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PREFACE

This report describes part of a comprehensive and continuing pro-

gram of research concerned with advancing the state-of-the-art in remote

sensing of the environment from aircraft and satellites. 	 The research

is being carried out for NASA's Lyndon B. Johnson Space Center, Houston,

Texas, by the Environmental Research Institute of Michigan (ERIM).	 The

basic objective of this multidisciplinary program is to develop remote

sensing as a practical tool to provide the planner and decision-maker with

extensive information quickly and economically.

Timely information obtained by remote sensing can be important to

such people as the farmer, the city planner, the conservationist, and

others concerned with problems such as crop yield and disease, urban land

studies and development, water pollution, and forest management. 	 The

scope of our program includes:

1.	 extending the understanding of basic processes.

2.	 discovering new applications, developing advanced remote-

sensing systems, and improving automatic data processing to

extract information in a useful form.

3.	 assisting in data collection, processing, analysis, and ground-

truth verification.

The research described herein was performed under NASA Contract

NAS9-14123, Task 12, and covers the period from May 15, 1975 through

May 14, 1976.	 Andrew Potter (TF3) was the NASA Contract Technical Moni-

tor.	 The program was directed by Richard R. Legault, Vice-President of

ERIM and Head of the Infrared and Optics Division, Jon D. Erickson, Head

of the Information & Analysis Department, and Richard F. Nalepka, Prin-

cipa1 Investigator and Head of the Multispectral Analysis Section.

The authors acknowledge the excellent programming support of

A. Pentland.	 The authors recognize and appreciate the illuminati-on pro-

vided by H. Horwitz and J. Colwell of ERIM, and M. Trichel and R. Heydorn

of Johnson Space Center.	 In addition, numerous other individuals con-

tributed to the general concepts of this report.
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SUMMARY

The purpose of this work is to develop computer techniques for

assisting an Analyst-Interpreter (AI) in the task of training field

identification. The result of the work has been to develop an integra-

ted man-machine approach to the problem of local proportion estimation

in large scale agricultural remote sensing systems, of which LACIE

(Large Area Crop Inventory Experiment) is an example. The approach

builds on the current LACIE system structure.

Local proportion estimation has two major aspects; the organiza-

tion of the data of the sample segment in such a way as to simplify

the task of AI identification of the training fields and to integrate

the AI designations more closely into the proportion estimation pro-

cess; and the actual process of designating training fields whether by

AI, by computer, or by a joint effort of both. A partial system for

performing the second task is described, and the conceptual basis of

the approach is explored. A complete system for performing the first

of the above tasks is described; the system has been implemented using

ground truth in lieu of AI designations; and a few examples bf propor-

tion estimates are given.
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2

INTRODUCTION

The Classification and Mensuration Subsystem of LACIE covers three

principle functional areas.

1.	 Training Field Identification

2.	 Training Statistics

3.	 Proportion Estimation.

The training field identification function in LACIE is carried

out by Analyst-Interpreters (AI's).	 Training statistics may be

extracted from the identified training fields and be used locally

(in the same sample segment) for proportion estimation in the LACIE II

proces gor; or training statistics may be extracted from the identified

training fields, be modified in some way, and be used non-locally (in

some other sample segment) for proportion estimation.

The work accomplished under this task was directed to the objec-

tive of assisting the AI's in performance of the training field identi-

fication function, either by helping AI's identify wheat training

fields, or by direct computer identification of wheat training fields.

However., a slight generalization leads to the statement that the objec-

tive is to create an AI-computer system for performing local proportion

estimation.

The general approach chosen for this task was to examine the

functions which must be performed to identify wheat fields at a level

of generality that would be valid whether either a man or a computing

machine were carrying out the task; to identify the functions which

might best be carried out by the computing machine in the near or

intermediate term future; aal.': to attempt to implement some or all of

these functions.

The functions which were considered were restricted to those which

could be carried OuL using data which could. reasonably be obtained i-n an

2
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operational large area crop inventory system utilizing Landsat data,

namely: the Landsat image data; historical crop calendars, cropping

practices, crop acreages, meteorological data; current crop calendars,

meteorological station and meteorological satellite data; and various

spectral and spatial features drawn from the Landsat images. The

Landsat images as used by AI's or as processed for proportion estima-

tion are termed image data; all other types of data will be termed

ancillary data.

Since there are choices available in precisely what types and

sources of data to use, there is no unique set of functions which will

be necessary and sufficient to identify wheat fields or to perform an

estimate of wheat proportion. Our approach will be to identify as

many functions as we can and place them in a reasonable order in a

function flow diagram.

The observation of the behavior of the AI's within the context

of the LACIE system is a fruitful source for identifying specific

functions. Other portions of the LACIE system can provide ideas as

well. In addition, we want to be alert to the possible existence of

useful functions not being carried on anywhere in the LACIE system.

3
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3

FUNCTION ANALYSIS

Within the LACIE system, or a follow-on agricultural remote
sensing system, we have thought of the AI as providing starting poirits
for both local and non-local recognition. However, there has been no
notable success in the non-local recognition even though rather signi-
ficant success has been attained in local recognition (when particular
useful combinations of passes were available). At this point in time,
we perceive two broad reasons for failure of nonlocal recognition.
One of these is the influence of external effects such as viewing angle,
atmosphere haze,and water vapor. It has been well demonstrated now
that failing to correct these effects will result in essentially random
proportion estimations [14]. These effects can be corrected b^ a vari-
ety of means being pursued throughout the SR&T effort under the title of
signature extension.

The second broad reason for failure of non-local recognition can
be seen in terms of a sampling problem. The individual fields or regions
within a sample segment can be modeled as being the result of some ran-
dom draw from a large region called a partition. Within this large re-
gion the variability of signatures may be large, but the statistics of the

1.variability are stationary. The collection of fields actually occurr ng
in any particular sample segment is thus a small sample from a broad

distribution. The chances are small that the sample statistics of the
training fields picked by the AI in the training (local) sample segment
will match the sample statistics of the fields in the recognition seg-
ment.,

One might ask why it is that local recognition seems to work rather
well. Surely the same sampling differences occurs within sample segments
as between them; why is it not equally true that the chances are small
that the sample statistics of the training fields picked by the AI will
match the sample statistics of the remainder of the fields in the local
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sample segment? The reason is that the AI deliberately tries to pick
fields which are representative of the local segment. In effect, he
analyzes the statistics of the entire segment and then picks individual
fields which are representative of the entire segment. In order to
obtain the same success in non-local recognition, the AI would have to
see the non-local segment and pick fields from the training segment
which were representative of the non-local segment. In most cases
such fields would by chance not exist. Even if they did, the AI could
not examine every recognition segment.

Evidently, the key is to select fields which are representative of
the entire partition. In order to do this, it will be necessary to
find training fields in many sample segments and to correct external
effects among and between these segments in order to establish a com-
posite training data base for the partition.

The above paragraphs have been directed to the subject of non-
local recognition or signature extension. Let us return now to the
task of local identification of crops.

If the AI must be involved in every local segment, we at least
would like to be able to relieve him of some of the burden through com--
puter techniques. We see the goal of a gradual reduction in the AI
work load at each site until finally he is in the role of monitoring
and checking computer results. We are encouraged that this goal may be
a practical one by the early results of the delta classifier [121.

With the above paragraphs as an introduction, we now,briefly
review the functions which the AI must perform in order to identify
field crops, and indicate the corresponding computer support functions
which we have developed.

Table 1 lists the AI functions which we perceive at this time.
The associated computer support functions are also shown. Notice that

5
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TABLE 1.	 LIST OF CONCEPTUALIZED AI FUNCTIONS
AND RELATED C014PUTER SUPPORT FUNCTIONS

ASSOCIATED COMPUTER
AI FUNCTIONS SUPPORT FUNCTIONS

Locate fields. Isolate fields and flag all
pixels belonging to the

Fix fields. particular fields.	 Present
to AI.

Estimate field Compute spectral-temporal
characteristics. statistics of each field.

Tentatively identify Suggest field identification
fields. to AI for his verification.

Review field character- Cluster fields into higher
istics and select a groups.	 Select a repre-
representative set of sentative set of fields.
fields.

Final field identification. Suggest field identification
to AI for his spot checking.

J
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one computer support function, isolate and flag field pixels, is shown

opposite two separate Al functions. In general, there is no exact corre-

spondence between the beginning and end of.&I steps and computer steps.

It is not necessary to implement all computer support functions

in order to benefit from some of them. However, each different partial

implementation requires a different interface with the rest of CAMS.

A progression of examples is shown in Figures l(a) through l(e). We

show this entire set of figures to demonstrate the gradual changes in

system function which are possible without premature commitment to the

final stage.

Figure l(a) shows the current configuration wit1Y emphasis on the

AI. The ancillary data in the form of crop calendars and cropping prac-

tices comes to the AI along with film products from the Landsat imagery.

In Figure l(b) an additional data product is delivered to the AI,

namely a transparency in which the flagged field center pixels are printed

and the non-flagged boundary pixels are suppressed. Using a lined over-

lay, the AI can designate the center of any group of pixels by approxi-

mate line and point. The computer then matches up the line and point with

the mean line and point of a field. These actions replace the drawing

of fields and the extraction of vertices. The flagging of field pixels

can be accomplished based on all of the passes available to that date,

i.e., field isolation can be based on multitemporal data.

In order to define fields, the computer will be calculating field

statistics anyway, so these statistics can be saved and used for train-

ing the LACIE processor, rather than recalculating statistics from the

training fields. This option is shown in Figure 1(c).

In Figure l(d), the AI is provided with an additional source of

information, namely a list of groupings of fields according to their

multitemporal/multispectral characteristics. This list supplements the

Al's own visual characterization of the entire scene and assists him in

choosing representative fields. For example, after choosing a set of

7
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Ancillary Photointerpretation Landsat

Data	 Data Products Imagery

Al Isolate Calculate
Fields and

&A Training Field
Draw Them Statistics

AI Tentative
ID of Fields

Recognition/
Proportion
Estimation

AI Calculations of
Field Characteristics

and Select-ion of
Representative Fields

AI Identification
of Training Fields

Extract Field
Vertices

FIGURE l(a).	 FUNCTION FLOW, CURRENTCAMS SYSTEM

8
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Ancillary
Data

Photointerpretation Landsat
Data Products Imagery

With Fields Map

AI Tentative Computer Isolates
ID of Fields Fields & Flags Pixels

Names Fields by
Position & Save Names

AI Calculations of
Field Characteristics

and Selection of Computer Matches
Representative Fields Training Field ID's

by Position

It

I

Al Identification
of Training Fields Calculate Training

by approximate position Field Signatures

Recognition/
Proportion
Estimation

FIGURE l(b).	 FUNCTION FLOW 14ITH PARTIAL COMPUTER
SUPPORT TO ISOLATE AND FLAG FIELD PIXELS
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Photointerpretation Ancillary
Data Products With Data
Fields Map and Landsat

Listing of Fields Imagery
by Groups

Computer Isolates
Fields & Flags Pixels

AI Checks
Names Fields by

Representativeness
Position & Saves Names

of Groups Listings
and Field Statistics

Groups Fields
According to Statistics

AI Identifies
Fields Individually Computer Matches

or in Groups Training Field ID's
by Position
or by Group

Recognition/
Proportion
Estimation
or Tallving

FIGURE 1(d) FUNCTION FLOW WITH PARTIAL COMPUTER
SUPPORT TO ISOLATE AND FLAG FIELD PIXELS,
PRECALCULATE STATISTICS, AND GROUP FIELDS

ACCORDING TO THEIR STATISTICS.
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Photointerpretation Ancillary
Data Products With Data

Fields Map Landsat

Listing of Fields
Imagery

by Group

Tentative Field
Labels

Computer Isolates
Fields & Flags Pixels

Names Fields by
Position & Saves Names

AI Verifies ID's
and Field Statistics

or Groups Fields
Modifies ID's According to Statistics

Identifies Individual
Fields & Groups of Fields

Computer Corrects
Field ID's

Proportion
Estimation
by Tallying

Flagged Pixels

FIGURE 1(e).	 FUNCTION FLOW WITH
COMPUTER SUPPORT TO IDENTIFY FIELDS
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training fields, the AI can go through the listing and determine whether
he has chosen at least one from each group. The AI could also identify
an entire group of fields as being wheat or non-wheat. 	 If all the

groups were thus identified, the proportion estimation could be accom

plished by tallying the various flagged pixels.

In Figure l(e), another new computer support function is added,

namely the (tentative or final) identification of the fields. 	 In order

to carry out this function some external information is required, and

so we show ancillary data going to both the computer and to the AI.

Actually, the tentative identification of fields is a major increa," , e in

complexity, a not surprising fact, since it is the prime function of the

AI in the LACIE system.	 In order to accomplish this function, the

computer must, at least implicitly, correct the data for external effects.

It must then classify the fields against some multitemporal/multispec-

tral model of crops, whether this model is a data bank or an analytic

model.	 It is pretty clear that crop calendar information will need to

be in the model to correct for variations in acquisition time. 	 It

appears that the spectral features chosen to enter the model might be

similar to the ones the AI uses, namely color and brightness, rather

than individual channel responses,

In the above discussion, we see two main classes of computer

support function;	 those which require no ancillary data but which

organize the sample segment for the AI in varying degree, and those

which assist the AI in identifying fields. 	 The purpose of the first

class is either to relieve the AI of some cumbersome detail to make it

possible for him to work more sample segments, or to assist him in

making certain that his field selections are representative. 	 The ulti-

mate purpose of the second class is to replace most of the AI's in the

system.	 Both of these classes of function are discussed in more detail

in later sections.

13
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4

SUPPORTING CAPABILITIES

4.1 FIELD ISOLATION A14D ANALYSIS

In the earlier Section 3 several functions were identified in a

hierarchy of possible assistance to the AI. These included the !so-

lation of fields, the flagging of field center pixels so that they are

associated together and the labeling of field groups of pixels so that

the AI can point to them in some way; these are all field isolation

steps. Additional steps are the calculation of the signatures of the

groups of pixels associated into fields, the collection of fields into

spectrally similar groups and the selection of representative fields

from those groups.

Several different methods of field isolation were tried and have

been mentioned in previous quarterly reports. These are the method 	 J

of boundary elimination by gradients, the method of boundary elimina-

tion by nine-point rule (Bayes 9 in this case) and the method of field

building by "line and point clustering" or "spectral-spatial clustering

In all cases these methods were considered because their implementation

involved modest changes to existing computer programs. In addition,

some consideration has been given to the field building algorithm of

Gupta and Wintz	 but we have not tried it out, primarily because it.

would have to be programmed from scratch for our computer systems and

we appear to have an acceptable alternate in hand.

The results of the boundary elimination by nine-point rules appear

qualitatively to be inferior to the results from spectral-spatial clus-

tering or gradient. Of these latter two, spectral-spatial clustering has

the advantage that it automatically incorporates the calculation of the

field statistics (with certain reservations which will be explained

Technical Progress Report, 15 August 1975-14 November 1975, Task 12,
Contract NAS9-14123, Report No. 109600-41-L, December 1975.
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later) and it automatically designates the field in a way that is

potentially useful to the AI, i.e., by the location of the field

center. An additional potential advantage is that any clustering

program could be modified to do spectral-spatial clustering relatively

easily, including ISOCLASS or XLE. Therefore we will proceed to

briefly describe the spectral spatial clustering algorithm and present

typical results.

The basic idea of clustering algorithms is to group together pixels

which are spectrally similar in some sense. The idea of spectral-spatial

clustering is to group together pixels which are spectrally and

spatially similar in some sense. Normally, each pixel is represented

by a vector of spectral intensity values, i.e., Landsat MSS counts.

In spectral-spatial clustering these ve-ctors are augmented by the

addition of two more components, one for the line number and one for

the point number within the line.

The clustering algorithm normally includes or rejects

individual pixels from within the clusters based on the probability

distribution of the points already included in the cluster. The

sample distribution is assumed to be normal with the mean and

covariance being the sample mean and the sample covariance of the

points already in the cluster. The addition of line and point

channels causes each cluster to be localized, to have a mean line

and point value and a line and point variance. At the end of the run

the cluster statistics are printed. These include the means of line

and point which serve well as indicators of the position of the cluster.

In order to avoid a confusion in terms we have followed the

example of Gupta and Wintz and have adopted the name "blob" for line

and point clusters. This is to distinguish between computer output

groups of pixels and true fields, or fields designated by the AI's.

In general, spectral-spatial clustering will break "large',' fields into

more than one blob.

15
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Some additional features of the spectral-spatial clustering
program are:

a^ Provision is made to place a relative weight on the
importance of the spectral channels versus the line and point channels.
For multitemporal data the weights are adjusted to place less relative
importance on the spectral channels.

b. The raw line and point coordinates are rotated before
clustering to produce coordinates which are lined up with a normal
map grid. In order to use the means to locate points in IACIE sample
segments they must be rotated back again.

The reason the rotation is appropriate is that in order to
save time the clustering algorithm uses only line and point variance
rather than covariance. The overall effect without the rotation would
be that the algorithm would be biased toward producing blobs which are
ellipsoidal-shaped but not lined up with the North-South world map.
After rotation, the algorithm is biased towards producing blobs which
are lined up with a North-South map.

c, A recent modification is that in addition to being rotated,
2	 x4 + Y4the line and point coordinates use the criteria C

C2 = X2 + y2rather than	 The effect of this criterion, in the
absence of competition from other blobs, is to create a super-ellipsoid
shaped blob, which seems to be more field like. In practice neither
the rotation nor the super-ellipsoid criterion seem to affect the
shape of blobs very much. Instead, blobs crowd together to fill out

into corners and the actual shape seems to be determined by competition
between neighboring blobs.

d. As mentioned, blobs tend to crowd together to completely
fill the sample segment. However, one purpose of this entire exercise
is to identify field center pixels. Therefore, the pixels on the
boundary between blobs are flagged as boundary pixels. The remaining
pixels in each blob constitute "stripped blobs". The stripping of
blobs does not significantly alter their mean line and point coordinates.

16
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Figures 2(a), (b), (c), and (d) show portions of LACIE sample seg-

ments , which have been subjected to multitemporal spectral-spatial clus-

tering. Figure 2(a) shows the Morton Intensive Test Site (ITS). The

four dates used are:

23 October 1973

9 May 1974

27 May 1974

14 June 1974.

-truth field lines (and field numbers),In Figure 2(a), the ground

and an encompassing rectangle are overlaid on the blob presentation.

The field center pixels are left blank while the stripped pixels are

shown as asterisks. Some fields are missing entirely, since they were

formed into small enough blobs that they were stripped entirely away by

the stripping operation. This is no particular drawback since such small

or ragged fields aren't likely to make very good candidates for training

fields anyway.

A visual survey of Figure 2(a) supports the following statements;

a. Most 160 acre fields provide a potential training field (field

10 and most of its neighbors are 160 acre fields).

b. A majority of 80 acre fields provide a potential training field

(field 32 and some of its neighbors are 80 acre fields).

c. A substantial minority of 40 acre fields provide a potential

training field.

Note that one line of the data is a bad line, i.e., a line filled

with noisy points in one or more channels. Spectrally each point is

likely to be extremely different from its neighbors; hence, the line

tends to produce a large number of very small blobs confined to the,line.

The process of stripping then removes the bad line, and the one above

and the one below. The line in question is line.248 which passes througIn

the circular field number 144, at the left edge of the figure.

Some large fields are converted into two blobs and so would be used

as two separate training fields having the same ID. This effect is

17
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noticeable in the fields which are large in East-West extent, Num-

bers 049, 051, and 073.	 Other large fields did not get split up, not-

ably North-South oriented ones such as Number 126, the composite of

009 and 025, and the composite of 010 and 026.	 The fact that the BLOB

program is a single-pass clustering program coupled with the slight

angle of the scan pattern relative to East-West running boundaries, pro-

vides a satisfactory explanation of this behavior, and it can be cor-

rected if need be.	 However, the fields which were split are 320-acre

fields and there is no point in using training fields that large anyway,

since the points will be largely redundant.

In several cases throughout the scene blobs run across field

boundaries.	 We have identified eleven such cases and the field pairs

and their ground truth ID's are listed below in Table 2. 	 In 10 out

of 13 cases the ID's match.	 (400, 402 and 404 are all wheat varieties.)

In two of the cases the infringement of the blob across field boundaries

amounts to only a few pixels, but is still significant. 	 One case (013

versus 030) is completely unexplained.

Figures 2(b)-2(d) are blob maps for other segments. 	 In these maps

the blobs themselves are shown as asterisks.

Thus, we have here the basis for a computer AI-interaction such

as was shown above in Figure l(b). The AI can identify the blob by

its number and associate a crop type label with it. 	 The computer can

then use all the pixels flagged with that blob number for training,

Alternatively, the Al can indicate the approximate line-and-point

number of any particular blob and label it as to crop type.	 Then a

com^uter program can be written to find the blob number whose mean is

closest to that approximate line and point number.

A supplementary program has been written to cluster the blob spec-

tral means and produce.a listing of the groups of blobs.	 Within a group

they are organized by the number of pixels in a stripped blob, the larg-

est being last.	 The AI can examine this list to see whether, according

to the computer, he has included representatives of all the spectrally

distrinct fields in the scene.	 This input would allow the implementa-

tion of Figure 1(c), discussed earlier in Section 3.

22
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TABLE 2.	 EXAMPLES OF BLOBS OVERLAPPING
BOUNDARIES BETWEEN PAIRS OF FIELDS

Field Name	 Field ID

002	 700
019	 700

009	 402
025	 404

010	 700
026	 700

013	 400
030	 700

039	 404
040	 400

074	 700
075	 700

073	 700
093	 400

093	 400
094	 404

094	 404
118

118	 700
116	 700

148	 500
149	 500

173	 700
193	 700

135	 400
186	 400
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Table 3 shows the groupings of blobs for the Morton ITS. The

number of groups, hereafter called Blob clusters or B clusters, was

limited to a maximum of 30 which was thought to be in line with the

number of possible spectral classes in a scene.

Under each B cluster are shown the blob numbers associated with

that cluster, the number of blob center pixels (unstripped pixels) in

each blob and, where the number of unstripped pixels was greater than

zero, the line and point means for the blob. Blobs are ranked from

smallest to largest. The number of blobs in a B cluster varies. B

clusters 1 and 2 contain 52 and 132 blobs respectively. B clusters

27 through 30 contain I blob each. The number of unstripped pixels

in a blob varies from 0 to 235.

Simulating our proposed AI methodology, we took the ground informa-

tion, our multitemporal spectral-spatial cluster map, and the B cluster

table relevant to Morton and identified B clusters 4 and 10 as all

Wheat clusters; B clusters 2, 3, 6, 7, 8, 9, and 19 as containing only

110ther l ';	 4 ambiguous B clusters, numbers 1, 5, 11, and 18, containing

a mix of Wheat and Other; and the rest could not be identified from the

existing ground truth. (Appendix I contains a listing of field ID's.)

There was at least one instance when some supplementary informa-

tion was required'to explain an apparent incGnsistency in the line and

point mean of one of the blobs and the very existence of another. In

Table 3 near the end of the listing for B cluster 4 you will see blob

number 220. Its line and point means fall on a boundary between

fields 33 and 52. It was revealed that the blob sitting in field 32 was

a part of the blob sitting in field 52. The connection between them is

visible where it occupies field 31 and is lost at the intersection of

fields 31, 33, 51, and 52. Fields 31, 32, and 52 are identified as

J

	

	 wheat and.field 33 as summer fallow in the ground information for the

Morton ITS.
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TABLE 3.	 MORTON ITS BLOB GROUPINGS

6 1 9 0 C
675 0 0 C
6(30 0 C
706 (11 0
719 0 C C
716 0

This table is divided into
774
7tj 7

0
(71

C
0

C

sections by cluster (B cluster)
7.!?3
t) 2 5 1

0
283

C
352

number.	 Under each cluster you
6 t"?

67'^
1
1

2^V

2 E E
32 3 2
396.

will find four columns of numbers.
t ' j 9
174

1
2

2q2
179

311.1
4 E I

In the first column, headed by the 4 .33 2 2 16 31 1
'i 4 4 2 2 6 9 4 1 1

word BLOB, is blob number. 	 The 6^i 2 29H
6-)1 2 ?'3 47-,

second column, headed by NO PTS, 7)5 2 2,47 311
93 3 1^9 3 12

contains the number of blob center 6H2 ^A 2R9 4,12
54 3 5 26S .3 1^ L

pixels (unstripped pixels) in the 1,)o4 6 27 7 3 !^ 6
7 i, 5 2 1 ; 2 317

appropriate blob.	 The third and 118 1.1 7 2 7 7 37 7
4 5 tj 306,	 A

fourth columns contain the line 5 1,2 P 2614 3 7 1
177 11 1 e 472

and point means of blob centers 17 29 4 C 2
3 ,) , ) 22 23 2 2;

containing at least 1 pixel. 6	 FA 23 2 Q i 4 2
5 -10 1 f- 2 3 3

4 A-) 41 257 322
TCTAL	 FOR	 CLUSTER 1	 A W- E 2C6
CLUSTER NC.	 ?

PLCO	 -NO P1 S L 1 14 E POINT
2
7

31 0 0 C
CLUSTER	 NC.	 1 3 0

I' L C P.	 NO	 PIS	 L IN E	 POINT 57 0
I	 Q	 n	 C jr^ - 0

86	 11 79 0 0 C
97	 0
101	 0	 C
16b	 0	 C 12 5 0 C.
1 ^) 6	 0 0 C
?	 0	 01	 C 241 1) .1 C
2 b i	 0	 0	 1) 21t8 13 0 C
372	 (1	 0	 C 274 M 0
376	 11	 011	 C 335 1) C
3a2	 0	 0	 C 311 '0 0
4 IS	 1)	 0 359 0
4 7 2	 0	 1^
1 . 2 11	 t)	 0	 C 3-6 3 3

551	 0	 0 517 V
521 L

C L
6 6	 n	 C 2
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TABLE 3. MORTON ITS BLOB GROUPINGS (Continued)
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TABLE 3. MORTON ITS BLOB GROUPINGS (Continued)
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TABLE 3. MORTON ITS BLOB GROUPINGS (Continued)
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TABLE 3. MORTON ITS BLOB GROUPINGS (Continued)
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TABLE 3. MORTON ITS BLOB GROUPINGS (Continued)
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TABLE 3.	 MORTON ITS BLOB GROUPINGS (Continued)
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TABLE 3. MORTON ITS BLOB GROUPINGS (Concluded)
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From another point of view, if one were attempting to find the blob

number associated with field number 32, one would search the table in

vain to find a pair of line and point means which fall in field 32.

Figures 2(b),	 (c), and (d) present an assortment of blob maps in

which the blob centers are filled in and edges blanked out. 	 At the top

of each encompassing rectangle we show the site name, a code for the

dates of coverage used in generating these maps and two digits showing

the year of coverage.	 The data code is described below:

Letter Code	 Time Frame of Data Collection

A	 4 October 1973

B	 20-23 October 1973

C	 18-20 April 1974

D	 6-0 May 1974

E	 24-27 May 1974

F	 12-14 June 1974

For the Lane SRS site time periods A, C, and E were used, for

McPherson, B, C, D, and E, and for North Stevens, E, and F. 	 Clustering

was limited to Landsat Bands 5 and 6 from each utilized time period.

This was done to limit the amount of time spent in the clustering process.

A number of observations may be made upon viewing the maps:

1.	 Data sites vary considerably in the spatial texture of their

cluster patterns.	 This spatial texture is seen to be the most

orderly (blobs of goodly size, regularly distributed) in the

Lane site and the least orderly in the McPherson site. 	 Varia-

tions in orderliness within a map may also be seen.

2.	 Road patterns (as field boundaries) can be easily spotted in

the Lane and North Stevens maps.	 One might not know where to

drive looking at the McPherson map. 	 Also, more field edges are

aligned in the top of map to bottom of map direction (rather

than the typical Landsat slant direction) in.the McPherson site

than in the other two sites.
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3. Blob size is in most cases consistent with field size. If

the blobs were allowed to grow any further, the spatial

information provided by field edges could be lost.

4. Bad data lines were treated specially. This was necessary to

reduce their impact on the maps. The technique used to mark

the boundaries of fields would have made a triplet of bad lines

from each single one. Now, a single bad line shows up as a

single line of blanks in the maps.

5. Data consisting of fill bits (used to occupy the data space

beyond the edge of a Landsat frame) is flagged and shows as a

region of blanks (see the Lane map).

Going beyond observation, we then attempted, for all 4 sites,

to establish bounds on the probable wheat content for each site. Our

procedure follows:

Step 1. Using the tables of clustered blobs (B clusters) and

ground information from a site, establish the identity of as many of

the blobs as possible starting with the largest in any B cluster.

Step 2. Establish three classes of B clusters -- known and unique

(either all Wheat or all Other),known and ambiguous (some ! ,!Heat blobs

and some Other blobs) and unknown -- based on Step 1.

Step 3. Tally the total number of pixels in a site and the num-

ber of pixels in known and unique B clusters.

Step	 Establish a lower wheat bound by dividing the number of

pixels in known and unique B clusters assigned to wheat by the total

number of pixels in the site.

Step	 Establish an upper wheat bound by dividing the total

number of pixels in a scene minus the number of pixels in known and

unique B clusters assig ned to other by the total number of pixels in

a sceneb
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Step	 Compute a single point estimate of wheat for a site based

on a division of the number of pixels in known and unique clusters

assigned to wheat by the sum of those pixels and the number of pixels

in known and unique clusters assigned to "Other".

Step 7.	 Express bounds and estimates as a percentage of the scene.

This methodology assures us of achieving the lowest lower limit

and the highest upper limit for wheat because in the calculation

for the lower limit all ambiguous and unknown pixels are weighted

with the Non-Wheat category whereas in the calculation of the upper

limit those ambiguous and unknown pixels are weighted with the Wheat

category.

For Morton the site is represented by a rectangle which surrounds

the ITS and utilizes the ITS corners as its own.	 For the Lane,

McPherson and North Stevens sites statistics were computed for two

areas each:	 the first area is a near perfect fit to the outline of

the SRS site; the second is an expansion around the SRS site including

lines 41 through 157 and point numbers 1 through 196.	 This second area

represents an SRS site reprogrammed as an ITS.* Figure 3 shows the

results of the wheat estimation. 	 The crossbar on the line connecting

the lower and upper bounds for wheat percentage represents the single

point estimate from Step 6. 	 Actual percentages of wheat for the

Morton ITS and the three SRS sites are shown as asterisks.

Upper and lower bounds on the wheat estimate for Morton were

54.7% and 27.6% respectively; the single point estimate was 37.9%,

and; the actual percentage based on ground information was 40.4%. 	 As

with Morton the Lane SRS site results were in close agreement with

ground information.	 Upper bound t lower bound and single point estimates

for the Lane SRS site were 30.2%, 27.2% and 28.9g respectively (actual

This definition corresponds to the one being used by RT&E Branch to
establish expanded ground truth for these sites.
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percentage 30.7). In the remaining two sites uncertainty in the wheat
estimate increased, as indicated by the spread of the bounds of the
estimate. Lower and upper bounds for the McPherson SRS site were 8'.9%
and 83.7% and for the North Stevens SRS site 24.4% and 84.9%. These
quantitative measures seem to follow the qualitative estimates (spatial
texture in particular) presented earlier. In spite of the large sepa-
ration of the wheat estimate bounds for the McPherson and North Stevens
SRS sites their single point estimates of 35.2% and 61.8% are reasonably
close to their actual wheat percentages of 40.6 and 55.9.

In three out of four cases we underestimated the amount of wheat
at a site, coming within about 5% (in an absolute sense). In one case
we overestimated by about 6%. Figures for actual wheat in the expanded
SRS sites are not yet available. Hence, our estimates for the expanded
sites may be regarded, for now, as predictions.

In a more utilitarian vein we must ask how useful blob maps and
associated tables would be to the AIs. Granted that the AI could

nearly perform a classification on a data set (a ready means of tally-
ing pixels per cluster in a site is neededamong other things) we are.
uncertain as to whether some of the materials might be more effective
in other formats. As an example, the blob maps could be produced to
the same scale as the Product One imagery the AIs use and aid in
associating blobs on one with color patches on the other. In order to
obtain some near future feedback on these questions, samples of availa-
ble computer aids (blob maps and so on) should be provided to the AIs
for evaluation and commentary.

Future work should be concerned with improving the materials AIs
can use. Under consideration are B cluster maps which would look like
the blob maps for the three SRS sites discussed in this report except

'lied with asterisks theythat instead of the blob centers being fi
would be filled with the number of the B cluster into which the appro-

priate blob was grouped. In addition, some means should be found by
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which the AIs can tally pixels assigned to specific B clusters. AIs

should also have the capability to recluster blobs assigned to ambigu-

ous B clusters. Reducing the number of blobs assigned to ambiguous

B clusters will have the effect of reducing the difference between the

wheat upper bound and wheat lower bound as we have discussed them and

hence reduce our uncertainty about any single point estimate of wheat

proportion at a site.

4.2 FIELD IDENTIFICATION

The next step in the computer aided ID of wheat is for the

computer to, at least tentatively, suggest to the AI the field ID.

All.steps previous to this point have involved only the data within

the sample segment without reference to the world of other sample

segments. To this point the only link to the outside is the AI

himself, his experience and his training. In order for the computer

to say anything about the crop identity it must also bring in outside

information. Basically this information will be some expectation of

the characteristics of the wheat signals, i.e., a multitemporal-

multispectral signature for wheat.

Figure 4 is an expansion of Figure l(e) with emphasis on computer

functions. It shows the struture of a complete system for computer

assisted local recognition. Certain of the elements are self explana-

tory, such as the bad line, cloud and cloud shadow flagging. For others

the general intent is clear but the reader, at this point, may have no

clear idea as to where the overall concepts are coming from. In parti-

cular, the haze correction, non-linear feature extraction, and signature

model are concepts all related to each other. There is a nexus of con-

cepts and ideas which need to be explained all together before any of

them-make sense alone.

4.2.1 GENERAL DISCUSSION OF LANDSAT 'DATA STRUCTURE

We will start by talking about the gross spectral structure of

Landsat data from an agricultural region. Empirical and model ele-
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FIGURE 4. OPERATIONS REQUIRED FOR COMPUTER ASSISTED
IDENTIFICATION OF WHEAT TRAINING FIELDS
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ments are combined in a heuristic idea, the Tasselled Cap. 	 We then

examine in more detail some of the implications for processing of

Landsat data to extract information from agricultural scenes, and in

particular, to identify wheat clusters.

Figure 5(a) shows a two channel scatter diagram of Landsat

data in an agricultural scene in Fayette Co., Illinois.	 The data has

been compressed by unsu pervised spectral clustering of the data points

in all 4 Landsat MSS channels.	 The ellipses shown are the unit contour

ellipses of the normal density function describing each cluster. 	 Shown

with each ellipse is an arbitrary number followed by the percent of the

scene represented by the cluster generating the ellipse. 	 The channels

shown are CH 2 and CU 3 (Landsat Bands 5 and 6).

Notice in Figure 5(a) the definite boundary region near the

diagonal of the two channel presentation.	 All of the agricultural data

lies to the left of this boundary. 	 To the right of the boundary there

is no data.	 The region to the left shows a definite triangle like

shape, with two vertices on the diagonal and one near the CH 3 axis.

Figure 5(b) shows a similar cluster plot of CH 1 vs. CH 2.

Here, all of the data lies near a diagonal of the space again. 	 Thus,

we can infer that the triangle-shaped region of Fig. 5(a) is shown

edge-on in Fig. 5(b).	 The three-dimensional shape of the data structure

is that of a flattened triangle shape having little thickness.

Figure 5(c) shows a cluster plot of CH 3 vs. CH 4.	 Again

the data lies closely along a diagonal. 	 Viewing only Figures 5(a) and

5(c), one would conclude that, seen in the 3 space of Channels 2, 3 and

4 the three-dimensional shape of the data structure is a flattened

triangular shape. 	 One then can conclude that the data structure forms

a flattened triangular shape in 4 dimensions, and that is correct.

If one assumes that CH 1 is highly correlated to CH 2 (as it seems

to be, based on Figure 5(b))and that CH 4 is highly correlated to CH 3

(as it seems to be, based on Figure 5(c))_, then the last 3 combinations of

channels offer no particular surprises; they are in a manner of speaking

first and second cousins of Figure 5(a).	 (The fact of the high correlation
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of CH 1 with CH 2 and of CH 4 with CH 3 has sometimes stimulated the
comment that Landsat MSS is essentially a two-channel system; that no

information would be lost by throwing away CH 1 and CH 4. On the con-
trary, there is significant information of several types contained in
the 4 channels, as we shall see as this discussion develops.)

What is the physical reason for the data to lie in this flattened
triangular structure? Figure 6 shows a model calculation of the reflec-
tance of a crop canopy at two wavelengths, 0.65 nm and 0.75nm, corres-
ponding to the centers of CH 2 and CH 3. The calculations were made for
two soil samples, one dark, the other light, through the life of the crop.
Notably, the triangular shape is outlined by the two-crop life development
lines. After the crop canopy covers the soil completely, the two canopies
look identical. Figure 6 is extracted from Henderson, Thomas and Nalepka,
Reference [2]. The canopy model used was developed by G. Suits [3].
Roughly what seems to be occurring is that the crop starts its growth on
the line of soils. As it grows, the composite reflectance of soil and
crop increases the CH 3 value because of the presence of cellulose in the
plant. The composite reflectance of CH 2 decreases because the
Chlorophyll in the plants is highly absorbing. Hence, the radiance
typical of green plants is located to the left at the tip of the triangle.

Figure 6 attempts to span the range of soil conditions by the terms
"light" and "dark". Is this all there is to soils as seen in Landsat
data? Condit [4,51 has measured the spectral reflectance of soil samples

throughout the Un^ted States, and analyzed them in terms of their

principal spectral components, We have used Condit's data to calculate
the soil distribution that would be seen through the T andsat MSS spectral
filters, [1-1]. Table 4 shows the soil reflectance mean vector and prin-
cipal components in Laqdsat data. We will summarize those results in
the following discussion.
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FIGURE 6. PHENOLOGY FOR WHEAT (IONIA VARIETY)
BASED ON CANOPY MODEL [21
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TABLE 4. SUMMARY OF VARIOUS VECTORS AS SEEN BY LANDSAT

PERCENT EFFECTIVE REFLECTANCE

CK	 CH2	 CH3	 CH4

	

15.57	 21.83	 25.55	 31.14	 48.389
s

V 1	 14.22	 17.36	 18.981	 20.23	 35.681

V 2	 4.23	 .018	 - 2.03	 2.16	 5.165

V 3	- .57	 2.076	 - 1.54	 1.30	 2.949

	

- 1.35	 .166	 .581	 .1408	 1.486V4

p is the mean vector of soils
s

V, through V4 are the principal components whose amplitudes
are given as /X.

Figure 7 gives an idea of the distribution of soil reflectance pro-
Jected into the-4 dimensions spanned-by the 4 Landsat MSS Channels. That
space has a "diagonal" i.e,, a line along which the normalized reflectance
of all channels is equal. The mean reflectance of soils lies near that
diagonal, The largest principal component of soil reflectance is nearly
parallel to the diagonal. The square root of the eigenvalue associated
with the first component is about 35 units, (i,e., one standard deviation
of the data projected onto the first principal component is about 35).

The second principal component, normal to the first, has a standard devi-
ation of about 5 units,the third of about 3 units,and the fourth of about
1"1/2 units, The unit contour ellipsoid describing the distribution of
soils forms a four^dimensional flattened cigar shape, about seven times

as long as it is wide, about twice as wide as it is thick, and twice as
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thick as it is thin (which is the name for distance in the 4th direction).

Hence, for some applications, we would be justified in describing the data

from soil points as the "line of soils," ignoring all but the major com-

ponent.	 In other cases, we might speak of the "plane of soils, 	 referring

to the first and second component.

Returning now to Figure 6, we notice again that after the initial

development stages the two crop canopy trajectories join and fall back

towards the soil line.	 What cannQt be seen in this figure is that the

line of falling back is not in the same plane (in the 4 space of Landsat

data) as the two development lines up to the point where they join. The.crop

is yellowing, and yellow-colored things lie in a different direction away

from the soil line than do green-colored things,

We now have sufficient information to create the basic image of the

tasselled cap, shown in Figure 8.

The basic tasselled cap shown in Figure 8, is created by combining

soil ref lectance and green stuf f and then adding yellow stuf f . 	 We say that

the crop starts growing on the plane of soils. 	 As it grows it progresses

outward, roughly normal to the plane of soils, on a curving trajectory

towards the region of green stuff. 	 Next the trajectories fold over and

converge on the region of yellow stuff.	 Finally, the crop progresses

back to the soil from whence it came by any- of several possible

routes, depending on the crop and the harvesting practices.

Initially, we spoke of a flattened triangle. 	 Nowwe are likening the

data structure to a tasselled cap. 	 To fit both of these images the yellow

point must be quite close to the side of the cap and indeed that is true.

For wheat, the yellow is also accompanied by shadowing so that the

yellow point is found near the dark end of the plane of soils.

The "front" of the cap looks down toward the origin of all data

otherwise called THE ORIGIN, 	 On the front of the cap is the badge of.trees.

Why the reflectance of trees is located just here will be explained a little

further on,
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YELLOW STUFF

FOLD OF GREEN STUFF

BADGE OF
TREES LIGHTER

TASSELS

DARKER

PLANE OF SOILS

FIGURE 8.	 THE TASSELED CAP

49



L[LIM	 LY WILLOW RUN LABORATORIES, THE

Effects of Shadow

As the crop canopy develops away from the soil, the average reflect-

ance becomes more green, but at the same time shadows develop. Initially,

much of this shadow will appear on the soil portions of the composite

canopy. Thus the reflectance of a crop planted on bright soil will initi-

ally migrate mainly in the direction of the origin.

A crop which is planted on dark soil will not show this behavior

significantly. After all, there is little difference between the radi-

ance of dark soils and the radiance of shadowed dark soil.

Once maximum shadowing on the soil has been reached the reflectance

is more strongly influenced by the addition of green elements to the canopy.

Thus the trajectory of reflectance values sweeps away from the plane of

soils. Initially many of the green elements that are added are shadowed

green elements. Hence, the total reflectance remains low until most of the

ground is covered.

In the next stage the canopy looses most of its shadows, reaching a

state of full green development. Whether a crop actually reaches this stage

depends upon the planting density and upon the way its leaves form together

to make a canop.y.

This curving trajectory has been documented by F. Johnson [6] in

Fayette County corn field data, and also has been shown in the results of

a detailed modeling exercise conducted in other efforts under this

contract	 Interestingly, Johnson has found that corn planted in17,81.
East-West rows does not show this behavior significantly, whilst corn

planted in North-South rows does show a very strong shadow effect. The

reason is.clear. At the time of the Landsat overpass, the Sun's rays are

coming mainly from'the east. Sunlight falls down the East-West rows and

shadows fall on the sides of other corn plants rather than in the open

.rows.
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Now we can see why trees occupy the place they do in reflectance

space.	 Trees are green canopies structured so as to create a good deal

of shadow.

A Fixed-Linear Transformation

It is difficult to look at Landsat data and see all of the features

so far described.	 After all, this is a 4-dimensional space we are looking

at, and it is hard to be sure we are seeing everything.	 Therefore, we have

developed some transformations of the data which assist us to see it better.*

The only one of these we will discuss at this point is a fixed affine trans-

formation,
T

u	 R x + r

where

x	 is the LANDSAT MSS signal vector expressed in counts

u	 is the transformed vector, also expressed in counts

r	 is an offset vector, introduced to avoid negative values in

the transfbrmed data

R	 is a unitary matrix, i.e., the columns of R are unit vectors R1,

RZ , R 3 and R4, which are all orthogonal to each other.	 Superscript

T indicates the trans-.,)ose.	 Thus the application of the transforma -

tion to the data x results in a pure rotation plus a pure transla-

tion.

The components of R are chosen in the following way:

R1	 is chosen to point along the major axis o f soils in the

Landsat data.	 A particular sample of Landsat data was chosen

to derive R1 , namely Fayette County, Illinois, June 1973.

Visual inspection of Figure 5 (a) was used to pick out 12 soil

line clusters.	 The best fit line to the means of those 12 clus-

ters was chosen as the direction of R 1 .	 R, is called the soil

The transformations we have devloped have depended in part on the work
of F.	 Johnson.(61
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brightness unit vector. The projection of a data point onto

R, is a feature called brightness.

R2 is chosen to point orthogonal to R, and toward a green cluster

in the same data set. Visual inspection of Figure 5(a) was used

to identify the cluster. R2 was generated using the Gram-

Schmidt orthogonalization procedure. R2 is the gn%ten stuff

unit vector. The projection of a data point onto R2 is a

feature called "green stuff."

R3 is chosen orthogonal to both R, and R 2 , and points toward a

yellow-stuff point. There was no yellow stuff in the Fayette

segment, hence an approximate spectrum of yellow corn was

used to simulate or predict the yellow point in the Fayette

data. Again the Gram-Schmidt procedure was used to derive

the yellow-stuff unit vector.

R4 is chosen orthogonal to R 1 , R2 and R3 . The projection of a

data point onto R4 is a feature called "non-such."

The values of R 1 , R2 , R 3 and R4 are, to the third decimal place,

.433	 -.290

R,	
.632	

R2	
-.562

.586	 .600

.264)	 .491)

:,82 
9	

.22301
22	 2

R 3	R4.039	 -.543
.194 .810)

The offset vector is arbitrary. All components equal to 32 seems to

work well.

The fixed-linear transformation has several potential uses.

a. Simply by projecting the clustered data in terms of the features
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of Eq. (1) we can see the data structure easily. We can also

examine it to determine to what extent it actually behaves

according to our imaginary picture.

b. Potentially, there is significantly less information in some of

the transformed channels than in others, whereas each of the

original channels is about equally information carrying. Thus,

one might be able to ignore certain of the tranformed channels

and this could lead to cost reduction in processing.

C. The transformation of the data allows certain diagnostic features

to be extracted which are symptomatic of external effects, such

as haze, H 0 vapor, illumination angle, and viewing angle.
2

In order to picture the data resulting from Lhe fixed-linear trans-

formation we show Figure 9(a) through (d), which are cluster plots of the

data presented in the pairs of transformed channels. The data shown is

from the Ellis County, Kansas ITS, dated 13 June 1973. Much of the scene

is bare soil. (Recall that the transformation was developed on Illinois

data.) Notice that transformed channel 1 (TCH 1), which is soil bright-

nness, and TCH 2, green stuff, contain almost all of the variation withi

the sample segment.

Figure 9(a) shows these two channels plotted against each other. The

w rotated to the right so that thebasic triangular shape is easily noted, no

soil line is parallel with the soil brightness axis. One noticeable effect

of the transformation is to increase the apparent size of the tasselled

cap, even though there was not any scale factor built in to the transforma-

tion. The reason is that in the transformed data we are seeing the tas-
4

selled cap directly from the side.

Figure 9(b) shows the yellow feature plotted versus the green feature.

N otice that the data is greatly compressed in the yellow direction.
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Figure 9(c) shows non-such versus soil brightness. There is evi-

dently no structure at all in the non-such direction. Figure 9(d) shows

non-such versus yellow stuff. One could easily belive that these cban-

nels together carry only a tiny fractiori of the information available

in Landsat data. However, yellow stuff does show definite spatial struc-

ture at some times, as we will see later.

A second method of presentation of transformed data is by viewing

transformed imagery. Figure 10 shows green stuff images of a LACIE

sample segment in Kansas during 4 successive plant development stages.

The region at the top and bottom of the segment contains numerous winter

wheat fields. The region at Lhe center is rangeland. Figure 11 is the

soil brightness image of the same data. Figure 12(b) shows non-such in

the 4th biophase and is reasonably typical of non-such and yellow stuff

in all of the biophases, i.e., mainly noise with almost no discernible

structure. Figure 12(a) is yellow stuff in the 4th biophase. Although

the dynamic range.of the data is only about 10 counts, which is compara-

ble to Figure 12(b), the strong spatial structure is evident.

Returning to Figure 10(a), we note the rangeland is somewhat green,

but the fields are not green at all. The roads show up., if at all, as

slightly green, due to the grass on the roadside. In Figure 10(b), the

2nd biophase, the fields show up strongly green, while the rangeland is

still only somewhat green. In Figure 10(c), the 3rd biophase, both range-

land and winter wheat are green; one can imagine that the rangeland had

caught up with the wheat. Finally, in Figure 10(d), the 4th biophase,

the wheat is again not green. These trends are substantially what one

would expect.

Returning to Figure 11(a), we see the soil brightness during the

first biophase. One striking effect is the way the roads stand out in this

image. Notice that the wheat fields are generally, but not entirely, dark.
A

Q. Holmes, NASA/JSC, transformed the data used in this and the next
example, and created the imagery we have used in Figures 10 through 12.
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Basically these are bare soil fields and we could expect some to be light

and some dark.

In Figure 11(b), the wheat fields are dark; we interpret this to mean

that the fields have developed shadow in them in the process of growing.

The rangeland is substantially unchanged between biophases 1 and 2, in the

soil brightness feature. The roads are still bright.

In Figure 11(c), the 3rd biophase, the wheat fields have brightened

up, as has the rangeland. There is little contrast between the two.

In Figure 11(d), the 4th biophase, some of the wheat fields are

bright, others are not. We interpret this to mean that some are harvested

(no shadows) and others are not harvested. Notice that all of the areas

that appear to be wheat are yellow in the 4th biophase, but only some are

bright (see Figure 12(a)). In the 4th biophase the rangeland is again

moderately bright. The roads stand out by bright contrast.

Earlier, we commented that there was more than two cbannels' worth

of information contained in Landsat data. Here we have shown an example.

The green feature, the yellow featute and the brightness feature are

three independent measurements. They could not all be measured and repre-

sented by a two-channel Landsat.

A third method of viewing transformed data is by looking at tables of

cluster statistics or training statistics. This approach is utilized in

the discussion in the following section.

The Problem of Correction for External Effects

We have discussed the Tasselled Cap as a way of integrating the

spectral reflectance structure of a Landsat MSS agricultural scene. The

reflectance has, for some specified conditions of observation, a corres-

ponding radiance and a corresponding representation in Landsat counts.

As the conditions of observation change, however, the relationship between

reflectance and Landsat counts changes. By observation conditions we

m an such items as the viewing and illumination geometry, the amount ofe

haze in the atmosphere, the amount of H20 vapor, the amount of cirrus

62



L

L

'L[RIM
FORMERLY WILLOW RUN LABORATORIES. THE UNIVER51TY OF MICHIGAN

cloud and the height distribution of these in the atmosphere; also the

average ground albedo in the neighborhood of the particular observed

points.

Some combination of these effects is without doubt extremely signifi-

cant to the problem of identifying field types in Landsat data. The very

fact that the data within a local area is confined to an extremely flat-

tened structure within the Landsat signal space makes it easier in a certain

sense to make errors in classification. Figure 13 shows a hypothetical

two-channel example in which some external effect can shift the entire

set of data points sideways. Two crops, W and V, occupy a narrow region

of the space, and are easily separable in that region. Assume that we

train a classifier on the data from one sample segment, obtaining the

signatures W and V. Then, assume that the conditions change and the entire

region shifts to the position represented by W' and V. Classification

errors will now occur, but more than that, the region occupied by the ori-

ginal set of data points will not even include the new set of shifted data

points.	 Figure 13 represents in an exaggerated way what really occurs

due to the addition of haze to the atmosphere over a scene. The equiva-

lent occurrence in the four-dimensional case of Landsat data would con-

sa.st of a shift of the entire tasselled cap in the yellow stuff or non-

such direction. Such shifts, ranging up to several standard deviations

of the yellow stuff channel have been observed in randomly selected LAGIE

sample segments in Kansas (where standard deviation refers to the thick-

ness of the entire tasselled cap in the yellow stuff direction).

Table 5 is a list of means and standard deviations in the yellow stuff

channel and the non-such channel from several LACIE sample segments ran-

domly selected from Kansas. These are calculated by combining clusters

of both wheat and non-wheat fields. The cluster means were averaged to

form, p, a grand mean in each transformed channel and the between cluster

variance component was added to the average cluster variance to obtain

2-
a	 In calculating the statistics, certain clusters were identified as
TOT'
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TABLE 5. SOME EXAMPLES OF YELLOW AND NON-SUCH VARIATION FROM
SITE TO SITE AND TIME TO TIME

Yellow-Stuff Non-Such

Site Time a
TOT

................
11 UTOT

1163 1* 22.12 2.08 33.41 1.05
2 24.87 1.33 29.71 1.48
3 24.04 1.61 28.46 2.08
4 18.46 1.74 29.10 1.43

1172 1 26.12 1.21 33.23 1.06
2 26.24 2.01 28.69 1.33
3 24.61 1.74 28.49 1.59
4 28.19 2.25 27.93 1.71

1854 1 24.68 1.42 33.50 1.19
2 23.42 1.79 29.95 1.36
3 25.84 1.38 30.59 1.48
4 24.77 1.60 28.80 1.29

1875 1* 24.37 1.41 33.18 1.01
2 24.51 1.51 29.07 1.62
3* 20.39 2.39 29.25 1.44
4 26.04 2.15 27.54 2.07	 J

1865 1 25.84 1.41 33.10 1.72
2 23.47 1.84 29.57 1.57
3 26.47 2.32 27.50 1.60
4 25.96 2.29 27.10 1.53

Denotes clouds were detected and the cloud clusters were omittedthat
from the calculations.
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clouds in certain passes and these were deleted from the average. The cloud
clusters were detected on the basis of an algorithm developed for the PRO-
CAMS effort [91 which takes advantage of a cloud's high reflectance in the
bright stuff feature space and low reflectance in the yellow stuff feature

space. Clouds (which may be likened to dense haze) are the darkest objects
in the yellow stuff dimension. The densest clouds have a value of about
zero on the yellow stuff scale. Light clouds, just discernable in imagery,
have yellow stuff values in the range of 9 to 15. One particular image,

sample segment 1875, pass number 3, has a gradual change from no discern^
ible cloud at the South edge to fairly dense cloud at the North edge.
The clusters deleted were all from the Northern half. Still,there is a
reduced mean value (20.39) and an increased variance for that entry in
the table.

We cannot discern any site-to-site or time-to-time pattern (hence,
site or time dependency) in the mean values of yellow stuff. The overall
standard deviation of the mean values is 2.1, whereas the average within-
site standard deviation is also in the neighborhood of 2.0. Thus, there
appears to be a reasonable prospect of using this feature, uncorrected,
to estimate the amount or level of haze at a site. A joint use of this
feature with other features for haze correction is being developed and is
reported [10].

Considering non-such, the only pattern we can observe in the table
is that the first pass at each site is systematically higher than the aver-
age by several counts. The sun elevation angle for these passes is about
45', whereas for all,others it is about 60 0 . Coincidently, all of the
first passes are Landsat-1 data, while all others are Landsat-2 data.

Theoretically, the non-such channel is dominated by the difference be-
tween channels 3 and 4, and ought to be influenced by the amount of water
vapor present in the atmosphere, but we have no empirical evidence of that
as yet.

Figure 13 also shows a shift in the brightness direction. In the
real case, a negative shift in the yellow-stuff direction due to haze is
also accompanied by a positive shift in brightness aad a negative shift
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in greenness, as well as a general contraction in scale (i.e., loss of

contrast).	 The interactions are complicated and outside the scope of this

report.	 The key point is that the yellow shif t and the non-such seem to be

diagnostic of a physical state of the atmosphere.	 We are attempting to

exploit these diagnostic features for purposes of correcting the data

for the effects of haze and viewing angle under another task of this

contract, namely, signature extension. [9,10]

Imagine that a cloud represents an extreme case of haze.	 Then to

recapitulate, a cloud would appear extremely shifted in both the negative

yellow stuff	 and the positive brightness direction.	 We are continuing

to experiment with a cloud deL^ ,.ctor based on this idea, i.e., if the quan-

tity u l_u 3 passes a certain threshold (145 works well as long as ali com-

ponents of the offset vector, r; are the same), a pixel is labeled cloud

(u	 and u	 are the brightness and yellow stuff components of the vector u1	 3
shown in Eq.	 (1).)

Point of All Shadow

AI's do not perceive the amplitude in each Landsat signal channel.
Instead, they perceive preprocessed features of color and brightness.	 By A

selectively ignoring brightness they are able to concentrate on the aspect

of wheat growth stage. 	 They, thus,can ignore such confusing items as soil

brightness and residual shadowing effects of view aqgle and illumination

angle.	 It would seem wise to carry out the same kind of transformation

on Landsat datag and express the Landsat signal in terms of "brightness",
green	 and "yellow" developme nts, and "non-such" for purposes of develop-

ing a computer signature for wheat. 	 (This is a nonlinear correction as
opposed to the linear transformation described above.)

In principle, there exists a point, located somewhere back of the ori-

gin, called the point of all shadow.	 As we change viewing angle and illu-
mination angle, the amount of shadow which .can be seen in the canopy var-
ies.	 The reflectance of the canopy therefore changes, becoming lighter
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or darker. However, the changes are not merely towards or away from the

origin, as they would be if only a change in illumination level were in-

volved; there is also a color shift, since the radiation reflected from

within theshadow region is more strongly colored than that reflected from

the unshadowed region.

By making a shift of coordinates to the point of all shadow, the data

can be treated as though the changes in illumination and viewing angles

did not induce any color shift, but only a brightness change.

The key idea about the point of all shadow is that all points lying

on any radius from this point are at the same stage of crop development.

This is no doubt not perfectly true — it is in fact only an idea. But a

slightly simpler version of this same idea forms the basis for the red

to infrared ratio (i.e., CH 3 divided by CH 2) as a measure of green

biomass.[81

To be specific, we propose to use a transformation of the form

T
v Q

	

	 + r	 (2)
s

where

x	 is the Landsat signal-vector after haze correction

is the point of all shadow

s	 is a brightness feature measured in the direction of soil bright-
ness variation,

4 T

	

e.g.,	 R (x	 s

T
Q is a dimension-reducing matrix such that

green-color feature
V

	(VV21)	
yellow-color feature)
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Thus, three features would be retained for processing, -- s and the

two components of v.

In order to use this idea we have to pick a point of all shadow to

work with. Several comments are in order.

a. The point of all shadow should be chosen on the extended live

of soils, even if that is not truly on the reflectance diagonal.

In this way, natural soil brightness variations will be lumped

together with shadow variation.

b. We can pick a working shadow point and use it. If we have some

success, then systematic efforts should be made to establish its

position more accuractely.

C. The point of all shadow will be modified by atmosphere (haze)

effects in the same way that any other point in the reflectance

space will be. Any transformed features which utilize the point

of all shadow as an origin will be dependent upon the haze level.

Therefore, it will be necessary to carry out a correction for

haze in order to properly exploit the color feature representa-

tion.

4.2.2 THE ESTABLISHMENT OF SIGNATURES

In order for thecomputer,to make the step of suggesting field ident-

ifications to the AI, the computer must have a spectral-temporal model

for field types available to it. A number of methods are available for

creating such a model.

a. Baseline LACIE Signature Extension Approach

In this approach signatures from one or a few sample segments

are applied to the segment being worked, after an appropriate

correction for external effects such as haze or,viewing angle

has been made.

The main difficulty with this approach is that the sampling vari-

ance of sample segments is large. This is demonstrated in Fig-

14 which shows a collection of cluster plots from sample

segments in Kansas. (In these figures Landsat MSS CH2 and CH3
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are shown reversed from Figure 4, so that the green devel-

opment region is on the lower right of the graphs).

All of these passes were nominally the same biophase but are

not necessarily in the same partition with respect to details

of available moisture, temperature history, etc.

4 Attempting to extend signatures from any one sample segment to

any other is equivalent to training AI's on one sample segment

only. However, the training from one sample segment which con-

tains a wide variety of crop types might be used for a "starter"

model.

b. A second possible approach to building up a computer signature

for wheat is to use an analytical model for the wheat spectral

signature as a function of crop calendar. The model results

should be checked against ground measurements and available

Landsat measurements. A simulation of wheat signatures has

been exercised and is reported under another task on this

contract.[71

c. A third approach, suggested by X. Trichel of NASA/JSC,involves

the 3- and 4-pass combinations from the 1975 LACIE data base.

Each pass would be labeled with one of 16 mini-biowitidows,

based on the crop calendar for the site, and each set of four

passes over a site would be regarded as a 16 component (i.e.,

4 passes x 4 channels) partial sample of a 64 component (i.e.,

16 passes x 4 channels) qector. Data from the labeled wheat

fields (from AI interpretations) would be used to estimate a

16-pass wheat signature, following the research results of

T. Boullion.[161

d. A fourth approach would be to use the delta classifier [121 to

classify the blob means. (If this were employed, the haze cor-

rection and the nonlinear correction shown in Figure 3 would

not be used.)
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It	 Ls important to note that 	 the system configuration shown	
in Fig-

tire l(e) can be a viable one even when the quality of the computer's iden-

tification is rather poor.	 The AT has opportunity to disagree with the

computer designation.	 The computer has opportunity to learn from these

disagreements.	 Once the system is set up and operating in a local pro-

portion estimation mode, and the AT resources required are being reduced

by the computer assistance in organizing the data in the sample segment,

then formal provision can be made for the learning process to occur again

using results of on-going research in the SR&T community, 	 As the com-

puter becomes more expert at identifying blobs and clusters, the 
AT 

re-

sources required are further reduced.

Whatever the formal learning process might be, it will be required

to provide the computer with the same information that the 
AT 

has access

to.

Al
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5

CONCLUSIONS AND RECOMMENDATIONS

The net result of this work to date has been the creation of a

conceptual man-machine system framework for a large scale agricultural

remote sensing system and the generation of some specific elements of

that system. The system is based on and can grow out of the local re-

cognition mode of LACIE, through a gradual transition wherein computer

support functions supplment and replace AI functions.

Local proportion estimation functions are broken into two broad

classes: organization of the data within the sample segment using spec-

tral and spatial l information within the sample segment; and identifica-

tion of the fields or groups of fields in the sample segment. A set of

computer programs have been implemented which assist the AI in organiz-

ing the sample segment, accept the AI's identification of fields, and

tally the resulting classifications to produce a proportion estimate.

The central computer programs which accomplish these results are modifi-

cations of existing ERIM programs. Thus, spectral-spatial clustering

is accomplished by modifying an existing clustering algorithm to accept

line and point numbers as channels. Blob clustering is accomplished by

modifying the same program to accept and cluster the means of blob rather

than pixel values. Another existing program was used to strip the boun-

dary pixels from blobs. A special program had to be written to organ-

ize the blob tables. An existing program was used to tally the area of

wheat inside of a sample segment, given the blob or cluster identifica-

tions.

A few examples of the exercise of this function have been produced,

andawait critical evaluation.

The structure of Landsat data has been explored with the objective

a conceptual basis for computer identification of crops.

A heuristic view of the spectral-temporal structure of Landsat data is

described in the Tasselled Cap. This heuristic idea is used to describe
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a system incorporating several interlinked steps, — cloud removal, haze

correction, nonlinear feature extraction and classification according

to a signature model, — in support of local field identification by AI

and by computer. Possible methods of obtaining a signature model for

wheat are outlined.

With respect to the first broad function, sample segment organiza-

tion and proportion estimation, there are numerous possible variations

on the theme. We have implemented one of them and it is well enough

defined to be implemented elsewhere as a research tool. The most immedi-

ate need is to allow working AI's to obtain some experience with this

tool. This might be accomplished by modifying existing utility programs

at Johnson Space Center and writing others to accomplish these functions.

To be implemented for formal test and evaluation for possible inclusion

in LACIE, the approach would 'have to be specified at a greater level of

detail than given in this report. However, the specfication would not

require an inordinate additional effort.

With respect to the second broad function, field identification,

many degrees of implementation are possible. All demand some measure

of correction for external effects and this is in the process of being

implemented. The implementation of a starter signature model which,can

be used to tentatively identify blobs is a short next step. However,

the institution of an AI-computer interactive loop in which the signa-

ture.is gradually improved due to the recorded corrections from the Al

is a longer lead time function. We recommend that research on this topic

be undertaken in the SR&T program soon, The analysis should include

ancillary data available both to AI and to the computer, especially

parameters relating to crop calendar, as part of the definition of s:igna-

ture.

A
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Field No. ID Field No.	 ID Field No. ID

37 408 82 607 123 500
39 404 83 616 124 500
40 400 85 700 125 500
41 402 86 700 126 402

42 700 87 402 127 700
43 400 88 607 128 700
44 400 89 408 129 402
46 400 91 408 130 607
47 700 93 404 131 402

48 616 94 404 1.34 408
49 408 97 606 135 607
51 500 98 700 137 700
52 400 99 408 139 402

53 500 102 700 140 700
54 400 103 616 141 700
55 407 106 616, 144 400

56 404 106 607 147 402

-58 700 108 402 148 500
59 500 110 402 149 500
60 616 ill 607 150 409

61 113 409 151 607
62 616 114 700 152 408

63 402 115 402 153 402

64 ^700 116 700 154 607
66 402 117 402 155 408

73 700 118 700 158 616
74 700 607 159 700
75 700 120 616 160 700
76 700 607 700
77 404 122 700 163 700

This is the way it is shown in our ground information.
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Field No. ID Field No	 ID

164 500 209 616 1

166 700 210 700

167 400, 211 600

168 607 214 602

169 607 215 602

170 607 217 500

171 402

173 700

174 607

175 700

176 700

177 400

179 607

180 607

182 * 700

185 400

186 400

187 400

188 607

189 607

192 607

193 607

194 700

196 402

198 402

200 400

201 607

206 607

207 700

208 616
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