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PREFACE 

This report describes part of a comprehensive and continuing pro­

gram of research concerned with advancing the state-of-the-art in re­

mote sensing of the environment from aircraft and satellites. The 

research is being carried out for NASA's Lyndon B. Johnson Space Center, 

Houston, Texas, by the Environmental Research Institute of Michigan 

(ERIM). The basic objective of this multidisciplinary program is to 

develop remote sensing as a practical tool to provide the planner and 

decision-maker with extensive information quickly and economically. 

Timely information obtained by remote sensing can be important 

to such people as the farmer, the city planner, the conservationist, 

and others concerned with problems such as crop yield and disease, ur­

ban land studies and development, water pollution, and forest management~ 

The scope of our program includes: 

1. extending the understanding of basic processes 

2. discovering new applications, developing advanced remote­

sensing systems, and improving automatic data processing to 

extract information in a useful form 

3. assisting in data collection, processing, analysis, and ground­

truth verification. 

The research described herein was performed under NASA Contract 

No. NAS9-l4123, Task·l6, and covers the period from 15 May 1975 through 

14 May 1976. Andrew Potter (TF3) was the NASA Contract Technical 

Monitor. The program was directed by Richard R. Legault, Vice President 

of ERIM and Head of the Infrared and Optics Division, Jon D. Erickson, 

Head of the Information and Analysis Department, and Richard F. Nalepka, 

'Frincipal Investigator and Head of the Multispectral Analysis Section. 

The authors wish to acknowledge the technical direction and 

assistance provided by R. F. Nalepka and W. A. Malila. Peter 

Lambeck was t'esponsible for the calculations llecessary for a realistic 
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1 

SUMMARY 

The objective of this study was to determine the influence of 

multispectral scanner (MSS) spatial resolution on the classification 

of forest features at levels of detail appropriate to nationwide forest 

surveys and detailed in-place inventories. Such levels of detail or 

hierarchies might include vegetation unics differentiated on the basis 

of physiognomy, forest cover types, and forest stand condition classes. 

Our general. approach was to acquire MSS data sets of varying spa­

tail resolution such that the minimum area resolved ranged from indi­

vidual components of forest stands to large areas approaching the 

resolution of the present Landsat systems. We desired the results of 

the study to be independent of complicating factors that might have 

been caused by temporal effects, differing signal-to-noise properties, 

differing number and placement of spectral bands, etc. Therefore, a 

si~gle aircraft data set of inherent (2 meters)2 resfllution was 

degraded in successive steps to simulate 5 additional data sets " 

having (4)2, (8)2, (16)2, (32)2, and (64 meters)2 spatial resolutions. 

To degrade resolution as realistically as possible, we implemented an 

algorithm that utilized typical HSS optics and electronics properties in 

the form of two spatial weighting functions. System noise inherent to 
2 the (2 meters) data was preserved in each simulated data set by insert-

ing a quantity of randomly generated high-frequency noise sufficient 

to equal the amount of noise reduction caused by the weighting functions. 

The MSS data set included 11 spectral channels collected from an 

altitude of 2000 feet. The data were collected as part of NASA Mission 

No. 290 on 20 November 1974 over the Conroe Uait of the Sam Houston 

National Forest in east Texas. Two segments of data providing ground 

coverage of 2 km x 1.25 km (approximately 1 million resolution elements) 

and 2.5 km x 1.25 km (approximately 1.2 million elements) were utilized 

1 
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for the study. Forest features on one data segment were grouped into 

four hierarchies of generally decreasing detail that included condition 

class (cover types differentiated into stands on the basis of age and 

size class), cover type (areas having similar species composition), 

growth stage (areas having similar age and size class), and physiognomy 

(areas having similar vegetative 2.nd community structure as determined 

by the major characteristics of its plants). Features on the second 

data segment were grouped into the two hierarchies of condition class 

and physiognomy. 

Prior to degrading spatial resolution, data quality was checked 

by determining dynamic range, high and low frequency noise, and varia­

tions in signal associated with scat. angle. Variation in low frequency 

noise (observed as a shift in mean signal value along the flightline) 

necessitated a preprocessing correction to the data that incorporated 

a dynamic clamp algorithm. Assessment of signal variations associated 

with scan angle showed a lack of s.trong variation in most channels. 

We processed all data sets of varying resolution with a supervised 

classification procedure that utilizes signatures extracted from train­

ing areas. Training areas for each forest feature covered equivalent 

ground areas for each case of spatial resolution. 

For each case of spatial resolution, we classified forest features 

using a linear decision rule and all 11 spectral channels. For selected 

cases of spatial resolution, we performed additional classifications 

that included: 

- the use of a single-element quadratic and four multi~element de~ 

cision rules for classifying (32 meters)2 data 

- the use of a subset of 5 spectral channels most similar to the 
2 proposed Thematic Mapper channels for classifying (32) and 

(64 meters)2 data with all above mentioned decision rules. 

Classification accuracies for each hierarchy of forest features 

were determined for each case of spatial resolution. Accuracies were 

2 



, { 

. + 

~R_I_II------------------~------------~FO~R~M~ER=L~Y~W~IL~L~OW~R~UN~L~A~BO~R~A~TO~R~IE~S~,T~H~E~UN~I~VE~R~S~ITY-O~F~M~IC~H-I~-A~N 
determined for training sets, total feature areas with boundary ele­

ments excluded (boundary exclusive test sets), and feature areas includ­

ing boundary elements (boundary inclusive test sets). Area propor.tion 

estimates by feature were determined for the physiognomy hierarchy of 

~ach data segment. Accuracies were determined only for the region of 

data located within 300 of the flightline nadir in order to avoid 

large MSS view angles. 

Major conclusions reached by this study are: 

1. Classification accuracy improved, in general, as spatial resolu­

tion was degraded, when conventional single-element multispectral 

processing procedures were used. 

2. A standard proeessing approach which uses c? constant d€~cision 

rejection threshold level can result in large numbers of 

unclassified elements for coarser resolutions. For this 

study, possibly due 1:0 the great increase in unclassified 

elements at (64 meters)2, best results were obtained with a 

spatial resolution of (32 meters) 2. Perhaps the standard 

approach for setting rejection levels should be re-examined. 

3. More general (aggregated) forest features had substantially 

higher classification accuracies than the more specific 

features. 

4. The impact of boundary elements on feature classification 

was shown to cause increasingly reduced accuracies for 

boundary inclusive test sets relative to boundary exclusive 

test sets, as spatial resolution was degraded. 

5. Specialized classification techniques can improve classifi­

cation for a given spatial resolution and show promise for 

increasing accuracies at all spatial resolutions. The 

increases with nine-point decision rules were most dramatic 

when classification accuracies were low, giving significant 

improvement for the more specific forest features • 

3 



~R_I_II_'------~----------------------~FO~R~M~E=RL~Y~W~IL~L~OW~R~UN~L~A~B~OR~A~TO~R~IE~S~.T~H~E~U~NI~VE~R~S=rr~YO~F~M~IC~H~1G~A~N 

6. Results with the subset of channels which simulated the pro­

posed Thematic Mapper channels compared favorably to results 

obtained with all 11 M2S channels for physiognomies but not 

for the more specific forest features. 

7. Area proportions were well estimated at the level of physi-

ognomy for both data segments although the optimum spatial 

resolution was different for the two segments. To determine 

what resolution is optimum for various types of features, 

more data segments would have to be studied. 

8. Differences in performance were noted for both classification 

accuracy and proportion estimation between equivalent hier­

archies for the two data segments, indicating that per­

formance depends on the characteristics of the features in 

the scene. 

Specific recommendations regarding feature classification perfor­

mance, training approaches, multi-element processing, and area propor­

tion estimates are provided in Section 5.2. 

4 



~R_I_M~----------------------------~F~O~RM~E~R~LY~W~I~LL~O~W~R~UN~L~A~80~R~A~TO~R~I£~S.~T~HE~U~N~IV~E~RS~IT~Y~O~F~MI~CH~IG~A~N 

2 

INTRODUCTION 

Improper sensor specification may be a major cause for inadequate 

forest classification results frequently achieved from multispectral 

scanner (MSS) data. One major aspact of sensor specification concerns 

spatial resolution. The determination of optimal data spatial resolu­

tion for classifying forest features will enable forest managers to 

select the proper sensors and platforms to get the desired results. 

Without such guidelines, there is a possibility that data with too much 

or too little spatial resolution will be collected for particular 

forestry applications. 

This report documents the methods and results of an empirical 

study to determine the influence of MSS spatial resolution on the 

classification of specific forest features. Because forest inventories 

can require vegetation classification for different levels of detail, 

the study considered hierarchies of forest features at levels that might 

be commensurate with nationwide forest surveys and detailed in-place 

inventories. A total of 6 cases of spatial resolution were processed 

that ranged from (2 meters)2 to (64 meters)2 in size. All degraded 

cases of resolution were simulated from the (2 meters)2 data by in­

corporating an ulgorithm that utilized typical MSS optics and electronics 

properties and that p.reserved inherent system noise. Through extensive 

processing and analysis of the data, relationships were developed to 

illustrate classification accuracies as a function of spatial resolution 

for each of the hierarchies of forest features studied. 

2.1 BACKGROUND 

Recent studies have shown improvements in classification accuracy 

as a result of degrading spatial resolution of MSS data. Kan and 

Ball [1] reported higher classification accuracies for forest features 

as data resolution was degraded from (8 meters)2 to simulated 
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resolutions of (16 meters)2 and (24 meters)2. The results, based only 

on statistical pairwise classification accuracies and divergence values 

computed for signatures extracted from training areas, were credited 

to a reduction in scene variation by virtue of averaging information 

over larger units. Thomson, et al., [2] reported similar results 

that were based on actual classification performance of agricultural 

features. However, decreased mensurational accuracies resulted from 

the larger areal impact of bounda~y element misclassification as spa­

tial resolution was degraded. This report is intended to provide a 

more realistic and complete analysis of the effect of MSS spatial 

resolution on the classification of forest features. 
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3 

APPROACH 

3.1 TEST SITE LOCATION AND DESCRIPTION OF FOREST FEATURES 

The test site for this study is the Conroe Unit of the Sam Houston 

National Forest (SHNF) , located in east Texas between Houston and 

Huntsville. Physiographically, the Unit lies on a narrow zone of 

indistinct depositional terraces that comprise a part of the Western 

Gulf Coastal Plain. Low elevation and relief are characteristic of 

the area. Soils vary greatly from deep loamy sands to heavy clays 

with a range in ability to support vegetation from southern timber 

types to open prairie types. 

Extensive areas of pine and pine-hardwood forest vegetation 

identify the Conroe Unit as part of the east Texas "piney woods." 

The major forest type is Loblolly Pine. Shortleaf Pine and bottomland 

hardwood types are also present. Forest types are subdivided into 

condition class on the basis of age and size of the majority of trees 

in the stand. 
Two separate ground areas within the Conroe Unit were addressed 

f'or this study. Forest features in these areas, classified as to cover 

type and condition class according to existing U.S. Forest Service 

~USFS) timber stand and compartment boundary maps, are listed in Table 1. 

Locations of the forest features in the two ground areas are 

Shown in Figures 1 and 2. The photographs illustrated in these two 

figures were taken some 19 months prior to the date for which the MSS 

data processed in this study were collected. The features in Figure 1 

are displayed much as they existed for the MSS data, except for one 

small open area ("A") in feature 1. 3 made as a result of a bark beetle 

salvage cutting. Several items in Figure 2 require update and/or ex-

planation. The two features labeled 7.1 appear on the photo as cut-over 

but not site prepared; however, they were predominantly bare soil and 

7 
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TABLE 1. FOREST FEATURES-WITHIN THE· CONROE UNIT THA.T WERE ADDRESSED IN THE STUDY. COVER TYPE 
AND CONDITION CLASS DESIGNATIONS ARE FROM U. S. FOREST SERVICE TIMBER STAND AND 

COMPARTMENT BOUNDARY MAPS 

Physiog~om!c ¥ormation * Cover Condition 
or Other General Type Cover Type Class Condition Class 

Description No. Description No. Description 

Conifer Forest 1 Shortleaf Pine 1.3 Sawtimber-immature 

1.4 Sawtimber-mature 

2 Loblolly Pine 2.5 Sawtimber-immature 

2.6 Sawtimber-mature 

Conifer Regeneration . 2 Loblolly Pine 2.3 Seedling & Sapling--
adequately stocked 

Hardwood Forest 3 Laurel Oak -- 3.1 Sawtimber-immature 
Willow Oak 

4 Sweetgum -- Nuttal 4.2 Sawtimber-immature 
Oak -- Willow Oak 

Cut-over Land 7 None 7.1 Site Prepared and 
Windrowed 

* Physiognomic Formations ~- yegetativecommunity structure as determined b~ 
the major characteristics of its plants. 
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herbaceous vegetation (site prepared and windrowed) for the MSS data. 

Areas labeled IIA" at the left side of the photo indicate large bark bee­

tle salvage cuttings that were made since the photo was taken. Area "B" 

in upper right corner represents a small pasture (private holding). 

Area IIC II at bottom center represents an arm of a new impoundment 

that held water for the MSS data. And area "D" at the right side 

of the photo is untyped private land. 

All lettered areas in Figure 2 were excluded from consideration in 

this study. Although salvage cut areas and pasture are legitimate forest 

features, they were not included in this study because of their limited 

a.real extent and their position along the extreme edges of the MSS data 

(see Section 3.4). The water feature was considered not to be a forest 

feature for this study. Finally, the large parcel of non-homogeneous 

private land was excluded for lack of ground truth. 

3.2 DATA DESCRIPTION AND QUALITY _. 

To provide for a thorough investigation into the effect of.MSS 

spatial resolution on the classification of forest features, we 

required data that provided several cases of varying spatial resolu­

tion. In addition, we required the range of resolution cases to vary 

from minimum areas small enough to resolve individual components of 

forest stands to areas large enough to nearly ap:?roximate the coarse 

resolution of the present Landsat systems. Although the use of 

several different data sets collected over a common test site might 

satisfy the spatial resolution requirements, result~; of such a study 

would be dependent on inconsistent sets of variables caused by temporal 

effects, differing number and placement of spectral bands, signal-to­

noise characteristics, etc., that might exist between data sets. 

Therefore, we decided to degrade a single ~ircraft data set of inherent 

(2 meters)2 resolution to simulate data sets having progressively larger 

resolution elements ranging up to (64 meters) 2 in size. 
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MSS data utilized for the study included 11 spectral channels 
collected by a Bendix-built Modular Multispectral Scanner (M2S) from an 

altitude of 610 meters (2000 feet). The spectral coverages of the 11 

channels are provided in Table 2. The data had been collected as part 

of NASA Mission 290 on 20 November 1974 and were supplied to us by 

personnel of the Forestry Applications Project located at Johnson Space 

Center, Houston, Texas. 

Two segments of flightline 17, covering areas illustrated in 

Figures 1 and 2, were converted from Universal to ERIM format for pro­

cessing. Segment 1 (Figure 1) of data provided ground coverage of 

about 2 km along the flightline and 1.25 km swath width and included 

approximately 1 million resolution elements. Segment 2 covered about 

2.5 km of the flightline and included approximately 1.2 million elements. 

A check of data quality was made to determine the signal-to-noise 

properties of the data and the need for preprocessing. We checked data 

quality by assessing dynamic range, high and low frequency noise, and 

variations in signal associated with scan angle. A substantial low 

frequency signal variation along the flightline (a contrast variation 

known as "banding") necessitated development of a preprocessing correc­

tion in the form of a dynamic clamp algorithm. By virtue of the dif­

ferences in magnitude and pattern of o~currence for the "banding" arti­

fact between the two data segments, the dynamic clamp correction was 

applied separately to each segment. Differences in the mean level 

adjustments made for each segment created some concern for the legiti­

macy of 'radiometric comparisons between the two segments. Thus, in 

the subEiequent processing procedure, each data segment was classified 

separately with its own set of signatures. 

Lack of strong signal variations associated with scan angle for 

most spectral channels were considered in detail relative to the atmos­

phere and the bidirectional reflectance properties of the scene compo­

nents. Details of the data quality analysis are contained in Appendix I. 
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3.3 DEGRADATION OF SPATIAL RESOLUTION 

The degradation of spatial resolution was carefully designed to 

create each case of degraded resolution in as realistic a manner as 

possible with inherent system noise levels preserved. Properties of 

typical MSS optics and electronics were used in conjunction with the 

(2 meters)2 data to calculate two spatial weighting functions. Each 

weighting function was low pass filtered and truncated to span 5 suc­

cessive resolution elements in directions along the scanline and along 

the flightline respectively. When quantized into 5 intervals and 

combined into an X-Y matrix, the two weighting functions created an 

array that, wheli successively centered on every other element in every 

other scanline and when multiplied and summed over the surrounding 

5 by 5 group of pixels to generate a replacing pixel value, yielded 

a new data set having one-fourth the number of resolution elements 

per unit ground area (Figure 3 ). The new data set, of simulated 

(4 meters)2 resolution, was thus an approximation of the original analog 

data values as influenced by the assumed typical MSS scanning and re­

cording characteristics. System noise inherent to the original data 

was preserved in the simulated data by inserting a quantity of randomly 

generated high-frequency noise sufficient to compensate for the cal­

c~lated amount of noise reduction caused by the spatial weighting 

array. Further details regarding calculation and implementation of 

the spatial weighting functions are provided in Appendix II. 

Application of the spatial weighting array to each successive data 

set in turn enabled creating additional data sets for which the linear 

spatial resolution was doubled in each successive case. Five cases of 

spatial resolution were simulated in all. Thus, for each segment of 

data, we processed 6 cases of spatial resolution that included the in­

herent (2 meters)2 data and simulated cases of (4)2, (8)2, (16)2, (32)2, 

and (64 meters)2 data. 
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3.4 SIGNATURE EXTRACTION 

Our objectives for this study were concerned with the classification 

of forest features that are acknowledged by the U.S. Forest Service 

to be meaningful for forest management purposes. Forest type maps 

showing compartment and stand boundaries provide for the identity and 

location of such features. Our processing approach, therefore, incor­

porated a supervised classification procedure that utilizEd signatures 

extracted from training areas to classify forest features in each data 

segment. For each case of spatial resolution, signatures were extracted 

anew. Thus, signatures used to classify forest features for each case 

of spatial resolution were extracted from training areas located on that 

respective case of spatial resolution. 

We required the training areas £or each feature to cover equivalent 

ground areas for each case of spatial resolution. Because the number 

of resolution elements decreased by approximately 75% for each case 
of degraded spatial resolution, whenever possible the size of the 

training areas on the (2 meters)2 data were made large enough that a sta­

tistically valid number of elements were available for computing signa­

tures in the (64 meters)2 data. For all but one signature, the number of 

elements in the in the (64 meters)2 data used for computing each of the 

signatures ranged from 17 to 79. Feature 2.5 in data segment I (Figure 1) 

had only 6 within-boundary elements in the (64 meters)2 data. Thus, no 

signature was computed for this feature for this case of resolution. 

The locations of training areas were confined to a region of the 

data that avoided large scanner view angles. (This was not entirely 

possible for feature 4.2 in data segment 2.) Analysis of scan angle 

variations in the data (see Appendix I) led us to conclude that the 

region of data located within 300 either side of the f1ight1ine nadir 

had a reasonable degree of independence from scan angle variations. 

By extracting signatures from this region, we strived to exclude 
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sources of-variation among signatures that might stem from large 

changes in atmospheric path length or bidirectional reflectance 

phenomena. 

3.5 DATA CLASSIFICATION AND PERFORMANCE EVALUATION 

Forest features classified in each data segment are listed as con­

dition classes in Table 3. Classification performance for this hier­

archy of features represents the most detailed level of classification 

for this study. These results were aggregated to provide a measure of 

classification performance for features of more general hierarchies. 

In data segment 1, condition classes were combined into cover types 

on the basis of species (pine regeneration was retained as a separate 

feature), and alternately, into features based on maturity that we 

called growth stages. For .the most general hierarchy, all pine saw­

timber features were -combined into a single physiognomic class to be 

compared with pine regeneration. In data segment 2, two condition 

classes of hardwood sawtimber were combined into a single physiognomic 

feature to be compared with pine sawtimber and cut-over land. 

Each case of spatial resolution was classified using the ERIM lin­

ear decision rule (Appendix III) and all 11 spectral channels. For se­

lected cases of spatial resolution, we performed additional classifica­

tion that included: 

- the use of the quadratic and four multi-element decision rules 

for classifying (32 meters)2 data from data segment l. 

(Appendix III provides a brief explanation of decision rules.) 

- the use of a subset of 5 spectral channels most similar to the 

proposed Thematic Mapper channels for classifying (32)2 and 

(64 meters)2 data with all above mentioned decision rules. 

All classification results were tallied to provide the number of 

resolution elements correctly classified as a percentage of the total 

number of resolution elements contained within individual and combined 

17 
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TABLE 3. FOREST FEATURES AND HIERARCHIES IN EACH DATA SEGMENT FOR 
WHICH CLASSIFICATION PERFORMANCE IS REPORTED 

DATA SEGMENT 1 

Physiognomy Cover Type Condition Class 

1. 3 Shortleaf Pine 

Shortleaf 
Pine <

Sawtimber - Immature 

1.4 Shortleaf Pine 
Sawtimber - Mature 

Pine 
Sawtimber 

2.5 Loblolly Pine 

Loblolly 
Pine <

Sawtimber - Immature 

2.6 Loblolly Pine 
Sawtimber - Mature 

Pine Pine 
Regeneration Regeneration 

2.3 Loblolly Pine 
Seedling and Sapling 

DATA SEGMENT 2 

Physiognomy Condition Class 

Growth Stage 

Immature Pine 
Sawtimber 

Mature Pine 
Sawtimber 

Pine Seedling 
and Sapling 

Pine Sawtimber 2.5 Loblolly Pine Sawtimber - Immature 

3 I Laurel Oak/Willow Oak Sawtimber - Immature 

Hardwood Sawtimber ~4:2 Sweetgum/Nuttal Oak/Willow Oak 

Sawtimber - Immature 

Cutover 7.1 Cutover - Site Prepared and Windrowed 

18 
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feature areas. The percent of all resolution elements correctly classi-

fied in the data set was calculated, giving an overall classification 

accuracy for hierarchies which was equivalent to combining feature per­

centages on a weighted area basis. 

Classification performance was determined for three distinct r.e­

gions within each data segment that included training sets, total 

feature sets with boundary elements excluded, and total feature sets 

including boundary elements. Results for each respected region 

\illustrated: 

- the ability of the signatures to uniquely characterize forest 

features defined by their training areas. 

- the ability of the signatures to characterize the total popula­

tion of resolution elements wholly within the boundaries of fea­

ture areas. 

- the effect of the boundary pixels in reducing classification 

performance. 

In addition, we compared the proportions of features, classified within 

the physiognomic hierarchy of each data segment with known ground 

area proportions. 

To guard against undue influence to classification and proportional 

area estimation performances that might be caused by the large range 

of view angles inher~~t to aircraft MSS data, results are reported for 

the region of data located within 30
0 

either side of the flightline 

nadir. 
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4 

RESULTS AND DISCUSSION 

4.1 CLASSIFICATION PERFORMANCE 

4.1.1 Classification Accuracies Versus Spatial Resolution 

All cases of spatial resolution were classified with the ERIM 

linear decision rule using a threshold corresponding to a 0.001 proba­

bility of rejection of signals from the assumed multivariate normal 

distributions of the signatures. Use of this thresnold, which is common 

practice in the data processing community, provided an unclassified cate­

gory for resolution elements too dissimilar from the signatures used for 

classification. 

Data Segment 1 

For the cases of spatial resolution ranging from (2 meters)2 to 
. 2 

(32 meter~) , 6 signatures were used to classify the 5 condition classes 

(Table 3) in data segment 1. Because of the obvious difference in 

the density of the pine regeneration (Feature 2.3, Figure 1), we found 

it necessary to use,:wo signatures -- one extracted from the more 

dense northern portion of the feature and the other from the less dense 

southern portion -- to best characterize the entire feature. A single 

signature was used for each of the other features. 

For the (64 meters)2 data, the very small number of resolution 

elements (6 within-bo~ndary elements) for the immature Loblolly Pine 

sawtimber (Feature 2.5, Figure 1) prevented computing a valid signature. 

Thus, only 5 signatures defining four features were used to classify 

this data set. 

Tables 4-6 summarize correct classification percentages for three 

distinct regions of the data segment over which performance was deter­

mined; namely, training sets, total feature areas with boundary elements 

excluded (boundary exclusive test sets), and total feature areas includ­

ing boundary elements (boundary inclusive test sets). Each table pro­

vides the percent correct classification achieved for each of the forest 
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TABLE 4. PERCENT CORRECT CLASSIFICATION OF TRAINING SETS IN DATA SEGMENT 1 USING ALL 11 M2S ~ 
SPECTRAL CHAliNELS II 

S2atial Resolution 

* % of Total 
(2M)2 (4M) 2 (8M) 2 (16M) 2 (32H)2 (64M) 2 Area 

Hierarchy: Condition Class 

Conifer Regen. (2.3) 51.1 55.9 61.3 67.7 70.5 87.3 36.4 

Loblolly-Imm. (2.5) 29.1 37.0 44.5 58.7 65.2 3.7 

Loblolly-Mature (2.6) 16.9 15.5 16.8 21.9 19.6 44.4 14.8 

Shortleaf-Imm. (1.3) 38.1 31.4 33.0 27.6 35.6 71.4 20.2 

Shortleaf-Mature (1.4) 40.9 54.0 57.3 63.2 75.6 85.0 24.8 

Overall 40.0 43.8 47.4 51.6 57.4 76.9 

Hierarch:t: Growth Stage 

N Conifer Regen. (2.3) 51.1 55.9 61.3 67.7 70.5 87.3 36.4 .., 
.... 0 

:D 

54.2 60.6 65.1 1_. Sawtimber 52.7 57.7 61.1 23.9 I: 

'" :D 

42.0 48.8 50.0 55.0 62.2 71.6 39.7 Mature Sawtimber 
.. .. 
~ 

Overall 48.2 52.3 55.9 61.1 65.1 76.2 i" .. 
0 
~ 

Hierarch:t: Cover T:t2e :D c z 
Conifer Regen. (2.3) 51.1 55.9 61.3 67.7 70.5 87.3 36.4 .. • 
Shortleaf Pine 66.7 66.7 67.0 65.6 75.0 90.7 45.0 ~ 

:D • 
Loblolly Pine 37.5 40.9 45.4 53.5 44.8 45.7 18.6 ... 

0 
:D 
;;; 

55.6 58.0 60.9, 64.1 67.8 80.7 Overall JII ... 
% .. 

Hierarch:t: Ph:tsi0!lnom:t c z 

Conifer Regen. (i.3) 51.1 55.9 61.3 67.7 70.5 87.3 36.4 <: .. 
:D 

Pine Sawtimber 84.2 83.5 84.9 87.1 88.0 90.9 63.6 VI 
::; .. 
0 

Overall 72.1 73.4 76.3 80.0 81.2 89.5 
.., 
I: 
0 
% 
Ci • 

* The (64 meters)2 data set did not contain a signature for Immature Loblolly Pine (2.5) 
z 
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TABLE 5. PERCENT CORRECT CLASSIFICATION BOUNDARY EXCLUSIVE TEST SETS IN DATA SEGMENT 1 USING ~ ALL 11 M2S SPECTR..<\L CHANNELS .~ --= I 
S2atial Resolution 

* % of Total 
(2H)2 (4M) 2 (SM)2 (l6H): (32~!) 2 (64M)2 Area 

HierarchI~ - . Condition Class 

Conifer Regen. (2.3) 49.9 54.S 59.3 64.6 71.4 78.6 37.3 

Loblolly-Imm. (2.5) 26.3 32.3 39.1 49.6 56.S 3.S 

Loblolly-Mature (2.6) 19.7 19.2 20.9 26.6 19.4 31.0 13.S 

Shortleaf-Imm. (1.3) 33.3 24.2 23.S 22.7 31.6 39.5 29.6 

Shortleaf-Mature (1.4) 40.8 54.4 57.2 63.3 73.0 82.1 15.4 

Overall 38.5 40.0 42.4 46.2 52.2 59.9 

Hierarch}': Qr-::·.,th Stase 

N Conifer Regen. (2.3) 49.9 54.8 59.3 64.6 71.4 78.6 31.3 a N 
!Ia. Sawtimber 50.7 45.0 48.6 50.2 53.5 40.2 33.5 :II 

E 

40.9 46.5 41.5 52.6 54.2 59.3 29.2 
.. 

Mature Sawtimber :II ,. .. 
Overall 47.5 49.1 52.3 56.3 60.7 61.9 $; 

;::: ,. 
0 

HierarchI: Cover Tpe $; 
:II 
C 

Conifer Regen. (2.3) 49.9 54.8 59.3 64.6 71.4 78.6 37.3 z 
~ 

Sbortleaf Pine 64.4 62.6 60.6 61.6 67.0 80.0 45.1 B 
38.0 41.1 46.0 53.4 42.4 33.3 17.6 :II 

Loblolly Pine • a 
OVerall 53.9 55.8 57.6 61.1 64.6 71.8 ~ .. 

l" .. 
HierarchI: PhIsioanomI % 

'" c 
Conifer Regen. (2.3) 49.9 54.8 59.3 64.6 71.4 78.6 37.3 z 

-= 
80.4 

.. 
Pine Sawtimber 82.7 81.5 82.3 84.7 82.8 62.7 :II 

II 
=I .. 

OVerall 70.5 71-.4 73.6 76.S 7S.3 79.6 0 
." 
E 

21: 
15 

* The (64 meters) 2. data set did not contain a signature for Immature Loblolly Pine (2.5). • z 
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TABLE 6. PERCENT CORRECT CLASSIFICATIQl'l OF BOUNDARY INCLUSIVE TEST SET.S IN DATA SEGMENT 1 USING l~ ALL 11 M2S SPECTRAL CHANNELS - Ii!! -= I 
SEatial Resolution .. % of Total 

(2K)2 (4M) 2 (8M) 2 (16U) 2 {32M)2 (64M) 2 Area 

Hierarchy: Condition Class 

Conifer Regen. (2.3) 50.0 54.S 58.9 63.0 70.1 76.3 37.3 

Loblolly -Imm. (2.5) 26.5 32.1 38.5 48.1 47.1 3.8 

. Loblolly-Mature (2.6) 19.7 19.1 20.9 26.5 17.4 34.6 13.8 

Shortleaf-Imm. (1.3) 33.3 24.2 23.7 21.9 28.9 29.3 29.6 

Shortleaf-~tature (1.4) 40.8 54.3 57.4 63.9 73.7 74.1 15.4 

Overall 38.5 39.9 42.2 45.4 50.1 54.3 56.2 

Hlerarchl: Growth Stase 

N 
Conifer Regn. (2.3) 52.0 54.8 58.9 63.0 70.1 76.3 37.3 

w 1I11III. Sawtimber 48.3 48.5 28.5 33.5 
.. 

50.7 45.0 48.3 0 
:01 

53.8 58.2 29.2 
I: 

Mature Sawtimber 40.9 46.4 47.5 52.8 III 

~ .. 
Overall 47.6 49.1 52.1 55.2 58.2 55.8 57.8 .~ 

F r 
Hierarchl: Cover Tlpe 0 

~ 
:II 

Conifer Regn. (2.l) 50.0 54.8 58.9 63.0 70.1 76.3 37.3 c: z 
Shortleaf Pine 63.4 62.6 60.9 62.4 67.8 70.7 45.1 

.. ,. 
• 

41.0 45.9 40.3 37.9 17.6 0 
Loblolly Pine 38.1 53.S :a ,. 
Overall 53.9 55.8 57.5 61.0 63.7 67.5 69.9 

a 
~ 
!I' 

Hierarchy: Physiognomy of 
:z: 
"' 

Conifer P~gen. (2.3) 50.0 54.8 58.9 63.0 70.1 76.3 37.3 
c; 
z 
<: 

Pine Sat"t:~mber 82.7 81.5 82.2 84.4 81.3 72.1 62.7 .. 
:II 

'" =-Overall 70.S 71.4 73.5 76.2 77.1 73.8 .. 
0 
"l 

! 
n 
:z: 

.. Tbe (64 meters}2 data set did not contain a signature for Immature Loblolly Pine (2.5). f z 

L· 

---==.:..;;;;.;;-;;::;-'~-~-"''''~ "'.~"...-,' ... ~.~ ~...,...., 

~ r~= 



~_I_M------------------------------~F~O~R~ME~R~LY~W~I~LL~O~W~R~U~N~LA~~~R~A~TO~R~IE~S~,T~HE~U~N~IV~E~RS~IT~Y~O~F~MI~CH-'IG~A~N 

features in the respective hierarchies and the overall percent correct 

classification accuracy is also provided for each hierarchy. 

Results for individual features within the various hierarchies 

show that classification accuracies can vary widely from feature to 

feature for anyone case of spatial resolution. For example~ in Table 4 

for (2 meters)2 data, conifer regeneration exhibits 51.1% accuracy, where­

as mature Loblolly Pine sawtimber is only 16.9% accurate. Furthermore, 

the trends in classification accuracy as a function of spatial resolu­

tion are not entirely uniform from feature to feature. To illustrate 

again in Table 4, mature Loblolly Pine sawtimber and immature Shortleaf 

Pine sawtimber are not consistently better classified in coarser resolu­

tion data as are the other condition class features in the hierarchy. 

Such results are more than likely caused by: (a) significant amounts 

of overlap among the distributions of the signatures, and (b) subtle 
changes in the size, shape, and hyperspace position of individual sig-

nature distributions relative to the data values as spatial resolution 

varies. Although an exhaustive signature analysis for each case of spa­

tial resolution would in all likelihood enable explanation of results on 

a feature by feature basis, such an approach might not enable generaliza­

tions concerning the overall significance of spatial resolution which are 

cogent for this study. Thus, the discussion of results presented here 

will dwell primarily on the overall classification accuracies achieved 

for hierarchies, with the understanding that such accuracies are de­

rived from the combined accuracies of individual features contained with­

in the hierarchies. 

Figures 4-7 illustrate the overall classification accuracies for 

each of the hierarchies of features considered in data segment 1. In 

each figure, accuracy is shawn as a function of spatial resolution 

for the three regions of data for which performance was assessed. 

Note that for all such regions, accuracies improve for hierarchies of 

more general (aggregated) features. That is, improvement occurs as a 
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result of aggregating the performance of specific condition class 

features into more general feature' categories first on the basis of 

growth stage, second on cover type, and finally on physiognomy. For 

each general category of feature, previous misclassifications of 

resolution elements among its specific features were properly counted 

as correct classification, reducing the total amount of misclassified 

elements for the respective hierarchy. Thus, the overall accuracy for 

classifying the physiognomic hierarchy of forest features is higher 

than for hierarchies of more specific classes -- a not-surprising re­

sult. The greater overall accuracy for cover type hierarchy versus 

growth stage seems to be due to a greater occurrence of hardwood species 

in the Loblolly Pine stands. 

In comparing classification performance for training sets, boundary 

exclusive test sets, and boundary inclusive test sets, overall accuracy 

for training sets improves with coarser spatial resolution for all hier­

archies. Accuracies for total feature areas (both boundary exclusive 

test sets and boundary inclusive test sets) are somewhat lower for 

large cases of resolution, and do not necessarily continue to improve. 

These results can be attributed to changes in the number of resolution .. ,'_ ... 
•• __ •••• __ ._ •• , .... ___ •• _. _ •••• ' •• , •••• _........ ____ • r_ •• ____ ·._······~_··_··_···· ___ ~_·· 

elements within each feature that are either wrongly classified (i.e., 

misclassified) or not classified (i. e., unclassified) as spatial resolu­

. tion varies. 

Classification ac'curacy for training sets can be., regarded as an up­

per limit of performance for classifying this set of features with the 

specified procedures, since the resolution elements classified are the 

same ones used to create the signature distributions. In other words, 

by classifying training sets, we determine the expected-performance for 

classifying the entire data set assuming that the variance within each 

feature area is completely described by its training area. (Depending on 

the training procedure and the site information available, this l~tter 

assumption is not always true.) Figure a i:3hows that, as resolution size 
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increases for each of the simulated data sets, the standard deviations 

of the signatures decrease. This indicates that the variance within 

each training set becomes smaller. Because the signature means for the 

most part remain unchanged as resolution varies, the amount of statisti­

cal overlap among the distributions of the signatures must decrease. 

As a result, resolution elements within training sets classified in the 

coarser resolution data sets have higher probabilities of being correct­

ly classified. It is possible that an increased percentage of elements 

in coarser resolution data might also be unclassified if the rejection 

threshold remains constant since a relatively smaller total decision 

space is represented by the signature distributions. However, Figure 8 

illustrates that, for this set of signatures, considerable statistical 

overlap exists in all spectral channels even for the coarse resolution 

data and Figure 9 verifies that for resolution elements within training 

sets, the total number of unclassified elements varied only slightly as 

a function of resolution. 

The decreases in classification accuracy from training sets to 

total featu.re areas in Figures 4-7 are attributable to greater per­

centages of both misclassified and unclassified resolution elements 

within each feature area. Such decreases in accuracy are more than 

likely caused by the confounding effect on the decision process of the 

increased variability within feature areas not rept"esented by tra.ining 

sets. For cases of fine spatial resolution, signature distributions 

are large enough to encompass much of the total variability manifested 

by data values from all feature areas. The low percentage of unclassi­

fied elements in Figure 9 for resolution cases of (2 meters)2 through 

(16 meters)2 indicates that much of th~ reduced classification accuracy 

over the entire feature areas for these resolution cases is due to 

increased misclassification of elements. The considerable overlap 

among the distributions would account for the great amount of misclassi~ 

fication. As resoluti~n coarsens to (32 meters)2 and (64 meters)2 
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however, the reduced signature distributions may encompass less of the 

total data variability, and, thus, the percentage of unclassified data 

values increases greatly. 

The inclusion of boundary elements into the decision process can 

be expected to introduce additional variance into the population of 

data values within each feature. Their impact on reducing classification 

accuracy for each feature will depend on the ratio of the number of 

boundary elements to total feature elements. Obviously, this ratio 

will increase as spatial resolution degrades. Thus, the classification 

results for bour~dary inclusive test sets in Figures 4-7 show a not-sur­

prising reduced accuracy relative to boundary exclusive test sets as spa­

tial resolution degrades. The effect of the boundary elements becomes 

substantial in (64 meters)2 data; and for the hierarchies of growth 

stages and physiognomy, actually reduces performance below that achieved 

for (32 meters)2 data. 

Abrupt increases in classification accuracy that occur fLom (32 me-
2 2 ters) to (64 meters) data for training sets (Figures '4-7) are most 

likely due to the fact that there is one less signature to classify the 

(64 meters)2 data. Figure 8 illustrates (for 5 of the 11 channels) that 

the mean signal values for this set of signatures are very similar. As 

a result, the overlapping standard deviations make the unique classifica­

tion of these features very difficult. Despite the decrease in statisti­

cal overlap that occurs in Figure 8 as spatial resolution degrades, a 

large amount of overlap still remains in the (64 meters)2 data. In such 

circumstances, the less of one competing signature (immature Loblolly 

Pine sawtimber) from a tightly packed group of signatures might result 

in sufficient reduction of total statistical overlap among the signa­

tures to reduce the number of misclassifications in the training set 

results of this study. The small 2% increase in unclassified elements 

of training sets from (32 meters)2 to (64 meters)2 data noted in Figure 9 
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verifies that few resolution elements of training sets, classified as 

immature Loblolly Pine sawtimber in (32 meters)2 data, were outside the 

decision boundaries of the remaining signatures in the (64 meters)2 data. 

Thus, the dramatic improvement in classification accuracy for training 

sets in (64 meters)2 data is due to the reduction in misc1assification 

of resolution elements. 

Figure 10 illustrates simulated results of having classified train­

ing sets on (2 meters)2 through (32 meters)2 data with the 5 signa­

tures corresponding to those used to process (64 meters)2 data. The top­

most dashed curve assumes that all resolution elements previously mis­

G1assified as immature Loblolly Pine sawtimber would have been correctly 

classified. The lower dashed curve makes the less optimistic assumption 

that only the elements of features most frequently misc1assified as im­

mature Loblolly Pine sawtimber (namely, immature Short1eaf Pine sawtimber 

and mature Loblolly Pine sawtimber) would have been correctly classified. 

(Because of the very small percentage of unclassified elements shown for 

the (64 meters)2 results in Figure 9, we did not allow for any increase 

in unclassified elements for these simulated results.) Note that both 

dashed curves show sizable improvements in training area classification 

performance as a result of corresponding decreases in misc1assifications 

that were attributable to the deleted signature. We speGu1ate that the 

less dramatic improvement in training area classification from (32 me­

ters)2 to (64 meters)2 data is more representat~ve of the results that 

would have been achieved if all cases of spatial resolution could have 

been processed uniformly. 

To investigate the effects on whole feature areas, Figures 11 and 12 

illustrate simulated results of having classified boundary exclusive 

test sets and boundary inclusive test sets in all cases of spat:Lal rebQ­
lution with the 5 signatures corresponding to those used to process the 
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2 (64 meters) data. The assumptions for the two dashed curves in each 

figure are the same as for Figure 10. Again, no allowance was made for 
2 2 any increase in unclassified elements from (2 meters) to (32 meters) . 

These figures illustrate that, for most cases of spatial resolution, 

sizable improvements in classification performance might again be a­

chieved when misclassifications attributable to the deleted signature 

are reduced. 2 
However, for the (64 meters) data, the large percentages 

of unclassified elements, noted in Figure 9, seem to overcompensate any 

improvement in performance due to reduced misclassifications. As a re­

sult, a net decrease in classification performance is indicated from 

(32 meters)2 to (64 meters)2 data. Although less abrupt, similar de-
2 creases in classification performance were noticeable for (64 meters) 

data in Figures 5 and 7. Thus, it appears that for this data set, the 

ef'fect of the increased variability in the data values of whole feature 

areas is to increase the percentages of unclassified resolution elements 

if' the rejection threshold remains constant, and that the effect of 

unclassified elements begins to detract from overall classification 

accuracy as spatial resolution enlarges beyond (32 meters)2. It is pos­

sible that a reduction in such an effect for the degraded resolution may 

be overcome by modifying the rejection threshold to reduce the number of 

unclassified elements while hopefully at the same time not unduly in­

creasing the number of elements which are misclassified. 

Data Segment 2 

Six signatures were extracted from training sets and used to 

classify data segment 2 for all cases of spatial resolution. The large 

amount of scene 'lariation within the immature Laurel Oak/Willow Oak 

feature (Feature 3.1, Figure 2) prompted us to extract three signatures 

to adequately characterize it. A single signature was used for each 

of the remaining features. ", 

The correct classification results are summarized in Tables 7-9 
for training sets, boundary exclusive test sets, and boundary inclusive 
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TABLE 7. PERCENT CORRECT CLASSIFICATION OF TRAINING SETS IN DATA SEGMENT 2 USING ALL 11 M2S ~ 
SPECTRAL CHANNELS II 

S~atial Resolution 

(2M) 2 (4M) 2 (8M) 2 (16M) 2 (32M)2 (64M) 2 
% of Total 

Hierarchy: Condition Class Area 

Loblolly - Imm. (2.5) 85.7 84.5 86.7 89.6 93.8 100.0 21.5 

Laurel Oak/Willow Oak (3.1) 65.7 73.5 78.8 84.0 88.3 86.8 34.0 

Swtgm/N. Oak/We Oak (4.2) 12.8 . 18.8 24.7 30.1 40.9 48.1 33.4 

Cut Over (7.1) 90.2 91.9 95.6 98 .. 5 100.0 95.8 11.1 

Overall 1* 55.0 59.6 64.2 68.7 74.5 76.3 

Overall 2** 76.2 80.1 84.2 88.2 92.1 92.6 
w 
VI 

Hierarchy: Physiognomy 

Conifer Sawtimber (2.5) 85.7 84.5 86.7 89.6 93.8 100.0 21.5 

Hardwood Sawtimber 72.1 80.6 86.2 91.5 96.6 89.8 67.4 

Cut Over (7.1) 90.2 91.9 95.6 98.5 100.0 95.8 11.1 

Overall 77.0 82.7 87.4 91.9 96.4 92.6 

* 1 Overall calculated for all training· sets. 

** 2 Overall calculated omitting 4.2 
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test sets, respectively. For training sets (Table 7), note that two sets 

o~ numbers are provided for the overall accuracies of the hierarchy 

containing condition class features. The lower accuracies were obtained 

by the usual combining of all training set accuracies weighted according 

to their respectiv~ proportions of total training area classified. 

The higher accuracies portray the results of combining all training 

set accuracies except the immature Sweetgum/Nuttal Oak feat~re (Fea-

ture 4.2, Figure 2). 
Because of the great similarity between the two hardwood condition 

classes, competition for the data values within the training set of 

Feature 4.2 was probably biased in favor of the three signatures rep­

resenting Feature 3.1 versus the single signature of Feature 4.2. 

Therefore, the classification accuracy for the Feature 4.2 training 

area is understandably quite low. However, as a result of the large 

proportion (33.4%) of total training set area it occupies, the effect of 

including it in the overall condition class hierarchy results is to 

create training set accuracies that are lower than those achieved for 

the same hierarchy over whole feature areas (Tables 8 and 9). S'uch 

results are inconsistent with expected trends in classification accuracy 

f~om training sets to whole feature areas. In addition, much of the 

training set for Feature 4.2 lies outside the previously defined nadir 

region of the data (300 either side of the flightline nadir). (Because 

only a smit1l portion of this feature exist.ed inside the nadir region, 

much of the training area required for a valid signature falls outside 

the region.) Since classification results for whole feature areas were 

computed only inside the nadir region, a comparison of results between 

t~aining S2tS and whole feature areas involves different regions of the 

d~ta if the training area for Feature 4.2 is included. By excluding 

the Feature 4.2 training set results from the overall classification 

accuracies of the condition class hierarchy in Table 7, we enable a 

more straightforward comparison of results from training sets to whole 

feature areas. 
36 
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TABLE 8. PERCENT CORRECT CLASSIFICATION OF BOUNDARY EXCLUSIVE TEST SETS IN DATA SEGMENT 2 USING ~ .. ...... .. ···ALL·II M2S SPECTRAL CHANNELS . ..... ..... . ........... II 
S2atial Resolution 

.mll2 (4M) 2 (8M) 2 (16M) 2 (32M) 2 (64M) 2 % of Total 
Hierarchy: Condition Class Area 

Loblolly - Imm. (2.5) 73.8 71.2 71.8 73.2 79.7 86.0 19.1 

Laurel Oak/Willow Oak (3.1) 61.8 67.4 70.0 74.6 76.9 62.1 49.6 

Swtgm/N. Oak/We Oak (4.2) 11.4 16.5 21.2 30.3 49.4 50.0 7.5 

Cut Over (7.1) 78.4 80.6 81.6 85.3 91.1 75.4 23.9 

Overall 64.2 67.5 69.5 74.1 79.0 69.3 
1,0) ..... 

Hierarchy: Physiognomy 

Conifer Sawtimber (2.5) 73.8 71.2 71.8 73.2 79.7 86.0 19.1 

Hardwood Sawtimber 69.9 78.3 83.7 89.2 94.2 84.3 57.1 

Cut Over (7.1) 78.4 80.6 81.6 85.3 91.1 75.4 23.9 

Overall 72.7 77 .5 81.0 85.2 90.7 82.6 
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TABLE 9. F-ERCENTCORRECT CLASSIFCATION OF BOUNDARY INCLURIYE TEST SETS IN DATA SEGMENT 2 USING ~ 
ALL 11 M2S SPECTRAL CHANNELS II 

~ 

SEatial Resolution 

(2M) 2 (4M) 2 (8M) 2 (16M) 2 (32M) 2 (64M) 2 % of Total 
Hierarchy: Condition Class Area 

Loblolly - Imm. (2.5) 74.0 71.1 70.6 70.5 71.0 72.9 19.1 
Laurel Oak/Willow Oak (3.1) 61.8 67.3 69.8 74.0 74.8 59.7 49.6 
Swtgm/N. Oak/We Oak (4.2) 11.4 16.4 21.4 30.5 47.6 50.0 7.4 
Cut Over (7.1) 78.6 80.6 81.2 84.0 89.3 74.2 23.9 

Overall 64.4 67.5 69.0 72.6 75.3 64.9 
1M 
co 

Hierarchy: Physiognomy 

Conifer Sawtimber (2.5) 74.0 71.1 70.6 70.5 71.0 72.9 19.1 
Hardwood Sawtimber 70.0 78.3 83.6 88.8 94.1 85.5 57.1 
Cut Over (7 .1) 78.6 80.6 81.2 84.0 89.3 74.2 23.9 

Overall 72.8 17.5 80.6 84.2 88.6 80.5 
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Overall classification accuracies for the two hierarchies of fea­

tures considered are illustrated in Figures 13 and 14. Many of the 

trends noted for data segment 1 are again in evidence here. These 

include: a continued improvement in classification accuracies for 
2 2 resolution cases increasing from (2 meters) to (32 meters) ; generally 

higher classification accuracies for the hierarchy of more general 

(aggregated) features; and a reduction in classification accuracies 

from training sets to total feature areas, with the inclusion of 

boundary elements further depressing accuracies as spa~ial resolution 

degrades. 

Two major differences are noted for the results of Figures 13 and 14 

versus those for the corresponding hierarchies of data segment 1. The 

f:irst is that, for equivalent ,hierarchies between the two data segments, 

overall classification accuracies are higher in data segment 2. The 

s'econd difference concerns a mo:::e ob,'ious decrease in performance for 
. 2 

the (64 meters) case of spatial resolution in data segment 2 that 

occurs for whole feature areas and even training sets for the physi-

ognomy hierarchy. These differences are most likely explained by the 

more unique characteristics of the features in data segment 2. Signa­

tures of pines, hardwoods, and cutover land likely had less statistical 

over+ap than signatures of the more similar types of fe~tures in data 

segment 1. Thus, misclassifications of resolution elements in data 

segment 2 may well haye been lower, accounting for the generally higher 
2 

classification performances for the hierarchies. For (64 meters) data, 

the reduced size of these signature distributions may have resulted 

in a larger amount of unclassified decision space among the distribu­

tions, such that dramatic increases in the percentage of unclassified 

elements caused an abrupt decrease in classification performance. 

4.1.2. Muiti-element Processing Techniques for Improving Classifi­
cation Performance 

For conventional linear and quadratic decision rules, class~fication 

is based on each individual resolution element. Multi-element decision 
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rules, by contrast, use information from the surrounding elements when 

classifying the center element. Improvements in classification accuracy 

due to degraded spatial resolution (Section 4.1.1) are apparently due 

to the reduced variation within the scene that occurs by averaging 

information over larger ground areas. By using information from sur­

rounding elements, multi-element decision rules attempt to provide the 

impro'"ed classification advantages of coarser spatial resolutions with­

out the loss of scene information, Le., locationa1 accuracy or area 

measurement capabilities, inherent in coarser resolutions. 

To evaluate the performance of multi-element processing on forestry 

data, four of the nine-point decision rules developed at ERIM [3] were 

Hsed to classify the (32 meters)2 resolution case for data segment 1. 

A brief description of the nine-point rules, BAYES9, PRIOR9, PREF9, 

and VOTE9, is given in Appendix III. Classification results were com­

pared with the performance of the linear rule classification of the 

(32)2 and (64 meters)2 resolution cases, and in addition, with the 
2 quadratic rule performance for the (32 meters) case. Because the nine-

point rules classify all resolution elements, (e.g., allow for no 

unclassified elements), the (32 meters)2 and (64 meters)2 linear rule 

results, and (32 meters)2 quadratic rule results used as a basis of 

comparison were generated with no decision boundary threshold stated 

for the signatures. Thus, the accuracies for these standard classifi­

cation procedures may be different than previously reported in 

Section 4.1.1 since all resolution elements are classified. 

The overall percent correct classification, averaged over elements, 

was calculated for each hierarchy. Classification accuracy for whole 

feature areas excluding boundary elements (boundary exclusive sets) 

is displayed in Table 10 for individual features as well as overall 

hierarchy results. Table 11 gives percent correct classification for 

boundary inclusive test sets. 
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TABLE 10. PERCENT CORRECT CLASSIFICATION OF VARIOUS DECISION RULES ON BOUNDARY EXCLUSIVE TEST ~ 
SETS USING ALL 11 M2S SPECTRAt CHANNELS II! 

(32 ~leter) 
2 (64 Meter) 2 

Linear Linear 
Rule .Q Rule Ba;l::es 9 Prior 9 Pref 9 Vote 9 Rule_ 

Hierarchy: Condition Class 

Conifer Regen. (2.3) 73.3 74.2 90.0 79.8 94.1 90.2 91.3 

Loblo1ly-Imm. (2.5) . 56.8 73.6 75.0 69.4 77.8 83.3 0.0 

Loblolly-Hature (2.6) 19.9 41.3 69.9 51.5 65.8 60.2 39.5 

Shortleaf-Imm. (1.3) 32.7 38.1 56.7 46.1 55.7 49.0 43.8 

Shortleaf-Mature (1.4) 76.8 74.5 96.0 88.1 97.0 96.0 84.2 

Overall 53.7 58.7 77.9 66.9 78.9 74.5 69.1 

.,- Hierarchy: Growth Stage 
1',) ... 

0 

Conifer Regen. (2.3) 73.3 74.2 90.0 79.8 94.1 90.2 91. 3 :II 
I: .. 

56.6 43.4 
:II 

1II1II. Sawtimber 57.4 51.5 60.5 55.7 61.3 r-.. 
Mature Sawtimber 55.6 64.0 83.7 73.9 81.7 79.4 67.1 ~ 

;: 
Ii 

Overall 63.3 64.0 78.8 70.4 80.2 76.4 70.9 ~ 
:II c: z 

Hierarchy: Cover Type ~ 
S 

Conifer Regen. (2.3) 73.3 74.2 90.0 79.8 94.1 90.2 91.3 :II • ... 
Shortleaf Pine 69.7 73.3 88.2 81.2 88.6 85.9 34.7 0 

l!! .. 
Loblolly Pine 44.4 56.8 72.8 61.6 70.3 67.7 41.S !II ... 

% .. 
Overall 66.8 70.8 86.5 77.5 87.9 84.3 81.4 c: z 

;: .. 
Hierarchy: Phy.siognomy :II 

1/1 
=I .. 

Conifer Regen. (2.3) 73.3 74.2 90.0 79.8 94.1 ~0.2 91.3 0 
." 

Pine Sawti.mber 87.3 88.4 93.1 91.8 92.9 91.3 88.7 I: 
n 
% 
Gi 

Overall 81.7 82.8 91.9 87.0 93.4 90.8 89.8 • z 



TABLE 1l. PERCENT CORRECT CLASSIFICATION OF VARIOUS DECISION RULES ON BOUNDARY INCLUSIVE TEST 

SETS USING ALL 11 M2S SPECT~~L CHANNELS ~ :;:::, -II: • 
(32 Meter)2 (64Meter)2 

I, ~inear Linear 
Rule' Q Rule : ,Bayeu Prior 9 '!'t:p.f 9 Vote 9 Rule 

Hierarchy: Condition Class 

Conifer Regen. ! (2.3) 
" 

72.4 73.4 88.8 '79.4 92.2 89.4 91.9 

Lob 10 !ly-Imm. (2.5), 56.9 56,9 75.0 68.8 79.2 81.3 0.0 , 
Loblolly-Mature (Z.6)' 18.1 38.4 64.4 47.8 60.4 55.4 40.4 

. Shortleaf-Imm. (1.3) 30.2 36.8 5Z.Z 43.1 52.4 44.7 36.4 

Shortleaf-Mature (1.4) 78.Z 74-.0 9Z.8 84.0 95.4 93.3 8Z.7 

Overall 52.6 57.Z 74.8 64.6 76.1 71.8 65.9 

~ H1.erarch:t : Grm,'th Stase .. 
w '~ 

Conifer Regen. (2.3) 72.4 73.4 88.8 79.4 92.2 89.4 91.9 21 
E .. 

Imm. Sawtimber 5Z.6 48.5 56.5 5Z.4 58.3 5Z.Z 34.5 21 
~ 

Mature Sawtimber 55.8 6Z,3 79.5 70.Z 78.4 76.0 66.7 :Ii' 
'F 
Ii 

Overall 61.3 62 .• Z 75.6 68.0 77.3 73.5 67.Z :Ii 
21 c 

Hierarchy: Cover Type z 
.... • 

Conifer Regen. (Z.3) 72.4 73.4 88.8 79.4 92.2 '89.4 91.9 3 
:II" 

~ 
Shortleaf Pine 72.1 74.1 85.9 79.8 86.4 8Z.4 83.3 0 

21 

Loblolly Pine 44.8 54.8 70.0 59.6 68.1 65.9 4Z.9 Pi 
JII 
-t 
l: 

Overall 67.4 70.5 84.4 76.3 85.7 8Z.5 81.0 '" c z 
< 

Hierarchy: Physiognomy .. 
21' 
UI 
=I 

Conifer Regen. (Z.3) 72.4, 73.4 88.8 79.4 9Z.Z 89.4 91.9 0( 

0 
" Pine Sawtimber 87.Z 87.1 90.7 89.6 91.1 88.1 85.3 J:.' 
n 

Overall 81. 3 81.8 89.9 85.6 91.5 88.6 88.1 ""I ' ~ :., 
z 
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General trends observed in Section 4.1.1 are also seen for multi­

element results. For example, a comparison of overall correct classifi­

cation results in Table 10 with those in Table 11 indicate that the 
inclusion of boundary elements decreases classification accuracy since 

a higher proportion of these elements are misclassified. These tables 

also show that the hierarchiea consisting of more general (aggregated) 

features give higher classification accuracies than those containing 

more specific features. Thus, the condition class hierarchy shows 

the lowest classification performance while physiognomy shows the 

highest. The fact that cover types (species designation) are shown 

to have higher performance than growth stages is again predominantly 

due to the greater percentage of hardwoods presE..'.t in both Loblolly Pine 

features. 

Figures 15-18 are bar graphs showing overall hierarchy classifi­

cation results for each of the decision ru!~s used to classify both 

boundary exclusive tests sets and boundary inclusive test sets. For 

every case, the performance of the quadratic rule is better than that 

of the linear rule when compared for the (32 meters)2 data, and . 

(64 meters)2 linear rule results show still higher performance than 

either of the (32 meters)2 results using standard classification pro­

cedures. Of the four nine-point rules examined in this study, three 
2 always show performances for (32 meters) 

the line~r rule classification results of 

data that are higher than 

the (64 meters)2 data. 

PRIOR9 results are variable, sometimes giving higher accuracy than 
2 (64 meters) linear rule results but frequently giving poorer perfor-

mances. Thus, it appears that judicious selecti.on of a nine-pOint rule 

can offer improve.d classification performanc~ that is greater than an 

improvement tha~ might be realized with standard classification pro­

cedures used 0',1 coarser resolution data. 

The relationships that exist among the four nine-point rul~~ in 

terms of ranked classification performance is the same for both boundary 
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FIGURE 18. COMPARISON OF PERFORMANCE OF LINEAR RULE, QUADRATIC RULE, 
AND FOUR 9-POINT RULE CLASSIFICATION FOR PHYSIOGNO~~ 
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inclusive test sets and boundary exclusive test sets. PREF9 always gives 

the best performance with BAYES9 giving only slightly reduced accuracies 

by comparison. VOTE9, although still better than the (64 meters)2 

linear rule results, does not do as well as either PREF9 or BAYES9. 

PRIOR9 gives the lowest classification accuracies of all four nine-

point rules. The ranked performance of these results are consistent 

with results for agricultural applications. Preliminary tests on 

nine-point rules using aircraft data collected over the Imperial Valley, 

California [3] show the same relative performances for the four deci­

sion ru~es. 

Comparison of the best nine-point decision rule results (i.e., 

PREF9) with the results of the single element rules indicates that there 

is always a substpntial increase in accuracy for PREF9. The perfor­

mance increase is largest for the hierarchy of condition classes with 

lesser increases in performance noted for hierarchies of more general 

features. This trend indicates that when classification accuracy is 

low using standard techniques, then specialized recognition techniques 

give more improved accuracy than when accuracy was high with standard 

techniques. Thus, nine-point rules appear to offer a greater advantage 

for use in improving the classification of detailed features that may 

be required in some forest surveys. 

4.1.3 Thematic Mapper Simulation Study 

To evaluate how well the proposed Landsat D Thematic Mapper (TM) 

might classify forest features, a spectral simulation of the Thematic 
2 Mapper was undertaken by selecting the most appropriate M S spectral 

channels. Although there is not a direct correspondence in the spectral 

range for the two systems, Table 12 gives the 7 proposed Thematic Mapper 

spectral channels and the 5 M2S channels which most closely coincide. 

This subset of 5 M2S spectral channels was used to classify the (32)2 

and (64 meters)2 data. 
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TABLE 12. THEMATIC MAPPER AND SELECTED SUBSET OF M2S SPECTRAL CHANNELS 

TM 

0.45-0.52 

0.52-0.60 

0.63-0.69 

0.74-0.80 } 

0.80-0.91 

1.55-1. 75 

10.4-12.5 

M
2

S 

0.45-0.49 

0.53-0.57 

0.65-0.69 

0.76-0.86 

8.0-12.0 

Table 13 summarizes the overall percent correct classification 

results considered for all cases, while Tables 14-19 give more detailed 
'. 2 ~ 

comparisons of M S classification results using all 11 channels and the 

TM 5 channel subset to classify training sets, boundary exclusive test 

sets, and boundary inclusive test sets of both data segments. We see 

that the 5 channel classification results show the same general trends 

as the 11 channel classifications. Overall classification accuracy 

increases as the hierarchies considered consist of more general (aggre­

gated) features~ Training sets were more accurately classified than 

test sets, and the boundary inclusive test sets were the least accu­

rately classified. 

Tables 14 and 17 display the classification accuracy over training 

sets for 11 channel versus 5 channel classifications. Examination of 

the most specific hierarchy, condition class, shows th~t when the sub­

set of 5 channels is used, overall accuracy is reduce~ by 13.7 percen­

tage points for (32)2 and 22.2 percentage points for (64 meters)2 in 

data segment 1 and 7.3 percentage points for (32)2 and 7.9 percentage 
2 points for (64 meters) in.data segment 2. This reduction in accuracy 

is expected, since the smaller·number of spectral channels should give 
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TABLE 13. OVE~L PERC~NT CORRECT C~SSIFICATION RESULTS FOR ALL 11 M2S CHANNELS COMPARED 

WITH THE RESULTS OBTAINED FOR THE TM 5 CHANNEL SUBSET OVER (32)2 AND (64 METERS)2 
CASES OF SPATIAL RESOLUTION FOR BOTH DATA SEGMENTS 

ALL 11 H2S CHANNELS I'll 5 CHANNEL SUBSET 

I (32 IIeters) 2 i (64 Meters) 2 (32 Heters)2 (64 Meters)2 

BOUNDARY BOUNDARY BOUNDARY BOUNDARY BOUNDARY BOUNDARY BOUNDARY BOUNDARY 
TRAINING EXCLUSIVE "INCLUSIVE TRAINING EXCLUSIVE INCLUSIVE TRAINING EXCLUSIVE INCLUSIVE TRAINING EXCLUSIVE INCLUSIVE 

SETS TEST SETS TEST SETS SETS TEST SETS TEST SETS SETS TEST SETS TEST SETS SETS TEST SETS TEST SETS 

~TA SEGIIENT 1 

(Unclas.ified Elements) (0.7) (4.9) (5.9) 

I 
(2.8) (12.9) (17.3) (0.3) (2.5) (3.6) (0.6) (1.8) (5.1) 

Condition Cla •• 57.4 52.2 50.1 76.9 59.9 54.3 43.7 42.7 41.9 I 54.7 59.2 54.3 

Growth Staae 65.1 60.7 58.2 79.8 61.9 55.8 57.4 57.6 55.7 61.3 64.8 55.8 

Cover Type 67.8 64.6 63.7 I 84.4 11.8 67.5 55.4 56.3 56.6 65.4 70.8 67.5 

l'by.l01D01IY 81.2 78.3 77.1 89.5 79.6 13.8 77.2 76.8 75.9 77.9 82.0 13.8 

~TA SEGIIENT 2 

(Uncla.sified Elements) (1.3) (3.8) (4.4) (7.0) (14.4) (16.4) (1.2) (2.4) (3.1) {l.3l" (4.2) (6.3) 

Condition Class 74.5 79.0 75.3 76.3 69.3 64.9 67.2 77.7 74.5 68.4 81.4 74.7 

l'bya1°IDOIIy 96.4 90.7 88.6 92.6 82.6 80.5 92.7 89.3 87.4 94.9 92.4 89.9 
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TABLE 14. COMPARISON OF PERCENT CORRECT CLASSIFICATION FOR TRAINING SETS 

IN DATA SEGMENT 1 USING ALL 11 M2S SPECTRAL CHANNELS VERSUS USING 
THE 5 CHANNELS walCH SIMULATE THE THEMATIC MAPPER 
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TABLE 15. COMPARISON OF PERCENT CORRECT CLASSIFICATION FOR BOUNDARY EXCLU­

SIVE TEST SETS IN DATA SEGMENT 1 USING ALL 11 M2S SPECTRAL CHANNELS 
VERSUS USING THE 5 CHANNELS WHICH SIMULATE THE THEMATIC MAPPER 

(unclassified elements) 

Hierarchy: Condition Class 

Conifer Regen. (2.3) 

Loblolly-1mm. (2.5) 

Loblolly-Mature (2.6) 

Shortleaf-1mm. (1.3) 

Shortleaf-Mature (1.4) 

Overall 

HierarChy: Growth Stage 

Conifer Regen. (2.3) 

1mm. Sawtimber 

Mature Sawtimber 

Overall 

Hierarchy: Cover Type 

Conifer Regen. (2.3), 

Shortleaf Pine 

Loblolly Pine 

Overall 

~rarchy: Physiognomy 

CQnifer Regen. (2.3) 

Pine Sawtimber 

Overall 

11 Channels 

~32 M~2 
(4.9) 

71.4 

56.8 

ll9.4 

31.6 

73.0 

52.2 

71.4 

53.5 

54.2 

60.7 

71.4 

67.0 

42.4 

64.6 

71.4 

82.8 

78,.3 

51 

{64 M~2 
(12.9) 

78.6 

31.0 

39.5 

82.1 

59.9 

78.6 

40.2 

59.3 

61.9 

78.,6 

80.:0 

33.:3 

71.8 

78.6 

80.4 

79.6 

5 Channels 

{32 M22 

(2.5) 

64.9 

61.4 

6.3 

22.7 

55.0 

42.7 

64.9 

'59.7 

45.1 

57.6 

64.9 

55.6 

38.4 

56.3 

64.9 

84.5 

76.8 

(64 M)2 

(1. 8) 

81.5 

0.0 

7.1 

60.3 

53.9 

59.2 

81.5 

61.9 

43.2 

64.8 

81.5 

86.3 

6.3 

70.8 

81.5 

82.4 

82.0 



ER.~IM __________ ~~~~~~~ 
FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITy OF MICHIGAN 

TABLE 16. COMPARISON OF PERCENT CORRECT CLASSIFICATION FOR BOUNDARY INCLU­

SIVE TEST SETS IN DATA SEGMENT 1 USING ALL 11 M
2

S SPECTRAL CHANNELS 
VERSUS USING THE 5 CHANNELS WIlIeR SIMULATE THE THEMATIC MAPPER 

(unclassified elements) 

Hierarchy: Condition Class 

Conifer Regen. (2.3) 

Loblolly-Imm. (2.5) 

Lob1olly-Hature (2.6) 

Shortleaf-Imm. (1.3) 

Shortleaf-Mature (1.4) 

Overall 

Hierarchy: Growth Stage 

Conifer Regen. (2.3) 

lnun. Sawtimber 

Mature Sawtimber 

Overall 

Hierarchy: Cover Type 

Conifer Regen. (2.3) 

Shortleaf Pine 

Loblolly Pine 

Oyerall 

Hierarchy: Physiognomy 

Conifer Regen. (2.3) 

Pine Sawtimber 

Overall 

11 Channels 

(3'2 M) 2 

(5.9) 

70.1 

47.1 

17.4 

28.9 

73.7 

50.1 

70.1 

48.5 

53.8 

58.2 

70.1 

67.8 

40.3 

63.7 

70.1 

81.3 

77 .1 

52 

(64 M)2 

(17.3) 

76.3 

34.6 

29.3 

74.1 

54.3 

76.3 

28.5 

58.2 

55.8 

76.,3 

70 •. 7 

37.9 

67.5 

76.3 

72.1 

73.8 

5 Channels 

(32 M)2 

(3.6) 

64.6 

57.4 

6.6 

21.2 

55.0 

41.9 

64.6 

54.8 

42.2 

55.7 

64.6 

56.f. 

40.0 

56.6 

64.6 

82.8 

75.9 

J.~4 M)2 

(5.1) 

81.6 

0.0 

5.8 

44.3 

48.3 

54.3 

81..6 

44.9 

40.9 

55.8 

81. 6 

74.3 

6.1 

67.5 

81.6 

71.7 

73.8 
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TABLE 17. COMPARISON OF PERCENT CORRECT CLASSIFICATION FOR TRAINING SETS 

IN DATA SEGMENT 2 USING ALL 11 M2S SPECTRAL CHANNELS VERSUS USING 
THE 5 CHANNELS WHICH SIMULATE THE THEMATIC MAPPER 

11 Channels 5 Channels 

(32 M)2 (64 M)2 (32 M) 2 (64 M) 2 

(unclassified elements) (1.3) (7.0) (1. 2) (3.3) 

Hierarchy: Condition Class 

Lob1011y--Imm. (2.5) 93.8 100.0 89.8 100.0 

Laurel Oak/Willow Oak (3.1) 88.3 86.8 82.5 79.4 

Swtgm/N. Oak/lv. Oak (4.2) 40.9 48.1 27.4 31.7 

Cut Over (7.1) 100.0 95.8 100.0 100.0 

Overall 74.5 76.3 67.2 68.4 

Hierarchl: Phlsiognoml 

Conifer Sawtimber (2.5) 93.8 100.0 89.8 100.0 

Hardwood Sawtimber 96.6 89.8 92.3 92.5 

Cut Over (7.1) 100.0 95.8 100.0 100.0 

Overall 96.4 92.6 92.7 94.9 
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TABLE 18. COMPARISON OF PERCENT CORRECT CLASSIFICATION FOR BOUNDARY EXCLU­

SIVE TEST SETS IN DATA SEGMENT 2 USING ALL 11 M2S SPECTRAL CHANNELS 
VERSUS USING THE 5 CHANNELS WHICH SIMULATE THE THEMATIC MAPPER 

11 Channels 5 Channels 

(32 M)2 (64 M)2 (32 M)2 (64 M)2 

(unclassified elements) (3.8) (14.4) (2.4) (4.2) 

Hierarch;y; Condition Class 

Lob1olly-Imm. (2 :5) 79.7 86.0 79.3 86.0 

Laurel Oak/Willow Oak (3.1) 76.9 62.1 77.0 76.6 

Swtgm/N. Oak/We Oak (4.2) 49.4 50.0 25.3 25.0 

Cut Over (7.1) 91.1 75.4 92.0 96.7 

Overall 79.0 69.3 77.7 81.4 

Hierarch;y : Ph;ysiognom;y 

Conifer Sawtimber (2.5) 79.7 86.0 79.3 86.0 

Hardwood Sawtimber 94.2 84.3 91.5 92.8 

Cut Over (7.1) 91.1 75.4 92.0 96.7 

Overall 90.7 82.6 89.3 92.4 
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TABLE 19. COMPARISON OF PERCENT CORRECT CLASSIFICATION FOR BOUNDARY INCLU­

SIVE TEST SETS IN DATA SEGMENT 2 USING ALL 11 M2S SPECTRAL CHANNELS 
VERSUS USING THE 5 CHANNELS WHICH SIMULATE THE THEMATIC MAPPER 

(Qnclassified elements) 

Hierarchy: Condition Class 

Lob1olly-Imm. (2.5) 

Laurel Oak/Willow Oak (3.1) 

Swtgm/N. Oak/We Oak (4.2) 

Cut Over (7.1) 

Overall 

Hierarchy: Physiognomy 

Conifer Sawtimber (2.5) 

Hardwood Sawtimber 

Cut Over (7,1) 

Overall 

11 Channels 

(32 M)2 

(4.4) 

71.0 

74.8 

47.6 

89.3 

75.3 

71.0 

94.1 

89.3 

88.6 

55 

(64 M)2 

(16.4) 

72.9 

59.7 

SO.O 

74.2 

64.9 

72.9 

8S.S 

74.2 

80.S 

S Channels 

(32 M) 2 

(3.1) 

71.7 

75.2 

30.2 

90.4 

74.5 

71.7 

91.5 

90 0 4 

87.4 

(64 M) 2 

(6.3) 

71.4 

71.4 

33.3 

95.S 

74.7 

. 71.4 

92.3 

95.S 

89.9 
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a less well defined signature set. All other hierarchies of data seg-

ment 1 show similar, but lesser reductions in accuracy for training 
2 set classification. In data segment 2, only the (64 meters) case for 

the physiognomy hierarchy does not follow the rule; but instead shows 

a slight increase in accuracy. 

Tables 15, 16, 18. and 19 give classification accuracy over test 

sets. Again, the (32 meters)2 case shows the decrease in accuracy 

expected when fewer channels are used to classify the data. But for 

the (64 meters)2 case several of the test set results show an increase 

in classification accuracy. Figure 19 represents the percent of un~ 

classified elements for the (32)2 and (64 meters)2 cases of both data 

segments using 5 and 11 channel classification. This figure shows 

that the 5 chanfi(~l classifications do not display the large jump in un~ 

classified el~ments for (64 meters)2 test sets that is characteristic 

of th~ 11 channel classifications. Thus, 5 channel classification 

accuracy is greater than 11 channel accuracy, apparently due to a smaller 

pereentage of unclassified elements (which were considered to be 'in­

correctly classified). The number of elements which are misclassified 

is smaller for the corresponding 11 channel classification ill all cases. 

Tables 20 and 21 show classif:Lcation results of data segment 1 for 

the 5 TM channels using the nine-point rules previously reported for all 

11 channels in Section 4.1.2. Comparison of Tables 20 and 21 with 

Tables 10 and 11 shows that the results using the 5 TM channels display 

the same trends as the 11 channel classifications though the accuracies 

are lower. In gerleral, the nine-point rules do not produce as great 

an improvement in classification accuracy with 5 channels as with all 

11 channels. The one exception is the physiognomy hierarchy which did 

not improve very much in the 11 channel case due to the already high 

accuracy. 
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NUMBER OF CHANNELS 

NUMBER or CIlAlINELS 

III SU 11 51111 51 

TRAINING BOIlNDARY 
EXCLUSIVE 

TEST 

BOUNDARY 
INCLUSIVE 

TEST 

H SU11 SUn 51 

TRAINING BOUIIDAI.Y 
EXCLUSIVE 

TEST 

BOUNDAR! 
INCLUSIVE 

TEST 

N~MBEI OF CIIAIIlIl!LS 11 SUn Slill 51 
TRAINING BOUNDARY BOUNDARY 

EXCLUSIVE INCLUSIVE 
TEST TEST 

NUHB!k or ClWlN!LS 11 SUU 51111 51 

tlAINIIIG BOUNDA.\Y BOUNDARY 
EXCLUSIVE INCLUSIVE 

TEST TEST 

FIGURE 19. COMPARISON OF THE PERCENT OF ELEMENTS UNCLASSIFIED USING ALL 

11 M2S CHANNELS VERSUS THE TM 5 CHANNEL SUBSET TO CLASSIFY THE (32)2 

AND (64 METERS)2 CASES FOR BOTH DATA SEGMENTS 
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TABLE 20. rERCENT CQRRECT CLASSIFICATION OF VARIOUS DECISION RULES ON BOUNDARY EXCLUSIVE TEST ~ SETS USING THE 5 CHANNELS WHICH SIMULATE THE THEMATIC MAPPER .=-=---= I 
(32 Meter)2 (64 Meter)2 

Linear Linear 
Rule Q Rule Bayes 9 Prior 9 Pref 9 Vote 9 Rule 

Hierarchy: Condition Class 

Conifer Regen. (7..3) 65.9 63.5 82.4 71.9 88.8 77 .6 84.1 

Loblolly-Imm. (2.5) 61.4 56.8 66.7 61.1 66.7 72.2 0.0 

Loblolly-Mature (2.6) 6.3 13.6 28.1 18.9 20.9 4.1 7.9 

Shortleaf-Imm. (1. 3) 23.1 31.6 41.5 35.1 36.3 33.7 60.0 

ShortleafMature (1.4) 57.4 54.0 87.1 72.8 89.6 81. 7 55.3 

Overall 43.5 45.6 63.2 53.6 63.6 55.0 62.5 

I.n Hierarchy: Growth Stage 
00 0 

Conifer Regen. (2.3) 
II 

65.9 63.5 82.4 71.9 88.8 77.6 84.1 J: .. 
:II 

Ian. Sawtimber 61.0 53.0 56.2 .55.1 51.2 51.6 61.4 
,. .. 
~ 

Mature Sawtimber 45.5 44.8 64.6 56.3 62.6 53.8 44.7 F, ,. 
0 
~ 

OVerall 58.7 54.9 69.0 62.2 69.5 62.7 67.0 :II c z 
Hierarchy: Cove~ 

,. 
• 3 

Conifer Regen. (2.3) 65.9 63.5 82.4 71.9 S8.8 77.6 84.1 
:II • a 

Shortleaf Pine 57.1 64.4 81.9 74.6 82.5 78.7 86.4 :II 
iii 
!II 

Loblolly Pine 38.1. 43.2 49.6 46.6 44.0 47.4 7.3 ... 
:J: 

'" 
OVerall 57.4 60.4 76.9 69.0 78.8 73.2 74.0 c: z 

<: 
'" Hierarchy: Physiognomy :II 
III 
::j .. 

Conifer Regen. (2.3) 65.9 63.5 82.4 71. 9 88.8 77.6 84.1 0 ... 
J: 

Pine Sawtimber 86.5 85.3 92.2 90.1 90.1 90.4 83.0 0 
:J: 
iii 

OVerall 78.3 76.7 88.3 82.8 89.6 85.2 83.5 • z 
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TABLE 21. PERCENT CQRRECT CLASSIFICATION OF VARIOUS DECISION RULES ON BOUNDARY INCLUSIVE TEST ~ SETS USING THE 5 CHANNELS WHICH SIMULATE THE THEMATIC MAPPER 
:lID --= I 

(32 Meter) 2 (64 Meter)2 

Linear Linear 
~ Q Rule Bal':es 9 Prior 9 Pref 9 Vote 9 ~ 

Hierarch:z:: Condition Class 

Conifer Regen. (2.3) 66.1 63.8 81.9 72.0 87.9 77.2 84.4 
Loblolly-Imm. (2.5) 58.6 51.7 66.7 62.5 66.7 72.9 0.0 
Loblolly-Mature (2.6) 6.5 12.5 25.2 17.1 13.9 3.6 6.4 

Shortleaf-Imm. (1.3) 20.9 29.1 38.4 32.9 33.5 31.5 46.4 

Shortleaf-Mature (1.4) 57.8 51. 3 79.3 66.2 82.3 72.6 53.9 

Overall 43.0 44.2 60.5 51.8 61.0 52.9 57.4 

VI Hierarch:z: : Growth Stage 
\0 a 

Conifer Regen. (2.3) 66.1 63.8 81.9 72.0 87.9 77.2 84.4 
,. 
I: 

'" Imm. Sawtimber 55.9 49.5 52.6 52.4 48.0 49.4 46.2 
,. 
!( 

Mature Sawtimb"er 46.4 44.3 60.6 52.3 59.0 49.9 44.4 :Ii 
";: .. 
0 

Overall 57.3 53.6 66.3 60.1 66.8 OU.5 6 ... 9 :Ii ,. 
c: 

Hierarchy~ J;over Type 
z .. • 

Conifer Regen. (2.3) 66.1 63.8 
8 

81.9 72.0 87.9 77.2 84.4 ,. 
• ... 

Shortlea£ Pine 59.1 62.9 77.5 70.4 77.4 72.4 80.2 0 
! 
'" Loblolly Pine 40.0 43.4 48.1 45.9 43.0 47.0 7.1 !II ... 
% 

'" Overall 51.9 59.9 74.4 67.0 75.9 70.2 71.2 c: z 
< 

Hierarchy: Physiogno~ 
III 
:11 
In 
:j 

Conifer Regen. (2.3) 66.1 . 63.8 81. 9 72.0 
-< 

87.9 77.2 84.4 0 
." 

Pine Sawtimber 86.4 84.4 89.4 87.5 86.8 86.7 76.1 I: 
ii 
J: 

Overall 
i5 

78.4 7r,. '3 R6.4 81.4 87.2 83.0 79.6 • z 
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The 5 channel classification to simulate the Thematic Mapper in-

2 2 dicates accuracy is higher for (64 meters) than (32 meters) data. 

For the most general (aggregated) hierarchy of forest features (physiog­

nomy), the TM channels give satisfactory results compared to the 

11 channel results; but, for the most specific cases, i.e., condition 
2 class, accuracy is seriously reduced compared to the 11 channel M S 

data. 

4.2 AREA PROPORTION ESTIMATION AS A FUNCTION OF SPATIAL RESOLUTION 

The previous sections have been concerned with evaluating the 

ability of computers to accurately classify desired features by making 

a decision for each resolution element and then determining whether or 

not the decision was correct, relative to the true identity of that 

element. This section is concerned with how well the proportion of 

total scene area of each feature class present in the classified scene 

can be estimated, without regard to location. Such proportion estima­

tion may be useful for surveys of extensive areas where information is to 

to be specified in statistical summaries by geographic or political 

subdivisions. 

A recent study has noted little or no correlation between in-place 

~lassification accuracy of terrain features and good performance on 

estimating the proportions of terrain features [4]. Compensating errors 

in the classification results can cause the classified proportions of 

features to match the true proportions. However, the extent of such 

errors is dependent on the types of features to be classified. For 

example, the situation in data segment 2, where one condition class of 

hardwoods (Feature 4.2) is consistently classified as another hardwood 

condition class (Feature 3.1), will lead to Feature 3.1 being over­

estimated, while Feature 4.2 is underestimated. Thus, in order to avoid 

the difficulties in separating hardwood condition classes in data seg­

ment 2 and the various pine sawtimber condition classes of data seg­

ment 1, proportion estimates were calculated only for the physiognomic 

features of eac.h data segment. We believe that proportions based on 
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physiognomy represent a level of information most appropriate for 

surveys of extensive areas. 

Within each data segment, proportions of each physiognomic feature 

were estimated from the total number of resolution elements that fell 

within the previously defined boundary inclusive test sets (i.e., all 

total feature areas). Since previous sections have shown that unclassi­

fied elements constituted a large percentage of the total for cases of 

coarse spatial resolution, estimated proportions were calculated two 

ways: (1) using all the elements in the test area, and (2) using only 

those elements which were classified as be.longing to one of the estab­

lished features. This allows partial examination of the effects of 

unclassified elements on proportion estimation results. 

Two measures of proportion estimation accuracy were computed. One 

was the percent difference between estimated and actual proportions 

for each feature. The other was the RMS error for each data segment, 

computed from these differences as follows: 

where: Pi = ground truth proportion for one feature in the test 

area, 
" Pi = estimated proportion for the same feature in the 

test area, 

N = number of features considered. 

RMS error is plotted in Figure 20(a) as a function of spatial 

resolution for all elements in the test area of each data segment while 

Figure 20(b) gives the RMS error calculated using only classified ele­

ments. Comparison of these figures illus.trates a much larger RMS error 
2 for the (64 meters) case when unclassified elements are included. 

61 



en 

~ 

J.I 
0 
J.I 
J.I 
CIl 

ERIM 
8 

7 

6 

5 

4 

3 

2 

1 

0 
0 

FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN 

22 42 8 2 16 2 

Spatial Resolution (meters2) 

(a) RMS ~rror Calculated For All Elements In Each Data Segment 

8 

7 

6 

5 

2 

1 

22 4 2 82 16 2 o 
o 

Spatial Resolution (meters 2) 

(b) RMS Error Calculated For Only Classified Elements In Each Data Segment 

FIGURE 20. RMS ERROR PLOTTED AS A FUNCTION OF SPATIAL RESOLUTION 

62 



ER~IM __________ ~~~~~~~~ 
FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN 

The best spatial resolution for proportion estimation as seen in these 

~igures is (32 meters)2 for data segment 1 and (16 meters)2 for data 

segment 2. Figures 21-24 are plots showing the percent difference of 

the estimated proportion of each physiognomic feature compared to the 

ground truth proportion. For Figures 21 and 22, the estimated percen­

tages are shown for all elements in the test area. These figures show 

the effect of large numbers of unclassified elements as all features 

in both (64 meters)2 data segments are underestimated. 

Figures 23 and 24 give results calculated for only the classified 

elements. These figures give more insight into. how the features of 

each date segment interrelate. At low spatial resolutions in data 

segment 1, pine sawtimber is overestimated while regeneration is under­

estimated. The estimates of both features improve through the (32 me­

ters)2 data set, and then at (64 meters)2 regeneration is overestimated 

while pines are underestimated. These results are due to the fact 

that, as spatial resolution coarsens, less of the regeneration area is 

misclassified as pine sawtimber, increasing the proportion of elements 

classified as regeneration while decreasing the estimated proportion 

of pine sawtimber. In data segment 2 (Figure 24) the situation might 

appear to be more complicated since there are three features. However, 

the cut over feature is sufficiently unique that little interaction 

occurs with the other two features and its estimated proportion varies 

little from its true ground proportion for all cases of resolution. 

Thus, the only interaction is between hardwoods and pine. While pines 

are overestimated at low spatial resolutions, hardwoods are under­

estimated; but for resolutions of (16 meters)2 and greater, pines are 

underestimated and hardwoods overestimated. These results reflect the 

improvement in hardwood classification accuracy as a funtion of increas­

ing spatial resolution which increases the proportion of elements 

classified as hardwoods, but decreases the estimated proportion of pines 

since fewer hardwoods are misc1assified as pines. 
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For both data segments, the changes in estimated proportions of 

physiognomic features that occur with changes in spatial resolution 

seem principally due to changes in the misclassification of those fea­

tures having greater variability. Within such features, the averaging 

of extreme data values as spatial resolution degrades was seen to im­

prove the estimate of their scene proportion. Thus, fewer misclassi­

fications of elements within conifer regeneration (data segment 1) and 

hardwood sawtimber (data segment 2) were noted. The different optimum 

spatial resolutions noted for proportion estimation in each data segment 

indicates some dependency on the types of features. 
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CONCLUSIONS AND RECOMMENDATIONS 

5.1 CONCLUSIONS 

A supervised multispectral data classification approach that 

utilized a standard single-element linear decision rule with a con­

ventional constant decision threshold was used to classify forest 

features in 6 MSS data sets that ranged in spatial resolution from 

(2 meters)2 to (64 meters)2. The classification accuracies, averaged 

over all features for training and test sets were seen to improve from 

(2 meters)2 to (32 meters)2 cases of resolution. Improvement was 

attributed to a reduction in the number of misclassified resolution 

elements that occurred as a result of reduced competition among sig­

nature distributions. Reduced competition presumably resulted from a 

reduction in scene variation that is inherent in the averaging of 

information over larger ground ar,,~as. 

2 When spatial resolution was degraded to the (64 meters) case, 

the percentage of unclassified elements in test sets increased greatly. 

Because unclassified elements were considered to be errors, this caused 

a net decrease in classification accuracy for the test sets of hier­

archies in data segment 2 and in the simulated results of test sets 

in data segment 1. Therefore, it appears that unclassified resolution 

elements can exert a strong influence on classification results; and 

rejection threshold levels should be selected with great care. The 
2 results of this study indicated that a resolution of {32 meters) pro-

vided the most accurate element-by-element classification of these 

forest features. However, for (64 meters)2 data, a selection of a 

different rejection threshold might have yielded different indications. 

Very definite improvements in classification performance as 

spatial resolution was degraded were noted for hierarchies of more 

general (aggregated) forest features by virtue of the fact that mis­

classifications of resolution elements between certain specific 
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features canceled for their aggregated feature class. Although very 

similar trends were noted for all hierarchies as a function of spatial 

resolution, we point out the differences in performance that occur 

between equivalent hierarchies of the two data segments as illus­

trating the dependency of the performance on the characteristics of 

the features in the scene. These differences suggest that strategies 

for the automatic classification of forest features with MSS data 

possibly can not be generalized, but rather need to be reconsidered 

anew for specific areas or applications. 

The application of multi-element decision rules to the classifi­

cation of forest features attempts to provide the improved classifi­

cation advantages of coarser spa~ial resolutions while maintaining the 

loeational accuracy and area measurement capabilities inherent in fine 

resolutions. Results of applying four different nine-point rules to 

the classification of the (32 meters)2 data indicate that the judicious 

selection of such rules can offer improved classification performance 

that is greater than an improvement that might be realized with standard 

cl~ssification techniques used on coarser resolution data. Nine-point 

rules appear to offer a significant advantage for improving the classi­

fication of detailed features. We postulate that multi-element 

approaches might provide even more benefit if applied to finerresolu­

tion data. 

The Thematic Mapper simulation indicated that classification 

accuracy was higher for (64 meters) 2 data than for (32 meters)2 data. 

The five channels selected to simulate the proposed Thematic Mapper 

channels compared favorably in terms of classification accuracy to the 
2 full complement of M S channels for general hierarchies such as physi-

ognomy but do not appear to be able to give the accuracy for condition 

classes that is possible with all the M2S channels. 

Area proportion estimation is of great practical importance for 

large area surveys, especially extensive ones. In this study, forest 
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features at the level of physiognomies were well estimated. The best 

spatial resolution for such estimates varied between the two data seg­

ments which is most likely a result of the fact that there are different 

features present in the two segments. 

5.2 RECOMMENDATIONS 

As a result of this study, a number of issues can be stated as 

requiring further investigation. Some of the issues clearly could not 

be addressed within the scope of this study. Others are raised as a 

result of this study. 

1. A signature analysis study should be undertaken to resolve 

the variations in classification performance that occur for 

individual features and some h:.-.;,:archies as spatial resolution 

degrades. Obvious questions re.;taining unanswered by this 

study include: 

a. the possible biases of using several signatures for some 

features versus a single signature for uthers, 

b. changes in the location, shape, and size of feature.signa­

tures relative to the data values as resolution varies, and 

c. the effect that would have resulted from varying the deci­

sion threshold of signatures to allow a constant propor­

tion of unclassified elements for all resolutions, 

d. additionally, the inherent (2 meters)2 resolution of this 

data set would enable an examinat~on of the fundamental 

influences affecting forest canopy signatur~s. 

2. Investigate the merits of other training approaches for classi­

fying forest features. In order to recognize U.S. Forest 

Service designated features, we utilized a supervised training 

approach. Other approaches worth investigating might include 

both supervised and unsupervised clustering. 

70 



~R_I~~~------------------------------~FO~R~M~ER~L~Y~W~IL-L~OW~RU~N~L~A~BO~R~A~TO~R~IE~S~,T~H~E-UN~IV~E~R~SI~TY-O~f-'M~IC-'H~1G~AN 

3. The promising results of the nine-point rules for forest fea­

ture classification shown in this report suggest that addi­

tional investigation and development of multi-element pro­

cessing techniques has potential for improving ~he classifi­

cation and boundary location of forest areas. 

4. The very limited ground area encompassed by this study has 

prevented any statistical assessment of classification per­

formance for features and hierarchies as a function of 

spatial resolution. It is recommended that an approach 

similar to the one reported herein be applied to a more ex­

tensive forest area. 

5. Area proportion estimation of forest features at the physi­

ognomic level looks very promising. More data segments should 

be studied to evaluate if there is one optimum spatial resolu­

tion or to define how the optimum changes as the character of 

the feature within the segment changes. 
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APPENDIX I 

MSS DATA QUALITY ANALYSIS 

Prior to the procedural processing steps of this study, we ana­

lyzed the quality of the MSS data in order to detect potential proL­

lems that could affect the accuracy of the classification results. 

Such problems could be instrument-related or they could be associated 

with the radiation environment and the scene being scanned. 

1.1 ANALYSIS OF INSTRUMENT-RELATED DATA QUALITY 

The purpose of this analysis was to assess signal-to-noise 

characteristics and signal instabilities in the MSS data. Signal-to­

noise was assessed by determining dynamic range and high frequency 

noise variations for each spectral channel. Dynamic range in this 

case is defined as the range of signal values that are representative 

of total scene variability. It WI:lS quantified by using histogram 

limits that encompassed 96% of a one percent sample of the signal 

values taken in a systematic fashion from each segment of data. High 

frequency noise was measured by averaging rms fluctuations in signal 

value that had been computed for a dark level calibration source at 

several regions along the flightline of each segment. 

Table I-I lists dynamic range, noise quantities, and resultant 

signal-to-noise values for data segment 1. Signal-to-noise, obtained 

by dividing the dynamic range of each channel by its respective noise 

quantity, indicates the number of quantum contrast levels available 

and thus provides some relative measure for ranking channels according 

to the ability to distinguish between two sources of radiance. Note 

that Channell (0.41-0.44 ~m) was very noisy which resulted in a sub­

stantially lower signal-to-noise value than for other channels. 

Further observations of signal values from the calibration sources 

indicated that a shift in mean signal level occurred in all spectral 

channels along the flightline of each data segment. A similar shift 
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TABLE I-I. DATA QUALITY FOR M2S DATA OF MISSION 290 -- DATA SEGMENT 1 

Spectral Band 
Limits ()..1m) Dynamic 

at 50% Range RMS "No ise" Signal-to-Noise 
Sensor Response. (Signal Fluctuations Ratio 
Channel Points Va1ues~ _(Sisna1 Values) Value Ranking 

1 0.41-0.44 114 33.1 3.4 11 

2 0.45-0.49 52 3.9 13.3 10 

3 0.49-0.54 33 2.3 14.3 9 

4 0.53-0.57 31 1.8 17.2 8 

5 0.57-0.61 27 1.4 19.3 7 

6 0.61-0.65 31 1.5 20.7 6 

7 0.65-0.69 31 1.3 23.8 5 

8 0.69-0.73 48 1.2 40.0 3 

9 0.76-0.86 123 4 .. 9 25.1 4 

10 0.95-1.03 104 1.8 57.8 1 

11 8-12 105 2.5 42.0 2 
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in signal could be noted for the video portion of the data as a contrast 

variation that occurred between the groups of scan lines (see Figure 1-1). 

This change in contrast or "banding" could be caused by some instability 

in the scanner electronics. The magnitude of the shift varied from 

channel to channel and was calculated to be as high as 30% of the dy­

namic range for some channels. The detrimental effect of such a low 

frequency signal variation on automatic classification procedures re­

quired that it be removed. 

A dynamic clamp algorithm was developed and applied to each seg­

ment of data. The algorithm implemented an additive correction to the 

data by adjusting signal values in the video portion of each scanline 

according to a continuously updated correction term. The correction 

term was computed as an average of the dark level calibration source 

signals contained in a window that spanned sevf!ral successive scan­

lines immediately preceding and following the scanline being corrected. 

Updati.ng the correction term was accomplished by sliding the window 

along the flightline and re-computing thE.' average for each scan line 

corrected. 

By averaging dark level calibration source signals within a 

window of several scanlines, we strived to normal~,ze the low frequency 

signal variation along the flightline without introducing additional 

high frequency noise ou a scanline to scanline basis. Occasional 

calibration source signals of inordinately different magnitude that 

might \vrongly influence the computed correction term were automatically 

excluded from the averaging process by virtue of an editing limit. 

Since such widely varying calibration source signals might be indica­

tive of a bad scan line or excessive system noise, they alone were 

used to adjust video signal values in their respective scanlines. 

Thus, bad scanlines remained as bad scanlines. 

Application of the dynamic clamp algorithm constituted the only 

preprocessing correction to the data. Figure 1-2 illustrates data 
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segment 1 after removal of the banding artifact by the clamping pro­

cedure. Table 1-2 shows the resultant dynamic range and noise quanti­

ties for the segment after clamping. For most channels, dynamic range 

varied only slightly from original levels (see Table 1-1) and noise 

quantities were gel"erally reduced by about 25%. These results agreed 

with our expectations that the clamping procedure would not significantly 

alter the basic character of the data set. The large increase in dy­

namic range for Channel 1 occurred by virtue of the noisy calibration 

source signals frequently exceeding the editing limit of the window 

used for computing the correction term. 

To be complete, the dynamic range and noise quantities for data 

segment 2 after clamping are presented in Table 1-3. Because brighter 

and darker scene classes exist in this data segment, the dynamic range 

for each channel is greater than for data segment 1. Noise quantities 

are comparable between the two data segments. 

1.2 ANALYSIS OF SIGNAL VARIATIONS ASSOCIATED WITH SCAN ANGLE 

Because of the large range of view angles common to aircraft 

mu1ti~pectral scanners (+ 600 from nadir in the case of this data set), 

scene radiance values recorded by the scanner can include systematic 

variations that are associated with scan angle. Such variations can be 

caused by the scattering and attenuating influences of the atmosphere 

as path length from sensor to ground varies with scan angle [ 5]. The 

bidirectional reflectance properties of the scene components are another 

major cause [6]. The presence of such variations in the data can 

pose a serious problem for classifying forest features across the en­

tire f1ightline. 

Variations in signal associated with scan angle were assessed for 

the data set of inherent (2 meters)2 spatial resolution. We computed 

average scan lines for three different regions of each segment 

of data. An average scan line contained average signal values for 
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TABLE 1-2. DATA QUALITY FOR M2S DATA OF MISSION 290 --
DATA SEGMENT 1, AFTER CLAMPING 

Spectral Band 
Limits (llm) Dynamic 

at 50% Range RMS "Noise" Signa1-to-Noise 
Sensor Response (Signal F1uctuat:i.ons Ratio 
Channel Points Values) (Signal Values) Value Ranking 

1 0.41-0.44 153 17.0 9.0 11 

2 0.45-0.49 47 2.7 17.4 10 

3 0.49-0.54 28 1.7 26.3 6 

4 0.53-0.57 25 1.3 23.7 8 

5 0.57-0.61 23 1.0 23.0 9 

6 0.61-0.65 25 1.0 25.0 7 

7 0.65-0.69 28 1.0 28.0 5 

8 0.69-0.73 47 1.0 47.0 3 

9 0.76-0.86 122 3.2 38.1 4 

10 0.95-1.03 106 1.6 66.2 1 

11 8-12 106 1.7 62.4 2 
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TABLE 1-3. DATA QUALITY FOR M2S DATA OF MISSION 290 --
DATA SEGMENT 2, AFTER CLAMPING 

Spectral Band 
Limits ()lm) Dynamic 

at 50% Range RMS "Noisell Signa1-to-Noise 
Sensor Response (Signal Fluctuations Ratio 
Channel Points Values) (~i~n~!. Vah~es) Value Ranking 

1 0.41-0.44 203 17.9 11.3 11 

2 0.45-0.49 80 2.5 32.0 9 

3 0.49-0.54 44 1.4 31.4 10 

4 0.53-0.57 38 1.1 34.5 8 

5 0.57-0.61 34 0.9 37.8 7 

6 0.61'-0.65 36 0.8 45.0 6 

7 0.65-0.69 43 0.9 47.8 5 

8 0.69-0.73 56 1.0 56.0 3 

9 0.76-0.86 149 3.1 4S.1 4 

10 0.95-1.03 148 1.6 92.5 2 

11 8-12 134 1.4 95.7 1 
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80 divisions, each of which had been computed by averaging 10 adjacent 

resolution elements over 100 successive scan lines in the original data. 

The gross averaging of 1000 resolution elements into each of the divi­

sions in the average scan line thus enable smoothing over high frequen­

cy variations in radiance within scene features in order that radiance 

variations associated with scan angle could be observed more clearly. 

Figure I-3 illustrates several average scan lines computed over a 

r.egion at the southern end of data segment 1. Except for pine regen­

eration at the extreme right side, most of the region covers a fairly 

homogeneous scene of pine sawtimber features. Obvious differences in 

average signal value between features exist only where the average 

scan lines cross a pipeline right-of-way (exposed bare soil at division 

no. 46) and the pine regeneration (division no. 79). In the figure, 

plots for four of the 11 MSS channels illustrate representative scan 

angle variations in radiance for the bluet green, red, and near-infrared 

spectral regions. Because the direction of the flightline was toward 

the sun, the direction of scan was perpendicular to the direction of 

illumination. Thus, any variations in scene radiance caused by sun 

position will be symmetrical either side of nadir. 

With the exception of the short wavelength regions, computed 

average scan lines displayed a lack of obvious signal variations asso­

ciated with scan angle. In other words, the circumstances of data 

collection seemed to minimize effects of the atmosphere and the bi­

directional reflectance properties of forest features in modifying 

scene radiance across the flightline. 

To make a case for the observed average scan lines from the stand­

point of the atmosphere, we exercised the Turner Atmospheric Model [5] 

to illustrate trends in scene radiance caused by increasing path length 

from sensor to ground. The components of radiance are given by the 

relationship 
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= 

where 

LT is the total ~pectral radiance received from the target at 
A 

the sensor, 

PA is spectral reflectance of the target; 

EA is spectral irrad1ance on the target, 

LA is spectral transmittance of the atmosphere between sensor 

and target, 

and Lp is path radiance introduced by the atmosphere betwel~n 
A 

sensor and target. 

The effect of increasing path leD., .. t:h on total radiance will be mani­

fested by virtue of changes in atmospheric transmittance and path 

radiance. 

For the model calculations, illumination and viewing geometries 

specified were those that existed at the time of data collection. Tar­

g~t and surrounding background reflectance parameters were set equal 

and were based on typical vegetation canopy reflectance values for 

wavelengths of 400, 550, 650, and 800 nm. Atmospheric parameters were 

specified fer two assumed cases of atmosphere condition as stated by 

horizontal visibilities of 23 km (clear) and 8 km (hazy). 

Results of the model calcul~tions are presented in Table 1-4. 
Scan angles of 00 and 600 provide results for atmospheric path lengths 

to the nadir and edge of the flightline respectively. For the clear 

atmosphere case, as scan angle varies from 00 to 600
, changes in total 

radiance (column 8) are relatively small for the green, red, and near­

infrared wavelength regions while the change for the shorter wavelength 
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TABLE 1-4. TURNER ATMOSPHERIC MODEL RESULTS FOR ATMOSPHERIC PATH LENGTHS APPROPRIATE TO MSS 
SCAN ANGLES OF 0° AND 60°; TWO CASES OF ATMOSPHERE CONDITION ARE ASSUMED. 

VISIBILITY - 23 km 

00 Scan Anile 600 Scan Ansle Percent Change 
Percent Total Percent Total in Total 

To'tal' Radiance Radiance Total Radiance Radiance Radiance 
Wavelength 

(mw cm'2sr-1IJm-1) 
Represented by 

-2 sr-1IJm-1) 
Represent:ed by 

00
';' 600 (nm) Path Radiance Transmittance (mw cm Path Radiance Transmittance 

(1) (2) (3) (4) (5) (6) (7) (8) 

400 1.0888 67.1 0.8825 1.4364 78.0 0.7788 +24.2 

550 2.1241 22.5 0.9204 2.3143 34.5 0.8470 + 8.2 

650 1.0518 27.2 0.9287 1.2010 40.8 0.8624 +12.4 

800 8.8386 4.6 0.9399 8.6898 8.8 0.8834 - 1.7 

VISIBILITY - 8km 

400 1.5599 81.5 0.7269 2.0247 89.6 0.5283 +23.0 

550 2.4662 45.6 0.7626 2.7896 63.3 0.5816 +11.6 

650 1.2661 47.7 0.8138 1.5372 65.0 0.6623 +17.6 

800 8.6187 8.6 0.8834 8.3335 16.5 0.7804 - 3.3 
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blue region is much greater. As the condition of the atmosphere de-

grades to the 8 km visibility case, changes in total radiance with scan 

angle increase for the longer wavelength regions. Thus, on the basis 

of model calculations, a "clear" atmosphere at the time of data collec­

tion would tend 'to minimize signal variations associated with scan angle 

for wavelength regions longer than the blue region. 

A combination of circumstances attributable to sun elevation and 

azimuth angles may have combined to reduce any appreciable variations 

in radiance as a function of scan angle that would be caused by the 

bidirectional reflectance properties of the forest canopy. Because of 

the low sun elevation angle of 400
, large shadows cast by the trees 

within each forest stand resulted in little illuminated background 

being visible between trees for the nadir scan angle. Thus, the loss 

of observed illuminated background as scan angl'~ changed from nadir 

would not have been a factor to influence scan angle variations in radi­

'ance. In addition, because the direction of scan was perpendicular to 

the direction of illumination, sun azimuth angle relative to scan angle 

remained constant. This insured that radiance variations with scan 

angle were symmetrical either side of nadir and of lower magnitude than 

for situ~tions where the direction of scan is alternately toward and 

away from the direction of illumination. 

The lack of strong signal variations associated with scan angle 

for most spectral channels in this data set was significant for the 

objectives of this study. Because of the low altitude from which the 

data were collected. allY severe or non-symmetrical scan angle variations 

might have seriously reduced the amount of already limited ground 

coverage. On the basis of this an",l.ysis, we concluded that signature 

extraction and classification performance procedures could be conducted 

within 300 either side of the flightline nadir with a reasonable degree 

of independence from scan angle variations. This region would provide 

coverage for several forest features and yet maintain a view angle 

85 



~R_I_II--------------------------------~F~O~RM~E~R~LY~W-'L-LO~W~RU~N-L-A~B~O~RA-T-O-R'-ES-.-TH-E-U-N-'V-E-R-S'-TY-O-F-M-'C-H-IG-A-N 

geometry between sensor and ground that would exclude large variations 

in atmospheric path length or bidirectional reflectance phenomena. 
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APPENDIX II 

A SPATIAL FILTERING TECHNIQUE FOR SIMULATING DEGRADED 
RESOLUTION OF DIGITIZED DATA 

11.1 INTRODUCTION 

The spatial frequency response of a multispectral scanner (MSS) is 

usually specified by a modulation transfer function (MTF) which desig­

nates the MSS system throughput (amplitude, and sometimes phase as well) 

as a function of spatial frequency. The equivalent, in the spatial 

domain, to this MTF is a spatial weighting function which can be visu­

alized in either of two ways: (1) as a specification of the relative 

weighting of each point in the scene within an effective instantaneous 

field of view (iFOV), or (2) as the effective analog spatial response 

of the MSS to a spatial impulse (point source) input. MTF's and their 

equivalent spatial weighting functions are fundamental to the under­

standing of spatial resolution and to the following discussion. 

Degradation of MSS spatial resolution has often been simulated 

in the past by simply averaging together digitized signals within 

blocks of pixels and replacing each block with its average signal, 

representing the simulated signal for each new pixel in the degraded 

data set. The dimensions of th~se blocks of pixels can be determined 

by registering a grid with the original data, with the spacing of the 

grid representing the approximate size and spacing desired for the 

degraded pixels. The average signals are then calculated and recorded 

for each square (or rectangle) of the grid. This technique simulates 

enlarging the MSS aperture, reducing the sampling rate, and increasing 

the ground speed of the sensor. It also simulates a fundamental change 

in the overall scanner system MTF. This changed MTF is somewhat un­

realistic for studies of MSS data utility as a function of scanner 

resolution, particularly with regard to simulating the performance of a 

satellite system, using aircraft MSS data. 
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A more valid basis for studies of changing scanner resolution 

can be achieved by spatially filtering and resampling MSS data in a 

manner which simulates a realistic system MTF at the degraded resolu­

tion. In this case we choose to keep the effective system MTF unchanged, 

as if only the altitude of the sensor, its ground speed, and the time 

intervel between instantaneous samples of the analog signal were 

char-ged. Such a simulation requires that one first specify the nature 

ot' the overall MSS system MTF. 

II.2 SIMULATION OF THE OVERALL SCANNER SYSTEM RESPONSE 

For a simulation, an overall scanner system MTF is most easily 

spe(!ified by components, corresponding to the various factors which 

together comprise the total system response. For this study three com­

ponents were chosen which a_-~ typical for 1!lost modern scanner instru­

ments. 

The first scanner system response component chosen was one cor­

responding to the instantaneou& field of view associated with the 

scanner aperture. The spatial weighting function for this IFOV is 

plotted in Figure 11-1 for a two meter square IFOV. The points plotted 

(connected by straight line segments) correspond to digitization of the 

curve at the rate of 8 samples for every meter. This high sampling 

rate was chosen to illustrate (apprc~imately) the analog form of the 

weighting function, meant to correspond to a scanner system with a 

sampling interval (i.e., pixel spacing) of two meters. 

Since the geometry of scanner optics, their imperfections, and 

atmospheric effects all contribute to blur of the in8tantaneous field 

of view of the instrument, the second response component chosen was 

one corresponding to gaussian blur with a standard deviation of 

1/3 meter. The spatial weighting function corresponding to this blur 

is plotted in Figure 11-2. When the effects of this blur are combined 

with the IFOV !:epresented by the first response component, above, 
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(by convolution in the spatial domain), one obtains the spatial weight­

ing function representing the total combined optical and atmospheric 

effects simulated for this study. This combined weighting function is 

plotted in Figure 11-3. Again, the curves are plotted using 8 sample 

points per meter. The MTF corresponding to the combination of these 

is plotted in Figure 11-4. Note that the assumed spatial sampling 

frequency for the simulated scanner system is one sample for every 

two meters, while the MTF curve has been plotted for spatial frequencies 

as high as one sample per meter. The significance of spatial frequen­

cies in excess of one half the simulated sample rate (greater than one 

sample per four meters) will be discussed below. 

While the first two scanner response components simulated above 

are two-dimensional effects, the third component chosen is strictly 

a one-dimensional effect, applying only to the shape of the spatial 

weighting function in the scanning direct ton. This third component 

simulates electronic filtering used within the scanner to remove high 

frequency information which is of little use due to the limitations 

imposed by the choice of a finite sampling rate, and to trim the shape 

of the within-scan spatial weighting function and the corresponding 

MTF curve to produce the desired resolution size for the effective 

(overall for the system) instantaneous field of view. For this purpose 

a two poleliutterworth filter was simulated, whose spatial weighting 

function is plotted in Figure 11-5. The impulse response of the two 

pole liutterworth filter is an exponentially damped sinusoid, represented 

by 

sin /2nk x 
c 

(II-1) 

with x representing distance in meters, kc = 0.364 cycles per meter 

representing the cutoff frequency (half pOlfler point) for the filter, 

and the subscript 3 designating that this response pertains to the 
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third scanner response component simulated. The combined spatial 

weighting function within-scan, whicll includes all three response com­

ponents, is plotted in Figure 11-6. The }ITF corresponding to this 

combination is plotted in Figure 11-7. Note in this figure that the 

spatial frequency at which the combined HTF amplitude equals 0.5 is one 

cycle per four meters. By convention this is interpreted to correspond 

to a two meter resolution system. The along-track overall MTF for this 

simulation (plotted in Figure II-~) is specified by 

l(k x ~ 'flM)2 
= I.=cS,;:c.i.:c;,n..>,;( k~' _;_~ ..c:2:..c7T~H:L.) I e- 2 3 

IA(k)!12 k >: 2'nH (1l-2) 

while the within-scan overall MTF (plotted in Figure II-7) is specified 

by (II-3) 

I 2 2 

I 
( 

I 
- -2 (k x -3 7TH) 

IA(k) I = sin k x 27TH) 
1 2 3 k x 27TH e 

with k representing spatial frequency in cycles per meter, and witll the 

subscripts 1, 2, and 3 specifying the response components comprising 

each HTF. The response of this simulated system to an edge in a scene 

is plotted for the along-track direction in Figure 11-8, and for the 

within-scan direction in Figure 11-9. This latter response is quite 

similar to the published edge response for the H
2

S scanner \.]hose data 

was used for this study, and is also reasonable for a modern satellite. 

scanner system. 

II-3 lJbRIVATION OF THE Rl::QUIRED SPATIAL FILTERS IN ANALOG FORN 

Having specified the simulated scanner system HTF's both along­

track and within-scan, one may next address the problem of spatially 

filtering the two meter resolution MSS data to simulate four meter data. 

Since the order in which the separate components of the simulated 

scanner response are comhined makes no difference mathematically, one 

can determine three separate spatial filtering components, each 
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associated with a separate member among the original three spatial 

weighting components, which perform the appropriate separate conversions. 

These three spatial filtering components, when suitably combined, will 

then represent the total spatial filtering function that is required 

(in analog form). 

The first spatial filtering function required is a pair of unit 

impulses spaced two meters apart, as shown in Figure 11-10. In two 

dimensions this first spatial filtering function can be visualized as 

four unit impulses located at the corners of a two meter square. This 

is equivalent to applying the one-dimensional filtering iunction shown 

in Figure 11-10 first in the within-scan direction, and then in the 

almng-track direction (or vice versa). This relation between one-di­

mensional and two-dimensional representations of the aperture and 

blur weighting and filtering functions holds in all cases simulated 

for this study. hence the along-track and within-scan filtering and 

weighting procedures are treated independently as one-dimensional 

problems. When combined with the first spatial ~veighting componE7nt 

(Figure 11-1), this first filtering function produces a function rep­

resenting a four meter square IFOV associated with the scanner aperture, 

simulating a doubling of the sensor altitude (with blur yet to be 

considered). This aperture function is plotted in Figure 11-11. Note 

that sample points for the graph are still plotted at a spacing of 

8 samples per meter. 

The second spatial filtering function required is a gaussian func­

tion with a standard deviation of 1/3 x 13 meters, which is plotted 

in Figure 11-12. This is another two-dimensional filtering function 

which may be considered as two separate one-dimensional functions, 

as shmvn in the figure, applied in the ~vithin-scan and along-track 

directions, respectively. The combination of this second filtering 

function with the second weighting function component is plotted in 

Figure 11-13, with the horizontal axis compressed to facilitate 
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comparison with the orig::'ual second weighting component plotted in 

Figure 11-2. As can be seen, the filtering function succeeds in dou­

bling the spatial \vidth of the blur function, as desired. The apparent 

added smoothness of the curve in Figure 11-13 is due to the rreserva­

tion of sampling for the plot at 8 samples per meter. Hhen the second 

spatial filtering function is combined with the first, one obtains the 

results shown in Figure 11-14. This is the analog form of the required 

composite spatial filter for the along-track direction. The MTF for 

thi.s composite filter is plotted in Figure II-IS. 

The third spatial filtering component required is one \vhich \vould 

appropriately transform the response of the two pole Buttenvorth filter. 

The details of the mathematical derivation for this third filtering 

function will not be presented, hmllever, the result is given by 

I . 
H(x)F 3 = 4 8(x) + 

(II-4) 

1:. 2/27rk' e··/27fk~x [2 sin v2nk'x + cos I2nk'x] 
4 c c c 

with x representing distance in meters, 6(x) representing a unit im­

pulse, k' = 0.182 cycles per meter representing the cutoff frequency 
c 

(half power point) for the new two pole Butterworth filter component 

to be simulated through t.he spatial filtering operation, and the sub­

scripts F and 3 designating that this response pertains to the third -,.-filter component. This third spatial filtering component is plotted 

in Figure 11-16. The result of applying this filter to the original 

third weighting function component, simulating the original two pole 

Butterworth filter response (Figure 11-5), is shown in Figure 11-17, 

with the horizontal axis compressed to facilitate comparison with 

Figure 11-5. From these figures the filtering operation can be seen 

to succeed, with the apparent added smoothness of the curve plotted 

for the result (in Figure 11-17) caused by retaining the sampling rate 

for plotting at 8 samples per meter. The combined spatial filtering 

function within-scan, which includes a.ll three filter components, is 
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plotted in analog form in Figure 11-18 (with compressed horizontal 

axis). The HTF corresponding to this combination is plotted in 

Figure II-l9. The composite HTF for the along-track spatial filtering 

function (Figure II-IS) is specified in analog form 

- l(k x 
2 

IA(k)Fl l 2 = Icos(k x 41TM) I e 

by 

2 2 
- 'rrM) 
3 (Il-S) 

while the analog form for the composite HTF of the within-scan spatial 

function (Figure II~19) is specified by 

- ~(k ,I( t TIM) 2 ( 1 + (k x 
I cos (k x 4 Tf H) I e

t 
' .;::l--'---'-':.::..----.:;..:..:::-=~ 

+ (k x 

(II-6) 

6.S0M)4!-l/2 

3.2SH)4 

with k representing spatial frequency in cycles per meter, and with 

the subscripts 1, 2, and 3 specifying the filter components comprising 

each MTF. 

U.4 DIGITIZATION OF THE ANALOG SPATIAL FILTERS 

The next task is to determine appropriate digital filter equiva­

l~nts to the analog along-track and within-scan spatial filtering func­

tions. Since the orig. nal two meter resolution data is sampled only 

once for every two meterf, the same sample spacing must be used for 

the digital filters which are derived. Clearly such a sample spacing 

would skip most of the detail of the analog filter representations 

s~own in Figures 11-14 and 11-18. This finer detail in the curves is 

caused by the p_-esence of high frequency information in the filters 

For data sampled at two meter intervals, only spatial frequencies up to 

one cycle per four meters (half the sample rate) can be pt;.::;ceived un­

ambiguously. The higher frequencies masquerade as frequencies at or 

below the one cycle per four meters limit, as'if the portions of the 

MTF curves which are above this limit were accordion folded back and 

forth between this one cycle per four meters lim~t and the origin. 

This masquerading effect on the high frequencie~of an analog scene 
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or function, when it is sampled at equal intervals, is called aliasing. 

The analog scanner response at the two meter resolution (Figures 11-4 

and 11-7) has already caused some aliasing. This must be accepted as 

a limit (although not a severe one) to the accuracy of any proposed 

simulation of altered scanner resolution through digital filtering of 

digitized data. Fortunately, the analog filters' which have been de­

rived do not contain substantial amounts of high frequency information 

(frequencies above one cycle per four meters), hence simulating degra­

dation of spatial resolution by a linear factor as small as two, using 

the procedure to be derived below, is not an unreasonable ta.sk. 

The first step taken toward generating a digital form for the 

filters was to truncate the spatial frequency response of the filters 

at the one cycle per four meters limit. This was accomplished by de­

fining and applying a fou~th analog spatial filter component given by 

H(x)F 4 = I sin(1Tx/2M) 
2' 1Tx/2 (II-7) 

with x representing distance in meters, and with the subscripts F and 4 

designating that this is a fourth filter component. A computer program 

limitation on the number of weighting factors that could be used for 

nonrecursive filters restricted the spatial extent of this fourth filter 

component to ±20 meters, half of which is shown in Figure 11~20. This 

truncated representation of the fourth filter produced a least squares 

approximation, based on the number of weighting factors retained, to 

the abrupt low pass spatial frequency response that was intended for 

the filter component. The effects of this least squares approximation 

are noncritical, as will be evident in the final results to be pre­

sented below. The results of applying this fourth filter component to 

the along-track and within-scan analog spatial filtering functions are 

shown in Figures 11-21 and 11-23, respectively. By comparing these 

figures to Figures II-14 and II-1S, it is clear that much of the finer 
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detail (high frequency content) of these filtering functions has been 

removed, as intended. The along-track and \.,Tithin-scan t-ITF' s for the 

low pass filtered spatial filtering functions are plotted in Fig-

ures II-22 and II-24. Here the ripple that is apparent in the HTF 

curves is due to the truncation of the low pass filter weighting func­

tion, discussed above. These MTF curves have been normalized for plot­

ting so that the steady state response equals unity, and hence, are 

not normalized to correspond to the least squares approximation of the 

respective HTF curves, shown in Figures 11-15 and 11-19, which are not 

low pass filtered. 

The next step in generating the required digital form for the 

along-track and within-scan filtering functions \.,Tas to sample the 10\11 

pass filtered analog spatial filtering functions at two meter inter­

vals. The resulting series of weights were then truncated, retaining 

different odd numbers of weighting factors, and MTF's were calculated 

to determine the number of weighting factors that were reasonable to 

use. The choice of an odd number of weighting factors and the regis­

t~ation of the sampling with the analog curves (Figures 11-21 and 11-23) 

were dictated by the requirement to retain unaltered line and point 

numbering in the filtered result. The number of weighting factors 

was also important, since the greater the number of weighting factors 

retained, the greater would be the processing cost for the spatial 

filtering, while the fewer the number of weighting factors, the less 

accurate the simulation would be. Retaining 5 weighting factors for 

each digitized spatial filtering function appeared to be a reasonable 

compromise. 

For the along-track digitized filtering function, the error in 

matching the desired ~ITF curve was around ±3% with 5 weighting factors, 

while 3 and 7 weighting factors produced errors in the UTF of about 

±7% and ±l.5%, respectively. The digitized along-track spatial filtering 
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function, with 5 weighting factors, is plotted in Figure 11-25 (which 

may be compared to the analog function shown in Figure 11-21). The 

5 along-track weighting factors, normalized to sum to unity (corres-

ponding to a steady state response of unity), are 

w = -0.028771 a-t 1 

w = 0.22851.4 a-t 2 

wa':'t = 0.600513 (II-8) 3 

w a-t 4 = 0.228514 

wa_
t 

5 = -0.028771 

The MTF corresponding to the 5 weighting factor along-track digitized 

spatial filter is plotted in Figure 11-26 (with expanded horizontal 

axis). Figure 11-15 is reproduced with this same scaling of the hori­

zontal axis in Figure 11-27. Comparison of these two figures indicates 

the close approximation to the analog along-track filter MTF that has 

be~n attained. The spatial frequency response for this digitized and 

tr~ncated filter (Figure 11-26) is only plotted fer frequencies belo~v 

one cycle per four meters, however, remembering that aliasing accordion 
. 

folds the higher spatial frequencies back and forth between the limits 

of the frequency range shown, one may visualize the form of the MTF for 

higher spatial frequencies as an unfolded graph of successive mirror 

inl~ges of the segment shown, like a chain of "paper dolls". The re­

sulting large amplitudes of the MTF at high frequencies are not critical, 

since the two meter resolution data is already partly low pass filtered 

by the along-track scanner MTF (Figure 11-4 -- note the scale of the 

horizontal axis before comparing with Figure 11-26). 

For the witqin-scan digitized filtering function, the error in 

matching the desired MTF cucve was around ±1.3% with 5 weighting fac­

tors, while 3 and 1 weighting factors produced errors in the MTF of 
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about ±5% and ±1%, respectively. The digitized within-scan spatial 

filtering function, with 5 weighting factors, is plotted in Figure 11-28 

(which may be compared to the analog function shown in Figure II-23). 

The 5 within-scan weighting factors, normalized to sum to unity), are 

w = -0.013533 
w-s 1 

w = 0.235758 w-s 2 

w = 0.548425 (II-9) w-s 3 

w = 0.248356 w-s 4 

w = -0.019006 w-s 5 

The MTF corresponding to the 5 weighting factor within-scan digitized 

spatial filter is plotted in Figure II-29 (with expanded horizontal 

axis) • Figure II-·19 is reproduced with this same scaling of the hori­

zontal axis in Figure 11-30. Comparison of these two figures again 

indicates that a close approximation to the analog within-scan filter 

MTF has been attained. Again the spatial frequency response for .this 

digitized and truncated filter (Figure 11-29) is only plotted for 

frequencies below one cycle per four meters. The form of the MTF for 

higher spatial frequencies can be visualized by the unfolding ("paper 

doll") technique mentioned above. The large amplitudes of the \,Yithin­

scan filter MTF at high spatial frequencies again are not critical, d~e 

to the low pass filtering effect of the within-scan scanner MTF at the 

two meter resolution, shown in Figure 11-7 (note the scale of the hori­

zontal axis before comparing with Figure 11-29). 

11-5 APPLICATION OF THE DIGITIZED FILTERS TO THE DATA 

The 5 weighting factors for the along-track anci. within-scan 

digital filters that have been derived may be combined into a 5x5 matrix 

of weighting factors, with rows of the matrix representing within-scan 

filtering and columns of the matrix representing along-track filtering 
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0.000389 -0.006783 -0.015779 -0.007145 0.000547 

-0.003092 0.053874 0.125323 0.056753 -0.004343 

W = -0,008127 0.141576 0.329336 0.149141 -0.011413 (11-10) 

-0.003092 0.053874 0.125323 0.056753 -0.004343 

1_ 0.000389 -0.006783 -0.015779 -0.007145 0.000547 

which then may be applied to the 5x5 pixel vicinity surrounding each 

point to be sampled in the two meter resolution scene. (Note that in 

applying the spatial filter matrix to the data -- essentially a con­

volution procedure -- the left to right sequence of the rows and the 

top to bottom sequence o[ the columns should be reversed relative to 

the ascending sequence of point a-i).d line numbers, respectively. How­

ever, since the columns of the matrix are symmetric, one only needs to 

be careful about the sequencing within the rows of the matrix relative 

to the point numbering.) Since alternate points in alternate scan 

lines are to be sampled (to simulate the reduced spatial sampling rate 

at the four meter resolution), the mechanics of the filtering and 

sampling procedure are slightly complex, as indicated in Figure 3 

(in the text). 

11-6 RESTORATION OF THE GAUSSIAN NOISE LEVEL 

The weighted sum over the 5x5 blocks of pixels, used to apply the 

filters to the scene, has a smoothing effect on the data, low pass fil­

tering not only the scenic content, but the noise content as well. The 

amount of change in the gaussian noise amplitude after the filtering 

is proportional to the RHS value of the filter HTF. Appropriate RHS 

calculations indicate that the gaussian noise level in the two meter 

resolution scene is reduced in amplitude (through filtering) by a factor 

of 0.680, due to the along-track filtering, and by a factor of 0.648, 

due to the within-scan filtering. Hence, overall there is a reduction 

in the noise '3.mplitude by a factor of 0.439. This is equivalent to a 
2 

reduction in the variance of the noise by a factor of 0.439 , or 0.193. 
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To restore the noise level of the data at the four meter resolution 

to the level that was present at the two meter resolution, one must 

add gaussian noise to the filtered result, with variance equal to 0.807 

times the original variance. This variance corresponds to 0.899 times 

the original gaussian noise amplitude. 

11-7 GENERAL NATURE OF THE FILTERING TECHNIQUE 

Since the above discussion all hinges on sampling rates and sam­

pling intervals, which are only related to spatial frequencies and 

distances by changes in the sensor altitude, the procedure presented 

actually is suitable for any simulation of linear doubling of spatial 

resolution, using digitized data from a scanner system with along-track 

and within-scan spatial response similar to that shown in Figures 11-3 

and 11-6. Hence, repeated applications of the same filtering and 

sampling technique can be used to simulate 8 meter resolution, using 

the 4 meter results, then 16 meter resolution, etc. Of course propaga­

tion of sampling errors could be minimized in such cases by deriving 

new filters specifically for each simulation, however, the repeated 

doubling technique presented should be accurate enough for any but the 

most exacting simulations. 
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APPENDIX III 

DECISION RULES 

The computer-implemented spectral classification techniques dis­

cussed in this study made use of 6 decision rules. The quadratic de­

cision rule is the standard Bayes formulated maximum-likelihood ratio. 

The linear decision rule is based on the quadratic rule and involves 

a linear approximation of the decision boundaries. Both rules [7] 

are based on information from one resolution element at a time. 

The remaining four decision rules \vere the so-called "nine-point" 

or multi-element rules [3) whose objective is to increase the accuracy 

of multispectral classification by using information from groups of 

resolution elements. These rules determine the classification of a 

resolution element on the basis of information from that element and 

its 8 immediate neighbors. Such rules are applicable whenever a reso­

lution element is likely to represent the same material as its neigh­

bors. A brief definition of each rule follows. The interested reader 

can find complete details in reference 3. 

BAYES9 is based on the assumption that a pixel probably represents 

the same material as its neighbor. The degree of dependence can be 

specified. 

PRIOR9 makes a Bayesian decision on the center pixel based on prior 

probabilities estimated from neighborhood data values. The estimated 

prior probability of a material is the average, over 9 pixels, of the 

posterior probability of that material at each pixel. 

PREF9 uses as its decision criterion the estimated prior probability 

just defined for PRIOR9. It is conceptually an improved voting rule 

that takes account of all the information at each pixel rather than 

just a vote for the winning material. 

VOTE9, applied after QRULE decisions have been made on the 9 pixels, 

assigns to the center pixel the material most frequently recognized 

among the 9 pixels. 
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