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This report was prepared by Professor Richard H. Rapp, and Reiner
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NASG-24584, The Ohio State University Research Foundation Project No, 3904
‘ which is under the direction of Professor Richard H, Rapp. The contract
supporting this research is administered through the Wallops Flight Center,
! Wallops Island, Virgimia 23337,
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Abstract

Two methods for the computation of geoid undulations using potential
cocfficients and 1-x 1- terrestrial anomaly data are examined, It was found
that both methods give the same final result but that the method suggested by
Molodenskii allows a more simplified error analysis than the method used by
Vincent and Marsh,

Specific equations were considered for the effect of the mass of the
atmosphere and a cap dependent zero-order undulation term was derived.
Although a correction to a gravity anomaly for the effect of the atmosphcre
is only about =0, =7 mgal, this correction causes a fairly large undulation
correction (e,g. 2.3m with a cap size of 20°) that has not previously been
considered,

e

The accuracy of a geoid undulation computed by these techniques was
estimated considering anomaly data errors, potential coefficient errors, and
truncation (only a finite set of potential coefficients being used ) errors. It
was found that an optimum cap size of 20° should be used,

The zeoid and its accuracy were computed in the Geos - 3 calibration area
using the GEMI 6 potential coefficients and 1°x 1° terrestrial anomaly data,
The accuracy of the computed gecid is on the order of =2 m with respect to
an unknown set of best carth parameter constants, This geoid was com=-
pared to that computed by Vincent and Marsh where we found a systematic
difference of 3.9 m, ar undulation difference variance of (2.6m)“, and a
maximum difference of 12 meters.
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Preface.

Under NASA contract NASG-2484, we are to investignte the recovery
of mean gravity anomalies from altimeter data that is obtained from Geos - 3,
In developing the methods for such recovery it became clear that it could be
helpful to have an external check on the altimeter determined geoid, This
check could be obtained by computing geoid undulations from a combination of
satellite and terrestrial gravity material, This latter set of geoid undulations
could be used to remove systematic bias that might occur in the altimeter data
due to orbit determination inaccuracies and errors in the altimeter itself,

Although work had been done in the computation of detailed geoids in
the Geos = 3 calibration area (as we!l as other areas), no comprehensive ana-
lysis of the complete theoretical and numerical procedures has been carried
out, Thus, as one of the first steps in our gravity anomaly recovery work we
have prepared this report which attempts to define computational procedures
for a detailed undulation computation and its accuracy in a precise way,

s

- V-




T ———

-

TABLE OF CONTENTS

FD!‘GWO!‘(].........................u....-..---...-.-...-.-..-..-...

AbStthIO.I"I'..-....ll.ll'.lll..l...-l.....lI.Ill...."l....'...

})reracellﬂl.l.lillﬁllll...llll‘ll.llllllllt‘.......'l.llll.........

1.

2,

6.

10,

11,

Introduction,ceceesscesscescservscssocsssssessescncescssssssscnns
Details of Method Aand B .iuceeeececvccscsccccssosssscecscscnsne
2,1 Method A..ceeecvocscvrscscsscosescsrsssescesesnssnscsce
2,2 Method Becesssssscscossssosssessasessessssssscossccsone
The Effect of the Mass of the AfMOSPhere . .ceeecececscsssscscssecess
Numerical Integration of Stokes' EQuAtion ,.ecseeccsscecsosososcnscsss
Accuracy AnalysiB .. ceecvescessvscccsscssssssscssssccsscscsssnsnss
§.1 Introduction.cceesscecssssscessssssscessccescssessssence
8.8 Annlysis for Method A iesnvesinsisinssnnansssnnsiniesin
5.3 Analysis for Method B .cccessscsccnsscccosnscssnsnssss
DAER ACCUTBOY, & wivioi0vs:6/6 066 5580707800565 B RASTE VRN CREH & B DI ARES OO ES
6.1 Gravity Anomaly ACCUrACY.scesssrrersssscsccsssssssssons
8.2 Potential Coefficient ACCUPACY i cevssssesssssbssnassnsoess
Optinmum Cap SIZ€ ceeovesssssssrsssscsssssssssssssscsssstssssesss
The Geoid in the Calibration Area ccveeecvsencscososscecsssssscscscs
TS Zoro«Ordep Undulstion .o cee sosvnsasspoirsrsennecnsssnes saenson
BUMIMAYY oo nsoe oo s saessssods soseeeassessessssnsssssssatesssdss

Rcrer(‘ncesllliiiiiOl...ll..--nlll'l.‘ll..ltll.l'..l.'...l'.l.l..

A T TR TS SRR Yt BTG w4 . - — ——

page
il
i

iv

10
12
12

13

16

16

16

19

32

.33

”




e — s e .

1. _Introduction

The purpose of this report is to consider two procedures for the computation
of detailed geoids using potential coefficients and 1°x1° terrestrial gravity mater-
ial, In doing this we are intercsted in the results obtained from the two methods,
as well as in the error analysis associated with each, The specific computation
arca is the Geos - 3 calibration area since for this area an accurate computation
of the geoid undulation is needed, For our purposes the calibration area was con-
gidered to be between 40° and 20° north iatitude and from 277° to 207° east longi-
tude., Although the resulting geoid ma not be the most accurate available geoid,
in terms of data used for its computation, we intend the analysis given to demon-
strate an accurate procedi ce for the computation of such a geoid,

Instead of giving extensive references to past work in this area we shall re-
strict ourselves to references directly applicable to the current discussion,

Method A for computing detailed geoid undulation has been used extensively
by Vincent and Marsh (1974) and Marsh and Vincent (1973). A detailed accuracy
analysis of Method A was given by Rapp (1973). Mecthod B is described in Molo-
denskii, et,als, (1962, page 116) and Heiskanen and Moritz (1967, page 259) and
has been used by Groten and Rummel (1974). Details of both methods will be gi-
ven in subsequent sections.,

2, Details of Method A and B

2.1 Method A

In Metho A, the geoid is considered to be composed of three com-
ponents N,, N; and N. such that this sum yields the undulation:

M NN, ' Ny + Ny

Specifically we have N, being the undulation implied by a given set of potential
coefficients, The computation of such undulations has been discussed by Rapp
(1971). There are two methods of interest here. The lirst, Mcethod One, is based
on the solution ol the geodetic boundary value problem. The result is:

I S ———

R

e —— . —




- ———

:i

foax _a . -
(2) N, = GM (-:—)‘ z (Cl- cos mA + Sh sinmi) Ph (8in®).

where:
GM.....is th: geocentric gravitational constant;
Fevesossi8 e geocentric distance to the point of which the undulation is
being computed;
Q.,.....18 the equatorial radius;
Yerseesoi8 the normal gravity at the computation point;

o ;i N ,fre the differences between the actual potential cocfficients and those
implied by the adopted reference ellipsoid,

In Practice we have:

(3) E:.o ) E:,r\(‘:m)"' Ea,n(atr)
(4) E';:.0 -64.0(035) . T"-‘,o(lﬂ)

with all other C and S values equal to their observed values. In our computations
the reference coefficients were computed from,

(5) Ea.o.(ltf) . "J; /fs—
“(6) -é‘,o(ur) =y /e

where the J coefficients arc (Cook, 1959):

J, - 2/3 (m- {/2) - m/2(1-2{/7 1 nr’"/w})

(7)
J.  -4/35 (1 - {/2) (7[ (1 -1/2) = 5mql- 2[/‘?))
with:
m = uwfa®( -/ GM
and:

w i8 the angular velocity of the earth taken as 7, 2921151467 ® 107" rad/sec.
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We also note that in (2) p, is the fully normalized Legendre polynomial for
the geocentric latitude 3. y

A second method for determining N, is to first find a. r value that satisfies
the following equation that describes the potential (W,) of the geoid:

tlll
(8) W, = —('";.h—l- [l ‘ Z (—?.-)‘i (El cos m\
L2 . =0 =

+ 8 sinmi) B (sim'b)]

+ —2: cos“ 3.

The solution for r is found by iteration in (8) after the geoid potential and
other quantities in (8) are given. The undulation, N,, i8 found by differencing
r with the corresponding r of a specified reference ellipsoid,  Specifically we

have:
©) W g avl-e°
J1=-e'cos'

* The procedure using (8) and (9) is essentially that used by Vincent and
Marsh, The results from this procedure will be the same as the results ob-
tained from (2) provided that consistent constants of GM, a, w, f, and W,
are used. In both cases a zero-order undulation of the geoid is taken to be
zero, (Sece section 9 where the removal of this restriction is discussed).

The N, component of (1) is computed in this method as follows:

(10) Ny = R Lj' (OF - Ag) S)do

where:
Riveeesais a mean earth radius (6371 km);
Geoseeeais a mean value of gravity (979, 8 gals);
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AEZ. «ves .08 close to the mean free air anomaly and will be discussed
in 2 subsequent section;

Ay oo e 0o i8 the mean anomaly implied by ‘he potential coefficients used
in computing N, as in (2);

Oceeeseesis a limited cap about the computation point;

S@k...qqis the Stokes' function,

In practice the integration in (10) is replaced by a numerical integration,
The value of Ag, is:

(1) R, -LA If B BA
A

where:

A.......i8 the area in which the mean anomaly Ag, is being determined,
Specifically in the computation to be given here A will correspond toa 19x 1°
mean anomaly, The value of Ag, is computed from (Rapp, 1967):

(12) g, = “Q%Lz (1-1) E‘-_éi ('(-‘f'cos ma

!,:2 Ll

+ 8, sinm)) l_’!.(sinv.'-i).

The actual evaluation of (11) with (12) was carried out by the analvtic inte-
gration of the cos m), sinmA terms and the numerical integration of the T"
term. "

The N, term of (1) is formally given by:

= ..._..R_....... l'f. Aoie Aw) S(VXlO
(13) Nﬂ .1ﬂG JJ (plh -A‘.‘.) . (L) .
where:

0=0c. . o .. vepresents the remaining global cap not included in gy, The cop o,
is chosen in such a way that N, con be neglecteds A cap size discussion will be
given in section seven,




2.2 Method B

This method has been used by Groten and Rummel (1974), for detailed geoid
computations, Here we write:

(14) N=N+N, +N,

where the primes have been used to distingiush these values from N, , N,, and
N, given in (1), We have:

Lanx
' R
15) N g ) Qg
2

where:
Qgs) « « + oo is the Molodenskil (runcation function (Heiskanen and Moritz, 1967,
p.260) and is given as:

i

(16) Qo) = LOS(cos;'«) P (cos §) sinydy

whérE:

Uoesesese.ds the cap size of gravity data to be {neluded in N, and P, are the Le-
gendre polynomials, !a the computation to be given here we have use a program
supplied by M. K. Paul based on his accurate and fast algorithm (Paul, 1973),

The value of Agy is the 2'th degree component of the gravity anomaly implied
by a set of potential cocfficients and is given by:

2 Ghi - —n— - +
(17) AL,E T (£-1) ( 1‘5 i ((,L.(.OB mi

+ 8 sinm)) D, (sinD).
f= {»
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We have for N-_.J 3

o R 2Pard
(18) Ng *=anG &.U.JL, S)do

where the g, cap has a radius v,. The anomaly AE’is the same as in (10).
The N, term can be written as:

0

(19} N'- "':':'ET‘ Z Qﬂ&o)-"lﬂ

AN ETTES

This term represents the information above degree 1,,, that has not been
included in N,

3.. The Effect of the Mass of the Atmosphere

In developing the Stokes' equation for computing the disturbing potential or
geoid unclation it was assumed that there were no masses external to the geoid,
In fact, there are topographic masses and atmospheric masses. A consideration
of the topographic masses can be made by alternate solution of the boundary va-
lue problem, It turns out that the corrections to the results of Stokes' equation
are small except in mountainous arceas,  Specifically, the corrections are zero
in ocean areas, such as beinyg considered here, In any event, procedures for
handling the topography in this type of computation are discussed In Mortiz (1974,
1975) and are considered negligible for this paper,

In considering the atmosphere, we first define the potential of the geoid to be
the sum of the gravity potential of the solid earth and oceans plus the potential of
the atmosphere. Consequently, the computation of the geoid undulation using ()
requires that GM be that value including the mass of the atmosphere,

In the other phases of the geoid computations we must carry out the compu-
tations after the mass of the atmosphere has been removed from consideration,
and then add any net effects back in.  To solve this problem Moritz has shown
that the mass of the atmosphere can be condensed onto the reference ellipsold, so

QUALITY "~




that the mass of the latter will be equal to the mase of the solid earth and oceans
plus the atmosphere, In this case equation (2), (12), and (17) are valid as they
stand, To sce this more clearly, we write the gravity potential at a point in the

atmosphere as:

(20) W W —‘%‘ﬂ— -G .[mﬂ%-l dr'

where M, is the mass of the atmosphere and M(r') is the mass outside a sphere
of radius r surrounding the earth., Equation (20) is written in slightly an approx-
imated form, W is the gravity potential due only to the solid earth plus oceans,
The normal potential is now defined (approximately) as:

(21) U=1°+ —SM

where U? is the norro poeential due to a reference ellipsoid that has a mass
equal to that of the solid earth plus oceans, The disturbing potential, T, is:

22) T=W-U=W-1°-G —M;(;'Pdr'
r
(23) T=T -G r-“:—.%gdr'
r

where, in terms of potential cocfficients:

Loax

2 bR
(24) T° = -—-(-’-;M—- k—}) L (C; cos mA
Lrg O

1 §L. sinm)) TL(sinG).

The sccond term on the right hand side of (23) can be evaluated numerically. For




/
the case of r referring to the surface of the ellipsoid, the second term has a value
of about 0,006 kgal meter which would be about 0,6 em in geoid height, Thus this -
term is negligihle  Consequently, we can use (24) dividing by ¥ to obtain N (from W
potential coefficients), The resultant expression is (2), b
The computation of the gravity anomaly in the case that the atmosphere is con- !
densed onto the ellipsoid can be expressed as: ’F;
-8
(25) Ag - Ago + Og, b‘
[j
where: &

O v s es.would be the gravity anomaly in a system where all atmosphere mass
is condensed into the ellipsoid;

f

ABesseeeWould be the usval anomaly where the atmosphere is not condensed

into the ellipsoid, o e

Oy vvvveais a correction that can be computed knowing the elevation of the ]-;
point and a model for the atmosphere, t'

In terms of potential coefficients, Ay’ is given by (12), or by degree in terms -

of (17). Consequently, the computation of 4g, in (10) or Agg I (10) 18 not af- f::
fected by the condensation of the atmosphere mass to the ellipsoid, Pl

The anomaly to be used in the Stokes' integration based on terrestial data, must

be one fo which the atmosphere correction term has been applied, Specifically, we
must use in (10) and (.

(26) ag’ - og - bg,

where:

Z8uevssaawill be the usually given free-air anomaly and;
8 vvvvv will be given based on the mean height of the (in our case) 4
1°x 1° block. .

Values of &g, can be taken as =0g where 8g is tabulated for the Geodetic
Reference System 1967 (1AG, 1971,  If we assume that Og, is constant within the

integration cap used in the Stokes' integration, the effect of the atmosphere on the
geoid undulation is:

=H
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T S

T e
4 Sw)do
Ce

¢ = =ROZ,
(27) 6N, i G

Since (27) is evaluated in a circular cap whose radius is Vo, We canwrite (27)

in the form:

(28) 6N, = =Roz e S(v) sinvde

2G v

Equation (28) can be written in the form:

(29) ON, = -Bbg, + 1)
G
where:
(X = % ‘ ¥
(30) W) = £ J:S(L)sim.du

which is evaluated and tabulated in Lambert and Darling (1936),
of ¥(vJand values of 6g [rom the Geodetic Reference System 1967; the following

6N, values were computed,

Table One. Effcct of Atmo iphere on Geoid Undulation Computations (meters)

Using these values

Mean Elevation of Cap  (meters)

[ 0 100 200 J00 400
§° 0,55 0.56 0.55 0.55 0, 54
10° 3:37 1,16 1,14 1,18 1,12
15 1,75 1.73 1: 71 1.69 1,67
20° 2.26 | 2,23 2.21 2. 18 2.16
25° 2,67 | 2,64 2:061 2, 58 2. 55
30° 2,97 | 2,93 2,90 2, 87 2,83
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The corrections in Table One should be added to the undulation component com-
puted from (10) and (18) when Ay is taken simply as the observed free air ano-
mﬂlly' l’jT."-.

From Table One we see that the correction is quite sensitve to the cap size,
but insensitive to the elevation within the range tested.

In the actual geoid computations to be made for this report, 707 of the gravity
material is in ocean areas where the elevation would be zero, The remaining
arcas would be in the eastern and central United States, which have a small mean
clevation, Consequeutly, for this report we will use the 6N, value for a mean
clevation of 0 meters, A more accurate procedure would require knowledge of
the 17 x 17 mean elevations, For this report this 18 not necessary, but for high
clevation confinental arcas, such accurate computation for various cap sizes
needs to be done in the luture,

4, Numerical Integration of Stokes' Fquation

The evaluation of (10) or (18) is carried out by summation in which an
averuge S(¥) value is needed, We write (18) (for example) as:

R -
(31) N, = —4::‘— z ag’ Syoo

where: o
AOuevve.sis the area of the 1° x 1° block and:

1
(32) 8% - g U Swbo
Ao

In practice (32) is evaluated by computing one, or several values of S(v) from
the computation point to points in the block in which Ag” is given, and meaning
the result, The number of values meanced will depend on the size of ¢ and the
accuracy desired, Since S@) changes rvapidly for small ¢ values, more points
are required for an accurate mean when ¢ is small than when ¢ is large,

~10-




To investigate a proper integration procedure, we equate the undulation (in

-equation form) obtained by Method A and Method B, The following equality

ghould then hold:

R LY, _ _GMm u5 -
(33) 4G g:&'ﬁ. S(y)do — z‘ (.?_ (1-Q£) Z (C‘hcosma\

‘" 'S".smmz\)’ﬁh(sw).

Using the GEM 6 potential coef’icients to £-16, the right hand side of (33)
can rigorously be computed yielding a "true" value, The left hand side of (33)
can be evaluated by subdivision schemes until one is found that yields results
consistent with the "true' value, Iour subdivision schemes were tested:

Subdivision One (1): Stokes' function is computed only for the center
point of each anomaly block (the undulation com-
putation point is at the corner of a 1°x 1° block);

Subdivision Two (4=1): Inside a spherical cap of ¢=2° around the compu-
tation point every 1°x 1° block is divided into four
equal (in terms of latitude/longitude increments)
blocks for which the Stokes' function is evaluated
at the center point and meaned, Outside v=2°,
the Stokes' function is evaluated based only on the
center point of the 1°x 1° block.

Subdivision Three (16-4): Inside a spherical cap of ¢=2° a 16 sub-block
system is used, while beyond 2° a 4 sub-block
system is implemented,

Subdivision Four (64-16-4-1): The following sub-block system is used here:

s 2°; 64 sub-blocks

2°< ¥ = 5% 16 sub-blocks
5°< ¥ < 10°; 4 sub-blocks
10°< Y < 20°; 1 sub=block

Using these various sub-division schemes, the left hand side of (33) was evaluated
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with the results shown in Table Two, along with the "true' value computed from
the right hand side of (33), for four points in the calibration test area,

\ Table Two, Influence on Undulation Computation of Various Subdivision Schemes
Used in the Evaluation of the Stokes' Formula, (meters)

Test Point (B, A)

Subdiv.Model | 10405 277°) | 2(40% 2979 [3(20% 277°) | 4205 2079 !
. 1 -18,1 -26, 8 1,0 -52.1
' 2 -18, 4 -26, 9 1,1 -52, 5
3 -18, 4 -27,0 4.1 -52, 8
4 -18,5 -27.0 1,2 -52,9
"true" -18,5 -27,1 4,2 -53.0

The best agrecement with the "true' value exists for subdivision model four,
which is thus chosen for use in the actual geoid computations in the calibration
area. Since the actual integration error will depend on the magnitude of the ano-
malies in the Stokes' kernal, we would expect Method A would be somewhat less
sensitive to infegration errors than Method 13, since in A an anomaly difference
is used while in Method B, the actual anomaly is used, The exact sensitivity
will depend on the magnitude and smoothness of Mg, used in A (or in other
words on the value of f.,,). Consequently, we recommend the above subdivision
model for use in either Mcthod A or Method I3 of undulation computation,

5. Accuracy Analvsis

5.1 Introduction

In this section we will try to estimate the accuracy of the geoids computed by
the methods described in section two, In such an analysis we will try to estimate
the optimum truncation angle 4, Several of the error terms have been discussed
previously (Rapp, 1973) but they will be rediscussed here for the specific area of
computation,

There are basically two data source errors, These arise from the errors
in the potential coctficients, and the errors in the gravity anomalies, The vari-
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ance-covariance matrix of the potential coefficients is designated L., and that
of the anomalies as TZig, We will assume that these matrices are diagonal,
This assumption is true for the gravity anomalies since they are estimated in=
dependently, but not exactly true for the potential coefficients,

5.2 Analysis for Method A

Method A is represented by (1), The first two terms on the right hand side

of (1) represent errors of commission, while Na represents an error of ommis-

sion, For a single undulation error variance we write:
(349) o° =0i v

where:
0- .. -s0..18 2ssociated with the commission errors;
€ seesesis associated with the ommission errors.

There should be no confusion with this 0. and that used previously to designate
the integration cap, To compute 0. we write:

(35) N =N + N
Considering (2) and (10), (35) can be written in matrix form as:

(36) N =BC + Aeg’ -ag)

where the clements of B are the coefficients of the potential coefficients
(designated C in (36) ). The elements of A are taken from (10). We can repre-
sent the computation of Ag, as:

(37) b = By C




where the elements of B. are found as the coefficients of the potential
coefficients in (12), Inserting (37) into (36) we have:

« Ao - ABIC

(38) N = B

I

Applying the propagation of error formulas we have:

(39) of =HB%,B -+ ATigA +

-
P L

E
2.
&?
1@
15

- 23T BiA
o
The evaluation of this equation 1s complex and will not be attempted in this report,
as a simpler formula will be found when using Method B for the undulation compu-
tation.

The specific evaluation of N. can not be done as we do not know the high
degree potential coefficients, At best we can find a global average cffect by
writing (Rapp, 1973):

2 s .
(10) 05 = —-4%'— 2 sl f Q)Qf (V)& (40)
i BAR+]

where ¢ (Ag) are anomaly degrec variances and s is (Tscherning and Rapp,
1974): 0,999617. Although the summation is taken to », in practice we would
take the summation to about 200 as we are using 1° Jata as the smallest terres-
trial data block, For ¢=10°, we get for @3 about 1.1 meters and for ¢ 207,
about 0,7 meters,

Other error sources in the computation of point undulation include (for the com=-
putation in this paper) the fact that' smaller anomalies than 1°x 1° anomalies may
be necded, and that the reference set of constants may vield an equatorial gravity
different from that implied by the best set of constants, T! :se effects have been dis-
cussed in Rapp (1974,  For our purposes we will assume that 1%x 17 data is the only

~ data used: (there appears to be about 0.1 m of more detailed Information in ano-

ORjg
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maly data in blocks smaller than 1°x 1°); and we will assume our equatorial
gravity is true; if it is not, errors up to 2, 6m(y =~ 20%) for a 1 mgal error in
equatorial gravity can be expected, exclusive of N, considerations (see sec, 9),

5.3 Analysis for Method B

As in Method A, we have for Method B errors of commisgion and errors
of ommission, The commission errors arise in (15) and (17) due to potentijal
coefficient errors, and in (18) due to anomaly errors. The ommission error
is caused by the fact that the summation in (15) is taken to £, , instead of =,
Th s latter error is the same as given in (40) and the discussion given with re-
sp:ct to (40) is equally valid here,

To carry out this analysis we express the computational procedure in the
form:

(41 N = BEQC + Aag’

where:

veessssesA, B, and C are as before and Q is a diagonal matrix whose
elements are composed of values of Qz({y). Error propagation thru-(41)
yields for Method B:

29 o = BQTa Q'B ¢+ ATAgA

Comparing (42) with the corresponding result (39), for method A indicates
that the error analysis for method B3 {s considerably simpler than for method
A. The actual implementation of (42) can be done through minor modifica-
tions of programs used in the evaluation of (15) and (18) since L, and Tig
are to be regarded as diagonal matrices, The accuracy of the geoid we will
compute will be evaluated using (42) and (40) in (34),




6. Data Accuracy

6.1 Gravity Anomaly Accuracy

The gravity data to be used in these computations will be 1°x 1° mean ano-
malies, Each of these anomalies that has been estimated has an assigned stan-
dard deviation. In some cases an anomaly will be needed, within a cap, for
which no estimate of that anomaly is available, In this case we will assume that
the anomaly is zero and that its standard deviation is + 30 mgals, which is the
root mean square variation of 1°x 1° mean [ree-air gravity anomalies,

The 1% 1°data distribution witnin and around the calibration area is shown
in Figure One. In this Figure One, zero (0) indicates those blocks for which an
anomaly estimate is available and an * indicates that no anomaly exists, The
outer borders of a 10° cap and a 20° cap are also shown,

6.2 Potential Coefficient Accuracy

The formal standard deviations for the GEM 6 potential coefficients were
provided to us by Frank Lerch., These formal statistics are considered opti=-
mistic and we therefore used two approaches in estimating realistic standard
deviations for the potential coefficients,

In the first approach the formal standard deviations were multiplied by a
scale factor of 3.4 as suggested by Lerch, et. als, (1974). An average per-
centage error, by degree, can be aefined as:

~ RMS (i)
(43) ™), = TS,

where:
RMS (mg,) .. .18 the root mean square value of the standard deviation of
the coefficients of degree 2, and,
RMS (C,5) ,,.is the root mean square value of the cofficients of the GEMG
solution of degree 1.

Values of (43) are plotted in Figure Two where it is seen that the percentage
error increases so that it is about 807 at £ 16, and even higher for the coef-
ficients above 16 to 22,
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Iigure One. 1°x 1° data distribution within and around the calibration area,
Outer borders of calibration area, 10¥ cap and 20° cap are shown,
v ve .o block where no anomaly was available
0.....block with an anomaly estimate
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A second approach to potential coefficient accuracy determination starts
with determining the percentage difference, by degree, between the GEM 6
cocfficients and the coefficien's of the Standard Eaxth 111 (Gaposchkin, 1974),
This difference increases to a maximum of 1309 at degree 12 as seen in Fi-
gure Two, With these differences a curve was drawn to represent the percen-
tage accuracies with the specification that this percentage be 1007 at degree
16, We then could estimate the standard deviation of the potential coefficients
(but only by degr 2e) by multiplying the root mean square coefficient value by
the percentage error, Clearly, this second approach vields accuracy esti-
mates more pessimistic than found in tue first approach.

7. Optimum Cap Size

We now wish to determine an optimum v, that gives a minimum error in
the determination of the geoid undulation, [n order to do this we consider the
various error sources that are associated with method B,

First we consider the commission error due to the errors in the gravity
anomalies, This error will clearly depend on the geographic location of the
computation point, In order to obtain a representative value, computations
were carried out for nine representative points in the crlibration arca, asthe
cap size was varied from 0° to 30", The standard deviations for the nine
points were averaged and are plotted as a function of ¢ in Figure Three. We
see that the standard deviation, due to the anomalies increases from +0 meters
at ¢ =0° to 1.2 meters at v =30°,

m A Figure Three. Undulation Standard Deviations Due To Anomaly

& o Errors And Their Standard Deviation.
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We next consider the commission errors due to the potential coefficien’'s,
Again values have been computed at nine points and averaged to obtain a re-
presentative number, Specifically, we have made computations for different
fyay Values and different y values for the two error models of the GEM 6 so-
lution previously discussed in section 6,2, The resulting standard deviations
are shown in Figure Four for error model one with i,,, = §, 12, 1§ and 22,
and for f,,, 16 with error model two. Ve2lues are also given in Table Three,

In computing the values for the 7., 22 solution it is necessary to adopt
standard deviations for the potential coefficients not present in the GEM 6 set
as we have in essence assumed these coefficients to be zero, Specifically, we
have taken for their standard deviation, the root mean aquare coefficient vari-
ation implied by the following anomaly degree variance model given in
Tacherning and Rapp (1974, p. 20):

Akl

(+9 e (L-2)2 B)

with A~ 425,28 mgal”, and B- 24,

Table Three. Undulation Standard Deviations Due to Potential Coefficient

e

Errors. (meters)
I':n 8 faay 12 fsax 16 Joenx 2? .
Error Model Error Model Lrror Model | Error Model
° 1 2 1 2 1 2 ]

0 1.3 3.7 2,0 5.0 2.8 5.7 3.7
2.5 1.0 2.8 1.3 3.4 1.8 4.6 1.6
5.0 0.7 1.9 0.7 2,0 0.8 2.0 1.3
7.5 0.5 1.2 0.6 1.4 1 55 | 1.8 } I 4
10,0 0.4 0.9 0.7 1.6 1.2 2.1 1.4
12.5 0,4 1.0 0.8 1.6 1.1 2.1 1.2
15.0 0.4 1.8 0.8 1.9 0.8 2.0 1.1
17.5 0.4 1.3 0.6 1.7 0.7 1.7 1.0
20,0 0.4 1.2 0.5 1.4 0.7 1.5 0.8
22,6 0,4 1.1 0.4 1.2 0.6 1.3 0.7
20,0 0.3 0.9 0.4 1.0 0.5 1.1 0.6
27.5 0.3 0.8 0.3 0.9 0.4 0.9 0.5

[ 30,0 0,2 0,6 0,3 0.7 0,3 0.8 1 ___0.4. J
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Undulation Standard Deviations Due fo Potential Coeffi-
cient Errors, (meters)

Model One for £,,, = %, 12, 16, and 22
------ - Model Two for L,, 16
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The differences in the results from the two error models have a maximum
at ¥ =0° and decreases as ¥ increases,

The last error source considered here is that due to the neglect of the high-
er degree potential cocfficients, This error is given by (40) where the summa-
tion is taken to 200 and (44) was used for the anomaly degree variance model.
These results are given in Table Four and Figure Five for various /g, and ¢
vitlues,

Table Four, Undulation Ervor Caused by Potential Coefficient Truncation at

Specified 1,,.. (meters)
! i ‘e‘lal
| 8 12 6 22 |
o 1.6 5.5 4.4 3.3
2.5 3.5 1.8 1.2 1.0
5.0 2.1 1.9 1.8 1.4
7.5 2.6 2.3 1.7 0.9
10.0 2.9 2.1 1.2 0.8
12.5 2.9 1.6 1.0 0.8
15.0 2.5 5 | 1.0 0.6
17.5 2.0 1.1 0.9 0.5
20.0 1.5 1.0 0.7 0.5
22,5 1.2 1.0 0.5 0.4
5.0 1.0 0.8 0.5 0.3
27.5 0.8 0.5 0.4 0.3
30.0 0.7 0.4 0.3 0.2

We can now quadratically add the three error sources together to obtain the
final representative undulation standard deviation in the calibration area. The
resultant standard deviation: are plotted in Figure Six.

In considering Figure Six for the 8, 12, 16, and 22 solutions with potential
coefficient error n:odel one we see that the error at first decreases as ¢ in-
creases, then it increases somewhat and finally decreases. At certain yvalues
suchas 7.5 lor L., 12 we would expeet a larger error than at smaller or
larger ¢ values, This would indicate that one should choose an optimum ¢ va-
lue based on the i, of the potential coefficien! field being used. Based on
Figure Six we feel o ¢ 207 cap is reasonable,
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IMigure Five, Undulation Errors Caused By Potential Coeffi-
cient Truncation At fLe,x = ¥, 12, 16, and 22,
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Figure Six, Representative Tota! Undulation Standard Deviation in the
Calibration Arca,

with Potential Coefficient Model One for iy, = 8,
12, 16, and 22
e==== With Potential Coefficient Model Two for L,,, = 16
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The standard deviation of the undulation when the pessimistic error model
for the potential coefficients is used is shown in Figure Six for the case of 7.,,
= 16. Although the errors are larger, the difference decrcases as ¢ increases
so that at ¢ 20° and £.,, 16, the total standard deviation of the undulation us-
ing the optimistic potential coefficient error model is £1, 5m while it is 22,1 m
when using the pessimistic error model,

-




H For the final undulation computations the GEM 6 solution was used with
f,.: =16, This was done so that the error analysis could be done without
making assumptions about the coefficicnts between degree 17 and 22 not es-
! timated in the GEM 6 solution, It will be shown that no significant undula-
tion difference cceurs when using a i,,, 16 or 22 in the case of the GEM 6

| set,

8. The Geoid in the Calibration Area

The previous discussions have dealt with the method for detailed undu- !
lation computation and the method of accuracy analysis., We now turn to the '
computation of the detailed geoid and its uccuracy in the calibration area us-
ing the GEM 6 potential coefficients and 1°x 1° gravity anomalies given to a
mgal on a tape dated July 1975,

oo

We first define a set of constants identical to that used by Marsh and
Vincent (1973) so that our undulations may be compared. These constants are:

w= 7.2921151467 x 10™° rad/s
a= 63758142
f- 1/298,255
GM= 3,986009 x 10'*m?/s?
Wo = 6263687, 52 kgalm
¥, = 978032,14 mgal

The GM includes the mass of the armosphere'and thus the effect of the at-
| mosphere is included in the geoid potential W,y and equatorial gravity, ¥%,. The
| normal gravity formula corresponding to these constants is then:

(45) Yaow = Yo (1 + 0,0053024269 sin“e - 0, 0000059 sin” %)

Now the anomalies on the July 1075, 1° tape were given with respect to the
gravity formula of the Geodetic Reference System 1967 and thus need to be con-
verted to be given with respect to the new constants, We have;

¢ If it did not, then the N ferm from equation (51) would ke to be evalunted,

s e~




(16) ‘5gmi = bBse * Yer - Yeon
or numerically:
(47) ABme = Agzs = 0,29 - 0,06sin0 mgal

Although this correction is small, it is svstematic and its neglect could cause
errors on the order of 0,8 meters in the computed undulation,

For the final results several different computations were performed us-
ing the GEM 6 potential coefficients and the 1°x 1° mean anomalies converted
to a gravity formula consistent with the acdopted constants, We first.computed
the geoid undulations using Method B with the GEM 6 coefficients truncated
at degree 16 and with a cap size of 20°, These undulations are given in Table
I'ive and in contour form in Figure Scven. These undulations include an at-
mospheric correction of 2,26 m obtained from Table One. The undulation stan-
dard deviations for the calibration area when using the potential coefficient
error model one is shown in Table Six and when usiug the potential coefficient
error model two in Table Seven. In the first case the standard deviations have
a maximum of =2,0m with 2 minimum standard deviation of #1.1m, The cor=-
responding values when using the second error model are 2,4 m and £1.8m,
These error estimates are all given with respect to the adopted set of constants,
and exclude the error contribution due to the neglect of detailed gravity informa-
tion in blocks below 1°x 1° in size. The accuracy of these standard deviations
depends on how well the accuracy models for the anomalies, polential coefficients
and truncation effects have been handled, We believe that the latter two effects
have been handled reasonably, However, the anomaly error contribution has
been based on the anomaly standard deviations that may be optimistic,

We next computed the geoid undulations using Method A described in sec-
tion 2,1 with the identical data as used in Method B, A comparison of the rosul-
tant geoids showed a maximum descrepency of 0.2 m with other statistics on the
comparison given in Table Eight, We concelude that either method consistently
applied will give the same undulation at the =0,1 meter level,

A computation was made using method B when a truncation angle of 10° was
uscd instead of 20°, The largest difference found was 3.6 meters with the
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Tigure Seven, Geoid Undulation Using Method B with GEM 6 Coefficients

Truncated at Degree 16 and with a Cap Size of 20°,
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square root of the variance of the difference being +1, 55 meters, Based on
the standard deviations shown in Figure Six, we would expect the above dif-
ference to be =1,3m when using the optimistic potential coefficient error
model and =1, 5m when using the pessimistic model. (The values are arrived
at by computing o-_";r_ i€ <00 - c:_:. ). These expected values are very com=-

patible with the result actually found,

In the computation described in the above paragraph, the atmospheric cor=
rection was rigorously applied with mean difference between the two results be-
ing -0,24 meters, A test computation was made when the atmosphere was not
considered in the anomaly data within the 10° and 20° caps, In this case the
resulting mean undulation difference was found to be -1,34 meters which is a
considerable increase from the -0,24 meciers when the atmosphere was proper-
ly treated, These results indicate the practical value and need of the atmo-
spheric correction to gravity anomalies when the undulations of the geoid are
being computed,

Another computation that was made was with the GEM 6 potential coeffi=-
cients taken to /= 22 witha v 20°, The resulting undulations were compared
to the values computed using the cocfficients to £ 16, The differences be-
tween the undulations was a maximum of 0.3 m with a negligible mean differ-
ence and variance as is shown in Table Eight,

Table Eight, Comparison of Various Undulation Computations (meters)

i A B ¢ D E |
! Mean Diff .03 -0, 24 .03 3. 87 1.15
o .00 £1.55 £,18 +2, 58 13, 52
Max () Diff 0.2 2,9 0.3 12,0 10,4
Max () Diff -0, 2 -3.6 -0.3 -0, 6 -5.3

Difference between Mcthod A minus Method B (£,,, 16, - 20°);

: Difference between Method B 20%) minus Method B (U= 10°);
Difference between Mcthod B(/,,, 22) minus Method B(f,., 16);
Difference between Method B (v 20°)yminus solution of Vincent=\arsh;
: Difference between Mcthod B (U - 10°)minus solution of Vincent=Marsh,

HOoOOE >

The final comparison that was carried out was the comparison of the cali-
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bration geoid of this report to that geoid of Vincent and Marsh (1973), which
was provided to us by Jim Marsh at 1°x 17 corner points, The results of the
comparison are shown in Table Eight, Here we see that there is a strong
systematic difference in the undulation of 3, %7 m, about 1,2 meters of which
is caused Ly the neglect by Vineent and Marsh of the influence of the atmos=-
phere, The square root of the variance of the undulation differences is 2, 58
meters with the largest discrepancy being 12,0m, (Again part of this latter
discrepancy is due to their neglect of the atmosphere). The main cause of
the non-systematic differences between the undulations is probably the 19x 1°
gravity data used in the computations,

9. The Zero-Order Undulation

o
The zero-order urdulation of the geoid has been discussed by Heiskanen

and Moritz (1967, p. 102) for the case of an undulation computation using Stokes’
equation in a global integration process, Specifically we have:

k&M Rig.
2GR 2G

(48) Ny =

where k 52 is the difference between a true value of the geocentric gravitational
constant of the carth plus the atmosphere, and that adopted for the reference ficld,
In addition ig. is the mean gravity anomaly, of those anomalies (after the atmos-
pheric cerrection has been applied) referred to the adopted constants, Thus:

1

ol

(49) qu = I:Jg - 6g;)d0

This A, must also be subtracted from the .Bg° given in (26) to assure that
the anomalies used in Stokes' equation have a global average equal to zero, In
this case an additional term will appear from (10) and (18) equal to:

Ag, T Ap-
(50) - ’—l:—;é" &L,' Siydo = - —B—(-’E‘- $(La)
op V.
POO‘{L PAGE
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Equation (50) is now added to (48) to obtain the modified N, term that applies
for both methods of computation of geoid undulations described in this report,

We have:

|

(51' 0 2 G l‘ G ‘-\" + (wo)'

If ¥~ is 150° we have N, = E:. If X&) and &g, are zero R: is zero, 1If
kO6M = 0, and 4g. = 1mgal, N, is -4,6m for ¢5 = 10° and =5.8m for U, =20°,
The value of 4g- can be determined from (49) if we have a global gravity field
or from:

(52) Ago = ¥' = Y

where ¥' is the true equatorial gravity based on the mass of the earth plus the
atmospl . - and ¥ is the corresponding value adopted for use in the computa-

tions,

Thus, we have derived 2 new N- term that is cap size dependent, This
No, if it can be determined, must be added to the undulations obtained from
equation (1) or equation (14) to obtain the true undulatioz with respect fo the
adopted constants, If N, is sct to zero, the computed undulations will : efer to
a set of unknown constants such that k6 M and Ag. are zero,

10, Summary

This paper documents two procedures that can be used for the computa-
tion of geoid undulations combining potential coefficient data and terrestrial
gravity data, We found that the two methods yield essentially the same results
(at the =0,09m level), However, the error analysis for Method B is simpler. .
than that for Method A,

In developing the procedures for each method two important (echniques
mus! be used, First, it was found that the atmospheric correction is signifi-
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cant and cannot be neglected as its neglect can cause errors in the computed
undulation on the order of 2 meters with a truncation cap of 20", Second,
the numerical integration of Stokes' equation must be done in a precise man=-
ner or integration errors of about ! meter will result,

A preliminary error analysis was done considering “he error sources
due to potential coeflicient errors, gravity anomaly errors, and the truncation
error caused by taking the potential cocfficients to a certain maximum degree
only, This analvsis indicated that certain cap sizes (around 10%) would give
poorer results than more optimum sizes, such as 20°, which was selected
for use here,

The actual geoid undulations were computed in the Geos - 3 calibration
aren using the GEM 6 potential coefficients to degree 16 and the P x 1° mean
anomalies available in July 1075, The results obtained showed a mean differ-
ence of 3,87Tm from the Vincent-2arzh geoid with a difference variance of
(2,58 m)®. The estimated standard deviation of the undulations computed here
were on the order of 1 to 2 meters with respect to the defined constants, This
error analysis neglects the effect of using anomaly blocks of a size smaller
than 1° x 1%, and the effect of ellipsoidal correction terms to Stokes' equa=-
tion,

Although these computations have been done for the GEM6 coefficients
they can easily be repeated for other coefficient sets with a corresponding
error analysis provided a realistic variance-covariance matrix for the poten-
tial coefflicients is available,
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