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PREFACE

This report describes part of a comprehensive and continuing pro-

gram of research concerned with advancing the state-of-the-art in re-

mote sensing of the environment from aircraft and satellites. The 	 .►

research is being carried out for NASA's Lyndon B. Johnson Space Center,

Houston, Texas, by the Environmental Research Institute of Michigan

(ERIM). The basic objective of this multidisciplinary program is to

develop remote sensing as a practical tool to provide the planner and

decision-maker with extensive information quickly and economically.

Timely information obtained by remote sensing can be used to pre-

dict the production of such important food crops as wheat, and thus

allow government to avoid either famine or market oversupply. Other

applications of information obtained by remote sensing include forest

management, detection and prevention of water pollution and urban land

studies. An integral part of obtaining this type of information is the

estimation of the proportion of target classes in a scene. Yet the

techniques employed in proportion estimation remain limited in many

ways. The purpose of this report is to test and evaluate several pro-

portion estimation algorithms which have been developed to overcome the

limitations of more conventional algorithms.

The research described here was performed under NASA Contract NAS9-14123,

Task 14, and covers the period from 15 May 1975 through 14 May 1976.

Dr. Andrew E. Potter has been Technical Monitor. The program

was directed by R. R. Legault, Vice-President of ERIM, by J. D. Erickson,

Project Director and Head of the Information Systems and Analysis De-

partment, and by R. F. Nalepka, Principal Investigator and Head of the

Multispectral Analysis Section. The ERIM number for this report is

109600- 69-F.	
r
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The experiment that is the subject of this report was initially

planned by Harold M. Horwitz with the help of Robert B. Crane and the 	 y

authors. Richard J. Kauth made helpful technical suggestions and gave

editorial assistance. John Lewis contributed to data preparation. 	 I

The authors gratefully acknowledge the help of all these co-workers. 	
j
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1

SUMMARY

Fourteen different classification algorithms were tested for their

ability to estimate wheat proportions and correctly discriminate between

winter wheat and other pixels. The data base consisted of ground truth

and spring, 1974, Landsat data from 55 sections from 5 LACIE Intensive

Test Sites in Kansas and the Texas panhandle. In every square mile sec-

tion, each algorithm's estimate of the proportion of wheat was checked

against '_,a true proportion. For some algorithms, accuracy of classifi-

cation in field centers was also observed.

The reference algorithm, against which all others were evaluated,

was QRULE operated in the recognition mode, an algorithm substantially

equivalent to the recognition procedure being used as a part of the LACIE

(Large Area Crop Inventory Experiment). Wheat and non-wheat training

fields were selected at random from the ground truth. Signatures ob-

tained by clustering the points of the training fields appeared to rep-

resent well the data distribution patterns in the sites; hence, the tests

were of the capabilities of the algorithms given good signatures rather

than tests of the AI's ability to select representative fields and
I

properly identify them.

Besides QRULE, the algorithms tested included:

1. LRULE a linear decision rule and ADMAP, an adaptive decision

rule based on LRULE. Both rules classify single pixels.

'r
2. several nine-point rules which use data from the 8 neighboring

pixels to assist in the classification of the center pixel.

They are:

a. BAYES9, based on the assumption that a pixel probably rep-

resents the same material as its neighbor

b. LIKE9, the nine-point maximum likelihood rule, which

amounts to choosing the material with the smallest sum of

the 9 multivariate normal exponents

3
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c. PRIORS, which makes a Bayesian decision on the center

pixel based on prior probabilities estimated from neigh-

borhood data values

d. PREF9, which chooses the material with the largest average

posterior probability over the 9 pixels

e. VOTE9, which recognizes the material with the largest

number of votes (i.e., QRULE decisions) among the 9 pixels

f. AVE9, which averages the data from the 9 pixels and then

applies QRULE
i

3. several mixed pixel rules which estimate the fraction of each

pixel belonging to each category. They are:
a. LIMMIX. When the data point is close enough to a signa-

ture mean, that pure signature is chosen. Otherwise, the

best mixture of a pair of signatures is chosen.
i

b, LIMMIX B, This is similar to LIMIX, except that a den-

sity is defined for each two-way mixture and a choice
is made between pure and mixed densities by maximum like-

lihood.

c. LIMMIX C. This is the same principle as LIMMIX B except

that the two-way mixture density is defined differently,

d. Nine-Point-Mixtures. First, 'a vote of the 9 pixels is

taken as in VOTE9. If either wheat or other gets 8 votes
or more, the vote makes the decision. Otherwise the

LIMMIX procedure is applied to the center pixel.

4. a cluster mapping decision algorithm. The data of- the site
are clustered.- The clusters are identified as wheat or other,	 9

first by the training pixels in the cluster if possible, then
by spatial and spectrel closeness to identified clusters. The

wheat acreage is computed from the total number of pixels in
the clusters identified as wheat. Human-aided-cluster mapping	 '
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and an automatic clustering procedure that relies on spatial

closeness to identify unknown clusters were tested.

5. Modifications of QRULE and PRIOR9 to estimate wheat acreage

by summing, over all pixels, the posterior probability of .A...
wheat. The estimate can be iterated by letting the prior

probabilities of a repeated run be the proportion estimates

of the previous run.

The algorithms were run without a null test. (A null test is an

option to classifya pixel as none of the candidate signatures, and

therefore not count it as wheat, when it is further than a given dis-

tance from the winning signature.) In addition, QRULE, PRIOR9, LIMMIX

and Nine-Point Mixtures were run with a null test and the results com-

pared.

The principal results of the tests are as follows: the good

training data enabled QRULE to recognize wheat in the 55 sections with

an average absolute error of only 6.9% and a bias in favor of wheat of

3.6%, an accuracy that did not leave much room for improvement. -LIMMIX

achieved the best no-null-test result, reducing the average absolute

error to 6.1% and the bias to 1.0%. Almost identical results were

scored by QRULE and PRIOR9 using a null test that decided "none of

these" when the chi-square value for the winning signature exceeded 45

(a value considerably-higher than the .001 chi-square level of 18.5).

A null test made hardly any improvement in the LIMMIX results.

The other mixture algorithms registered smaller improvements over

QRULE and had lour biases in the 1.4%-1.8% range. None of the remaining

algorithms improved on the QRULE absolute error and all but the auto-

matic clustering procedure (whose bias was 1.3) had a bias comparable

to QRULE's. Five of the algorithms, LIKE9, AVE9, automatic cluster

mapping, ADMAP, and-LRULE had noticeably higher average absolute errors

of 8.0% or more.

i
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Cluster mapping aided by human judgement did not receive a complete

test but the partial results were quite encouraging. Automatic cluster

mapping did not fare so well in its initial trial, quite possible because

the algorithm did not include the principle of spectral closeness.

The posterior probability method of acreage estimation, with or with-	 **U

out iteration, had results very similar to those of the pixel-count method.

Classification accuracy on within-field pixels was measured for

QRULE and the nine-point rules. This test showed that deep within the

fields, all nine-point rules outperformed QRULE substantially. On near-

boundary pixels within the fields, the margin was narrower and LIKE9 and

AVE9 were worse. The large proportion of pixels in LANUSAT data either

on or adjacent to a boundary shows why most of the nine-point rules per-

formed poorly in the area tests and suggests that their most useful

application is to higher resolution data or to areas with larger fields.

When bias was averaged for sections grouped according to the true

proportion of wheat, only LIMMIX and QRULE with a null test maintained

consistently low levels of bias.

The experimental design had two sound features. The comparison of

estimated with true wheat area is a performance measure that realisti-

cally refers to theobjective of wheat inventory. The use of a section

(lxl mile square) as an experimental unit supplies the replications

necessary to draw conclusions, even though allowance has to be made for

the dependence of sections within a site. As for the execution of the

experiment, the strongest evidence of its correctness is that we can

understand ,and explain most of the results. Taken together, the experi-

mental plan andprocedure appear to be able to distinguish between a

good and a bad wheatrecognition algorithm. They could, therefore, be

useful in evaluating new and modified algorithms of current interest.

Because the algorithm LIMMIX that performed best is slow, its use

on the type of data in our test is of questionable practicality. In a

region of small fields where the performance of QRULE would be expected

to break down, LIMMIX could become the algorithm of choice.

4
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2

INTRODUCTION

ERIM has developed, over a period of years under varied sponsor-

ship, numerous algorithms for processing multispectral data to extract

earth resource information. The impetus for development has been greatly

increased by ERIM's participation in the Large Area Crop Inventory Ex-

periment (LACIE), an experiment to test a prototype application system

for the estimation of worldwide wheat acreage, yield, and production.

Something in the neighborhood of 20 of the developed algorithms are

potentially suitable for wheat inventory. Fourteen of these were tested

in the present study and the results are included in this report. Others

can be tested in the near future if this is found desirable. Descrip-

tions of the algorithms tested are given in Section 3.

The algorithms classify pure pixels or estimate the fractions of

classes included in mixed pixels. They depend for their effectiveness

on being furnished with signatures representing the data distributions

of the materials present. In our experiment, the signatures were ob-

tained from training fields selected at random from the ground truth,

a procedure roughly comparable to that used in the local mode of LACIE,

in which training fields are chosen from the test site and identified

with credible accuracy by an Analyst Interpreter (AI).

The overall test.structure is as follows. The primary performance

measure employed during the study is the ability of each algorithm to

estimate the proportion of wheat in each experimental unit. This

measure and secondary measures are described in Section 5. To evaluate

the candidate algorithms, the performance of each is compared with the

performance of the usual quadratic classifier QRULE operated in a mode

to discriminate between wheat and non-wheat, a rule substantially

equivalent to the LACIE classifier.

The elemental experimental unit is a one square mile section, A

factor in the tests is the site in which the section is located. -There

5
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are 5 of these sites, each having a varied number of usable sections,

totalling 55. Because the sections of a site share a common set of

signatures and tend to share a data distribution pattern, the experi-

mental units are somewhat dependent. The sites and sections are fur-

ther discussed in Section 4.

To prepare the data for analysis required a substantial effort.

Certain key elements of that effort, such as the method of finding field

vertices, are described in Section 4 and in several appendices.

Test results and a detailed discussion of them are contained in

Section 5. Overall conclusions and recommendations are given in

Section 6.

ffl*1. ;
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3

DESCRIPTION OF ALGORITHMS

The decision algorithms tested were of four types: one-point

rules, nine-point rules, mixture rules and adaptive processing rules.

The one-point rules were QRULE, the usual quadratic decision rule and

LRULE, the minimum-risk linear decision rule [9]. The nine-point rules

are briefly defined as follows [1]:

BAYES9 is based on the assumption that a pixel probably repre-

sents the same material as its neighbor, the degree of dependence

specified by a parameter a between 0 (independence) and 1 (complete

dependence). In our tests we used 0 values of 0.1, 0.3, and 0.5.

LIKE9, the nine-point maximum likelihood rule, amounts to

adding, for each material, the 9 multivariate normal exponents and

choosing the material with the smallest sum. It is equivalent to

BAYES9 with 0 = 1.

PRIOR9 makes a Bayesian decision on the center pixel based on

prior probabilities estimated from neighborhood data values. The

estimated prior probability of a material is the average, over 9

pixels, of the posterior probability of that material at each pixel.

PREF9 uses as its decision criterion the estimated prior

probability just defined for PRIOR9. It is conceptually an improved

voting rule that takes account of all the information at each pixel
I

rather than just a vote for the winning material.
3

VOTES, applied after QRULE decisions have been made on the

9 pixels, assigns to the center pixel the material most frequently

recognized among the 9 pixels

7
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AVE9 averages the 9 data points and then applies QRULE. To

prevent occasional alien points from disturbing the decision rule,

	

'	 the t largest and t smallest data values in each channel are omitted

from the average. In our tests, we used t = 1, so the average was

taken over the 7 middle data values in each channel.

All the nine-point rules use QRULE at some point. VOTE9 takes

a vote among 9 QRULE decisions. AVE9 computes a trimmed mean of

9 data points and then processes with QRULE. The other rules all

	

i	 use the QRULE-computed densities conditional upon each signature as

the starting point of their calculations.

Initially, in our testing, we used QRULE in the classification mode.

In this mode a decision is made among all the input signatures. If

there were 6 wheat and 9 other signatures, for example, then 15 possible

	

j	 decisions could be made. The 6 categories of wheat decisions could then

be collected to estimate the wheat acreage. It soon became apparent that

the classification mode was not suitable for nine-point rules. VOTES,

for example, might find the vote split among the 6 wheat signatures and

still not decide the center pixel is wheat. The other nine-point rules
have similar difficulties.

We therefore wrote a version of QRULE that operates in the recogni-

tion mode. In this mode, a composite wheat density is obtained by aver-

aging the wheat densities and similarly, a composite non-wheat ("other")

density. A maximum likelihood decision is then made between the two com-

posite densities.' The nine-point rules operate on these composite

densities without modification. Our test results for QRULE and the
nine-point rules were obtained in the recognition mode. Comparison

i

This rule is substantially the rule used by the Classification and
Mensuration Subsystem in LACIE [2].

8
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with classification mode results was made for the Ellis site only.

These results confirm the benefit of using the recognition mode for

nine-point rules (Table 5), but no preference between the recognition
7

and classification modes of QRULE was indicated. In a future test, the

,recognition and classification modes will be compared for all sites.

The mixture algorithms tested were LIMMIX, LIMMIX B, LIMMIX C, 	 j

and Nine-Point Mixtures. They are all modifications of the basic mix-

ture algorithm MIXMAP, which we now describe.

A mixture processing rule does not assume that the signal from

the pixel processed represents a single material but rather is a

positively-weighted sum of signals from materials represented in the

pixel, each weight 1i being the proportion of material i present in

the pixel. A mixture rule estimates these proportions. MIXMAP

depends on the simplifying assumption (without which the problem would

be intractable) that all signatures have the same covariance matrix.

This common covariance matrix is reduced to the identity matrix by a

linear transformation of the data point and the signatures. The density

in the transformed space can now be measured by the distance from the

transformed data point to its transformed mean. All possible proportions

of the materials can be represented by the points within the convex hull

of the transformed means. The estimation procedure is to find the point

in this convex hull nearest to the transformed data point and calculate a

the estimate of the proportion vector from it. The estimate is a maximum

likelihood estimate of {X i} under the assumptions stated and the

assumption of normality. References [3] and [4] describe the algorithm

in greater detail.

LIMMIX exploits the reasonable assumption that no more than L

materials are present simultaneously in a single pixel [5].. For illus-

tration, we suppose that L = 2 We choose two threshold values X 12 and X22.

We first make the usual decision among pure materials, taking note of

J
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the chi-square distance X p 2 between the data point and the winning mean.

If X p 2 s X1 2 , we accept the pure decision without further calculation.

Otherwise, we use the MIXMAP procedure to find the best pairwise mix-

ture of materials, computing as a by-product X m2 , the distance from

the transformed data point to the best two-way mixture. If 
Xp 

2 = X
m
 L,

it means that the best two-way mixture has turned out to be a pure deci

sion which is accepted if Xp2 = a high cutoff level X22. If Xp2 > Xm2,

the best mixture is really a mixture and is accepted if Xm2 < X 22 . But

should the X22 test fail, the data point is declared an unknown object.

LIMMIX has the advantage that the total number of materials is not

limited, whereas MIXMAP is subject to the geometrical constraint that

the number of materials cannot exceed the number of channels plus one.

LIMMIX B and LIMMIX C are like LIMMIX in that they are decision

rules for choosing among pure signatures and mixtures, but they

are based on the principle of defining a density for each two-way mix-

ture and then choosing among the pure and mixed densities by weighted

maximum likelihood. A detailed description of these algorithms is

given in Appendix V.

Nine-Point Mixtures extends the LIMMIX concept by taking advantage

of information contained in the adjoining 8 pixels (in the manner of

VOTE9, described above) to determine both how many materials and which

materials are in a pixel. This procedure is implemented as follows:

A. Make a preliminary pass through the data, classifying each

pixel according to the usual quadratic decision rule QRULE.

B. For each pixel, look at it and the adjoining 8 pixels, and

count the "votes" (QRULE decisions) on their identity. Pixels

may participate in the vote only if their associated chi-square

level is less than 
n12

. If at least N 1 of the pixels agree

..b-
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on identity, the center pixel is classified as this material.

In this decision, all the wheat votes are added together and

so are all the other votes.

C. If the two materials with the largest number of votes each

have N2 or more votes, then the pixel is assumed to be a mix-
M

ture of these two materials and the proportion is estimated

t	 by the proportion of votes.

D. If tests B and C fail, the LIMMIX procedure is applied to the

center pixel. If its chi-square level is less than or equal

to n 22 , accept the QRULE decision. If the chi-square level

is greater than n 2 2 , find the best two-way mixtureand accept

it if its chi-square level is less than n 3 . Otherwise, declare

the point alien.

The accuracy with which LIMMIX estimates wheat area depends on

the choice of the processing parameters X 12 and x22 just as the accu-

racy of Nine-Point Mixtures is dependent on the choice of N l , N2, n12,
	 -3

n22, and n32 . Object ive methods of training these parameters by-making

one pass through the data are described in Appendix VI. The principal

technique is to make a prior estimate m of the proportion of mixture

pixels in the scene, a*relatively stable figure, and then adjust the

parameters so that the proportion of mixture decisions agrees with m.*

Cluster mapping uses a clustering algorithm to classify the data

rather than merely to provide signatures for some other classifier.

The classification is accomplished as follows:

1. Cluster the entire region to be classified, marking each pixel

with the number of the cluster to which it belongs.

This procedure for training parameters replaces a non-objective pro-
cedure defined and used in the fastest contract quarterly progress
report.

11'
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2. Map the cluster numbers of the pixels.

3. Identify as many clusters as possible by observing which clus-

ters appear in the training fields.

4. Continue to identify clusters by observing which ones are

spatially in the midst of clusters already assigned to wheat

or other.

5. Give each remaining cluster the identity of the identified

clusters that are nearest spectrally. The determination of

spectrally nearest clusters is a calculation on the cluster

signatures.

6. Estimate the wheat area from the total number of pixels in

the clusters identified as wheat.

The cluster mapping procedure was originally developed to expand

the ground truth furnished by  the AI. It was carried out with the aid

of a human interpreter in steps 3, 4, and 5 with results as shown in

Table 1. The accuracy of the technique suggested that it be used as

a classifier in its own right.

As a classifier, cluster mapping would enjoy three advantages over

conventional classification techniques:

1. Cluster mapping is less sensitive to ground truth errors than

are conventional techniques. This is because cluster mapping

forms its own estimate of the spectral classes in the scene.

The identity of these classes is then decided by majority rule,

e.g., if cluster 10 occurs more often in wheat fields than

other fields, then cluster 10 is called wheat. Thus, as long as

a large majority of the ground truth pixels are correctly

identified, no errors are made. Conventional techniques, on

the other hand, can make large classification errors from 	 N

small ground truth errors

2. Cluster mapping requires less extensive ground truth because

every cluster need not be represented in the ground truth.

12
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TABLE 1. ACCURACY OF THE CLUSTER-MAPPING PROCEDURE WHEN
IT INCLUDES HUMAN JUDGMENT

Mean
Absolute

	

Estimated Actual	 Rms Error	 Error	 Number of
Site	 Wheat % Wheat % for Sections for Sections Sections

Ellis	 50.4	 45.8	 4.6	 4.6	 4

Deaf Smith	 33.1	 33.3	 6.0	 5.3	 4

Randall	 45.5	 47.2	 3.3	 3.1	 5

Finney	 27.2	 20.1	 2.7	 2.1	 9

Saline	 74.1	 70.5	 4.7	 3.8	 4

COMPARISON WITH QRULE OVER 26 SECTIONS:

Bias
(Mean	 Median	 Mean

Algebraic	 Absolute	 Absolute	 Rms
Error)	 Error	 Error	 Error

Cluster mapping 	 1.9	 3.2	 4.3	 5.8'

QRULE	 2.4	 4.3	 4.9	 5.9
4

s

Those that fail to appear in the training fields may very well
s	

be correctly identified by spectral or spatial closeness.

3. In the cluster mapping technique, classification of pixels is

done before human intervention (such as providing ground truth

areas)_. Cluster mapping is, therefore, uniquely suited to

applications such as on-board satellite data processing where

human interaction is both difficult and expensive.

The cluster mapping procedure would be efficient and repeatable

if the human interpreter could be replaced by computer logic. This

hope together with the advantages of the procedure suggest that cluster,

mapping is worthy of considerable developmental effort.

13
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Our initial attempt to automate cluster mapping is a.processing

module called TRAIN that uses spatial information to identify unaffili-

ated clusters. The algorithm is described in detail as follows;

1. Examine the training areas. A cluster occurring in one or more

training areas is called "wheat" if twice as many of the clus-

ter's pixels appear in wheat fields as other. In order that

this vote be representative, it must satisfy the condition

that the cluster account for a least 2% of the training area.

An analogous rule identifies the cluster ac, "other". If the

cluster is not identified, it is called "unknown".

2. For each unknown cluster, look at each pixel and each of its

four nearest neighbors. Keep a count of the number of wheat

neighbors, the number of the other neighbors and the number of

unknown neighbors. The exception to this rule is that if three

or more of the four neighbors belong to the cluster in question,

then no neighbors are counted for that pixel, so that when a

pixel is on the edge of a field we will not try to identify it

by its neighbors.

3. Look at each unknown cluster in turn and identify it as wheat

if it passes the following two tests

number of-wheat neighbors 	 factor 1
number of other neighbors

number of wheat neighbors + number of other neighbors > factor 2
number of unknown neighbors

The tests for identifying it as other are analogous: Factor 1

and factor 2 are initially 1.9.

4. Every time a cluster is identified by step 3, the number of
unknown and the number of wheat or other neighbors changes,

so a cluster that failed the tests of step 3 previously may

later passthem. Therefore, steps 2 and 3 are applied re-

peatedly until there is no-change in cluster identification.

14
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5. Reduce factor 1 by 0.3 and factor 2 by 0.5 and repeat steps

2-5. Stop the iteration when factor 2 becomes less than zero

and call all the remaining unknown clusters "other".

To explain the algorithm, we have made it appear that it is neces-

sary to go through the data many times. Actually, we keep a matrix of

association frequencies and go through the data only once.

Although improvements to this rule spring to mind, such as the

joint use of spectral and spatial measures of closeness, time limita-

tions have restricted us to the implementation and testing of the rule

just described.

The final procedure tested was our adaptive processing algorithm

ADMAP. Adaptive processing updates the mean vectors of the crop sig-

natures based on decisions made by a classifier and on the values of

the individual data vectors which are classified. The approach is

based on the following idea. Suppose a sequence of observations (data

vectors), zj , Z.	 ... were all recognized as material class A by the

classifier, but that these observations tended to cluster to one side 	
E

of the current estimate of the mean, VA' of that material class. This 	 a

would provide us with some evidence that the mean of the material

class A had shifted. A decision-directed adaptive classifier is one

which automatically adjusts the value of uA so as to bring it closer

to the current observations which were classified as material A.

We would like our decision-directed adaptive classifier to take

account of some additional considerations. The amount by which we

allow a signature to be modified in any particular updating cycle may

be different in different spectral channels. Also, a particular crop

may not be observed for some time, and during that time the true mean

of that crop, along with the means of other crops, may shift. Hence

we would like to be able to adapt all signatures based upon the obser-

vations and classifications of one or a few of them.

15
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In practice, resolution elements often overlap two or more

f	

different crop types, producing an observation far from the mean of

any particular crop class. We would like to avoid using these obser-

vations as well as "wild" observations from any other cause.

The Kalman filter (an account of which is given as Appendix I)

combines these considerations into one systematic approach. ADMAP
r	 a

carries out the Kalman filter with a few additional modifications.

These include the ability to weight a pixel by a confidence.factor

based on the X2 value associated with that pixel's classification,

in order to exclude 'wild' pixels and mixture pixels; the ability to

make use of ground truth information where available in the scene;

and the ability to update after each scan line or portion of a scan

line, (rather than after each point), to increase efficiency.

ADMAP has a parameter 6 1 that determines how much weight to give

the new data value in updating the mean. It thus determines how

rapidly ADMAP adjusts the means. In our tests, we used values of 	 +,

6 1 = 1.0-5 , 10-6 and 10-7 , to produce faster, medium or slower adjust-
1

ment, respectively. 	 9

All of the rules were tested without a null test. (A null test is

an additional stipulation that if the pixel is not within a given dis-

tance of the winning signature it is classified as none of the candi-

date signatures and is therefore counted as not wheat.) QRULE, PRIOR9,

LIMMIX and Nine-Point Mixtures were run with and without a null test

and the results compared. The null test for LIMMIX is the X  test.	 s
To turn off the null test, X3. is set to a very large number. The n3	

3

test plays an analogous role in the Nine-Point Mixtures algorithm.

The null test for QRULE and PRIOR9 is to decide null if the chi-square	 F

value of the winning signature is greater than a given test value.

Modifications of QRULE and PRIOR9 to estimate wheat acreage by

summing posterior probabilities were programmed and tested. The pro-
cedure is described as follows,

16
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The maximum likelihood decision rule for recognizing wheat is to

compute for each pixel two density functions P(XIW) and P(X10) of the

pixel data vector X. P(XIW) is the density, also called "likelihood",

of X given that the true distribution is wheat and P(XIO), the density

of X given that the distribution is "other". P(XIW) may be a composite

wheat density, that is, a weighted sum of normal densities, each repre-

senting a different variety or condition of wheat, and P(XIO) is likely

to be similarly formed. The pixel is decided to be wheat if P(XIW) is

greater than P(XI0)

By the use of Bayes' formula, we can turn the densities around and

compute P(WIX), the probability that the pixel is wheat and P(OIX), the

probability that it is other:

P(W)P(XIW)
P(WIX) = P (W)P(XIW) + P(0)p(XIO)

P(01X)

	

	 P(0)P(XI0)
P(W)P(XIW) + P(0)P(XIO)

where P(W) is the prior probability of wheat and P(0) is the prior

probability of other. P(W) and P(0) are defined to add to 1.

The "posterior probabilities" P(WIX) and P(01X) add to 1 as proba-

bilities should. A justification for the maximum likelihood estimate

is that it is equivalent to choosing the material with the largest

posterior probability. The rule is most commonly applied with equal

prior probabilities, but likelihoods are sometimes weighted by unequal

priors.

As an alternative to the usual method of wheat acreage estimation,

which classifies each pixel as all wheat or all other and then counts

the number of wheat pixels in the area, M. Rassbach has proposed [8]

that we allot to wheat the expected amount of wheat in each pixel,

which is P(WIX), and then sum these individual expected values to

17



obtain the expected amount of wheat in the area. The estimated pro-

portion of wheat is this value divided by the number of pixels.

PRIOR9 is a weighted maximum likelihood rule like QRULE, except

that the weights (prior probabilities) are derived from neighborhood

data values rather than set once and for all at the start of the run.

Thus, P(WIX) is as previously described, except that it has the PRIOR9

weights.

QRULE in the posterior probability mode was programmed to run with

an option of iteration. The user sets the prior probabilities P(W) and

P(0) (equal priors is the default case) and then the program iterates

a prescribed number of times, the priors for each iteration being the

proportions estimated by the previous iteration*. Although this vio-

lates the concept of prior probability, we were tempted by the thought

that if the wheat proportion came out 10%,, for example, then 10% and

90% would be better probabilities to use in the decision rule than 50%

and 50%. We wanted to see, at least, what the result of this iteration

would be. The iteration concept does not apply to PRIOR9.

The iteration concept is a special case of the University of
Houston Maximum Likelihood Estimate procedure [12] and was independently
proposed by H. M. Horwitz of ERIM in February, 1975.

w•

a
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DESCRIPTION OF THE TEST SET

The data base used for the tests described here consists of ground

truth and unitemporal data from 55 sections from 5 LACIE Intensive

Test Sites. The data base preparation included:

1. checking the data from bad lines and removing the effects of

striping (see Appendix III)

2. locating digitally the vertices of the field boundaries

3. selecting training fields by a random procedure

4. clustering the points of the training fields and combining

the clusters into a manageable number of signatures

5. computing the ground truth percentage of wheat acreage in each

section of each site (see Appendix II).

The sites and the sections within the sites were chosen to pro-

vide a variety cf conditions for comparing the performance of data-

processing algorithms but to eliminate gross sources of error that

would render such comparison meaningless. The presence of any of the

following sources of error was considered serious enough to justify

deleting a section from the test set:

1. Misleading Ground Truth - In several cases there are fields

which are described as wheat in the ground truth but which are

known to have been severely damaged or destroyed by natural

causes such as hail, drought, or insects previous to the data

collection.

2. Data Errors, such as bad or repeated lines These phenomena

could seriously affect the results of this test, because of the

small size of the experimental unit, but can be adequately

compensated for over large areas.

3. Clouds - It is difficult to define the boundaries of a cloud

with the precision necessary for this experiment.

19
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As a result of this selection procedure, the following sites were
included in the test set:

Ellis	 Kansas	 12 June 74	 9 Sections

Deaf Smith	 Texas	 27 May 74	 6 Sections	 ..

Randall	 Texas	 27 May 74	 7 Sections

Finney	 Kansas	 26 May 74	 24 Sections

Saline	 Kansas	 6 May 74	 9 Sections

To use the field information for defining signatures and measuring

performance it was necessary to obtain accurate line and point coordi-

nates of each field corner. For simplicity and accuracy, we used a

digitizer on a photographic image of the site to obtain field vertices

in one set of coordinates and then transformed them into line and point

coordinates which were kept as continuous measurements rather than in-
tegers. The transformation was obtained by a second order regression

on field, corners identifiable on both the photographic image and the
line printer maps of the site.

AI designations of training fields were not available, so a random

selection procedure was used. Wheat training fields were chosen from

among all the wheat fields in the test site containing at .least 5 field-

center pixels. (A field-center pixel is one whose center is at least
1.5 pixel-widths from the boundary of the field..) The fields were

chosen at random, one at a time, until there were at least 5 fields
containing together at least 200 field-center pixels. These require-

ments were subordinate to the restriction that the number of wheat

training fields should not exceed half the number of eligible wheat

fields and that the number of wheat training pixels should not exceed

half the number of field-center wheat pixels.. The non-wheat ("other")
training fields were chosen at random among all the eligible 11otherif

fields until at least 10 fields and 306 pixels were chosen subject to
the previous restriction. In all, 6.7% of the pixels in the test areas
were chosen as training pixels.
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t

Wheat signatures were obtained by clustering all the field-center

pI,xels of the wheat training fields and then using the program GROUP

(described in Appendix IV) to combine the clusters into the smallest

niunber of signatures possible without adversely affecting classification

accuracy. "Other" signatures were obtained analogously.

k

r

1

9
7

i

i

w 1

1
1

i

7

21	

yy



Y^

•	
i

LEQIM
FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICNIG!\N

5

TEST RESULTS AND DISCUSSION

Our principal performance measure for evaluating the algorithms

defined in Section 3 is the difference between estimated and true wheat

area in each of the 55 sections. In addition, we compare the perfor-

mance of QRULE and the nine-point rules on field interiors by counting

the number of within-field pixels misclassified. These two sets of

results are reported in Sections 5.1 and 5.2. Detailed discussion

follows in Section 5.3.

In an attempt to discern general tendencies in the results, we

have averaged the results over 55 sections and used Student's t test

to measure their significance. But the assumption of independent sam-

ples, on which the t test is based, fails because in each of the five

sites the sections have a common selection of training sets and tend to

share a data distribution pattern. This dependence increases the

standard deviation of the mean, effectively :cutting down the number of

degrees of freedom, so that significance cannot be proved by such a t

test. But a result not significant at 54 degrees of freedom will be 	 {

even less significant when the dependence is taken into account. Thus, 	 j

the reported significance of the t test is a bound on the possible

significance of the result.

j

5.1 FIELD INTERIOR RESULTS

The within-field pixels were identified by locating the vertices

of each field in floating point coordinates and using a subroutine

(POLYGN) that accepts for processing only those pixels whose centers
a

are more than a specified minimum distance ("inset") within the poly-

gonal boundary of the field.

Two collections of within-field pixels were used in the tests, one 	
3

with an inset of 1.5 and one with an inset of 0.5,. We feel confident
I

that the within-field pixels with a 1.5 inset are really inside the
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^ 	 intended fields, but do not claim the perfection of field location
that would guarantee that every pixel with a 0.5 inset be totally within

the intended field. There are 19,880 0.5-inset pixels and 5394 1.5-

inset pixels, showing that a large proportion of the 0.5 group are

adjacent to a field boundary.

The performance of nine-point rules in field interiors is of par-

ticular interest because they are designed to take advantage of neigh-
3

borhood homogeneity. The comparison of their performance to that of

QRULE on interior pixels, on near-boundary pixels, and on all pixels
1

shows whether they are performing as intended, and if not, where the

problems might be. The superiority of rules designed to adapt better

to boundaries is tested.

Tables 2 and 3 show the result of testing QRULE and the nine-point

rules in the recognition mode on within-field pixels with a 0.5 inset
and a 1.5 inset, respectively. By subtracting the 1.5-inset misclassifi-
cations from the 0.5-inset misclassifications, a misclassification

rate for pixels adjacent to a field boundary is obtained. This rate

for the various rules and sites is given in Table 4. Thus, Tables 3
9

and 4 give rates for two separate classes of pixels: the interior pix-

els and the adjacent-to-boundary pixels, respectively. Table 5 compares
y

the performance of the classification and recognition modes of QRULE

and the nine-point rules for.the Ellis site.

5.2 RESULTS OF WHEAT AREA ESTIMATION

All the decision algorithms tested, in this report are compared as

wheat area estimators over the 55 sections. The estimate is obtained

for each section by dividing the number of pixels recognized as wheat

by the total 'number of pixels in the section. The measure of perfor-

mance is the difference between the estimate; and the true proportion
of wheat (measured by adding the areas of the ground truth wheat fields

and dividing by the area of the section).

23
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A summary of these results is given as Table 6	 The differences
which we will also call "errors", are expressed as percent, i.e., the

I
differences of the two proportions times 100. The first column is the

bias namely he average of the signed differences y	 g	 g	 (errors). If the

j positive differences just cancel out the negative differences, the bias

would be zero. The second column is a bound on the statistical sig-

nificance of the bias found by calculating

bias 5
t	

standard deviation of the differences

I
and looking up t in a table of the t distribution at 54 degrees of

freedom. The smaller the number in Column 2, the more significant is
the bias. The number would be the probability of getting a bias this

large by chance alone if all 55 sections were independent samples.

Because of dependence among the sections, the real probability is a

larger number.

Columns 3, 4, and.5 are three measures of the average absolute
error: the median, the mean, and the root mean square (rms), respec-

tively. The pattern of errors (shown in Figure 1) is that most are
quite small -- 8% or less---- but there are a few quite large ones where

i
the algorithms really missed. The median is a figure not affected by _

changes in the large errors. It thus indicates how the rules are doing

on sections with small errors. The rms error gives most of its weight

Y

The results of testing LIMMIX and Nine-Point Mixtures given in the
latest contract quarterly progress report should be disregarded be-

cause of errors in the implementation of the decision algorithms.

24
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FIGURE 1. DISTRIBUTION OF ERRORS MADE BY THE QRULE
ALGORITHM OVER 55 SECTIONS

-'3
to the large errors,. An error of 30%, for example, gets 100 times as

much weight in the rms error as an error of 3% ** . The mean absolute

error goes to neither extreme, giving significant weight to both the

large and small errors In describing the performance of decision 	 a

algorithms, we talk mostly about the bias and the mean absolute error.

The next column, the mean improvement over QRULE, is calculated 	 ?

as follows. For each section, the difference_ between the absolute error

The rms error is like a standard deviation (i.e., square root of the
variance) of the errors except that the deviations are from zero
rather than the mean. The _standard deviations about the mean are
so similar to the rms errorsthat they are not included in the table.

c
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of QRULE and that of the algorithm in question is recorded as the algo-

rithm's "improvement" for that section.	 A positive difference means that

the algorithm has a smaller absolute error than QRULE, indicating superi-

ority over QRULE, while a negative difference indicates inferiority.

Column 6 is the mean of these improvements. 	 It can also be calculated

by subtracting the mean absolute error of the algorithm from that of

QRULE.	 Column 8 is the standard deviation of the improvements. 	 A small

figure in column 8 together with a small average improvement (column 6)

would show that the algorithm in question produces about the same wheat

estimates as QRULE; a large figure in column 8 would show that it behaves

differently.	 Column 7 is a bound on the statistical significance of

the mean improvement, a figure obtained from a t value as in Column 2.

Table 7 gives the result of testing LIMMIX B and LIMMIX C with a	 f

variety of parameter settings.	 The table contains the same measures

as Table 6.	 Two parameters are varied:

1.	 m is the prior probability that a pixel represents a mixture

(see Appendix V).	 In setting the weights for a Bayesian deci-

sion among the pure and mixed signatures, the pure signatures

divide up equally the prior weight 1 - m of a pure pixel and

the two-way mixture signatures divide up equally the prior

weight m of a mixed pixel. A larger m results in a greater

emphasis on mixed signatures; a smaller m, on pure signatures.

2. The Bayesian decision between the best mixed density and the
i

best pure density is carried out by choosing the lesser of the

two quantities

X 2 + constant and Xm2 + constant 
E	 P	 p

i
where Xp2 and Xm2 are the chi-square values of the best pure

and the best mixture densi ies, respectively.- Changing the

value m has the effect of changing constantm in this comparison.
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Another way of tipping the balance for or against mixtures is

by multiplying Xm2 by the constant y(see Appendix VI). A

Y > 1-de-emphasizes mixtures, a y < l emphasizes them. Y has

little effect on data points close to the mixture line segment

between the two pure means where xm2 is very small, but plays

1	 an increasingly important role as the data point departs from

the line segment. The purpose of defining y was to control
i
i	 the behavior of points that were not well represented by either

pure or mixture signatures. A y > 1 would tend to steer such
3

points to a pure signature rather than to some possibly in-

PP Pa ro riate mixture.
Table 8 gives the bias for all the rules, first in all the sections

(repeating Table 6) and then in three groups of sections having differ-

ent ranges of the true proportion of wheat:

1. a "low wheat" group of 17 sections with less than 30% wheat I

^ 	 2. a "middle wheat" group of 26 sections with 30%-50% wheat

3. a "high wheat" group of 12 sections with more than 50% wheat.
The purpose is to see whether some rules have a bias depending on the

true proportion of wheat. Table 11 gives the bias for every rule in

each site.

In Tables 6 and 8, the results for LIMMIX B and LIMMIX C with

m 0.4 and Y = 1 are . reported. m = 0.4 was chosen because it was es-

timated that in a typical Kansas site, about 40% of the pixels represent

mixtures [6].

Table 9 gives the result of running QRULE, PRIOR9, LIMMIX and

Nine-Point Mixtures with and without a null test. QRULE was run with

null tests of 45, 35, and 25. By this we mean that when the chi-square

value of the winning signature is greater than 45, say, the pixel is

decided to be none of the given signatures, implying that it is not

i	 wheat. PRIOR9 was run with an unintentional null test of 45, due to an

error in the code, and later compared to a corrected version with the

i	 27
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null test turned off. LIMMIX and Nine-Point Mixtures were run with

null tests determined for each site by the 98th percentile in a histo-

gram of the chi-square value. It was never set lower than the .001

chi-square value of 18.5 nor higher than 51.0. The settings were

Ellis, 24.8; Deaf Smith, 51.0; Randall, 18.5; Finney, 51.O; and Saline,

r

	

	 18.5. Results for the LIMMIX B and LIMMIX C algorithms, which contain

no null test, are included for comparison.

Test results for the posterior probability method of estimating

acreage are reported in Table 10. QRULE with 0, 1 and.2 iterations

and PRIOR9 were the algorithms to which the method was applied. Pixel-

count results for these algorithms are included for comparison.

ti

3

a

i

a
r

28v



f RIM

_
I

FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

TABLE 2.	 PERFORMANCE OF QRULE AND NINE-POINT RULES IN THE RECOGNITION
MODE ON WITHIN-FIELD PIXELS WITH AN INSET OF 0.5 OR MORE.	 THE

PERFORMANCE MEASURE IS THE PERCENT OF PIXELS MISCLASSIFIED

RULE TOTAL ELLIS DEAF SMITH RANDALL FINNEY SALINE

QRULE 8.09 3.86 19.23 0.96 8.07 12.60

BAYES9(.1) 7.68 3.41 18.47 0.93 7.70 11.89

BAYES9(-.3) 7.37 3.13 17.60 0.96 7.63 10.77

BAYES9(.5) 7.26 3.09 17.05 0.77 7.55 10.77

LIKE9 7.92 4.01 19.89 0.54 7.32 14.05

PRIOR9 7.39 3.37 17.96 .95 7.24 11.85

PREF9 6.35 4.01 13.14 0.61 6.18 11.18

VOTE9 7.02 3.65 18.17 0.80 6.52 11.40

AVE9 8.70 4.32 18.46 0.80 8.34 16.80

TABLE 3. PERFORMANCE OF QRULE AND THE NINE-POINT RULES IN THE RECOGNI-
TION MODE ON INTERIOR PIXELS '(WITHIN-FIELD-PIXELS WITH AN INSET
OF 1.5 OR MORE). THE PERFORMANCE MEASURE IS THE PERCENT OF

PIXELS MISCLASSIFIED

RULE' TOTAL ELLIS DEAF SMITH RANDALL FINNEY SALINE
3

QRULE 6.14 3.68 15.47 0.91 7.22 7.05

BAYES9(.1) 5.78 2.91 14.38 0.91 6.94 6.70
1

BAYES9(.3) 5.51 1.84 13.94, 0.91 7.03 5.29
BAYES9(.5) 5.38 1.69 14.16 0.76 6.87 5.11

LIKE9 3.93 1.23 13.95 0.38 4.20 4.94

PRIOR9 4.92 2.91 13.29 .94 5.36 6.68

PREF9 2.61 0.61 8.07 - 0.46 2.63 4.76

VOTE9 4.15 0.76 14.82 0.53 4.59 4.76

AVE9 4.71 1.38 15.25 0.38 4.79 8.46
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TABLE 4.	 PERFORMANCE OF QRULE AND THE NINE-POINT RULES IN THE RECOGNI-
TION MODE ON NEAR-BOUNDARY PIXELS (WITHIN-FIELD PIXELS WITH AN
INSET OF 0.5 TO 1.5). THE PERFORMANCE MEASURE IS THE PERCENT

OF PIXELS MISCLASSIFIED

RULE TOTAL ELLIS DEAF SMITH RANDALL FINNEY SALINE

QRULE 8.82 3.92 20.37 1.03 8.37 14.31

BAYES9(.1) 8.38 3.56 19.71 0.97 7.97 13.49

BAYES9(.3) 8.06 3.51 18.72 0.86 7.84 12.46

BAYES9(.5) 7.96 3.51 17.92 0.80 7.80 12.51

LIKE9 9.40 4.84 21.69 0.69 8.42 16.87

PRIOR9 8.31 3.51 19.38 .97 7.90 1.3.44

PREF9 7.75 5.02 14.68 0.74 7.44 13.17

VOTE9 8.09 4.52 19.18 1.03 7.20 13.44

AVE9 10.18 5.20 19.44 1.14 9.61 19.37

TABLE 5.	 COMPARISON OF THE PERFORMANCE OF THE CLASSIFICATION AND RECOG-
NITION MODES OF QRULE AND THE NINE-POINT RULES FOR THE ELLIS SITE.

THE PERFORMANCE MEASURE IS THE PERCENT MISCLASSIFIED

INSET ? 1.5 INSET - .5

RULE CLASSIFY RECOGNIZE CLASSIFY	 RECOGNIZE

QRULE 3.52 3.68 3.83 3.86

BAYES9(.1)
a	

3.37 2.91 3.83 3.41
a

BAYES9(.3) 2.91 1.84 3.83 3.13

BAYES9(.5) 3.07 1.69 3.76 3.09

LIKES 2.45 1.23 5.20 4.01

PRIOR9 3.52 2.91, 3.76 3.31

PREF9 1.53 0.61 3.90 4.01

VOTE9 2.14 0.76 3.97 3.65

AVE9 3.06 1.38 4.92 4.32

30



TABLE 6. -- COMPARISON OF DECISION ALGORITHMS (THE MEASURE IS THE ESTIMATED
MINUS THE 'TRUE PERCENT WHEAT OVER 55 SECTIONS)

rtJ 	 Bound on
Bias (Paean	 Bound on	 Median	 Mean.	 Mean Improve- Significance Stand. Dev.
Algebraic Significance Absolute Absolute Root-Mean- 	 ment Over	 of	 of

Error)	 of Bias	 Error	 Error Square-Error	 ORULE	 Improvement Improvement

QRULE 3.6 0.007 4.6 6.9 10.4 --- --- ---

BAYES9	 (0.1) 3.5 0.012 4.7 6.9 10.5 0 1.0 0.8

BAYES9 (0.3) 3.4 0.02 4.1 7.0 10.9 -0.1 0.6 1.5

BAYES9 (0.5) 3.3 0.02 4.3 7.0 11.0 -0.2 0.6 2.0

LIKE9 3.9 0.025 5.8	 _ 8.8 13.0 -1.9 0.007 5.0

PRIOR9 3.3 0.02 5.2 6.9 10.5 0 0.9 1.3

PREF9 3.0 0.04 4.4 7.2 11.2 -0.3 0.6 4.3

VOTE9 3.0 0.06 4.1 7.5 12.0 -0.6 0.20 3.2
LJ
	 AVE9P+ 4.7 0.001 5.9 8.3 11.3 -1.4 0.001 2.2

LIMMIX (0.4) 1_.0 0.4 3.8 6.1 9.2 0.8 0.20 4.3

LIMMIX B (0.4) 1.8 0.17 4.2 6.7 10.2 0.2 0.8 4.7

LI11MIX C (0.4) 1.4 0.3 3.8 6.6 10.0 0.3 0.7 5.3

9-PT MIX 1.9 0.2 3.4 6.4 10.5 0.5 0.3 4.0

Automatic 1.3 0.4 4.7 8.0 12.5 -1.1 0.11 5.1
Cluster Mapping

ADMAP (10-5 4.7 0.005 5.3 8.7 13.0 -1.8 0.04 6.3

ADMAP (10-6) 5.4 0.001 5.6 8.3 12.7 -1.4 0.11 6.3

ADMAP (10 7) 5.2 0.001 4.7 8.1 12.4 -1.2 0.17 6.0

LRULE 5.3 0.001 4.8 8.1 12.5 -1.2 0.14 6.0
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TABLE 7. COMPARISON OF LIMMIX PROCEDURES FOR VARIOUS PARAMETER SETTINGS (THE MEASURE IS
THE ESTIMATED MINUS THE TRUE PERCENT WHEAT OVER 55 SECTIONS)

Bound	 on

Bias (dean Bound	 on Median Mean Mean Improve- Significance Stand. Dev.
Algebraic Significance Absolute Absolute Root-Mean- ment Over of of

4,' Y Error) of Bias Error Error Sure-Error QP,L'LE Improvement Improvement

QRULE --- 3.6 0.007 4.6 6.9 10.4 --- --- ---

LIMMIX, --- 1.0 0.4 3.8 6.1 9.2 0.8 0.20 4.3
m = 0.4

9-PT MIX -- 1.9 0.2 3.4 6.4 10.5 0.5 0,3 4.0

LIMMIX B, 0,8 3.4 0.012 4.8 6.9 10.1 0 1.0 4.1
m = 0.25

0.9 3.3 0.015 4.2 6.6 10.4 0.3 0.6 3.3

1.0 2.9 0.04 3.5 6.5 10.6 0.4 0.4 3.2

1.2 3.0 0.04 3.6 6.6 10.7 0.3 0.5 3.1

i 1.4 3.2 0.02 3.6 6.7 10.7 0.1 0.7 2.8

6) 	 B, 0.8 3.5 0.012 4.8 7.0 10.4 -0.1 0.9 3.8
m = 0.4

j 0.9 2.1 0.11 4.4 6.6 9.8 0.3 0.6 4.5

1.0 1.8 0.17 4.2 6.7 10.2 0.2 0.8 4.7

1.2 2.4 0.09 4.0 6.6 10.5 0.3 0.6 3.7

1.4, 2.7 0.05 3.4 6.6 10.6 0.3 0.6 3.2

LIMMIX C, 0.8 3.1 0.02 4.7 6.8 9.9 0.1 0.9 4.4
m = 0.25

E
0.9 2.0 0.14 4.2 6.6 9.9 0.3 0.7 4.6

1.0 1.9 0.17 4.4 6.8 10.3 0.1 0.9 4.7

1.2 1.6 0.23 4.0 6.7 10.3 0.2 0.8 4.7

1.4 2.0 0.14 4.2 6.7 10.2 0.2 0.8 4.6

LIZQIIX C, 0.8 2.8 0.009 4.9 6.6 9.5 0.2 0.8 5.5
m = 0.4

0.9 1.5 0.025 4.0 6.5 9.6 0.4 0.6 5.3

1.0 1,.4 0.23 3.8 6.6 10.0 0.3 0.7 5.3

f 1.2 1.9 0.3 4.3 6.8 10.1 0.1	 - 0.8 5.2

1.4 1.6 0.17 3.9 6.7 10.1 0.2 0.8 5.0

r
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TABLE 8.	 HOW DECISION ALGORITHM BIAS VAR2.S WITH THE TRUE PERCENT
WHEAT (BIAS IS THE MEAN OF THE ESTIMATED MINUS THE

TRUE PERCENT WHEAT)

Bias fc~ Bias for Bias for
Sections with Sections with Sections ,ith	 -►

Total < 30% Wheat 30-50% Wheat > 50% Wheat
Bias "Low Wheat" "Middle Wheat" "High Wheat"

No. of Sections 55 17 26 12

QRULE 3.6 4.1 3.9 2.5

QRULE	 posterior	 2.7 3.3 2.7 1.9

QRULE	 null 45 1.0 0.5 1.2 1.5

QRULE	 null 35 0.1 -0.3 0.1 0.7

QRULE	 null 25 -1.9 -2.0 -2.3 -1.1

'	 BAYES9 (0.1) 3.5 3.7 3.7 2.7

BAYES9 (0.3) 3.4 3.4 3.5 3.1

BAYES9 (0.5) 3.3 3.2 3.3 3.6

LIKE9 3.9 _2.9 2.6 8.0

PRIOR9 3.3 3.4 3.5 2.7

PREF9 3.0 2.1 2.5 5.4

VOTE9 3.0 1.4 3.1 4.9

AVE9 4.7 5.3 4.3 5.0

LIMMIX (0.4) 1.0 -0.3 2.2 0.2

LIMMIX B (0.4) 1.8 -0.1 3.3 1.4

LIMMIX C (0.4) 1.4 -0.4 2.9 0.5

9-PT MIX 1.9 -0.3 3.2 1.9

Automatic 1.3 -1.9 2.4 3..4
Cluster Mapping

ADMAP (10 5 ) 4.7 5.1 4.8 4,0

ADMAP (10-6) _5.4 6.3 5.4 4.3	 1
ADMAP (10-7 ) 5.2 5.9 5.1 4.5

LRULE 5.3 6.0 5.2 4.4
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TABLE 9. COMPARISON OF DECISION ALGORITHMS WITH AND WITHOUT A NULL TEST. (THE MEASURE IS

THE ESTIMATED MINUS THE TRUE PERCENT WHEAT OVER 55 SECTIONS.)

I'

Bound on
Bias (Mean Bound on Median Mean Mean Improve- Significance Stand. Dev.
Algebraic Significance Absolute Absolute Root-Mean- ment Over of of

Rule Error) of Bias Error Error Square-Error QRULE Improvement_ Improvement

QRULE 3.6 0.007 4.6 6.9 10.4 --- --- ---

QRULE null 45 1.0 0.4 4.0 6.0 9.7 0.9 0.09 4.0

QRULE null 35 0.1 0.9 4.0 6.2 9.9 0.7 0.3 4.8

QRULE null 25 -1.9 0.17 5.2 7.0 10.3 -0.1 0.9 6.4
0

PRIOR9 3.3 0.02 5.2 6.9 10.5 -0.0 0.9 1.3	 mx
PRIOR9 null 45 0.9 0.5 3.6 6.0 9.9 0.9 0.14 4.3

f

LIMMIX 1.0 0.4 3.8 6.1 9.2 0.8 0.20 4.3	 0
0

LIMMIX null 0.9 0.5 3.4 6.0 9.1 0.9 0.14 4.4

9-PT MIX 1.9 0.2 3.4 6.4 10.5, 0.5 0.3
2

4.0

9-FT MIX null 1.8 0.2 3.3 6.3 10.4 0.6 0.23
C3

3.8	 0

LIMMIX B 1.8 0.17 4.2 6.7 10.2 0.2 0.8 4.7	 0
A

LIMMIX C 1.4 0.3 3.8 6.6 10.0 0.3 0.7 5.3	 n

x
m
c
z

m
M
m
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TABLE 10. COMPARISON OF THE PIXEL-COUNT METHOD OF ACREAGE ESTIMATION WITH THE METHOD
OF SUMMING POSTERIOR PROBABILITIES. (THE MEASURE IS THE ESTIMATED

s

MINUS THE TRUE PERCENT WHEAT OVER 55 SECTIONS.)

t Bound on

€ Bias (Mean Bound on Median Mean Mean Improve- Significance Stand. Dev.
( Algebraic Significancg Absolute Absolute Root-Mean- mert Over of of

Rule Error of Bias Error Error Square-Error QRULE Improvement Improvement

QRULE:

pixel count 3.6 0.007 4.6 6.9 10.4 --- --- ---	 °o
posterior with z
0 iterations 3.6 0.007 4.5 6.5 9.8 0.3 0.11 1.6

1 iteration 3.6 0.007 4.6 7.0 10.6 -0.2 0.6 2.1	 F

j

2 iterations 3.6 0.007 4.6 7.1 10.8 -0.2 0.4 2.2
f

a
Cz

PRIOR9: >
f

l pixel count 3.3 0.02 5.2 6.9 10.5 -0.0 0.9 1.3	 o
A

E

posterior 3.6 0.007 4.9 6.9 10.4 0.0 1.0
>

1.4	 a
m
^n

4.
y. i

m
cz
m
a
1
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TABLE 11. HOW ALGORITHM BIAS VARIES WITH SITE. (BIAS IS THE
MEAN OF THE ESTIMATED MINUS THE TRUE: PERCENT WHEAT.)

Deaf
Ellis Smith Randall Finney Saline Total

QRULE 1.0 4.9 -0.5 2.0 12.9 3.6

QRULE null 45 0.9 -0.9 -2.9 -1.8 12.9 1.0

QRULE null 35 0.9 -2.7 -5.1 -2.6 12.8 0.1

QRULE null 25 0.5 -5.2 -9.8 -4.7 11.1 -1.9
QRULE posterior (0) 0.5 1.7 -0.7 1.2 12.1 3.6

QRULE posterior (1) 0.7 1.2 -0.8 0.6 14.2 3.6

QRULE posterior (2) 0.7 1.1 -0.8 0.5 14.4 3.6

BAYES9 (.1) 1.1 4.1 -0.6 1.6 13.6 3.5

BAYES9 (.3) 1.2 2.6 -0.5 1.3 14.8 3.4

BAYES9 (.5) 1.2 1.6 -0.4 1.1 15.5 3.3

LIKE9 0.6 -4.5 -0.7 1.6 22.5 3.9

PRIOR9 1.2 3.7 -0.5 1.3 13.5 3.3

PREF9 3.2 -0.8 -2.2 -0.1 17.7 3.0

VOTES 0.8 2.4 -0.8 -0.5 17.7 3.0

AVE9 2.5 4.8 0 3.2 14.9 4.7

LIMMIX (0.4) 1.6 9.0 -1.4 -3.4 8.9 1.0

LIMMIX B_ (0.4) 1.7 13.4 -1.3 -3.5 10.8 1.8

LIMMIX C (0.4) 1.1 14.7 -0.9 -4.0 9.1 1.4

Nine-Point Mixtures 1.3 8.6 -1.3 -2.8 12.9 1.9

....

Automatic 2.3 2.9 -2.5 -4.9 18.7

i

1.3
Cluster Mapping

ADMAP (10 -5 ) 0.2 1.4 -1.1 3.6 18.8 4.7-

ADMLAP (10-6 ) 0.3 2.3 -0.6 5.1 18.1 5.4

ADMAP (10-7) 0.3 2.4 -0.3 4.6 17.9 5.2

LRULE 0.4 2.4 -0.1 4.6 17.9 5.3
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5.3 DISCUSSION OF WITHIN-FIELD AND AREA ESTIMATION RESULTS

Looking at Table 3, we see that all the nine-point rules do better

than QRULE on the interior pixels of the fields (those with an inset of

1.5 or more). On the near boundary pixels (Table 4) AVE9 and LIKE9 do

uniformly worse than QRULE. These two rules include in their decision

calculations data from all 9 pixels as if all 9 came from the same dis-

tribution. Thus these two rules do well on interior pixels where this

assumption istrue and not so well on the near-boundary pixels where

it isn't. Unfortunately, even among the within-field pixels, only 27%

are also interior pixels; among all the pixels in the site, this

percentage drops to about 16%. Thus AVE9 and LIKE9, which do well on

only 16% of the pixels in a region and poorly on the rest, are notice-

ably worse than QRULE as wheat area estimators (Table 6).

VOTES and PREF9 do better near boundaries because they can have

three of the 9 pixels outside the field and still have a quorum to vote

correctly. They both do consistently better than QRULE on within-field

pixels. PREF9, a voting rule that uses more information than VOTE9,

outperforms VOTE9 on the interior pixels and is slightly superior on

the near-boundary pixels and on area estimation. (The latter difference

is not statistically significant.) But neither rule quite measures up

to QRULE as an area estimator, although the difference is not statisti-

cally significant.

BAYES9 and PRIOR9 are designed to be effective in boundary areas,

and thereby, be more useful in Landsat data processing. Although they

both score better than QRULE on interior and near-boundary pixels, their

area estimation results (Table 6) are no better than QRULE's. Their`

improvement, (Column 6 o Table 6) of zero is the top score for the nine-

point rules. Of course, BAYES9 (.1) is defined to be similar in effect

to QRULE because its parameter assigns small weight to the dependence

between pixels. This similarity is shown by its small standard deviation
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of improvement (0.8%). The analogous figure for PRIOR9 (1.3%) illus-

trates that it, too, is in effect similar to QRULE because of the

important role played by the center pixel.

All the nine-point rules do better, as expected, in the recogni-

tion mode than in the classification mode (Table 5). The test on Ellis

data does not indicate which mode is best for QRULE. If future tests

do not indicate a superiority of the recognition mode of QRULE, the

classification mode would be faster and therefore preferable.

As we can see from Tables 6 and 7, the mixture algorithms show a

slight, but consistent improvement over QRULE as an area estimator

(i.e., have a lower mean absolute error as indicated by plus values in

the improvement column). None of the improvements come close to sta-

tistical significance but the fact that they are with one exception

positive indicates a trend toward improvement and shows that LIMMIX B

and LIMMIX C are relatively insensitive to their parameter settings.

Nine-Point Mixtures also show an improvement over QRULE but not

as much as LIMMIX. We had thought that by not estimating a mixture

for pixels complying with a neighborhood consensus, the algorithm would

decide more accurately than LIMMIX. Replacing the VOTE9 technique used

in Nine-Point Mixtures by another nine-point algorithm such as PREF9 or

a gradient method [1] might lead to an improvement in results. Of

course, the difference of 0.3 in the mean absolute error of LIMMIX and

Nine-Point Mixtures could easily have been the result of chance alone.

The algorithm for classifying by automatic cluster mapping has a

larger mean absolute error than QRULE's (see Table 6). The median

error is about equal to QRULE's and the rms error is 2.1% greater,

showing that automatic cluster mapping does as well as QRULE on the

small errors but gets poorer results overall by making some pretty bad

mistakes. A comparison with the more favorable results for human-aided

cluster mapping (Table 1, Section 3) indicates that our initial attempt

at automatic cluster mapping would benefit from further development.
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The best linear LRULE does not perform as well as QRULE (Table 6).

Previous comparisons of LRULE and QRULE [7] indicated that QRULE did

better than LRULE on training fields but no better on test fields.

QRULE can be shown by Bayesian decision theory to outperform, on the

training set, any rule such as LRULE that uses only the limited infor-

mation that QRULE does. Although only 6.7% of the test pixels were

chosen for training, about 25% of the test pixels are contained in

training fields. (This difference in percentages is accounted for by

the 1.5 inset requirement for training pixels and the ratio of 3.7

between the number of 0.5-inset and 1.5-inset pixels within fields.)

We would expect QRULE's superiority on the training pixels to extend

to all the training field pixels, because they are so similar, and thus

explain QRULE's lower error rate in the present test.

Another possible source of strength for QRULE is that it was run

in the recognition mode, while LRULE is confined by its formulation to

run in the classification mode. We don't know yet which mode of running

QRULE produces the most accurate area estimates.

The median absolute error is approximately the same for QRULE and

LRULE, showing that LRULE's poorer performance reflects a few big errors

rather than a general inferiority. A look at the individual section

results confirm this conclusion. Of '5 sections with a difference in

estimates of 10% or more, four favor QRULE.

The adaptive processing algorithm ADMAP is based on LRULE rather

than QRULE in order to make it run faster. Consequently, it includes

LRULE s inferiority to QRULE in the present test results. But even if

we compare ADMAP with LRULE, we observe a trend toward poorer perfor

mance at higher adaptation rates. The reason why adaptation does so

little good in this test is thateach site is peppered with training

fields and hence there is nothing to be gained by adapting. We would

expect ADMAP to be useful if the signatures were extended from another

site or time and weren't quite right, or if we were processing a large
area with gradually changing signatures.
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The results in Table 10 indicate that using the posterior proba-

bility method of estimating acreage makes very little difference. For

PRIOR9, the two methods of estimating acreage have nearly identical

results. The standard deviation of the difference between the two

methods (a figure not given in the table) is 0.4%, showing a consist-

ently close agreement between the two methods over the sections. A

histogram of the posterior probabilities for all the pixels in the 55

sections showed that the posterior probability of wheat was greater

than 99.5% in 36.3% of the pixels and less than 0.5% in another 53%.

Only 10.7% of the pixels had posterior probabilities between 0.5% and

99.5%. So for PRIOR9, the two methods of estimating acreage are, for

all practical purposes, the same.

Attached to QRULE, the posterior probability method with no itera-

tions scores a slight improvement of 0.3% over the pixel-count method,

loses half a per cent on one iteration and reaches convergence on one

iteration. Convergence is shown by a mean difference of zero between

the two iterations and a standard deviation of 0.2%, figures not given

in the table.

The null test results in Table 9 show that a null test level of

45 improves the mean absolute error of QRULE as much as does any

algorithm. The improvement is largely maintained for a test level of

35 but drops to zero when the level is lowered to 25. The null test

version of PRIOR9 mirrors the result for QRULE, 45 is a rather high

level for the chi-square value, which reaches the 0.001 significance

level at 18.5. The high level cuts out pixels that are wildly different

from wheat, but preserves the identity of wheat pixels that might be
i

coming from a wheat distribution similar, but not identical, to the

training set distributions.

The null test makes little difference in the performance of LIMMIX

and Nine-Point Mixtures. The improvement over QRULE in bias and absolute

error remains nearly the same. No doubt these mixture rules classify as
H

mixtures many pixels that would fail a null test in a non-mixture rule.
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The bias (defined as the mean of the signed differences between

estimated and true wheat proportions) is of critical importance in a

large-scale survey because an unbiased decision algorithm increases in

accuracy as it is averaged over many samples but a biased one does not.

But the bias results are difficult to interpret because the interaction

between the training set choice and the data distribution pattern is a

primary source of bias (Table 11). In three sections of Saline, for

I	
example, large areas of river bottom grass not represented in the train-

ing sets masquerade as wheat in the multispectral recognition, thereby

I	 introducing a considerable wheat bias. Again, all but four large wheati
fields in Finney are irrigated and none of these four are represented

in the wheat training sets. Consequently, they are recognized as other,

introducing bias towards other. These are just two examples that we

know about; there may be other such interactions.

With this qualification in mind, we consider the bias results.

We first consider the overall bias results in Tables 6 and 7. We note

that QRULE, LRULE, ADMAP, and the nine-point rules have a significant

wheat bias while QRULE with a null test, the automatic cluster mapping

rule and the mixture rules do not.

Although the parameter settings of LIMMIX B and LIMMIX C have very

little effect on the improvement over QRULE, they do appear to affect

the bias(Table 7). The smallest bias occurs at m = 0.4 and y = 1.0,

confirming theoretical expectations. It is with these parameter values

that LIMMIX B and LIMMIX C results are reported in Tables 6 and 8.

LIMMIX C has a-consistently smaller bias for equivalent parameter

settings than LIMMIX B. LIMMIX has the stillest bias of all the mixture

algorithms and shares with QRULE (null 45) the distinction of having

the smallest bias of all the algorithms tested.

We next consider trends in the bias related to the true proportion

of wheat (Table 8) Four maintrends are apparent:
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1. An overall positive wheat bias most noticeable in QRULE without

a null test, LRULE, ADMAP and the nine-point rules.
2. A decreasing bias trend (i.e., a tendency for high bias in low-

wheat sections and low bias in high-wheat sections). This

trend is apparent in QRULE, LRULE, ADMAP, BAYES9(.1) and PRIOR9.

3. An increasing bias trend (i.e., a tendency for low bias in low-

wheat and high bias in high-wheat sections) observable in the
nine-point rules LIKE9, PREF9 and VOTE9, in the automatic
clustering rule and in QRULE with a null test.

4. A high-center bias trend (i.e., a tendency for significant
bias only in the middle-wheat group) for the mixture rules.

The reduction of bias from 3.6 to 1.O by imposing a high null test

on QRULE suggests that the overall wheat bias in QRULE and related rules

(such as QRULE, posterior mode, BAYES9(.1), PRIOR9, LRULE and ADMAP) is

mostly accounted for by the identification as wheat some of the wildly

non-wheat pixels when the null test is not operating.

The second trend, the decreasing bias for QRULE and related rules,

can be explained in the same way. We would expect more wildly non-wheat -
pixels in a low-wheat than a high-wheat section. Hence the wild-pixel

bias is greater in the low wheat sections. When thewild-pixel bias is

removed by a null test, both the overall wheat bias and the decreasing
trend disappear.

One might try to explain the decreasing trend by the fact that
QRULE, LRULE and ADMAP are run with equal priors, and we would expect
to see, on the low-wheat sections, that a rule with priors that over-

estimate wheat would itself overestimate wheat. On the high-wheat

sections, the rule would have the opposite tendency. But because
PRIOR9, a rule that sets its own priors on the basis of neighborhood
data values, also exhibits such a trend, this explanation is of doubt-

ful validity.
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	 The third trend, the increasing bias for nine-point rules LIKES,

PREF9 and VOTE9, has an explanation that is most easily applied to

VOTE9. When wheat fields are small and scarce, there is a shortage of

neighboring wheat votes to bolster up an otherwise reasonable wheat

decision. Thus, the scales are tipped against wheat -- the bias

decreases. When wheat neighbors are plentiful, there is a greater

tendency to decide wheat -- the bias is larger. The other nine-point

rules tend to behave like VOTE9; they decide on wheat if the evidence

from the center pixel is bolstered by neighboring data values.

The automatic cluster mapping rule exhibits the same trend and

for a similar reason. Unknown clusters are identified by the identity

of their neighbors. A shortage of wheat neighbors cuts down the wheat

estimate and a plentiful supply builds it up. Thus, the bias of the

cluster mapping procedure, although small overall, is seen in Table 8

to increase with the amount of wheat present.

Our inferences about bias trends should be tempered by the fact

that the groupings by percentage wheat are not independent of the choice

of site. Fourteen of the 17 sections in the < 30% group are from

Finney and half the 12 sections in the > 50% group are from Saline.

It is, therefore, quite possible that trends that appear to relate de-

cision algorithm bias to the percent of wheat present are really the

result of the interaction of training set choices with data distribution
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6

CONCLUSIONS AND RECOMMENDATIONS

Nearly all reasonably-conceived decision algorithms seem to per-

form well on data from a single pass in the growing season when they

have good local signatures. The average absolute error for the 14

algorithms tested ranged from 6.1% to 8.8% and the wheat bias from

-1.9% to 5.4%.

A properly--chosen null test can lower the bias of QRULE and reduce

the average absolute error. In our test using four-channel data and

good local signatures, a chi-square level in the range 35 to 45 defined

the null test that best improved performance. QRULE's bias of 3.6% was

reduced to 1.0% and 0.1% for levels 45 and 35, respectively, and its

t	 absolute error of 6.9% reduced to 6.0% and 6.2%.

The nine-point rules outperformed QRULE on field interiors but

were no better, and in some instances noticeably worse than QRULE as

wheat area estimators. The nine-point rules PRIOR9 and BAYES9, designed

to be effective in the boundary areas so plentiful in Landsat data,

scored the best of the nine:-point rules by equalling QRULE's performance.

They might be helpful in areas with larger field sizes or in processing

future satellite data having a higher resolution than Landsat data.

The mixture rules led by LIMMIX maintained a slight, but consistent

improvement over QRULE in the test. Compared with QRULE's overall bias

of 3.6% and mean absolute error of 6.9%, the comparable figures for the

mixture rules ranged from 1.0% (LIMMIX), to 1.9% and from 6.1% (LIMMIX)

to 6.7%, respectively.

The posterior probability method of acreage estimation, with or

without iteration, is verysimilar in result to the usual pixel-count

method.
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Our initial attempt at automatic cluster mapping did not fulfill

the promise of human-aided cluster mapping. Further development, es-

pecially the incorporation of the principle of spectral closeness in

identifying unknown clusters, would be likely to improve the results.

The test results reported here apply to circumstances similar to

those of the test: clean data, one good Landsat pass in the growing sea-

son, good local signatures, a wheat-producing area like the sites in Kan-

sas and Texas with similar field sizes. It would be difficult to extrapo-

late these results to other conditions, particularly to poorly-registered

multitemporal data. The results do indicate the relative strengths

of the decision algorithms when there are few pixels per field and

many mixtures. But it is not clear that the order of rule performance

would be maintained with less representative signatures. ADMAP, for

example, is designed to adjust to such circumstances and cluster map-

ping should prove to be more insensitive to ground truth errors than

the other rules.

The experimental design had two sound features. The comparison

of estimated with true wheat errors is a performance measure that

realistically refers to the objective of wheat inventory. The use of

a section (lxl mile square) as an experimental unit supplies the repli-

cations necessary to draw conclusions, even though allowance has to be

made for the dependence of sections within a site.

As for the execution of the experiment, the strongest evidence of	 j

its correctness is that we can understand and explain most of the

results. For example, we note that the best-scoring rules on Landsat

data, where near-boundary pixels are plentiful, are mixture rules

designed to make a sensible decision on boundary pixels. The two nine-

point rules likely to be most inapplicable to Landsat data (AVE9 and

LIKE9 because of their assumption of neighborhood homogeneity) had the

poorest scores. The cluster mapping procedure scored best when both

of its basic principles of nearness were employed.
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Taken together, the experimental plan and procedure appear to be

able to distinguish between a good and a bad wheat recognition algo-
rithm. They could, therefore, be useful in evaluating new and modified

algorithms and in so doing, speed up the cycle of testing and develop-

ment.

The pairwise mixture algorithm LIMMIX, the algorithm that per-
formed best in our test, is many times slower than QRULE. For the
type of data in our study, the improvement in accuracy would probably

be considered too small to be worth the extra time. For a region of

small fields where the performance of QRULE would be expected to break
down, LIMMIX could become the algorithm of choice.

i
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APPENDIX I

DESCRIPTION OF THE KALMAN FILTER

The Kalman filter is an iterative filter, especially useful for

digital computation, that produces an estimate of a time sequence of

state vectors from a corresponding time sequence of measurement

vectors. In the simplest application, 5 elements must be defined.

These are: (1) the state vector, (2) the measurement vector, (3) an

observation matrix relating the state vector to the measurement vector

(assuming no measurement noise) by a linear transformation, (4) a

covariance matrix describing additive noise in the measurement, and

(5) a covariance matrix describing the statistics of the successive

differences in the state vector,

In order to apply the Kalman filter to remote sensing data, we

must make an association between the elements of the Kalman filter and

elements of the classifier. This can be done in a number of ways,

one of which is now described.

Assume that the most important statistics to update are the com-

ponents of the mean vector of each material class, and that we will

update after each single observation. Then we make the following

identifications.

l The mean vectors of each material are combined into a single

vector identified as the state vector, xt. The initial con-

dition, xo , is given by the initial training data for each

crop

2. The observed data vector is identified as the measurement,

zt.

w1,
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3.	 The classified output (a recognition vector) is used to

produce a matrix, H t , of zeros and ones (a spotting function)

which seler;ts the correct components of the state vector to

provide a relationship between the state vector and the

noise-free measurement.

4• The covariance matrices of all the signatures are averaged.

This is identified as an average estimate of the measurement

noise covariance, R, as required for the Kalman filter.

5• An augmented matrix if formed by replicating and scaling

the matrix R. This augmented matrix is identified as the

covariance Q of the successive differences in the state

vector. Covariance Q is assumed to be some simple function

e of R, and this assumption results in significant savings

in computation time, since matrix inversions are not 	 I

required for each update, and the computer memory require- 	 I

ments are minimal.

i

With these assumptions the Kalman filter equations become:

x t xt-1 + K
t ( zt - 

Htxt-l^	 (1)

where: xt is the estimate of state vector xt

Kt is the Kalman filter and minimizes E((x t - x t)(xt 	 t)- xt)
i
l

It is shown in [9] that

Kt - P I H Htp tHt + Rt ] -1 	 (2)

where

P t =Pt - KtHtP t (3)

Pt,

	

P t-1 + Qt-1	
(4)

-
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and Po is chosen to reflect one's confidence in the accuracy of the

Starting signatures.

This expression for Kt further simplifies to:

K = ^tM	 ®I	 (5)r	 t ^^ + 1 n

where

^l = e	 (6)

Mt a column vector with a 1 in position K, and
zeros elsewhere (a spotting function)

t
_	 { tM^ tM	

e
$t+l ^ t 	 tMM + l 

+ 
	

(7)

,f)tM _ Yt	 (8)

t
tMM 

Mt^tMt	
(9)

and 8 is assumed to have the form:

i
^ 1 82...

6-8 1 r 82	 1

where 8 1 , 82 are scalars; 8 2 is in the range 0 <.6 < 1, because 82

is the amount of correlation in the variations in signature means,
and 8 1 is closely related to the updating rate.

Further details about the Kalman filter are contained in

Reference [9].
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APPENDIX II

MEASUREMENT OF THE TRUE PROPORTION OF WHEAT IN EACH SECTION

i J. Lewis
i

The principal standa."d for comparing wheat recognition algorithms

i is the true proportion of wheat in each section of each site. This

appendix describes the way we determined this figure.

The ground truth information we were furnished for each site con-

tained the crop type and acreage of each numbered field. Some areas

such as small fields, houses and roads were not listed in the ground

truth information. Therefore, the proportion of wheat in a section

would not have been accurately measured by dividing the acreage of the

wheat fields by the acreage of all the fields. Neither would dividing
r

the wheat acreage by 640 have been sufficiently accurate because of

variation in the area of a section.
3

Instead, our procedure was to compute the area of each section
i

and the whole site by a program that accepts the continuous line and	 j

point coordinates of the corners as input and computes the area of the

section/site in pixel units correct to one one-thousandth of a pixel.

The pixel area of each section includes the interior roads but not the

surrounding roads. The same remark applies to the whole site. Thus,-.

the difference between the area of the site and the sum of the areas

of the sections measures the area of the roads between the sections.

From this information we can find the area of one half of a road run
j

p ing around the section and add it to the previously-computed area of 	
a

i
the section. The wheat acreage converted to pixel units is then divid-

ed by this augmented section area to obtainthe true proportion of wheat

in the section.
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APPENDIX III

THE DETECTION AND CORRECTION OF STRIPING IN LANDSAT DATA

W. Richardson and J. Lewis

III.1 INTRODUCTION	 .W.

Four-channel Landsat data comes from 24 detectors: four for

line 1, four for line 2, and so on up to line 6. Then they begin over

on line 7. When the detectors do not have uniform gain settings, we

can see on the graymap of some channels a striping that has a period of

6 lines. The POINT module STRIPE was written to detect such striping 	 i

and the module UNBAND to correct for it.

The output of STRIPE consists of 6 tables:

1. A 6 x 4 table of detector means, associating each of four

means with one of the first 6 lines of the rectangle pro-

cessed.

2. A 6 x 4 table of detector standard deviations showing whether

any one detector has such a variable performance that the

associated data would be of doubtful utility. (This test

was used in CITARS [10]).

3. A listing of the four channel means. Each mean is the sum

of all data values divided by the number of pixels in that

channel.

4. A listing of the four channel standard deviations, computed

by the formula:

J

Y.	 (data value)2
in that

no
channel

data values in channel - (channel mean)2

5. A 6 x 4 table of differences between detector mean and channel

mean, showing whether any detectors are significantly out of
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line with the others. To decide whether correction is neces-

sary, we compare the figures in this table with the corres-

ponding channel standard deviations.

6. A 6 x 4 table of recommended additive corrections to equalize

the detectors.

The correction vector is either punched onto two cards which are

read by the module UNBAND that carries out the correction or is trans-

mitted directly to UNBAND, depending on whether the operator wishes to

look at the STRIPE output before correcting or would prefer to carry

out the correction automatically.

III.2 HOW THE CORRECTIONS ARE CALCULATED

The corrections are obtained for each channel separately. Wt.,.

start with a central value C, such as the channel mean, We compute the

differences between the 6 detector means in that channel and C. T1 ►en

we compute the integer correction that puts each corrected detector

mean as close to zero as possible. For example

Detector Mean -C	 Correction

	

.1	 0

	

2.7	 -3

	

.7	 _l

	

.7	 1

	

-1.8	 2

	

-1.1	 1

It is not enough to do this for the channel mean alone. The

following example shows a possible set of 6 differences from the Chan-

nel mean, the correction that would be imposed and a better correction

i	 that is possible.
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	Detector Mean	 Automatic	 Better

	

Channel Mean	 Correction	 Correction

	0.6	 -1	 0

	

0.6	 -1	 0

	

0.6	 -1	 0

	

-0.6	 1	 1

	

-0.6	 1	 1

	

-0.6	 1	 1

The better correction puts all 6 detector means within 0.2 of each

other while the automatic correction keeps them at a distance of 0.8.

The better correction would have been obtained if we had started with

the channel mean + 0.4 rather than the channel mean.

The best correction is obtained by applying the central value

procedure to a range of central values on either side of the channel

mean C:

C, C + 0.1, C - 0.1, C + 0.2, C - 0,2, ..., C - 0.5

For each such central value, a correction vector is generated and the

variance of the corrected detector means is computed. The central value

producing minimum variance is considered optimal and the corrections

calculated from that central value are accepted as the recommended

corrections

If the step size had been infinitely small 'rather than 0.1, then the

procedure Just described can be proved to yield corrections optimal in the

sense of minimum variance of the corrected detector means.

Proof.

We first show that 'there is an optimal correction vector. Let X be

the largest absolute difference between a detector mean and the channel

mean. Let S be the class of correction vectors each of whose elements

is smaller in absolute magnitude than 12X + 12. Let d be any correction

53



0	
I

FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN

vector outside the class S. We will show that there is an element of S

with variance < that of d. Subtract the first element of d from every

element of d. The variance of d is unchanged and the first element of d

is now 0. If all the elements of the new d are smaller in magnitude than

12X + 12, then the new d is in S and has the same variance as the old d.

There remains the case that elements of the new d are greater in magnitude

than 12X + 12 Suppose that the second element of d > 12X + 12. Then

both the first and second terms will make a contribution to the variance

of at least

l2C12X 
2 

12 
/ ^6 = (6X + 6) 2/6 = 6(X + 1)2

This is greater than the variance of the correction generated by C. Thus

the minimum over the finite set S is the minimum over the set of all

correction vectors.

Let (el , e 2 , ..., e6 ) be an optimal correction vector; i.e., the

corrected detector means (g l,g6) have minimum variance. Let G be

the mean of g l , ..., 96 . Then (gi - G1 < .5 for all i. Otherwise there

exists i such that an integer could be added or subtracted from g, to

bring it closer to G. Let G' be the mean of gl, ..., g 6 with the improved

gi . Then

old G( gi - G) 2 > new 1(g i - G) 2 > new 1(gi - GO)2•

The latter inequality holds because of the theorem that the sum of squared

differences of a set of numbers from a fixed value is minimal when that

fixed value is the mean of the set.	 j

We have shown that the correction vector producing minimum variance

is the vector generated by a central value G. The same minimum variance

is obtained for the vector generated by

G-2, G-1, G, G+1, G+2,
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Hence one of these equivalent central values lies in the interval C + 0.5.

Q.E.D.

III.3 SOME EXAMPLES OF CORRECTION FOR STRIPING

Module STRIPE has been run on the Deaf Smith, Randall, Finney,

Saline and Ellis intensive study site data with the results that are

given in Table III-l.

TABLE III,l.

STRIPING AT FIVE SITES AND ITS CORRECTION

Deaf Smith 27 May 74

Detector Mean - Channel Mean	 Recommended Correction

	

0.6	 0.3	 2.7	 0.4	 -1	 0	 -3	 0

	

0.4	 0.7	 0.7	 1.7	 -1	 0	 -1	 -2

	

0.4	 0.1	 -0.7	 0.3	 -1	 0	 1	 -1

	

-0.4	 -0.3	 -1.8	 -1.0	 0	 1	 2	 1

-0.7 -0.7 -1.1 -0.6 0 1 1 0

-0.3 -0.2 0.1 -0.1 0 1 0 0

- Randall 27 May 74

0.7 0.7 2.2 -0.7 0 -1 -2 1

0 0.6 0.3, 1.5 0 -1 0 -1

0.1 -0.9 -1.3 0.3 0 1 2 0

-0.8 -0.9 -1.2 -0.6 1 1 2 1

-0.5 -0.2 _0.5 -0.5 1 0 1
a

1

0.4 0.7 0.4 -0.1 0 -1 0 0

r
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TABLE III-1. (CONT.)

Detector Mean - Channel Mean Recommended Correction

Finney 26 May 74

0.4 0.2 1.5 -0.6 0 0 -1 0

0.3 0.1 0.5 1.4 0 0 0 -2

0.1 -0.2 -0.6 0.4 0 0 1 -1

-0.5 -0.4 -0.7 -0.5 1 0 l 0

-0.3 0.2 -0.4 -0.6 1 0 1 0

0 0.1 -0.4 -0.2 0 0 1 0

Saline 6 May 74

0.3 0.1 1.6 -0.6 0 0 -1 1

0.1 -0.2 0.4 1.6 0 0 0 -1

0.1 -0.3 -0.4 0.6 0 0 1 0

-0.5 -0.2 -1.0 -0.5 1 0 1 1	 1
-0.1 0.5 -0.8 -0.8 0 -? 1 l

0 0.1 0.1 -0.3 0 0 0 1

Ellis 12 June 74

0.6 0.4 0.8 -0.4

0.6 0.6 0.7 1.5

0.2 -0.2 -0.6 0.4 not computed

-0.5 -0.7 -0.7 -0.6

-0.7 0 -0.6 -0.7

-0.2 -0.1 0.4 -0.1
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In each case, the run was made for the rectangle enclosing the

Intensive Test Site that had been graymapped in all four channels.

A larger area was not used because without the graymaps we couldn't be

sure that there weren't some bad lines that would distort the estimates

of the detector means. Deaf Smith had such a line (848) near the top of

the site and we ran STRIPE starting at the line after the bad one.

Finney was missing line 727 and 728 near the bottom of the site, so we

ran STRIPE from the top of the site to 726.

The line sets have been cyclically permuted for all sites but

Randall to make the detector biases correspond. The correspondence was

achieved by putting in the top two line sets a positive b:as in

channel 3 on the first line set and a large positive bias in channel 4

on the next. The correspondence between Randall and Deaf Smith, which

are contained in the same ERTS frame, was verified by observing that the

corresponding lines differed by a multiple of 6. When we compare the

mean difference table for Randall and Deaf Smith, we note that the large

differences correspond but that some of the small differences do not,

showing that field-to-field variation among the line sets accounts for

some small differences in the detector means but not the big ones.

For the present study we ran UNBAND with the recommended correc-

tions on the Deaf Smith, Randall, Finney and Saline tapes. Deaf Smith

and Randall were corrected because they had large detector biases. In

Deaf Smith, for example, the range of detector bias in channel 3 is 4.5,

quite large compared to the standard deviation of 7.5 in that

channel. And striping is apparent in the graymap of Randall, channel 4.

Finney and Saline were corrected because very little processing had

been done on them and it was no loss of effort to bring the detectors

into line first. Ellis was not corrected because much processing had

been done on it and the biases were not excessive.
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APPENDIX IV

NUMBER OF SIGNATURES NECESSARY FOR ACCURATE CLASSIFICATION*

W. Richardson, A. Pentland, R. Crane and H. Horwitz

IV.1 INTRODUCTION

Computer processing of multispectral scanner data as a means ;or

measuring the earth's resources depends for its success on the defini-

tion of spectral classes, i.e., signatures, corresponding to materials

to be recognized and backgrounds in the scene. Clustering techniques

for defining these classes have been used with success, but have left

unresolved the question of how many signatures to define. When classes

are too few, they are so broad they overlap, resulting in unnecessarily

large classification errors, while too many classes increase classifi-

cation costs and cause difficulty in matching spectral.classes with

materials in the scene.

A procedure at ERIM is to cluster the points into small spectral

classes by a processing module CLUSTR and then to combine the clusters

into larger signatures by a program GROUP. CLUSTR uses a relatively

simple algorithm because it is applied to every data point. The number

of small clusters it produces is an upper bound on the number of sig-

nificant modes in the data space. GROUP, working on the set of clusters,

much fewer in number than the data points, can take time to be careful.

1

This appendix is to be presented as a paper at the Symposium on
Machine Processing of Remotely Sensed Data, Purdue University,
June 1976.

*%< When clustering is unsupervised, the difficulty of identifying spec-
tral classes increases with the number of classes and with the small-
ness of the classes. When clustering is supervised and recognition
is extended from training to test areas, test classes may appear
between training modes and thus be recognized better by broader
signatures.
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It uses covariance information and before each step of combining a pair

of clusters, considers all possible pairs in the light of certain cri-

teria. At the end of a run of GROUP, the analyst has a choice of sets

of combined signatures, each set being the best choice given the number

of signatures. He also is provided tables and graphs to help decide

how many signatures to use.

IV.2 DESCRIPTION OF A TECHNIQUE FOR DETERMINING THE NUMBER OF

SIGNATURES

Our procedure for reducing the number of signatures combines signa-

tures within categories. In principle, the procedure can be applied to

any number of categories from one on up. The present implementation,

program GROUP, requires two, which we name for definiteness "wheat"

and "other". Both categories are treated the same way.

The procedure is summarized by the following steps:

A. Compute for each pair of signatures (clusters) within each category

f
up to five measures of intersignature distance. 	 i

1. Distance based on a combined covariance matrix. 	 3

2. Determinant of the combined covariance matrix. 	 j

3. Trace of the combined covariance matrix.

4. Probability of misclassification between the pair.

5. Increase in the probability of misclassification between cate-

gories (we describe these measures more fully below).

B. For each distance criterion selected, rank every pair of signatures

and then combine the pair with the smallest weighted sum of ranks.

Punch or otherwise save this combined signature.

C. Compute descriptive statistics such as the following:

1. The average pairy ise probability of misclassification between

categories.

2. The maximum determinant scaled to compare with distance

measurement,

3. The maximum trace scaled to compare with distance measurement.
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D. Compute the observed probability of misclassification by classify-

ing the training data from which the signatures were extracted. The

classification uses the current set of signatures.

E. Repeat steps A - D until only one signature per category remains.

F. Display the statistics computed in C and D in a table and graphs. 	
0.6

From these displays, the user decides how many signatures are right

for the multispectral recognition problem being attacked. The proce-

dure has minimized the use of qualitative judgement by selecting from

the myriad of possible signature combinations` a few likely candidates

and providing information to aid in the qualitative choice among the few.

When the user has made his choice, he assembles the chosen set of sig-

natures from among those saved.

The input to the program GROUP is a number of "wheat" and "other"

signatures. Each signature is in the form of a mean vector and a covar-

iance matrix, parameters that are assumed to specify a multivariate

normal distribution of data vectors from the material the signature

represents. Signatures computed from fewer than 5 points are not

accepted by the program.

The program provides 5 criteria for combining groups. Any of

these criteria or any subset of them may be used. If two or more cri-

teria are chosen, then the possible pairs of signatures to be combined

are ranked according to each criterion and the pair with the smallest

weighted sum of ranks is chosen. In that way the pair of signatures

combined is the one most generally in harmony with the criteria selected.

The 5 criteria are as follows:

1. An average covariance, matrix AW for the wheat signatures and one

AO for the other are calculated. The pair of signatures com-

bined is the one with the smallest squared distance,

" There are 769,129 different signature combinations of '7 wheat and

7 other initial signatures.
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(u 2 - V 1 ) T
 A^

l (u 2 - ul)

or

(u2	 ul ) T Aal (u 2 - ul)

depending on whether the pair is wheat or other. It is essen-

tially the square of the usual distance between the means but

with the scale modified by the inverse of the average covariance

matrix.

2. The determinant of the combined covariance matrix. The combined

covariance matrix of the training set is the covariance matrix

of the union of the two sets except that each set may be given

an arbitrary weight. If the weights are proportional to the

number of pixels used in calculating the signature, then the

combined signature is identical to the signature calculated from

all points of the two sets. If the two sets have circular sig-

natures far apart, for example, the combined covariance matrix

is long and thin whereas the average covariance matrix is circu-

lar. The determinant is the product of the eigenvalues, in

other words the product of the variances in the axial directions

of the ellipsoidal distribution.. The bigger the determinant,

the more spread out the distribution.

3. The trace of the combined covariance matrix. The trace is the

sum of the diagonal elements, namely the variances, and is also

the sum of the eigenvalues. It is invariant under a rotation of

the space. Like the determinant, it is a measure of how spread

out the combined distribution is.

4. The squared Mahalanobis distance

2	 T Ri+R l
D13 = (u - ui)	 2	 (u^	 ui)
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This is the same distance as criterion 1. except that the co-

variance matrix modifying the distance is the average of the

two covariance matrices of the pair rather than the average of

all the covariance matrices in the category. 	 The difficulty

with this criterion is that the more spread out a signature is, 	 -^

the smaller is its distance to any other signature. 	 The cri-

terion thus tends to encourage large variances rather than to

hold them down.	 This criterion is included in the program

largely by tradition. 	 Our former method of combining signatures

was to make a table of the probability of misclassification

(p. of m.) defined for each pair of signatures as

D21	 1J	 22	 1
(	 ^e	 dt

l

and then to group the signatures intuitively as suggested by the

table.	 Expression (1) is an estimate of the probability of de-	 1

f ciding on signature j, given that the distribution is really

represented by signature i or vice versa -- an estimate that

becomes exact [11] if the covariance matrices of signature i and

signature j are both equal to (Ri + Rj)/2.

5. The average pairwise wheat-other p. of m.	 For each wheat-other

pair, the Mahalanobis distance D is computed and from that the

p. of m. as in criterion 4.	 The criterion is a weighted average

of these pairwise p. of m.'s.	 The wheat signatures start out

with weights a 	 that add to 1 and the other signatures with

weights R j that add to 1.	 The weights are initially equal but

may be set in the control input.	 Wh,an two signatures are com-

bined, their weights are added. 	 The average pairwise wheat-

other p. of m. is
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I	 Y	 alsj p. of m. (i,j)
wheat i other j

This number is printed at every step of the program and is one

of the ways the user decides when the combining has gone far

enough.

There is a case to be made for using only criterion 5. for combining.

After all, is not the ultimate goal to minimize the probability of mis-

classification? The reason the distance criteria are also included is

because experience shows that the training data seldom fully represent

the data to be processed. If two distant signatures are combined be-

cause such a combination does not adversely affect the p. of m. of the

training data, the combination might swallow up competing signatures

in the test data. The safest plan is to use one or more distance cri-

teria along with criterion 5. so that the two signatures to be combined

will be a good choice both from the standpoint of distance and p. of m.

The criteria can be weighted so that the p. of m. criterion 5. gets

half the weight and the distance criteria divide the other half.. At

the end of the run, a summary table is printed, each row of which cor-

responds to the number of signatures, so that the rows go from two to the

original number of signatures. The columns refer to the criteria for the

signature that was combined at that step and to other useful information.

Digital plots of any requested columns of the table are given. The col-

umns of the table we have found most useful are

1. Criterion 5., the average pairwise wheat-other p. of m.

2. The (2n)th root of the maximum covariance determinant. The

determinant is the product of the eigenvalues. Hence, the nth

root of the determinant is the geometric mean of the eigenvalues.

An eigenvalue is the variance of the distribution in the direction

of an axis of the ellipsoid. The variance is a squared quan-
tity. Its square root, the standard deviation, is in units of

..,,

63



4 I I ^

FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN

r

Euclidean distance. Thus the (2n)th root of the covariance

determinant is an average standard deviation of the distribu-

tion, a measure of how spread out the distribution is. The

maximum of these values shows how spread out the combined sig-

natures are getting,

3. The square root of 1/n(maximum covariance trace). The trace of

a covariance matrix is the sum of the diagonal terms (the vari-

ances) and is also the sum of the eigenvalues. Thus the trace/n

is the arithmetic mean of the eigenvalues, an average variance,

and its square root is therefore an average standard deviation

of the distribution. It is also a measure of how spread out

the distribution is, The only difference between this measure

and the previous one is that the arithmetic rather than the

geometric mean of the eigenvalues is taken.

4. The average pairwise p. of m. (as in column one) multiplied by

one half the number of signatures in the set. The purpose of

the multiplication is to make the average pairwise p, of.m.

more closely approximate the overall p. of m. Suppose for ex-

ample there are three "other" signatures and one wheat signature.

There are three wheat-other pairwise p. of m. S, p(W101),

p(W10 2), and p(W10 3). Prob{otherlwheat} is more closely approx-

imated by p(W10 1) + p(W10 2 ) + p(W10 3) than by 1/3 this amount.

But prob{wheatlother} = 1/3 p(W 10 1 ) + 1/3 p(W10 2 ) + 1/3 p(W103)

because the p.obability of choosing 01 is 1/3 and the subse-

quent probability of deciding on wheat is p(W101) and similarly

for 0 2 and 0 3 . Thus, the average of prob{otherlwheat} and

prob{wheatlother} is approximated by

3 1 p ( W101 ) + P(W102) + p (Wl°3^^

which is the average pairwise p. of m. times one half the num-
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ber of signatures in the set. The figure we have calculated

is an overestimate of the p. of m. just as the average pairwise
ti

p. of m. is an underestimate so columns one and four bound the

true theoretical p. of m. between categories.

5. The observed p. of m. calculated by classifying the training

points using the current set of signatures. This empirical

measure of performance of the signature set complements the

theoretical measures.

IV.3 APPLICATION OF THE TECHNIQUE

This process of clustering and GROUPing has been carried out on

Landsat MSS data drawn from 5 agricultural sites in Kansas and Texas.

For each site, training fields were selected at random and then divided

into the two categories "wheat" and "other". CLUSTR was then run in a

supervised mode to provide several signatures (clusters) for each cate-

gory, and these signatures were used as input to GROUP. The statistics

produced by GROUP as the number of signatures was reduced to one per

category were displayed in digital plots such as those in Figures IV-1

through IV-6.

The first four figures typify the plots of maximum determinant,

maximum trace, average pairwise p. of m. and this last measure multiplied

by one-half the number of signatures. These measures tend to behave

as expected, decreasing rapidly at first as the number of signatures

increases and then flattening out. The typical backward slant of the

curve for pairwise p. of m. times factor (Figure IV-4) probably indicates

that the factor overcompensates in its task of making pairwise p, of m.

a better estimate of the overall p. of m. Possibly a factor half as

large would be a good compromise between the two bounds.

The observed p. of m. on occasion follows the pattern of the other

measures (Figure IV-5) but when the number of points misclassified is

small, the observed p. of m. jumps about randomly. Figure IV-6 shows a

case where a maximum of 8 points were misclassified. These misclassified
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points may reflect the unpredictable behavior of clusters too small to

be accepted by GROUP or weakness in the original definition of the

clusters.

k	 IV.4 CONCLUSIONS

Starting with either field-by-field signatures or clusters, the

question of how many and which signatures to use is often decided by

guesswork. The GROUP procedure attempts to solve this problem by pro-

viding the analyst with the most likely sets of combined signatures and

the information needed to choose from among them.	 `.

The rule used by GROUP in choosing which signatures to combine is
i

constructed according to two principles: first, signatures chosen to

be combined should be as close to each other as possible; second, the	 i

combining of these signatur.ee should keep the probability of misclas-

sification between categories as small as possible. GROUP then provides
the analyst with sufficient information about its combining activities

to allow him to choose from among the sets of signatures the one set

which he believes represents the best compromise between cost and clas-

sification accuracy.

The GROUP procedure may also be used for investigating both prac-

tical and theoretical questions. Some of the investigations which

might profitably employ GROUP include the relationship between theore-

tical and empirical measures of the probability of misclassification,

the robustness of various schemes for signature selection; and the num-

ber of signatures normally needed to maintain accurate classification.
9

66



LERIM
FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN

o	 tens	 s.2+^^
-------------------------------------------------- -------------------------------------------------

	

2	 2

	

4	 •	 4

	

s	 •	 5

U1

a•

^	 •	 ,
1-JI

	

cli 0	 •	 8	 -
b0

	

U] 9	 •	 9

44

	

0 10	 •	 10

N

	

11	 •	 11

	

Z L2	 •	 12

	13	 •	 1)

	

14	 •	 14

FIGURE IV-1. MAXIMUM DETERMINANT (SALINE SITE)

67



FORMERLY WILLOW RUN LABORATORIES,. THE UNIVERSITY OF

0	 3•S22
•_------•------------------------`---••-----------•----------------------------------

1.045
---------------•

1

3 •	 3

3

5 • 5

N

obn
•rl 4 9
CA	 9

t1-a

0 l0 • 10

^4

00 11 • 11

Z 12 • 12

13 • 13

l ♦ • 14

+_------------------------------------------------•`------------------_------------ 	 ---------------
0	 3.522	 1.045

4

FIGURE IV-2. MAXIMUM TRACE (SALINE SITE)

! I
^,
E^

68
1



r
v	 i	 I

TORIES. THE UNIVERSITY OF MICHIGAN

.11en9
.099	

-------	 -•

•---------------------- --------------------------•------- 	
------	 .►,.

	

.	
z

z.
7

3

	

4	 •

	

•	

^	

5

6

	E 	 •	 '
^	 ^	 T

9

	

.4 9	 •	
-

10

»	 p !0	 •

N	
11

	

11	 •

	

`	 12

	

Z 12	 •

	

•	 1)

	

13	 •

. 1•

	

1♦ 	 •
-----•

	

0	 .0894 i

FIGURE IV-3. AVERAGE PAIRWISE PROBABILITY OF MISCLASSIFICATION
(SALINE SITE)

a

3
d

r
r

69

E
i



E
FORMERLY WILLOW RUN LABORATORIES, THE

0	 .3894	
-______"__-__------1149♦----- ----------- ----------------------- 	 ----•------------------- ----------

2 .

	

3	
'	 3

•

	

4	 ,

	

S	 •	
5	

^

•	 6

6 .	
{{

^	 3

	

7	 '	
7

on

	

CA 7	 •	
9

44

	

l0	 '	
to

>-+
N	 ► 1

11

12

	

Z 12	 '

•	 •	 13
13

•	 14
14 .

0-------	 -.0894
- ----------------------------------------------- -

Otl94-----__-__	 -°-°----------------^ .17tiv

FIGURE IV-4. PAIRWISE PROBABILITY OF MISCLASSIFICATION TIMES FACTOR
(SALINE SITE)

1

i
I	

^

i

i

i

f

r

70

L



....................................... . . .

L4
FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN

0	 .0169	 .0136
•------------------	 ---------	

--------------•--------------------------------------------------

?	 • 2

3	 •	 3

4	 •	 4

S ^	 ^	 •	 S

6	 •	 6

•	 1

CIS s	 •	 a

b0	 -	 •
n	

•	
9^ 9

44
0 10 .	 •	 t0

,>7 it	 •	 l 1

12	 •	 12

	

•	 i

13	 •	 l3	 i

14	 •	 14

a
•- ----------------	 --•--_ ---	 ----------------	 -- -^ ------------•
0	 .0369--

	 _^-	 --
.01)8

i
1

FIGURE IV-5. OBSERVED PROBABILITY OF MISCLASSIFICATION (SALINE SITE)

}

71



UNIVE

o	 .o13e
•------	 -------------------------------------- -•------------------------------------

2

	

3	 •

	

4	 •

	

6	 •
U1	 •
a
,a	 .	 1

41

	

e	 •	 e

00r{	 9	 •	 9Cf)

4-4

	

Q l0	 •	 13

	

12	 •	 12

	

1)	 •	 13

•----------------------------------------------------------------------------------------	 ---•

	

0	 .0139	 .0217

FIGURE IV-6. OBSERVED PROBABILITY OF MISCLASSIFICATION (FINNEY SITE)

72



RUN LABORATORIES, THE

:APPENDIX V

BAYESIAN FORMULATION OF A TWO-AT-A-TIME MIXTURE ALGORITHM

W. Richardson, R. Kauth and A. Pentland

V.1 INTRODUCTION

The algorithm LIMMIX [5] for processing multispectral scanner data

decides that a pixel represents a pure signature if the chi-square value

X 
2 

of the winning signature is a constant X12
P	

. Otherwise it consid-

ers all two-way mixtures of signatures and computes the proportion

estimate a and the chi-square value X m 2 of the winning mixture. If

Xp2 = Xm2 and Xp2 = X 22 , then again it is decided that the pixel rep-

resents a pure signature. If Xm 2 < Xp 2 and Xm2 < X 2 2 , it is decided
that the pixel represents the winning mixture with proportion X.

If all of these conditions fail, it is decided that the pixel represents
an alien object.

The LIMMIX procedure . is arbitrary in some respects. When Xp l = X12'

all possibility that the data point might be a mixture is ruled out,
yet there is no reason why such mixtures might not occur. Similarly,

when X 2 > X1`, mixtures are favored except in the event that the best
P

mixture has a proportion estimate of one. To replace the element of

arbitrariness by decision-theoretic principles, we propose two proce-

dures that define a density for each two-way mixture and then choose

among the pure and mixed densities by a Bayesian rule, i.e., weighted max-

imum likelihood.

The plan for defining a two-way mixture density is:

1. assume that the two materials to be mixed have the same covar-

iance matrix which is estimated by the average of the two given

covariance matrices.

2. make a transformation of the means and the data point reducing

the common covariance matrix to the identity.
3, define the mixture density in transformed space.
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4. divide this density by a constant to transform it back to the

original space.

Specifically, suppose we are defining a density for the mixture

of two signatures with means A and B and covariance matrices R A and RB.	 .....

Let R be 2(RA + RB). The density in the original space is

K -1(x-u)TR1(x-u)
f(x) ^ e

R

where u = A or B. Let R-1  = CTC. Let y = CX. It is easily shown that

the covariance matrix of y is CRC  which = I, the identity matrix. The

expected value of y = Cµ which we call u'. The density of y is

- I(Y - u') T (Y - u')
g (Y) -= K e

The X 
2
value is the same in both spaces:

(Y - u^) T (Y	 P') = (x - u)T R-1 
(X - u)

but the densities differ by a constant

f (x ) g(Y)/ VI 7R

V.2 HOW LIMMIX DEFINES PURE AND MIXTURE DENSITIES

LIMMIX follows the above general plan for creating mixture densi-

ties. Specifically, LIMMIX finds the point z on the line segment

between the transformed means (hereafter called "the segment") nearest

to the transformed data point y. The estimate of the proportions

of the mixture are the proportions into which z divides the segment.

The multivariate normal density g(y) is then computed with u v = z

and divided by 'Inl to transform it back to the original space. The

two-way mixture with the largest such density is then selected. Actually,

--2 In f(x) is computed rather than f(x) and the smallest of these values
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is chosen. The density in this form comes out X m 2 + In IRI where Xm2

is the squared distance E(y i - z i) 2 from y to z. An analogous value

X, 
p 
2 is calculated for the pure signatures:

X 2= (x-v)TS-1(x-v)
P

where v is the signature mean and S is its covariance matrix, and the

pure signature with the largest density, i.e., the smallest X p 2 + In Is
is chosen. The rule for deciding between pure and mixed densities was

given in the previous section.

V.3 LIMMIX B, -- A NEW TWO-WAY MIXTURE ALGORITHM

The mixture density used in LIMMIX is conditioned upon the mean

being at a certain point z. A mixture density which could be compared

to the pure densities would be conditional only on the fact that a

pixel represents a mixture of two materials A and B, regardless of pro-

portion. It would be defined for each data point x and integrate to 1

over the data space. The first of our two proposals for defining such

a mixture density is to make the LIMMIX density integrate to I by divid-

ing by a constant v, which is, in fact, the integral of the present

LIMMIX quasi-density (f (x), defined earlier) over the whole space.

We will call this procedure LIMMIX B.

We will now calculate v. The quasi-density g(y) was defined by

supposing =^.fiat z, the point on the segment nearest to the transformed

data point y, is the mean of a standard normal distribution. Divide,

the space into three regions by passing planes through the transformed

means perpendicular to the segment. The volume of the two end regions

adds to 1 because each is half a standard n-variate normal distribution,

where n is the number of channels. To obtain the volume of the middle

region, we integrate it on a plane perpendicular to the segment. It

is the integral of a standard n-variate normal distribution over n-1

dimensions. It is no loss of generality to assume the segment is in
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the direction of the nth axis because any rotation of the space will

preserve the unit covariance matrices. Hence (yn - zn ) 2 = 0.

Thus the integral we want is

n-1

D	 - 2	 ^Yi - z i) 21 

J f 2^ n^2 e
	 dyl ... dy

n-1 dYn
f	 ( )
o n-1
space

1 n-1	
2

D	 1	 1	
-2	 (Yi -zi)

	

(20 2 f	 n-1 e
	 1	 dyl...dyn-1 dYn

	

J	 2f2^r
o	 n-1 ( )

space

The inner integral is 1 because it is the integral of an n-1 variate

standard normal density over n-1 dimensions. Thus the volume of the

cylinder is

D

where D is the length of the segment. Hence

v = 1 + D

To make the quasi-density in transformed space a real density that

integrates to 1, we divide it by v. When we divide this density in

transformed space by VrFR7 we have a real density for the mixture in the

original data space:

g(y) = f (x)

v ► 	 v

We now make a Bayesian decision among the pure and mixed densities,

i.e., we give each density a prior weight and choose the density with
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the greatest weighted maximum likelihood. We estimate a parameter m

representing the proportion of mixed pixels in the scene. We assign

the mixed densities together a weight of m and pure densities a weight
of 1-m. We assume that each of the s pure densities is equally likely

and each of the s(s - 1)/2 mixed densities is equally likely. Then each

pure density has a prior weight of

1 - ms

and each mixed density a weight of

M
	s(s	 1)/2

So, in theory, we compute the pure densities {h} and the mixed quasi-

densities {f} and choose the density corresponding to the biggest of

	

1 
s
 m h	 and	

vs(sm- 1) f

i.e., the biggest of

2m	 ){h}	 and	
1) 

f}
v(1 - m)(s - 

	

t	
)

i.e., the smallest of

{-2 In h} and	 -2 In v(1 - m2m - 1) -2 In f

Let

	

Q(D) _ -2 In	 2m
v(1 - m) (s - 1)

V
{-2 In h} is {X 2 + 1nISI1 where X 2 

is the X2 value for the pure dis-

tribution. {-2p in f} is {X m2 + lnIRI} where Xm2 is the X 2 value for

the mixed distribution. Hence, we choose the pure signature or mixture

corresponding to the smallest among
i
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{Xp2 + lnJSI} and {Xm2 + ln,RI + Q(D)}

The programming differences between LIMMIX and LIMMIX B are minimal

because LIMMIX computes and compares {X p 2 + lnlsl} and { Xm2 + 1nIR'}.

LIMMIX adds Q(D) to X m 2 + lnIRJ and chooses the pure or mixed signature 	
..

corresponding to the smaller of the two winning values. The only para-

meter to be estimated is m and it is relatively stable for similar

scenes.

LIMMIX B computes D conveniently as follows. The transformed means

are CA and CB. Hence,

2 = (CB - CA)D 	 (CB - CA)

(B - A) T CT C(B - A)

(B - A) T R '^ (B - A)

Thus

D	 (B-A)TRl (B A)

the Mahalanobis distance between the means.
i

V.4 LIMMIX C -- A NEW BAYESIAN TWO-WAY MIXTURE ALGORITHM
3

Our first method, LIMMIX B, for defining a mixture density was

suggested by previous mixture estimation practices. Our second method,

which we will call LIMMIX C, is derived logically from a Bayesian as-
3

sumption that the parameter a defining the mixture (1 - a)A + aB has 	 !

a rectangular distribution between 0 to 1.

The ,joint density of y and a in transformed space is 	 3

n
- 2	 [yi - (1 - a)A - aBi]2

g (a , y) = K e	 i=1	 if 0- a=

= 0
otherwise

where Ai and Bi are now the coordinates of the transformed means.
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To get the mixture density at y, call it g(y), we integrate out the a:

l - 2 Y, lyi - ( 1	 a)Ai - aBi]2
g (y) = K f e	 i=1	 da

0

This integral appears formidable in n-space but it can be simplified

by rotating and translating the space so that A is at 0, B is at D on

the yl axis (where D is the distance between A and B) and y is on the

y
l' y2 plane. The covariance matrices remain the identity matrix under

this second transformation. To get the coordinates (y 1 , y 2 ) of the

new y, drop a perpendicular from the old y to the line A,B. Let the

foot, z, of the perpendicular be represented by (1 - e)A + eB and let

the distance from the old y to z be X. The coordinates of the new y
are

yl = eD

Y2 

Now

1

- 1[(yl - aD) 2 + y22)

g(y) ° K f e	 da

J	 i
o

_ n

where K = (2Tr ) 2 . K can be omitted because it multiplies every den-

sity, pure and mixed. 	 j

Let	 J

S aD y1	da	 da/D

a
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2

	

- 
Y2	

D-yl 1	 - 1 
s2

	

g(Y)2	 2
fe	 D 	 ^ e	 ds

l

2
Xm

e	 2	
2 

[(D((1 — e)D) — (D(—OD)]

where ^ is the cumulative normal integral.

Having defined the mixture density in transformed space, we now

proceed as before to obtain the density in the original data space by

dividing by 3rRT, to weight the pure and mixed densities by

1 m	
and	

m
s(s

s 
	
1)/2

respectively, and to choose among the pure and mixed signatures the

one with the largest weighted density.

If the winning density is mixed, we take as the estimate of the

proportion of. the mixture, not the maximum likelihood estimate of a

as before, but the expected value a of a given y.

j'1
. a = e (a l y )	 J. a g(aly)da

0

where g (aly) is the density of a given y

The second transformation that lined up A, B and y with the y 1 and

Y2 axes was a rotation, i.e. an orthogonal transformation having -a

determinant of 1, and thus doesn't multiply the density by a factor.
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g (a l y ) _	
(g asy)

g(y)

2 [(Y - aD) 2 + y

	

K e	
`]

	

_ —	 2 
l	 2

Y2

	

K e	
2	 D^• [(D ((1 - 6)D) - 4)(-6D)]

- 
2 

(yl - aD) 2
e

/27 [(D((1 - e)D) - (D(-OD)]
D

	

f 	 (Yl - aD) 2
a 	 a e	 da/denominator

0

Let

R' = aD - y l ,	 da = WD,	 a = (R + yl)/D.

D-yl

1 2

	

_y	 (+

	

1 e- -P ds

a =
1
	 ) D

	

32	
[(D ((1 - 6)D - (D(-6D)]D

In the numerator, two terms can be integrated separately.

Dr-yl	
l 2	

D-yl	
_ 1 2

D 

Dl J
	 1 e 25 ds + 2	 f S	 1 e 2a d^

	

-y
1 
T	 D -yl

a =
32-	

[^((1 - e)D) - (D(-6D)]
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Now f x ifI(x) is	 where is the normal integrand so

yl	
1 '(D - yl ) -

a	
D + D (D((1 — e)D) — cD(—yl)

	

1 j((1 - 6)D) -	 76D)
= e	 ^ - 

D cD((1 - 6)D) - (D(-eD)

a is a function of 6 and D. Table V-1 gives some representative

values. It can easily be shown that a is a symmetrical function of 6

in the sense that all - 6) = 1 - a(e) by using the identities IfI(x)

	

(-x) and D (x) = 1 - (D (-x) . It can be shown that a -> 0 as e	 and

a - 1 as 6 -> by using the asymptotic relationships

1

	

	 (x) ti It (x)
x

1 - (x) ti (X) 1 -	 1X	 x2+3

which, as x	 have errors that go to zero like 1/x 2 and 1/x6,

respectively.

Although LIMMIX C appears to require lengthy computations for each

pixel, the precalculation of two tables can speed it up almost to the

pace of LIMMIX B. As .with LIMMIX B, we write the density in chi square

form by applying the operation -2 In

-2 In g (y ) = Xm2 - 2 In 27T
	

[(D(D - De) - (D(-De)]

and add on the terms

1	
2m+1n R -2 In (l-m)(s-1)

To convert to the data space and include the prior weights.
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TABLE V-1. THE LIMMIX C MIXTURE ESTIMATE a AS A FUNCTION OF THE LIMMIX
MIXTURE ESTIMATE 0 AND THE DISTANCE D BETWEEN THE TRANSFORMED MEANS

(THE TABLE IS SYMMETRICAL FOR 0 > 0.5)

6 =	 0.0	 0.1	 0.2	 0.3	 o.4	 0.5

	

D = 1	 0.46	 0.47	 0.48	 0.48	 0.49	 0.50

	

2	 0.36	 0.39	 0.41	 0.44	 0.47	 0.50

	

3	 0.26	 0.30	 0.34	 0.39	 0.45	 0.50

	

4	 0.20	 0.24	 0.29	 0.35. 0.42	 0.50

	

5	 0.16	 0.20	 0.26	 0.33	 0.41	 0.50

	

7	 0.11	 0.16	 0.22	 0.31	 0.40	 0.50

	

10	 0.08	 0.13	 0.21	 0.30	 0.40	 0.50

The curly bracket term is a function only of D and A. We can precompute

a table of this term with s(s - 1)/2 rows, one for each possible value

of D, and 11 columns for 6 = 0.0, 0.1, 0.2,	 .	 1.0. In applying

the table, we defer to the pure signature, i.e. throw out the mixture,
i

if 0 = 0 or	 1. This decision would have been made the slow way, too,

unless m were unusually large. When 0 < 0 < l we compute the second	 g

term by linear interpolation. The second table is of a as a function

of D and 8 like Table V-1. Its construction and use is analogous.

V.5 COMPARISON OF TWO-WAY MIXTURE ALGORITHMS

When 0 < 0 < 1, the densities defined by LIMMIX B and LIMMIX C

are asymptotically equal as D 9

Proof: The densities for LIMMIX B and LIMMIX C are, respectively,

2

1	 Xm /2
e

1 + D 

/2 -Tr
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and

2

D e Xm /2 [^(D - De) - (D(-De)]

Two quantities are asymptotic if their quotient 1.

LIMMIX C density = 1 
+I:T)^ 

[(P(D - De) - ^(-De)]
LIMMIX B densityD

= (q2 + 1 [O(D — De) — 0(—De)]

The first factor -> 1 as D	 -. O(D - De) -> 1 as D	 - because 6 < 1.

(P(-De) -> 0 as D	 because e > 0. Thus the second factor of the ratio

of densities -} 1 as D -> -. Q.E.D.

The ratio of the LIMMIX C to the LIMMIX B density -> 0 if e is < 0

or > l because the square bracket factor -> 0 in that case. This case

is not normally of practical significance because unless the prior esti-

mate of the proportion m of mixture pixels is extremely high, the pure

signature B will outweigh the (A,B) mixture signature (1 - m)/s to

s(s - 
m
1)/2 , and hence, will always prevail when 6 > 1. Similarly,

the pure signature A will prevail when e < 0.

When 6 = 1 or 0, the LIMMIX C density is asymptotic to one half the

LIMMIX B density, showing that LIMMIX C has a greater tendency to defer

to pure signatures near the pure means than does LIMMIX B.

Of these two-at-a-time mixture algorithms we have described, LIMMIX

C has the soundest theoretical justification because it rests on only

two assumptions:

1. that a relatively stable proportion of the pixels in a scene

are two-way mixtures

2. that among the mixture pixels, the mixture proportion a has

a rectangular distribution between 0 and 1.
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LIMMIX B is sounder theoretically than LIMMIX because it is asymptotic

to LIMMIX C as D -Y - and because the mixture density it uses is a true

density in the sense that its integral over the data space is 1. LIMMIX

C takes a little longer to compute than the other two.
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APPENDIX VI

TRAINING THE PARAMETERS OF THE LIMMIX PROCEDURES

VI.1 INTRODUCTION

A training procedure is useful if it is objective and efficient.

Toward this goal, the following procedures for training mixture algo-

rithm parameters are directed.

VI.2 TRAINING LIMMIX PARAMETERS

For LIMMIX, the value of X2 2 can be set one of these ways:

1. From a table of X2 distribution, we can find a value (such

as 18.465 for four channels) which contains 99.9% of all

pixels belonging to the distribution in question and set X22

equal to this value.

2. Experience in looking at maps of processed multispectral

scanner data using different rejection thresholds (i.e., X 2

cutoff levels like X 22 ) may indicate that a higher value of

XZ 2 (such as 30 for 4-channel data) is most likely to separate

the alien pixels from the true members of the training dis-

tributions.

3. A value can be set for X 2 2 that results in designating as
alien a certain given percentage, such as 2% of the pixels.

Two of these methods could be combined, by, for example, getting X22

at 18.465 or the 2% point, whichever is higher.

X12 can be set to produce a desired percentage of mixture decisions
such as the estimated percentage of mixture pixels in the scene. The

latter number can be estimated by geometry from a distribution of field

sizes and ,shapes or by using a program such as POLYGN at ERIM that counts

the number of pixels that are within a polygon and at least a given

distance from the boundary. One would expect such a percentage to re-

main relatively stable from scene to scene and one might, with practice,

estimate it pretty closely at a glance.
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The suggested method of setting X 12 and method 3. of setting X22

can be carried out in one pass through the data by keeping three histo-

grams:

1, of X p 2 for all pixels

2. of 
Xp2 for those pixels that have Xp2 = Xm2

3. of Xm2 for those pixels that have X p 2 > Xm2.

At the end of the run, the histograms are converted to relative frequen-

cies by dividing by the number of pixels processed. The relative fre-

quencies of the first histogram add to 1 because the histogram records

every pixel processed. The same conclusion does not apply to the second

and third histograms, but their relative frequencies, all put together,

do add to 1. For each possible value of X 2 2 , we can compute the per-

centage of pixels that such a X 22 would have made alien by adding the

relative frequencies of the second distribution for intervals > X22

to those of the third distribution for intervals > X 2 2 . This can be

done by the program and presented as a table showing the percent of

alien pixels implied by each possible choice of X 2 2 . The percentage of

pure decisions implied by a given choice of X 12 can be found by adding

the relative frequencies of the first distribution for all intervals
<

X1 2 and adding to that the relative frequencies of the second distribu

tion for intervals > X 12 but X22 . The percentage of mixtures is one

minus the sum of the percentage of pure and alien. One can thus

find the value of 
X22 that will produce a desired proportion of alien

decisions and a value of 
X 1 

that will produce a desired proportion of

mixture decisions.

VI.3 TRAINING LIMMIX B AND LI14AIX C PARAMETERS

The parameter m of LIMMIX B, an estimate of the percentage of

mixed pixels in the scene, is used to give proper weight to the collec-

tion of mixture densities. The percentage of mixture decisions made

by LIMMIX B will not, in general, equal m because a Bayesian rule

.W,
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follows the principle of minimizing expected loss rather than holding

results to a fi.xed percentage.

To draw an analogy, an equally-weighted Bayesian decision between

two densities, A and B, will not in general result in equal errors (i.e.,

the probability of A given B will not equal the probability of B given

A) because the decision rule follows the principle that the sum of the

two errors must be a minimum. If the principle is followed that the

two errors are equal (a "minimax" rule), the weights will, in general,

be unequal.

It is not clear whether it is better to set the parameter m equal

to the estimated percentage M of mixed pixels and let the algorithm

find as many mixtures as it will, or whether set m in such a way as to

produce M percent mixed decisions. If the user chooses the latter

course, he can find that value of m by compiling a histogram during

one pass through the data. Let the constant term of LIMMIX B

Q(D) = -2 In	
2m

v(1 - m) (s - 1)

be written

-2 In v 
2

(s - 1) -2 In
	

m
1 - m

or W(D) + Y(m) for short. We histogram the value of Y(m) that would make

the two sides equal, namely

X p 2 + 1n1SI - Xm2 - lnlR) - W(D)

After the run, we put the histogram in the form of a cumulative percen-

tage from the top down and find the percentile. Y o corresponding to the

desired percentage M of mixtures. We then find the m for which

-2`ln	
m
lm	

Yo
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which comes out, after algebra,

1
M = Y /2

e ° + 1

The procedure for setting the parameter m in LIMMIX C is analogous.

We isolate the m term, which is the same as in LIMMIX B, and histogram

the value of that term that would make the two densities, in -2 In form,

equal. In other words, we histogram the difference of those densities

with the -2 In1 
m 

m term missing. We then find the value of m from the

histogram as before.

We have experimented with another way of modifying the LIMMIX B and

C procedures to produce agreement between the percentage of mixture de-

cisions and the percentage of mixture pixels in the scene, namely, to

multiply the mixture X2 by a parameter y. As before, it is not neces-

sary to run the rule again and again with different values of y until

the desired percentage of mixture decisions is produced. We need only

make one pass through the data keeping a histogram of the value of y

required to produce equality between the best mixture and best pure

density. For LIMMIX B, this value of y is the solution of

y X 
m 
2 + lnjR) + Q(D) = X 

p 
2 + lnIS1

which is

X p 2 + 1nIS) - lnIRl - Q(D)

Y =	 2
Xm

At the end of the run we convert the histogram to a percentage

distribution, cumulate it from the top down and set Y equal to the per-

centile corresponding to the desired percentage of mixture decisions.

An analogous procedure applies to LIMMIX C.
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VI.4 TRAINING NINE-POINT MIXTURE PARAMETERS

As a first step in training the Nine-Point-Mixture parameters,

we made a histogram of the number of winning votes (i.e., ORULE deci-

	

sions) among the 9 pixels surrounding and including the pixel being 	 -^

processed. Votes for all the wheat signatures were added together to

make one wheat vote and similarly for other. The results for the 5

sites are given as Table VI-1.

TABLE VI-1. CUMULATIVE HISTOGRAM OF THE WINNING VOTES FOR WHEAT OR
OTHER AMONG ALL 9-POINT NEIGHBORHOOrS OF PIXELS IN FIVE SITES

6 votes	 = 7 votes	 = 8 votes	 = 9 votes i

Ellis	 89.8%	 72.1	 61.0	 48.8

Deaf Smith	 87.5	 72.2	 58.6	 40.8

Randall	 92.7	 79.7	 70.9	 61.4

Finney	 90.8	 76.6	 65.4	 52.5

Saline	 88.6	 75.8	 61. 7 	 42.5"

After looking at this table, we selected 8 as the number N1 of

votes required to make a consensus decision. Sixty percent of the p x-

els in each site had this majority which is about all the pixels with-

in homogeneous areas that one would expect- to find. Also, 8 is a good

consensus because either the center pixel is among the 8 and well-

imbedded within them or else it is an island among the 8 and probably

incorrectly classified.

The number N 2 of votes that twc signatures must get to arrive at

a split-vote mixture decision we set at four. It cannot be more than

four and if it is less, we would have the problem of what to do with

three 3-vote totals. The inference that the center pixel is a mixture

of two 3-vote signatures is weaker than the same inference for 4-vote

signatures.
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We set n1 2 to a high number like 51 that would exclude no points

truly associated with the training distributions but would screen out

extraneous points.

n22 can be set equal to the 
X12 

of LIMMIX or it could be set more

systematically by compiling a frequency distribution of X p 2 for all

pixels with < 8 winning votes. A thorough job of setting this para-

meter and the one corresponding to X22 would require compiling three

histograms as in IMMIX. The issue is clouded by the likelihood that

some of the 8-vote pixels represent a mixture of two signatures of the

same category, making it difficult to estimate the percentage of mix-

ture decisions.
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