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FOREWORD

This report describes the work performed by Business and Technological

Systems, Inc. under the first phase of Contract No. NAS 1-13764 with the NASA/

Langley Research Center. The report describes the development of various levels of

mathematical models required for the application of formal estimation theory

techniques to the problem of urban air quality estimation for elevated point

sources. '
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SUMMARY

Major research results in the contract year have included: (A) The

fluctuating plume model of Gifford (1959) has been extended by inclusion of an

effective stack height, application of a surface reflection condition at the

ground and including influences of a mixing layer to provide an expression for the

instantaneous concentration X due to an elevated point source (e.g. a smoke stack).

This model has the important property that the formal calculation of its statisti-

cal expected value is identified with the expression for the mean plume concentra-

tion X based on the Gaussian point source plume model given by Turner (1970). The ,

Turner model is a major component of many operational steady-state diffusion

models. (B) Formal mathematical relationships between the basic parameters of the

fluctuating and steady-state plume models have also been formulated, providing a

theoretical basis for relating instantaneous and time-averaged plume measurements.

(C) In order to employ measurements with the fluctuating plume model in a estima-

tion procedure, similar to that given by Smith, Young and Green (1974a,b) for the

steady-state plume model, individual models for each of the parameters appearing

in both plume equations and models of the various measurement types have been

developed. The models include the stochastic properties of the instantaneous

fluctuating plume. The model development provides a basis for the systematic

incorporation of a priori dispersion knowledge and associated uncertainties with

different measurement types using estimation theory techniques to provide air

quality estimates on self-consistent time scales. (D) Measurement and sensitivity

models have been developed for measurement types having radically different time

and space averaging. Measurement types include fast response spatially integrated

values and fast response and time-averaged point measurements. The measurement

model development includes the categories of fast response remote based types from

satellite and aircraft platforms, time-averaged or instantaneous ground based •in

situ types, instantaneous in situ measurements from airborne or other mobile

platforms, etc. The formalism for dealing with measurement types which include

both time and space averaging (i.e. slow response spatially integrated measurements)

has also been outlined.
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LIST OF SYMBOLS

SYMBOL DESCRIPTION

a Exponent in the relation for the crosswind standard deviation

0 as a function of averaging time 6T.
o

An Area of the circular footprint in the remote measurement model.

C Wavelength to amplitude ratio for fluctuations of the instan-

taneous plume.

D Average instantaneous plume width.

D, Diameter of the footprint in the remote measurement model.

D or D (x,t) Crosswind displacement, relative to the mean wind axis (average

plume line), of the instantaneous plume centerline (or mass

center of the instantaneous puff, as the case may be).

D or D (x,t) Vertical displacement, relative to the mean wind axis of the
z z

instantaneous plume centerline (or mass center of the instan-

taneous puff, as the case may be).

D or D (x,t) D and/or D , as the case may be.
n n y z

2 2D or D (x) Variance in the crosswind direction of the frequency distri-

bution of the fluctuating plume centerline displacement from

the mean plume axis, i.e. variance of the frequency distri-

bution for D .y

~2 ~~2
D or D (x) Variance in the vertical direction of the frequency distri-
2 «

bution of the fluctuating plume centerline displacement from

the mean plume axis, i.e. the variance of the frequency dis-

tribution for D .
z

2 2 2 2
D or D (x) D and/or D , as the case may be.n n y z



LIST OF SYMBOLS (Cont.)

SYMBOL DESCRIPTION
~~2 ~~2
D n Coefficient in the D (x) equation, corresponding to the value
y« 2 y

of D (x) at x equal to one meter.

~~2 ~~2 "
D n Coefficient in the D (x) equation, corresponding to the value
Z\J f\ Z

of D (x) at x equal to one meter (in the absence of mixing
Z

layer effects).

~~2 ~~2
D Limiting value of D (x).yw y

~~2 ~2D Limiting value of D (x), in the absence of mixing layer effects.
z°° z

~~2 ~~2
D r Limiting value of D (x) in the presence of mixing layer effects.
ZLi . Z

e Base of natural logarithms (=2.71828...)•

E{*} Expected value or mean operator.

'•{-} ?

/

_r2
e d£

0

exp{'} Exponential operator, i.e. exp{-} = e

f(i) Material distribution function.

f or f (x) Amplitude function in the D (x,t) relation, set equal to the

standard_deviation of the frequency distribution for D , i.e.

0

/ 9
f = V D .y y

f or f (x) Amplitude function in the D (x,t) relation, set equal to the
z z z

standard_deviation of the frequency distribution for D , i.e.
/ 2 z

f = N/D .
z z

f or f (x) f and/or f , as the case may be.
n n y z
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LIST OF SYMBOLS (Cont.)

SYMBOL DESCRIPTION

f (») Limiting value of f .n n

f (y) Frequency function (probability density) for D .

y y

f (z) Frequency function for D .
Dz Z

f (n) fn (y) and/or f (z), as the case may be.
n y z

f ,,. Frequency function for D /f .
n n

f Probability density function for j .

%
f^ Probability density function for y, •

_L • Z
z

f Probability density function for y9 •
Y2 yy
f Probability density function for y .
Y2 z
z

f f and/or f . as the case may be.
V V VYl Yl Yln y z

f f and/or f , as the case may be.
Y2 Y2 Y2
n y z

g (x,t) Wavelength function in the D (x,t) model,
n TI

g (D ) The frequency function for D , g (D ) = f (y).
j j y «

g9(D ) The frequency function for D , g9(D ) = f (z).
£. Z Z £• Z ifz

h Height of the tropopause.

H Effective stack height (effective vertical position) of the

elevated point source.

Hn Physical stack height.
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LIST OF SYMBOLS (Cont.)

SYMBOL . . . . . . . DESCRIPTION

I(x) . Interpolation function based on the hyperbolic tangent.

I (6T) Interpolation function based on the hyperbolic tangent.

J(z) Altitude dependent weighting function for remote measurement

model.

k. Gain of instrument at position r. in slow response or time-

averaged in situ measurement model.

k. Bias of instrument at position r. in slow response or time-

averaged in situ measurement model.

K(a) "Clipping" function employed to provide a smooth approach to
—2a limiting value for all averaging times 6T in the a (x,6T)
z

model when mixing ceiling effects are present.

Kn Instrument gain in remote measurement model.

KI Instrument bias in remote measurement model.

K. Gain of instrument at position r. in fast response in situ

measurement model.

K. Bias of instrument at position r. in fast response in situ

measurement model.

SL Characteristic eddy dimension.

L Characteristic horizontal scale length, usually downwind

distance from the source unless noted otherwise.

L_ Specific downwind distance.
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SYMBOL

LIST OF SYMBOLS (Cont.)

DESCRIPTION

The approximate downwind distance corresponding to an averaging

time <5t(L') (required to just average out the eddy fluctua-

tions) that just equals some fixed instrument averaging time

6T'.

Mixing height.

Remote measurement data rate (measurements per second).

Peak(X)

q(x)

Exponent in the power law relation for a .

Exponent in the D (x) relation.

The peak value of the concentration X (on the plume axis).

Exponent in a relation.
z

Constant in q(x) expression.

Coefficient in q(x) expression.

Variance of white noise v~ .

Variance of white noise y .
n

Variance of white noise v_ .
n

Variance of white noise V, .

ql ' q2 ' q3 ' and/or <?4 (i=l,2,3,4).
n n n n

Source strength (average pollutant mass production rate, mass/

time) .
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LIST OF SYMBOLS (Cont.)

SYMBOL _ DESCRIPTION
2

Q or §(x) Exponent in D (x) relation.
z

Q Constant in §(x) expression.

Q" Coefficient in Q(x~) expression.

Q The total amount of pollutant in a disk (puff) .

r. Position of in situ instrument, r. = (x. , y., z.).

r., Horizontal resolution of the remote measurement.
in

_ " f\
s or s(6T) Exponent of the power law relation between X and X, o and

— 2 2 , — 2 y

a , 0 and a
y z z

s. - Value of s(6T) for 5T < 10 minutes.

s. Free parameter in the frequency function f
1 Yl- '

n
s9 Free parameter in the frequency function f
2

s Value of s(5T) for 6T g 10 minutes.
CO

S Number of scans required to produce one remote datum.

t Time.

t_ Initial time.

t. Instant in time at which the fast response -in situ measurement

applies.

t Time scale during which the average values of the meteorological
met

parameters apply.

Y2



LIST OF SYMBOLS (Cont.)

SYMBOL DESCRIPTION

Time scale over which the direction of the mean wind, 6,

coincides to a reasonable degree with the observed direction

of the actual wind at any random instant in time in an

interval of T duration.

Instrument lag time for remote measurement.

Tr Instrument collection time for remote measurement.
L*

T- Instrument response time for remote measurement.
K

T Time constant for u^ , u , u , and u, .
y y y y y

T Time constant for u.. , u , u , and u. .
Z _L £. j fz z z z

T T and/or T , as the case may be.
T\ y z

u1 (t) Component of y-i (t).
y y

u~ (t) Component of y (t).
y y

u1 (t) Component of Y-. (t).
z z

u- (t) Component of y (t).
z z

u« (t) Component of Y? (t).
y y

u, (t) Component of y? (t)•
y y

u,, (t) Component of j (t).
z z

u. (t) Component of YO (t) .
z z

u. (t) u- (t) and/or u (t), as the case may be.
n y z
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LIST OF SYMBOLS (Cont.)

SYMBOL DESCRIPTION

u (t) u (t) and/or u (t), as the case may be.
H y z

u_ (t) u, (t) and/or u (t), as the case may be.
n y z

u, (t) u (t) and/or u (t), as the case may be.
H y z

IJ Mean wind speed, U = |v|.

v Uncorrelated Gaussian process driving u equation.

y y
v- Uncorrelated Gaussian process driving u.. equation.
z z

v_ Uncorrelated Gaussian process driving u. equation.
y y

v_ Uncorrelated Gaussian process driving u equation,
z z

v_ Uncorrelated Gaussian process driving u» equation.
y y

v, Uncorrelated Gaussian process driving u equation,
z z

Uncorrelated Gaussian process driving u, equation.
y

Uncorrelated Gaussian process driving u equatic
z

r and/or v , as the case may be.
y z

v and/or v0 , as the case may be.
y z

v and/or v , as the case may be.
3y 3z

r and/or v, , as the case may be.
y z

The ground track speed of the remote platform.

v,
y

v, Uncorrelated Gaussian process driving u equation,
z

V- v

y

n V
V4

V
2
f Second moment of the uniform vertical distribution.
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LIST OF SYMBOLS (Cont.)

SYMBOL DESCRIPTION

V{*} Variance operator.

V(t) Instantaneous wind velocity.

V Mean wind velocity.

V Volume of the conical field of view in the remote measurement
L*

model.

V (z) Uniform vertical distribution.

F (x,z;H) Vertical concentration distribution of the steady-state (time

averaged) plume.

x In cartesian coordinate system (x,y,z) specific to a given

source with an effective stack height H. x is the downwind

distance along the mean wind direction, y is the crosswind

distance and z is the vertical distance above the surface.

The source is located at (0,0,H) in this system.

x' In cartesian coordinate system (x', y', z'), relevant to

multi-plume formulation, oriented so that the origin is at a

fixed position on the surface, x' and y" are arbitrary

(although x' is usually made to point eastward), z" is the

vertical direction above the surface. In this sytem, a given

point source is located at (x', y', H).

x Downwind distance at which the effect of the mixing layer first
L

becomes significant.

x Downwind distance at which the vertical pollutant concentration

distribution is approximately uniform, under the influence of

a mixing layer.
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LIST OF SYMBOLS (Cont.)

SYMBOL DESCRIPTION

x Hypothetical distance at which the power law relation for
P 2 2

D yields a value of D .
•y J yoo

x |(xu + x ).

x" Hypothetical distance_at which the power law relation for
P 2 2

D yields a value of D
z z°°

X or X(x,y,z,t;H) The instantaneous pollutant concentration (material distribu-

tion) for the fluctuating plume.

X or X(x,y,z;H) Pollutant concentration based on the steady-state (time
2 2averaged) Gaussian plume model employing variances a and 0
y z

determined using optimum (minimum) averaging times St, to

average out plume fluctuations.

X or X(x,y,z;H) Pollutant concentration based on the steady-state (time-
—2

averaged) Gaussian plume model employing variances a and
2 y

0 determined using averaging times 6T>6t to average out plume
Z

fluctuations.

y In cartesian coordinate system (x,y,z); see x description,

y" In cartesian coordinate system (x', y', z'); see x' description.

y' y' position of a given point source.

2 Total average dispersion of the plume in cross-wind direction.

~~2 ~~2
Y or Y (x) The variance (square of the width parameter) in the crosswind

direction of the material distribtuion of the instantaneous

fluctuating plume, relative to the instantaneous plume center-

line.
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LIST OF SYMBOLS (Cont.)

SYMBOL DESCRIPTION

z In cartesian coordinate system (x , y , z ) ; see x description.

z' In cartesian coordinate system (x', y', z'); see x description.

z' z' position of a given point source.

~2
z Total average dispersion of the plume in the vertical direction.

~2 ~~2
Z or Z (x) The variance (square of the thickness parameter) in the

vertical direction of the material distribution of the

instantaneous fluctuating plume relative to the instantaneous

plume centerline.

Y (t) Random process amplitude factor of D (x,t).

Y, (t) Random process amplitude factor of D (x,t).
J- Z
z

Y~ (t) Random process in the wavelength of D (x,t).

y y

Y9 (t) Random process in the wavelength of D (x,t).
^— Zz

Y, (t) Y-i (t) and/or Y-, (t), as the case may be.
n y z

and/or Y2 ̂ ' as tlie case

n y z

6 Exponent in power law for c r , 6 H p - 0 . 8 5 .

6(x) The Dirac delta function.

A Effective wavelength in D (x,t) model development.

6t or 6t(x) Optimum time interval required to first average out meander-

ing plume effects, i.e. the time interval required to view

approximately the same value of the plume concentration more
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LIST OF SYMBOLS (Cont.)

SYMBOL DESCRIPTION

than once. This amounts to the time required to advect the

governing range of eddies past the observation point.

6T Source instrument or measurement averaging time greater than

6t.

6T Lower limit in the transition range of <5T for which the

exponent s(6T) significantly departs from s .

6T- Upper limit in the transition range of <5T for which the

exponent s(6T) is approximately equal to ŝ  (to the 95% level)

ST Midpoint in the transition range of 6T in the s(<5T) relation,

i.e. 6T =

6T" A specific instrument averaging time.

6T Characteristic time scales of the eddies governing the cross-

wind fluctuations of the plume at some position downwind from

the source.

AT Advective time scale associated with wind velocity U and some

space scale L, i.e. AT = L/U.

AH The plume rise.

e Small positive number approximately equal to the inner stack

diameter in D (x.t).
n

2
e« Random measurement errors of zero mean and variance a , in0 obs

the remote measurement model.
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LIST OF SYMBOLS (Cont.)

SYMBOL DESCRIPTION
ty

e Random measurement errors of zero mean and variance a. for
i i

time-averaged in situ measurement model. Subscript i refers
->

to instrument at position r..

e. Random measurement errors of zero mean and variance (a.)

for instantaneous in situ measurement model. Subscript i

refers to instrument at position r..

£ In the cartesian coordinate system (£,n>£) and the cylindrical

coordinate system (p,̂ ,?); see £ and p descriptions.

C Altitude of the remote measurement platform.

n In the cartesian coordinate system (£,TI, £) ; -see £ description.

Also used to indicate x and/or y in the (x,y,z) system. The

appropriate description is evident from the specific context

of the application.

0 Azimuthal angle of the mean wind U measured counter-clockwise

from the x'-axis or eastward direction.

A Exponential dependence in q(x) expression.

A Exponential dependence in Q(x) expression,

y. Inverse of the time constant in the u. equations, i.e.
ln y. =± , i = 1,2,3,4. ITI

n n

£ In the cartesian coordinate system (£,n,£), £ is the downwind

direction, n is the crosswind direction and r, is the altitude

above the surface. The origin is at the position of the

centroid of the remote measurement footprint (xn»yn)
 on

surface of the earth.
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LIST OF SYMBOLS (Cont.)

SYMBOL DESCRIPTION

IT The value of 3.1459...

In the cylindrical coordinate system (p,^,C)» P is the radial
2 2 2

coordinate (p = £ + r\ ) , 1(1 is the angle measured from the

downwind direction (£-axis) and p, £ is the altitude above

the surface. The origin is at the position of the centroid

of the remote measurement footprint (xn,y_) on the surface

of the earth.

Pn Radius of the circular remote measurement footprint,

a or a (x) Standard deviation of width parameter of the steady-statey y
Gaussian point source plume concentration in the crosswind

direction. Unless noted otherwise, 0 (x) is based on the

optimum time average that just averages out the fluctuations

of the instantaneous plume at position x.

o or o (x) Standard deviation or thickness parameter of the steady-state
z z

Gaussian point source plume concentration in the vertical

direction. Unless noted otherwise, a (x) is based on the
z

optimum time average that just averages out the fluctuations

of the instantaneous plume at position x.

a Coefficient in the power law of a (x).y y

a Coefficient in the power law for a (x).z z

a Constant in certain formulations of the a (x) dependence.
Z Z

2
a Variance or square of a .
y y

2
a Variance or square of a .
z z
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LIST OF SYMBOLS (Cont.)

SYMBOL DESCRIPTION

a or a (x,6T) Standard deviation (width parameter) of the time-averaged

plume concentration (steady-state Gaussian plume) in the

crosswind direction relevant to observations at downwind

distance x with averaging time 6T.

a or a (x, T) Standard deviation (thickness parameter) of the time averaged
z z

plume concentration (steady-state Gaussian plume) in the

vertical direction relevant to observations at downwind dis-

tance x with averaging time 6T.

*y

a Variance or square of a .y y
o

c Variance or square of a .
z z

a Power law expression for a (x,6T) in the absence of mixing
z z

ceiling influences.

2ov Second moment of the vertical concentration distribution V..

*
a Functional component of the a (x) expression when effects

of the mixing layer are significant,

a (L,H) Limiting value of the thickness parameter a (x) to"fit V- to V .
U Z J. U

a or a (L, 0) Value of a (£,H) for the case when Z»H. :

a (6T) Crosswind standard deviation of the mean wind direction for
6

averaging time 5T.

2
a , Variance of the remote measurement noise,
obs

2
a. Variance of the time averaged in situ measurement noise.
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LIST OF SYMBOLS (Cont.)

SYMBOL DESCRIPTION

(oT) Variance of the instantaneous i,n situ measurement noise.

2
I (x) In the model of D (x,t), E (x) = D (x).
n n n n

n
Summation over all values of the index from 1 through n.

T Some time value.

<*> Elevation angle of the mean wind (taken to be zero in value)

or the half-angle field of view of the remote measurement.

The appropriate description can be determined from the context

of the application.

§(t) The remote measurement at time t.

$ The integral over £ in the $ expression, $ = * + $

§ Portion of the integral over £ in the $ expression that cor-

responds to the original point source at £ = H.

$ Portion of the integral over t, in the $ expression that cor-

responds to the fictitious average source at £ = -H.

$ Approximation of $ obtained by replacing the conical volume

V by an infinite vertical cylinder.
C

CD
(t) Approximation of <Kt) obtained by replacing the conical volume

Vp by an infinite vertical cylinder.

i> The integral with respect to n in the 0 (t) expression.
•noo oo

tj; In the cylindical coordinate system (p,̂ ,C); see description

of p.
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LIST OF SYMBOLS (Cont.)

SYMBOL DESCRIPTION

Y..(r.,t.) Instantaneous in situ point measurement for instrument at
J J _>.

position r. and time t..
i J

¥.(r.) Time averaged in situ point measurement for instrument at

position r..

(f.) Time averaged in situ point measurement for instrument at

position r., taken over a time interval beginning at t..

a) (x) In the model for D (x,t), CD (x) = 2ir/[c(£ + f (x) 1.n n n n

•rrt*] °r [*1 Derivative with respect to time of the variable in brackets.

->• Goes to or approaches.

On the order of.

= Identically equals or is defined as.

< Less than.

« Much less than.

$ Less than or equal to.

< Less than or approximates.

= Approximately equal to.

> Greater than.

» Much greater than.

5 Greater than or equal to.
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SYMBOL DESCRIPTION

> Greater than or approximates.

« Infinity.

Integral over the volume of V .
V»

Integral over the area of A~.

0
Rigorously computed mathematical average over the time

interval ST of the quantity in brackets.

C

<
«

A
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I. INTRODUCTION

National concern about the impact of environmental pollution on the quality

of life has provided increasing motivation for efforts to obtain precise informa-^

tion about existing air quality, particularly for large urban areas. Traditionally,

this information has been obtained using in situ sampling methods. Unfortunately,

the area-wide high accuracy concentration determinations now desired would impose

prohibitive cost burdens in the form of a closely spaced network of fixed ground-

based sampling stations using these traditional measuring techniques. The attempts

at deriving air quality information through the use of pollutant diffusion simula-

tion computer models are also severely restricted due to the limitations of the

basic assumptions and gross uncertainties in the fundamental physical parameters

of the model and other necessary input information.

Remote measurement systems such as the instruments under development at the

Langley Research Center designed for operation from aircraft or satellite platforms,

offer the prospect of large amounts of data concerning urban air pollution levels.

However, remote sensors provide spatially integrated instantaneous measurements,

which because of their frequently poor vertical resolution, will have to be supple-

mented by the generally sparse set of in situ ground based measurements that repre-

sent spatially localized and often time-averaged values. It appears that in order

to provide area-wide air quality information to an adequate level of accuracy, a

variety of measurement types will have to be combined in some way with diffusion

model simulations. The combination of measurements with air pollution simulation

models introduces further difficulties in that operational models for the most

part employ steady-state assumptions that only provide a valid representation of

the spatial distribution of pollutants in some time-averaged sense.

Urban air quality estimation involves the concepts of "urban air quality and

estimation". "Urban air quality" is a familiar concept: it involves specifica-

tion of the concentration of various pollutants as a function of position over

the urban area. In addition, these concentrations are referred to particular

representative meteorological conditions and particular averaging times, e.g.

daily or monthly averages or possibly even a particular instant in time. "Estimation",

as employed here, is a rather specific engineering concept which is perhaps less

familiar, so a definition is in order:



"Estimation is a methodology for utilizing information contained in

measurements to improve ones knowledge of the relevant physical pro-

cesses in this case, pollution dispersion."

The major objective of the current contract is to study the possibilities for

the application of estimation theory to the analysis, interpretation and use of

urban air quality measurements in conjunction with simulation models to provide a

cost-effective method of obtaining reliable air quality estimates for wide urban

areas. The goal is a methodology for utilizing all. the available data in a self-

consistent manner in conjunction with air pollutant dispersion models and a

priori information. An estimator (or estimation algorithm) incorporates a measure-

ment into a model update, i.e. an update of the states or parameters describing

the pollution dispersion process. To do this, one requires not only a parameterized

model which describes the physical processes (i.e. a pollutant dispersion model')

but measurement models consistent with the measurement devices and measurement

processes of interest, as well. These two levels of modeling involved in the

estimation process must be mutually consistent in terms of their fundamental

assumptions and approximations. The same internal consistency is required for the

incorporation of any a priori information concerning the physical processes and

model parameters. Estimation theory, which originated in guidance and control

research, can ultimately lead to the development of software for the sequential

update of diffusion model estimates of pollutant distributions with measured air

quality data on a real-time basis.

Before the development of an actual estimator could be initiated, the require-

ment for mutual consistency between the various levels of modeling, the measurements

and a priori information necessitated undertaking a basic research and development

effort. This effort has sought to bridge an existing gap in the state-of-the-art

in relating air quality measurements taken on different time scales (particularly,

fast response measurements applicable to a short time scale) with standard air

pollutant dispersion models which are only valid representations in some time-

averaged sense.

The typical urban air quality control region represents a wide variety of

pollutant source conditions ranging from relatively isolated, but frequently

large point sources such as a group of power plant stacks located in the suburbs,

major line sources representing the principal highways, many lesser low level



sources in close proximity typical of area source representations, to the con-

glomeration of all source categories that represents the high density conditions

of the inner city. The major emphasis during the first phase of the contract

has been on the elevated point source. This category represents the principal

source type for many pollutants and is characterized by a particularly complex

phenomenology presenting serious difficulties for relating measurements and dis-

persion models.

Measurement models development has emphasized the categories:

(1) Fast response spatially integrated (long path or volume) values typical

of remote based measurements from aircraft or satellite platforms.

(2) Fast response and time-averaged point values typical of in situ measure-

ments from ground based fixed site or mobile platforms.

While these measurement types are the immediate concern of the present contract,

the theoretical modeling effort is not inherently restricted to these types.

Measurement models for other systems, such as ground based remote measuring

devices, can be immediately incorporated into the total modeling framework, once

their specialized mathematical representations have been formulated.

There are a number of alternate mathematical techniques that can be applied

to the solution of the combined simulation modeling and estimation problem using

measurement data. These techniques essentially parallel the approaches that can be

applied to the solution of the pollutant diffusion problem, in isolation, without the

incorporation of air quality measurements. One can formulate the diffusion problem

as a partial differential equation with initial conditions and boundary values

and proceed with a direct numerical solution of the resulting system. Standard

solution techniques include finite differences and eigenfunction expansions or

a variety of other complete function representations. Recently, A. A. Desalu

(1974) applied finite difference techniques to the simulation and air quality

estimation problem and K. D. Pimental (1975) applied an eigenfunction expansion

approach in a similar context. Another technique is to employ quasi-empirical

"special" solutions based on actual solutions to special cases of the (simplified)

partial differential equation representation and experimental observations. An

example of this approach, to the air quality estimation problem, using the Gaussian

point source steady state plume representation is given by Smith, Green and Young

(1974a,b). The "special" solution approach is the one that has been adopted here



for the current research effort with attention given to both time-averaged and

instantaneous plume representations.

The techniques based on direct solution of the partial differential equa-

tion (i.e. finite difference and functional expansions) have the advantage of

being structurally and formally simpler, having been explored and analyzed in a

more or less independent mathematical context. However, the practical application

of the method to an urban scale area results in a computationally enormous pro-

blem because the wide distribution of primary pollution sources requires the use

of a fairly fine grid over the entire region. For example, using a one kilometer

grid to simulate the diffusion process below the tropopause over a 100 km x 100

km urban area yields a total of about 10 concentration points which must be solved for

in the simulation and estimation problem. In terms of estimation techniques,

this is beyond the current state-of-the-art. Similarly, the large area and multi-

source environment requires a large number of eigenfunctions to properly represent

the concentration distribution to any reasonable degree of accuracy. The partial

differential equation approach also has difficulty representing the effects of

atmospheric turbulence and the stochastic fluctuating plume on any short time

scale. The subgrid (spatial) scale phenomenon (or equivalently the short wave-

length phenomena beyond the representation of the truncated eigenfunction expansion)

require a deterministic approximation of the statistics, in any event. As a result of

these difficulties, application of these techniques has not progressed to any

large scale practical applications.

The special solution methods have the disadvantage of requiring sophisticated

techniques to treat the spatial variation of concentration. However, the input/

output is conceptualized better through a more direct relation to the current

diffusion models. The model parameters are conveniently expressed in terms of

a priori experimental observations, since these experimental observations have

generally been taken into account in the original model formulation. Propagation

in time is generally simple and the representation of time averaged measurements

is also simple. Stochastic plume properties, while still complex, can also be

modeled. The model parameters, in being directly related to the observed physical

processes, offer a generally simplified analysis of sensitivity to physical para-

meters. The computational complexity of the full scale urban simulation and

estimation problem is directly proportional to the number of sources present

(rather than the overall area). However, the required computational power is



usually much less than would be required by direct solution of the partial differ-

ential equation techniques.

A general discussion of the physical phenomenology of real atmospheric plumes

from elevated localized sources is given in Section II. That section provides

background for the actual plume dispersion model development discussed in Section

III. The derivation of a fluctuating plume model presented in Section III, follows

the development given by Gifford (1959), but adds a reflection condition at the

lower boundary to provide a mbdel that is,mathematically related (through the

expected value) to the time-averaged plume model of Turner (1970). In Section
-".- • - '• ..

IV, the individual plume parameter formulations are developed along with the

associated a priori information. Section V provides the last major modeling link

required to apply estimation theory, the development of individual measurement

models. The measurement models presented in Section V.emphasize general forms

applicable to: (1) remote measurement systems based on aircraft and satellites,

(2) in situ measurment systems.
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II. PROPERTIES OF REAL PLUMES FROM ELEVATED

POINT SOURCES RELATED TO THE PROBLEMS OF DISPERSION

AND MEASUREMENT MODELING

The continuous emissions from a small elevated isolated source of emissions,

such as a smoke stack, is the basis of the mathematical idealization of the point

source. The emissions from such a source usually take on the form of a plume.

These plumes probably are the subject of the vast majority of all experimental

and theoretical work in the field of :air pollution'.meteorology*:/and the mathematical

models that have been developed to represent them are-integral components of most

of the operational urban air pollution simulation models.̂  ^Furthermore, since tall

stacks from industrial facilities and power plants are representative point sources

in many cases they are the most important components of the urban air pollution

scenario. Consequently, point source plumes provide a logical place to begin

consideration of the problems of relating disparate measurement types and air

pollution models.

While the concept of a continuous emitting point source may appear simple, in

reality it encompasses in microcosm most of the difficulties encountered in air

pollution measurement, estimation and modeling. Even at this time, a great deal

is still not known about the details of the physics of plume dispersion in the

real atmosphere.

The phenomenon of plume formation is a consequence of:

(a) Advective transport by the coherent motions of the atmosphere (winds).

(b) Dispersive transport by the random fluctuations due to atmospheric

turbulent eddies.

(c) Dispersive transport by molecular scale diffusion processes.

The molecular and turbulent diffusion processes both produce a similar average

transport of pollutants in a direction opposite to the local concentration gradient.

However, the effects of turbulence predominate to such a degree that the molecular

effects can be ignored in comparison. Similarly, under normal atmospheric wind

conditions, the turbulent eddy diffusion in the direction of the local wind can

usually be neglected in comparison with the advective transport. However, for the

real transient processes in the atmosphere, the demarcation between incoherent



turbulence and the coherent winds which produce advection is somewhat arbitrary.

While the local transient winds will have a component due to the repeatable discrete

weather patterns, another time-varying component will in fact be produced by the

largest scale eddies. In terms of plume dispersion the demarcation line is between

eddies much larger in dimension than the instantaneous plume width and all eddies

below the scale of the instantaneous plume width.

The very large eddies contribute to changes in the instantaneous wind vector, V.

The very smallest eddies cause slight dispersive spreading of the plume, but eddies

about the same size as the local plume width are the most effective in producing

turbulent plume dispersion. Eddies larger than the instantaneous plume width but

smaller than the characteristic horizontal scale of the region of interest (typically,

the downwind distance from the source) produce the meandering character of the real

instantaneous plume. In summary, if £ is the characteristic eddy dimension, L is

the characteristic horizontal scale of the region, D is the average instantaneous

plume width, then the role of eddies in plume dispersion is given by:

(1) Jl«D, slight plume dispersion and internal plume mixing.

(2) &~D, most effective in plume dispersion.

(3) D<£<L, produces plume meandering.

(4) &>L, produces changes in the wind vector.

The physics of plume dispersion has certain inherent time scales which are

related to the space scales associated with the different eddy ranges discussed

above. These time scales, in turn, describe different phenomenological aspects

when associated with the concepts of "averaging times or "sampling times" which

one is inevitably led to in describing or measuring any phenomenon having an im-

portant stochastic element. These different phenomenologies, associated with the

different time and space scales, produce the major difficulty in relating a par-

ticular measurement type to any idealized description or mathematical model which

only addresses a particular phenomenological aspect.

One time scaLe of interest is the value of T which will allow the direction

of the mean wind, V,to coincide to a reasonable degree with any observation of V(t) (i.e.

small variance): Experience suggests a value of no more than 2-3 hours (Slade, 1968).

For observations extending over times much longer than this, the wind is likely

to take on the full range of directions. The isopleths of pollution concentration,
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correspondingly time-averaged, will form an approximately concentric pattern about

the source with evident off-sets in the pattern, corresponding to any preferential

directions of the wind. The pattern generally will not resemble a plume.

If a plume is photographed or measured by any device having an averaging time

on the order of a fraction of a second, the appearance will have a sinuous form. The

sinuosities appear to increase in amplitude and characteristic wavelength as one

observes at greater distances from the source. The increase in amplitude as a

function of source distance is a subject of frequent discussion in the literature

on turbulent plume diffusion (e.g. Scorer, 1968), while the apparent increase in

characteristic wavelength with distance is not. Nevertheless, it seems to be a

quite observable feature in published photographs of many real plumes in the

atmosphere (Scorer, 1968 and Slade, 1968) as well as in photographs of plumes

generated in wind tunnels (Williamson, 1973). The mechanisms invoked to explain

the amplitude increase of the instantaneous plume would seem to suffice to explain

the increase in characteristic wavelength also.

Generally, eddies of all scales can be expected to be present in the atmosphere

but not necessarily to an equal degree. Near the source, the diffusive spreading

of the plume is produced by the small turbulent eddies comparable in scale to the

initial plume width. As the plume is advected downwind, the instantaneous plume

spreads horizontally and vertically and also tends to meander within more or less

definite limits. The amplitude of the crosswind and vertical meandering increases

as the plume is advected downwind, as does the apparent effective wavelength of the

sinuosities. The increasing crosswind and vertical spreading in the downwind

direction constantly brings into play larger scale eddies which become the most

effective in spreading the instantaneous plume: the next larger class of eddies

which produce the meandering quality, consequently also increases in scale in the

downwind direction. If all scales of eddies are present in the atmosphere to an

equal degree, the fact that distance from the source origin is the only dimension

of consequence would require the envelope of the meandering plume to take the form

of a cone based on arguments of similarity. In the atmosphere there are many real

conditions which cause eddies of certain scales to be present to a greater or

lesser degree than eddies of other scales, so that the angle of the cone may change

some distance downstream. Based on the above observations, one would expect the

effective wavelength of the sinuosities to increase in the downstream direction,

since this "effective" wavelength must also be characteristic of the dominant



scale of the eddies producing the meandering effect.

The description of the plume physics given above intimately associates the

spatial scale of eddies governing the phenomena of plume spread and meander with

the downwind distance from the source. However, the description also implies

certain time scales which together with these space scales dictate the state of

the plume actually measured or observed. In the first place, the downwind distance

from the source origin, L, can be associated with a time, AT, based on the fact

that transport in that direction is mostly due to advection. Therefore, the mean

wind speed, U = [v|, is the connecting parameter:

L-IJAT .

Similarly, at any given downwind distance L, there is some associated spatial

range of eddies. Measurements or observations of the plume made at position L

would have to be repeated over some time interval, 6t, in order to view approxi-

mately the same values of the state more than once, i.e. in order to just average out

the meandering effects. The time 6t must be associated with the time interval

required to advect the governing range of eddies past the observation point. Since

the scale of eddies £ is not a single well defined value, the time scale of St.

is also not well defined. However, in some sense, we would expect

,£~U6t ,

or

St = [&/U] ...
max

Since £ is proportional to L and |v|~|v|, clearly 6t increases downstream from the

source. In terms of meandering, we know that £ is bounded by L, so that if

U ~5m/sec ("10 miles/hr.):

6t~20 seconds, L~100 m

6t~3 minutes, L~lkm

6t~15 minutes, L~3 miles

6t~l/2 hours, L~10km

6t~5 hours, L-100 km.
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These time scales seem to be borne out by experience (Scorer, 1968 and Slade, 1968).

We have previously described the qualitative picture of the instantaneous

plume. Very little is known about the instantaneous material distribution cross-

sectional to the plume. The form of the instantaneous distribution will be a func-

tion of the initial conditions and, again, the averaging time associated with the

"instantaneous" observation. Close to the source, the influence of the initial

conditions will be strongest, but since the processes of atmospheric motion are

dissipative, one can expect these influences to diminish downstream from the

source. Close to the source, the measurement time must also be fairly short in

order to differentiate between the instantaneous plume and the plume averaged over

the short period meandering motions. Consequently, observations of the instantaneous

plume for small distances L can be expected to show a rather irregular cross-

sectional material distribution. However, for large distances L, the irregularities

due to initial conditions can be expected to be sharply reduced. Also, longer

measurement times can be made of the instantaneous plume without averaging out the

meandering motion. For long measurement times, the small scale turbulent eddies

can be expected to smooth the material distribution in the "instantaneous" plume,

so that its form may be similar to the cross-sectional distribution obtained by

averaging over the meandering motions. A truly instantaneous view could be expected

to portray an irregular cross-sectional material distribution at any distance L.

For the average plume, an assumption that each quantum of pollutant is under-

going a random walk type of process leads to the conclusion that the density func-

tion for each such quantum is Gaussian (at least asymptotically with downstream

distance), regardless of the nature of the driving noise. (In fact the driving

forces are the macroscopic eddies and the microscopic diffusion forces which,

because of their wide bandwidth, are probably a good approximation to a Gaussian

.process.) Measurements of the average material distribution crosswind and vertical

to the plume tend to appear Gaussian. Consequently, the average plume appears to

have a more or less smooth boundary of conical form with the axis aligned with the

mean wind direction. At any downwind position, L, the cross-sectional material

distribution is a bivariate Gaussian function centered on the plume axis with

principal axes in the vertical and horizontal directions. The boundary is in fact

the envelope of various positions of the meandering plume. The conical appearance

is dramatically revealed in time lapse photographs of real atmospheric plumes

(Slade, 1968) and wind tunnel tests (Williamson, 1973).
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Based on conservation of mass arguments, one would expect the time averaged

Gaussian cross section for the cross-sectional material distribution of a constant

strength localized source (idealized as a point) to become less sharply peaked

(i.e. maximum concentration decreases) at further positions downwind. This is

supported by observations. Any settling or other scavenging processes will tend

to still further decrease the observed peak concentrations in the downwind direction

in both the instantaneous and average plumes. By the same conservation of mass

arguments, the mass distribution of any cross-section of the instantaneous plume

must be more sharply peaked (i.e. greater maximum concentration) than the time

averaged mass distribution at the same distance downstream, whatever the actual

shape of the instantaneous mass distribution may be.

Expansion of the average plume, along an ideal constant angle cone up to some

downwind distance L will only be perceived if a continuous range of turbulent

eddies up to and including a characteristic dimension L are present in the atmos-

phere to an equal degree or intensity, and if measurements at each position L for

OKL<L are averaged over a time interval, 6T, such that I

6T = 6t(L) ,

where <5t(L) is the characteristic time-scale of the dominant class of eddies

responsible for the meandering motions at position L. If, as is frequently the

case in real atmosphere (particularly under stable conditions) a whole range of

eddies is almost entirely absent, the angle of the cone will be sharply reduced

at some position L. On the other hand, if topographical features or other in-

fluences cause a particular class of eddies to have a greater intensity, the

angle of the cone will expand at some position L where the class of eddies becomes

dominant (Scorer, 1958).

The question now arises as to how the average plume will be manifested when

viewed or measured with an instrument that has a fixed averaging time:

6T = 6T' = constant .

Clearly, 6T' can correspond to the characteristic time scale of the dominant eddies

that produce meandering near only one downstream position L':

12



6T' = St(L') .

For all positions CKIXL', 6T' will be longer than the characteristic time scale

<St(L) of the eddies that produce meandering and for all positions L'<L_<L ,- 6T'

will be shorter than the characteristic time scale 6t(L).

When L»L', then 6t»6T^ and one can expect to view what is essentially the

"instantaneous" meandering plume with a possibly non-Gaussian cross-sectional con-

centration distribution having a central peak offset from the axis of the mean wind.

This is precisely the situation viewed in time lapse or superimposed photographs

of plumes for distances far enough downwind (Williamson, 1973). There is likely

to be some intermediate region L>L' so that 5t>6T". In this case more than one

realization of the instantaneous plume may be viewed, but not enough samplings will

be taken to obtain the proper average (Gaussian) cross-sectional concentration

distribution. In this case the average concentration distribution may exhibit more

than one well defined peak on the scale of the instantaneous plume width. However,

one would expect this intermediate downwind region to be represented by a very

short interval in the x direction. There is also likely to be some intermediate

region of the plume LsL', where 6t56T>>. In this case, the averaging time of the

instrument will be just about right and the earlier discussion concerning the

conical envelope of the average plume with a Gaussian cross-sectional concentration

distribution aligned with the axis of the mean wind will hold. For L«L', then

<5t«6T' and the averaging time of the instrument will include the effects of eddies

larger than the dominant class of eddies responsible for meandering: the motion

of these eddies would normally be ascribed to the coherent wind by an observer

fixed at that location. Here, the averaging includes some deviations from the

mean wind with meandering motion superimposed on each coherent wind direction.

This amounts to averaging a number of Gaussian cross-sectional concentration dis-

tributions having different central axes. Again the cross-sectional concentration

distribution in the region L<<L' will be Gaussian. The envelope will again be a

smooth curve of the conical form with the axis oriented in the direction of the

mean wind. The envelope will be wider than the optimum conical form originally

discussed and consequently the Gaussian concentration distribution will be broader

and flatter at corresponding downstream positions.

13



The discussion of this section has been implicitly concerned with "pure plumes"

in the atmosphere. Pure plumes are assumed to emerge from:.the source orifice with

negligible exit velocity and essentially the same thermodynamic state as the ambient

atmosphere. In that case the plume dispersion is due entirely to the coherent wind

and ambient atmospheric eddies. In reality, the source emissions have momentum due

to a non-negligible exit velocity, different density due to the effluent composition,

different temperature (usually higher) due to the energy conversion and industrial

chemical processes usually associated with sources, and definite vorticity mainly

due to mechanical design factors. A plume which is principally distinguished by

initial momentum differences is often referred to as a "jet". A plume distinguished

by initial bouyancy is often referred to as a "bouyant plume" and exhibits an

initial "plume rise". Initial momentum will also contribute to plume rise.

14



III. INSTANTANEOUS AND TIME AVERAGED

POINT SOURCE PLUME MODELS

Many operational air pollution simulation models (Koch and Fisher, 1973)

have the Pasquill-Turner point source formulation (Turner, 1970) as a basic

component. It is also the model employed by Smith, Green and Young (1974a,b) for

interpretation of pollution measurements from aircraft and satellites. This

relation is given by:

(1)

;exp i-a [-^V" i + exp I-* lip)2Li/Jrl
where X is the pollution concentration, Q is the source strength (average pol-

lutant mass production rate), U is the mean wind speed, H is the effective

height of the point source, a is the standard deviation, or more properly the

width'parameter, of the plume concentration in the cross-wind direction and a is
z

the standard deviation or thickness'parameter of the plume concentration in the

vertical direction. The Cartesian coordinate system (x,y,z) is oriented so that z

is the vertical distance above the surface of the Earth, x is the distance (down-

wind) along the mean wind direction and y is the cross-rwind distance. In this

coordinate system, the point source is at the position (0,0,H).

The (x,y,z) coordinate system described above is not convenient if more

than one source is to be considered. Let (x",y',zx) be a Cartesian coordinate

system such that the z' axis is again in the vertical direction, the origin is

at some point on the surface of the Earth and the x' and y" axes are otherwise

arbitrary. Let the source be at position (x~,y',H) in this coordinate system.

Then the two coordinate systems are related through the transformations:

x = (x' - x') cos 6 + (y' - y') sin 9

y = -(x- - X(p sin 9 + (y' - y^) cos 0 }• (2)

z = z"

15



where 0 is the azimuthal angle of the mean wind U measured counter-clockwise

from the x'-axis. The elevation angle ([> of the mean wind is equal to zero.

Equation (1) is based on the assumption of a steady state point source.

Consequently, the expression can only be related to real atmospheric plumes in

a time-averaged sense. The dispersion of pollutants in a real plume, when con-

sidered at any instant in time, consists of two parts:

(a) The gradual vertical and crosswind spreading of the plume proper, as

the bulk of the emissions is advected downwind,

(b) The sinuous motions which cause the bulk of the plume to constantly

fluctuate in the vertical and crosswind directions as the emissions

are advected downwind.

Only when the plume is viewed over some finite time interval, do the sinuous motions

average out to produce the regular appearance of the time averaged or steady-state

plume depicted by the dashed-line envelope of Figure la. The fluctuating aspect

of the plume when viewed at an instant has given rise to the notion of a

"fluctuating" plume. This phenomenon, illustrated schematically in Figure la,

can be explained in terms of the effects of. eddies of different physical scales.

These concepts have been discussed previously in Section II. t

The subject of fluctuating plumes has provided a relatively scant amount of

published materials of either a theoretical or experimental nature compared to the

subject of steady state or time averaged plumes. Much of the material that is

available is in the form of Ph.D. dissertations and other limited distribution

technical reports. While a degree of mathematical modeling has been done, this

has generally not been extended to applications in air pollution computer simula-

tion models to date. An area of theoretical work that has found its way into the

more generally available formal literature is the fluctuating plume model due to

Frank Gifford, Jr. (Gifford, 1959). The model developed by Dr. Gifford has the

desirable property of being related to time averaged plume models through formal

statistics. Consequently, this is a logical place to begin the estimation pro-

blem (i.e., relating more or less instantaneous measurements of real plumes to

steady state plume models).
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Figure 1. Various Schematic Representations of A Real Instantaneous Plume
Leading to Mathematical Modeling
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Conceptually, the real plume may be thought of as consisting of an infinite

series of over-lapping emission puffs , each released some infinitesimal time interval

second after the preceeding one. Each puff, as it is transported with the mean

wind, meanders and expands diffusively in the crosswind, vertical and downwind

(x-axis) directions. This concept is illustrated schematically in Figure Ib. If

we neglect the diffusive transport in the downwind direction compared to the advec-

tive transport, then each puff need only be thought of as diffusively spreading in

the vertical and crosswind directions as it meanders downwind. This leads to the

"spreading elementary disk model" of the instantaneous plume proposed by F. Gifford

(1959) and illustrated schematically in Figure Ic.

The x-axis, aligned with direction of the meanwind, is assumed to represent the

centerline for the average plume. At any instant, the center of a particular disk

is conceived of as having a random displacement (D ,D ) from the fixed position ofy z
the x-axis. The material distribution, X of any particular disk is given by:

,z-D,t;y,z,U) (3)

where Q, is the total amount of material in the disk, t is the time* y is the

crosswind direction, z is the vertical direction, U is the mean wind speed (in

direction of x-axis), the subscript "zero" refers to initial conditions, and /

is the material distribution function centered at the position (D ,D ) from they z
origin. »

Much of Gif ford's basic derivation follows by induction from the special case

of dispersion of a one- dimensional cloud (Gifford, 1959):

^ - /(y-Dy,t;y0.,t0) (4)

If a coordinate system is fixed with respect to the mean wind U and observations

are made of a single realization of a cloud (or disk) for successive values of t,

D will vary irregularly due to the turbulent eddies. This variation of D is

assumed to be random. On the other hand, a number of realizations of the elementary

clouds may be viewed for successive values of t_. If observations are made of

this ensemble for fixed values of dispersion time, t-t_, then these observations

of D will also be seen to fluctuate statistically. If an ensemble average is

taken over many trials:

E
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Here, g(D ) is the frequency function for the variability of D over the different

realizations. E indicates the expected value or mean operator.

Equation (5) assumes that the form of / is either fixed or completely cor-

related with D . Actually the form of the function f varies from trial to trial
y

because of the influence of initial conditions and a limited sampling of turbulent

fluctuations in the dispersion time t-tQ. The basic diffusion processes will

tend to reduce the influence of initial conditions as t-tn increases; over extremely

long time periods, t-t_, the effect of diffusion (small to medium scale eddies)

tends to average out also. It is on the basis of these considerations that

Gifford assumes the distribution of material in the instantaneous plume (the

function f) to be a fixed function from realization to realization, with parameters

varying deterministically with downwind distance and, of course meteorology.

Mathematically, Gifford separates the eddies into those which are mixing the

plume and those which are moving the plume. In practice, field reports sometimes

show plumes having two separate pieces, caused by eddies pulling the plume apart.

Thus within an urban-sized area f has a fixed form only in some statistically

averaged sense. Nevertheless, if the processes D and those contributing to f are

independent, then equation (5) still holds. Actually this seems like a good physical

assumption, since even though on one realization closely related eddies may both

push and tear the plume, such an occurrence is statistically unlikely.

Whatever the actual nature of /, we hypothesize that:

(a) X is a random variable, due to the stochastic nature of D .
/ x \

 y

(b) E I— 1 will be Gaussian a short distance from the source as a consequence

of the Central Limit Theorem. (See Appendix B).

Furthermore, if we return from the moving coordinate system and the conceptuali-

zation of Figure Ic to the real plume of Figure la and the fixed Eulerian view-

point, we see that the ensemble average of many puffs viewed at the same diffusion

times (t-t_) is analogous to averaging the real plume at a fixed downwind position

x = U(t-t_) for a significant finite averaging time 6T (i.e. the Ergodic Theorem
/ X \

holds). It can be demonstrated that E ( 77" ) then provides a formal mathematical
V^d/

connection between the instantaneous plume and the time averaged plume.

With f a definite function, then equation (5) is in the form of a convolution

transform and we get the result expected for variances of uncorrelated variables:

(?r)r^/i/i
V JE

Having assumed that D is a random variable forced by the large scale eddies, it

is reasonable (Appendix B) to assume that its frequency function, g(D ), is
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Gaussian. This seems to be supported by the available experimental data - as does

I Q— I • We can now state the following Lemma: If boththe Gaussian form for E
X

E j — | and g(D ) are Gaussian and (5) holds, then / is also Gaussian. The proof

follows from the uniqueness of the Weierstrass Transform. This result could have

been reached independently by arguing directly that f is Gaussian. This reasoning

and some of its experimental implications are clarified in Appendix B.

Having employed the Lagrangian viewpoint and ensemble averages of individual

puffs to draw conclusions concerning the nature of E, g and /, Gifford (1959) then

returns to the Eulerian representation of a continuous emitting point source of

source strength Q and a downwind position x = U(t-tn). / is Gaussian and has the

parameter dependence of equation (3). However, initial condition influences are

assumed uniform for a continuous emitting point source and in any case have been

assumed negligible in deriving the previous results. Consequently,

X
Q exp < -

2 9
(y-Dy)

2 (Z-Dz)
2

2? 2Z2

(7)

where Y is the variance of the material distribution (square of width parameter)
— 2

in the crosswind direction at x = U(t-tn) and 2. is the corresponding variance
2 2

(square of thickness parameter) in the vertical direction. Y and 7. are functions

of dispersion time (i.e. x). Since g is Gaussian, equation (7) and equation (5) give:

-1

exp ry__ + _zA. (8)

2 2
where D is the variance of g-(D ) and D is the variance of g«(D ]

y 1 y z 2 z

*The subscripts "1" and "2" are used here to emphasize that there are now two
Gaussian frequency distributions, g, with different variances:

_ -1/2 _

81(V = L2lTDyJ exp[-y2/2D2] , g2(Dz)

1/2
exp ~

It should be noted that the mean values E(D ) = E(D ) = 0.y z
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Gifford and other researchers have derived some further properties of this

spreading elementary disk fluctuating plume model. The dispersive contributions
2 2

due to plume spreading (given by Y and Z ) are statistically independent of the ,
2 2contributions due to plume meandering (given by D and D ). Gifford (1959) has. y z

observed that the covariance YD (for the isotropic case) can be shown to be zero.

The model formally separates these two aspects of plume dispersion, and in that

sense models reality. In real plumes, the independence of spreading and meandering

is a general property of dispersion, and is not especially dependent on some pecu-

liarity of the turbulence spectrum or on special meteorological conditions.

Gifford (1960) has also shown, for the case of one-dimensional spreading, that

the sum of the mean square dispersion due to spreading of the plume elements and

the dispersion of the center of the plume as a result of overall plume fluctuations

is equal to the total average dispersion of the plume. Extending the proof to the

general case and denoting the total average Dispersion of the plume in the
2 2

crosswind and vertical directions as y and z respectively gives:

y2 - Y2 + D2y

z2 - Z2 + D2z

(9)

Following the proof of F. B. Smith (1960), it can also be shown that in the limit

of large downwind distances, x:

(10)

2
D ->• constant

~2
D -> constantz

At this point, it should be emphasized that the mathematical formalism

employed by Gifford (1959_,_1960)__allows all of the experimental determinations of
2 2

dispersion coefficients (y and z ) based on time averaging techniques and similar

estimates that are routinely used in connection with steady-state plume models to

be rigorously interpreted in terms of the fluctuating plume model by means of the

formal expected value of the fluctuating plume concentration expression, i.e. the

mean concentration distribution of the fluctuating plume (equation(8)). Of

immediate interest, is the relation to the non-isotropic dispersion model of

Turner (1970) (equation(1)).
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In the Turner model, finite ground influences have been taken into account

by assuming that total plume reflection takes place at the ground and that the
X

resulting concentration — can be represented by superposing the concentration

distribution of a fictitious image source at the position (0,0,-H) in this

coordinate system. The coordinate system for Gifford's model is oriented in

the same general fashion as in the Turner system, except that the origin (0,0,0) is

assumed to be at the effective position of the source and no attempt has been made

to include ground effects in his equations. The real effects include deposition

and the effects of shear of the mean wind which are not well accounted for by the

image source solution, even for the average/steady-state plume. There seems to

be no reason why the image source technique cannot be applied to the spreading

elementary disk fluctuating plume model for purposes of direct comparison with

the Pasquill-Turner average plume model. However, the image source solution is
**

probably even less realistic for the instantaneous plume properties.

The relation for the steady-state plume concentration in terms of Gifford's

coordinate system and neglecting ground influences was given by Pasquill (1962):

— = 2Tra o U exp
Q [ y z J *

2 2
J z
2 2

2a 2a
7 z

(11)

In Turner's expression (equation (1)),the reflection condition at the ground is

accomplished by taking the solution for an actual source at position (0,0,H) based

on equation (11) and adding to this, the solution for a fictitious image source

at the position (0,0,-H). Consequently, the exponential term in z in equation

(11) is merely replaced by one exponential term in (z-H) and another exponential

term in (z+H), leading to equation (1). This technique directly accomplishes

reflection only because the Gaussian material distribution of the steady state

plume is symmetric with respect to the mean plume line.

For the fluctuating plume model, the simple addition of the solutions for

sources at altitudes H and -H, as shown in Figure 2a, will not accomplish reflection

because the asymmetries due to plume meandering must also be reflected in the

Gifford (1960) notes that the relations for X(PEAK)/X are probably less seriously
affected by ground effects than either X or X separately.
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Figure 2. Applications of Image Source to Fluctuating Plume Model
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fictitious image source at -H. The correct reflection for a fluctuating plume

model is illustrated schematically in Figure 2b. With this in mind, equation

(7) becomes: .

X(x,y,z;H) _ 1
Q rn: p~ "F

2Tfv/Y2 -s/Z2 IJ

(y-Dy)
2

2?

(12)

exp
(z-H-D )2

Z

2?

+ exp
(z+H+D )2

z

2?

where X is the •instantaneous pollution concentration. Y is the variance of the

instantaneous concentration of the fluctuating plume in the cross-wind direction,

centered about the cross-wind displacement of fluctuating plume, D , from the
2 y

axis of the mean plume (Figure 3.0). Z is the variance of the instantaneous

concentration of the fluctuating plume in the vertical direction, centered about

the vertical displacement of the fluctuating plume, D , from the axis of the
Z

mean plume. The expected value of equation (12) provides the concentration of

the time averaged plume:

1
1

2 2
2W Y +D >y

exp v.
/
/ o 9

s/Z +D U
Z

2y
(

\

Y2
+D2)v. y '

exp
(z-H)

+ exp

(13)

(Z+H)

where D is the variance in the cross-wind direction of the frequency distribution

of the fluctuating plume centerline displacement from the mean plume axis, i.e.
2

the variance of the frequency distribution of D . D is the variance (vertical

direction) of the frequency distribution of D (Figure 3.0).
Z
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Equation (13) is now identified with equation (1) and the variances are

related by:

2 2 2a = D + Yy y

a2 = D2 + Z2
y z

(14)

One unrealistic approximation of the present model has a self-rectifying

tendency. Large amplitude vertical oscillations are inhibited near the ground

due to the nature of the rigid boundary, so that treating the lower boundary as

a perfect reflector doesn't adequately represent the true situation for the

instantaneous plume. This physical representation becomes progressively less

realistic with increasing downwind distance as larger scale eddies become dominant.

However, as the ratio of the instantaneous plume width to the effective stack

height increases with downwind distance, the image source will result in an

increasing superposition and "smearing" of the instantaneous material distrbution

near the ground. The resulting material distribution profile near the ground

will consequently have much the same character as for the situation where the

large scale vertical oscillations are actually suppressed by the lower boundary.

t 2 2 2 2a and a in equation (1) denote the particular empirical forms of y and z
deVelopel by Pasquill (1961) and Gifford (1961).
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IV. DISPERSION PARAMETER MODELS

AND A PRIORI INFORMATION

The plume models described in Section III represent only a portion of the

modeling required for dispersion simulation and estimation. In this section,

the modeling of the specific plume parameters appearing in equations (1) , (12)

and (13) will be addressed, including the stochastic properties of the fluctuating

plume which are manifested through the parameters D and D of equation (12) .
y z

The parameters appearing in equations (1) , (12) and (13) fall into three

categories:

A. Source Related Parameters,

Q> X0' V
B. Meteorological Related Parameters 3 _

— 2 2 2 2 2 2
U, 9, a , a , D , D , D , D , Y , Z .

y z y z y z '

C. A Combination of Source and Meteorological Parameterŝ

H.

The quantity H may be written as

H = HQ + AH ' (15)

where H is the physical stack height (a source related parameter) and AH is the

plume rise (a combination of source and meteorological parameters).

In addition, a priori estimates of the various plume parameters will be

considered. All of the above parameters have some a priori estimates and

associated uncertainties. The present section is concerned with the functional

forms and a priori estimates of the class of -meteorological related parameters.

Of these, we will not be concerned with the wind parameters (U,6) at the present
2 2 2 2

jrime^ but will consider the remaining dispersion parameters (a ,a ,D ,D ,D ,D ,0 9 y z y z . y z

Utilization of a priori knowledge alone in conjunction with plume models

corresponds to the usual application of air pollutant dispersion simulation. The

optimum combination of a priori knowledge and air quality measurements in conjunction
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with plume models through a systematic parameter estimation procedure to provide

improved air pollutant dispersion simulations is the ultimate objective of the

current research effort. ... ... . .. . .

It should be noted at this point, that the considerations provided in the

present section concerning a priori, values of plume parameters and the

associated uncertainties are not to be considered as fixed aspects of the model.

Just as in the application of models without an estimation algorithm, the ex-

perience of a meteorologist in assigning input values and estimates of their

true uncertainties for a specific set of topographical and meteorological con-

ditions can greatly improve the model predictions. However, the estimation

algorithm will, in addition, utilize the appropriate mathematical expression of

the uncertainties in the a priori- information to properly weight the best first

estimate of all parameters with the additional information implicit in air quality

measurements to provide a new, updated estimate.

2 2
Variances of the Average Plume Concentration Distribution, a and ay z

The vast majority of published continuous plume dispersion data relate to
2 2the variances of the average plume material distribution 0 and a . In contrast

to the average plume dispersion parameters, published observational data on

instantaneous fluctuating plumes are scarce. A similar situation prevails with
2 2respect to theoretical results. Of the two variances, a and a , more is known

2 y z

about a . In the first place, more observational data is available since ground
y 2

level networks supply an adequate measure of the a properties but instrumented

tower, airborne measurements or recently developed remote sensing techniques are re-
2 ?

quired to study the characteristics of a . Also, theoretical study of a is compli-

cated by the influences of the lower boundary at the ground, the upper boundary pro-

vided by a stability layer of some kind and the bouyancy properties of the atmosphere.

Observational data suggest that the horizontal standard deviation has the

functional form (Slade, 1968):
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2, , , 0X2 2p ' /,/-\a (x) = (a ) x v , . (16)

with

p = 0.85+6 = Constant , (17)

where the constants a and p, are dependent on the conditions of atmospheric

stability. The observations fit equation (16) very well over the range

50 meters £x£ 50 kilometers. In addition, a variety of long range measuring

techniques suggest that equation (16) may hold through the range 10 kilometers £x$
4

10 kilometers (Heffter, 1965; Slade, 1968). There is some indication that 6

may be a weak function of atmospheric stability (i.e. temperature structure),

particularly for highly stable conditions. For stable conditions, -0.4$6$0.

a , on the other hand, is known to be strongly dependent upon atmospheric stability.

Pasquill (1961) and Gifford (1961) using observational data and theoretical

considerations have provided values for the coefficients appearing in equation

(16), based on standardized atmospheric stability categories. The results, given

for the range 100 meters sx^lOO kilometers, are available in graphical form in

Turner (1970). All the a curves in Turner (1970) are based on 6 = 0.053. The

results were derived on the basis of a sampling time of about 10 minutes.

Potential complications arising from application of measurements taken by

instruments with different non-instantaneous averaging times in different regions

of the plume will be considered in Section V.

The a priori- value of o may be taken from Turner's curves, as a function of

Pasquill atmospheric stability category, with some uncertainty (taken as ±1

stability category in the absence of more specific estimates). Since p does not

appear to decrease below 0.45 (Slade, 1968) even for the most stable atmospheric

conditions (which are not expected to occur for urban conditions in any case) and

does not appear to exceed the theoretical limit of 1.0 even for the most extreme

conditions of instability, the range of 6 (equation (17) ) may be taken as:

-0.40 £ 6 £ + 0.15 .
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Observational data suggests that the vertical standard deviation can be

generally represented by the functional form (Slade, 1968):

f , l~2 0 qa (x) = \]a = a xn ,
z z z

or in terms of the variance:

2, . , 0, 2 2q
o (x) = (o J x 4

(19)

where c is a function of the atmospheric stability condition. Unlike "p" in
Z

equation (16) , however, q is both a function of atmospheric stability condition

and of the downwind distance from the source:

q = q(x) .

Pasquill (1961) and Gifford (1961) have provided values of a (x) as a function of
Z

atmospheric stability. Turner (1970) has presented the results graphically by

atmospheric stability category. The exponent q(x) for these six stability classes

as markedly different behavior for stable and unstable conditions.

Turner's curves do not include the most stable conditions that occur in the

atmosphere. In these situations, the plume may exhibit only the slowest regular

vertical dispersion while the horizontal growth is dominated by the characteristic

sinuous meandering of the instantaneous plume, i.e. the situation known as

fanning (Slade, 1968). In this case, we would expect:

q(x)->-constant « 1, as x-*» . (20)

In practice, many operational urban air pollution simulations have repre-

sented a (x) by equation (19) (Koch and Thayer, 1971; McElroy and Pooler, 1968),
Z

or by the similar form (Calder, 1970):

oz(x) = o°x
q + 01 . (21)
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In either case, a (x) is given as a piecewise continuous function with q(x)

being a different constant for different downwind regions. This is not neces-

sarily the most convenient way of representing q(x) for estimation purposes,

since the downwind distance from the source may also be one of the quantities

to be estimated. For estimation purposes, the q(x) curves for different stability

conditions and the condition of equation (20) can all be approximated by the

family of curves:

q(x) = qQ + q'exp(-Xx) , (22)

where qn, q' and X are functions of atmospheric stability but are not functions

of x. q^O f°r a-^ stability conditions, but q'̂ O for neutral stability, q'>0

for unstable conditions and q'<0 for stable conditions. For small x, q(x)-̂ qn+q'

and for large x, q(x)-*q_. For the case of neutral stability, if the slight curva

ture in Turner's curve is neglected, then q(x)sqn'
:0.911. The values of the co-

efficients appearing in equation (22) have been obtained by a numerical least

squares fit to Turner's curves. These values are given in Table 1, and can be

used as a priori, values for the given stability classes, with an uncertainty of

+1 stability class (in the absence of better meteorological estimates) .

TABLE 1

A PRIORI VALUES OF COEFFICIENTS FOR o (METERS)
AND a (METERS) BASED ON NUMERICAL Fl¥ OF THE

ZPASQUILL-GIFFORD DATA AS PRESENTED
BY TURNER (1970)

Pasquill-Turner
Stability Class

A

B

C

D

E

F

0
0y

0.400

0.295

0.200

0.130

0.098

0.066

P

0.903

0.903

0.903

0.903

0.903

0.903

0
a
z

0.000186

0.0560

0.107

0.385

0.428

0.432

qo

2.13

1.10

0.918

0.638

0.570

0.511

q'

0.749

0.105

0.00164

-0.159

-0.162

-0.194

A x 103

8.73

8.74

6.55

5.11

4.30

3.58

The power function relation of equation (19) for a (x) and the associated
Z

coefficients are only valid when there is unrestricted diffusion in the vertical

direction above the ground. Frequently, a stable region of the atmosphere or
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inversion layer, will exist at some altitude L. Vertical diffusion is then

strongly inhibited for z>L and the dispersing pollutants tend to be trapped in

the region z$L. The region z<L is known as the mixing layer.

We will employ the concept, based on the proposal of Pasquill (1962), of

representing the effect of the upper boundary in terms of the standard deviation

of the mean plume, rather than in terms of the form of the concentration expression.

It will also be assumed that the effect of a mixing layer must eventually cause

the vertical dispersion to approach a uniform distribution at some distance x

far enough downwind. However, the statement of this concept employed by Pasquill

(1962), that

- L (23)

is not necessarily the best way of approximating this situation in terms of the

Gaussian plume model for purposes of estimation theory applications with measure-

ment data.

If the form of the Gaussian plume is to be retained, then the thickness

parameter a of the vertical concentration distribution 7..(x,z;H) based on equa-
Z -L

tion (1) for uniform mixing given by:

2ir a U
exp exp (24)

is the only free parameter which may be used to fit the Gaussian to the uniform

vertical distribution given by:

V (z) =
u

_1_

UL

0

(25)

z>L

The Pasquill relation (equation (23)) provides one means of fitting the two dis-

tributions. However, this will result in a fairly large proportion of the area

of V-. being above the mixing layer, z = L. This will probably provide a satisfactory

approximation for application with ground based measurements or remote measurements

from high altitude platforms, but will result in considerable departure from con-

centrations predicted by the uniform distribution for altitudes corresponding to
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measurements taken by airborne grab samplers or measurements recorded from tall

buildings or towers. On the other hand, the V distribution can be required to

lie below the altitude z = L out to the 3a level, i.e.:- - — - • - - - - - - - " ' - ' • - . . - . . . , . . . . .

3az(xu) = L (26)

This will result in a large departure from the concentrations predicted by the

uniform distribution near the ground, which is undesirable for application with

ground measurements.

A method for matching the two distributions, which provides an overall com-

promise for the requirements of a wide range of measurement types, involves
2 2

matching the second moment aT. of the 7, distribution to the second moment V of
V j. z

the uniform distribution V . Consider the case, H«L, then approximate this by

H=0, i.e.:

1 2
lMx,z;0) =— /—o

U "V ira

the second moment of F..(x,z;0) about z = 0 is:

a T, •• J z F̂ x.z;
a2

0)dz = -—
U

The second moment is of V about z = 0 is:

3U

The condition for fitting V to V is then:

0 (x ) =
2 U

Using the power law for a ,
Z

1/1(xu)

where

(27)

(28)

(29)

(30)

(31)

u
(32)
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unless noted otherwise.

We will assume that the power law (equation 18) is valid up to some position

xr where the effects of the mixing layer are first felt. Turner (1970) observed
L
that for the situation where H«L, letting H=0 in equation (1), then for z = 2.15a

X(x,y,zQ;0) = Hf̂ x.ŷ O) . (33)

When L = 2.15a , it is then assumed that this situation represents the first
Z

instance where the elevated stable layer or "lid" begins to influence the

vertical distribution of pollutants. Let the position x where this occurs be x,.:

a (xr) = TTTF = 0.47L (34)z L 2.15

Then, the value of x, is obtained by assuming that the power law, equation (18),

is valid up to xr, so that:

•̂(T) •
(35)

For x<x equation (31) holds, and for x,-$x̂ x , an interpolation scheme will be

employed. In order to avoid having a defined differently for different down-
Z

wind regions, the linear interpolation will not be employed. Instead, we will

employ the function which accomplishes very much the same thing but is continuous

for all x:

I (x) = •=• < 1 + tanh

X +X_
— u Lx = —-—

(36)

Finally we have:

/n /<7rX " ^Sr—I (37)

where a (L,0) is given by equation (32), unless noted otherwise. .It should be noted that
u
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we could well have applied our interpolation function directly to X to blend the

Gaussian plume into the vertical uniform distribution. However, in the

process we introduce the mixing layer influence into a "higher level" of the

model with subsequent expanded influence in the sensitivity calculations, i. e.

many more partial derivitives are then affected.
q(x) = qQ + q'exp(-Xx) ; (38)

100 - 1 + tanh (39)

(40)

az(x) = <c(l-I(x)) + (*>' (4D

/ T* TT\ I i I JL\J » vs<Ok ii f t f\\Oy = a (L,H) | 1-exp [ ) | (42)

= ou(L,0), H«L (43)

where

ou(L,0) = -~ (44)
/N/ 3

unless noted otherwise. av is virtually constant for x>x, and equals zero when

x = 0. This property guarantees o (0) = 0 which otherwise would not be the case
z

for an asymptotic interpolation function. The exponential in equation (42)
*

guarantees that a,, = 0 at x = 0 with a smooth transition to x = xr.V L

The technique employed above for fitting V. to V by matching second moments

was selected to provide a good fit for the widest range of measurement types.

However, for a given measurement scenario, other matching criteria may be more

suitable. We have already mentioned Pasquill's criteria, given by equation (23)

and the condition for maintaining most of the area of V^ below the mixing layer,

given by equation (26). Other possible criteria include: (a) matching the first

moments of 7.. and V about z = 0, i.e. matching the means; (b) matching the

medians of V, and V , i.e. requiring 7, to have equal area below and above the

altitude z = L/2; (c) Providing an overall least squares fit of 7 to 7 ;
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(d) matching the ground concentration provided by V to the value given by V ;

(e) minimizing the areas of mismatch between 7- and V near the ground and above

the mixing layer z = L\ (f). minimizing the total area of mismatch between V, and

V for all altitudes ẑ O. This condition can be shown to be equivalent to (e)

above for all practical purposes.

The results for the limiting values of the width parameters a (L,H) under

the assumption that L»H (i.e.. a (L,0)) and the corresponding ground concentration

7, (x ,0;H=0) are summarized in Table 2.

TABLE 2

LIMITING VALUES OF THE GROUND CONCENTRATION AND THICKNESS
PARAMETER 0 OBTAINED BY MATCHING V. TO V

UNDER^HE ASSUMPTION THAT L»H U

1.

2.

3.

4.

5.

6.

7.

8.

9.

Matching Criteria o (

Pasquill's Criteria d = L

30 at the mixing layer, z = L

Matching second moments about
z = 0

Matching means

Matching medians

Least squares fit

Matching ground concentrations

Minimizing area of mismatch wear
z = 0 and above z = L

Minimizing total area of mismatch
for ẑ O

L,Q)/L

1

0.3333

0.5774

0.6267

0.7414

0.6935

0.7979

0.6728

0.6730

F1(xu,0;0)/Fu(0)

0.7979

2.394

1.382

1.273

1.076

1.151

1

1.186

1.186
,-,

2 2
Variances of the Instantaneous Plume Centerline Distributions, D and Dg

As previously observed, the state of theoretical and observational knowledge

of the fluctuating plume parameters is rather limited. One_set of fluctuating
2 2

plume parameters is the crosswind and vertical variances, Dy and DZ, of the

frequency distribution of the instantaneous plume centerline displacement with

respect to the mean plume axis.
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2 2
One definite constraint on the functional behavior of D (x) and D (x) withy z

downwind distance is given by equation_(14) . Also, since the instantaneous plume
2 2

thickness never vanishes, Y (x)>0 and Z (x)>0. Hilst (1957) measured the variances

of the instantaneous and average plumes for very stable atmospheric conditions

and for distances less than one kilometer from the source. He found that the

power law:

~2 T2 2P ,._,.
Dy = DyQx , (45)

~~2
where D „ is a constant, satisfied his observations very well. For almost all

yO ~2
of his observations, he found that D contributed one half or more of the total

2 y
variance^ 0 and that these instances divided about equally between the situa-

2 y ~2 ~2 ~~2
tions D ~ Y and. D » Y . In any case, the implication is that for the range

y 2^2
of x considered, D ~ a . /From equations (16) and (17) , this implies that

0 2 2 0 ^ 2 ̂ 2 0 2i(a ) s D ~ < (a ) , and that the a priori value of D _ is ~i(a ) . Similarly

equations (16) and (17) imply that P ~ p ~ 1.0.

Since_the width of the instantaneous plume can never equal zero for x>0, we
2 0 2know that D ft < (a ) for all x>0. However, it is clear from equations (10), (16)
yO — j y

and (17) that Y must eventually predominate at large downwind distances, so that

if equation (45) were to hold to all Ô xS00, then equation (10) would require

P = P(x) -> 0, x»l. Since the fluctuations characterized by D are of amplitude

determined by the range of turbulent eddies whose scale is proportional to the

distance_from the source (Section II) up to some limiting scale, we would further
2

expect D to be a monotone increasing function of x.

~~2 ~2
Very little is known about the actual limiting value, D -> D m, or the

downwind distance x^ at which this situation approximately prevails. However,

theoretical considerations concerning the instantaneous and average peak

concentration values (Gifford 1959, 1960) suggest that:

X(PEAK)

The few measured values of this ratio that are available (Gifford, 1960) suggest

that x^ probably exceeds the 1-10 kilometer range . Whereas, the available ob-

servations (Hilst, 1957) suggest that the power law (equation 45) is reasonable

to distances of about one kilometer, at least.
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Let x - x be the hypothetical distance at which the power law would yield~

the value D = Dy
, if it were to hold that far downwind:

1/P

(46)

Assume that the power law is approximately valid out to a distance x £ Jx .
~~2 P

Furthermore, let the actual limit D ̂  be approximately achieved (to the 95%
y 2 .

level or better) at a distance x = 2x . Let the D relation provide a smooth

monotone transition in the range Jx £ x $ 2x . A functional form which

satisfies these requirements is:

Dy(x) = DyoiXptanh(iry y p

2P
(47)

We will take 1-50 kilometers as the assumed, range of x with an a priori value
2

of 10 kilometers. The a priori value of D will be obtained by setting4 y°°
x = 10 km (10 meters) in equation (45) with the a priori values of P

2 0 2 2and D _ = §(a ) from Turner's graphical values of 0 . The range of D

p = .903

can be

obtained by taking the upper and lower limits of the range x and the upper and
P ~2

lower limits on the range of p from equations (17) and (18). D ~ is, of course,

a function of atmospheric stability category with some uncertainty, say ±1

stability category.

~~2
Hilst's observations (Hilst, 1957) provided no information on D , since forz

the highly stable conditions of his experiments, the plume spreads very gradual-

ly in the vertical direction with no evidence of vertical meandering, so that
2
D (stable) = 0. Since both crosswind and vertical meandering are a result of
Z

the turbulent eddy motion, we can expect atmospheric stability, the presence of

an upper boundary (mixing height) and a lower boundary (ground) to produce effects
2

analogous to their influence on o .

By analogy with D , let us assume that the power law:

D?(x) = D^x25 (48)
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holds for x < Let D be the theoretical limit of equation (LO). Then:

x =
P

x'p)

and,

D(x) =
zO

(49)

2Q
(50)

•in the absence of on upper boundary. By Analogy with Hilst's observations for
2 • 2D , we will assume an a priori value for D _ =
y zu

0 2) for all stability cate-

gories. For stable conditions, the a priori value of D n is very small.zO

2 2
By analogy with D and a > we will assume that:y z

Q = Q (51)

with a priori values QQ
 z q_, Q' ~ q' A * X, from equation (22), i.e.

follows approximately the same power law as a for x $ x' /2. The discussionz p
concerning the a priori_values_of q(x) then applies to $(x). For very stable

2 2 2
conditions, however, D (x) ~ D m ~ D . are very small. Then, Q' * -Qn , Q - qn, A= 0.

Therefore, we set Q(x) ->• constant ~ 0 as x -> «> in the very stable case.
a

The situation where a mixing layer of thickness L is present can be formu-

lated in a convenient manner directly in terms of the concentration, if we assume

that the presence of the layer eventually causes complete mixing in the vertical

direction so that the mean plume is represented as having a uniform vertical dis-

tribution. We can extend the idea to the instantaneous plume by assuming that

local vertical meanderings and fluctuations are not really distinguishable in the

case of uniform mixing, so that the instantaneous vertical distribution is the

same as the mean vertical distribution, i.e. uniform. However, for.estimation

purposes, it is desirable to leave the form of the concentration equation unaltered,

and to express the effects of the mixing layer thru the vertical diffusion para-

meters. Expressing the, effects of the mixing layer_in terms of the vertical dif-
2 2

fusion parameters of the fluctuating plume model, D and Z , without altering
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the basic instantaneous concentration expression, (equation (12)) presents a more

complicated problem.

In the presence of a mixing lâ er of thicknessL, D (x) will approach a
2 2 2 2 2 z

constant value D ,., such that D ,. S D . If D r = D , the mixing layer is too
zL zL z°° zL z°°

high to have any effective influence on the vertical meandering of the plume

before it becomes_self-limited. The mixing lay_er effects are then felt through
2 2 2 2
0 and Z , since Z has become dominant over D under these circumstances. We
z —j z
can also expect that 0 < D ,, since the scale of turbulent eddies which determine
—j zL
D are not expected to be particularly suppressed by the upper boundary of the

mixing layer, and in fact should contribute to the "mixing" associated with the
2

layer. In this case, D (x) may be represented by:
Z

D2(x) = D2_ x-
z zO p

2Q
(52)

- )

(53)

We will take 1-50 kilometers as the assumed range of x' , with an a priori

value of 10 kilometers. $(x) is given by equation (51), with an a priori value

£?(x) ~ q(x) of equation (22) with the associated a priori values of (q«, q', X)

for the given stability condition (these values themselves have an uncertainty,

taken to be about ±1 stability category). The a priori value of D
zO (a°)2 for

z
the given stabilitv_condition (again uncertain to say ±1 stability category). The

e\ t

a priori value of D will be obtained_by setting x = 10km (10 meters) in the
z°° 2

power law, equation (48). The range D can be obtained by taking the upper and
z°° 2

lower limits of the ranges of x' , Q(x' ), D _ in equation (48).
p p zO

~2 ~2 ~2
If D T < D , then we are concerned with a situation where Z does not yet

zL—_- z00 J

dominate D when the effects of the vertical "lid" are felt. In that case, the
z ~2

mixing layer influences the limiting value of D and probably the way that limit
z

is approached. We assume that the critical distances involved are the same as
2

those defined for a , so that we may expect relations corresponding to equations
Z

(37)-(44) will be valid:
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(54)

q(x) = qQ + q'exp(-Ax) (55)

U
(56)

x +xr
— U L /r-7\x = —-— (57)

- D*0x«{l-I(x)> + ND. l-exp (58)

(59)

where equations (54)- (57) are identical to the corresponding a relations. We
2 2 2 Z 2 2

may note that ia (L,H) $ D < a (L,H), with an a priori value of D = |a .

The a priori- values for the other parameters appearing in equation (54)- (59) have

been discussed previously.

_ The remaining question concerns the criteria for selecting the particular
2

D functional form for estimation purposes in the presence of a mixing layer.
z

A possjlble selection criterion is to use relations (55)- (59), whenever the natural
2

limit D would be reached (according to the power law, equation (45)) well after
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the effects of the "lid" are felt, i.e. whenever x' > x . Equivalently,
P -k

whenever:

I? < 4.53(a°)2
z

zO

(60)

In practice, the decision will be made in terms of the a priori values, so that

equation (60) becomes:

2 z
J0(meters) (61)

2 2
Variances of the Instantaneous Plume Material Distribution, Y and Z

~2
For large distances x, Batchelor (1950) has shown that__Y (x) must become

2
independent of two particle statistics. As a consequence, D must apjrroach a

y 2
constant far downwind (see previous discussion in this section) and Y varies

2
as a , which is dictated by a power law. Hilst (1957) found that observations

of Y under most stable conditions for distances x < 1 km were very well predicted

by the power law. Consequently, for all x, the power law:

V. . VY (x) = YQx
2P

(62)

can be expected to provide a reasonable approximation. As previously noted,

Hilst* s observations indicated that meandering effects either dominated the

rela_tiye diffusion effects or contributed about equally, so that P~P~p and
2 7

0 < Y $ -|a .

Theoretical considerations and observations for neutral stability conditions

(Hogstrom, 1964) indicate for small x, that Y
2 2 2
~ when a is determined for

value of Y can be taken to be
0,2

averaging_times on the order of tens of minutes. Consequently, the a priori

If equation (14) is to be observed inw 2 y
strict equality then Y must actually be a weak function of x, i.e.:
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^

0x2
2x
2(p-P) *"yO

x tanh x_\ |2P -2P

(t) (63)

x
The expected value of the quantity in brackets in (63) is in fact =1 for x< ~*

With respect to Z , observations (Hogstrom, 19j>4_) for neutral stability con-
2 2

ditions and small downwind distances indicate that Z ~ fa . Hilst (1957) made
2 Z

observations of a under very stable atmospheric conditions, so that vertical
Z 2 Tmeandering was almost completely suppressed and a ~ Z . His observations were

2 z

limited in extent, but indicated that Z initially followed a power law:

2 2 20'•7 = 7 -X *L ZQ x (64)

2 2
but leveled out so that o ~ Z ->constant, for x > 300m. These observations do notz
contradict_§cjuation (14) with the functional form and a

2 2
by a and D .J z z

values prescribed

Since the very little theoretical or observational information that is

available concerning the behavior of the variances of the instantaneous relative

plume material distribution as a function of downwind distance, is not in con-

flict with the constraint condition provided by equation (14) with the functional
2 2 2 2forms and a priori values already formulated for the pairs (0,0) and (D , B ) ,

— 2 . ~~2 y z y z
at this point we may consider the quantities (Y. , Z ) to be fully described by

the expression equivalent to equation (14) :

Y2(x)

Ẑ (x) =

- »y(K)

(65)

Instantaneous Plume Displacements, D and D
y z

The displacement vector (D , D ) of the instantaneous plume centerliney z

displacement measured from the axis of the mean plume characterizes the stochastic
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nature of the instantaneous plume. Gifford (1959) assumed that the frequency

functions of D and D were independent and of Gaussian form. While both

assumptions seem reasonable, at the time that Gifford made them there was

virtually no observational data to either contradict or support this aspect of

the model.

With the advent of lidars, Hamilton (1969) was able to make observations

of the instantaneous properties of a power station plume at a distance of about

two kilometers. At that distance, the mean instantaneous size of the plume was

about 250 meters in the vertical and 400 meters in the horizontal. The scatter

of the positions of the instantaneous centerline was similar in extent, with the

crosswind scatter exceeding the vertical scatter. This is equivalent to the
2

statements already employed in this jsection _that on average,:-.Y and
2 2 2 2 2
D are each about -Jo and similarly Z and D are each about ̂ 0 . The frequency
y y z z
of incidence of the plume at various distances from the mean position of its

center had a distribution in the horizontal close to Gaussian. In the vertical,

the overall distribution was skewed, but the distribution below the mean position

was also fairly close to Gaussian. The skewness above the mean positions was

thought to be a result of more effective dispersion at the higher altitudes.

Consequently, discounting effects of vertical anisotropies in the turbulent

eddy transport which are beyond the scope of the current model, the Gaussian

assumption appears to be well founded.

Beyond the above observations, a number of other requirements of a quali-

tative nature can be stated. If a single realization of the plume is viewed,

as in a photograph, it has a sinuous appearance with both the amplitude and

effective local wavelength of the sinuosities increasing with downwind distance

from the source. Both appearances are due to the increasing scale with downwind

distance of the class of eddies most effective in dispersing the plume (section

II). From the point of view of modeling (D , D ), this suggests a quasi-
y z

sinusoidal form with the wavelength and amplitude proportional to the downwind

distance x, or equivalently, proportional to each other. The amplitude of the

stochastic vector (D , D ) is specified in a time average sense by the standard
/— rirr z

deviations ( ,3, I 2) which have already been discussed.\l i) \i JJy z

Certain statistical requirements may also be specified for (D , D ) based on
y z

general physical arguments:
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(1) The time average at any fixed position x is zero, i.e. the expected

value of the instantaneous plume centerline is just the centerline of

the time-averaged plume, by definition.

2 2(2) The variances (time-average of the squares) of (D , D ) are (D , D ),
y z y z

by definition. Based on previous discussion, these variances increase

with increasing downwind distance x, up to some limiting value.

(3) For fixed x, the time autocorrelations approach zero with increasing

time separation, due to the randomness and dissipative nature of the

turbulent eddies.

(4) The time average of the product of centerline displacements at two

different positions at the same time approaches zero with increasing

spatial separation, i.e. the spatial autocorrelations approach zero due

to the randomness and dissipative nature of the turbulence.

A fifth requirement has been already noted, i.e.:

(5) The probability distributions in time of D and D at any fixed position xy z
are Gaussian.

The functional forms for (D , D ) described below satisfies these criteria.
y z

To develop it required some effort which has been partially recapitulated in

Appendix A.

In summary then, the displacement vector (D , D ) is given by the relations:
y z

Dz(X)t) = fz(x)Yl (t)sin[c(f (x)+e) Y2 toCs-Ut)]
z ^ z z •*

(66)

where e is a small positive number, used to prevent singularity at the origin

(in practice, e is approximately equal to the inner diameter of the stack).

fy(x) =

(67)



YI (t) = N/U^ (t) + U2 (t)

y y - y

(t) = N/ U^ (t) + U^ (t)

z z

(68)

Y2 (t) = N/U^ (t) + u^ (t)

Y2 (t) = N/U* (t) + uj (t)
z z z

(69)

where (u.. , u , u , u , u , u , u , u ) are solutions to the differential
. . . y z y z y z y zequations'! '

(t) = - —— u
T 1
y y

(t) = - -^ Ul
z z z

(70)

u2 (t) =
y

u2 (t) =
z

-ru
2

 + V
2y y y

z z z

(71)
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u3 (t) --j-u +v
y y y y

u (t) -r~u +v
Z Z Z Z

(72)

"4y

u, (0 - -
Z

- U4 + V4y y y

z z z

The time constants are given by,

cf (~)

(73)

J U

cf <-)
T » 2

U

The scaling constant between the local amplitude and effective wavelength is:

(74)

c ~ 6 (75)

where, (v. , v^ , v^ , v_ , v, , v., , v, , v, ) are uncorrelated Gaussian pro-

cesses (white noise componentŝ  with zero mean and variances given by

Ev (t)v (t-J-t) = Ev (t)v
y y y T

Ev (t)v (t+r) = Ev̂  (t)v (t-H) =
y y y y

(76)

Evl (t)vl
Z Z

= EV2 (t)v2 (t+T) = T
Z Z Z

73 (t)v3 (t+T) ** Ev4 (t)v4 (t+1c)

z z z z
S(t)

where 8(T) is the Dirac" delta function.

(77)
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The limiting amplitude is given by,

fy(-) D

f («?)=/ D . or
z - Zlj

(when mixing height effects dominate)
(78)

2 2 2 2 2
D (x), D (x), D ̂ 5, D , and D j. have been discussed previously in this section.

It then follows that (y (t), y (t), y2 (t), y (t)) have probability
v y z

density functions: J z

Y e.xP ~

= z expI-

exp -

ZTT
exp -

(79)

It may be appropriate at this point to explore another model for the center-

line dispersion. Two salient characteristics of the center-line dispersion are

that it is normally distributed and correlated in time. If such characteristics

were to be found in an ordinary (not partial) differential system, then the model

would be taken as I .

d = - Ad 4- u , A>0 , (80)

where u is Gaussian white noise with covariance :
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Eu(t)u(t+t) = q6(T) ,

giving

e-MT|
Ed(t)d(t+r) = q —^x— ' (82)

Now this is fine for d(x_,t) where x is fixed. But how do we use this

model to calculate "d(x,t) for all x and fixed time? If we use this as the

amplitude of a sinusoid there are at least four problems: The amplitude and

wave length must be multiplied by an increasing function of x; when d passes

through zero, the function is zero for all x; the correlation doesn't go to

zero with increasing x; the distribution is not normal.

Moreover, there is a fundamental problem connected with the use of this

type of model. In an error analysis it is necessary to have a noise-free nominal

solution which contains all the structure needed in the analysis. In this model,

the noise free solution is zero and thus the plume does not fluctuate. To avoid

this problem a model such as (66) (with Y- (t) set to a constant value) would be

required anyway. Consequently we have formulated the system (66)-(79) as a

stochastic model with a deterministic model available merely by fixing Y-, (t) ,

Y, (t), YO (t) and Y9 (t) at typical values. ^
z y z
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V. SIMPLIFIED REMOTE AND

IN SITU MEASUREMENTS MODELS

The initial concern will be with more or less idealized models representative

of typical remote and in situ measurement types. The models will include the

general characteristics of a broad class of measurement types and will avoid in-

corporating specifics that are peculiar to a particular measurement system.

Within the scope of these generalized characteristics, the measurements will be

assumed to provide a IIperfect''v;qyanfeificatipn bf :the measured quality, except
* • • ' • ~ ' s ; . - };

for random measurement noise of zero,.mean.

This will serve to:

(a) Avoid additional complicating factors in the mathematical analysis

that might obscure the initial research effort.

(b) Avoid selecting a specific measurement system which is in fact under

development or experimental at the present time and, consequently,

subject to change.

(c) Provide insight into the advantages to be gained in actual applications

by the ultimate improvement of existing and prospective measurement

systems.

The measurement models described in this section will be used in conjunction with

the instantaneous and time-averaged pollutant dispersion models, parameter func-

tional forms and a priori information described in Sections III and IV.

Remote Measurement Models

A number of instrument systems, at various stages of design and development,

have been proposed for remote measurement of a variety of air pollutants. While

a certain class of optical sensors with a high threshold of sensitivity can be

employed to provide essentially point measurements of smoke stack emissions, many

instruments and important applications involve so called long-path or open-

path sensing which provides a spatial integral or average of some kind. Similarly,

remote measurements can involve time averages, but many important aircraft and
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satellite based techniques of interest here are more or less instantaneous.

We will employ the term "remote" or "fast response remote" to imply instantaneous

space-averaged measurements, unless specified as "slow response remote".

Remote sensors are most often considered for application from airborne or space

platforms. However, many of these techniques are applicable for ground based

systems. As a basis for the remote measurement model, we will consider a downward

(nadir) looking, non-imaging sensor based on a remote platform, which in practice

will be either an aircraft or an earth orbiting satellite. The field of view of

the instrument will then approximate a right circular cone (Figure 4.0) with the

apex at the platform altitude, z = z; . For current state of the art sensors, the

plane half-angle field of view <}> (Figure 4.0) is about 0.05 radians (Friedman and

Ghovanlou, 1974). This corresponds to a "footprint" (circular base of the cone)

diameter of about 100 km for a satellite at an altitude near 1000 km.

Proposed environmental monitoring satellite instruments are expected

to have a footprint diameter in the range 40-100 km (Smith, Green and Young,

1974a). For a high flying aircraft (18-20 km) in the stratosphere well above the

tropopause, sensors with the same field of view will provide a footprint diameter

of about 2 km. The footprint would be reduced further for a low flying aircraft.

For an aircraft flying near the tropopause at about 10 km the footprint for the

same field of view would have about a 1 km diameter. It is reasonable to suppose

that advances in the state-of-the-art will soon reduce the feasible footprint

diameter to the 100 meter range for aircraft based instruments. In any case,

further reductions by a factor of three or four in the sensors normal field of

view can usually be achieved by application of external optics.

There are a number of time constants associated with actual sensors, which

will be idealized in the present treatment. The instrument lag time, Tn, is

the time required to produce the first output response after exposure to an

input signal (a step forcing function for definition purposes). It will be

assumed that:

TQ = 0

Some remote sensors can produce output data on a continuous basis. These

"analog" devices include dispersive and non-dispersive correlation spectrometers,

laser absorption spectrometers and radiometers (Friedman and Ghovanlou, 1974).
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However, certain sensors require a finite collection time, T , to accumulate
L»

sufficient input data to produce a single satisfactory output datum. These

sensors include interferometers of all kinds. In some cases, T may be the
- - . -- - - - - - - ' . - - - - . . = ~ V

time required for a single scan taken at a slow rate with a long time constant.

In other cases, T may consist of the total time of a series of scans of short
C

time constant, i.e. T = ST , where S is the number of scans per datum and T is
W ^ O

the time per scan. The series of scans is then averaged to produce the single

output datum. In either case, we will assume that:

V T
-^ « 1 , (82)

where Df is the diameter of the footprint and y is the ground-track speed of
t-t 8

the platform.

Another time constant, associated with analog sensors, is the response time

T , which is the time required for the amplitude of the output signal to reach (1 )
8. e
63% of the peak value in response to step forcing function input. While in

the field of view, the input element produces a response which has the time

dependent form, [1 - exp(-t/T )]. The response decays as exp(-t/T_), when the
K K

input element leaves the field of view. We will assume that:

V T
-£-̂  « 1 . (83)
Uf

On the basis of the above conditions, a single output datum of the sensor can

be assumed to represent the total burden of the pollutant of interest contained

within the conical field of view at that instant. However, the total burden will

still be a time average over T or T (whichever is applicable) as far as the
K. L»

plume is concerned. However, if the instrument time constant (T or T„) is small
K C

compared with the time scale of the plume fluctuations within the field of view,

then the measurement can be assumed to be instantaneous, i.e. the measurement

refers to the fluctuating plume.

The scale of eddies, A, which are the dominant source of the plume fluctua-

tions have a spatial range D < £ < L (Section II), where D is the average

instantaneous plume width (crosswind for the current application) and L is the

tt
For a high altitude spacecraft, the platform trajectory speed, y, may be sub-
stantially greater than the ground-track speed v . For an aircraft, v ~v.

• ** o
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downwind distance from the source. As a measure of D we may take an average
I 2

value of four standard deviations v Y of the instantaneous plume crosswind

material distribution at the downwind location of the instantaneous groundtrack

position.The value of four standard deviations is based on two standard deviations

on either side of the instantaneous centerline. On the average (Section IV),
2 2 I /2/ I

Y ~ %a , so that the average value of D is then ~ 4Ej V Y*" j ~ 2 -v2a . Using x = L

in equation (16), D - 2 V2o L . Since the characteristic time scale of the
^ y r~ o L^ L

fluctuations is ST ~ — (Section II), we have 2 v2a — < ST < —'• Consequently,

the measurement may be assumed to apply to the fluctuating plume whenever:

_ — . (84)
R y U

In practice, if more than one source is involved, the range of distances from the

sources may be large. In that case, we may replace L in equation (84) by the

minimum value L . that is of practical concern. L . must be defined by theman min J

horizontal resolution r_. of the measurements, so that:
Ih

r'n (rih>
;T ) < 2N/2aU —^ (85)

for the fluctuating plume.

Similarly, the measurement may be rigorously applied to the average plume

(i.e. the expected, value of the fluctuating plume), whenever:

(Tr;T ) >- (86)
C R U

Actually, L is only an upper bound for D, so that the average plume will probably

be a valid representation for averaging times somewhat shorter than L/U. The

averaging times, 6t ~ —, for the average plume based on a nominal wind speed of

U = 5m/sec ("10 miles/hr) are given in Section II. It should be noted that in

terms of the (x,y,z) coordinate system, defined in Section III, x = L.

If equation (82) is violated, the measurement model is no longer concerned

with the volume of a cone but with the locus of the cone along a segment of the

ground-track. If TC is so large that condition (84) is violated, but not large

enough to satisfy condition (86) for the spatial scales, L, of interest, then

the measurement model is not strictly representative of either the fluctuating

plume concentration or the limiting expected value of the fluctuating plume.
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The rigorous concentration expression will then be the time average concentration:

TC

where X is the instantaneous plume concentration. Consequently, the only class

of remote measurements relevant to the current state of the art of sensor-platform

configurations which allows the minimum of mathematical modeling complications is

the category of fast response remote measurement satisfying conditions (82), (83)

and (84).

With the above restrictions, the measurement may be modeled as (Smith, Young

and Green, 1974b):

$(t) = K OLl/?J(z)X(x,y,z,t;H)dV + R. •*• en (87)
U •/«/•/ -L \J

VC

where V is the volume of the conical field of view, K_, is the instrument gaino u
or sensitivity, K- is the instrument bias, EO is the random error in the measure-

ment with zero mean and variance a , and J(z) is an altitude dependent weighting

function. X(x,y,z,t;H) is the instantaneous concentration of the plume (equation

12).

The weighting function J(z) is a highly instrument dependent function • In

keeping with our immediate objective of simplicity, we will assume

that <7"(z) =1, 0£z£°°. We will also assume that Kn = 1 and K- = 0 in equation

(87). In addition to the (x,y,z) Cartesian coordinate system used in equation

(12) and described in Section III, a subsidiary Cartesian coordinate system (£,n>

c;), convenient to the remote measurement geometry, will also be employed (Figure

4.0). The origin of the (£,n»£) system is at the subplatform point or instantan-

eous ground-track position given by (x = x0, y = y_, z = 0). The platform is at

z = c = £ . The plane half-angle field of view is <j>, as previously noted. The

transformation is given by:

56



,t = X - X,

n = y - Y (88)-

= z

Then, equations (12) and (87) give:

2TTU

,-1/2 -[n+y0-Dy-
>»A0'I

 6XP
x

exp

,2 n
(89)

+ exp dA

2 2 2 ? 2 2
where A_ is the area of the circular base of the cone, p = E, + n , and p~ = c, tan <

The inner integral (over £) which we will denote by $ , has two parts. One

part, corresponding to the point source, has £-H-D in the exponential and onez
part, corresponding to the image source, has £+H+D in the exponential. We will

z
denote these two parts of the inner integral as * and $ , respectively, so

that $ = * . + * . * + can be expressed in terms of error functions (Abramowitz
3̂ t~* •* ^ •"*

and Stegun, 1970), so then:

*c = J~r- <erf | 12Z' ? -pcot(j)+H+D )

(90)

erf I \2Z ) (t, -pcoti})-H-Dz)
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The complete integral, equation (87) can be expressed in terms of (£,n) or,

equivalently, in terms of the polar coordinates (p,̂ ) as shown in Figure 4.0.

The expression in terms of (C>l) has an advantage in that none of the dispersion
2 2

parameters D , D , Y , Z depend upon n. However, the complicated manner in which
y z

H enters the argument of the error functions in the integrand does not lend itself

to the application of standard incomplete integral expressions in terms of special

functions, so that in either case the area integral must be done numerically.

Smith, Green and Young (1974a) have presented a technique for the numerical

integration of equations (89) and (90) in modified polar coordinates. They point

out that the cartesian coordinate system (55n) requires a very fine rectangle

grid to obtain a reasonably good fit to the circular boundary, whereas the con-

ventional polar coordinate system tends to concentrate in the region of the origin

the points at which the function is evaluated, and leave these points relatively

sparse in the outer portion of the region, when equal increments in A^ are employed.

Equations (89) and (90) can be simplified considerably for the special

situation where the platform is, a satellite at very high altitude above the

tropopause (altitude h ), i.e. —— « 1, and the field of veiw is very narrow,
f\ T\

tan <j> = — « 1. In that case, the concial field is approximated by a cylinder

with the same footprint. An additional condition for the cylinder to be a good

approximation of the cone below the tropopause is — *• « 1. The boundaries
fof the cylinder depart increasingly from the cone as £ -> £ . However, at high

platform altitudes, the integrand, X, will be vanishingly small since the plume

concentration diminishes as a Gaussian away from the plume axis and most of the

pollutants are effectively confined in the troposphere, in any case. Consequently,

the integral can just as well be performed over the infinite cylinder (c -»•«>)

for this approximation. Then

$„ =?°°
exp

2Z

+ exp

2Z

(91)
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men,

0

exp
- [n+2n(y0-D

(92)

which can be integrated with respect to n (Abramowitz and Stegun, 1970):

erf

(93).

+ erf

and

* (t) = =£=
•s/Jtou

(94)

Integral (94) can be calculated using any number of standard numerical integra-

tion procedures, such as Simpson's Rule.

In spite of the convenience of the cylinder approximation, caution must be

exercised before applying it, even when all the stated conditions are satisfied.

A single remote measurement has very little inherent vertical resolution when

considered in isolation. However, when the fields of view of a sequence of

measurements overlap, then the regions of the intersections have a potential for

providing much more vertical resolving power than any measurement of the sequence
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has in isolation. If ft is the data rate (measurejnent/sec) then the condition
v ft

for the intersection of successive footprints is g • ,

In Situ Measurement Models

In situ measurement systems which depend on atmospheric sampling or direct

physical contact of some kind are usually thought of in terms of ground based

monitoring. However, some efforts are underway to apply certain in situ tech-

niques to low altitude airborne platforms including helicopters. A distinction

is sometimes made if a sample is taken in situ but analyzed some distance away

and perhaps at a much later time as is often done with grab samples. In the

transfer process, the sample may undergo changes so that it no longer provides

a strict in situ measurement. Consequently, measurements of this type are some-

times referred to as "sample" measurements rather than "in situ" measurements.

We will use the term "in situ" in a general sense to apply to measurements

relevent to a particular point in space, although perhaps averaged over time in

some way.

The in situ measurements of interest here can be categorized as being either

instantaneous or time averaged, airborne or ground based, fixed site or mobile.

We will confine our attention to in situ measurement which are relevent to a
«

particular point in space. This specifically excludes the category of time

averaged measurements taken from fast moving mobile platforms such as aircraft,

even though these measurements involve atmospheric sampling or direct physical

contact methods that usually define an in situ measurement. As a result, we will

be concerned with:

(A) a set of instantaneous point measurements relevant to the fluctuating plume

concentration X(x,y,z,t;H) (equation (12)):
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where r. H (x., y., z.). K. and K. are the gains and biases associated with
1 1 """ 1 """ •> 10

the instruments at positions r.. e. are the random errors in the measurements

at position r. with zero mean and variances (a.) . We will assume that K. = 1
^ x i I

and K. =0, for the current application. If the instantaneous measurements

are taken continuously in time, then we are concerned with:

VV^ = {X(ri'fc) + ei} > i=1»-.-»n; tjSWtg (96)

(B) a set of time averaged point measurements relevant to the average plume

concentration X(x,y,z;H) (equation (1)):

> i=l,...,n (97)

where k. and k. are the gains and biases associated with the instruments at

position r.. e. are assumed to be random errors of zero mean and variances
—2 1 0 1 1
o".. Again, k. = 1 and k. = 0, in order to avoid instrument specifics. In

practice there may be a set of measurements for each position r. taken at

several times, t.(j=l,...,m): . , •

(?i)t = (kjx(?±) + kj + £±)t , i=l,...,n;j=l,...,m (98)

X(r.) has no time dependence over the time scale t during which the average

values of the meteorological parameters (mean wind U, mean wind direction &,

mixing height L, stability class, etc.) apply. In practice, the (T.) which
1 i —fall within the period t_$t^t0+At, At£t , are averaged to produce the ¥.. If

(e.) are also assumed to be random errors of zero mean and variances (a.) and

if the measurement times t. are far enough apart to avoid serial correlations due
—2to specific instrument time constants (i.e. no time correlations), then a. (the

variance of the average) is given by:

(99)
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where

v^Z/Vt. (ioo)

—2
Otherwise, the calculation of a. must take into account the correlations result-

ing from the instrument specifics.

Considerations of Averaging Times

At this point it becomes necessary to become more precise in our use of the

term "averaging time." One "averaging time" is a result of the.finite response

time of the instrument, consisting of the time constants of the electronics, the

chemical processing times and inertia related to moving mechanical parts. Any

high frequency fluctuations of the measured phenomenon that are more rapid than

this time period are naturally filtered out and the information is irretrievably

lost. We have employed the term "averaging time" or "instrument averaging time"

for this time period, in conformance with convention in most of the literature.

Another kind of averaging time is a result of the finite period over which

measurements are made. If the measurements are sampled and analytically averaged

to produce a smoothed or average value, then the term "sampling time" or occa-

sionally "measuring interval" is applied to this longer time period defined by

the analytical processing. We have employed the term "averaging time" to mean

either strict instrument "averaging time" or "sampling time", if the latter is

applicable, for general discussion which is not specific to particular measure-

ment types or processing procedures.

In equation (98), the time averages of the (¥.) pertain to the instrument
•*• 4̂

averaging time, whereas the time averages of the ¥. of equation (97) pertain to

the sampling time At, if the ¥. were obtained from the (¥.)
1 X fc
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In the interest of simplicity, we are excluding the category of time-averaged

in situ measurements taken from a rapidly moving platform. The model for this

class of instruments involves calculation of a formal time average and path integral

over a segment of the platform trajectory of the fluctuating plume concentration

X(r,t).

In dealing with time averaged measurements, we will restrict our attention

to averaging times <5 hours. This limit has been selected to approximate the

time scale T which allows the direction of the mean wind 6 to coincide to a

reasonable degree with the observed direction of the actual wind at any random

time point in an interval T (i.e. small variance). Experience suggests that the

application of a mean wind (magnitude U and direction 6) is quite good over an

interval of 2-3 hours, but breaks down quite rapidly after 5 hours (Slade, 1968).

The value of 5 hours also coincides with the appropriate averaging times for

which the average plume model (i.e. the expected value of the fluctuating plume)

will be valid at down wind distances ~100 km. The value of 100 km is also the

characteristic dimension of a typical urban air quality control region.

If averaging times exceeding 5 hours were to be considered, then higher order

statistics than the mean value would have to be taken into account for the pre-

vailing wind, mixing height, stability class, etc. The model then involves a

variable wind direction, and other variable meteorological parameters which are

stochastic variables governed by probability distributions. A treatment of this

problem has been given by Calder (1970) for application with the standard

Gaussian (i.e. average value) elevated point source plume model.

As previously noted '(in Section II) for a given downwind position L from a

point source, there is an averaging time (actually, time Tange) 6t ~ — that will

be just appropriate for the measurement to apply to the average plume representation

(i.e. expected value fluctuating plume). This order 6t is the value required to

view approximately the same values of the state (e.g. peak concentration) more

than once, i.e. in order to properly average out the meandering effect. The

average plume model still applies for averaging times 6T much larger than this

(i.e. 6T»6t) , assuming that the average wind is still a valid concept. However,

the representation then includes the dispersion effects of the larger scale eddies

that an observer at position L would attribute to fluctuations in the mean wind

(Scorer, 1968). The average plume is then broader ( i.e. larger values of a and
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and a ) and exhibits a smaller peak value at position L. If 6T«6t, then the
z

correct local representation is given by the fluctuating plume.

In the current application, we will be mixing a priori- data with various

measurement types having different fundamental time scales. These measurements

will generally be made at different positions over an urban area, and will per-

tain to various scattered sources. If consistency is to be achieved in the

estimation procedure, then a technique for relating all these divergent time

and space scales of the measurements and the phenomenon will be required.

The a priori values of o (x) and o (x) are based on the curves given by

Turner (1970). These curves and the corresponding functional representations

have been discussed in Section IV. The applicable wind speeds range from U<2m/sec

to U>6m/sec, depending on stability conditions (Turner, 1970). Turner (1970)

reports that these curves "are representative for a sampling time of about 10

minutes". However, this must apply to the smaller distances, since 6t ~ L/U

implies that for any reasonable wind speed, a sampling time of 10 minutes at

the 100 km downwind distance would still apply to the fluctuating plume! Most

of the original data was in fact taken at distances <1 km from the source and

with very little data near 100 km, so that the curves are essentially extrapola-

tions at the greater distances (Pasquill, 1974). Turner has indicated reasonable

accuracy for distances ranging from "a few hundred meters to 10 km or more"

depending on stability conditions. For a sampling time of ~10 minutes and wind

speeds ranging from 1-10 meters/sec, 6t ~ L/U implies values of L ranging from

600 meters to 6 km. Therefore, the a. priori information based on Turner's curves

can be taken to represent the shortest averaging time applicable to the average

plume, which can then be approximated by 6t ." L/U for any downwind distance L.

Consider a measurement of given averaging time 5T, positioned some arbitrary

distance L downwind from the source. In terms of the (x,y,z) coordinate system

of Section III, L = x. In the following development, we will employ x, with the

understanding that x = L applies to the position of the measurement. This will

serve the purposes of most estimation theory applications. However, for certain

simulation purposes, one may be concerned with relating other positions x to the

particular x = L in a specific way. This problem will be considered following

the main development.

As previously noted, at position x = L the characteristic time scale 6r of the
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eddies governing the crosswind fluctuations is given by the relation:
i— n xP -x

2N/2 a ^ < ST < * (101)
7 U , U

where a xP is the a priori value determined from Turner (1970). Since the range

of ST -Is not precisely defined in any event, we!will assume that equation (101)

also defines the time scale for the vertical fluctuations. The condition for the
i— 0 xp

measurement to strictly apply to the fluctuating plume is then 6T $ 2 \I2 a —.-.
7 vjj

For the measurement to strictly apply to the average plume model, the condition

is <5T > ̂  . For ST within the range of ST (equation (L01)), then the actual time

average of the fluctuating plume model is involved:

X(x,y,z,t;H)dt, ST'ST . (102)_JL f
<5T J

However, \te will apply the measurement to the fluctuating plume model whenever

6T is less than the midpoint of the range ST. Whenever ST is greater than or

equal to the midpoint of the range of ST then the measurement will be applied

to the average plume model. Therefore, we define

"67 = — (l+2N/Ta°xP~1) (103)
2U y ;

so that the measurement applies to:

(A) the fluctuating plume, i.e. the measurement is of the class Y .(r.,t.),

whenever ST < ST;

(B) the average plume, i.e. the measurement is of the class ¥.(*.)»

whenever ST £ ST. Considering the situation given by ST £ ST further:
..... yr

(a) when ST ̂  ST $ — then, we will assume that the measurement applies

to the plume where the averaging time is Just sufficient to average

out the meandering effects of the dominant class of eddies. We have

previously denoted the concentration for this plume by X with the

plume variances 0 (x) and a (x). We will refer to X as the optimumy z
time averaged plume concentration.

2£

(b) For the case ST > — , then the average plume applies with standard

deviations 0 (x,6T) > a (x); 0 (x,ST) > o (x), and the averagey y z y
plume is broader and has a correspondingly smaller peak value (on

the plume axis) than the optimum time-averaged plume for the same

downwind position . We will denote the concentration expression for

this plume by X.
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The question now arises as to how to properly relate a (x,6T) to 0 (x) and

o (x,6T) to a (x) . The averaging time, corresponding to a (x) and a (x) is
z z _ y z
assumed equal to <5t ~ x/U. Turner (1970) citing the research of a number of in-

vestigators suggests the relationship for the concentration relevant to averaging

times 6T > 6t:

X = X (J|)S , (104)

where 0.17 £ s £ 0.20, and the relation is most appropriate for 6T < 2 hours.

X and X are the concentrations for averaging times ST and St, respectively. Con-

servation of mass suggests a relation between the product of the peak values of

average plume concentrations, Peak (X) and Peak (X), and the corresponding standard

deviations of the plume material distributions (a , a ) and (a , a ) for all

averaging times:

(Peak (X)) • o~(x,6T) • ̂T(x,ST) =

(105)

(Peak (X)) . a (x) • a (x)
y z

The peak values Peak (X) and Peak (X) occur on the plume axis, so that Peak (X) =

X(x,0,H;H) and Peak (X) = X(x,0,H;H), where X is given by equation (1) with 0 (x)

and a (x) as the standard deviations, and X is also given by equation (1) but with

o (x,6T) and a (x,6T) as the standard deviations. Equations (104) and (105) give:

^V=ay°z(f)S (106)

Assuming the same dependence on averaging time for both a and a , gives:
y z

- £ - € >fy z

or in terms of the variances:

ay
Williamson (1973) suggests that the peak concentration of the average plume

will diminish as 6T for values of 6T between 10 minutes and 5 hours, while a

6T dependence for the peak concentration seems appropriate for values of 6T
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less than 10 minutes. This again implies the validity of equation (108), but

with s = 1/2, 10 minutes < 5T < 5 hours and s = 1/5, 6T < 10 minutes. The value

s = 1/2 agrees with some theoretical values based on statistical turbulence

theories (Hino, 1968). For the dependence of crosswind standard deviation of

the mean wind direction afl on averaging time, Slade (1968) suggests:

/6T \a
0e(6Ti> - (vrj W <109>

where a - 1/5 and since a ~ a.x equation (109) implies (108), but with s ~ 2/5.
y 6 •

We will employ the relation: . . •

* * -a &> <5T) - o> x

where the expected range of s is 0.15 $ s(6T) S 0.50, and a priori value is

s(6T) 3 0.20. The assumed functional form of s(<5T) is

s(6T) = <

s_ , 6T < 10 minutes

s , 6T 5 10 minutes
m *

(111)

s(6T) is now another function to be estimated, but can be assumed to be a

function only of meteorological conditions, general topography, etc. so that

it is not a source dependent quantity.

— 2
For the vertical variance a we will employ the relation parallel to

z
equation (110), with a given by equation (19):

(112)

when there is no appreciable influence from a mixing ceiling.

The representation of a (x) for the situation where the influence of a
Z

mixing layer of altitude L will be felt has been given in Section IV (Equations

(37)- (44))- In this representation, a (x) approaches a limiting value
Z

a (oo) •= a (Z,,H) - a (L,0)- Under no circumstances will an observer
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employing an instrument with an averaging time 6T, view the plume as having any

appreciable penetration above the mixing ceiling, assuming that H<L. Therefore,

a (x,6T) S a (L,H), for all 6T and all x.

Following a concept similar to a proposal of Pasquill (1974) for represent-

ing the influence of the "lid" at altitude L, we will assume that there is vir-

tually no influence on a until it achieves a value ~—. Therefore, we let o

be approximately described by the relation (given by the square root of equation (112))

o (x,6T) = a
Z

fust >s(6T)

(113)

. In the region where equation (113) yields valuesup to point where a is - r
Z £

of a > a , we impose the condition a (x,5T) $ a (L,0) as a weak upper bound on
11 ^ Z U.

o in the sense that | a -a (x,<$T)| < ea , e«l, for all x and 6T. In the region

where equation (113) provides values of a in the range a /2 < a
Z U

a , we require

some smooth transition to the weak upper bound. A representation of the variance
__ o

a , satisfying all of these conditions is:

—2
oz (x,6T) ={a K(o ) -f 0 (L,0)[1-K(0

£• £* IX H (114)

a *(x,6T) = a (x) (115)

ou(,,0, - -*=., unless noted otherwise (116)

. /I l-ai-iVi- < j- tann
8a "-60z u

au
(117)

where a (x) is the representation for the vertical standard deviation or thickness para-
Z

meter of the optimum time-averaged plume in the presence of a mixing layer (Eqns. (37)

- (44)).
—*

The properties of the function K(a ) are shown in Figure 5.0. The parameter
Z

s(6T) in equation (115) is still given by equation (111). If, for estimation pur-
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poses, a smooth transition is desirable between s- and s^ in s(6T), rather than

a step discontinuity at 6T = 10 minutes, this can be provided. Referring to the

data presented graphically by Hino (1968), the transition probably takes place

smoothly in the range 9 minutes $ 6T < 12. minutes.

If we let <5T equal the lower bound of the transition range, i.e. 6T ~ 9
Li Li

minutes, and ST equal the upper bound of the transition range, i.e. 6T ~ 12u
minutes, then an appropriate interpolation function can be formulated by analogy

2 2
with the function I(x) formulated for application with a (x) and D (x) (Section IV)

(118)

«ST =
6T +5TTu L

Then,

s(6T) = s0(l-It(6T)) It(6T) (119)

If, for any reason it is of interest to simulate the plume corresponding to

the measured plume at downwind position x (with an instrument having an averaging

time 5T) at any other downwind position x , then X is given by equation (1) with

a and a given by:y z &

ay(x1,6T) = ay(x

a (x-,61) (or a (x,,5T) in the presence
Z 1 2 1

of a mixing layer)

(120)

If, however, one wanted to measure the plume corresponding to the measured plume at

downwind position x (with an instrument having an averaging time 6T) at any other

downwind position x,, then a different instrument averaging time ST.. is required:

x (121)

70



It should also be noted, that while an estimator will adjust certain para-

metric constants it cannot alter the basic physical assumptions of the model.

For example, the variance of the crosswind plume dispersion of the steady-state

plume has been assumed to follow a power law relation:

2 , CK2 2p
°y

 = (°y>
 x •

The estimator cannot change this assumption! What it can do, however, is adjust

the values of the constants 0 and p. With the addition of an estimation algorithm
. 7 Q

to the air quality simulation model, certain physical parameters such as a and

p are no longer fixed aspects of the simulation but are automatically adjusted to

provide the best approximation of reality implicit in the measurements. These

measurements also have associated uncertainties which the estimator takes into

account.

The measurement models developed in this section, in turn, employ the dis-

persion models for the instantaneous and time averaged concentrations (X and X)

presented in Section III and the individual parameter models and a priori, informa-

tion developed in Section IV. This completes the basic mathematical modeling

required for the application of formal estimation theory techniques to the problem

of air quality estimation for elevated point sources.
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VI. CONCLUSIONS

The application of estimatipn theory, which originated in guidance and

control research, to the analysis, interpretation and use of the various types of

air quality measurements in conjunction with pollutant dispersion simulation

models can provide a cost-effective method of obtaining reliable area-wide air

quality estimates. In order to apply estimation theory, one requires not only

parameterized dispersion models but measurement models consistent with the measure-

ment processes of interest,: as well.j. These two areas of modeling involved in the

estimation process must be mutually consistent in terms of their fundamental

assumptions and approximation^i: The same internal consistency is required for

the incorporation of any a priori information concerning the physical processes

and model parameters. The application of a priori- parameters alone with diffusion

models corresponds to conventional simulation practice. The optimum combination

of a priori knowledge (plume parameters and uncertainties) and air quality measure-

ments in conjunction with plume models through a systematic parameter estimation

p-rocedure to provide improved air pollutant dispersion simulations is the ultimate

objective of the current research effort.

One of the principal features of the model development described in the

previous sections is a method for low dimensional modeling (in terms of the

estimation state vector) of the instantaneous and time-averaged pollution distri-

bution. In summary, some of the specific aspects of the results discussed in the

preceding sections are:

a) Extension of the fluctuating plume model of Gifford (1959) to provide

an expression for the instantaneous concentration X due to an elevated point

source. This model has the important property that the formal calculation of its

statistical expected value is identified with the expression for the mean plume

concentration X based on the Gaussian point source plume model given by Turner

(1970). Formal mathematical relationships between the basic parameters of the

fluctuating and steady-state plume models then provide a theoretical basis for

relating instantaneous and time-averaged plume measurements.

b) Development of individual models for each of the parameters appearing

in both the instantaneous and time-averaged plume equations, including the

stochastic properties of the instantaneous fluctuating plume. The particular

requirements of the estimation theory application have been factored into the

model development.
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c) Development of models of the various measurement types for application

with real measurement data and the plume models in an estimation procedure.

The•various levels of model development provide a basis for the systematic incor-

poration of a Tpviovi, dispersion knowledge and associated uncertainties with

different measurement types using estimation theory techniques to provide air

quality estimates on self-consistent time scales.
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APPENDIX A

DEVELOPMENT OF INSTANTANEOUS

PLUME CENTERLINE MODEL

Let us consider the development of a functional form for D(x,t), where the

symbol D(x.t) will be understood to refer to either D (x,t) or D (x,t). Similarly,
2 n ~2 ~2 y z
D will refer to either D or D . Let Z(x) denote the standard deviation of D
n i - y z TI r\
(£ =J 2). The form of £ will be given by the square root of expressions like

equation's (47), (50), or (58). The pertinent constraints for our model, however,

appear to be that 1(0) = 0, £(x) is monotonically increasing, and 2L(x) is bounded

for x>0.

We wish to find a function, D(x,t) which describes the position (in n) of

the instantaneous plume centerline. This function must, for fixed time, be

oscillatory in x with increasing amplitude and wavelength. For fixed x, its

time average must be zero and its standard deviation must be £(x). It must

additionally satisfy the properties that both its x and t correlations go to

zero with increasing separation and that for fixed x the dominant behavior as

time passes is that the upstream pattern drifts by at the mean wind speed.

The basic initial form was:

x̂,t). (Al)

It is required that, for fixed t, the wavelength should bear some relation to

the amplitude, i.e. if g(x+A,t) = e(x,t) + 2ir, then A = cf. This constraint was

implemented by letting
f>

9 TT - *>(x-ut) • (A2)

where U is the mean wind speed and e is a small positive number, used to prevent

singularity at the origin. In practice, e is approximately equal to the inner

diameter of the stack or exit orifice. For fixed t, letting A be the effective

wavelength ,

Al



x-Ut
{A3)

_

c f<:x+A)+e fn(x)+e

It can be assumed that the change in amplitude (given by f) will be small over

one wavelength (A) and therefore the approximation can be made that A = cf (x) ,

which is the desired condition. The constant c is equal to 2ir for a sinusoid, so

that we will take c ~ 6.

The introduction of time dependence in the form (x-Ut) is the standard

procedure for guaranteeing that, as time passes, the upstream wave passes by.

Djfr.t) = f(x)sln[c(̂ e) (x-Ut)J (A4)

is completely deterministic; for fixed x, the centerline is a sinusoid with fixed

amplitude and wavelength. Some randomness must be introduced, however. A random

(in time) additive phase angle is a simple way to provide this variation, but is

not completely satisfactory in that the maximum amplitude for fixed x is constant,

the x-correlation does not go to zero0 andtthe distribution for fixed x is that of

sin t, i.e., the density function of ,., > can be shown to be of the form:
JnW

/ (n) = * (A5)
n /, 2—$• ir v l-n
n

where n = y for D and n = z for D .y z

In order to provide a random amplitude and at the same time given D a normal

distribution, a multiplicative Gaussian process was introduced:

D(x,t) = f (x)Yl(t)sin[̂ |̂ j- (x-Ut)] (A6)
n n

where y,(t) is a random process with density function:

n ( n:f (n) = -^ exp - -±- , n > o (A7)
Yl sf ( 2s, )n i l
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/ - 2 2
Y1 has the properties Ey, = vir/2 s, ; Ey, = 2s ; Mode = s ; Median = 1.1774s ;

J, . ri /IT 9.

E(y, - VTT/2 sn ) = — r— si1. It can then%e shown that the variance of D(x,t) for
— 2 1 2 2 n

fixed1 x is D = f (x)sn.n n i

Now consider

(x-Ut)l x

(A8)

This depends upon the correlation time of y-i > tmt will never go to zero because

By-, ? 1.25s, > 0. Thus, a second random variable Y5 is required in the represen-

tation, with frequency function

( j
" »

e x p _ _ n>0 (A9)
«s2

Then :

D(x,t) = f(x)Y1(t)sinr-7|̂ T Y9(t)(x-Ut)l . (A10)
n n 1^ Lc(f+0 2^ J

Y7 has the property of modulating the frequency in a random fashion, thus making

the correlation of Dngo to zero (in both x and t) as the separation goes to

infinity. Consider first:

Ef)(x,t)D(x+A,t)) =
\n n '

(All)

where the expectation operator can be distributed because of independence and
2ir

w(x) = ., , . . . It can be shown thatn c(e+f(x))
n

lim Efsin[o)(x)Y0(t)(x-Ut)]sin[u(x+A)Y0(t)(x-Ut+A)])= 0 . (A12)A \ n *• T\ ' t. ' i-» x '

and that

lim E(Djijx,t)DTjxst+T))

^

lim f(x)E(Y1(t)Y1(t+T))E(sin[a)Y2(t)(x-TJt)]sin[ojY2(t+T)(x-Ut-TJT)]) = 0. (A13>
n n n n

A3



Because y?>
 as well as YT» should have small probability of being zero (in

order to prevent the identical vanishing of D(x,t)), the same distribution has

been used for both Y-I Y2» i.e.:
n

2 2
n n

(AH)

where u, (i=l,2,3,4) are Gaussian random variables. The u. can be generated as

the output of linear systems driven by white noise,

where Ev± = 0, lh±(t)v±(t+-

and it is well known that :

i = ~yiUin n n i 'n
(A15)

(t+T)J = , and where S(T) is the Dirac delta function,

E(ui(t)ui(t+T)) = 27T
n n i

, i = 1,2,3,4 (A16)

Unfortunately the density function for Y-I nas only one free parameter, s, .

Thus we are forced to accept whatever variations in peak amplitude are implied

by obtaining the desired variance of D . Thus if we take s. = 1 and let f(x) =

we find that the mode peak is £ , the mean peak is -r- E~ 1.25Z and the variance

in peak amplitude is E(Ẑ x)Y1-/J| Z
2 = - E « 0.43

n

For the correlation of Y-I (t) > we would, like to have a time of perhaps one

period of the asymptotic waves, i.e. T = — = — . This is probably too long a

memory near the stack , however this constancy is a consequence of the model.

Also we let this be the correlation of u and u_ rather than YJ^ » so r.:,
n n n

1
Tn\

1

V2n+ \-
cf (

2 2 2 nwhere it follows from (A16) that q^ = q_ = — S- = —, T = -_
J- fc J. J- ^_» ' TTn n n n u

(A17)
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The statistics of Y? are selected so that mean amplitude and mean wavelength

are in the ratio c. This requires that s- = —. The correlation time of Y2
 can

be taken the same as that of Y^ so that
T)

8

i

n n
1

U
4 = - T u

n n

3 + V3
T} T!

, + V.4 4n n

(A18)

, 2 2
where q~ = q, = - s =

n \ n z Tq

The frequency functions for D are now Gaussian, as required:
n

n
(n) = [2TrD2] * exp { - (A19)

where

(y) = )» f
Dy

±n the notation of Section III.
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APPENDIX B

CONSIDERATIONS OF THE GAUSSIAN NATURE OF PLUME PARAMETERS

The purpose of this appendix is to consider, from several different approaches,

the question of Gaussian distributions appearing in the plume. We might call

attention to the concept that the material distribution of a cloud (large number

of samples) of particles, each of which is a random variable, should approximate

a scalar multiple of the frequency function (Law of Large Numbers).

1) The usual beginning . model for diffusion is the heat equation:

9X 8 X

This has the solution:

X = Q e~ t , (B2)

which is a Gaussian waveform having variance increasing linearly with time.

2) Another approach to diffusion is stochastic, with Brownian motion as the

motivating physics. In this case we have a single particle being forced by a

random process,

x(t) = u(t) . (B3)

We assume that there is no homogeneous restoring force (isotropy), so the motion

is described as pure integration of u. Under very weak restrictions on u, the

probability distribution of x(t) is asymptotically Gaussian (with t). It should

be noted that if u is Gaussian white noise, then x(t) is normally distributed for

all t, provided that the initial distribution is normal. These results essenti-

ally follow from the Central Limit Theorem. To complete the connection with the

diffusion equation, if the particle starts at the origin and u is Gaussian white

noise, then the variance of x is linear with time.

Consider a single particle of pollutant. Its position at some time after

release from the source is determined as the sum of all incremental perturbations

during the elapsed time. This corresponds to a random walk or Brownian motion.
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Under these circumstances, the distribution of the particle at some later time is

normal. Using the Law of Large Numbers, the material distribution of a large

number of pollutant particles (the average plume) can be expected to approximate

a scalar multiple of the frequency function, i.e. should be Gaussian. Actually

this argument seems to suggest that each plume realization, which involves a large

number of particles, should approximate the frequency function precisely because

it is an ensemble average over a large number of individual particle realizations.

This argument breaks down, however, because of the high correlation of the low

frequency forcing terms (medium to large scale eddies) appearing in this single

plume realization. These low frequency terms require long averaging times to

reduce the effects of their long correlation times.

3) Closely allied to the random walk in (2) is the system:

x(t) = a cos t + b sin t (B4)

where a and b are independent normally distributed random variables, and we con-

sider the ensemble of random variables {x(t)}; these are normally distributed.

Actually, this fact has been used already in A6 and A7.

There are two generalizations of this result. In one, we can allow a and b

to be stochastic variables with time constants long with respect to the sinusoid

frequency. In the other, we suppose x to be a sum of such terms,

t
k=l

cos a), t + b, sin u t . (B5)

Assuming the sinusoids to be independent over the region of interest, then the

distribution of x(t) will be asymptotically (with increasing N) normal, regardless

of the distribution of the coefficients. This is a consequence of (2) and the

Central Limit Theorem.

We have examined this particular model, because it corresponds in some intuitive

way to pollutant forcing terms, the eddies being sinusoids of essentially random

amplitude, phase, and frequency. Under these circumstances we can see: the

average plume is expected to be Gaussian; any bandpass of the solution is expected

to be Gaussian - hence both D and the distribution in the instantaneous plume are
7

Gaussian; and finally, the averaging time required to pick up several realizations

becomes long as the scale of the eddies increases.
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4) In Section III, we have argued that the distribution of material in

the instantaneous plume described by / (y - D , t; y , t ) is gaussian. This
- -yr

result was obtained by voting that if equation (5) holds and both E(—pr ) and

g(D ) are gaussian, then / must be gaussian. The inversion of the integral equation

(equation (5))is poorly conditioned, however, and many different distribution

will be mapped by (5) into approximately gaussian forms.

Thus our objection can be raised to the conclusion that f is gaussian.

For modeling purposes, however, there is nothing inconsistent about

defining / to be gaussian since this agrees with observations and also

satisfies our feeling that, from the Central Limit Theoren, the frequency

function for particles about the instantaneous center line should be gaussian.
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