 meters)2 data, conifer regeneration exhibits 51.1% accuracy, where-
as mature Loblolly Pine sawtimber is only 16,9% accurate. Furthermore,
the trends in classification accuracy as a function of spatial resolu-
tion are not entirely uniform from feature to feature. To illustrate
again in Table 4, mature Loblolly Pine sawtimber and immature Shortleaf
Pine sawtimber are not consistently better classified in coarser resolu-
tion data as are the other condition class features in the hierarchy.
Such results are more than likely caused by: (a) significant amounts

of overlap among the distributions of the signatures, and (b) subtle
changes in the size, shape, and hyperspace position of individual sig-

nature distributions relative to the data values as spatial resolution
varies. Although an exhaustive signature analysis for each case of spa-
tial resolution would in all likelihood enable explanation of results on
a feature by feature basis, such an approach might not enable generaliza-
tions concerning the overall significance of spatial resolution which are
cogent for this study. Thus, the discussion of results presented here

will dwell primarily on the overall classification accuracies achieved

for hierarchies, with the understanding that such accuracies are de-
rived from the combined accuracies of individual features contained with-
in the hierarchies.

Figures 4~7 illustrate the overall classification accuracies for
each of the hierarchies of features considered in data segment 1. 1In
each figure, accuracy is shown as a function of spatial resolution
for the three regions of data for which performance was assessed.

Note that for all such regions, accuracies improve for hierarchies of

more general (aggregated) features. That is, improvement occurs as a
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result of aggregating the performance of specific condition class
featares into more general feature categories first on the basis of
growth stage, second on cover type, and finally on physiognomy. For
each general category of feature, previous misclassifications of
resolution elements among its specific features were properly counted
as correct classification, reducing the total amount of misclassified
elements for the respective hierarchy. Thus, the overall accuracy for
claséifying the physiognomic hierarchy of forest features is higher
than for hierarchies of more specific classes -~ a not—surprising re-
sult. The greater overall accuracy for cover. type hierarchy versus
growth stage seems to be due to a greater occurrence of hardwood species
in the Loblolly Pine stands.

In comparing classification performance for training sets, boundary

exclusive test sets, and boundary inclusive test sets, overall accuracy

.for training sets'improves with coarser spatial resolution for all hier-

archies. Accuracies for total feature areas (both boundary exclusive

test sets and boundary inclusive test sets) are somewhat lower for
" . large cases of resolution, and do not necessarily continue to improve.

These results can be attributed to changes in the number of resolution = _

elements within each feature that are either wrongly classified (i.e.,

misclassified) or not classified (i.e., unclassified) as spatial resolu-

‘tion varies.

Classification accuracy for training sets can be regarded as an up-
per limit of performance for classifying this set of features with the
specified procedures, since the resolution elements classified are the
same ones used to create the signature distributions. In other words,
by classifying training sets, we determine the expected-performance for
dlassifying the entire data set assuming that the variance within each

feature area is completely described by its training area. (Depending on

- .the training procedure and the site information available, this latter

assumption is not always true,) Figure 8 shows that, as resolution size

2
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increases for each of the simulated data sets, the standard deviations
of the signatures decrease. This indicates that the variance within
‘each training set becomes smaller. Because the signature means for the
most part remain unchanged as resolution varies, the amount of statisti-
cal overlap among the distributions of the signatures must decrease.

As a result, resolution elements within training sets classified in the
coarser resolution data sets have higher probabilities of being correct-
ly classified. It is possible that an increased percentage of elements
in coarser resolution data might also be unclassified if the rejection
thresheld remains constant sinceva relatively smaller total decision
space is represented by the signature distributions. However, Figure 8
illustrates that, for this set of sigﬁatures, considerable statistical
overlap exists in all spectral channels even for the coarse resolution
data and Figure 9 verifies that fbr resolution elements within training
sets, the total number of unclassified elements varied only slightly as
a function of resolution.

The decreases in classification accuracy from training sets to
tdtal feature areas in Figures 4-7 are attributable to greater per-
centages of both misclassified and unclassified resolution elements
within each feature area. Such decreases in accuracy are more than
likely caused by the confounding effect on the decision process of the
increased variability within feature areas not represented by tradning
sets. For cases of fine spatial resolution, signature distributions
are large enough to encompass much of the total variability manifested
by data values from all feature areas. The low percentage of unclassi-
fied elements in Figure 9 for resolution cases of (2 meters)2 through
(16 meters)2 indicates that much of the reduced classification accuracy
over the entire feature areas for these resolution cases is due to
inéreased‘misclassification of elements. The considerable overlap
among the distributioq§ would account for the great amount of misclassi~-

fication. As resolution coarsens to (32 meters)2 and (64 meters)2
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however, the reduced signature distributions may encompass less of the
total data variability, and, thus, the percentage of unclassified data
values increases greatly.

The inclusion of boundary elements into the decision process can
be expected to introduce additional variance into the population of

data values within each feature. Their impact on reducing classification

accuracy for each feature will depend on the ratio of the number of
boundary elements to total feature elements. Obviously, this ratio

will increase as spatial resolution degrades. Thus, the classification
results for bourdary inclusive test sets in Figures 4-7 show a not-sur-
prising reduced accuracy relative to boundary exclusive test sets as spa-
tial resolution degrades. The effect of the boundary elements becomes
substantial in (64 meters)2 data; and for the hierarchies of growth
stages and physiognomy, actually reduces performance below that achieved
for (32 meters)2 data.

Abrupt increases in classification accuracy that occur from (32 me-
ters)2 to (64 meters)2 data for training sets (Figures 4-7) are most
likely due to the fact that there is one less signature to claséify the
(64 meters)2 data., Figure 8 illustrates (for 5 of the 11 channels) that
the mean signal values for this set of signatures are very similar. As
a rééult, the overlapping standard deviations make the unique classifica-
tion of these features very difficult, Despite the decrease in statisti-
cal overlap that occurs in Figure 8 as spatial resolution degrades, a
large amount of overlap still remains in the (64 meters)2 data. In such
circumstances, the less of one competing signature (immature Loblolly
Pine sawtimber) from a tightly packed group of signatures might result
in sufficient reduction of total statistical overlap among the signa-
tﬁres to reduce the number of misclassifications in the training set
results of this study. The small 2% increase in unclassified elements

of training sets from (32 meters)2 to (64 meters)2 data noted in Figure 9
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verifies that few resolution elements of training sets, classified as
immature Loblolly Pine sawtimber in (32 meters)2 data, were outside the
decision boundaries of the remaining signatures in the (64 meters)2 data.
Thus, the dramatic improvement in classification accuracy for training
sets in (64 meters)2 data is due to the reduction in misclassification
of resclution elements.

Figure 10 illustrates simulated results of having classified train-
ing sets on (2 meters)2 through (32 met:ers)2 data with the 5 signa-
tures corresponding to those used to process (64 meters)2 data. The top-
most dashed curve assumes that all resolution elements previously mis-
classified as immature Loblolly Pine sawtimber would have been correctly
classified. The lower dashed curve makes the less optimistic assumption
that only the elements of features most frequently misclassified as im-
mature Loblolly Pine sawtimber (namely, immature Shortleaf Pine sawtimber
and mature Loblolly Pine sawtimber) would have been correctly classified.
(Because of the very small percentage of unclassified elements shown for
the (64 meters)2 results in Figure 9, we did not allow for any increase
in unclassified elements for these simulated results.) Note that both
dashed curves show sizable improvements in training area classification
performance as a result of corresponding decreases in misclassifications
that were attributable to the deleted signature. We speculate that the
less dramatic improvement in training area classification from (32 me-
ters)2 to (64 meters)2 data is more representative of the results that
would have been achieved if all cases of spatial resolution could have
been processed uniformly.

To investigate the effects on whole feature areas, Figures 11 and 12
illustrate simulated results of having classified boundary exclusive

test sets and boundary inclusive test sets in all cases of spatial reso-
lution with the 5 signatures corresponding to those used to process the
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(64 meters)2 data. The assumptions for the two dashed curves in each
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figure are the same as for Figure 10. Again, no allowance was made for
any increase in unclassified elements from (2 meters)2 to (32 meters)z.
These figures illustrate that, for most cases of spatial resolution,
sizable improvements in classification performance might again be a-
chieved when misclassifications attributable to the deleted signature
are reduced. However, for the (64 meters)2 data, the large percentages
of unclassified elements, noted in Figure 9, seem to overcompensate any
improvement in performance due to reduced misclassifications. As a re-
sult, a net decrease in classification performance is indicated from
(32 meters)2 to (64 meters)2 data. Although less abrupt, similar de-
creases in classification performance were noticeable for (64 meters)2
data in Figures 5 and 7. Thus, it appears that for this data set, the
effect of the increased variability in the data values of whole feature
areas is to increase the percentages of unclassified resolution elements
if the rejection threshold remains constant, and that the effect of
unclassified elements begins to detract from overall classificat;on

accuracy as spatial resolution enlarges beyond (32 meters)z. It is pos-

sible that a reduction in such an effect for the degraded resolution may
be overcome by modifying the rejection threshold to reduce the number of

unclassified elements while hopefully at the same time not unduly in-

creasing the number of elements which are misclassified.

Data Segment 2

Six signatures were extracted from training sets and used to
classify data segment 2 for all cases of spatial resolution. The large
amount of scene variation within the immature Laurel Qak/Willow Oak
feature (Feature 3.1, Figure 2) prompted us to extract three signatures
to adequately characterize it. A single signature was used for each

of the remaining features, :

The correct classification results are summarized in Tables 7-9
for training sets, boundary exclusive test sets, and boundary inclusive
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TABLE 7. PERCENT CORRECT CLASSIFICATION OF TRAINING SETS IN DATA SEGMENT 2 USING ALL 11 MZS

W3 {

SPECTRAL CHANNELS ‘
Spatial Resolution
2 2 2 2 2 2 % of Total
Hierarchy: Condition Class (2M) (4M) (8M) (1eM) (32M) (64M) Area
Loblolly - Imm. (2.5) 85.7 84.5 86.7 89.6 93.8 100.0 21.5
- Laurel Oak/Willow Oak (3.1) 65.7 73.5 78.8 84.0 88.3 86.8 34.0
- Swetgm/N. Oak/W. Oak (4.2) 12.8 18.8 24,7 30.1 40.9 48.1 '33.4
Cut Over (7.1) 90.2 91.9 95.6 98.5 100.0 95.8 11.1
Overall 1* 55.0 59.6 64.2 68.7 74.5 76.3
- Overall 2** 76.2 80.1 84.2 88.2 92.1 92.6
W !
Hierarchy: Physiognomy
Conifer Sawtimber (2.5) 85.7 84.5~ -86.7 89.6 93.8 100.0 21.5
Hardwood Sawtimber 72.1 80.6 86.2 91.5 96.6 89.8 67.4
Cut Over (7.1) 90.2 91.9 95.6 98.5 100.0 95.8 11.1
Overall . 77.0 82.7 87.4 91.9 96.4 92.6
*1 Overall calculated for all training-sets.
Kk
2 Overall calculated ocmitting 4.2
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test sets, respectively. For training sets (Table 7), note that two sets
6f numbers are provided for the overall accuracies of the hierarchy
cdntaining condition class features. The lower accuracies were obtained
by the usual combining of all training set accuracies weighted according
to their respective proportions of total training area classified.

The higher accuracies portray the results of combining all training

set accuracies except the immature Sweetgum/Nuttal Oak feature (Fea-

ture 4.2, Figure 2).
Because of the great similarity between the two hardwood condition

classes, competition for the data values within the training set of
Féature 4,2 was probably biased in favor of the three signatures rep-
résenting Feature 3.1 versus the single signature of Feature 4.2.
Therefore, the classification accuracy for the Feature 4.2 training

area is understandably quite low. However, as a result of the large
proportion (33.4%) of total training set area it occupies, the effect of
including it in the overall condition class hierarchy results is to
create training set accuracies that are lower than those achieved for

the same hierarchy over whole feature areas (Tables 8 and 9). Such

results are inconsistent with expected trends in classification accuracy
fﬁom training sets to whole feature areas. In addition, much of the
training set for Feature 4.2 lies outside the previously defined nadir
region of the data (30° either side of the flightline nadir). (Because
only a small portion of this feature existed inside the nadir region,
much of the training area required for a valid signature falls outside
tﬁe region.) Since classification results for whole feature areas were
computed only inside the nadir region, a comparison of results between
training sets and whole feature areas involves different regions of the
déta if the training area for Feature 4.2 is included. By excluding
the Feature 4.2 training set results from the overall classification
accuracies of the condition class hierarchy in Table 7, we enable a
more straightforward comparison of results from training sets to whole

feature areas.
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TABLE 8. PERCENT CORRECT CLASSIFICATION OF BOUNDARY EXCLUSIVE TEST SETS IN DATA SEGMENT 2 USING

ALL 11 M2S SPECTRAL CHANNELS

- - -Spatial ‘Resolution

Hierarchy: Condition Class (22 (m? (wm? @aew?
Loblolly - Imm. (2.5) 73.8 71.2 71.8 73.2
Laurel Oak/Willow Oak (3.1) 61.8 67.4 70.0 74 .6
Swtgm/N. Oak/W. Oak (4.2) 11.4 16.5 21.2 30.3
Cut Over (7.1) 78.4 80.6 81.6 85.3
Overall 64,2 67.5 69.5 74,1
Hierarchy: Physiognomy
Conifer Sawtimber (2.5) 73.8 71.2. 71.8 73.2
Hardwood Sawtimber 69.9 78.3 83.7 89.2
Cut Over (7.1) 78.4 80.6 81.6 85.3
Overall 72.7 77.5 85.2

81.0

am?  (eam?

79.7
76.9
49.4
91.1

79.0

- 79.7

94.2
91.1

90.7

86.0
62.1
50.0

75.4

69.3

86.0

84.3
75.4

82.6

% of Total
_Area
19.1
49.6

7.5
23.9

19.1

57.1
23.9
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TABLE 9. PERCENT CORRECT. CLASSIFCATION. OF BOUNDARY. INCLUSIVE TEST SETS IN DATA SEGMENT 2 USING
ALL 11 M2S SPECTRAL CHANNELS

Hierarchy: Condition Class

Loblolly - Imm. (2.5)

Laurel Oak/Willow Oak (3.1)

Swtgm/N. Oak/W. Oak (4.2)
Cut Over (7.1) |

Overall

Hierarchy: Physiqgnomzy

Conifer Sawtimber (2.5)
Hardwood Sawtimber
Cut Over (7.1)

Overall

Spatisl Resolution

o ww? @n?  aen? e’ e’
74.0 71.1 70.6 70.5 71.0 72.9
61.8 67.3 69.8 74.0 74.8 59.7
11.4 16.4 21.4 30.5 47.6 50.0
78.6 80.6 81.2  84.0 89.3 76.2
64.6  67.5 69.0 72.6 75.3 64 .9
74.0 71,1 70.6 70.5 71.0 72.9
70.0 78.3 83.6 88.8 94.1 85.5
78.6 80.6 81.2  84.0 89.3 74.2

% of Total
Area
19.1
49.6

7.4
23.9

19.1
57.1
23.9

W3 {
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Overall classification accuracies for the two hierarchies of fea-
tures considered are illustrated in Figures 13 and 14. Many of the
trends noted for data segment 1 are again in evidence here. These
include: a continued improvement in classification accuracies for
resolution cases increasing from (2 meters)2 to (32 meters)z; generally
higher classification accuracies for the hierarchy of more general
(aggregated) features; and a reduction in classification accuracies
from training sets to total feature areas, with the inclusion of
boundary elements further depressing accuracies as spatial resolution
degrades. )

Two major differences are noted for the results of Figures 13 and 14
versus those for the corresponding hierarchies of data segment 1, The
first is that, for equivalent hierarchies between the two data segments,
overall claésification accuracies are higher in data segment 2, The
éecond difference concerns a more obvious decrease in performance for
the (64 meters)2 case of spatial resolution in data segment 2 that
occurs for whole feature areas and even training sets for the physi-
ognomy hierarchy. These differences are most likely explained by the
mbre unique characteristics of the features in data segment 2. Signa-
tﬁres of pines, hardwoods, and cutover land likely had less statistical
o§erlap than signatures of the more similar types of features in data
segment 1, Thus, misclassifications of resolution elements in data
segment 2 may well have been lower, accounting for the generally higher
classification performances for the hierarchies. For (64 meters)2 data,
the reduced size of these signature distributions may have resulted
in a larger amount of unclassified decision space among the distribu-
tions, such that drématic increases in the percentage of unclassified
elements caused an abrupt decrease in classification performance.

4,1.2 Multi-element Processing Techniques for Improving Classifi-
cation Performance
For conventional linear and quadratic decision rules, classification

is based on each individual resolution element. Multi-element decision
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rules, by contrast, use information from the surrounding elements when
classifying the center element. Improvements in classification accuracy
due to degraded spatial resolution (Section 4.1.1) are apparently due
to the reduced variation within the scene that occurs by averaging
information over larger ground areas. By using information from sur-
rounding elements, multi-element decision rules attempt to provide the
improved classification advantages of coarser spatial resolutions with-
out the loss of scene information, i.e., locational accuracy or area
measurement capabilities, inherent in coarser resolutions.
| To evaluate the performance of multi-element processing on forestry
data, four of the nine-point decision rules developed at ERIM [3] were
used to classify the (32 meters)2 resolution case for data segment 1.
A brief description of the nine-point rules, BAYES9, PRIOR9, PREF9,
and VOTE9, is given in Appendix III. Classification results were com~
pared with the performance of the linear rule classification of the
(32)2 and (64 meters)z-resolution cases, and in addition, with the
quadratic rule performance for the (32 meters)2 case. Because the nine-
point rules classify all resolution elements, (e.g., allow for no
unclassified elements), the (32 meters)2 and (64 meters)2 linear rule
results, and (32 meters)2 quadratic rule results used as a basis of
comparison were generated with no decision boundary threshold stated
for the signatures. Thus, the accuracies for these standard classifi-
cation procedures may be different than previously reported in
Section 4.1.1 since éll resolution elements are classified.

The overall percent correct classification, averaged over elements,
‘waé calculated for each hierarchy. Classification accuracy for whole
feature areas excluding boundary elements (boundary exclusive sets)
is displayed in Table 10 for individual features as well as oVerall
hierarchy results, Table 11 gives percent correct classification for

boundary inclusive test sets,
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TABLE 10.

2

SETS USING ALL 11 M™S SPECTRAL CHANNELS

Hierarchy: Coadition Class

(32 Meter)?

PERCENT CORRECT CLASSIFICATION OF VARIOUS DECISION RULES ON BOUNDARY EXCLUSIVE TEST

(64 Meter)2

Conifer Regen. (2.3)
Loblolly~Imm. (2.5) -
Loblolly-Mature (2.6)
Shortleaf-Imm. (1.3)
Shortleaf-Mature (1.4)

Overall

Hierarchy: Growth Stage

Conifer Regen. (2.3)
Imm. Sawtimber
Mature Sawtimber

Overall

Hierarchy: Cover Type

Conifer Regen. (2.3)
Shortleaf Pine
Loblolly Pine

Overall

Hierarchy: Phxgiqgnomy

Conifer Ragen. {(2.3)

Pine Sawtimber

Overall

Linear Linear
Rule Q Rule Bayes 9 Prior 9 Pref 9 Vote 9 Rule
73.3 74,2 90.0 79.8 94.1 90.2 91.3
56.8 73.6 75.0 69.4 77.8 83.3 0.0
19.9 41.3 69.9 51.5 65.8 60.2 39,5
32.7 38.1 56,7 46,1 55,7 49.0 43,8
76.8 74,5 96.0 88.1 97.0 96.0 84.2
53,7 58.7 77.9 66.9 78.9 74.5 69.1
73.3 74,2 90.0 79.8 94.1 90.2 91.3
57.4 51,5 60.5 55.7 61.3 56.6 43.4
55.6 64,0 83.7 73.9 81.7 79.4 67.1
63.3 64.0 78.8 70.4 80.2 76.4 70.9
73.3 74.2 90.0 79.8 94.1 90,2 91.3
69,7 73.3 88.2 81.2 88.6 85.9 34,7
44,4 56.8 72.8 61.6 70.3 67.7 41.5
66.8 70.8 86.5 77.5 87.9 84.3 81.4
73.3 © 74.2 90,0 79.8 94.1 20,2 91.3
87.3 88.4 93,1 91.8 92,9 91.3 88.7
81.7 82.8 91.9 87.0 93,4 90.8 89.8
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TABLE 11. PERCENT CORRECT CLASSIFICATION OF VARIGUS DECISION RULES ON BOUNDARY INCLUSIVE TEST

SETS USING ALL 11 MZS SPECTRAL CHANNELS

¥ ST . . ' . . -
0 . , (32 Meter)? : (64 Meter)?
" k ' Linear . . " Linear
' Rule’  Q Rule ' Bayes 9 Prior 9 - Pref 9 Vote 9 = _Rule

Hierarchy: Condition Class

Conifer Regen. (2.3) C 72,4 736 888 (79.4 92,2 89.4 91.9

. Loblolly-Tmm. (2.5). 56,9 569+ 75.0 -68.8 . 79.2 . 8.3 0.0
Loblolly-Mature (2.6)- 18.1 8.4 64.4 47.8 60.4 55.4 40.4

. < Shortleaf-Imm. (1.3) » 30.2 36.8 52.2 43,1 52.4 44.7. 36.4

-  Shortleaf-Mature' (1.4) 78.2 7470 '92.8 84.0 95.4 93.3 82.7
overall ) 52.6  57.2 ' 74.8  64.6  76.1 71.8 65.9

P " Hierarchy: Growth Stage

Conifer Regen. (2.3) 7204 73.4 88.8 79.4 92.2 89.4 9i.9

R Imm, Sawtimber . 52.6  48.5 -  56.5  52.4  58.3 522 . 34.5.
. Mature Sawtimber 55.8 62,8 '79.5 70.2 > 78.4 76.0 66.7
overall 61.3 62,2 75.6 68.0 . 77.3 73.5 67.2

- " Hierarchy: Cover Type

Conifer Regen. (2.3) 72.4 73.4 88,8 79.4 92,2 ‘89.4 91.9
Shortleaf Pine 72.1 4.1 85.9 79.8 86.4 82.4 83.3
Loblolly Pine 44.8 54.8 70.0 59.6 68,1 65.9 42.9
Overall : 67.4 70.5 84,4 76.3 85.7 82.5 81.0

Hierarchy: Physiognomy

Conifer Regen. (2.3) 72.4. 73.4 88.8 79.4 92.2 89.4 91.9
Pine Sawtimber 87.2 87.1 ‘90,7 89.6 91.1 ' 38.1 85.3
Overall 81.3 81.8 89.9 85.6 91.5 88.6 88.1

Wi {
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' General trends observed in Section 4.1.1 are also seen for multi-
element results, For example, a comparison of overall correct classifi-

cation results in Table 10 with those in Table 11 indicate that the
inclusion of boundary elements decreases classification accuracy since

a higher proportion of these elements are misclassified. These tables
also show that the hierarchies consisting of more general (aggregated)
features give higher classification accuracies than those containing
more specific features. Thus, the condition class hierarchy shows

the lowest classification performance while physiognomy shows the
highest. The fact that cover types (species designation) are shown

to have higher performance than growth stages is again predominantly

due to the greater percentage of hardwoods prese 't in both Loblolly Pine
features.

Figures 15-18 are bar graphs showing overall hierarchy classifi-
cation results for each of the decision rul=s used to classify both
boundary exclusive tests sets and boundary inclusive test sets. For
every case, the performance of the quadratic rule is better than that
of the linear rule when compared for the (32 meters)2 data, and .

(64 meters)2 linear rule results show still higher performance than
either of the (32 meters)2 results using standard classification pro-
cedures. Of the four nine-point rules examined in this study, three
always show performances for (32 meters)2 data that are higher than
the linear rule classification results of the (64 meters)2 data.
PRIORY9 results are variable, sometimes giving higher accuracy than
(64 meters)2 linear rule results but frequently giving poorer perfor-
mances. Thus, it appears that judicious selection of a nine-point rule
can offer improved classification performance that is greater than an
improvement tha’ might be realized with standard classification pro-
cedures used ou coarser resolution data.

The relationships that exist among the four nine-point rules in

terms of ranked classification performance is the same for both boundary
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inclusive test sets and boundary exclusive test sets. PREF9 always gives

FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

the best performance with BAYES9 giving only slightly reduced accuracies

by comparison. VOTE9, although still better than the (64 meters)2
linear rule results, does not do as well as either PREF9 or BAYES9.

PRIORY gives the lowest classification accuracies of all four nine-
point rules. The ranked performance of thece results are consistent
with results for agricultural applications., Preliminary tests on
nine-point rules using aircraft data collected over the Imperial Valley,
California [3] show the same relative performances for the four deci~
sion rules.

Comparison of the best nine-point decision rule results (i.e.,
PREF9) with the results of the single element rules indicates that there
is always a substantial increase in accuracy for PREF9. The perfor-
mance increase is largest for the hierarchy of condition classes with
lesser increases in performance noted for hierarchies of more general
features. This trend indicates that when classification accuracy is
low using standard techniques, then specialized recognition techniques
give more improved accuracy than when accuracy was high with standard
techniques. Thus, nine-point rules appear to offer a greater advantage
for use in improving the classification of detailed features that may
be required in some forest surveys.

4.1.3 Thematic Mapper Simulation Study

To evaluate how well the proposed Landsat D Thematic Mapper (TM)
might classify forest features, a spectral simulation of the Thematic
Mapper was undertaken by selecting the most appropriate MZS spectral
channels. Although there is not a direct correspondence in the spectral
raﬁge for the two systems, Table 12 gives the 7 proposed Thematic Mapper
spectral channels and the 5 M2S channels which most closely coincide.
This subset of 5 MZS spectral channels was used to classify the (32)2
and (64 meters)2 data.
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TABLE 12. THEMATIC MAPPER AND SELECTED SUBSET OF M“S SPECTRAL CHANNELS j
™ u’s

0.45-0.52 0.45-0.49

0.52-0.60 0.53-0.57

0.63-0.69 0.65-0.69

°‘74'°'8°} 0.76-0.86

0.80-0.91

1.55-1.75

10.4-12.5 8.0-12.0

Table 13 summarizes the overall percent correct classification

results considered for all cases, while Tables 14-19 give more detailed

comparisons of MZS classification rgsults using all 11 channels and the
TM 5 channel subset to classify training sets, boundary exclusive fest
sets, and boundary inclusive test sets of both data segments. We see
that the 5 channel classification results show the same general trends
as the 11 channel classifications. Overall classification accuracy
increases as the hierarchies considered consist of more general (aggre-
gated) features. Training sets were more accurately classified than
test sets, and the boundary inclusive test sets were the least accu-
rately classified.

Tables 14 and 17 display the classification accuracy over training

sets for 11 channel versus 5 channel classifications. Examination of

the most specific hierarchy, condition class, shows that when the sub-
set of 5 channels is used, overall accuracy is reduced by 13.7 percen-
tage points for (32)2 and 22.2 percentage points for (64 meters)2 in
data segment 1 and 7.3 percentage points for (32)2 and 7.9 percentage
points for (64 meters)2 in data segment 2. This reduction in accuracy

is expected, since the smaller number of spectral channels should give
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TABLE 13. OVERALL PERCENT CORRECT CLASSIFICATION RESULTS FOR ALL 11 MZS CHANNELS COMPARED

WITH THE RESULTS OBTAINED FOR THE TM 5 CHANNEL SUBSET OVER (32)2 AND (64 METERS)2
CASES OF SPATIAL RESOLUTION FOR BOTH DATA SEGMENTS

ALL 11 M%S CHANNELS

TM 5 CHANNEL SUBSET

(32 Meters)?

(64 Heters)2

(32 Meters) 2

(64 Meters)?

BOUNDARY  BOUNDARY
TRAINING EXCLUSIVE .INCLUSIVE

BOUNDARY  BOUNDARY
TRAINING - EXCLUSIVE INCLUSIVE

BOUNDARY  BOUNDARY
TRAINING EXCLUSIVE INCLUSIVE

BOUNDARY  BOUNDARY
TRAINING EXCLUSIVE INCLUSIVE
SETS TEST SETS TEST SETS

lihy-iognouy

SETS TEST SETS TEST SETS SETS TEST SETS TEST SETS SETS TEST SETS TEST SETS
DATA SECHENT 3 )

(Unclassified Elements) 0.7 %.9) (5.9 2.8 (2.9 a7.3) 0.3 (2.5) (3.6) (0.6) (1.8 (5.1)
Condition Class 57.4 52.2 50.1 76.9 59.9 54.3 43.7 42.7 41.9 54.7 59.2 54.3
Growth Stage 65.1 60.7 58.2 79.8 61.9 55.8 57.4 57.6 55.7 61.3 64.8 55.8
Cover Type 67.8 64.6 63.7 84.4 71.8 67.5 55.4 56.3 56.6 65.4 70.8 67.5
Phys{ognomy 81.2 78.3 77.1 89.5 79.6 73.8 77.2 76.8 75.9 77.9 82.0 73.8
jpaza seqENT 2 .

(Unclassified Elements) .3 (3.8) (4.4) (7.0)  (14.4) 16.4) 1.2) 2.4) (€D} 37T %2T6.3)
Condition Class 74,5 79.0 75.3 76.3 69.3 64.9 67.2 7.7 74.5 68.4 8l.4 7 747

96.4 90.7 88.6 92.6 82.6 80.5 92.7 89.3 87.4 94.9 92.4 89.9
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TABLE 14. COMPARISON OF PERCENT CORRECT CLASSIFICATION FOR TRAININC SETS
3 IN DATA SEGMENT 1 USING ALL 11 MZS SPECTRAL CHANNELS VERSUS USING
5 THE 5 CHANNELS WHICH SIMULATE THE THEMATIC MAPPER
|
11 Channels"’ 5 Channels
. G2 6am®  @2m? - 6am?
(unclassified elements) ) 0.7) (2.8) (0.3) (0.6)
Hierarchy: Condition Class
Conifer Regen. (2.3) 70,5 87.3 63.1 83.8
Loblolly~Imm. (2.5) 65.2 - 52,2 ' 0.0
Loblolly~Mature (2.6) 19.6 44,4 4.9 7.4
Shortleaf-Imm. (1.3) 35,6 71.4 21.2 62.9
Shortleaf-Mature (1.4) : 75.6 85.0 - 53.0 45.0
Overall 57.4 © 76,9 43.7 54.7
Hierarchy: Growth Stage
~ Conifer Regen. (2.3) '70.5 . 87.3 63.1 - 83.8
; Imm. Sawtimber |  60.6 65.1 65.8 62.8
»% Mature Sawtimber 62.2 71.6 47,0 40.3
i oOverall 65.1  76.2 57.4 - 61.3
Hierarchy: Cover Type
Conifer Regen. (2.3) 70.5 87.3 63.1 83.8
Shortleaf Pine : 75.0 90,7 54.3 - 78,7
: Loblolly Pine 44,8 45,7 41.6 5.7
i overall 67.8 80.7 55.4 65.2
Hierarchzif Physiognomy
Conifer Regen. (2,3) 70.5 87.3 63.1 83.8
Pine Sawtimber 88.0 90.9 86.1 - 76.4
Overall = 81.2 89.5 77.2 77.9
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TABLE 15, COMPARISON OF PERCENT CORRECT CLASSIFICATION FOR BOUNDARY EXCLU-

SIVE TEST SETS IN DATA SEGMENT 1 USING ALL 11 MZS SPECTRAL CHANNELS
VERSUS USING THE 5 CHANNELS WHICH SIMULATE THE THEMATIC MAPPER

11 Channels 5 Channels
G2 w2 s w: G2w? (64 M)
(unclassified elements) 4.9) (12.9) (2.5) (1.8)
ﬂierarchy: Condition Class
Conifer Regen. (2.3) 71.4 78.6 64.9 .  81.5
 Loblolly-Imm. (2.5) 56.8 - 61.4 0.0
Shortleaf-Imm. (L.3) 31.6 39.5 22.7 60.3
Shortleaf-Mature (1.4) 73.0 82.1 55.0 - 53.9
Overall 52.2 59.9  42.7  59.2
Hierarchy: Growth Stage
Conifer Regen. (2.3) 71.4 78.6 64,9 81.5
Imm. Sawtimber 53.5 40,2 59,7 61.9
Mature Sawtimber 54,2 59.3 45,1 43,2
Overall 60.7 619 57.6  64.8
Hiéfarchxgﬁ Cover Type
Conifer Regen. (2.3). 71.4 78.6 64.9 8L.5
Shortleaf Pine : 67.0 80.0 55.6 86.3
Loblolly Pine 62,4 33.3 38.4 6.3
Overall 64.6 71.8 56.3 70.8
Hierarchy: Physiognomy
Conifer Regen. (2.3) 71.4 78.6 64.9  B81.5
Pine Sawtimber . 82.8 80.4 84.5 82,4

Overall ' 78.3 79.6 76.8 82.0
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TABLE 16. COMPARISON OF PERCENT CORRECT CLASSIFICATION FOR BOUNDARY INCLU-

SIVE TEST SETS IN DATA SEGMENT 1 USING ALL 11 MZS SPECTRAL CHANNELS

VERSUS USING THE 5 CHANNELS WHICH SIMULATE THE THEMATIC MAPPER

FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

11 Channels . 5 Channels
G2m2 e G2w? (64 m)?

(unclassified elements) (5.9) (17.3) - (3.6) (5.1)
. Hierarchy: Condition Class

Conifer Regen. (2.3) 70.1 76.3 64 .6 81.6

Loblolly-Tmm. (2.5) 47.1 - 57.4 0.0

Loblolly-Mature (2.6) 17.4 34.6 6.6 5.8

Shortleaf-Imm. (1.3) 28.9 29.3 21.2 44,3

Shortleaf-Mature (1.4) 73.7 74.1 55,0 48.3

Overall 50.1 54.3 41,5 54,3

Hierarchy: Growth Stage

Conifer Regen. (2.3) 70.1 76.3 64.6 81.6

Imm, Sawtimber 48.5 28.5 54,8 44.9
Mature Sawtimber 53.8 58.2 42,2 40.9
Overall 58,2 55.8 55,7 55.8

Hierarchy: Cover Type

Conifer Regen. (2.3) . 70.1 76.3  64.6 81.6

Shortleaf Pine 67.8 70.7 56.4 74.3
Loblolly Pine 40.3 37.9 40.0 6.1
Overall 63.7 67.5 56.6 67.5

Hierarchy: Physiognomy

Conifer Regen. (2.3) 70.1 76.3 4.6 81.6

Pine Sawtimber 81.3 - 72,1 82.8 71.7
Overall 77.1 73.8 75.9 73.8
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TABLE 17. COMPARISON OF PERCENT CORRECT CLASSIFICATION FOR TRAINING SETS

IN DATA SEGMENT 2 USING ALL 11 MZS SPECTRAL CHANNELS VERSUS USING

THE 5 CHANNELS WHICH SIMULATE THE THEMATIC MAPPER

11 Channels 5 Channels

@2w? s w?  G2w®  (esw?

(unclassified elements) (1.3) (7.0) (1.2) (3.3)

Hierarchy: Condition Class

Loblolly—-Imm. (2.5) 93.8 100.0 89.8 100.0

Laurel Oak/Willow Oak (3.1) 88.3 86.8 82.5 79.4
Swtgm/N. Oak/W. Oak (4.2) 40.9 48.1 27.4 31,7
Cut Over (7.1) 100.0 95.8 100.0 100.0

Overall 74.5 76.3 67.2 68.4

Hierarchy: Physiognomy

Conifer Sawtimber (2.5) 93.8 100.0 89.8 100.0

Hardwood Sawtimber 96.6 89.8 92.3 92.5
Cut Over (7.1) 100.0 95.8 100.0 100.0
Overall ' 96.4 92.6 92.7 1 94.9
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TABLE 18. COMPARISON OF PERCENT CORRECT CLASSIFICATION FOR BOUNDARY EXCLU-

SIVE TEST SETS IN DATA SEGMENT 2 USING ALL 11 MZS SPECTRAL CHANNELS

VERSUS USING THE 5 CHANNELS WHICH SIMULATE THE THEMATIC MAPPFR

11 Channels 5 Channels

Gzmw? eem?  @2w? (64 m?
(unclassified elements) (3.8)  (14.4) (2.4) (4.2)

Hierarchy: Condition Class

Loblolly-Imm. (2.5) 79.7 86.0 - 79.3 86.0
Laurel Oak/Willow Oak (3.1)  76.9 62.1 77.0 76.6
Swegm/N. Oak/W. Oak (4.2) 49.4 50.0 25.3 25.0
Cut Over (7.1) | 91.1 75.4 92.0 96.7

Overall 79.0 69.3 77.7 81.4

Hierarchy: Physiognomy

Conifer Sawtimber (2.5) 79.7 86.0 79.3 86.0
Hardwood Sawtimber 94,2 84.3 91.5 92.8
Cut Over (7.1) 91.1 75.4 92.0 96.7

Overall o 90.7 82.6 89.3 92.4
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TABLE 19. COMPARISON OF PERCENT CORRECT CLASSIFICATION FOR BOUNDARY INCLU-

SIVE TEST SETS IN DATA SEGMENT 2 USING ALL 11 MZS SPECTRAL CHANNELS

VERSUS USING THE 5 CHANNELS WHICH SIMULATE THE THEMATIC MAPPER

11 Channels 5 Channels
- G2 M2 662 32w (64 m)?
(unclassified elements) (4.4) (16.4) (3.1) (6.3)
Hierarchy: Condition Class
Loblolly-Imm. (2.5) 71.0 72.9 71.7 71.4
Laurel Oak/Willow Oak (3.1) 74.8 :59.7 75.2 71.4
Swtgm/N. Oak/W. Oak (4.2) 47.6 50.0 30,2 33.3
Cut Over (7.1) 89.3 74.2 90.4 95.5
Overall 75.3 64.9 74.5 74.7
;
E Hierarchy: Physiognomy
Conifer Sawtimber (2.5) 71.0 72.9 71.7 71,4
Hardwood Sawtimber 94.1 '85.5 91.5 92.3
Cut Over (7.1) 89.3 74.2 90.4 95.5
Overall i 88.6 80.5 87.4 89.9
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a less well defined signature set. All other hierarchies of data seg-
ment 1 show similar, but lesser reductions in accuracy for training
set classification. In data segment 2, only the (64 meters)2 case for
the physiognomy hierarchy does not follow the rule; but instead shows
a slight increase in accuracy.

Tables 15, 16, 18, and 19 give classification accuracy over test
sets. Again, the (32 meters)2 case shows the decrease in accuracy
expected when fewer channels are used to classify the data. But for
the (64 meters)2 case several of the test set results show an increase
in classification accuracy. Figure 19 represents the percent of un-~
classified elements for the (32)2 and (64 meters)2 cases of both data
segments using 5 and 11 channel classification. This figure shows
that the 5 channel classifications do not display the large jump in un~-
classified elcments for (64 meters)2 test sets that is characteristic
of the 11 channel classifications. Thus, 5 channel classification
accuracy is greater than 11 channel accuracy, apparently due to a smaller
percentage of unclassified elements (which were considered to be 'in-
correctly classified). The number of elements which are misclassified
is smaller for the corresponding 11 channel classification in all cases.

Tables 20 and 21 show classification results of data segment 1 for
the 5 TM channels using the nine-point rules previously reported for all
11 channels in Section 4.1.2. Comparison of Tables 20 and 21 with
Tables 10 and 11 shows that the results using the 5 TM channels display
the same trends as the 1l channel classifications though the accuracies
are lower. In geuneral, the nine-point rules do not produce as great
an improvement in classification accuracy with 5 channels as with all
11 channels. The one exception is the physiognomy hierarchy which did
not improve very much in the 11 channel case due to the already high

accuracy.
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TABLE 20. PERCENT CORRECT CLASSIFICATION OF VARIOUS DECISION RULES ON BOUNDARY EXCLUSIVE TEST

SETS USING THE 5 CHANNELS WHICH SIMULATE THE THEMATIC MAPPER

{32 Meter)2 (64 Meter)2
Linear Linear
Rule Q Rule Bayes 9 Prior 9 Pref 9 Vote 9 Rule

Hierarchy: Condition Class
Conifer Regen. (2.3) . 65.9 63.5 82.4. 71.9 88.8 77.6 84.1
Loblolly-Imm. (2.5) 61.4 56.8 66.7 61.1 66.7 72.2 0.0
Loblolly-Mature (2.6) 6.3 13.6 28.1 18.9 20.9 4.1 7.9
Shortleaf-Imm. (1.3) 23.1 31.6 41.5 35.1 36.3 33.7 60.0
ShortleafMature (1.4) 57.4 54.0 87.1 72.8 89.6 81.7 55.3
Overall - 43.5 45.6 63.2 53.6 63.6 55.0 62.5
Hierarchy: Growth Stage ’
Conifer Regen. (2.3) 65.9 63.5 82.4 71.9 88.8 77.6 84.1
Imm, Sawtimber 61.0 53.0 56,2 55.1 51.2 51.6 61.4
Mature Sawtimber 45.5 44,8 64.6 56.3 62.6 53.8 44,7
Overall 58.7 54.9 69.0 62.2 69.5 62.7 67.0
Hierarchy: Cover Type
Conifer Regen. (2.3) 65.9 63.5 82.4 71.9 88.8° = 77.6 84.1
Shortleaf Pine 57.1 64.4 81.9 74.6 82.5 78.7 86.4
Loblolly Pine 38.4 43.2 49,6 46.6 44,0 47.4 7.3
Overall 57.4 60.4 76.9 69.0 78.8 73.2 74.0
Hierarchy: Physiognomy
Conifer Regen. (2.3) 65.9 63.5 82.4 71.9 88.8 77.6 84.1
Pine Sawtimber 86.5 85.3 92.2 90.1 90.1 90.4 83.0

Overall 78.3 76.7 88.3 82.8 89.6 85.2 83.5
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TABLE 21. PERCENT CORRECI CLASSIFICATION OF VARIOUS DECISION RULES ON BOUNDARY INCLUSIVE TEST
SETS USING THE 5 CHANNELS WHICH SIMULATE THE THEMATIC MAPPER

(32 Meter)2 (64 Meter)2

Linear Linear

Rule Q Rule Bayes 9 Prior 9 Pref ¢ Vote 9 Rule
Hierarchy: Condition Class
Conifer Regen. (2.3) 66.1 63.8 81.9 72.0 87.9 77.2 84.4
Loblolly-Imm. (2.5} . 58.6 51.7 66.7 62.5 66.7 - 72.9 0.0
Loblolly~Mature (2.6) 6.5 12.5 25.2 17.1 18.9 3.6 Had
Shortleaf-Imm, (1.3) 20.9 29.1 38.4 32,9 33.5 31.5 46.4
Shortleaf-Mature (1.4) 57.8 51.3 79.3 66,2 82.3 72.6 53.9
Overall . ’ 43.0 44.2 60.5 51.8 61.0 52.9 57.4

t; Hierarchy: Growth Stage

Conifer Regen. (2.3) 66.1 63.8 81.9 72.0 87.¢9 77.2 84.4
Imm, Sawtimber 55.9 49.5 52.6 52.4 48.0 49.4 46,2
Mature Sawtimber 46.4 44,3 60.6 52.3 59.0 49.9 44,4
Overall 57.3 53.6 66.3 60.1 66.8 6U.5 61.9
Hierarchy: Cover Type
Conifer Regen. (2.3) 66.1 63.8 81.9 72.0 87.9 77.2 84.4
Shortleaf Pine 59.1 62.9 77.5 70.4 77.4 72.4 80.2
Loblolly Pine 40.0 43.4 48,1 45.9 43.0 47.0 7.1
Overall 51.9 59.9 74.4 67.0 75.9 70.2 71.2
Hierarchy: Physiognomy
Conifer Regen. (2.3) 66,1 *63.8 81,9 72.0 87.9 77.2 84.4
Pine Sawtimber 86.4 84.4 89.4 87.5 86.8 86.7 76.1

Overall 78.4 76.3 86.4 81.4 87.2 83.0 79.6
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The 5 channel classification to simulate the Thematic Mapper in-
dicates accuracy is higher for (64 meters)2 than (32 meters)2 data.

For the most general (aggregated) hierarchy of forest features (physiog-
nomy), the TM channels give satisfactory results compared to the

11 channel results; but, for the most specific cases, i.e., condition
class, accuracy is seriously reduced compared to the 1l channel MZS
data.

4.2 AREA PROPORTION ESTIMATION AS A FUNCTION OF SPATIAL RESOLUTION

The previous sections have been concerned with evaluating the
ability of computers to accurately classify desired features by making
a decision for each resolution element and then determining whether or
not the decision was correct, relative to the true identity of that
element. This section is concerned with how well the proportion of
total scene area of each feature class present in the classified scene
can be estimated, without regard to location. Such proportion estima-
tion may be useful for surveys of extensive areas where information is to
to be specified in statistical summaries by geographic or political
subdivisions. ‘

A recent study has noted little or no correlation between in~place
classification accuracy of terrain features and good performance on
estimating the proportions of terrain features [4]. Compensating errors
in the classification results can cause the classified proportions of
features to match the true proportions. However, the extent of such
errors is dependent on the types of features to be classified. For
example, the situation in data segment 2, where one condition class of
hardwoods (Feature 4.2) is consistently classified as another hardwood
condition class (Feature 3.1), will lead to Feature 3.1 being over-
estimated, while Feature 4.2 is underestimated. Thus, in order to avoid
the difficulties in separating hardwood condition classes in data seg-
ment 2 and the various pine sawtimber condition classes of data seg-
ment 1, proportion estimates were calculated only for the physiognomic

features of each data segment. We believe that proportions based on
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physiognomy represent a level of information most appropriate for
surveys of extensive areas.

Within each data segment, proportions of each physiognomic feature
were estimated from the total number of resolution elements that fell
within the previously defined boundary inclusive test sets (i.e., all
total feature areas). Since previous sections have shown that unclassi-
fied elements constituted a large percentage of the total for cases of
coarse spatial resolution, estimated proportions were calculated two
ways: (1) using all the elements in the test area, and (2) using only
those elements which were classified as belonging to one of the estab-
lished features. This allows partial examination of the effects of
unclassified elements on proportion estimation results.

Two measures of proportion estimation accuracy were computed. = One
was the percent difference between estimated and actual proportions
for each feature. The other was the RMS error for each data segment,

computed from these differences as follows:

1
1; . 2)?
Eews = \n <, Py - py)
i=1

where: P = ground truth proportion for one feature in the test

area,
estimated proportion for the same feature in the

T
[N
1]

test area,

N = number of features considered.

RMS error is plotted in Figure 20(a) as a function of spatial
resolution for all elements in the test area of each data segment while
Figure 20(b) gives the RMS error calculated using only classified ele-
ments. Comparison of these figures illustrates a much larger RMS error

for the (64 meters)2 case when unclassified elements are included.
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Data Segment 1

error

RMS

Pata Segment 2

Spatial Resolution (metersz)

(a) RMS Error Calculated For All Elements In Each Data Segment

error

Data Segment 1

RMS

2 + Data Segment 2

L = : 4 5 4 1
% o 22 42 82 162 322 642
Spatial Resolution (meters?2)

(b) RMS Error Calculated For Only Classified Elements In Each Data Segment

FIGURE 20. RMS ERROR PLOTTED AS A FUNCTION OF SPATIAL RESOLUTION
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The best spatial resolution for proportion estimation as seen in these

- figures is (32 meters)2 for data segment 1 and (16 meters)2 for data

segment 2. Figures 21-24 are plots showing the percent difference of
the estimated proportion of each physiognomic feature compared to the
ground truth proportion. For Figures 21 and 22, the estimated percen-
tages are shown for all elements in the test area. These figures show
the effect of large numbers of unclassified elements as all features
in both (64 meters)2 data segments are underestimated.

Figures 23 and 24 give results calculated for only the classified
elements. These figures give more insight into how the features of
each datez segment interrelate. At low spatial resolutions in data
segment 1, pine saﬁtimber is overestimated while regeneration is under-
estimated. The estimates of both features improve through the (32 me-
ters)2 data set, and then at (64 meters)2 regeneration is overestimated
while pines are underestimated. These results are due to the fact
that, as spatial resolution coarsens, less of the regeneration area is
misclassified as pine sawtimber, increasing the proportion of elements
classified as regeneration while decreasing the estimated proportion
of pine sawtimber. In data segment 2 (Figure 24) the situation might
appear to be more complicated since there are three features. However,
the cut over feature is sufficiently unique that little interaction
occurs with the other two features and its estimated proportion varies
little from its true ground proportion for all cases of resolution.
Thus, the only interaction is between hardwoods and pine. While pines
are overestimated at low spatial resolutions, hardwoods are under~
estimated; but for resolutions of (16 meters)2 and greater, pines are
underestimated and hardwoods overestimated. These results reflect the
improvement in hardwood classification accuracy as a funtion of increas-
ing spatial resolution which increases the proportion of elements
classified as hardwoods, but decreases the estimated proportion of pines

since fewer hardwoods are misclassified as pines.
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For both data segments, the changes in estimated proportions of
physiognomic features that occur with changes in spatial resolution
seem principally due to changes in the misclassification of those fea-
tures having greater variability. Within such features, the averaging
of extreme data values as spatial resolution degrades was seen to im-
prove the estimate of their scene proportion. Thus, fewer misclassi-
fications of elements within conifer regeneration (data segment 1) and
hardwood sawtimber (data segment 2) were noted. The different optimum
spatial resolutions noted for proportion estimation in each data segment

indicates some dependency on the types of features.

67



D ERIM

FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN

5

CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS
A supervised multispectral data classification approach that
utilized a standard single-element linear decision rule with a con-
ventional constant decision threshold was used to classify forest
- features in 6 MSS data sets that ranged in spatial resolution from
(2 meters)2 to (64 meters)z. The classification accuracies, averaged
over all features for training and test sets were seen to improve from
(2 meters)2 to (32 meters)2 cases of resolution. Improvement was
attributed to a reduction in the number of misclassified resolution
elements that occurred as a result of reduced competition among sig-
nature distributions. Reduced competition presumably resulted from a
reduction in scene variation that is inherent in the averaging of
information over larger ground areas.
When spatial resolution was degraded to the (64 meters)2 case,
the percentage of unclassified elements in test sets increased greatly.
Because unclassified elements were considered to be errors, this caused
a net decrease in classification accuracy for the test sets of hier-
archies in data segment 2 and in the simulated results of test sets
in data segment ). Therefore, it appears that unclassified resolution
elements can exert a Strong influence on classification results; and
rejection threshold levels should be selected with great care. The
results of this study indicated that a resolution of (32 meters)2 pro-
vided the most accurate element-by-element classification of these
forest features. However, for (64 meters)2 data, a selection of a
different rejection threshold might have yielded different indications.
Very definite improvements in classification performance as
spatial resolution was degraded were noted for hierarchies of more
general (aggregated) forest features by virtue of the fact that mis-

classifications of resolution elements between certain specific
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features canceled for their aggregated feature class. Although very
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similar trends were noted for all hierarchies as a function of spatial
reéolution, we point out the differences in performance that occur
between equivalent hierarchies of the two data segments as illus-
trating the dependency of the performance on the characteristics of
thé features in the scene. These differences suggest that strategies
for the automatic classification of forest features with MSS data
possibly can not be generalized, but rather need to be reconsidered
anew for specific areas or applications.

The application of multi-elemernt decision rules to the classifi-
cation of forest features attempts to provide the improved classifi-
cation advantages of coarser spatial resolutions while maintaining the
locational accuracy and area measurement capabilities inherent in fine
resolutions. Results of applying four different nine-point rules to
the classification of the (32 meters)2 data indicate that the judicious
selection of such rules can offer improved classification performance
that is greater than an improvement that might be realized with standard
classification techniques used on coarser resolution data. Nine-point
rules appear to offer a significant advantage for improving the classi-
fication of detailed features. We postulate that multi-elemeni
approaches might provide even more benefit if applied to finer resolu-
tion data.

The Thematic Mapper simulation indicated that classification
accuracy was higher for (64 meters)2 data than for (32 meters)2 data.
The five channels selected to simulate the proposed Thematic Mapper
channels compared favorably in terms of classification accuracy to the
full complement of MZS channels for general hierarchies such as physi-
ognomy but do not appear to be able to give the accuraéy for condition
classes that is possible with all the MZS channels.

Area proportion estimation is of great practical importance for

large area surveys, especially extensive ones. 1In this study, forest
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features at the level of physiognomies were well estimated. The best
spatial resolution for such estimates varied between the two data seg-
ments which is most likely a result of the fact that there are different

features present in the two segments.

5.2 RECOMMENDATIONS

As a result of this study, a number of issues can be stated as
requiring further investigation. Some of the issues clearly could not
be addressed within the scope of this study. Others are raised as a
result of this study.

1. A signature analysis study should be undertaken to resolve
the variations in classification performance that occur for
individual features and some hiurarchies as spatial resolution
degrades. Obvious questions remaining unanswered by this
study include:

a. the possible biases of using several signatures for some

features versus a single signature for others,

b. changes in the location, shape, and size of feature. signa~-
tures relative to the data values as resolution varies, and

c. the effect that would have resulted from varying the deci-
sion threshold of signatures to allow a constant propor—
tion of unclassified elements for all resolutions,

d. additionally, the inherent (2 meters)2 resolution of this
data set would enable an examination of the fundamental

influences affecting forest cancpy signatures.

2. Investigate the merits of other training approaches for classi-
fying forest features, In order to recognize U.S. Forest
Service designated features, we utilized a supervised training
approach, Other approaches worth investigating might include

both supervised and unsupervised clustering.
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The promising results of the nine-point rules for forest fea-
ture classification shown in this report suggest that addi-
tional investigation and development of multi-element pro-
cessing techniques has potential for improving *he classifi-

cation and boundary location of forest areas.

The very limited ground area encompassed by this study has
prevented any statistical assessment of classification per-
formance for features and hierarchies as a function of
spatial resolution. It is recommended that an approach
similar to the one reported herein be applied to a more ex-

tensive forest area.

Area proportion estimation of forest features at the physi-
ognomic level looks very promising. More data segments should
be studied to evaluate if there is one optimum spatial resolu-
tion or to define how the optimum changes as the character of

the feature within the segment changes.
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APPENDIX I
MSS DATA QUALITY ANALYSIS

Prior to the procedural processing steps of this study, we ana-
lyzed the quality of the MSS data in order to detect potential prob-
‘lems that could affect the accuracy of the classification results.
Such problems could be instrument-related or they could be associated

with the radiation environment and the scene being scanned.

I.1 ANALYSIS OF INSTRUMENT~RELATED DATA QUALITY

The purpose of this analysis was to assess signal-to-noise
characteristics and signal instabilities in the MSS data. Signal-to-
noise was assessed by determining dynamic range and high frequency
noise variations for each spectral channel. Dynamic range in this
case is defined as the range of signal values that are representative
of total scene variability. It was quantified-by using histogram
limits that encompassed 96% of a one percent sample of the signal
values taken in a systematic fashion from each segment of data. High
frequency noise was measured by averaging rms fluctuations in signal
value that had been computed for a dark level calibration source at
several regions along the flightline of each segment.

Table I-1 lists dynamic range, noise quantities, and resultant
signal~to~noise values for data segment 1. Signal-to-noise, obtained
by dividing the dynamic range of each channel by its respective noise
quantity, indicates the number of quantum contrast levels available
and thus provides some relative measure for ranking channels according
to the ability to distinguish between two sources of radiance., Note
that Channel 1 (.41-0.44 um) was very noisy which resulted in a sub-
stantially lower signal-to-noise value than for other charmnels,.

Further observations of signal values from the calibration sources
indicated that a shift in mean signal level occurred in all spectral

channels along the flightline of each data segment. A similar shift
yX'd
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TABLE I-1., DATA QUALITY FOR MZS DATA OF MISSION 290 -~ DATA SEGMENT 1

Spectral Band
Limits (um) Dynamic

at 50% Range RMS "Noise" Signal-to-Noise
Sensor Response (Signal Fluctuations Ratio

Channel Points Values) (Signal Values) Value Ranking

1 0.41-0.44 114 33.1 3.4 11

2 0.45-0.49 52 3.9 13.3 10

3 0.49-0.54 33 2.3 14.3 9

4 0.53-0.57 31 1.8 17.2 8

5 0.57-0.61 27 1.4 19.3 7

6 0.61-0.65 31 1.5 20.7 6

7 0.65-0.69 31 1.3 23.8 5

8 0.69-0.73 48 1.2 40.0 3

9 0.76-0.86 123 49 25,1 4

10 0.95-1.03 104 1.8 57.8 1

11 8-12 ' 105 2.5 42.0 2
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in signal could be noted for the video portion of the data as a contrast
variation that occurred between the groups of scan lines (see Figure I-1).
This change in contrast or 'banding" could be caused by some instability
in the scanner electronics. The magnitude of the shift varied from
channel to channel and was calculated to be as high as 30% of the dy-
namic range for some channels. The detrimental effect of such a low
frequency signal variation on automatic classification procedures re-

quired that it be removed.

A dynamic clamp algorithm was developed and applied to each seg-
ment of data. The algorithm implemented an additive correction to the
data by adjusting signal values in the video portion of each scanline
according to a continuously updated correction term. The correction
term was computed as an average of the dark level calibration source
signals contained in a window that spanned several successive scan-
lines immediately preceding and following the scanline being corrected.
Updating the correction term was accomplished by sliding the window
along the flightline and re-computing the average for each scanline
corrected.

By averaging dark level calibration source signals within a
window of several scanlines, we strived to normalize the low frequency
signal variation along the flightline without introducing additional
high frequency noise on a scanline to scanline basis. Occasional
calibration source signals of inordinately different magnitude that
might wrongly influence the computed correction term were automatically
excluded from the averaging process by virtue of an editing limit.
Since such widely varying calibration source signals might be indica-
tive of a bad scan line or excessive system noise, they alone were
used to adjust video signal values in their respective scanlines.
Thus, bad scanlines remained as bad scanlines.

Application of the dynamic clamp algorithm constituted the only

preprocessing correction to the data. Figure I-2 illustrates data
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FIGURE I-1. CONTRAST VARIATION OR 'BANDING' IN DATA SEGMENT 1 RESULTING
FROM A SHIFT IN SIGNAL LEVEL ALONG THE FLIGHTLINE. Image is a five interval
level-slice of Channel 7 (0.65 - 0.69 ;. m).
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segment 1 after removal of the banding artifact by the clamping pro-
cedure. Table I-2 shows the resultant dynamic range and noise quanti-
ties for the segment after clamping. For most channels, dynamic range
varied only slightly from original levels (see Table I-1) and noise
quantities were gererally reduced by about 25%. These results agreed
with our expectations that the clamping procedure would not significantly
alter the basic character of the data set. The large increase in dy-
namic range for Channel 1 occurred by virtue of the noisy calibration
source signals frequently exceeding the editing limit of the window
used for computing the correction term,

To be complete, the dynamic range and noise quantities for data
segment 2 after clamping are presented in Table I-3. Because brighter
and darker scene classes exist in this data segment, the dynamic range
for each channel is greater than for data segment 1. Noise quantities

are comparable between the two data segments.

I.2 ANALYSIS OF SIGNAL VARIATIONS ASSOCIATED WITH SCAN ANGLE

Because of the large range of view angles common to aircraft
multispectral scanners (+ 60° from nadir in the case of this data set),
scene radiance values recorded by the scanner can include systematic
variations that are associated with scan angle. Such variations can be
caused by the scattering and attenuating influences of the atmosphere
as path length from sensor to ground varies with scan angle [ 5]. The
bidirectional reflectance properties of the scene components are another
major cause [ 6]. The presence of such variations in the data can
pose a serious problem for classifying forest features across the en-
tire flightline. '

Variations in signal associated with scan angle were assessed for
the data set of inherent (2 meters)2 spatial resolution. We computed
average scan lines for three different regions of each Segment

of data. An average scan line contained average signal values for
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TABLE I-2. DATA QUALITY FOR MZS DATA OF MISSION 290 --

DATA SEGMENT 1, AFTER CLAMPING

Spectral Band
Limits (um) Dynamic

at 50% Range RMS '"Noise" Signal-to-Noise
Sensor Response (Signal Fluctuations Ratio
Channel Points Values) (Signal Values) Value Ranking
1 0.41-0.44 153 17.0 9.0 11
2 0.45-0.49 47 2.7 17.4 10
3 0.49-0.54 28 1.7 . 26.3 6
4 0.53-0.57 25 1.3 23.7 8
5 0.57-0.61 23 1.0 23,0 9
6 0.61-0.65 25 10 25.0 7
7 0.65-0.69 28 1.0 280 5
8 0.69-0.73 47 1.0 f 47.0 3
9 0.76-0.86 122 3.2 38.1 4
10 0.95-1.03 106 1.6 66.2 1
11 8-12 106 1.7 62.4 2
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TABLE I-3. DATA QUALITY FOR MZS DATA OF MISSION 290 --

DATA SEGMENT 2, AFTER CLAMPING .

Spectral Band
Limits (um) Dynamic

at 50% Range RMS '"Noise" Signal-to-Noise
Sensor Response (Signal Fluctuations Ratio
Channel __ Points Values) (Signal Values) Value Ranking
1 0.41-0.44 203 17.9 11.3 11
2 0.45-0.49 80 2.5 32.0 9
3 ©0.49-0.54 44 1.4 31.4 10
4 0.53-0.57 38 1.1 34.5 8
5 0.57-0.61 34 0.9 37.8 7
6 0.61-0.65 36 0.8 45.0 6
7 0.65-0.69 43 0.9 - 47.8 5
8 0.69-9.73 -1 1.0 56.0 3
9 0.76-0.86 149 3.1 - 48,1 ;4
10 0.95-1.03 148 1.6 92.5 2
11 §-12 134 1.4 95.7 1

- R e

R e

80



et e e

_5 ERIM
d FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

80 divisions, each of which had been computed by averaging 10 adjacent
resolution elements over 100 successive scan lines in the original data.
The gross averaging of 1000 resolution elements into each of the divi-
sions in the average scan line thus enable smoothing over high frequen-
cy variations in radiance within scene features in order that radiance
variations associated with scan angle could be observed more clearly.

Figure I-3 illustrates several average scan lines computed over a
region at the southern end of data segment 1. Except for pine regen-
eration at the extreme right side, most of the region covers a fairly
homogeneous scene of pine sawtimber features. Obvious differences in
average signal value between features exist only where the average
scan lines cross a pipeline right~of-way (exposed bare soil at division
no. 46) and the pine regeneration {(division no. 79). In the figure,
plots for four of the 11 MSS channels illustrate representative scan
angle variations in radiance for the blue, green, red, and near-infrared
spectral regions. Because the direction of the flightline was toward
the sun, the direction of scan was perpendicular to the direction of
illumination. Thus, any variations in scene radiance caused by sun
position will be symmetrical either side of nadir.

With the exception of the short wavelength regisns, computed
average scan lines displayed a lack of obvious signal variations asso-
ciated with scan angle, In other words, the circumstances of data
collection seemed to minimize effects of the atmosphere and the bi-
directional reflectance properties of forest features in modifying
séene radiance across the flightline.

To make a case for the observed average scan lines from the stand-
point of the atmosphere, we exercised the Turner Atmospheric Model [ 5]
to illustrate trends in scene radiance caused by increasing path length
from sensor to ground. The components of radiance are given by the

relationship
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p.E,T
A Py

where

LT is the total spectral radiance received from the target at
A

the sensor,

oy is spectral reflectance of the target,

EA is spectral irradiance oun the target,

T is spectral transmittance of the atmosphere between sensor

and target,

and LP is path radiance introduced by the atmosphere between
A

sensor and target.
The effect of increasing path len.th on total radiance will be mani-
fested by virtue of changes in atmospheric transmittance and path
radiance.

For the model calculations, illumination and viewing geometries

specified were those that existed at the time of data collection. Tar-

get and surrounding background reflectance parameters were set equal
and were based on typical vegetation canopy reflectance values for
wavelengths of 400, 550,.650, and 800 nm. Atmospheric parameters were
specified for two assumed cases of atmosphere condition as stated by
horizontal visibilities of 23 km (clear) and 8 km (hazy).

Results of the model calculations are presented in Table I-4.
Scan angles of 0° and 60° provide results for atmospheric path lengths
tc the nadir and edge of the flightline respectively. For the clear
atmosphere case, as scan angle varies from 0° to 600, changes in total
radiance (column 8) are relatively small for the green, red, and near-

infrared wavelength regions while the change for the shorter wavelength
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TABLE I=4, TURNER ATMOSPHERIC MODEL RESULTS FOR ATMOSPHERIC PATH LENGTHS APPROPRIATE TO MSS
SCAN ANGLES OF 0° AND 60°; TWO CASES OF ATMOSPHERE CONDITION ARE ASSUMED.

VISIBILITY = 23 km

0° Scan Angle 60° Scan Angle
Percent Cheznge

Percent Total Percent Total in Total

- Total Radiance Radiance Total Radiance Radiance Radiance

Wavelength 2 a1 -1 Represented by -2 i -l Represented by o - .0
(nm) (mw cm “sr “um ~) Path Radiance Transmittance (m¢ cm “sr “pm ) Path Radiance Transmittance 0” -~ 60

(1) (2) A3) (&) (5) &) (7). (8)

400 1.0888 67.1 0.8825 1.4364 78.0 0.7788 +24.2
550 2.1241 22.5 0.9204 2.3143 34,5 0.8470 + 8.2
650 1.0518 27.2 0.9287 1.2010 40.8 0.8624 +12.4
800 8.8386 4.6 0.9399 8.6898 8.8 0.8834 -1.7

VISIBILITY = 8 km

400 1.5599 81.5 0.7269 2,0247 89.6 G.5283 +23.0
550 2.4662 45.6 0.7626 2.7896 63.3 0.5816 +11.6
650 1.2661 47.7 0.8138 1.5372 65.0 0.6623 +17.6
800 8.6187 8.6 0.8834 8.3335 16.5 0.7804 - 3.3

NYSIHDIW 4O ALISHIAINN IHL 'SIIHOLVYHNOBY I NNY MOTTIM ATHINNOS

Hij3
| W



Z - FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN .

blue region is much greater. As the condition of the atmosphere de-
grades to the 8 km visibiliﬁy case, changes in total radiance with scan
angle increase for the longer wavelength regions. Thus, on the basis

of model calculations, a "clear" atmosphere at the time of data collec-
tion would tend to minimize signal variations associated with scan angle
for wavelength regions longer than the blue region.

A combination of circumstances attributable to sun elevation and
azimuth angles may have combined to reduce any appreciable variations
in radiance as a function of scan angle that would be caused by the
bidirectional reflectance properties of the forest canopy. Because of
the low sun elevation angle of 400, large shadows cast by the trees
within each forest stand resulted in little illuminated background
being visible between trees for the nadir scan angle. Thus, the loss
of observed illuminated background as scan angle changed from nadir
would not have been a factor to influence scan angle variations in radi-
-ance. In addition, because the direction of scan was perpendicular to
the direction of illumination, sun azimuth angle relative to scan angle
remained constant. This insured that radiance variations with scan
angle were symmetrical either side of nadir and of lower magnitude than
for situations where the direction of scan is alternately toward and
away.from the direction of illumination.

The lack of strong signal variations associated with scan angle
for most spectral chaﬁnels in this data set was significant for the
objectives of this study. Because of the low altitude from which the
data were collected;, any severe or non-symmetrical scan angle variations
might have seriously reduced the amount of already limited ground
coverage. On the basis of this ane'lysis, we concluded that signature
extraction and classification performance procedures could be conducted
within 30° either side of the flightline nadir with a reasonable degree
of independence from scan angle variations. This region would provide

coverage for several forest features and yet maintain a view angle
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geometry between sensor and ground that would exclude large variations

in atmospheric path length or bidirectional reflectance phenomena.
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APPENDIX II
A SPATIAL FILTERING TECHNIQUE FOR SIMULATING DEGRADED
RESOLUTION OF DIGITIZED DATA

T1.1 INTRODUCTION

The spatial frequency response of a multispectral scanner (MSS) is
usually specified by a modulation transfer function (MIF) which desig-
nates the MSS system throughput (amplitude, and sometimes phase as well)
as a function of spatial frequency. The equivalent, in the spatial
domain, to this MIF is a spatial weighting function which can be visu-
alized in either of two ways: (1) as a specification of the relative
weighting of each point in the scene within an effective instantaneous
field of view (LFOV), or (2) as the effective analog spatial response
of the MSS to a spatial impulse (point source) input. MIF's and their
equivalent spatial weighting functions are fundamental to the under-
standing of spatial resolution and to the following discussion.

Degradation of MSS spatial resolution has often been simulated
in the past by simply averaging together digitized signals within
blocks of pixels and replacing each block with its average signai,
representing the simulated signal for each new pixel in the degraded
data set. The dimensions of these blocks of pixels can be determined
by registering a grid with the original data, with the spacing of the
grid representing the approximate size and spacing desired for the
degraded pixels. The average signals are then calculated and recorded
for each square (or rectangle) of the grid. This technique simulates
enlarging the MSS aperture, reducing the sampling rate, and increasing
the ground speed of the sensor. It also simulates a fundamental change
in the over:ll scanner system MIF. This changed MIF is somewhat un-
fealistic for studies of MSS data utility as a function of scanner
resolution, particularly with regard to simulating the performance of a

satellite system, using aircraft MSS data.
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A more valid basis for studies of changing scanner resolution
can be achieved by spatially filtering and resampling MSS data in a
manner which simulates a realistic system MTF at the degraded resolu-
tion. In this case we choose to keep the effective system MTF unchanged,
as if only the altitude of the sensor, its ground speed, and the time
intervel between instantaneous samples of the analog signal were
changed. Such a simulation requires that one first specify the nature

of the overall MSS system MIF,

ITI.2 SIMULATION OF THE OVERALL SCANNER SYSTEM RESPONSE

For a simulation, an overall scanner system MIF is most easily
specified by components, corresponding to the various factors which
together comprise the total system response. For this study three com-
ponents were chosen which a-= typical for most modern scanner instru-
ments.

The first scanner system response component chosen was one cor-
responding to the instantaneous field of view associated with the
scanner aperture. The spatial weighting function for this IFOV is
plotied in Figure II-1 for a two meter square IFOV. The points plotted
(connected by straight line segments) correspond to digitization of the
curve at the rate of 8 samples for every meter. This high sampling
rate was chosen to illustrate (apprcximately) the analog form of the
weighting function, meant to correspond to a scanner system with a
sampling interval (i.e., pixel spacing) of two meters.

Since the geometry of scanner optics, their imperfections, and
atmospheric effects all contribute to blur of the instantaneous field
of view of the instrument, the second response component chosen was
one corresponding to gaussian blur with a standard deviation of
1/3 meter, The spatial weighting function corresponding to this blur
is plotted in Figure II-2, When the effects of this blur are combined

with the IFOV represented by the first response component, above,
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(by convolution in the spatial domain), one obtains the spatial weight-
ing function representing the total combined optical and atmospheric
effects simulated for this study. This combined weighting function is
plotted in Figure II-3. Again, the curves are plotted using 8 sample
points per meter. The MIF corresponding to the combination of these
is plotted in Figure II-4, Note that the assumed spatial sampling
frequency for the simulated scanner system is one sample for every
two meters, while the MIF curve has been plotted for spatial frequencies
as high as one sample per meter. The significance of spatial frequen-
cies in excess of one half the simulated sample rate (greater than one
sample per four meters) will be discussed below.

While the first two scanner résponse components simulated above
are two-dimensional effects, the third component chosen is strictly
a one-dimensional effect, applying only to the shape of the spatial
wéighting function in the scanning direction. This third component
simulates electronic filtering used within the scanner to remove high
frequency information which is of little use due to the limitatians
imposed by the choice of a finite sampling rate, and to trim the shape
of the within-scan spatial weighting function and the corresponding
MIF curve to produce the desired resolution size for the effective
(overall for the system) instantaneous field of view. For this purpose
a two pole Butterworth filter was simulated, whose spatial weighting
function,is plotted in Figure II-5, The impulse response of the two

pole Butterworth filter is an exponentially damped sinusoid, represented

by
H(x)3 = 2/§ﬁkc e—/zﬁkcx sin /Eﬁkcx (1I-1)

with x representing distance in meters, kC = 0,364 cycles per meter
representing the cutoff frequency (half power point) for the filter,

and the subscript 3 designating that this response pertains to the
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third scanner response component simulated. The combined spatial
welighting function within-scan, which includes all three response com—
ponents, is plotted in Figure II-6. The MIT corresponding to this
combination is plotted in Figure TI-7. Note in this [igure that the
spatial frequency at which the combined MTF amplitude equals 0.5 is one
cycle per four meters. By convention this is interpreted to correspond
to a two meter resolution system. The along-track overall MTF for this
simulation (plotted in Figure 1I-4) is specified by

g-ﬂM)z

1
—'i(k x 3

sin(k * 2aM)
k = 21M

while the within-scan overall MIF (plotted in Figure II-7) is specified
by (11-3)

g’ﬂM)z

1
- 5k x 3

sin(k x 27M)
k x 2wM

[1+ (k 3.25M)4]"1/2'

a0y 5 5=

with k representing spatial frequency in cycles per meter, and with the
subscripts 1, 2, and 3 specifying the response components compriéing
each MIF., The response of this simulated system to an edge in a scene
is plotted for the along-track direction in Figure I1I-8, and for the
within-scan direction in Figure II-9. This latter response is quite
similar to the published edge response for the MZS scanner whose data
was used for this study, and is also reasonable for a modern satellite.

scanner system.

II-3 DERIVATION OF THE REQUIRED SPATIAL FILTERS IN ANALOG FORM

Having specified the simulated scanner system MTF's both along-
tréck and within-scan, one may next address the problem of spatially
filtering the two meter resolution MSS data to simulate four meter data.
Since the order in which the separate components of the simulated
scanner response are combined makes no difference mathematically, one

can determine three separate spatial filtering components, each

93



=

T B BT T T B T T T ¥ T B o YY" YT T T v Ty Tvrvrmre e rrrrrrr ]
FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAM

1.0
T ,/”\\
e 0.8 -
=1
o
4 0.6
(-9 v
-
T
N 004 1
ot
F
£ 0.2 1
=
=]
0 -+ + f t frmmmmemrt e e
=5 =4 =3 -2 -1 0 1 2 3 4 5

FIGURE 11-6.

Distance (meters)
SIMULATED COMPOSITE WITHIN~SCAN SPATIAL WEIGHTING FUNCTLON

ASSOCIATED WITH SCANNER SYSTEM (2 meter resolution)

Amplitude

ALY

~
~

N S

t f L _;
1/4 1/2 3/4 1
Spatial Frequency (cycles per meter)

-FIGURE 11-7, SIMULATED COMPOSITE WITHIN-SCAN MODULATION TRANSFER FUNC-
TION ASSOCIATED WITH SCANNER SYSTEM (2 meter resolution)

94



vt

E

s

o

|
1

FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MILHIGAN

e
0.8 |
[)]
=
2 /
—~ 0.6 //
£
/
o, 4 /
o 0.4 /
=]
<
!
£).2 4
o]
(o7
e
=0 + i ey : i t . e
-5 -4 -3 -2 -1 0 1 2 3 4 5

FIGURE II-8.

o (e
~ o)}
} }
L L3

Proportionate Amplitude
o .
o

Distance (meters)

SIMULATED ALONG-TRACK EDGE RESPONSE ASSOCIATED WITH
SCANNER SYSTEM (2 meter resolution)

s

T o s I

FIGURE II-9.

t f } —t t +- —+ |
-3 -2 -1 0 1 2

Distance (meters)

SIMULATED WITHIN-SCAN EDGE RESPONSE’ASSOCIATED WiTH
SCANNER SYSTEM (2 metef resolution)

95



Z FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

assoclated with a separate member among the original three spatial
weighting components, which perform the appropriate separate conversions.
These three spatial filtering components, when suitably combined, will
then represent the total spatial filtering function that is required

(in analog form).

The first spatial filtering function required is a pair of unit
impulses spaced two meters apart, as shown in Figure II-10. 1In two
dimensions this first spatial filtering function can be visualized as
four unit impulses located at the corners of a two meter square, This
is equivalent to applying the one-dimensional filtering function shown
in Figure II-10 first in the within-scan direction, and then in the
along-track direction (or vice versa). This relation between one-di-
mensional and two-dimensional representations of the aperture and
blur weighting and filtering functions holds in all cases simulated
for this study, hence the along-track and within-scan filtering and
weighting procedures are treated independently as one-dimensional
problems. When combined with the first spatial weighting component
(Figure II-1), this first filtering function produces a function rep-
resenting a four meter square IFOV associated with the scanner aperture,
simulating a doubling of the sensor altitude (with blur yet to be
considered). This aperture function is plotted in Figure II-11l. Note
that sample points for the graph are still plotted at a spacing of
8 samples per meter.

The second spatial filtering function required is a gaussian func%
tion with a standard deviation of 1/3 x /§>meters, which is plotted
in Figure II-12. This is another two-dimensional filtering function
which may be considered as two separate one-dimensional functions,
as shown in the figure, applied in the within-scan and along-track
directions, respectively. The combination of this second filtering
function with the seﬁond weighting function component is plotted in

Figure II-13, with the horizontal axis compressed to facilitate
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comparison with the origimal second weighting component plotted in
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Figure II-2. As can be seen, the filtering function succeeds in dou-
bling the spatial width of the blur function, as desired. The apparent
added smoothness of the curve in Figure II-13 is due to the preserva-
tion of sampling for the plot at § samples per meter. When the second
spatial filtering function is combined with the first, one obtains thef’.
results'shown in Figure II-14. This is the analog form éf the required
composite ‘spatial filter for the along-track direction. The MIF for
this composite filter is plotted in Figure II-15.

- The third spatial filtering component required is one which would
appropriately transform the response of the two pole Butterworth filter.
The details of the mathematical derivation for this third filtering
function will not be presented, however, the result is given by

(L1-4)

. - ) ' ; o | _
H(x)F 3 = % §(x) + %-Z/Eﬁké e /Eﬂkcx [2 sin VZﬂkéX + cos /Enkéx]kv

with x representing distance in meters, 6(x) representing a unit im~
pulse, ké = 0.182 cycles per meter representing the cutoff f;equency
(half power point) for the new two pole Butterworth filter component
to be simulated through the spatial filtering operation, énd the sub-
scripts F and -3 designating that this response pertains to the third
filter component. This third ;3§tial filtering component is plotted
in Figure II-16., The result of applying this filter to the originél
third weighting function component, simulating the original two pole
Butterworth filter response (Figure I1I-5), is shown in Figure II-17,
with the horizontal axis compressed to facilitate comparison with
Figure II-5. From these figures the filtering operation can be seen
to succeed, with the apparent added smoothness of the curve plotted
fdr the result (in Figure II-17) caused by retaining the sampling rate
- for plotting at 8 samples per meter. The combined spatiai filtering
function within~scan, Which‘inqludés ali'tﬁrge filtér components,  is
OR : "
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plotted in analog form in Figure II-18 (with compressed horizontal
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axis). The MIF corresponding to this combination is plotted in
Figure I1-19. The composite MIF for the along-track spatial filtering
function (Figure II-15) is specified in analog form by

- 3 x £’
|A(k)F]1 5 = Icos(k x AHM)! e (11-5)

while the analog form for the composite MIF of the within-scan spatial

function (Figure II=19) is specified by

(11I-6)
- L(k % g-ﬂM) -1/2

2 4
2 3 ‘1 + (k % 6.50M)

'1 + (k x 3.25M)4

123° Icos(k % 4nM)| e

|A§“‘)F
with k representing spatial frequency in cycles per meter, and with

the subscripts 1, 2, and 3 specifying the filter components comprising
each MIF, ‘

11.4 DIGITIZATION OF THE ANALOG SPATIAL FILTERS

| The next task is to determine appropriate digital filter equiva- 7
lénts to the analog along-track and within-scan spatial filtering func-
tions. Since the orig. nal two meter resolution data is sampled only
once for every two meters, the same sample spacing must be used for
the digital filters which are derived. Clearly such a sample spacing
would skip most of the detail of the analog filter representations
shown in Figures I1-14 and II-18., This finer detail in the curves is
caused by the p..esence of high frequency information in the filters
For data sampled at two meter intervals, only spatial frequencies up to
ohe cycle per four meters (half the sample rate) can be pezceived un-—
ambiguously. The higher frequencies masquerade as frequencies at or
below the one cycle per four meters limit, as'if the portions of the
MIF curves which are above this limit were accordion folded back and
forth between this one cycle per four meters limit and the origin,

This masquerading effect on the high frequencieg"of an analog scene
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II-18. COMPOSITE ANALOG SPATIAL FILTER FOR ALTERING SIMULATED
WITHIN-SCAN SCANNER RESPONSE (to 4 meter resolution)
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FIGURE 1I-19. COMPOSITE ANALOG FILTER MODULATION TRANSFER FUNCTION FOR
ALTERING SIMULATED WITHIN-SCAN SCANNER RESPONSE (to 4 meter resolution)
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or function, when it is sampled at equal intervals, is called aliasing.
The analog scanner response at the two meter resolution (Figures 1I-4
and II-7) has already caused some aliasing. This must be accepted as
a limit (although not a severe one) to the accuracy of any proposed
simulation of altered scanner resolution through digital filtering of
digitized data. Fortunately, the analog filters which have been de-
rived do not contain substantial amounts of high frequency information
(frequencies above one cycle per four meters), hence simulating degra-
dation of spatial resolution by a linear factor as small as two, using
the procedure to be derived below, is not an unreasonable task.

The first step taken toward generating a digital form for the
filters was to truncate the spatial frequency response of the filters
at the one cycle per four meters limit. This was accomplished by de-

fining and applying a fourth analog spatial filter component given by ~

1 sin(mx/2M)

H®p 4 = 5= /2 (11-7)

with x representing distance in meters, and with the subscripts F and 4
designating that this is a fourth filter component. A computer program
limitation on the number of weighting factors that could be used for
nohrecursive filters restricted the spatial extent of this fourth filter
component to +20 meters, half of which is shown in Figure I1I-20, This
ﬁruncated representation of the fourth filter produced a least squares
approximation, based on the number of weighting factors retained, to
the abrupt low pass spatial frequency response that was intended for
the filter component. The effects of this least squares approximation
are noncritical, as will be evident in the final results to be pre-
sented below., The results of applying this fourth filter component to
the along-track and within-scan analog spatial filtering functions are
shown in Figures II-21 and II-23, respectively. By comparing these
figures to Figures II-14 and II-18, it is clear that much of the finer
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FIGURE I1-22. COMPOSITE ANALOG FILTER MODULATION TRANSFER FUNCTION FOR
ALTERING SIMULATED ALONG-TRACK SCANNER RESPONSE (to 4 meter
resolution) AFTER LOW PASS FILTERING ‘
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FIGURE II-24. COMPOSITE ANALOG FILTER MODULATION TRANSFER FUNCTION FOR
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resolution) AFTER LOW PASS FILTERING
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detail (high frequency content) of these filtering functions has been
removed, as intended. The along-track and within-scan MIF's for the
low pass filtered spatial filtering functions are plotted in Fig-

ures 1I-22 and 1I-24., Here the ripple that is apparent in the MTF
curves is due to the truncation of the low pass filter weighting func-
tion, discussed above. These MIF curves have been normalized for plot-
ting so that the steady state response equals unity, and hence, are
not normalized to correspond to the least squares approximation of the
respective MIF curves, shown in Figures II-15 and 1I-19, which are not
low pass filtered.

‘ The next step in generating the required digital form for the
alsng—track and within-scan filtering functions was to sample the low
paés filtered analog spatial filtering functions at two meter inter-
vals. The resulting series of weights were then truncated, retaining
different odd numbers of weighting factors, and MIF's were calculated
to determine the number of weighting factors that were reasonable to
use. The choice of an odd number of weighting factors and the regis-
tration of the sampling with the analog curves (Figures II-21 and 11-23)
were dictated by the requirement to retain unaltered line and point
numbering in the filtered result. The number of weighting factors
was also important, since the greater the number of weighting factors
retained, the greater would be the processing cost for the spatial
filtering, while the fewer the number of weighting factors, the less
accurate the simulation would be, Retaining 5 weighting factors for -
each digitized spatial filtering function appeared to be a reasonable
compromise.

For the along-track digitized filtering function, the error in
matching the desired MIF curve was around +3% with 5 weighting factors,
while 3 and 7 weighting factors produced errors in the MIF of about
+77% and +1.5%, respectively. The digitized along-track spatial filtering
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function, with 5 weighting factors, is plotted in Figure II-25 (which
may be compared to the analog function shown in Figure II-21). The
5 along~track weighting factors, normalized to sum to unity (corres-

ponding to a steady state response of unity), are

v . q = -0.028771
w . o= 0.228514
W .. 3= 0.600513 (11-8)
W, ., = 0.228514
v, . 5 = -0.028771

The MTIF corresponding to the 5 weighting factor along-track digitized
spatial filter is plotted in Figure II-26 (with expanded horizontal
axis). Figure II-15 is reproduced with this same scaling of the hori-
zontal axis in Figure II-27. Comparison of these two figures indicates
the close approximation to the analog along-track filter MTF that has
begn attained. The spatial frequency response for this digitized and
truncated filter (Figure II-26) is only plotted fer frequencies below
one cycle per four meters, however, remembering that aliasing accordion
foids the higher spatial frequencies back and forth between the limits
of the frequency range shown, one may visualize the form of the MIF for
higher spatial frequencies as an unfolded graph of successive mirror
'iméges of the segment shown, like a chain of "paper dolls". The re-
sulting large amplitudes of the MIF at high frequencies are not critical,
since the two meter resolution data is already partly low pass filtered
by the along-track scanner MIF (Figure II-4 -- note the scale of the
horizontdl axis before comparing with Figure II-26).
For the within-scan digitized filtering function, the error in
matching the desired MIF cucve was around +1.3% with 5 weighting fac-

tors, while 3 and 7yﬁeighﬁing factors produced errors in the MIF of
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filtering function, with 5 weighting factors, is plotteda in Figure II-28
(which may be compared to the analog function shown in Figure I1I-23).

The 5 within-scan weighting factors, normalized to sum to unity), are

w = -0.013533
w-s 1
W = (0,235758
w=s 2
Vs 3 = 0.548425 _ (1I1-9)
w = 0.248356
w-s 4
w = -0.019006
w-s 5

The MTF corresponding to the 5 weighting factor within-scan digitized
spatial filter is plotted in Figure II-29 (with expanded horizontal
axis). Figure II-19 is reproduced with this same scaling of the hori-
zontal axis in Figure II-30. Comparison of these two figures again
indicates that a close approximation to the analog within-scan filter
MIF has been attained. Again the spatial frequency response for this
digitized and truncated filter (Figure II-29) is only plotted for
frequencies below one cycle per four meters. The form of the MIF for
higher spatial frequencies can be visualized by the unfolding ("paper
doll") technique mentionéd above, The large amplitudes of the within-
scan filter MIF at high spatial frequencies again are not critical, due
to the low pass filtering effect of the within-scan scanner MIF at the
two meter resolution, shown in Figure II-7 (note the scale of the hori-

zontal axis before comparing with Figure II-29).

II-5 APPLICATION OF THE DIGITIZED FILTERS TO THE DATA

The 5 weighting facteors for the along-track and within-scan
digital filters that have been derived may be‘combined into a 5x5 matrix
of weighting factors, with rows of the matrix representing within-scan

filtering and columns cf the matrix representing along-track filtering
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[ 0.000389 -0.006783 -0.015779 -0.007145 0.000547
-0.003092 0.053874 0.125323 0.056753  -0.004343
~0.008127 0.141576 0.329336 0.149141  -0.011413{ (II-10)
-0.003092 0.053874 0.125323 0.056753  -0.004343
__0.000389 -0.006783 -0.015779 -0.007145 0.000547]

which then may be applied to the 5x5 pixel vicinity surrounding each
point to be sampled in the two meter resolution scene. (Note that in
applying the spatial filter matrix to the data -- essentially a con-
volution procedure -- the left to right sequence of the rows and the
top to bottom sequence oi the columns should be reversed relative to
the ascending sequence of point and line numbers, respectively. How-
ever, since the columns of the matrix are symmetric, one only needs to
be careful about the sequencing within the rows of the matrix relative
to the point numbering.) Since alternate points in alternate scan
lines are to be sampled (to simulate the reduced spatial sampling rate
at the four meter resolution), the mechanics of the filtering and
sampling procedure are slightly complex, as indicated in Figure 3

(in the text).

II-6 RESTORATION OF THE GAUSSIAN NOISE LEVEL

The weighted sum over the 5x5 blocks of pixels, used to apply the
filters to the scene, has a smoothing effect on the data, low pass fil-
tering not only the scenic content, but the noise content as well. The
amount of change in the gaussian noise amplitude after the filtering
is proportional to the RMS value of the filter MTF. Appropriate RMS
calculations indicate that the gaussian noise level in the two meter
resolution scene is reduced in amplitude (through filtering) by a factor
of 0.680, due to the along-track filtering, and by a factor of 0.648,
due to the within-scan filtering. Hence, overall there is a reduction
in the noise amplitude by a factor of 0.439. This is equivalent to a

reduction in the variance of the noise by a factor of 0.4392, or 0.193.
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To restore the noise level of the data at the four meter resolution
to the level that was present at the two meter resolution, one must
add gaussian noise to the filtered result, with variance equal to 0.807
times the original variance. This variance dorresponds to 0.899 times

the original gaussian noise amplitude.

II-7 GENERAL NATURE OF THE FILTERING TECHNIQUE

Since the above discussion all hinges on sampling rates and sam-
pling intervals, which are only related to spatial frequencies and
distances by changes in the sensor altitude, the procedure presented
actually is suitable for any simulation of linear doubling of spatial
resolution, using digitized data from a scanner system with along-track
and within-scan spatial response similar to that shown in Figures II-3
and II-6. Hence, repeated applications of the same filtering and
sampling technique can be used to simulate 8 meter resolution, using
the 4 meter results, then 16 meter resolution, etc. Of course propaga-
tion of sampling errors could be minimized in such cases by deriving
new filters specifically for each simulation, however, the repeated
doubling technique presented should be accurate enough for any but the

most exacting simulations.
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APPENDIX III
DECISION RULES

The computer-implemented spectral classification techniques dis-
cussed in this study made use of 6 decision rules. The quadratic de-
cision rule is the standard Bayes formulated maximum-likelihood ratio.
The linear decision rule is based on the quadratic rule and involves
a linear approximation of the decision boundaries. Both rules [7]
are based on information from one resolution element at a time.

The remaining four decision rules were the so-called '"mine-point"
or multi~element rules [3] whose objective is to increase the accuracy
of multispectral classification by using information from groups of
resolution elements. These rules determine the classification of a
resolution element on the basis of information from that element and
its 8 immediate neighbors. Such rules are applicable whenever a reso-
lution element is likely to represent the same material as its neigh-
bors. A brief definition of each rule follows. The interested reader
can find complete details in reference 3. ‘

BAYES9 is based on the assumption that a pixel probably represents
thebsame material as its neighbor. The degree of dependence can be
specified.

PRIORY makes a Bayesian decision on the center pixel based on prior
probabilities estimated from neighborhood data values. The estimated
prior probability of a material is the average, over 9 pixels, of the
posterior probability of that material at each pixel.

PREF9 uses as its decision criterion the estimated prior probability
just defined for PRIOR9. It is conceptually an improved voting rule
that takes account of all the information at each pixel rather than
just a vote for the winning material.

VOTE9, applied after QRULE decisions have been made on the 9 pixels,
assigns to the center pixel the material most frequently recognized

among the 9 pixels.
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