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SUMMARY

Spiralling flows in which the axial and swirl velocity components

are comparable often undergo a change in structure at some axial location

along the vortex axis. The flow upstream of the change is typically

steady and axisymmetric, and has small radial speeds and axial gradients.

At the disturbance location, significant axial gradients and radial

velocities develop and the flow becomes asymmetric and unsteady. A change

which is abrupt and causes stagnation is called vortex breakdown. In

this experimental study, spiralling flows were produced in a circular

duct which had a divergence angle of 1.43°. Detailed velocity measure-

ments were made and, using dye injection, extensive flow visualization

studies were performed. In addition to the three previously reported

disturbances (the spiral, axisymmetric, and double helix modes), four

other types were identified and are reported for the first time. Each

form is discussed in detail and photographs are presented. The type of

disturbance formed and its axial location depended on the Reynolds number

and swirl-vane angle. The velocity measurements were made using a laser

Doppler anemometer. This non-invasive optoelectronic technique circum-

vented the difficulty encountered by previous researchers attempting to

measure this sensitive flow with probes. Laser Doppler anemometry is

discussed briefly and the particular instrumentation used is described in

detail. Axial and swirl velocity profiles were measured far upstream of

the disturbance for Reynolds numbers of 3220, 4540, and 6000, with various

values of swirl. In each case, the introduction of significant swirl

STAR category 34



resulted in an axial velocity profile which was sharply peaked near the

vortex center, with the centerline axial velocity increased to about twice

its zero swirl value. A detailed map of the velocity field associated with

a so-called axisymmetric breakdown, formed at a Reynolds number of 2560,

was obtained. The centerline axial velocity decreased rapidly upstream

of the breakdown, decaying from its peak value to zero in one bubble

length. Although the velocities upstream of the disturbance were steady,

the dominant feature of the flow inside the bubble was the strong, regular

temporal fluctuations of velocity. The time averaged velocity data showed

the bubble to be a two celled structure, with four stagnation points on

the vortex axis marking the axial extremes of the concentric cells. The

streamline pattern of the mean flow inside the recirculation zone is

presented. The temporal fluctuations were strongest and most regular in

the rear portion of the breakdown and resulted in a continual exchange of

fluid across the mean bubble envelope. Spectral analysis of the fluctua-

tions showed a fundamental frequency of about 2 Hz, which showed good

correlation with the angular frequency at which the asymmetric rear portion

of the bubble rotated about the tube axis. This indicates that the

temporal fluctuations correspond to an azimuthal periodicity associated

with a disturbance propagating about the vortex axis. Neither the periodic

velocity fluctuations nor the mean flow patterns observed are predicted

by existing theoretical models. Two approaches are suggested for future

simulations.



CHAPTER ONE

1.0. Introduction

Spiralling flows in which the axial and swirl, or azimuthal, velo-

city components are of comparable magnitude often undergo an abrupt

change in structure near the axis of the vortex. This abrupt change in

vortical structure is commonly referred to as vortex breakdown or vortex

bursting. The base flows upstream of the breakdown generally are charac-

terized by a small (or zero) radial velocity component, axial symmetry

(or near symmetry) about the vortex axis, small axial gradients, and

roughly equal swirl and axial components of velocity. The occurrence

of breakdown results in severe retardation or stagnation of the axial

flow near the vortex axis, large axial gradients, and significant radial

velocity.

Vortex breakdowns have, in the past, been classified as either

asymmetric or axisymmetric. The asymmetric, or spiral, form shown in

Figure [3.8] has been observed both in rotating flows in tubes and in

radially unbounded swirling flows over delta wings at high incidence

angles. The so-called axisymmetric form (thus named because the envel-

ope of the recirculating cell of fluid is quite axisymmetric) has been

observed mainly in tube flow experiments and, evidently, occurs only

occasionally in leading edge vortex flows.

The occurrence of vortex breakdown can be significant in many circum-

stances. The abrupt formation of a breakdown over a delta wing results

in a sudden change in the lift characteristics of the wing. The perfor-

mance of pumps and compressors could be deleteriously affected by the



presence of a vortex breakdown in the inlet sections. Contrarily, it

has been suggested that vortex breakdown may be useful in dissipating

the trailing vortices generated by large aircraft which can otherwise

persist for long periods of time and have caused upsets of trailing

aircraft. Vortex breakdown may be useful as a flame holder in gas tur-

bine combustor cans to increase combustion efficiency, reduce the com-

bustor size, and help control the amount of pollutants formed.

1.1. Theoretical Explanations

Because of its practical importance and its remarkable nature,

vortex breakdown has been the subject of many stud-ies, both experimental

and theoretical, since the first recorded observation of the phenomenon

(Peckham and Atkinson, 1957). Hall (1972) presented a summary of the

experimentally observed features of vortex breakdown and critically

reviewed the various theoretical studies that had been proposed to pre-

dict the occurrence and mechanism of formation of this phenomenon. The

interested reader is referred to this review for a more detailed expla-

nation of the theoretical studies published prior to 1972.

In summary, the explanations proposed can be generally divided into

three categories.

a) Ludwieg (1962,1964) and Jones (1964) proposed that the pheno-

menon is the result of the hydrodynamic instability of the vortex core

with respect to spiral disturbances.

b) Hall (1966,1967) and Gartshore (1962) contended that vortex

breakdown is analogous, in some sense, to the separation of a two-dimen-

sinal boundary layer. That is, the assumption is made that the flow
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sufficiently far upstream of breakdown is quasi-cylindrical (small

radial speeds and axial gradients). The appropriate forms of the Navier-

Stbkes equations are'then integrated using given upstream conditions and

the integration is continued until the initial assumption of small axial

gradients appears to be violated. The contention is made that even

though the quasi-cylindrical approximation is no longer valid, the actual

flow would also develop large axial gradients at approximately the same

axial location and thus vortex breakdown would occur there. This is

analogous to using the boundary layer equations to predict the point of

separation even though the boundary layer approximation may no longer be

valid in that region.

An inherent shortcoming of this method is that only the location of

the breakdown can be predicted and nothing can be learned about the flow

pattern near or downstream of breakdown. Bossel (1969) used a similar

approach, but by making additional assumptions was able to compute the

flow field inside the axisymmetric bubble (only axisymmetric breakdowns

are admitted with this model because the equations are axisymmetric).

Mager (1972) used the quasi-cylindrical momentum integral equations and

claimed agreement between his results and the experimental observations

of Sarpkaya (1971 A,B).

c) The third proposal offered to explain the vortex breakdown flow

involves the idea of a critical state, which is the dividing point

between a supercritical flow, which cannot support axisymmetric distur-

bance waves, and a subcritical flow, which can. This is analogous to a

hydraulic jump in open channel flow or the sonic condition in compressible

flow. Squire (1960) first introduced the concept by seeking the flow



conditions that could result in the existence of standing waves in the

flow field. The concept of a critical state was further delineated and

amplified by Benjamin (1962,1967), who dealt with steady, axisymmetric,

inviscid flow in a tube of constant area. Benjamin showed that for a

given upstream supercritical flow a number of conjugate flows were

possible that were subcritical. This theory proposes that the vortex

breakdown is the transition from the supercritical flow to a subcritical

conjugate flow. No details of the flow in the transition region itself

can be predicted by this method.

Leibovich (1970), Leibovich and Randall (1973), and Randall and

Leibovich (1973) expanded on the work of Benjamin and dealt with finite

amplitude waves in tubes of slowly varying cross sections. The transition

region was considered in detail in these papers, and in Randall and

Leibovich the wall pressure distribution and bubble shape and size were

predicted. The predictions agree reasonably well with experimental results.

Other theoretical studies dealing with vortex breakdown have been

primarily numerical. Kopecky (1971) and Torrance and Kopecky (1971) did

numerical computations for rotating flows in tubes at relatively low

Reynolds numbers. Grabowski (1974) obtained numerical solutions for an

unconfined, viscous vortex embedded in an irrotational flow with uniform

upstream axial velocity.

1.2. Experimental Studies

The theoretical studies summarized above attempted, in large part,

to explain the experimental observations reported by a considerable

number of researchers. The preponderance of early experimental work was

concerned with vortex breakdowns occurring over delta wings at high angles



of attack [22-24], Lambourne and Bryer (1962) did extensive flow visuali-

zation studies of the bursting of leading edge vortices above delta wings

of various sweep back angles for a range of angles of attack. They were

able, through photographic techniques, to describe: the spiral mode of

breakdown in detail, such as the sense and frequency of rotation of the

spiral filament and the approximate fluid particle path along the surface

of an imaginary body of revolution swept by the rotating spiral filament.

The effect on breakdown position caused by changes in sweepback angle,

incidence angle, and Reynolds number was reported. Various other factors

affecting breakdown position were also investigated, such as sudden

alterations to free stream velocity and the introduction of bodies near

the breakdown. In addition, the effects that the breakdown had on sur-

face flow patterns and surface pressure distributions were studied. It

should be noted that the so-called axisymmetric form of breakdown was

observed only occasionally by Lambourne and Bryer and it persisted for

short durations.

Although Lambourne and Bryer did not perform detailed velocity mea-

surements of the vortex breakdown flow, they suggested that such measure-

ments should be possible, even in the immediate vicinity of the breakdown.
i

They.based this judgment on their observations of the response of the

breakdown to the insertion of slender bodies into the flow near the

breakdown. However, Hummel (1965) reported that the insertion of a probe

upstream of the breakdown resulted in an upstream movement of the break-

down that made meaningful measurements impossible. Hummel, working with

an experimental set-up similar to that used by Lambourne and Bryer (and

others), was able to minimize this disturbance effect caused by the probe



by placing an obstacle downstream of the inclined delta wing. With the

obstacle in place downstream, he was able to perform measurements which

were used to plot contours of constant speed and constant pressure in

four planes. These planes were at various axial locations, perpendicular

to the line of symmetry of the wing, upstream and downstream of the

breakdown as well as near the breakdown region itself. The results showed

that the flow upstream of the breakdown was quite symmetric about the

vortex axis. Near the breakdown, the vortex became quite asymmetric and

there was pronounced retardation near the vortex axis. Hummel claimed

good agreement between these results and those predicted by Ludwieg's

instability theory. Hall (1972) pointed out inconsistencies between the

two, however.

- The complicated nature of the leading edge vortex flow prompted

researchers to attempt to produce breakdowns in a simpler geometry, the

vortex tube. Lambourne and Bryer (1961, Appendix Al) produced breakdowns

in a constant diameter duct using an apparatus similar to that used by

Titchener and Taylor-Russell (1956). The swirl was imparted by a set of

swirl vanes placed in the entrance region of the tube. This method of

swirl generation was also used by Harvey (1962), Kirkpatrick (1964), and

Sarpkaya (1971A, 1971B, 1974) and is used in the present study.

Harvey, using a tube of constant diameter, produced a so-called axi-

symmetric breakdown and was able to measure the swirl angle distribution

upstream of the breakdown using smoke injection techniques. He found

that the maximum swirl angle was approximately 50°-51° and that the swirl

angle distribution approximated the exponential form,

* = tan"1tAr~1(l-e'Br2)],



where A and B are constants. Harvey also reported the results of an

experiment in which an insert was placed into.the constant diameter duct.

This insert had a center section of constant, reduced diameter which was

smoothly joined to the existing tube by an upstream, converging section

and downstream, diverging section. Harvey found that, under the

appropriate flow conditions, an axisymmetric type of breakdown could be

precipitated upstream of the insert (by using a probe) and that a second

vortex breakdown existed in the reduced diameter throat of the insert.

Sarpkaya (1971A) performed extensive flow visualization studies of

the vortex breakdown phenomenon in a slightly diverging tube. He pre-

sented striking photographs of the spiral and axisymmetric modes of break-

down and, in addition, reported the observation of a third form of distur-

bance which he called the double helix form (see Chapter 3). Sarpkaya

found that the type and location of breakdown, for a fixed vane angle,

varied strongly with Reynolds number. For each of the vane angles used,

a spiral mode was formed relatively far downstream of the start of the

diverging section at the lowest flow rates. As the flow rate was incre-

ased the breakdown moved upstream and at some higher value of Reynolds

number the spiral changed into, in most cases, the axisymmetric mode.

Once this transformation had occurred, subsequent increases in Reynolds

numbers served only to move the axisymmetric mode further upstream.

Sarpkaya reported that occasionally, at high vane angles and low Reynolds

numbers, the double helix mode was observed as an intermediate form

between the spiral and axisymmetric modes.

The strong relationship between Reynolds number and breakdown loca-

tion found by Sarpkaya was at variance with the weak relationship

reported by Lambourne and Bryer (1961) for leading edge vortex flows.



Another difference between the two studies concerned the sense of the

spiral filament. While both found that the geometric form rotated about

the vortex axis in the same direction as the upstream flow, Lambourne

and Bryer reported that the spiral filament was of the opposite hand

to the outer helical streamline and Sarpkaya reported that both were

of the same hand.

Sarpkaya also studied the effects that sudden alterations in the

flow rate and vane angle had on breakdown location and form. The measure-

ments presented by Sarpkaya were axial profiles of wall pressure near

the breakdown (also reported by Kirkpatrick), centerline axial velocity

just upstream of the breakdown, and the radial distribution of swirl angle

upstream of breakdown. Sarpkaya found the maximum swirl angle to be 50°

for axisymmetric breakdowns and 38° to 45° for spiral breakdowns. For all

cases, the swirl angle distribution was similar to the exponential form

found by Harvey. In later reports Sarpkaya presented more detailed

descriptions of the double helix mode (1971B) and studied the effects of

various tube divergence angles (1974).

The experimental studies summarized above provided considerable

information about the vortex breakdown flow, especially with regard to

those features which one is able.to observe using flow visualization

techniques. The various forms of breakdown, the parameters affecting its

location and form, and its response to sudden alterations of the flow

were studied extensively and this research supplied the information and

insight which stimulated the various theoretical attempts to explain

this phenomenon. Due to the limitations of visualization techniques,

however, previous experimental researchers were unable to provide detailed

10



velocity measurements of the vortex breakdown flow field. Detailed

velocity measurements are necessary both to provide a foundation for

theoretical models of the flow and as a standard against which the

results of theoretical simulations can be compared.

1.3. Outline of Study

The two major difficulties associated with obtaining detailed

velocity measurements of the vortex breakdown flow are the extreme sensi-

tivity of the flow and the quasi-steady nature of the breakdown. In this

study, these difficulties were circumvented by using the non-invasive

technique of laser Doppler anemometry and by using a flow apparatus which

was carefully constructed to minimize disturbances to the flow.

The experimental flow apparatus is described in Chapter 2. The

fundamental principles of the laser Doppler anemometry technique are pre-

sented, a detailed description of the optical and electronic equipment is

given, and the optical alignment procedure is outlined. The swirl vane

array, which was used to impart a precisely controlled swirl to the flow,

is discussed in Appendix Al. The refraction effects caused by using a

circular cross section test section are presented in Appendix A2.

Chapter 3 deals with the results of extensive flow visualization

studies. In addition to the three disturbance forms reported previously

[Sarpkaya, 1971 A,B] four other distinguishable .forms were observed.

These forms are described in detail and photographs of each are presented.

The transformations from one disturbance type to another are discussed

and supporting evidence is given to explain why some disturbance forms

are seen only at low Reynolds numbers. Some apparant discrepancies

between these results and those of Sarpkaya (1971 A,B) are noted. The

11



response of the breakdown to sudden alterations in swirl or flow rate

and the accompanying changes in the centerline axial velocity far up-

stream of breakdown are also presented in Chapter 3.

Detailed velocity measurements of the vortex breakdown flow are pre-

sented in Chapter 4; tabulated velocity data are given in Appendix A3.

A discussion of experimental accuracy and equipment limitations is also

presented in Chapter A. The first group of results deals with the base

flow profiles of axial and swirl velocity. These profiles were measured

far upstream of the flow disturbance for three fixed Reynolds numbers,

with swirl as a parameter. The measurements show the strong effect that

the presence of a significant swirl velocity has on the axial velocity

profiles, with the most dominant change being the development of a high

axial velocity near the tube axis.

Finally, the results of extensive measurements of the velocities

associated with a single vortex breakdown are presented. The breakdown

was a so-called axisymmetric mode, and a detailed mapping of the velocity

field, both outside of and within the breakdown envelope, is shown. The

profiles of axial and swirl velocity at various axial locations approach-

ing the breakdown are given which show the development of large axial

gradients near the breakdown nose. The measurements inside of the bubble

envelope and in the wake region indicate that the flow is dominated by

strong, regular fluctuations of velocity. The time average profiles are

presented and the mean streamlines inside the breakdown are given. These

results show that a two cell structure exists within the bubble and, for

time averaged velocities, four stagnation points are present along the

tube axis inside of, and on, the bubble envelope. The fluctuation

12



amplitudes within the bubble are shown to be quite strong, especially

in the downstream portion of the bubble. Spectral analysis of the axial

velocity at several locations shows that these fluctuations have a

dominant frequency that does not vary with location.

The fluctuations indicate that the flow is not, in fact, axisymmetric

even though the bubble envelope shows a high degree of axial symmetry

over most of its length. Thus, the results indicate that models based on

assumptions of axial symmetry and steadiness cannot be expected to predict

the flow patterns actually measured in the important recirculation zone

of the vortex breakdown flow. The mean, time-averaged flow patterns

differ significantly from those predicted by all existing simulations.

13



CHAPTER TWO

2.0, Experimental Apparatus

The primary objective of this study was to provide detailed veloc-

ity measurements of the vortex breakdown flow field. Previous investi-

gators [11, 27] had reported two major difficulties which had prevented

them from making these measurements in the vicinity of the breakdown.

First, the vortex breakdown was only quasi-steady in position and was

continually shifting slightly in a slow, random manner along the axis

of the vortex. The second problem, related to the first, was that the

introduction of a probe into the vortex core upstream of breakdown dis-

turbed the flow in such a way that accurate velocity measurements were

not possible.

It was hoped that the first difficulty, although probably inherent

in the phenomenon, could be minimized by exercising great care in the

design and construction of the flow system. The second problem was

circumvented by the use of the non-invasive method of flow measurement

known as laser Doppler anemometry. In addition to eliminating the

insertion of mechanical probes into the flow, this technique also

offered good spatial resolution, unambiguous resolution of a velocity

into its components, and excellent temporal response to transients and

required no tedious calibration.

14



2.1 The Flow Device

The device used in this study is similar in form to that used

successfully by Sarpkaya [11, 12, 29]. As illustrated by the schematic

[2.1], the apparatus consisted of upper and lower constant head tanks,

a test tank, a rotameter, and the necessary piping, valves, and filters.

The constant head tanks were fixed in position and were baffled

to help eliminate pressure fluctuations. The upper tank, with a capacity

3
of .132 m , was continuously supplied with fresh, filtered, constant

temperature tap water by a control valve. This valve, which was fed by

the building's hot and cold water lines, automatically compensated for

temperature and pressure fluctuations in the supply pipes. The temper-

ature of the water at the valve exit was set initially to match room

temperature. This value was then maintained automatically by the valve,

within a tolerance of + .5°C. The flow rate was set so that the upper

tank was continuously overflowing.

Six inlet pipes, 2.5 cm I.D., supplied water from the upper con-

stant head tank to the test tank. Each inlet was equipped with an

inline filter and on-off valve. After flowing through the test tank,

the water was routed through a 2.5 cm I.D. exit pipe, a precision

rotameter, and a large needle valve to the lower constant head tank,

3
of capacity .057 m . The absolute accuracy of the rotameter corre-

sponded to an error in Reynolds number, based on flow rate and test

section diameter, of ± 220. The reproduceability was ± .25% of the

indicated flow rate (Reynolds number). The flow rate was varied by

15
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adjusting the needle valve placed between the rotameter and lower con-

stant head tank. Water overflowing from both head tanks was collected

in trays and piped down the building drain.

The test tank, Figures [2.2, 2.3], was constructed of 2.54 cm thick

Plexiglas and had inside dimensions of 1.37 m long, .4 m wide and .4 m

high. Water entered the tank through the six inlet pipes. These pipes

were connected to nipples embedded in one end wall of the tank. The

nipples were evenly spaced on the circumference of a 25 cm circle which

was concentric with the centerline of the device.

A baffle, made of fully reticulated polyurethane foam and Plexiglas

discs, was placed inside the tank near this end wall. This baffle served

to disperse the inlet jets and helped insure uniform flow across the

height and width of the tank.

A brass plate, 2.20 cm thick, was bolted to the other end-wall of

the tank. This plate supported the 32 guide vanes, the planetary gear

system which controlled the vane orientation, and a Plexiglas center-body,

which helped direct the flow into the test section entrance, Figure [2.10],

The vanes, which imparted the desired swirl to the fluid, were symmetric

foils with a chord of 4.37 cm and a span of 2.89 cm. See Appendix Al

for details of vane construction and alignment. Each foil was rigidly

attached to a shaft which was supported by bearings mounted in the brass

plate. These 32 shafts were equally spaced on the circumference of a

22.86 cm diameter circle which was concentric with the centerline of the

brass plate. An 0-ring provided the necessary rotary seal for each shaft.

17
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A planetary gear system, as seen in Figure [2.4], rotated each of

these shafts in unison so that, at any one setting, each vane made the

same angle with a radial line drawn from the center of the brass plate

to the pivot line of the vane. This angle could be varied continuously

from 0° to 60°. A 9000 to 1 gear reduction between the actuating wheel

and the vane shafts, as well as individual torsion springs used to

eliminate lash between the planet and the sun gears, guaranteed accurate

and reproduceable vane settings. A small, variable speed motor was used

to drive the gear system when continuous, rather than incremental, vane

angle adjustment was desired. An instrument counter indicated the vane

angle setting.

The fluid was directed through the vane array by an annular channel

formed on one side by the brass plate and attached center body, and on

the other by a bell-shaped piece, also made of Plexiglas. Radiused

strips were placed along the tank wall - brass plate junction. These

helped to direct the flow radially inward. The entrance channel was

designed so that the pressure gradient was always favorable to minimize

the possibility of flow separation. All joints were kept smooth to reduce

flow disturbances.

The test section, machined from Plexiglas and highly polished, was

joined at the upstream end to the bell-shaped piece and at the downstream

end to a constant diameter Plexiglas exit pipe. This assembly was

supported at its upstream end by a wire and screw arrangement, with the

screws threaded into the tank sidewalls. This permitted the vertical and
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Figure 2.3. A Photograph of the Test Tank and Optical Equipment. The
Laser, Input Optical Unit, and Traversing Mechanism May be
Seen in the Background. The Receiving Optics and Their
Traversing Slide are in the Foreground. The Stand on Top of
the Tank Held a Viewing Mirror.

Figure 2.4. A Photograph of the Planetary Gear System Which Controlled
Swirl Vane Orientation.
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horizontal adjustment necessary to ensure that the centerline of the

bellmouth was coincident with the centerline of the brass plate.

In order to keep the tube axis perpendicular to the brass backing

plate, any adjustment at the upstream end was compensated for at the

downstream end by another assembly which permitted vertical and horizon-

tal adjustment. This assembly was mounted on the outside face of the

downstream end wall of the tank and included the following; a roll-sock

sleeve of neoprene rubber provided a seal which permitted motion in

three directions, an annular ring with locating screws to provide vertical

and horizontal adjustment of exit tube position, a wire and screw arrange-

ment to provide axial adjustment of the bellmouth-test section-exit tube

assembly (to control bellmouth-face to vane-end clearance), and a reducer-

connector which provided a smooth reduction in tube I.D. and had an inte-

gral nipple for connection to the tube leading to the rotameter.

The axial variation of the inside diameter of the tube assembly was;

a converging entrance section formed by the bellmouth and centerbody, a

10.5 cm long throat with an inside diameter of 3.81 cm, a test section in

which the I.D. changed linearly from 3.81 to 5.08 cm in a length of 25.A cm

(a divergence angle of 1.43°), an exit portion of inside diameter 5.08 cm

which extended past the tank end wall, and the reducer which smoothly

reduced the inside diameter to 2.54 cm. A scale, attached to the outside

of and running the length of the test section, served to indicate axial

distance.

Dye could be introduced into the flow at two locations. One dye

injector was a piece of hypodermic tubing which extended along the center-

line of the Plexiglas centerbody and protruded slightly into the fluid.
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This provided a marker filament along the tube axis. The second injector

was installed into one specially modified guide vane. The tip of the

hypodermic tubing extended slightly beyond the trailing edge of the vane,

and a slot allowed the injector to be moved in the spanwise direction.

This permitted dye to be introduced at various radial locations in the

tube. Since it rotated with the "vane, this injector was always aligned

correctly, with its axis parallel to the flow. Each injector was fed by

its own reservoir, and the flow of dye was controlled by needle and shut-

off valves. The marker fluid could be introduced continuously or in

short pulses. Both washable inks and biological stains were used at

various times. These were diluted with water to ensure that no great

density difference existed between the dye and the water flow.

Two manifolds, each feeding three branches leading into the tank,

extended along one of the tank sidewalls. One of these, close to the

bottom edge of the tank, was connected to the inlet side of a small

centrifugal pump. The other manifold, which was close to the top of the

tank, was connected to the pump outlet. This system was one of a number

of improvements made to solve problems that became apparent during the

initial running of the experiment. Specifically, it was found that any

significant difference in temperature between the room air and the water

caused secondary, natural convection flows near the tube entrance. This

effect resulted in an asymmetric feeding of fluid into the vane array

and thus produced a non-uniform swirl velocity.

This difficulty led to the installation of the mixing valve to

control the temperature of the water fed to the upper constant-head tank.

A variation in room temperature could thus be compensated for by manually
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changing the feed water temperature. A second problem then appeared.

A sudden adjustment in water temperature led to stable stratifi-

cation inside the test tank. This stratification took the form of a

stagnant layer of fluid trapped in either the top or. bottom regions of

the test tank. This also resulted in an asymmetric feeding of fluid

into the entrance channel of the tube. This layer would often persist

for hours if remedial action was not taken. The centrifugal circulation

pump/manifold system was used to mix the water in the tank to destroy the

stratification in a few minutes. The system was then shut off and the

residual secondary flow the pump caused was allowed to decay before

proceeding with the experiment. Eventually, an air conditioner was

installed and this, in conjunction with the mixing valve, resolved the

problems completely.

The test tank rested on the top of a table which was mounted on air

bags. The pneumatic support system permitted adjustment of the height

and inclination of the flow apparatus centerline. This adjustment was

necessary to provide accurate alignment of the test section centerline

with respect to the laser anemometer traversing mechanism.

2.2. The Laser Doppler Anemometer: Background of Technique

The opto-electronic technique, usually known as Laser Doppler

Anemometry (LDA) or Laser Doppler Velocimetry (LDV) is a fairly new method

of fluid velocity measurement. A brief discussion of the principals of

operation will be presented. The technique was first reported by Yen and

Cummins [30] in 1964, and since that time a significant amount of research

and development work has been done to improve the method. Considerable

improvements have been made in the optical configurations used and in the
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electronics systems necessary to utilize the technique in transient and/or

turbulent flows. Several systems are now commercially available. An

extensive bibliography of LDA literature can be found in reference [31].

Various optical configurations have been used successfully in laser

anemometry, and the technique may be viewed in several different ways.

All of these viewpoints yield the same end result however since all

ultimately depend on the Doppler effect. This well known phenomenon, as

illustrated in Figure [2.5], states that light scattered from a particle

moving with velocity v will be shifted in frequency, relative to the

incident, by an amount f. = -r- v • (e -e.). The following derivation, which
A S I

does not explicitly include this equation, is perhaps easier to understand

and yields the same result produced by applying the Doppler equation to

the beam geometry described below.

If two monochromatic beams of light, Figure [2.6], of comparable

intensity and wavelength X, intersect at an angle 8, they will form an

interference fringe pattern. These fringes will be parallel to the

bisector of the angle formed by the two beams and equally spaced a dis-

tance d apart, where d = A/(2sin(6/2)). If a particle, with diameter

comparable to X, intersects this fringe pattern, the intensity of the

light scattered by the particle will vary as the particle traverses alter-

nately light and dark fringes. If the particle has a velocity component,

v, perpendicular to the fringes the frequency, f , of this variation in

scattered intensity is the velocity divided by the fringe spacing, or

fB = (2v sin(8/2))/X. Therefore, if 6 and X are known from the optical

configuration used, a measurement of f provides the velocity component,

v.
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It should be noted that the velocity measured is actually the particle

velocity. But since these particles have diameters comparable to the

light wavelength, the particle velocity is assumed to be equal to the

local fluid velocity. LDA measurements of air flows usually require the

introduction of scattering particles, but water usually contains sufficient

amounts of impurities and additional seeding is unnecessary. No seeding

was done in this study.

The frequency, f , is 'generally measured by collecting some of the

scattered light with a lens system which focuses it. onto the photocathode

of a photomultiplier tube, f is independent of the collector lens

location. Thus, the scattered light may be collected in any convenient

location. However, the intensity of back-scattered light (light scattered

back towards the incident beams) is small compared to forward scattered

light. For this reason, the photomultiplier is usually placed so that it

detects forward scattered light. Back-scattering may be used in conjunc-

tion with sufficiently high output lasers, usually CCL or argon.

The spatial resolution of the instrument is determined by the size

of the scattering volume, which is defined as that volume common to both

intersecting beams. This is an important consideration, since it deter-

mines the dimensions over which the velocity is averaged in the measure-

ment. Referring again to Figure [2.6], for two beams of diameter b inter-

secting at an angle 6 the dimensions of the scattering volume are: the

height, perpendicular to the plane defined by the two beams, is equal to b;

the width, perpendicular to the bisector, is equal to b/cos(6/2); and the

length, along the bisector, is equal to b/sin(6/2). Thus spatial resolu-

tion is improved by decreasing the beam diameter and/or increasing the

intersection angle.
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The problem of processing the photomultiplier signal is a difficult

one, and much of the research in laser Doppler anemometry has been con-

cerned with the subject. Typically, the signal is difficult to process

for a number of reasons. In general,

a) The signal usually has a low signal/noise ratio.

b) The frequency of the signal, which is proportional to the

velocity, is varying in time, often over a braod range.

c) The signal is usually characterized by frequency phase

shifts caused by having two (or more) particles in the

scattering volume at any one time.

d) Conversely, there may be relatively long periods in which

no signal exists due to having an absence of particles in

the scattering volume.

The two methods that have proven most successful are the direct coun-

ter (time domain) and Doppler frequency tracker (frequency domain). In

the direct counter technique, the time that a particle takes to traverse

N fringes is actually measured, and from this the particle velocity is

determined. The Doppler frequency tracker, as the name implies, employs

a feedback circuit to allow the instrument to follow a semi-continuous,

time-varying frequency. The output is usually an analog voltage propor-

tional to the instantaneous signal frequency, and thus proportional to

the instantaneous fluid velocity. Since a fairly continuous signal is

necessary for the tracker technique, it is most suitable for flows which

contain a fairly large number of particles, such as water flows.

The direct counter technique, on the other hand, needs relatively

few scattering particles. More specifically, these processors are designed
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to reject data taken during periods in which more than one particle is in

the scattering volume, since this would result in an inaccurate time

measurement. The direct counter is used, then, for air flows which are

only lightly seeded (or even unseeded), or for water flows in which the

water is highly filtered.

Consider again the basic equation relating signal frequency to

particle velocity, f = (2v sin(6/2))/A. Two difficulties associated with

the basic method can be seen. First, low velocities give rise to low

frequency signals. Low frequencies are difficult to demodulate and most

tracker systems operate poorly in the low frequency ranges. In many

cases, low velocities occur in regions of high velocity gradients, which

give rise to large amplitude, rapid fluctuations in frequency. As a

result, the practical lower limit for most tracker systems, using the

basic optical system described above, is several cm/sec.

The second difficulty is that the basic equation indicates that there

is an ambiguity in the sign of velocity. The signal contains no informa-

tion to indicate the direction in which the particle is traversing the

fringe pattern.

Both of these difficulties can be resolved by shifting the frequency

of one or both input beams before they intersect. If the two intersecting

beams differ in frequency by an amount f , it can easily be shown that the

basic equation relating the frequency of the scattered light, f , to the

particle velocity component, v, becomes

+ 2v Sin(6/2)
D o A .

This effect can be thought of as providing fringes which are moving through
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the intersection volume. Thus, a particle with velocity component, v,

moving in the opposite direction that the fringes, are moving will result

in a frequency higher than f ; similarly, a particle moving in the same

direction as the fringe system will result in a frequency less than f .

This modification to the basic method yields a considerable improvement

in system performance. It allows the technique l.o be used to measure

velocity unambiguously in applications in which the flow direction is

unknown or is changing in time.

' •

2.3. The Laser Doppler Anemometer System Used

The anemometer used in this study was the DI.SA type 55L system. Only

minor modifications were made to the system to improve the spatial

resolution and to allow either of two velocity components to be measured

with a minimum of re-alignment.

A schematic of the optical system used is shown in Figure [2.7]. As

supplied, the system consisted of a laser, an optical unit (enclosed in

dotted lines in the figure), and the photomultiplier tube assembly.

Lasej: - The laser used was a Spectra-Physics model 120. This was a

Helium-Neon laser which had an output power of 5 mW. A 3X beam expander,

made from two telescope eyepiece lenses, was mounted on the front of the

laser head. This beam expander was added to improve the spatial resolu-

tion of the system (see Appendix A2 for explanation).

Optical Unit - The optical unit combined its various components

into a single, compact package. ' The entire optical assembly could be

rotated about the centerline of the unit. Mirrors MI and M_ were added

to the system to reduce alignment difficulties associated with the optical

support/traversing system used (see Sections 2.5, 2.7 for details).
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These two mirrors were mounted on a small platform rigidly attached to

the originally supplied optical assembly. M.. was rigidly attached to

this platform and M. was mounted in a gimballed holder which also was

f

attached to the platform. M_ could rotate about two perpendicular axes

and the distance from M. to M_ was variable.

The input laser beam, which was aligned to be coincident with the

centerline of the unit, was reflected by M and M? and impinged on a

biprism beamsplitter which split the beam into two beams, B and B_,

approximately equal in intensity. B? was reflected by mirror M_; the

distance between the beamsplitter and M was adjustable. The direction

of B, could be altered slightly by rotating the prisms P and/or ?„ about

axis A . P and P were 3° wedge prisms which were oriented so that

their wedge angles were nominally 90° apart, with rotation measured with

respect to axis AI.

By carefully adjusting

a) The M -M- distance and M» orientation

b) The beam splitter - M distance

c) The wedge prisms P.. and P_

it was possible to align the beams BI and B to be parallel to, in the

plane of, and equidistant, from the centerline of the optical assembly.

The distance between the beams, b , was equal to 50 mm. This insured that
s

each beam would then be accurately centered, on the aperture of one of the

Bragg cells.

The Bragg cells used were opto-acoustic modulators which shifted the

frequency of the laser light. Each cell consisted of a block of glass

with piezo-electric transducers bonded along one side and an acoustic

absorber mounted on the opposite side. The piezo-electric transducers
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were driven by an oscillator and sent acoustic wavefronts across the

glass block. When properly aligned with respect to the incident laser

beam, the laser light would interact with the acoustic wavefronts with

the result that the output beam frequency would differ from the input

frequency by an amount equal to the acoustic frequency (oscillator

frequency).

As supplied, the oscillators which drove the cells were set so that

the output beam frequency of each cell differed from the other by a

known, incrementally adjustable amount. This difference in frequency is

the value of f in equation [2.1].

The two beams then struck lens L , of focal length F, This lens

simultaneously focused each beam and caused them to intersect at their

focal points. As previously stated, beams BI and B_ were aligned to be

parallel to, in the plane, and equidistant from the optical axis. These

alignment conditions insured that,

a) the two output beams would intersect •, with the intersection

point on the optical axis.

b) the two intersecting beams and the optical axis would be

coplanar.

c) the bisector of the angle formed by the two intersecting

beams would be coincident with the optical axis.

The focal length of this lens, F, determined both the distance between

the lens and the intersection point and, since the beam separation, b ,
s

was fixed, the intersection angle, 6. The focal length was also an

important parameter in determining the spatial resolution of the instrument
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(see Appendix A2). Three lenses, with focal lengths equal to .13 cm., 30 cm

and 60 cm, were supplied with the optical unit. In, order to maximize the

spatial resolution in applying this unit to the flow device previously

described, it was necessary to obtain a fourth lens, with a focal length

of 20 cm.

In summary, the goal of the alignment of the laser head/optical unit

(i.e. the input optics) was to have the bisector of the angle formed by the

intersecting beams, the optical unit centerline, and the input laser beam

colinear.

Photomultiplier Assembly - As a particle traverses the intersection

volume, it scatters light in all directions. The intensity of the scatter-

ed light varies as a function of viewing angle. However, the frequency,

which is linearly related to the particle velocity, is independent of the

viewing angle. Therefore, it is possible to collect scattered light over

a finite solid angle, and in any convenient location in which the scattered

light intensity is sufficiently high.

In the system used, the photomultiplier assembly was placed on the

opposite side of the flow device from the input optics. Some of the

scattered light was collected by lens L?, passed through a variable aper-

ture to lens L_, which focused the light onto a small pinhole placed in

front of the photocathode of the shielded photomultiplier tube. A viewing

system, mounted integrally with the photomultiplier assembly, allowed the

intersection point image to be observed on the pinhole disc for focusing

and alignment. The image of the two intersecting beams, which took the

form of an X, could easily be seen on this disc. The final focusing and

alignment were carried out by moving the photomultiplier assembly, with
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respect to the intersection volume, so that the cross-over point was sharply

focused and centered on the pinhole.

2.4. Electronics and Instrumentaion

The photomultiplier tube converted the information carried by the

scattered light into an FM electrical signal. Thus, the photomultiplier

output was an FM signal with frequency equal to the scattered light fre-

quency, f . The electronics system used was necessary to process this FM

signal and convert it into a more suitable form for data acquisition.

1. High Voltage Supply - This unit supplied a continuously adjustable

DC voltage to the photomultiplier tube. This voltage and the resulting

anode current level were displayed on meters mounted on the instrument.

The anode current depended on the amount of light hitting the photocathode

and the DC voltage level. Thus, the DC voltage was adjusted to provide a

suitable anode current for the amount of scattered light present.

2. Doppler Signal Processor - This instrument, composed of a preampli-

fier and frequency tracker, frequency demodulated the photomultiplier output.

The output was an analog voltage proportional to the instantaneous inmit

frequency. The frequency range, 2.25 KHz to 15 MHz, was covered in seven

ranges: 2.25 to 15 KHz, 7.5 to 50 KHz, 22.5 to 150 KHz, 75 to 500 KHz, .225 to

1.5 MHz, .75 to 5 MHz, and 2.25 to 15 MHz. The Bragg cell oscillators were

set so that the frequency shift, f , was incrementally adjustable to be 7.5

KHz, 25 KHz, 75 KHz, 250 KHz, .75 MHz, 2.5 MHz, and 7.5 MHz. Thus, the Bragg

cell frequency shift, which corresponded to zero fluid velocity, could be

set, if desired, to be at the center of any chosen frequency range. The

accuracy of the instrument, as supplied, was ±1% of full scale deflection

of the range in use. However, this accuracy was improved to be ±.25% of
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indicated frequency by carefully calibrating the -signal processor using a

frequency generator and a frequency counter.

The signal processor was capable of tracking a frequency input, which

was varying in time. Periodic input frequency fluctuations of up to ±70%

of mean could be tracked successfully. Since tracking ability was enhanced

by higher mean frequencies, but accuracy suffered, the choice of the Bragg

cell frequency shift used was a compromise between these two effects.

A "dropout" circuit and indicating meter, integral with the unit, were

used to determine the relative duration of periods in which no signal existed.

The meter had a scale of 0% (signal always present) to 100% (no signal

present) . In general, the instrument required manual tuning until the

feedback circuit was completed, as indicated by a low dropout, and there-

after the unit would automatically follow any changes in input frequency.

Long periods of dropout, or large, rapid fluctuations in frequency would

result in loss of tracking, and manual retuning was necessary.

The input frequency was indicated directly on a panel meter. For more

accurate readings, an analog voltage was available. This voltage, e, was

proportional to meter deflection. Specifically, for input frequency, f ,

and full scale reading for range in use,

Thus, e varied from 0 to 10 volts, and for a fluid velocity which varied

in time about a mean value, the output voltage, had an AC component, pro-

portional to the- fluctuations, and a DC component proportional to the mean

velocity. The following instruments were used in this study to further

process or record this analog voltage.
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3. Signal Conditioner - This unit had a variable high and low pass

filter section. This could be used to spectrum analyze the AC component

of the analog voltage. A zero suppression circuit was included, and this

could be used to suppress the DC component.

4. RMS Voltmeter - This voltmeter measured the true root mean square

value of the AC component, either with or without prior filtering with the

signal conditioner. Various integration times could be selected, from .3

to 100 sec, depending on the frequency range of the signal. The r.m.s.

value was indicated on a meter, and an analog voltage output, proportional

to meter deflection, was also available.

5. Digital Voltmeter - This voltmeter was used to measure the DC

component of the analog voltage. A choice of seven time constants, from

.1 to 100 sec, allowed the measurement of the mean voltage within the

selected time interval. The readout could be held at any desired instant

by means of a remote switch.

6. Strip Chart Recorder - A multi-channel strip chart recorder was

used to simultaneously record the analog voltage, either with or without

filtering and suppression, and the r.m.s. value of the AC component. A

third channel was also used to record a signal which indicated the vortex

breakdown position (see Chapter 4).

2.5. Optical System to Flow Device Alignment

The primary goal of this study was to measure the axial and swirl

velocities at various locations in the test section of the flow device.

The following conditions had to be met in order to do this successfully.

1. The two laser beams had to intersect in the flow.
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2. The wavelength, A, of the laser light and the-angle between the

intersection beams, 6, had to be known. It should be emphasized

that in equation [2.1], which relates frequency shift to velocity,

0 and X are local values, measured in the flow medium at the

point of intersection. These parameters also affect the size

of the intersection volume and, therefore, the spatial resolution

of the measurement.

3. The location of the intersection point, measured with respect to

the cylindrical coordinate system defined by the test section

centerline, had to be known.

A. The velocity component measured by the laser Doppler anemometer

is determined by the input laser beams. Specifically, the

component measured is in the plane defined by the intersecting

beams and normal to the bisector of the angle formed by the beams.

Therefore, the input beams had to be aligned so that their

orientation with respect to the tube coordinate system was known.

This insured that the velocity measured corresponded to either

the axial or swirl velocity.

5. A traversing mechanism had to be built which could move the optics

in a precise way so that measurements could be taken at various

locations. The movement of the optics had to be accomplished

in such a way that the various alignment criteria were maintained.

The alignment of the laser head/optical unit had to be done outside

of the flow device. The laser head was first adjusted so that the beam

was in a horizontal plane, parallel to one axis of the traversing system.

Then the alignment of the optical unit, as described in section 2.3, was
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done and this resulted in two laser beams which intersected at their focal

points. A short focal length lens (4 mm) was placed near the intersection

point and the magnified image of the intersecting beams was displayed on

a screen. In this way, final adjustments to the beams could be made to

insure intersection and, with the Bragg cell oscillators turned off, the

interference fringe pattern could be seen.

Great care was taken to insure that the centerline of the optical unit

and the bisector of the angle formed by the intersecting beams were coin-

cient with the input laser beam, which served to define a reference line.

Since this criterion was met, the optical unit could be translated in the

direction of this reference line with the only result being a simple

translation of the intersection point along the same reference line. Simi-

larly, the optical unit could be rotated about its centerline and this

resulted in a rotation of the plane defined by the two intersecting beams

about the same reference line.

Using a precision level to indicate the horizontal, the optical unit

was rotated until the beams were in the horizontal plane. Scribe lines on

the optical unit mounting ring were made to indicate this position. This

position was used to measure axial velocities. Similarly, a thin plumb

line was used to indicate the vertical, the optical unit was rotated until

the beams were in the vertical plane, and a scribe line was made to

indicate this position of the optical unit. The vertical position was used

to measure the swirl velocities.

With the beams in the horizontal plane, the angle formed by the two

beams in air, 9 , was measured. This was done by mounting a needle point
3.

in a precision traversing device which allowed motion in two orthogonal
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directions in the horizontal plane. Using simple geometry, the angle could

be calculated by measuring the length of the two normal legs of two right

triangles, each one having a laser beam as its hypotenuse. Several trials

were made, and the average was used. The precision which resulted was ±.3%.

Since the velocity measurements were to be done in water flowing

through a test section which was circular in cross section, the refraction

effects had to be considered in detail. In order to minimize the difficul-

ties associated with the circular test section, the optical system was ori-

ented, with respect to the flow device, so that the horizontal plane which

contained the reference line was normal to the tank side walls and passed

through the centerline of the test section. This alignment was maintained

at all times in the experiment.

Figure [2.8] is a schematic of the input optics system and flow device,

with the input beams in the horizontal plane. This setup was used to

measure axial velocity. The optical system was mounted on a traversing

mechanism which allowed motion in two orthogonal directions in the horizontal

plane, X and Y. The X axis was parallel to the centerline and sidewalls

of the flow device. The air bags which supported the flow device allowed

the height and inclination of the device centerline to be adjusted so that

it was contained in the horizontal plane formed by the input beams. This

could be checked by injecting a thin dye streak onto the tube centerline

and visually checking to insure that the beams intersected the dye streak,

independent of the X position of the optical system.

The X axis was aligned to be parallel to the tank sidewalls, tube O.D.,

and the centerline of the device. This was done by moving the X axis

laterally until it was equidistant from the tank wall. The final adjustment
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îr^ ^~

-O Q) 0
c x o;
fo ^C (/)

C-> C t/)
•r- ••- O)

OL 1-
O CD O

4-> (O
3 S- 4->
CXI— O
c: cu

•-« HT. Q.

O to
«4- CD
o c cc

o
O *^ r*

+-> (O •!-

E c:
QJ CU CU

JC -r— C
O S-.v

oo o _i

•

CO

CM

CU
S-
3

•^~

u.

41



of the flow device consisted of rotating the whole flow device about its

centerline, using the pneumatic support system until the sidewalls were

vertical. This was checked using a precision level.

Since the reference line, defined by the input laser beam, was

parallel to the Y axis this alignment procedure insured that the reference

line remained in the horizontal plane which contained the centerline of

the test section and was normal to this centerline for all X, Y positions

of the optical system. The X, Y position of the optical system could be

continuously adjusted and monitored. Initially, the optical unit was tra-

versed in the Y direction until the beams intersected on the thin dye

streak located at the center of the test section. This Y position, with

the beams intersecting at r = 0 of the cylindrical coordinate system

defined by the tube centerline, was taken as a reference position, Y .
o

The axial reference location, X , was determined in the following way.

A mirror and magnifying lens were mounted on the top of the flow device.

This system was carefully aligned to eliminate parallax between the scale,

running axially along the outside diameter of the test section and the

centerline of the test section. This permitted the viewing of the beam

intersection point on the dye streak from a convenient location, and pro-

vided an accurate indication of the axial location of the intersection

point. The optical system was moved in the X direction until the inter-

section point was located .5 cm downstream of the start of the diverging

portion of the test section. This X reference was denoted as X . Since

z = 0 was taken as the start of the diverging portion, X = X corresponded

to z = .5 cm.

The accuracy of the initial alignment of optical system to flow device
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was difficult to ascertain, since there was no way, other than visual, to

check it. Since the intersection volume dimension along the bisector was

about five times greater than its dimensions perpendicular to the bisector,

the Y reference was more difficult to determine with great accuracy. It

was estimated that for Y=Y , r=0. ± .55 mm. This assumed that the dye

streak provided an accurate indication of r = 0. Since any significant

deviation of the dye streak from r = 0 resulted in a helical filament,

because of the swirl velocity present, this assumption could be checked

visually for validity. The accuracy of the axial reference was estimated

to be for X = X , z = 0 ± .15 mm.

2.6. Beam Intersection Details; Spatial Resolution

In order to develop a relationship between the position of the optical

system in the X, Y coordinate system and the location of the intersection

point in the z, r coordinate system, the refraction effects of the various

interfaces had to be considered. This analysis also provided information

on the intersection angle in the water, 6, the light wavelength in water,

X, and the orientation of the bisector of the angle with respect to the

test section centerline.

A summary of the results developed in Appendix A2 are presented here.

For each optical unit orientation, beams in horizontal plane (axial

velocity) or beams in the vertical plane, a new optical system coordinate

system x, y was used, where x = X - X , y = Y - Y . As shown in Appendix

A2, the effects of the divergence of the test section could be ignored in

the region where measurements were made, |x| < 4 cm. (For large x, the

optical unit would have to be moved in the Y direction and a new Y estab-

lished.)
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For axial velocity, u, the equations necessary were

z = .5 + x

r = n y
w

u9
f +o

where

n = index of refraction of water
w

A = light wavelength in air
3

For swirl velocity, v,

8 r -r. n -n
0 =_§.+

n r r . n
w o i

where

n = index of refraction of Plexiglas
P

r = outside radius of test section
o

r. = inside radius of test section

In addition, the intersection volume is shown to be, approximately,

a cylinder with the diameter equal to

AX 1
IT a B

where

F = focal length of optical unit lens

B = diameter of input laser beam

and a length, along the bisector of the angle formed by the beams, equal to

/ n T-24 , w F
— A ~— ~—
TT a b B

s
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The length was of concern in the experiment because it was oriented

radially, and thus"regions of'high radial gradients would be" difficult ""

to measure. To reduce this length it was necessary to increase B and

decrease F as much as possible. B was increased by fitting a 3X beam

expander to the laser head.

As shown in Appendix A2, the minimum F that was possible, due to the

minimum working distance between test section and optics, was approximately

185 mm. Due to availability, a lens with a nominal focal length of 200 mm

was used.

With this equipment, the dimensions of the cylindrical intersection

volume were approximately; diameter = .08 mm and length = .43 mm.

2.7. Traversing Systems

As developed in the previous sections,

1. The goal of the optical unit to laser head alignment was

to have the input laser beam coincident with the centerline

of the optical unit.

2. The goal of the input optics to flow device alignment was

to insure that the reference line, defined by the input

laser beam, was in the horizontal plane which contained

the centerline of the flow device and was normal to that

centerline.

The traversing system and adjustment mechanisms, Figure [2.9], which

supported the laser head and optical unit were designed to permit the

above goals to be met and maintained, while also allowing the optical unit

to be moved in the X, Y coordinate system.
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Figure 2.9. A Photograph of the Laser Head and Optical Unit Mounted on the
Traversing Mechanism.

Figure 2.10. A Photograph of the Photomultiplier Assembly Mounted on its
Three-Dimensional Traversing Device. The Entrance Channel
Region of the Flow Device and the Swirl Vane Array May be
Seen in the Background.
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The X axis of the system consisted of two precision-ground steel

rods. These rods were 2.540 cm in diameter and approximately 100 cm long.

Their axes were horizontal, parallel to each other, and parallel to the

flow device centerline. .Each was held rigidly in position by mounts

bolted to a steel table. The center to center distance between these

X-rods was approximately 70 cm. Two linear ball bearings were fitted to

each rod. These permitted motion in the X direction, and supported a

second pair of precision-ground, steel rods, which formed the Y axis.

The Y-axis rods were 1.270 cm in diameter and approximately 72 cm in

length. Their axes were horizontal, parallel to each other at a distance

10.5 cm apart, and perpendicular to the X axis. Two linear ball bearings

were mounted on each of these rods, and these four bearings supported a

small aluminum plate. A vertical-travel optical mount was bolted to this

plate and supported the optical unit. The method of support allowed the

optical unit centerline to be aligned parallel to the Y axis at a variable

height. The optical unit also could be rotated about its centerline. The

plate/optical unit position along the Y axis was controlled and monitored

by a micrometer head.

A second aluminum plate, which supported the laser head mounts, was

rigidly bolted to the Y axis rods. The laser head was supported, at each

en'd, by mounts which allowed the laser beam to be aligned parallel to the

Y axis and coincident with the optical unit centerline. Thus, the optical

unit could be moved along the Y axis and rotated in its holder without

affecting the laser head/optical unit alignment.

The optical unit and laser head moved together along the X rods.

The X position of this assembly was also controlled and monitored by a
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micrometer head. After initial adjustment to determine X and Y , the
o o

optical unit position, (x,y), could be determined to an accuracy of

.025 mm.

The height of the laser beam/optical unit centerline could be

accurately adjusted while keeping them coincident. This was necessary

for small, final adjustments to insure that the reference line would

intersect the flow device centerline.

The photomultiplier assembly, Figure [2.10], was mounted on a smaller

traversing system placed directly on the table top which supported the

flow device. This traversing system consisted of three orthogonally

disposed, dove-tailed slides. The position along each axis was .controlled

by a lead screw. This system was aligned so that the photomultiplier

assembly could be moved parallel to the X and Y axes, at a variable height.

After initial alignment with respect to the intersection point, the photo-

multiplier assembly would remain aligned if it was moved in unison with

the input optics.
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CHAPTER THREE

3.0 Flow Visualization Studies

The first series .of experiments undertaken after construction of

the apparatus were flow visualization studies utilizing the dye inject-

ion system. The aim of these studies was to observe the flow patterns

in the test section for various settings of the flow rate and vane

angle. Similar studies had been done by previous investigators

[11,12,27,28,29].

The work of Sarpkaya [11], which utilized a similar flow apparatus,

was especially noteworthy. Sarpkaya"s study, in part, presented

descriptions and photographs of three forms, or modes, of flow disturb-

ance. This report also included information on the type and axial

location of the disturbance as a function of flow rate and vane angle.

In a later report [29], Sarpkaya extended this work to include the

effects of varying the divergence angle of the test section.

3.1 Procedure

Before observations were made, it was necessary to adjust the

bell-mouth-test section-exit tube assembly to insure that it was con-

centric with the vane array and centerbody. The supply water temperature

was first set to be equal to the room temperature. The circulating pump

was then run, if necessary, for about ten minutes to destroy the stable
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stratification in the test tank which resulted from any significant

alteration to the temperature of the supply water. Pockets of air,

which collected under the tank cover over a period of time, were

removed via bleed screws placed in the top of the tank. Small air

bubbles located along the test section I.D. were forced out by

increasing the flow rate through the tube.

After removing the air and insuring that the temperature of the

water inside the box was uniform throughout and equal to room tempera-

ture, the circulation pump was shut off and the flow rate control

valve was adjusted to give a tube Reynolds number of approximately

4000. Before proceeding, ten minutes was allowed for the secondary

flow patterns caused by the circulation pump to decay.

The vane angle was then set at 20° and the centerline dye inject-

ion was adjusted so that a thin, steady filament resulted. Mis-alignment

of the bell-mouth test section assembly resulted in an asymmetry which

caused the filament to follow a helical path into the entry section.

The location of this assembly was adjusted until the filament was

straight. When this alignment was carefully done, the filament remained

straight for all the flow rates and vane angles used.

Once aligned, the bell-mouth-test section assembly was fixed in

position. It was found that any subsequent deviation of the filament

from a straight path was due to an asymmetric flow in the entrance

channel caused by the previously discussed temperature effects. Observa-

tions were made only when the filament showed no significant deviation

from a straight path in the entry section.
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3.2 Discussion of Flow Parameters

As indicated, the parameters that were systematically varied and

monitored were the volume flow rate and vane angle. However, the non-

dimensional parameters of Reynolds number, Re, and circulation number,

ftV were used to describe the flow.

The Reynolds number used was based on the average axial velocity,

u", the diameter of the test section (measured at the throat, before

the divergence), D, and the.kinematic viscosity, v. Thus,

By definition, for a volume flow rate = Q,

Therefore,

40
Re = -?-

TTDV

The kinematic viscosity was evaluated, at the water temperature used,

by consulting property tables for water.

The non-dimensional circulation number, R, was used to character-

ize .the swirl. The defining equation used was
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where T is the circulation. As shown in Figure [3.1], ft is a function of

the vane angle and the geometry of the vane array and entrance section of

the apparatus. A physically more meaningful interpretation of ft may be

derived by assuming that F is constant. In that case

T = TTV D
w

where v is the swirl velocity at the tube wall. By definition

and ft, then, is seen to be a measure of the ratio of a swirl to an axial

velocity.

3.3. Flow Patterns Observed - Steady Flow Conditions

In the first set of experiments run, the Reynolds number was fixed

and ft was incrementally varied. For each vane angle setting, the flow

patterns were observed and the type and axial position of the flow dis-

turbance were noted. The observation time was, on average, approximately

ten minutes for each Re, ft. Similarly, a second set of experiments were

done in which ft was held fixed and the Reynolds number was varied in

suitable increments. The results were the same in both cases.

It was found that, for a wide range of Re and ft, two (or more) types

of flow disturbance could exist. One type would occur and would wander

slightly, in a random fashion, about some mean axial location. Often,

however, after a considerable time, the flow pattern would then change,
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u D

F = 2ir R Ve

u =
D

and Q = 2ir R S V

Ry = 11.43 cm

m = 3.81 cm

s = 2.89 cm

D = 3.81 cm

where S = span of vane

Substituting for r and u gives n = J-| ̂ - = J-| tan B

where (tan) "1
V

Figure 3.1. Schematic of the Vane Array and Derivation
of the Swirl Parameter n.
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spontaneously, to a different pattern. The new pattern often moved to a

new mean axial location. Sometimes this new disturbance type would persist

for several minutes (or longer) and sometimes it would almost immediately

be destroyed and revert back to the original one, at the original axial

location. It should be emphasized that these changes took place with no

prompting and with Re and ft held fixed.

All of the various types of disturbances observed, and photographs

of each, are presented here.

3.3.1. Type 0

This is the so-called axisymmetric mode of vortex breakdown. This

form has been reported previously by many others and has been the subject

of extensive photographic/flow visualization studies. It is characterized

by a stagnation point on the swirl axis^ the dyed filament then expanding

abruptly and symmetrically to form the envelope of a bubble of recircu-

lating fluid. The envelope has a high degree of symmetry over most of

its length, but the rear is not closed and is asymmetric.

It appeared that the bubble was simultaneously filled and emptied at

the rear portion, and this process seemed to occur in either of two ways.

The first structure, Figure [3.2], more commonly observed, resulted in

the bubble being filled and emptied at diametrically opposite locations

near the rear of the bubble, i.e. at any point in time the bubble was

being filled at one azimuthal location and was being emptied at another

azimuthal location, 180° away from the first. The downstream end of the

breakdown was tilted, and the filling took place at that point furthest

upstream and the emptying occurred near the furthest downstream point.
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This whole structure rotated about the swirl axis, with the same sense of

rotation as the base flow, in a periodic fashion- The emptying tail of

the breakdown tended to return to the tube axis and a second disturbance

was nearly always evident approximately one bubble length downstream of

the rear of the first breakdown. The second disturbance, in this study,

always appeared to be of the spiral type, (see type 2, below).

It was found that for an increase in Re and/or £2, the bubble would

move upstream, shrink in size (both length and diameter decreased), the

radial location of the emptying tail decreased until it was nearly on the

axis, and the rotational frequency of this tail increased.

When dye was introduced off the axis, Figure [3.3], the resultant •

helical filament passed over the breakdown bubble with little, if any,

change. When the helical filament reached the second disturbance, or

slightly downstream of it, this filament was distorted and broken up.

The second way in which the axisymmetric bubble was filled and emptied

was seen infrequently, and only at low Reynolds numbers. In this case,

the bubble had two emptying tails, diametrically opposed at the rear of

the breakdown, Figure [3.4]. The filling points were also diametrically

opposed and 90° out of phase with the emptying tails. As in the single

tailed bubble, the emptying tails rotated about the axis in a regular,

periodic fashion. Occasionally, the two-tailed bubble would spontaneously

change into a single tailed breakdown in approximately the same axial

location. During this change, one tail gradually diminished in color

until it totally disappeared. After a period of time, sometimes minutes

and sometimes hours, the double tailed structure would return, and, in

turn, would persist for minutes or hours. The transformation from two
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Figure 3.3. The Outer, Helical Dye Filament Passes Over the
Type 0 Bubble Without Disturbance and is Broken
Up Only After Reaching the Second, Spiral Type
of Breakdown.

**"

Figure 3.4. A Two Tailed Type 0 Bubble.
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tails to a single tail could always be produced by slightly increasing Re

and/or ft.

The so-called axisymmetric mode of vortex breakdown was found to be

only quasi-steady in axial location, even when every precaution was taken

to insure steady flow conditions. The breakdown almost continually drifted

axially to and fro, in a seemingly random fashion, about some mean axial

location. The velocity of this drift increased with increasing Reynolds

and circulation numbers. The axial extent of this drift also tended to

increase somewhat with an increase in either of these parameters. At a

relatively high Reynolds number of 4500, the bubble would remain station-

ary near its mean axial location for, at best, a second or two, and would

then dart to and fro axially a distance of, typically, one half of a tube

radius. After one or two cycles of this motion, the bubble would often

settle near its mean position momentarily before beginning its axial

motions again.

During these to and fro wanderings, the breakdown noticeably changed

in size, with both the diameter and length increasing (or decreasing)

proportionately; i.e. the bubble length to diameter ratio seemed to stay

approximately the same. As the breakdown moved upstream, it grew in size

and, conversely, the bubble would shrink, in diameter and length, as it

moved downstream. This effect was most noticeable when Re and ft were

adjusted so that the bubble was in the constant diameter throat of the test

section.

The bubble was steadiest in axial location, and the drift velocity

was lowest, at relatively low Reynolds numbers and with the swirl adjusted

just high enough so that this mode of breakdown was the only type that
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occurred (at still lower circulation numbers, type 2 and type 0 occurred

alternately in time). For these conditions, the breakdown would drift

back and forth very slowly and seldom travelled more than a quarter of a

tube radius from its mean position. Often, the bubble would remain fixed

in one location for 5 or more seconds. In addition, for these flow

conditions the bubble was relatively large, the emptying and filling took

place quite far off-axis and the emptying tail rotated about the tube

axis at a relatively low frequency (approximately 2Hz). Compare, for

example, the radial location of the emptying tail in Figure [3.5] for

Re = 2560, with that in Figure [3.6], for Re = 4200. The bubble appears

more nearly closed at the rear for the higher Reynolds number. At lower

Reynolds numbers, then, it was possible to see quite clearly some of

the previously mentioned features of this type of vortex breakdown and

to make velocity measurements of the associated flow field using the LDA.

Another feature of this type of breakdown that was frequently

observed was the temporary appearance of a filament of dye on the axis

inside the bubble, Figure [3.6]. This occurred, for a suitable, fixed fi,

at higher Reynolds numbers. The filament took the form of a screw-worm

which had the same sense of axial and swirl velocity as the base flow.

The origin of the screw-worm seemed to be just downstream of the nose of

the bubble and slightly off axis, and the filament moved rapidly down-

stream, reaching a point approximately 2/3 of a bubble length downstream

of the nose before being broken up. The reservoir of dye which fed this

filament appeared to be a darkened region near the nose of the breakdown,

and slightly off axis. This reservoir, it appeared, usually was emptied

by a streak of dye which extended from the reservoir along the envelope
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Figure 3.5. The Type 0 Breakdown with Re = 2560.

.
"

Figure 3.6. The Type 0 Breakdown with Re = 4200. The Screw-
worm Dye Filament May be Seen and Marks the Axis
of the Bubble.
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of the bubble. The streak rotated very slowly (at a much slower rate

than the gyrating tail, but in the same sense) around the outer surface

of the breakdown. The screw worm filament would then appear and persist

until the reservoir was exhausted. This occurred randomly in time, but

quite often.

It was not possible to determine how this reservoir was replenished.

However, the screw worm sometimes appeared after the flow of dye had been

interrupted, and this seemed to indicate that the screw worm was not

the result of the initial, upstream filament penetrating the bubble envel-

ope (as suggested by Sarpkaya [11]). When the flow of dye was stopped,

the bubble and emptying tail would remain visible for as long as 20

seconds, gradually lightening in color as more and more dye exited via the

tail.

3.3.2. Type 1

At relatively low circulation numbers and high Reynolds numbers, the

smooth, nearly closed type 0 bubble occurred alternately, in time, with

the type 1 structure shown in Figure [3.7]. The type 1 mode of breakdown

did not have the smooth envelope, distinct emptying tail, and clearly

evident downstream vortex core displayed by type 0. The nose region of

both seemed similar, with a front stagnation point and abrupt expansion

of the dyed filament. The nose of the type 1 breakdown, however, appeared

to be slightly asymmetric and the envelope was ragged in appearance. The

exiting dye showed little tendency to return to the tube axis, but

instead seemed to break up into large scale turbulence.

When the flow of dye was stopped, the type 1 breakdown remained

visible for only a few seconds (as opposed to the 15-20 seconds for type 0)
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Figure 3.7. The Type 1 Breakdown.
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Figure 3.8. The Type 2, Spiral Mode of
Vortex Breakdown.
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For constant flow conditions (Re and ft fixed), the type 1 breakdown

often changed spontaneously to type 0. The mean axial location of the

type 0 bubble was nearly always upstream of the mean axial location of

the corresponding type 1 breakdown, usually by about 2/3 of the tube

radius. Each form would persist for a considerable time (often 20 minutes

or so) before changing into the other mode. The transformation seemed to

occur in the following way.

The type 1 breakdown would drift to and fro about its mean location

in a seemingly random fashion. Gradually, however, the breakdown appeared

to travel further and further upstream with each successive cycle of this

motion. Eventually, it would change, abruptly, into the type 0 bubble.

The transformation from type 0 to type 1 occurred in a similar fashion.

The smooth, type 0 bubble drifted further downstream until changing

suddenly into the type 1 breakdown. The whole process suggested that

there were two quasi-equilibrium "valleys' separated by a "peak" which

was only occasionally surmounted.

The transformations described above occurred without prompting. How-

ever, it was often possible to precipitate the change from type 0 to

type 1 by introducing a slight disturbance into the flow upstream, either

by slightly oscillating one vane or by rapidly pulsing the dye shut-off

valve. No method was found which could consistently retrieve the type 0

form, once the transformation to type 1 had occurred.

3.3.3. Type 2

This form of vortex breakdown, Figure [3.8], is generally referred

to as the spiral mode. It is the form which, apparently, is most commonly

observed in the flow over delta wings at high angles of attack, e.g. see
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Lambourne and Bryer [24]. In this mode, the dyed filament, which was

initially on the swirl axis, decelerated rapidly and formed an abrupt kink.

The filament did not spread out appreciably, but instead took the form of

a spiral which persisted for one or two turns before breaking up into large

scale turbulence. In agreement with the study done in tubes by Sarpkaya

[11], and contrary to the results obtained by Lambourne and Bryer in

unconfined flows, the resultant spiral had the same sense (geometrically)

as the base flow rotation. In addition, the whole spiral configuration

rotated in a periodic fashion about the tube axis, also in the same

direction as the base flow.

With Re and ft held fixed at values for which the spiral mode was the

usual breakdown form observed, it was found that the spiral breakdown

drifted to and fro, just as for type 0 and type 1. The range of this axial

drift was slightly greater than that observed for type 0 and type 1.

Usually, the spiral wandered back and forth, in a seemingly random manner.

It appeared that the upstream drift of the breakdown was often preceded

by a slight increase in the frequency of rotation of the spiral around the

swirl axis and a decrease in the pitch of the geometric form itself (i.e.

the spiral turns moved closer together, with an increased tendency to fold

back towards the initial kink.). Conservely, the downstream drift seemed

to be preceded by a decrease in rotation frequency and an increase in pitch.

Occasionally, the frequency of rotation would increase significantly,

the first turn of the spiral would fold back towards the initial kink on

the tube axis, and the spiral changed into a type 0/1 breakdown. The

resultant bubble, usually with the rear portion not fully developed, then

moved quite rapidly upstream.
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For lower values of Re and/or ft, the newly formed bubble would

persist only a few seconds and would travel only some fraction of a tube

radius upstream. The bubble would then change abruptly to the spiral

mode which immediately moved downstream to its original location.

For an increase in either Reynolds number (with ft constant) or circu-

lation number (with Re constant), the following changes occurred;

a) The mean axial location of the spiral moved upstream.

b) The maximum radius that the spiralling filament reached,

before breaking up, decreased slightly.

c) Perhaps related to b. it was found that when dye was

introduced off axis (at approximately 1/2 r ) the resul-

tant helical filament was noticeably distorted at an

axial location which was as much as one tube radius

upstream of the position of the spiral breakdown, for

lower Re and/or ft. As Re, say, was increased and the

spiral moved upstream, the helical filament disturbance

was at about the same location as the spiral position.

For still higher Reynolds numbers, the helical filament

passed over the initial kink in the central filament

without noticeable change and was distorted and broken

up downstream of the spiral breakdown. Similar results

were found for an increase in ft.

d) The frequency of rotation of the spiral form around the

tube axis increased. For example, with Re = 3120, this

frequency increased from 1.3 Hz at ft = 1.34 to about

1.75 Hz at ft = 1.54. Similarly, with ft = 1.34, the
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frequency increased from 1.1 Hz at Re = 2730 to 1.3 Hz

at Re = 3120.

e) As Re or SI was increased, the previously described trans-

formation to the type 0/1 breakdown occurred more often and

the resultant type 0/1 breakdown persisted longer. Eventu-

ally, at sufficiently high Reynolds number and/or circulation

number, the type 0/1 breakdown and the type 2-spiral had

approximately the same frequency of occurrence. For still

higher settings of these two parameters, the type 0/1 mode

predominated and the spiral form was seen less and less

frequently, and lasted only momentarily before changing into

the type 0/1 mode.

When the flow conditions were fixed at, say, Re , fl.. in the range in which

both the type 2 and type 0/1 breakdowns had about the same frequency of

occurrence, each form could persist for as long as 3-5 minutes before

changing into the other. As in the case of the type 0 to type 1 transfor-

mation, previously described, there seemed to be two quasi-equilibrium

"valleys" separated by a "peak". The mean axial location of the type 0/1

breakdown was always appreciably upstream of the mean location of the

spiral type.

There seemed to be no evidence that the type of breakdown formed

depended on how this flow setting was achieved. For example, for fi = ft ,

an increase in Re up to Re., gave the same results, on the average, as a

decrease in Re down to Re.. . In other words, the "vortex breakdown hys-

teresis" reported by Sarpkaya [11,12] was, for long observation times,

not evident in this study.
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At relatively high circulation numbers and low Reynolds numbers,

the type 2 breakdown nearly always changed, directly, into type 0 for

a suitable increase in either ft or Re. (In fact, the type 1 was never

seen for these conditions.) For lower circulation numbers, the trans-

formation either was from type 2 to type 1, with no type 0, or from

type 2 to type 0, with type 1 as an intermediate step. The randomness

with which these changes took place and the multiplicity of forms

observed made impossible any attempt to further delineate the dependence

of breakdown type formed on flow settings used.

Because of the way in which they evolve, it is more convenient to

describe the remaining forms of flow disturbances observed in reversed

order, beginning with the form observed at lowest ft and/or Re. While

types 0, 1, and 2 have generally been referred to as vortex breakdown

modes, and have been observed previously by many investigators over a

wide range of Reynolds numbers, the types 3-6 occur only at relatively

low Reynolds numbers. In some cases, these low Reynolds number forms

appear to be similar to the previously described modes (type 4 similar to

type 0, type 3 similar to type 2). However, it is not clear that they

originate from the same mechanism.

For quite low, fixed Reynolds numbers, the full range of disturbance

forms described below was consistently observed and evolved in a systematic

way, one from the other, as the swirl was increased in suitably small

increments. Similar results were obtained by fixing ft at a relatively

high value, and slowly increasing Re. Only the fixed Re, increasing ft

case will be considered at present, and the slight differences in the two

cases will be described later.
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With the Reynolds number fixed at, say, 2500 and with no swirl, the

central dye filament travelled the length of the 'apparatus with no visible

change. As the swirl was increased, slight oscillations in the filament

were noted near the downstream end of the uniform diameter exit tube. For

further increases in swirl, the axial location of these oscillations moved

upstream and, at £1 approximately equal to 0.6, the oscillations began near

the downstream end of the diverging test section. The dyed filament

remained on the tube axis until this point and then began to oscillate,

with steadily increasing amplitude, until it broke up into random disorder.

As the swirl was further increased, it was noted that the filament

seemed to decelerate slightly and deviate from the centerline at a point

upstream of that location where the above mentioned oscillations began.

At times, the filament also showed a noticeable tendency to shear into a

tape as it moved off the tube axis.

3.3.4. Type 6

Further slight increases in swirl led to the formation of the type 6

form shown in Figures [3.9,3.10]. In this form, the central filament

moved gently, but distinctly, off axis at a nearly constant aximuthal

location. Only after it had moved off axis a significant distance (typi-

cally, equal to about 1/2 r ) did the filament seem to acquire the

spiralling sense of the base flow. It continued to expand in radius until

it nearly reached the tube wall, and then noticeable oscillations became

evident which broke the filament up.

At times, the filament retained its shape as a filament during these

deviations, Figure [3.9]. Usually, however, the filament simultaneously

deflected off the axis and sheared into a tape, Figure [3.10]. It should
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Figure 3.9. A Type 6 Disturbance in which the Central Dye Filament
Did Not Shear, but Only Deflected Off-axis.

Figure 3.10. A Type 6 Disturbance in which Central Filament Simulta-
neously Moved Off-axis and Sheared into a Tape.
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be emphasized that, in both cases, the distorted, sinuous pattern appeared

almost totally motionless, as if frozen, until the'dye had reached the

downstream location where oscillations began.

As the swirl setting was increased, this shearing tendency seemed to

increase, the form moved upstream in location, and the shear plane rotated

slightly with respect to the laboratory frame. At any one setting

however, the shear plane orientation remained constant. At all times,

the helical filament formed by introducing dye off axis upstream was

noticeably distorted at a position upstream of that location where the

central filament was disturbed. This helical filament (and this was true

for types 3-6) also moved noticeably outwards until it had nearly reached

the tube wall. The forms taken by this filament were indescribably

complex.

For constant Re and fi, the axial location of the type 6 disturbance

was very steady. A further small increase in fl resulted in the formation

of either the type 4 or type 5 form. However, occasionally all three

forms would appear, in succession and in random order, for fixed flow

conditions. This seemed to indicate that only small changes in the base

flow, or small, transient disturbances to the base flow, were necessary to

cause the transformation from one form to the next. For example, the

photographs shown in Figures [3.10,3.11,3.12b] were taken over a period

of approximately 20 minutes for fixed flow rate and vane angle.

3.3.5. Type 5

This form of flow disturbance was first reported by Sarpkaya [11],

and he referred to it as the double helix mode. The double helix evolved,

in most cases, directly from the type 6 form. Figure [3.11] shows this
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evolution quite clearly. These photographs were taken at fixed flow

conditions over a period of about 5 minutes.

The type 6 form is shown in Figure [S.lla] and the simultaneous shear

and deflection off axis of the central filament can be seen. As time

progressed, the filament began to shear into a tape, but remained on the

axis, slightly upstream of the type 6 location. As this tape widened,

another "branch", similar to the one that had been present, became more

and more visible, and the type 5 double helix resulted.

Once formed, the whole pattern was quite steady in form and location.

The central filament sheared, on axis, into an ever widening, triangular

shaped sheet. Each half wound around the other, both with the same sense

of rotation as the base flow, and moved outwards until nearly reaching

the tube wall.

The similarity between the double helix form and the type 6 distur-

bance is obvious, and they perhaps should not be differentiated. However,

because of its unique appearance, and to confirm the observations of

Sarpkaya, type 5 has been included here as a separate form. In fact, after

a considerable time, the newly emerged branch often became predominant,

the original branch disappeared, and a type 6 form resulted. This new

type 6 was similar to the original one, rotated 180° relative to the

laboratory frame.

3.3.6. Type 4

This remarkable form of disturbance usually evolved directly from type

6. This transformation either occurred spontaneously, at fixed flow

conditions, or could be induced by slightly increasing the swirl. In both

cases, the sheared, deflected filament of the type 6 disturbance abruptly
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began to roll up, back towards the initial point of deflection, into a

tight spiral. As this occurred, the filament downstream totally

disappeared, indicating that all of the dye reaching the disturbance was

being recirculated, Figure [3.12b], After a short time (about 5 seconds),

dye began to exit from this recirculation zone and travel downstream,

and the type 4 disturbance was fully formed.

Figure [3.13] shows various views of this disturbance form. The

most remarkable feature is best seen by comparing Figures [3.13a] and

[3.13b]. Figure [3.13a] was the form as seen by looking in along the

horizontal, and Figure [3.13b] is the same disturbance as viewed in the

vertical direction. As seen, the recirculation zone was nearly 3 times

as wide (in the horizontal plane) as it was high (in the vertical plane).

For any one flow setting, the orientation of the wide surfaces was

nearly constant, i.e. if the swirl, say, was changed and then brought

back to its original setting, the resultant flattened bubble orientation

was nearly identical to the original one. However, if the swirl and

Reynolds number were changed in an appropriate way so that the flattened

bubble was formed in a new axial location, the orientation did change.

For example, Figure [3.14] was taken at a higher Reynolds number and lower

swirl than Figure [3.13a]. Each was taken with the camera axis horizontal.

It can be seen that the wide plane has rotated about 90°, and in Figure

[3.14], is nearly vertical.

With the Reynolds number fixed at an appropriate value and the swirl

setting adjusted just high enough for the type 4 form to appear, the

recirculation zone seemed to be filled and emptied in the following way.

(To simplify the discussion, the recirculation zone that has its larger
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Figure 3.12 a. A Partially Formed Type 4 Disturbance, Note that
Outer, Helical Dye Ribbon was Distorted Well
Upstream of the Central Filament Disturbance

Figure 3.12 b. The Birth of a Type 4 Flattened Bubble.
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Figure 3.13 a. The Same Type 4 Flattened Bubble as Viewed From
the Horizontal Direction.
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Figure 3.13 b. The Same Type 4 Flattened Bubble as Viewed From
the Vertical Direction.
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dimension aligned parallel to the horizontal plane will be described).

The centrally located filament decelerated just upstream of the type 4

form and sheared, slightly, in the vertical plane. The narrow tape

simultaneously rotated and split into two branches, each of these being

approximately in the horizontal plane. Each branch moved off axis and

downstream toward the rear of the recirculation zone but remained,

approximately, in the horizontal plane. Near the rear of the zone, each

branch turned inwards towards the axis and then recirculated back towards

the upstream origin of the disturbance.

The centers of the two recirculating branches were almost motionless,

and both were located, approximately, in the horizontal plane. The motion

around each center was like that induced by a line vortex (oriented

vertically). All the velocities were quite low, and the motion of the

dye could be followed visually. Usually, one branch seemed dominant, its

recirculation pattern was more visible, and the zone appeared asymmetric

with respect to the vertical plane. Usually, the dye left the zone in a

fairly random fashion. Occasionally, several distinct emptying paths

were formed, as shown in Figure [3.15].

As the swirl was increased slightly, the form moved slightly upstream

and became more round in cross section (although still noticeably flat-

tened) . The shearing tendency of the central, upstream filament decreased

and the envelope of the zone became more uniform, Figure [3.14]. The

bubble appeared to be quite similar to the two tailed, type 0 bubble

described previously except that, in addition to being oblate, the exit

tails and filling points were approximately fixed in location and did not

rotate about the tube axis.
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Figure 3.14. A Type 4 Disturbance with an Envelope that is Quite
Uniform in Color. The Viewing Plane is Horizontal,
Perpendicular to the Wide Plane of the Bubble.

'

Figure 3.15. A Type 4 Disturbance with Several Distinct Emptying
Tails.

Figure 3.16. This Disturbance Shows the Transition from the Type 4
to Type 3. As the Dye Spreads Rearward over the Top
Surface, a Previously Recirculated Amount of Dye Exits
Near the Bottom Surface.
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A further slight increase in swirl resulted in the form moving,

again, slightly upstream. The central filament had less tendency to

shear, but instead seemed to oscillate slightly in a plane. For a

recirculation zone that was wide in the horizontal plane, the central

filament oscillations were in the vertical plane. The filament first

deflected upwards, say, and injected a quantity of dye to the upper

surface of the bubble. As the filament deflected downwards (to supply

the bottom surface) the quantity of dye that had been supplied to the

top simultaneously spread laterally and moved towards the downstream end

of the zone. When it had reached the rear of the zone, the dye sheet

curled abruptly and moved back towards the nose of the bubble. As the

bubble was being filled at the top, it was simultaneously being emptied

at the bottom. During the next half cycle, the bubble filled at the

bottom and emptied near the top surface. Thus, the periodic, planar

oscillations of the central filament resulted in a periodic emptying and

filling of the bubble near both the top and bottom surfaces.

The frequency of the oscillations of the upstream filament (and sub-

sequent top and bottom feeding) was low enough so that the whole process

could be closely followed. For example, with Re = 2330 and J2 = 1.37, this

frequency was approximately 1.2 Hz. The frequency increased as the swirl

was increased, and at Re = 2330 and fi = 1.47 the frequency was approximately

1.4 Hz.

As previously noted, the form of flattened bubble observed at slightly

lower swirls was similar to the two tailed, type 0 mode. Likewise, this

form was similar to the single tailed, type 0 breakdown. In both cases,

however, the type 4 bubbles were flattened and the emptying and filling
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points were nearly fixed in location. In addition, there was no apparent

tendency for the tail to return to the tube axis to mark a new, down-

stream vortex core.

As the swirl was increased and the type 4 bubble moved upstream, the

planar oscillations of the central filament increased in frequency and

amplitude. The dye seemed to have less tendency to spread laterally

over the bubble envelope, and therefore the bubble form became less visible.

In Figure [3.16], the bubble envelope may still be seen, but it is

noticeably faint. Further increases in swirl led to the gradual formation

of the type 3 form of disturbance.

3.3.7. Type 3

This type of flow disturbance had characteristics of both the type

4 flattened bubble and the type 2 spiral. The transitions from type 4

to type 3 and from type 3 to type 2 were, in fact, so gradual that it is

not possible to define the transitions precisely.

In the type 3 disturbance, Figure [3.17], the centrally located

filament decelerated rapidly and moved abruptly off axis to form a sharp

kink, similar to the type 2 spiral. However, in type 3 the dye filament

appeared to simultaneously shear slightly and some of the dye spread

laterally to mark the envelope of the remnants of the type 4 bubble. In

addition, the kinked filament oscillated from side to side in a preferen-

tial plane and did not rotate, as a geometric form, around the tube axis

(as in type 2). As for the flattened bubble, the orientation of the

plane of oscillation with respect to the laboratory frame was relatively

constant for any one setting of Re, ft. If Re and £l were changed in a

suitable way this orientation did change.
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Figure 3.17. A Type 3 Disturbance. Fragments of Dye Previously
Broken Off of the Preferentially Oscillating Filament
Can be Seen Downstream of the Initial Disturbance.

Figure 3.18. A Type 4 Disturbance Located at Approximately the
Same Point at Which Oscillation of the Central
Filament Began.

Figure 3.19. Slight Oscillations of the Central Filament Can be
Seen Upstream of this Type 4 Disturbance.
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As £2 was increased, the preferential plane became less distinct and

the kink began to take a more circular path around the tube axis. Simul-

taneously, the tendency of the dye to shear and spread out decreased, the

filament retained its form as a filament, and the recirculation zone was

no longer apparent. Thus, the type 2 spiral evolved.

3.4. The Disappearance of Types 3-6 at High Reynolds Numbers

As previously indicated, for a fixed, relatively low value of

Reynolds number the full range of the disturbance forms could be observed

by altering the swirl setting. As the swirl was decreased, say, from a

relatively high value the existing form moved downstream until it trans-

formed into the next form, which, upon decreasing the swirl further, moved

further downstream, etc. The transformations between 0 and 2, 2 and 3,

etc. were sometimes gradual, but occurred quite consistently. Occasionally,

type 5 was never formed, probably due to the relatively short observation

times. Type 1 was never seen at low Reynolds numbers. Eventually, the

transformation to type 6 occurred and its axial location move downstream

as the swirl was further decreased.

When the type 6 form had moved sufficiently far downstream, to about

one exit tube diameter upstream of the end of the diverging test section,

it became more difficult to clearly identify. As noted in the description

of type 6, the filament moved gradually off axis, sometimes shearing into

a tape, moved outwards to a larger radius, and then, at some downstream

location, oscillations began which broke the filament up into a random

pattern. However, as the swirl was decreased and the point at which the

initial deviation was noted moved downstream, the location which marked

the onset of oscillations remained nearly constant (or perhaps moved only

slightly downstream).
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Eventually, these two points nearly coincided and the filament simul-

taneously deviated off axis and developed ever growing oscillations.

Subsequent reductions in swirl resulted in the gradual disappearance of

the type 6 form, and the filament remained on axis until oscillations

developed and broke the filament up. Upon further reducing the swirl,

the point at which oscillations began moved downstream until, at zero

swirl, the filament remained on axis until exiting from the apparatus.

These results are indicated, in a schematic way, by the low Reynolds

number, AA curve in-Figure [3.20]. If the mean location and type of

the furthest upstream disturbance was plotted as a function of circula-

tion number, a single curve, AA would result. However, there seemed to

be evidence which indicated that, in fact, there were two curves for each

Reynolds number.

The first curve, AA', plots the location vs. swirl for the types 0-6,

and the type observed for a particular swirl is noted on the curve. The

intersection of AA' and A"A represents the approximate swirl and location

at which oscillations in the central filament and the noticeable filament

deviations characteristic of type 6 occurred simultaneously. Curve A"A,

then, plots the axial location of the onset of oscillations in the filament

vs. swirl. As shown, for sufficiently low values of ft there was no

tendency for the filament to develop oscillation anywhere in the tube.

The evidence which seemed to substantiate this two-intersecting-

curve interpretation was tenuous, especially if based on observations made

only at low Reynolds numbers. At swirls just higher than the "intersection

point", the onset of oscillations downstream of type 6, at progressively

closer locations (as described previously), seemed to indicate the existence
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of a second curve. Similarly, at swirls just lower than the intersection

point it was occasionally possible to see, downstream of the oscillations,

the remnants of a type 6 disturbance. Since the identification of type

6 required the existence of an on-axis filament and since the oscillation

of the filament usually moved it off-axis, more positive identification

was impossible. However, the behavior of the off-axis, helical filament

did seem to show indications that a type 6 form was present downstream of

the onset of oscillations. The characteristic expansion of this helical

filament, (cf. Figure 3.12a) which always occurred upstream of type 6,

could still be clearly seen. At swirls significantly lower than this,

it was not possible to see even the remnants of the type 6 form (assuming

a type 6 still existed at some downstream location), and the helical,

off-axis filament did not expand significantly, but simply began to break

up into large scale turbulence.

This two curve interpretation seemed to be consistent with the

observations made at progressively higher, fixed values of Reynolds number,

When the Reynolds number was fixed at a higher value, the transformation

between two given types of flow disturbance occurred at a swirl setting

that was lower than that required for the same transformation at a lower

Reynolds number. Moreover, the .transformation took place at an axial

location that was downstream of the position where it had occurred at the

lower Reynolds number. Thus, for a suitable increase in Re, at fixed fi,

a given type of flow disturbance could be retrieved by reducing the swirl,

and the given type was, in general, located downstream of its initial

position. This effect can best be seen by considering the higher Reynolds

number, BB1 curve in Figure [3.20]. Only if, at the higher Reynolds
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number, the "intersection point" had moved to sufficiently lower swirls

and downstream, as noted by the hypothetical C"C curve, could all of

the disturbance types be observed.

But, in fact, it was found that the onset of oscillations in the

central filament appeared at an approximately constant swirl setting and

at about the same axial location, independent of Reynolds number, as

indicated by B"B. The sum of these two effects was the gradual disappear-

ance of some of the disturbance forms at higher Reynolds numbers. A

disturbance type could, in general, be observed only if it existed at

swirls higher than the intersection point (and, therefore, occurred

upstream of the intersection point). Since this intersection point

remained relatively fixed for all the Reynolds numbers used, each of the

types 6-3, gradually disappeared as the swirl setting necessary for their

formation slipped below the critical swirl which led to oscillations in

the filament. This critical value of fl appeared to be about .90.

The type 6 (and related type 5) was the first to disappear. For a

fixed Reynolds number greater than about 4000, represented by curve BB,

the type 6 was never clearly seen (although the expansion and deviation

of the off-axis helical filament could still be seen). As the swirl was

increased to values above the "intersection point", the type 4 recircula-

tion zone evolved. At this higher Reynolds number, the type 4 and type 3

became indistinguishable from each other, but the flattened nose section

of the recirculation zone was still visible, as shown in Figure [3.18].

The nose section was quite unstable in form and position and occasionally

disappeared and only random oscillations were observed. (The sharp,

clearly defined "intersection point", as shown for clarity in the
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schematic Figure [3.20], was, in fact, not a well defined point, but was

smeared out in swirl and location).

Further increases in swirl produced the eventual evolution of, first,

type 2 and then types 1 and/or 0. Note that decreases in swirl below

the intersection point caused the point at which oscillations began to

move downstream toward the end of the apparatus. However, as indicated

by curve B"B, for this Reynolds number there were oscillations developing

in the filament even at zero swirl.

For still larger Reynolds numbers, the type 3/4 disturbance type also

gradually disappeared. For Re greater than about 5500, the type 2 spiral

was the first form that could be distinguished and it evolved gradually,

with increasing swirl, just upstream of that point, relatively fixed in

axial location, where oscillations always seemed to exist. As the swirl

was further increased the spiral moved upstream and eventually the trans-

formation to type 1 and/or 0 occurred. Further substantiation of the two-

intersecting-curve interpretation of these observation seemed evident at

these higher Reynolds numbers.

Because the type 3/4 disturbance was less dependent than type 6 on

the existence of a relatively undistorted central filament, it was more

easily observed even if located downstream of the point at which oscilla-

tions began. When it was located more than a tube radius or so downstream

of the oscillation point, the type 3/4 disturbance appeared as a zone in

which the fragmented dye remnants seemed to decelerate noticeably. As

the swirl was increased slightly, the deceleration zone moved upstream and

approached the oscillation point. The filament, with its oscillations

growing as it moved downstream, seemed to nearly stagnate and "pile up"
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as it reached this zone. For Re about equal to 4000, a further increase

in swirl led to the upstream movement of this zone and resulted, as noted

previously, in the unsteady but identifiable type 3/4, shown in Figure

[3.19]. For Re about equal to 5500, the deceleration zone was evident

downstream of the oscillations, but increases in swirl led to the gradual

evolution of the type 2 spiral, and type 3/4 was never identified.

Although the evidence to substantiate the two curve interpretation

is inconclusive, this interpretation does seem to explain the observations

made for all of the Reynolds numbers used. The masking effect caused by

the upstream occurrence of a disturbance made the identification of any

downstream form difficult at best. This prevented further substantiation

of the existence of a downstream disturbance. It should be noted that

the axial location at which all these curves seemed to intersect was

approximately constant. This point appeared to be about one exit tube

diameter (5 cm) upstream of the downstream end of the diverging test

section. Disturbance types could only be positively identified if they

occurred upstream of this point.

The significance of a) the relative proximity of this point to the

end of the diverging portion and, b) the approximately constant value of

swirl necessary for the appearance of identifiable disturbance types is not

apparent. In fact, the significance of the possible existence of two inter-

secting curves for each Reynolds number is not clear at this time. These

observations, the detailed descriptions of each disturbance type, and the

presentation of the two-intersecting-curve interpretation are reported in

hopes that they will provide some clues which will, perhaps, give a more

complete understanding of the mechanism leading to the formation of such
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remarkable flow forms.

3.5. Type and Axial Location of Disturbance vs. Flow Conditions.

The flow visualization studies were done both by holding the flow

rate (Reynolds number) constant and incrementally varying the swirl (ft)

and by holding ft constant and systematically altering the flow rate.

For a given set of parameters, (Re,ft), the type(s) of flow disturbance

observed and the mean axial location of the disturbance were identical

in each case. These results are summarized for five values of ft and a

range of Reynolds numbers in Figure [3.21].

The axial location, z, has been normalized with the tube radius at

the upstream, non-divergent section, r = 1.905 cm, and z/r = 0 repre-

sents the start of the diverging section. The types of disturbances

observed are denoted by the numbers 0-6, as previously described, and

the position of these numbers indicates the mean axial location of the

disturbance. As previously mentioned, for fixed Re, ft a given type of

flow disturbance wandered to and fro axially and sometimes spontaneously

changed to another type at a different axial location. In the figure,

the horizontal bars represent the approximate extent of the axial drift

of the type noted. For each ft, the solid curve is drawn through that

type which seemed predominant in terms of frequency of occurrence. The

numbers connected by the dashed curve represent a type (and location)

which either formed only momentarily and did not persist or persisted, on

average, for less time than the predominant mode.

For all swirls shown, the lowest values of Reynolds number resulted

in the formation of the type 6 mode. For all Re an increase in ft always

resulted in the disturbance moving upstream, with a suitably large increase
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leading to a transformation to another type. An upstream movement of the

disturbance also resulted, in general, when the flow rate was increased.

However, note that for values of swirl less than fi ~ 1.54 an increase in

Re from a low value sometimes led to a downstream movement of the distur-

bance. This behavior was observed consistently, but only for a limited

range of flow rates.

When the Reynolds number had been increased sufficiently and the

transition to the type 2 breakdown had occurred, subsequent increases in

flow rate always caused an upstream movement in mean axial location. For

example, with ft = 1.28 and beginning at the lowest value of Re used the

type 6 disturbance was located at z/r =6.7. As Re was incrementally

increased, the disturbance first moved downstream. The next increase

resulted in an upstream movement of the type 6 and, during the observation

time, the disturbance changed spontaneously into types 5 and 4. Further

increases in Re caused the disturbance to move upstream until the trans-

formation to type 2 occurred.

Even at the lowest flow rates for which the type 2 spiral mode was

predominant the type 0,1 formed occasionally. The type 0, 1 seldom per-

sisted longer than a few seconds and was always upstream of the mean

position of the type 2. As Re was increased, the 0, 1 mode formed more

frequently and tended to persist longer. The axial location of the type

0, 1, relative to the mean location of the type 2, remained approximately

constant, i.e., the solid and dashed curves indicating ft = 1.28 remain

roughly equidistant.

At a Reynolds number of about 5000, the frequency of occurrence of

each type (0, 1 and 2) was approximately the same. Each type would persist
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for several minutes or more before changing into the other type. At

Reynolds numbers higher than 5000, the type 0, 1 became predominant, the

type 2 formed less and less frequently and finally, for Re > 5800, the

type 2 was never formed.

Similar behavior was observed for other swirls, as can be seen in

Figure [3.21]. Note that for Q, = 1.07 the type 2 breakdown was still

the predominant mode at the highest Reynolds number used.

A figure indicating the type and axial position of the breakdown

formed at various Reynolds numbers and swirls was presented by Sarpkaya

[11,12]. Some differences exist between Sarpkaya's results and the

results of this study. Figure [3.22] is essentially a repeat of Figure

[3.21], but with the type numbers deleted and solid curves indicating

the present results. The plots presented by Sarpkaya [11], are included

(dashed curves) for these values of swirl; fi = 1.2, 1.5, and 1.75. The
5

numbers in parenthesis along the abscissa indicate the axial locations

observed by Sarpkaya. Note that a relative shift of five units in axial

location is necessary to give some agreement between the curves represent-

ing similar values of swirl.

The letter "e", denotes the Reynolds number at which, in Sarpkaya's

study, the transition from type 2 to type 0 occurred. In comparison to

this study, it appears that for similar values of £2:

a) Equal values of Re resulted in the formation of a breakdown

that was considerably further downstream in Sarpkaya's study.

b) The Reynolds number necessary to cause the transition from

type 2 to type 0 was substantially higher in the experiments

done by Sarpkaya.
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These discrepancies result, perhaps, from the differences that exist

in the length and shape of the entrance sections used in the two flow

devices. The exact shape and/or dimension of the bellmouth, centerbody,

and constant diameter throat section used by Sarpkaya are not included

in his report. However, based on figures and data given by Sarpkaya, it

is believed that the constant diameter throat, immediately upstream of

the diverging test section, is somewhat longer in the apparatus used in

this study. The vane arrays, bellmouths, and centerbodies used in the

two devices also appear to be different in size and/or shape. As shown

in Chapter 4, the introduction of a swirl component of velocity has a

strong effect on the axial velocity profile in the 'tube. It is very

likely that relatively small changes in the entrance section geometry can

lead to substantial alterations in the downstream flow profiles, with

resultant changes in breakdown type and location.

Another apparant inconsistency between Sarpkaya's study and the

present results is not apparant in Figure [3.22]. As discussed previously,

for fixed Reynolds numbers less than about 4000 a succession of disturbance

types was observed as the swirl was slowly increased from some low value.

The order in which they appeared, starting with type 6, then type 5, type

4, etc. was quite repeatable. Specifically, the type 5, double helix

disturbance always formed either from type 6 (spontaneously or with a

slight increase in swirl) or, occasionally, spontaneously from type 4.

An increase in swirl from a value resulting in a type 5 double helix

led to the formation of the type 4 "flattened bubble" disturbance. In

general, as the swirl was increased further the other modes (types 3, 2,

0/1) were formed. The type 2 spiral was always the form that immediately

93



preceded the type 0/1 axisymmetric mode (for small, incremental increases ..

in swirl).

These results are quite different than those noted by Sarpkaya [11].

In that study, Sarpkaya (who was the first to report the observation of

the double helix mode and included striking photographs of the dye pattern)

stated that the double helix mode appeared as an intermediate form

between the type 2 spiral and type 0/1 axisymmetric bubble. Furthermore,

Sarpkaya observed the double helix only at Reynolds numbers less than

about 2000 and did not report the other types (6, 4, 3). In a subsequent

article, [12] Sarpkaya confirmed these findings and presented descriptions

and photographs of the transition from the double helix to the axisymmetric

mode due to a slight increase in swirl. Further increases in swirl were

reported to result, in all cases, in a fully formed axisymmetric ( or

near-axisymmetric) breakdown and a spiral mode was not observed.

At this time, no explanation can be offered to resolve these apparent

differences. They may be due to differences in the flow devices or

experimental techniques used. In addition, there may be differences in

the nomenclature used by Sarpkaya and in this study. For example, some of

the photographs presented by Sarpkaya [12] to illustrate the "near axisym-

metric" bubbles formed directly from the double helix disturbance bear

great resemblance to the disturbance that is herein referred to as the

type 4 flattened bubble. Nonetheless, it is unlikely that the differences

between the two studies are only semantic.

All of the preceding discussions of the types and locations of the

flow disturbances are based on observations done by incrementally varying

Re (with fl fixed) or ft (with Re fixed). Similar results were obtained
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when the flow rate was held constant and the vane angle was slowly and con-

tinuously altered. This was accomplished by driving the vane array control

mechanism with a small motor. In this way, the steady progression of the

disturbance upstream and the transformation from one type to another could

be closely and conveniently observed. No noticeable differences existed

between these results and the results obtained by incrementally changing ft.

3.6. The Transient Response of the Breakdown

The response of the type 0/1 and type 2 breakdowns to a step change in

Re or ft was also studied. The behavior observed was essentially the same

as that discussed in detail by Sarpkaya [11]. In his report, Sarpkaya des-

cribed the changes that occurred in breakdown type and location due to a

sudden change in flow rate or swirl angle. Included also were sequential

photographs of the travelling flow disturbance. The following examples

illustrate the transient response of the breakdown.

3.6.1. Response to a Change in Reynolds Number

The swirl angle was set at ft = 1.54 and the Reynolds number was 4500.

A type 0 breakdown was located at about z/r = -.3 and the off-axis dye

injector was set to give a helix that had a diameter of approximately

one-half the tube diameter. The flow rate control valve was then rapidly

opened to give an increase in Reynolds number to Re = 4900.

The axisymmetric breakdown began to drift, almost immediately, down-

stream. Simultaneously, the helical dye pattern appeared to "stretch out"

somewhat (the pitch increased) and the bubble moved downstream about 3 cm.

Then, perhaps after a short delay, the bubble and helix seemed to move

downstream together (with no change in helix pitch) an additional distance

of about 1 cm. After a brief delay, the helix pitch appeared to decrease
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rapidly, (i.e. the distance between adjacent turns decreased), the bubble

moved rapidly upstream and became much longer and smaller in diameter than

it was at steady conditions. After a slight upstream overshoot, the break-

down settled in its new axial location, about 1.5 cm upstream of its

original position.

A decrease in Re yielded the opposite response, with the bubble moving

initially upstream before travelling to its new location downstream of the

initial axial location. Similar behavior was observed for other values of

Re and fl, with various Reynolds number step sizes. Those increases in Re

which led to a transformation from the type 2 spiral to a type 0/1 bubble

resulted in changes that were especially dramatic. The new bubble appeared

to be formed from an abrupt, axisymmetric "swelling" of the dye filament.

This often occurred just ahead of the upstream-travelling spiral, with the

spiral breakdown subsequently being washed downstream and disappearing. In

some cases, the new bubble persisted only momentarily before changing into

a spiral form located upstream of the axial location of the initial spiral.

3.6.2. Response to a Change in fi

The Reynolds number was fixed at 4500, with fi = 1.62. A type 0 bubble

was located at z/r ~ -.8. The vane angle was then increased rapidly to

£2 = 1.83. After a noticeable time delay (about 4-5 seconds) the helix

pitch increased and the bubble moved downstream about 1.5 cm. After an-

other, shorter delay the helix pitch decreased and the bubble moved rapid-

ly upstream about 5.5 cm. The breakdown then drifted downstream about 1

cm, finally reaching its new mean location about 3 cm upstream of the ini-

tial axial position. A decrease in swirl gave similar results, but in

reversed order, with the breakdown moving initially upstream before moving
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downstream to its new location.

If the initial flow conditions were set .to give a type 2 spiral, a

suitably large increase in swirl resulted in the formation (sometimes only

momentarily) of a type 0/1 bubble. This occurred in the way described

previously for a sudden increase in flow rate. That is, as the spiral form

moved rapidly upstream (after having reached its furthest downstream loca-

tion) a type 0/1 bubble suddenly formed upstream of the travelling spiral.

The bubble formation was very abrupt and appeared to result from a sudden

expansion of the central dye filament. The initial upstream travelling

spiral was "lost" in the wake of the bubble and washed downstream. Then,

depending on which form was predominant at the new flow conditions, the

bubble either persisted or changed into a new spiral.

3.6.3. The Transient Behavior of the Centerline Axial Velocity

The rather surprising response of the breakdown to a sudden change in

flow conditions (i.e. the disturbance initially moving in a direction oppo-

site to the direction it must finally move to reach its new steady state

location) prompted an experiment in which the axial velocity upstream was

monitored as the swirl or flow rate was rapidly altered. Figures [3.23J

and [3.24] are traces of the strip chart recordings taken during two of

these trials. The time and velocity axes are superimposed on the traces,

the dashed lines indicating constant time arcs. In both cases, the velocity

was measured at the tube centerline upstream of the start of the diverging

test section. Since the measuring point was located quite far upstream of

the breakdown, there was a discrepancy between the time a certain change in

velocity was measured and the time that this change was "felt" by the break-

down.
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Figure [3.23] shows the changes in velocity that occurred due to a

step increase in Reynolds number from 3720 to 4380. As one would expect,

the axial velocity increased almost immediately and the spiral moved slowly

downstream. After about seven seconds however, the velocity decreased

sharply and reached a value lower than the initial one. The velocity then

increased rapidly to its new steady state value. The time at which the

velocity increased rapidly seemed to show some correlation with the rapid

upstream movement of the breakdown. The momentary dip in axial velocity

did not occur when fl was set to zero.

Figure [3.24] is a velocity vs. time trace recorded during and subse-

quent to a rapid increase in fl from fl = 1.068 to ft = 1.282. Note the ra-

ther long delay between the time at which the swirl was changed and the

time at which a significant increase in velocity occurred. As in the pre-

vious case, there is a sharp decrease in velocity just prior to the rapid

increase to the new steady state value. Again, there appeared to be a

correlation between this rapid increase and the initiation of the rapid

upstream movement of the breakdown.

The two traces presented are typical of those recorded for various

combinations of initial and final conditions. There were some changes,

from trial to trial, in the amplitude and shape of the velocity dip and

the relative times at which certain changes in breakdown location were noted.

In general, however, the results were quite repeatable. The velocity pro-

files presented in Chapter 4 indicate that an appreciable swirl velocity

causes significant changes in the axial profile. The changes are greatest

in magnitude on the tube axis. Evidently, the strong interaction between

swirl and axial velocity results in a transient behavior typified by the

velocity vs. time traces presented above.

98



CO

00
in CO
ro CM

O C3
O

E CO

•i- $-
o -~,
O N

CO «>

I— II
(O

X •<c
•(->

co (o
•i- -O
i— O)
s_ j_
CU 3

-l-> (/I
C (O
0) CO

CO
CO

CO

CD

10

*"" •

6
vy
C/5

^^_

n
c
o
'to
'>
T3
^̂ ™

^"^

/1\

.E
ir^

«a-

S-

N

T3
CO

{j
Q
^_

r—ro
s-
Q.
1/1

CM

CO
Q.

£

ro
co
ro

c
2
O

T3
NX

ro
<D
i-

CQ

• •
0
CO
^^
CO

II

CO
o:

. r,

r—

+•>

V

+•>

a
l 

be
ga

n 
d

ri
ft

in
g

 
d

o
w

n
st

re
a

m
 

a
lm

o
s
t

t.
Q.
CO

T3
C
ro
o
00
CO
"*
II

CO

0

>^
r—

^J
Q.
3
i.

J3
ro

T3
(1)

ro
CO
t.
u
c

•i—

CO
ro
2 •
CO >,

CtL r-
CO

• «• ro
i i

-p -o
ll E

F
•4-> >r-

+J

•r—

C
3

CO

CO

-o
CO
c:

ro

CO

-o

LO

n

S-
«^̂
N

^

C
o

•r~
1 '

ro
o
o

E
ro
CO
S-

co

2
O

T3

^ĉo
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CHAPTER FOUR

4.0. Velocity Measurements

The objective of the studies described in this chapter was to provide

detailed velocity measurements of the swirling flows which were produced

in the test section described previously. In the first series of experi-

ments, the radial variation of axial and swirl velocity was measured at

an axial location 1.2 cm upstream of the start of the diverging section of

the tube (z/rt = -.67). The second experiment, which was much more diffi-

cult to perform, resulted in a mapping of the flow field associated with

a fixed Re and ft. The Reynolds and circulation numbers used for this map-

ping resulted in the formation of a relatively stable type 0 breakdown.

4.1. Accuracy

The equipment used to measure the flow velocities is discussed in

Chapter 2. A further discussion of the sources and magnitude of the

errors in the measurements is presented here. Firstly, there was an un-

certainty in the position of the measuring probe (the intersection of the

two laser beams) in the tube. The greatest source of uncertainty in de-

termining this position was the initial alignment prodecure. As indica-

ted in Chapter 2, the initial alignment was done visually, using the

central dye filament to indicate r = 0 and a scale attached to the outside

diameter of the test section to indicate axial location. The equations

relating the position coordinates (r,z) of the probe volume in the tube

to the position of the optical unit (X,Y) are, for axial velocity:

r = nw(Y-YQ) (4.1)

z = .5 + (X-XQ) (4.2)
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where n = index of refraction of waterw

XO,YQ = the reference values of X,Y noted after initial alignment.

The quantities (Y-Y ) and (X-X ) could be determined with good

accuracy (error less than .05 mm) since micrometers were used to measure

these values. The major source of error, however, was in determining X

and Yo. By repeating the initial alignment several times it was possible

to estimate the probable error in r, z for X = Xo, Y = Yo. If these esti-

mated errors are included in equations (4.1), (4.2), they become

r = nw(Y-Y0) ± .60 mm (4.3)

z = .4 + (X-XQ) ± .20 mm (4.4)

where the absolute error in r,z, of .55 mm and .15 mm respectively, has

been added to the relative error in (Y-YQ), (X-XQ). Thus, the uncertainty

in position between two measuring points (i.e., in moving the optical unit)

was quite small compared to the error in knowing the exact location of

each measuring point relative to the fixed r,z, coordinate system.

For velocity profiles in which velocity is plotted as a function of

radius, r, or non-dimensional radius, r/r^, the above discussion implies

that the profiles could be shifted along the r (or r/r.) axis by .55 mm

(or .029 for non-dimensional plots), but that the relative spacing between

individual points was quite accurate.

A similar set of equations (but slightly more complicated for r) can

be written for swirl velocity. However, the initial alignment procedure

to locate r = 0 could be checked, after the Bragg cell optical frequency

shift unit had been installed, by demanding a swirl velocity of zero on the

tube centerline.

BEPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR



An analysis to determine the error in the velocity measurements must

be done in several parts. This is because some experiments were done

prior to the installation of the optical frequency shift unit and without

day to day tracker calibration, while the later experiments were done

using the frequency shift unit and accurate tracker calibration.

The equation relating velocity to the measured (or known) parameters

was presented in Chapter 2.

(fn-f
V = X D

e

where V = velocity (cm/s)

X = wavelength of laser light in water (cm)

0 = angle between the two intersecting beams (radians)

f = frequency of photomultiplier output signal (Hz)

f = difference in optical frequency between two intersecting beams,

due to Bragg cell frequency shift unit (Hz).

Except for X, there is an uncertainty, or tolerance, associated with

each of the measured parameters. Using primes to indicate the nominal

(measured) value, double primes to indicate the tolerance, and no super-

script to denote actual value, then

6 = 6' ±6"

f = f + f"D D ~ D

f - f' ± f"o o o

V = V ± V"

Substituting these values into the above equation, rearranging, and ne-

glecting products of double primed quantities gives:
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f'-f f ' - f ' f" f"
v = v' + v" = A <• D °) + ( D °) ^ + -9. + _°v-v ± v - A ( 0, ; _ i. et -> Qi - e1 - e1

Noting that 5—— = V , then

"
v _ v. = ± V" = ± v« ± ± (4.5)

D H O

In assigning numerical values to each term of equation (4.5), consi-

deration must be given to the procedure and equipment used in conducting

the experiments. In general, all of the velocity measurements taken can

be categorized into one of three groups. The groups will be A, B, and C

and in the tabulated data presented in Appendix A3 the letter will identify

which error analysis is appropriate for each velocity measurement.

Group A - For this group, the velocity measurements were made before the

frequency shift unit was installed (f = f" = 0), the frequency tracker

was not calibrated, and the analog voltage output from the tracker was

monitored by a digital voltmeter to indicate time averaged voltage, which

was used to calculate mean velocity. The strip chart recorder, when used,

also monitored the tracker output voltage to obtain the amplitude of the

velocity fluctuation.

The specifications of the frequency tracker indicated an accuracy of

± 1% of full scale deflection, with an analog voltage output of 10 volts

corresponding to full scale deflection. A calibration done after the

Group A measurements were taken indicated an error in excess of this

(average error of 6%). Therefore, all of the Group A readings were cor-

rected using this calibration curve. This correction assumed that the
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error, although quite large, had not changed considerably during the time,

prior to calibration, that these measurements- were taken. This assumption

could not be checked in an absolute way, but a comparison of readings of

the same velocity using two frequency channels could be used to verify

whether a given accuracy claim was possible. Such comparisons indicated

that an accuracy claim of 1% of full scale deflection for the corrected

data was, in all cases, possible. In other words, for a fixed velocity the

difference between two readings taken on different channels was always less

than the possible error obtained by assuming the 1% full scale deflection

accuracy level. Although this is not an absolute check (it is a necessary

but not sufficient check on an accuracy claim), the assumption of an error

of 1% full scale deflection seems quite reasonable.

The digital voltmeter error was .02 volts, which included the ± 1 digit

error usually present in digital readout instruments. Since the equation

relating analog voltage to frequency was e = 10 x f_./f _. where e = analog

voltage and f = full-scale-deflection frequency, then the digital volt-
TD.3-X.

meter error can be written as .002 f.s.d. (full scale deflection). Adding

the voltmeter error to the tracker error (± 1% f.s.d.) and including the

value 9"/6' = .003 (see 'Chapter 2) gives the following results from equa-

tion (4.5), with fJJ » 0, X/9' = .240 x 10~3cm.

Channel Used

15

50

150

500

KHz

KHz

KHz

KHz

Velocity

0.7

2.4

7.2

24.0

- 2.

- 9.

- 28.

- 96.

9

6

8

0

Range

CM/s

CM/s

CM/s

CM/s

180

600

. 1800

6000

i
)

Hz

Hz

Hz

Hz

(±

(±

(±

(±

.003V

.003V

.003V

,003V

V"

± .04)

± .14)

± .40)

± 1.40)

CM/s

CM/s

CM/s

CM/s
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Group B - Results in this group were obtained after the frequency shift

unit was installed. The accuracy of the frequency shift, f", was specified

by the manufacturer to be .5% f', and this error limit was primarily due to

the effects of temperature drift of the instrument oscillators [32]. For

these measurements, the frequency tracker was calibrated daily using a fre-

quency generator and a frequency counter. The 1% full-scale-deflection

tracker accuracy, used in Group A and specified by the supplier, was due

in large part to the non-linearity of the voltage controlled oscillator.

By calibrating the tracker daily, this error could be reduced to .25% of

the frequency reading [32]. This remaining error (.25%) was due to thermal

drift of the voltage controlled oscillator.

All of the measurements in Group B were made using the 150 KHz range,

with f = 75 KHz or 25 KHz. The digital voltmeter was used to indicate

time averaged frequency (actually, analog voltage) and the accuracy asso-

ciated with this method was, as in Group A, ± .02 volts. In summary, the

errors for Group B were

6̂  = .003
6

f" = 5% f' = J125 Ez fo = 25 K*12
o ' o |375 Hz f» = 75 KHz

L o

f£ = .0025 f^ + (.002)(150 KHz)

Noting that A/6'(f̂ -f̂ ) = V and using A/6 = .246 x 10 cm, equation

(4.5) gives the following results for maximum errors for Group B measure-

ments;

V" = + .003V + .0025V + J '12 cm/s fo = 25 ™z
1-21 cm/s f' = 75 KHz
V. o
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Group C - These measurements were made using the same calibration pro-

cedure used in Group B and with the same equipment, except that a signal

conditioner/D.C. voltage suppressor, in series with a strip chart re-

corder, were used to measure the analog voltage output of the frequency

tracker. The signal conditioner was used to filter out analog voltage

fluctuations with frequencies greater than 10 Hz. The D.C. voltage sup-

pressor and strip chart recorder were carefully checked periodically

during the tests to alleviate drift in gain and null point. The level of

accuracy using this set-up was primarily determined by the accuracy with

•
which one could estimate mean velocities (voltages) from the recorder

strips. This accuracy varied from -.02 to .05 volts, depending upon the

fluctuation amplitude. The frequency range used was 150 KHz f.s.d. and

f' was 75 KHz. The possible errors in Group C measurements were, then

V" = + .003V ± .0025V ± .14 cm/s ± '°l cm/.S *
.19 cm/s b

a = small amplitude fluctuations

b = large amplitude fluctuations

It should be pointed out that in all of the above groups the numerical

values of the errors represent the maximum errors, or worst possible case.

The only systematic error was the 6"/6' term and the others were random in

nature. Since the systematic error contribution was small (.003V) it is

improbable that the error in any single measurement would be as large as

the maximum possible. Furthermore, the tabulated data are, in most cases,

the result of averaging several trials. The error associated with an

average value, obtained by separate trials having random errors e, is

approximately e/v/rT where n is the number of trials.. Therefore, the
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probable error in the tabulated data is, in most cases, a fraction of the

maximum possible error resulting from the preceding analysis.

4.2 Equipment Limitations

The equipment used to measure the flow velocity had several limitations.

1. In regions where the radial velocity gradients were high, the

tracker was unable to process the rapidly changing frequency. The frequency

of the signal fluctuates, in these regions, because the long dimension of

the probe volume was aligned radially and thus particles traversing opposite

end portions of the probe volume had significantly different velocities.

The signal frequency varied rapidly as particles passed alternately through

these end portions. Under these conditions, the velocity readings obtained

showed considerable scatter and reproducibility was poor. This was true

for readings taken close to the tube wall and, for swirl velocity, near the

tube centerline. The addition of the frequency shift unit alleviated this

difficulty, to a great extent, for the case of swirl velocity near the

centerline.

2. In addition to the limitation described above, measurements very

close to the tube wall were not possible because a certain fraction of the

light from the laser beams was reflected from the inside surface of the

tube. As the probe volume was moved closer and closer to the tube wall it

became more difficult to prevent this reflected light (by means of the

pinhole aperture) from reaching the photomultiplier tube. Since the light

reflected from the tube wall was not Doppler shifted it served only to

increase the noise level of the photomultiplier output. When a radial

position was reached such that the quantity of this reflected light was
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much larger than that of frequency shifted light it became impossible to

process the signal to extract velocity information.

3. The optical set-up used did not permit traversing across the

entire diameter of the tube. It was possible to make radial traverses

along the horizontal line extending from just inside the tube wall closest

to the optical unit to a point slightly beyond the tube centerline. Thus,

the axisymmetry of the velocity profile could be checked only near the tube

centerline.

4.3 Base Flow Profiles

The first series of velocity measurements were done at a fixed axial

station, z/r = -.67, located just upstream of the start of the diverging

section of the tube. The radial profiles of axial and swirl velocity at

this axial location (herein called base flows) were measured at three

Reynolds numbers. For each Reynolds number the axial velocity profile was

measured for four values of fl. Then the optical unit was rotated 90 , the

initial alignment procedure to determine X , Y was repeated, and the swirl

velocity profiles were measured at the same values of fl (except for 12 = 0).

These base flow profiles, unknown before this study, are shown in Figures

[4.1 - 4.7]. (All the velocity data presented graphically are tabulated in

Appendix A3). For all of these measurements, the flow disturbance (when

one existed) was located well downstream of the measuring point and the

velocity readings were unaffected by the axial wanderings of the disturbance.

Perhaps the most striking feature of these figures is the very marked

changes that occur in the axial velocity profiles as the swirl angle was

increased from zero. For all the Reynolds numbers used, a vane angle of
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zero (ft = 0) resulted in an axial velocity that was nearly constant with

radius until the boundary layer along the tube wall was reached, and at

that point the velocity began to decrease sharply. An increase in ft led to

the formation of a region of high velocity near the tube centerline. The

magnitude of the change in centerline axial velocity was quite high. For

example, the axial velocity at r = 0 was nearly doubled by increasing the

swirl from ft = 0 to ft = 1.28. The percentage change in centerline velo-

city, for the same change in ft, was increased as the Reynolds number was

increased. For an increase in ft from .73 to 1.07, the change in axial

centerline velocity was 19%, 23%, and 30%, respectively, for Reynolds num-

bers of 3220, 4540, and 6000.

The existence of high axial velocities near the center of the vortex

core formed by the leading edge of delta wings has been reported previously,

c.f. Lambourne and Bryer [24]. In those unconfined, swirling flows, the

velocity along the vortex axis has been reported to be as much as three

times greater than the velocity upstream of the delta wing. The results of

this study show that the same effects occur in confined swirling flows.

For each of the Reynolds numbers used, there were two radial locations

at which the axial velocity remained nearly constant, independent of ft.

The first point, r = r , say, can be seen in the figures as that point at

which the curves representing various values of ft intersect. The second

point r = r , say, was near the tube wall and all of the curves appeared

to merge at that point. For r < r , an increase in swirl caused an increase
c

in axial velocity. This increase was compensated for (the volume flow rate

was constant) by a decrease in velocity for r < r < r . Note also that at

a fixed, non—zero swirl the velocity increased slightly as r was increased
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to a value just less than that r which marked the edge of the boundary

layer. This effect was most noticeable at the highest value of Re used.

For each set of curves, i.e. for a fixed Re and velocity component

and various values of ft, a fixed value of Y was used, as determined by

the initial alignment procedure. Thus, all of the profiles of a given set

can be assumed to be quite accurately located, relative to each other, in

radial location. However, since the alignment procedure was repeated

between sets, it is not possible to say, with absolute certainty, that a

given radial location of one set corresponds exactly with the same, noted

radial location of a different set. Nevertheless, the profiles do seem to

indicate that r , the radial location at which the curves of a given set

intersect, tended to move closer to the centerline as the Reynolds number

was increased. Furthermore, for a fixed Reynolds number r appears to

correlate quite well with the radial location at which the swirl velocity

2 2profiles change from noticeably concave down (3 v/3r < 0) to slightly

concave down (9 v/8r -»• 0, Re = 3220), or linear (32v/3r2 = 0, Re = 4540)

2 2
or concave up (3 v/3r > 0, Re = 6000). In other words, r apparently

marks the inside boundary of a region in which the swirl velocity exhibits

a 1/r type of behavior.

Finally, some of the profiles seem to show a slight velocity defect

at the tube centerline indicating that the remnants of the centerbody wake

still existed at this axial location. This was most noticeable at the

lower values of swirl.

The swirl velocity profiles for these base flows all indicate that a

solid body type of velocity distribution existed near the tube centerline.

In this solid-body core the velocity increased rapidly with increasing r
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until reaching a maximum value at r = r , say. For r > r the velocity
P P

decreased with increasing r, but as indicated previously the profiles in

this outer region exhibit a positive second derivative (concave up, 1/r

type behavior) only for Re = 6000. For both Re = 3220 and Re = 4540 the

velocity decreased faster than a 1/r distribution, with the second deri-

vative being always negative for Re = 3220 and being approximately zero

for Re = 4540.

Note that, in contrast to the axial profiles, the three curves for

Re = constant and various values of ft do not tend to merge into one curve

near the tube wall. It was possible to make measurements closer to the

tube wall for swirl velocity than axial velocity due to the smaller radial

gradients of swirl. The swirl velocity boundary layer was considerably

thinner than the axial velocity boundary layer.

Also in contrast to the axial velocity, the percent change in maximum

swirl velocity, for a given change in fl, was essentially independent of

Reynolds number. For example, the percentage changes in maximum swirl for

a change in ft from .73 to 1.07 was 44%, 44%, 47%, respectively, for

Reynolds numbers of 3220, 4540, and 6000. The figures for a change in n

from 1.07 to 1.28 were 23%, 22% and 20Z. The radial position of the maxi-

mum swirl velocity, r , remained essentially constant when the Reynolds

number was held constant and ft was varied. However, r decreased slightly
P

with increasing Reynolds numbers indicating that a smaller solid body core,

as well as higher swirl velocities, existed at the higher Reynolds numbers.

The resultant high radial gradients made reliable velocity measurements

difficult in the deep interior of this core. Before the installation of

the frequency shift unit, measurements closer to the centerline than
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r/r. ~ .07 showed poor reproducihility and it was impossible to obtain data

very close to r = 0.

Measurements on and near the centerline were possible after the fre-

quency shift unit was installed, Figures [4.3, 4.5]. The data indicate

that a sub-core region existed near r = 0 in which the swirl was essentially

zero. By traversing in small increments on either side of r = 0, it was

possible to check the initial alignment (to determine Y ) and to measure

the diameter of the sub-core. The diameter was approximately 1.9 mm for

Re = 3220 and 4540. The region just outside of this sub-core was charac-

terized by very high radial gradients and at high Re and ft it was not possi-

ble to obtain accurate data at these radial locations (note missing data

points at r/r ~ .09, Re = 4540, ft = 1.07, 1.28).

The swirl measurements at Re = 3220 were made both before, Figure

[4.2], and after, [Figure 4.3], the installation of the frequency shift

unit. There is some discrepancy in both r and the value of the peak swirl
P

velocity. The difference in r is probably due to the variations in ini-

tial alignment (Figures [4.3, 4.5] should be considered to be quite

accurate regarding actual versus indicated radial location). The difference

in peak velocity may, in part, be due to instrument errors. However, it

is more likely that the velocities were actually different. This con-

jecture is based on the fact that on several occasions a noticeable change

in peak swirl velocity occurred over a span of 10 - 20 minutes.

For example, the measuring point was traversed until the point of

maximum swirl velocity was determined and then the location was held fixed.

The velocity was then measured for 30 - 60 minutes and changes were noted.

In some cases the velocity remained essentially constant. In others, the
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velocity varied, over a period of 10 - 20 minutes, by as much as 6% (i3%

from some mean value). During this time the flow rate and vane angle were

held constant, with no changes evident in rotameter setting. It was not

possible to determine with certainty whether r was moving about slowly

(i.e., the profile was changing shape) or whether the entire profile was

shifting up and down, because it was not possible to make simultaneous

measurements at two different radial locations. It did appear, however,

that a general reduction or increase in swirl velocity was occurring over

a region which was of considerable radial extent. The magnitude of these

velocity changes was greatest in the neighborhood of r = r (see Figure

[4.48] and related discussion).

This same effect was noted for axial velocity measurements near the

centerline, but the magnitude of the velocity changes was significantly

less. This is not surprising in light of the strong effect that the swirl

velocity has on the centerline axial velocity. No firm explanation of the

cause of these relatively slow changes in base flow can be offered.

4.4. The Detailed Mapping of a Type 0 Vortex Breakdown Flow Field

The next experiments conducted were those which resulted in a detailed

velocity mapping of the flow field associated with a type 0 vortex break-

down. For this work the flow conditions were held fixed, with Re =2560

and ft = 1.777. These values were chosen because they resulted in a type 0

breakdown which was relatively stable in form and position. The position

stability of the breakdown was an important criterion in selecting these

flow conditions. It was suspected, and later confirmed, that the velocity

measured at a fixed value of r/r. would vary only slightly as a function of
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absolute axial position, if the axial position of the measuring point

relative to the bubble were constant. Conversely, velocity measurements

made at a point which was fixed in position near the breakdown showed large

variations due to the to and fro axial drift of the breakdown. Thus, in

order to obtain a meaningful and detailed velocity map of the flow it was

essential to have a breakdown which was quite stable in position.

4.4.1 Procedure

The procedure used in these experiments was dictated by the circum-

stances described in the preceding paragraph. A magnifying lens and mirror

were mounted on top of the flow apparatus and adjusted to eliminate parallax

over the axial range in which the bubble was located. When properly placed,

an observer could view the nose region of the bubble as it drifted axially.

The transparent scale running axially along the top outside surface of the

test section allowed the axial position of the nose of the breakdown to be

determined quite accurately, with a precision of better than .5 mm.

The first step in the procedure was to select an appropriate axial

location for the measuring point. For each radial position of the probe

volume the velocity was continuously measured by the frequency tracker and

the position of the breakdown nose was continuously monitored visually by

observation through the viewing system. For measurements of average velo-

city outside of the bubble envelope, the analog voltage output of the

frequency tracker was measured by the digital voltmeter. The voltmeter

averaging time was usually kept at either .1 or .3 seconds to provide a

time response that was rapid enough to measure a varying average velocity.

As the breakdown wandered to and fro, it occasionally rested in one axial
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position for a brief period of time (.typically a few seconds). When this

occurred, the voltmeter output was held fixed by means of a remote switch.

The voltage reading, proportional to velocity, and the position of the

probe volume and bubble nose were then recorded. Several or more velocity

readings were taken for each value of measuring point position and relative

breakdown position. The readings obtained in this manner were quite repeat-

able, even for those locations in which the velocity varied considerably

with bubble position (e.g., just upstream of the bubble nose and near the

tube centerline). In nearly all cases the standard deviation of the velo-

city readings (with measuring point and relative breakdown position fixed)

was less than about 4% of the mean of the readings. By repeating this pro-

cedure at various axial and radial locations it was possible to build, bit

by bit, a quite detailed velocity map of the flow outside of the bubble

envelope.

For measurements of velocity in regions where the velocity fluctuations,

as well as mean velocity, were of interest a slightly different procedure

was used (e.g., inside the bubble and in the wake region). The analog

voltage output was first low pass filtered (a 10 Hz cut-off was used) to

remove spurious fluctuations and then the signal was further conditioned

by suppressing it with a known D.C. voltage. This conditioning allowed

the signal then to be recorded on one channel of a strip chart recorder

which was set at a fairly high sensitivity. In this way an accurate and

continuous record of velocity was made.

Another channel was used at times to record the time average of the

true R.M.S. of the conditioned signal to indicate the mean amplitude of

the velocity fluctuations. A third channel was used to record a
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verification signal denoting bubble nose position. When the bubble re-

mained briefly in one axial position a switch was depressed which caused the

pen of this third channel to deflect. The verification signal was main-

tained as long as the bubble remained at this axial location and was dis-

continued when the bubble moved an axial distance of greater than .5mm.

The bubble position was then noted on the strip chart paper. This process

was repeated for various locations of the measuring point and for a range

of relative bubble positions. In this manner it was possible to produce

a composite picture of the velocity field inside the breakdown envelope.

In some regions, such as in the wake of the bubble, both the digital volt-

meter and the strip chart recorder were used simultaneously.

In the discussions that follow, the axial location denoted indicated

the position of the measuring point relative to the apparent nose of the

bubble, (-) indicating upstream and (+)» downstream. For reference, it

should be noted that for these flow conditions the mean location of the

bubble nose was ~ z = -3 mm and the bubble length was 15.5 mm. In those

cases where the radius has been nondimensionalized, r. is the tube radius

at the axial location where the measurements were made.

4.4.2. Time Averaged Axial Velocity Profiles

The three profiles of axial velocity shown in Figure [4.8] were

measured at three axial locations well upstream of the type 0 bubble. At

all three locations the profiles were characterized by the same features

evident in the base flow profiles previously presented. There was a region

of high velocity near the tube centerline, followed by a region in which

the axial velocity was nearly constant with r, and there was a slight in-

crease in velocity just inside the boundary layer. At the -30.6 mm and
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-22.6 mm locations the velocity readings were unaffected by the slight

changes in bubble position, while at the -14.6 mm location some slight

changes in velocity were noticeable near r = 0 as the bubble wandered

axially. As can be seen, the axial velocity profiles changed only slightly

with axial distance in the upstream region in which velocity was indepen-

dent of bubble position.

As seen in Figures [4.9, 4.10], in the region extending from -14.6 mm

to the breakdown nose the velocity near the centerline decreased rapidly

as the bubble was approached. The centerline velocity decayed from a

maximum to zero in an axial distance of ~15 mm, or one bubble length,

Figure [4.11]. The collapse of the high velocity jet near r = 0 led to a

slight increase in velocity in the flat region of the profile

(r/r. = .5 to .7) and a more noticeable increase closer to the tube wall,

indicating a thinning of the boundary layer. All of the profiles shown

in Figures [4.8 - 4.10] were measured using the same initial alignment to

determine r = 0. The profile shapes near r = 0 seem to indicate that the

centerline was actually located at r/r. y .028, the location denoted by

the dashed line.

The -1 mm profile has been repeated in Figure [4.12] as a reference

for comparison to the two profiles measured downstream of the bubble nose.

The velocities inside the bubble envelope are discussed in a following

section. At present, note that the outward displacement of the fluid

caused by the presence of the bubble resulted in a substantial increase

in velocity for r/r. greater than about .35. This convergence of the

stream tubes had to occur because of the confinement by the tube walls.

The bubble diameter was a maximum at about +10 mm and thus the area of the
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annulus defined by the tube wall and bubble envelope was a minimum at this

location. This^s reflected by the relatively high velocities shown in

the +10 mm profile, Figure [4.13], at r/r. = .4 - .7. In contrast to this,

the profiles indicate that the fluid decelerated with increasing z, from

-1 mm to +10 mm, for radial positions close to the bubble envelope. Note

also the large radial gradients that existed near the bubble envelope,

r/r. ~ .3, as shown in the +8, +10, and +15 mm profiles.

The +24 mm profile resulted from measurements in the wake of the break-

down. The velocity distribution outside of the vortex core in this region

was quite similar in shape to the upstream profiles. The major difference

was that the high velocity jet inside the vortex core near r = 0 had not

fully formed. A comparison between the +15 and the +24 profile shows the

marked increase in boundary layer thickness that occurred downstream of

the bubble.

In order to check these measurements for agreement regarding constant

volume flow rate an approximate integration of several profiles was done.

The velocity was assumed to be constant in the radial increment centered

about the radial location at which the velocity was measured. The velocity

was assumed to decrease linearly with r in the region near the wall for

which velocity data was not obtained. The results were quite consistent.

For example, when the actual centerline adjustment (mentioned previously

for Figures [4.8 - 4.10]) was made for the upstream profiles, less than a

1% difference existed between the volume flow rate calculated at -30.6 mm

and that calculated at +24 mm.

The results of the axial velocity measurements inside the bubble were

quite surprising. As shown in Figure [4.14], the data for time averaged
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Figure 4.14. Mean (Time-Averaged) Axial Velocity Profiles Inside
the Bubble, Re = 2560, n = 1.777. "S" Denotes the
Four Stagnation Points.



velocity indicate that four stagnation points existed (marked by the letter

S in the figure) along the axis. The axial positions are referenced to the

apparent nose of the bubble for consistency with' the other figures. The

bubble envelope superimposed on the figure was determined from photographs

and streamline calculations based on the mean velocity data.

The region of reversed velocity at r = 0 near the nose (.5 to 2.5)

was characterized by small absolute values of mean velocity and only weak

fluctuations. The velocity on the axis was streamwise again from the

second stagnation point, 2.5 mm, to the third at 11.5. Both the mean

velocities and fluctuation amplitudes were significantly higher in this

region than in the nose region. The downstream section of the bubble, from

11.5 to the rear stagnation point at 16.0 featured both the largest absolute

values of reversed velocity and the highest amplitude fluctuations. The

highest velocities inside the bubble were positive (streamwise), occurred

near the envelope, and were about 15% of the maximum centerline velocity

measured upstream of the breakdown. The mean velocities were most negative

at r ~ 2.5 mm and 11 - 13 mm downstream of the nose and were about 12% of

the maximum upstream velocity. The peak negative velocities decreased in

absolute value upstream of +11 mm as the recirculated fluid moved upstream

and toward the bubble envelope.

4.4.3. Mean Streamlines Inside the Bubble Envelope

The mean flow pattern can be visualized more clearly by use of

Figure [4.15]. The mean streamlines shown (actually, the projection of the

mean streamlines onto a meridional plane) were calculated from the time

averaged axial velocity data using linear interpolation between radial

points. The bubble envelope, or outer mean dividing streamline, was
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determined from the mean velocity data and several enlarged photographs.

Note that the axial distance in this figure is referenced to the actual

front stagnation point. The larger, outer cell recirculated about 1% of

the total volume flowing through the tube. Only a small fraction of this

recirculated fluid reached the upstream nose section of the bubble, and

most of the recirculating fluid in this outer cell was confined to the rear

half of the bubble.

The inner cell was significantly weaker than the outer and recircu-

lated only 3.7% of the mean amount carried by the outer cell. As discussed

later, the stagnation point marking the downstream end of the inner cell

appeared to separate a region of relatively weak fluctuations inside the

inner cell from a region of strong fluctuations in the downstream section

of the bubble. The photographs shown in Figure [4.16] were taken sequen-

tially over a period of about twelve seconds after interrupting the flow

of dye. The inner, relatively quiescent core can be seen clearly, as in-

dicated by the dark streak located on the bubble centerline and extending

from the nose region to a point about 2/3 of a bubble length downstream

of the nose. The existence of this inner core and its streamwise axial

velocity on-the tube centerline is in agreement with the behavior of the

screw worm filament described in section 3.3.1.

4.4.4. Time Averaged Swirl Velocity Profiles

The swirl velocity profiles at the bubble nose and at two upstream

stations are shown in Figure [4.17]. As shown, the radial position at

which the swirl velocity was a maximum moved outward significantly as the

bubble was approached. In the outer portions of the tube, r/r > .7, the
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outward displacement of the fluid which occurred as the fluid approached

the breakdown resulted in an increase in swirl velocity. This would be

expected from a conservation of angular momentum calculation since the

swirl velocity at any given axial location decreased with increasing r

faster than 1/r in this outer region of the tube.

It was pointed out previously, in the base flow discussions, that the

swirl velocity seemed to vary somewhat over a period of time, especially

for r/r. less than about 0.5. This can be seen in the data points pre-

sented in Figure [4.18] representing swirl velocity measurements made 3 mm

upstream of the breakdown. Those points marked with crosses were measured

in succession, starting at r/r = .132 and moving incrementally outward to

r/r. = .932. Thereafter, the intersection point was moved to r/r = .089

and the velocity was measured at that point and then at five other radial

locations, as indicated by the open circle points. For r/r < ~ .5, the

latter readings were somewhat lower. The only noticeable change in the

flow was that during the interim period between the earlier and later

readings the bubble had become more stable in position and moved axially

over a range of only 2-3 mm. In the earlier measurements the range of

axial locations was about 7 mm. In addition, the mean location of the

breakdown (measured over ten minutes, say) was further upstream by about

2 mm for the later measurements. . This same effect was seen several times

for both swirl and axial velocity measurements made just upstream of the

bubble. It is, of course, not possible to know whether the alterations in

the velocity profiles were the cause of, or result of, changes in the

stability and mean location of the breakdown. The changes in velocity

were slight, but noticeable, and perhaps offer another clue to the break-

down mechanism.
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Three swirl velocity profiles measured downstream of the bubble nose

are shown in Figure [4.19]. The +8 mm profile, measured at about one-half

the bubble length downstream of the. nose near the point of maximum bubble

diameter, again shows the increase in swirl velocity for r/r. > .7 due to

the outward displacement of the fluid. Note the sharp increase in angular

velocity near the centerline at +24 mm, in the wake region, which resulted

from the convergence of the flow downstream of the breakdown. The very

noticeable dip in mean swirl velocity near the bubble envelope (r/r. ~ .2)

shown in the +8 and +10 mm profiles was still evident at the +24 location.

This decrease in swirl velocity at, or just inside of, the bubble

envelope was perhaps the most striking feature of the mean swirl velocity

profiles measured inside the breakdown, Figure [4.20]. The dip in angular

velocity appeared at each axial location. For axial locations 0 - 10 mm

behind the nose, this dip was relatively small in magnitude and the radial

position at which the swirl was locally minimized showed good correlation

with the radial location at the breakdown envelope. The dip was signifi-

cantly larger in magnitude in the downstream portion of the bubble and was

located well inside of the mean dividing streamline. This feature of the

swirl profiles is not surprising because the fluid immediately outside of

the dividing streamline came from an upstream region near the tube center-

line, where the circulation was relatively small.

4.4.5. Velocity Fluctuations: The Asymmetry and Unsteadiness of the Flow

The foregoing discussions of the flow inside the breakdown have centered

on the mean velocities, i.e., velocities obtained by averaging the velocity,

in time, over a suitable period. However, perhaps the dominant feature of

the flow inside the bubble, and in the wake region, was the strong temporal
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Axial Location

-3mm

Figure 4.18. Swirl Velocity vs. Non-Dimensional Radius for
Re = 2560, Si = 1.777, 3mm Upstream of the Bubble
Nose. Data Denoted by Open Circles Were Taken
When the Breakdown was more Stable in Position.
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Figure 4.19. Swirl Velocity vs. Non-Dimensional Radius for
Re = 2560, ft = 1.777. Axial Location Denotes
Distance Downstream of Bubble Nose.
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Figure 4.20. Mean (Time-Averaged) Swirl Velocity Profiles Inside
the Bubble, Re = 2560, n = 1.777.



fluctuations in velocity. These fluctuations are represented graphically

in Figures [4.21 - 4.23] by the bars superimposed on' the mean velocity

profiles measured inside the bubble (Figures [4.21, 4.22]) and in the wake

region (Figure [4.23]). The length of the bars represent the average peak

to peak amplitude of the velocity fluctuations. These average amplitudes

were estimated from the strip chart recordings of velocity versus time for

Figures [4.21, 4.23]. In Figure [4.22], the peak to peak amplitudes were

approximated by multiplying the RMS of the time varying velocity (recorded

on a separate channel) by v2, i.e., by assuming a sinusoidally varying

velocity. It should be pointed out that the swirl velocity fluctuation

amplitude at r = 0 may have a contribution from radial velocity fluctuations

since these two components are not resolved by the LDA at the tube center-

line.

The amplitude of these temporal fluctuations was greatest in the rear

portion of the bubble, slightly off-axis. In this region, the time varying

velocity was remarkably periodic and these fluctuations resulted in a con-

tinual exchange of fluid across the mean dividing streamline at the rear of

the bubble. The temporal variations were weakest in the nose region of the

breakdown and inside the inner cell discussed previously. The change in

the fluctuation amplitude was especially noticeable when measurements were

made near the centerline in the vicinity of the stagnation point which

marked the downstream end of this inner cell. When the bubble was in an

axial position such that the measuring volume was inside the inner cell the

strip chart trace showed relatively small fluctuations. As the bubble

drifted slowly to and fro, only small changes in the fluctuation amplitude

resulted, as long as the probe volume remained inside the inner cell.
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Axial Distance Downstream of Nose (mm)

Figure 4.21. The Amplitude of the Axial Velocity Fluctuations
Represented by the Horizontal Bars - Inside the
Breakdown; Re = 2560, n = 1.777.
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However, when the bubble moved upstream far enough, so that the probe

volume crossed the inner cell boundary, the fluctuation amplitude increased

abruptly and the mean axial velocity became negative. In other words, the

strong fluctuations in velocity resulting in the simultaneous emptying and

filling of the bubble did not decay gradually along the axis with increasing

distance upstream of the rear stagnation point. Instead, the amplitude was

relatively constant in the rear portion and decreased rapidly near the

stagnation point at the downstream end of the inner cell.

Several other important features which characterized the velocity

fluctuations were the frequency and the nature, or shape, of the recorded

traces. During the analysis of the velocity data it became evident that

the velocity fluctuations varied in nature from region to region within the

bubble. For example; the fluctuations in the nose region were small in

amplitude and quite random in nature, with no dominant frequency immediately

discernible. The velocity measured near the bubble envelope generally

fluctuated noticeably, but the traces were characterized by random "spikes"

superimposed on a signal with rather small fluctuations. Similarly, the

fluctuations at r = 0 (especially for axial velocity) were quite random

in nature. In other regions of the bubble (especially in the downstream

half), and in the wake regions, the fluctuations were highly periodic.

Compare, for example, the very regular, sinusoidal-type of signal shown in

Figure [4.24] to the less regular, noise-like signal of Figure [4.25].

4.4.6. Frequency Spectra

In the region in which the velocity fluctuations were regular it was

possible to estimate the dominant frequency of the temporal variations by
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Figure 4.24. A Trace of Axial Velocity vs. Time at
r = 1.69 mm, 14 mm Downstream of Bubble
Nose. Velocity Fluctuations are Quite
Periodic.

t 1 1 I t I 1 Hr r <r

Figure 4.25. A Trace of Axial "Velocity vs. Time at
r = 4.23 mm, 10 mm - 13 mm Downstream
of Nose. Velocity Fluctuations are
Less Regular Than Those in Figure 4.24.

149



counting the number of cycles contained in a given length of record, i.e.,

in a given time. However, in order to ascertain the dominant frequency

precisely and to determine the existance (if any) of any higher frequency

components and their relative strengths, it was necessary to calculate the

frequency spectrum of the velocity. This was accomplished by sampling,

manually, from the analog voltage versus time trace at a fixed sampling

rate (every .04 seconds) to obtain data in the digital format required.

Each set of data, representing the velocity versus time for a fixed position

inside the bubble, was then key punched onto computer cards and frqeuency

analyzed numerically using the technique appropriate for finite record

length data. The covariance and spectrum were calculated using methods

given in Jenkins and Watts [33]. A Parzen lag window was used. Because

this procedure was so time consuming, only a selected group of locations

was selected for analysis. The locations were chosen to be representative

and were located in the rear portion of the bubble, from r = 0 to the

vicinity of the bubble envelope.

The spectra, shown in Figures [A.26 - 4.32], were computed from the

axial velocity data at the location noted. The bandwidth for all the

spectra presented is 1.33 Hz. The frequency spectra for velocity on the

tube axis (r = 0) and near the dividing streamline (r = 5.07 mm) are charac-

terized by the lack of a dominant peak and point out the relatively random

nature of the fluctuations. The spectra for the intermediate radial

locations all show a dominant frequency of about 2 Hz, with the r = .85 mm

and r = 1.69 mm curves having very sizeable peaks at this frequency. In

addition, all of these latter spectra show, to varying degrees, a peak at

the first harmonic of ~4 Hz. The spectrum for r = 2.54 mm indicates that
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the fundamental, at 2 Hz, and first harmonic, 4 Hz, contained comparable

amounts of energy. This can be confirmed by studying Figure [4.33], in

which a portion of the trace used to generate the r = 2.54 mm spectrum is

presented. A portion of the r = .84 mm trace is shown in Figure [4.34]

for comparison. The 2 Hz component is so dominant at r = .85 mm that the

harmonic at 4 Hz is scarcely discernible; the harmonic is quite clearly

seen in the 2.54 mm trace, however. Most of the velocity versus time

traces that displayed a marked periodicity were characterized by a signal

shape that was intermediate to the two extremes shown in Figures [4.33, 4.34],

That is, the traces appeared to be that of a relatively large amplitude

sine wave, of frequency equal to 1.7 - 2.0 Hz, with evidence of a first

harmonic of noticeably smaller amplitude. The shape of the trace depended

on the relative amplitudes of the two frequency components and on the phase

difference between the two components.

It should be noted that the dominant frequency varied only slightly

from position to position inside the bubble, as long as the mean axial

location of the breakdown was constant. This frequency did change more

noticeably, over a range of 1.65-2.05 Hz, when the mean bubble position

changed from day to day. The higher frequency corresponded to a more

upstream mean location. The dominant frequency showed no correlation with

the characteristic frequency obtained by dividing the average swirl velocity

at the bubble envelope by the bubble circumference. There is excellent

agreement, however, between this fundamental frequency and the angular

frequency at which the rear portion of the single-tailed bubble rotated

about the tube axis. It can be inferred, then, that the temporal periodi-

city measured at one location corresponded to an azimuthal periodicity
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Figure 4.33. A Portion of the Axial Velocity vs. Time
Trace Used to Calculate the Spectrum Shown
in Figure 4.29.

Figure 4.34. A Portion of the Axial Velocity vs. Time
Trace Used to Calculate the Spectrum Shown
in Figure 4.27.
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associated with the simultaneous emptying and filling at the regularly ro-

tating tail section of the bubble. Although it is not possible to sub-

stantiate, it appeared that the harmonic frequency component was associated

with the remnants of the second bubble tail which could be seen occasionally.

4.5. General Comments

As discussed previously, all of the disturbance forms observed were

only quasi-steady in axial location and drifted slowly, in a relatively

random manner, about some mean location. In addition, velocity measure-

ments performed on several occasions indicated that the profiles upstream

of breakdown changed slowly in an indeterminate manner. Perhaps coinci-

dentally, this effect was most noticeable during swirl velocity measure-

ments. In both cases, these slow changes in the flow occurred even though

the two variable parameters, vane angle and flow rate, were held fixed.

These facts suggest that some sort of unsteadiness existed in the apparatus

despite the precautions taken to hold all the variables constant.

These precautions included the use of constant room and water temper-

atures, well baffled constant head tanks, a precise spring-loaded vane con-

trol mechanism, and pneumatic bags to support the flow device and reduce

transmitted vibrations. There was some slight movement of the rotameter

float which may have indicated small variations in flow rate. However, it

seems unlikely that the observed changes in disturbance location and veloc-

ity measurements could be caused by such small changes in flow rate.

Firstly, the period of the variations in the rotameter float position

was approximately 1 second. This is in contrast to the typical period of

the disturbance location variations, which varied from 5-10 seconds to
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5-10 minutes depending upon the type of disturbance and flow conditions.

In even greater contrast, the period of the velocity changes observed was

10-20 minutes or more. Secondly, the amplitude of the possible changes in

flow rate does not seem sufficient to explain the relatively larger changes

noted in both breakdown location and velocity measurements. The rotameter

had a precision of ± .25% of indicated reading and this was approximately

the extent of the variations in float position. However, as can be seen

in Figure [3.21], a change in flow rate (Reynolds number) of ten times

this amount was often required to change the mean axial location of a

given disturbance type by an amount equal to the variations seen at a

fixed flow rate. Similarly, a flow rate change of about 2% was necessary

to duplicate the changes in swirl velocity that were noted at a fixed flow

rate. A change of 2% in flow rate could not have occurred without being

detectable by observation of the rotameter.

It seems more likely, then, that the unsteadiness in the flow result-

ed from some more subtle variations in the experimental apparatus. Perhaps

the method used to supply fluid to the upper constant head tank produced

vorticity in that tank which did not decay entirely and was still present

in the fluid when it reached the vane array location. The presence of a

small but varying amount of residual vorticity could change the swirl

velocity profile slightly and thereby alter the apparently delicate balance

that determined the flow disturbance location.

Also, there may have been an asymmetry in the entrance channel geo-

metry or a non-uniform feeding of fluid into the vane array that changed

slightly over a period of time. (The observations that a preferential
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plane existed for the types 3-6 and that the orientation of this plane was

more or less reproducible for a given set of flow conditions suggests the

possibility of some sort of asymmetry). In summary, these observations

indicate that extreme care should be exercised when designing and con-

structing devices for further study of the vortex breakdown phenomenon.

With regard to future theoretical investigations of vortex breakdown,

the velocity measurements of the type 0 mode suggest that this so-called

axisymmetric form is not axisymmetric and is dominated by strong, regular

fluctuations. Earlier models, based on assumptions of axial symmetry and

steadiness, presumably can apply, at best, to the mean motion. However,

existing simulations do not even qualitatively predict the mean flows

that are observed in the recirculation zone. It is likely that the

periodic fluctuations must be accounted for.

One method that could be employed would be to assume a steady, axi-

symmetric mean flow, incorporating Reynolds stresses to account for the

fluctuations. An alternative approach is suggested by the facts that the

fundamental frequency of the fluctuations was relatively invariant from

location to location within the bubble envelope and wake region and that

this frequency showed good correlation with the angular frequency of

rotation of the asymmetric rear portion of the bubble. Thus, it may be

beneficial to adopt a coordinate system rotating at this fundamental

frequency. It is possible that the flow in the breakdown region would

appear to be steady, but asymmetric.

In conclusion, it is hoped that the flow visualization studies, the

accurate measurements of the base flow profiles, and the detailed mapping
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of the flow field associated with the type 0 vortex breakdown will provide

substantial clues for future investigators attempting to explain this re-

markable phenomenon. More immediately, these results should be useful as

a check on the validity of the assumptions and results of the various

existing simulations.
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APPENDIX Al

Al.0. The Swirl Vanes: Construction Method and Alignment Technique

The swirl vanes and the gear system which controlled their orienta-

tion were of critical importance in this experiment. As seen in Figure

[Al.l], the vanes were symmetric, straight sided foils with a rounded

leading edge. The angle of 11.25° between the sides was chosen to pro-

vide a constant width passage, in the streamwise direction, between

adjacent vanes.

A master vane was made of steel and was finely polished. This steel

vane had dimensions identical to those desired for the final castings, but

with a slightly longer span. From this master vane, molds were made using

room temperature vulcanizing rubber specifically compounded for this type

of work. The vanes were cast in these molds. A low viscosity, unfilled

epoxy was chosen for the vane material because of its strength, machine-

ability, and dimensional stability as a casting medium.

After curing, the epoxy vane was removed from the mold. The rough,

free surface was ground away using a surface grinder, and this restored

the spanwise dimension to the desired value. Using a precision, ground

steel jig to hold the vanes in position on the bed of a trammed milling

machine, the shaft holes were made in each vane. The holes were drilled

and reamed to provide a precise press fit between shaft and vane. More

epoxy was then used to insure a slip-free bond.

Each vane-shaft assembly was individually fitted in the brass backing

plate using shims to adjust clearances and end-play. After the installa-

tion of all the vanes and the controlling gear system had been completed,

final alignment was made using an alignment jig and dial indicator.
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Figure Al.l.a The Swirl Vane Array, with Alignment Jig in Place.
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Figure Al.l.b Swirl Vane Dimensions.
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A precision, ground-steel jig (also used to position the vanes on the

milling machine) was made. This jig could be fitted on a vane.

The jig-vane combination was rotated until contact was made between

the jig and a dowel indicating the brass plate centerline. In this

position, the vane centerline and the radiaJ. line drawn from the plate

centerline to the center of the vane shaft were coincident, i.e. the vane

was pointing radially inward. All the planet gears, except one, could be

unlocked from the vane shafts. This exceptional gear was pinned to its

vane shaft and drove the sun gear. The alignment procedure was as follows:

1. Install alignment jig on vane controlled by the driver

planet gear.

2. Rotate actuating wheel until vane points radially inward,

as indicated by jig-dowel contact.

3. Put dial indicator in contact with vane near the trailing

edge, and set to 0.

A. Remove j ig.

5. Rotate actuating wheel so vane makes negative angle.

6. Rotate actuating wheel slowly until dial indicator reaches 0.

7. Set counter to 0 and lock to actuating wheel.
%

8. Place jig on next vane and unlock the vane shaft from its

planet gear.

9. Rotate vane until vane is at 0°.

10. Place dial indicator in Tcontact with vane near the trailing

edge and set to 0.

11. Lock shaft to gear.

12. Test to see that dial indicator reads 0 when counter reaches

0, approaching positive from negative.
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13. If not, unlock shaft from gear and adjust slightly. Repeat

steps 11 and 12 until successful.

14. When successful, repeat 8-13 until all vanes are done. The

tolerance allowed determines the ultimate accuracy of the

vane setting indicated by the counter,; i.e. the initial

vane adjustment is the largest source of error in the vane

control system.
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APPENDIX A2

A2.0. Alignment Procedure Summary

In Chapter 2, the procedure followed in aligning the optical system,

mounted on the traversing mechanism, and flow device was given in detail.

This procedure aligned the reference line, defined by the input laser

beam, to be in the horizontal plane which contained the flow device

centerline. Furthermore, this reference line was normal to the tank

sidewalls, the test section O.D. and the centerline of the unit. The X

axis of the traversing mechanism was parallel to the centerline of the

flow device. The Y axis was normal to the centerline, and thus parallel

to the reference line.

The optical system was initially moved in the X, Y system so that the

beams intersected on the dye streak, which indicated the centerline of the

test section, at a reference axial location, taken to be .5 cm downstream

of the start of the diverging portion of the test section. In this Appen-

dix, the details of the refraction effects of the various air - Plexiglas

and Plexiglas - water surfaces will be covered.

A2.1. Beam Details, Axial Velocity Measurements

Figure (A2.1) is a schematic of the optical unit and flow device with

the beams in the horizontal plane. This arrangement was used to measure

the axial velocity.

The focusing lens, L, of focal length F, is at a distance Y from the

tank sidewalls. The distance between the beams at lens L is b . Each
s

Q

beam makes an angle of a/2 with the reference direction, since the refer-

ence line was coincident with the bisector of the beams. Therefore
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tan a/2 = s/2, and since a/2 is small, tan a/2 ~ sin 6a/2 ~
 6a/2.

F
Figure (A2.2) shows an interface separating medium 1, of index of

refraction n , and medium 2, of index of refraction n_. For small 0 , the

law of refraction becomes n 6.. = n?6 and n..X = n_X_.

Since the normal of each surface, at the point where the light beam

is incident, lies in the horizontal plane, all refraction takes place in

the horizontal plane and the beams remain in this reference plane.

Therefore, in Figure (A2.1), the paths of the beams through the flow

device are followed by applying this rule at all surfaces, indicated by

1-4, and by computing the distance between the beams at each surface,

at 1.

ea
dx = bg - 2Y -f (A2.1)

"2n ' Sincenair = 1 (A2'2)

at 2.

w 2(n )w

n 9 = n 6 = n (6 /2n ) = @a/2 (A2.4)w w p p p a p' ^ '

(A2.5)

at 3.
e _

d3 = d2 - 2w 2^- (A2.6)
w
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or

a
d = b - 2Y -7T- - 2 t -s- - 2w
3 s 2 w 2n- 2n

p w

(A2'7)
w

Up to this point, the beams remain symmetric with the reference

line, being equally spaced from it at a distance d_/2, and making an equal
9 J
a

angle, ^— , with the reference. Next, the effect of the tapered inside
w

diameter, with taper angle a, must be considered, Figure A2.3.

The thickness of the test section wall, t, is a function of axial

distance

t = r - r.(z) = r - [r + zct] (A2.8)
O 1 O t

Q

For beam a, the thickness it traverses is t1 = t + -%— a and the angle
9 2

a
it makes with the normal to the tube centerline is -r—

2n
P

Therefore:
Q Q

^/-t'^T (A2-9)p
d, d,a 6

p

t9a

(A2-10)

2n
P

a v a
Since a is small (equal to .025) and — is small, the product a —

d3 t9a
is small relative to 1, and d, - -5 -- ̂ — . Similarily, for beam b,

n d3 te.a ' P

d, ~ -r -- -T — =d. and the beams remain symmetrically spaced with the

%
reference line.
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Therefore,
te

d. = d' + d" = d. (A2.12)
4 4 4 3 n

P

The taper angle does affect the direction of each beam, however. For beam
6a 0a

 n
p

a, n (75 a) = n 3» 3 = ̂  ot —^ . The angle between.beam a andp /n w zn n
p w w

the normal to the centerline is:

6 n
& + a = -£- - aC-2- - 1) (A2.13)

2n n
w w

6 a n
3. a. ID

For beam b, n (- 1- a) = n; 3'» 3" = T ^ a —*- . The angle between beam
p zn w 2n n

p • w w
b and the normal to the centerline is:

0- n
3f - a = -^- + a(^ - 1) (A2.14)

w w

The included angle between the beams, then, is the sum of these:
ea

(3 + a) + (31 - a) = — , and thus the tapered wall does not affect the
w

included angle.

The bisector of the angle is not perpendicular to the centerline,

however. The angle between the bisector and the normal to the centerline

is <j>, where

d, = rfi'-̂  (3-K*)+(3'-cQ
^ VP ' 2

e n e_
- D -T O_, ^« ' 1«/n n zn

w w w
n

(j> = a(-2- - 1) (A2.15)
n
w

Since the velocity component measured is perpendicular to the bisector,

the component measured with this beam orientation is V. .

V.. = V cos <f>. However, <j) = .003, and cos <|> = 1, with an negligi-
J_ 3.X13.J.

ble error of less than .01%, and therefore, V. = V . n.' ' 1 axial
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Notice that, if a beam was imagined to exist along the reference

line, it would be undeflected until it encountered the tapered wall.

There, it would be located at P, equidistant from the two beams, a and b.

By the refraction formula the angle it would make with the normal to the
n

centerline would be a(—%- - 1), which = d>.
n
w

Thus, the reference line beam would bisect the angle formed by the

beams a and b. As the optical unit is moved in the Y direction, the

beams a and b form a series of similar triangles with the point P as the

bisector of each base. The intersection point would move along the line

P-P', which would pass through the apex of each of these similar triangles.

P-P1 is coincident with the path that would be taken by the beam entering

along the reference line.

Since the line P-P' is not normal to the centerline, the intersection

point would move in the axial direction as the optical system was moved

along the Y axis. However, for a radial traverse beginning at the center-

line of the tube, the maximum change in axial location, 0-P', would be

r.<f>. Since (r.) =25.4 mm,(0-P1) = 25.4 cj) = .076 mm, and this is
X 1 TUcLX TTlflX

negligible.

For any fixed Z, then, the effects of the taper of the test section

can be ignored and the test section can be considered, locally, as a

straight tube.

The distance, j, from P to the intersection point is given by

J 5T - V2
w

d te d n tn
from equation [A2.12], d./2 = -^ - ~- and j = -5-̂  • The radial4 ^ ^n D n

P a p
position, r, is
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(a)

Reference
Line

Plexiglas Tube Wall
Figure A2.3. The Paths of the Laser Beams in the Horizontal Plane, Showing

Effects of the Tapered Test Section.



or,
d n n

r-ro--if-6<1-r) (A2-16)a p

Since t=t(z) the varying thickness will cause the intersection point

to move radially, for constant Y(constant d ), if the optical system is

moved in the X direction. However, this effect is also small, since from

equation (A2.8)

t = r - [r + za]

or

t = C - za,

where Gn = r - r = constant
l o t

therefore
d n n

r = r jj-̂  - [C, - za] (1
o o i n

a F

or
d_n n

where C? = constant

n ,
But, a(l - —) = ~ = .0027

n dz
P

If axial displacement Z, is less than 4 cm, the resulting radial

movement is (40)(.0027) = .108 mm, which is also negligible. In this

study, Z was limited to be less than 4 cm, and thus this effect was

ignored.
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With this simplification, i.e. za(l - n /n ) ~ 0w

r = C2 - -|-=-
a

from equation (A2.7), d, = b - 6 (Y + — + —)3 s a n n
p w

therefore

w s w ^w w
o ot n 6^ w n np a p w

All of the terms on' the right are constant except Y, so,

r - C + n Y (A2.17)

where
n b n t n

C_ = r - (r - r ) (1 —) §-"- H—̂ -̂ - + w
3 o o t n 6_ np a p

It was necessary to determine the minimum focal length lens that could be

used, which for a fixed b gives the maximum value of 9 . The minimum
S 3

value of Y possible was Y min = 15 mm, and it was required that with

Y = Y min, the beams would intersect at r = 0. Setting r = 0 and Y = Y

min in the equation above, it becomes

0 = C, + n Y min
3 w

solving for b /6_ = F, it is founds a

r r -r t
t In •n t . O t . W - W . , - .b /0_ = F = H + h 1- Y mins a n n n n

w p w p

and substituting the values for all the constants, it is found that the

minimum F = 183.3 mm. Because of availability, a lens with a nominal

focal length of 200 mm was used. From equation (A2.17), r = C. 4- n Y.
J W

As explained in the alignment procedure, Y was varied until the beams
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intersected at r = 0, and this reference position of the optics was taken

as Y = Y .
o

So 0 = C. + n Yo
3 w

and if Y = Yo + y

r - C3 + nw(Yo + y)

(A2.18)
or r = n yw

The reference of the X axis was taken at z = .5 cm. Therefore

z = .5 + (X - X )
o

or z = .5 + x (A2.19)

where x = X - X
o

The position of the intersection point, then, is related to the

position, x, y, of the optical system by equations [A2.18,A2.19]. In

addition, the analysis shows that for all x, y, with |x| < 4 cm, the

effect of the tapered section could be ignored. The angle between the

beams in water was 6 /n , and the wavelength was a/n . Therefore, in theaw ^f

equation relating frequency to velocity

2V sin(6/2)
X

the values of 0a /n_ and, Aa/n_ are used and it becomes, for small 6/2,

f_ = f + ,D o A

w w

V9

T
a

Equations [A2.18], [A2.19], [A2.20] give, then, the axial velocity at (z,r)

if the frequency, f~, optical system position, (x,y); and system constants,
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^ . 9 > etc., are known.
EL u

A2 . 2 . Spatial Resolution

A knowledge of the value of 0 allows the prediction of the spatial

resolution of the instrument. From Chapter 2, the intersection volume has

dimensions of b, b/cos 0, and length, b/sin6, where b is the beam diameter

at the intersection point.

The value of b can be estimated by assuming that the laser beams are

focused to the diffraction limited spot size. From reference [34], the

beam diameter at the intersection point, b, is, (refer to Figure [A2.4])

"=- TSIT A0

°r

. 4 a/nw
b = —IT A6 /n TT A9a w a

For a focal length, F, and input beam diameter, B,

A6 = B/F
a

therefore

n B

Q 1
and as shown earlier, 6 = a/n = — b /F

' w n s
w

The dimensions of the intersection volume, then, can be estimated

by, (with cos0 ~ 1, sin0 ~ 0)

4 Aa F 4 -Aa F . . h
 4<Va F2

¥ T~ • ¥ ~F" ' and length = TIT T
s

All of these parameters, except F and B, were constants for the optical

system used. Therefore, the spatial resolution could be improved only by

178



B
I

Figure A2.4. Schematic Defining the Terms Used in the Determination
of the Intersection Volume Dimensions.



increasing B and decreasing F. As noted above, there was a minimum value

of F possible, and this lens was chosen for use. This was especially

important in reducing the length of the intersection volume. In addition,

B was increased by a factor of 3 by fitting a beam expander to the laser

head. This also was the maximum value possible, and was limited by the

Bragg cell aperture size. For the setup used, the intersection volume was

approximately a cylinder with the diameter equal to .08 mm and the length

equal to .43 mm. The cylinder was aligned with its axis along the bisector

of the angle formed by the beams.

A2.3. Beam Details, Swirl Velocity Measurements

In order to measure the swirl velocity inside the test section, it was

necessary to rotate the optical unit about its centerline until the beams

were in the vertical plane. The reference line remained in the horizontal

plane, normal to the tank sidewalls and the test section outer surface.

Figure [A2.5] is a schematic showing this orientation.

The analysis in this case'is identical to the previous, axial velocity

geometry until the point where the beams reach the outside diameter of the

test section. As in the axial velocity case, the effect of the taper of

the test section can be ignored.

As shown in Figure [A2.5], the beams are symmetric with respect to 0 0'

and remain symmetric at all points along the light path. It is necessary,

then, to consider only one beam to determine where it crosses 0 0' and what

angle it makes with the line, 0/2. From the previous analysis, each beam

ea
makes an angle -z— with the 0 O1 direction as it intercepts the tube O.D.

w
and d, e t

J-b./2-f CY + f + f.)
P w
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Beginning at the outer surface of the tube, the beam makes an angle, a,

with the normal.

Therefore: n b = n a
p w

from simple geometry, c = b + f

r.f = b(r -r.) (A2.21)
i o i

or
r n r

c = b— =— —a (A2.22)
r. n r.
x p i

similarly, n e = n cJ w p

n r
e = -E c = a — (A2.23)

n r.
w i

|= e + g (A2.24)

but f + g = ~ - a (A2.25)
e

L
W

Solving for 8/2 in equation A2.24(using equations [A2.21-A2.23, A2.25])

6 r -r. n -n
a , o IN , p w^ /A0 n,N

2n-+a(^7~)(n } (A2 '26)

w i p

To find the location of the intersection point, r, note

r = r± - h/(6/2)

and h = r.g

Therefore r = r±(l - g/(6/2)) (A2.27)

But, from equations [A2.23, A2.24]

g = 6/2 - a ro/r±
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Figure A2.5. A Schematic of the Laser Beams in the Vertical Plane Showing
the Beam Refractions Caused by the Circular Test Section.



Therefore using equation [A2.27]
a r

r = — • (A2.28)
(6/2)

In order to relate the angle, — , and the radial position, r, to the

position of the optical system, equation [A2.7] is used

where c = constant
9a V2

But a = ̂  ~2n r
w o

or,
e c-e Y
a _ .. 1 a v

w o

As in the case of measuring axial velocity, let Y = Y + y where Y = Y

(or y = 0) is defined as the distance for which the intersection point is

at r = 0.

e c-e Y e
_ a lap a y

3 2n 2r + 2r
w o o

But a = 0 when y = 0, since the beams will be entering along a diameter

of the test section.
ea

Therefore: a = -=—JL

o

Substituting this into the equations [A2.26] and [A2.28], it is found

6 a ro~ri °P"nw e

w o i p

ea
r = y g—

Equation [2.1], with 0/2 ~ sin 9/2, becomes

D ~ o A
a
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Equation [A2.19] remains unchanged, z = .5 + x. These four equations,

then, give swirl velocity at (z,r) if f is known for the optical system

position (x,y).
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APPENDIX A3

A3.0. Tabulated Velocity Data

Axial Velocity: Re = 3220

-.044

-.022

0.0

.022

.044

.089

.133

.178

.222

.266

.311

.355

.399

.444

.488

.532

.577

.621

.666

.710

.754

.799

.843

.887

.932

z/Axial Location: r. = -.67

Applicable Errors Analysis, Group A

n = o

—
—
8.10

—
7.98

8.09

—
8.19

8.19

8.25

8.22

8.16

8.21

—
8.16

8.21

8.20

—
8.14

8.02

7.57

6.85

5.53

3.56

Axial V

n = .727

10.55

10.60

10.23

9.88

10.11

—
9.94

9.54

9.20

—
8.57

8.33

8.20

—
8.01

7.91

7.95

—
7.92

7.93

7.82

—
6.82

5.47

—

elocity (cm/s)

n = 1.068

12.31

—
12.19

—
12.13

—
11.68

10.93

10.28

—
9.03

8.48

8.18

—
7.79

7.68

7.66

—
7.68

7.67

7.62

—
6.82

5.83

—

n = i.54i

15.66

_

15.40

—
15.40

—
14.57

13.18

12.01

—
9.62

8.71

8.00

—
7.35

7.21

7.16

—
7.21

7.28

7.29

—
6.47

5.49
__ •
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"'1
0.0

.044

.089

.133

.177

.222

.266

.311

.355

.399

..444

.488

.532

.577

.621

.666

.710

.754

.799

.843

Axial Velocity: Re

Axial Location: Z'r

Applicable Errors Analysis,
(fo = 25 KHz)

= 4540

i = -6?

Group B

Axial Velocity (cm/s)

n = o
11.59

11.55

11.59

11.63

11.67

11.70

11.70

11.70

11.70

11.74

11.70

11.70

11.74

11.70

11.74

11.70

11.70

11.59

11.29

10.25

£} = .727

16.23

16.01

15.75

15.15

14.37

13.48

12.81

12.26

11.89

11.63

11.48

11.41

11.33

11.29

11.29

11.33

11.29

11.29

11.11

10.37

n = 1.068

20.02

19.79

19.42

18.35

16.71

15.08

13.82

12.74

12.00

11.55

11.22

11.07

10.92

10.89

10.89

10.92

10.96

11.00

10.92

10.25

Jl = 1.282

22.32

22.09

21.80

20.09

17.90

15.78

14.19

12.93

12.04

11.44

11.03

10.81

10.70

10.63

10.59

10.63

10.63

10.74

10.74

10.33
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-.111
-.089

-.067

-.044

-.022

0.0

.022

.044

.067

.111

.155

.200

.244

.288

.333

.377

.422

.466

.510

.555

.599

.643

.688

.732

.776

.821

.843

.865

Axial Velocity: Re

z /Axial Location: 'r

Applicable Errors Analysis,

= 6000

i- -6?

Group A

Axial Velocity (cm/s)

n = o

—

—
15.27

14.89

14.98

14.80

14.73

—
14.96

15.20

15.20

15.18

15.11

15.20

15.22

15.22

15.15

15.25

15.20

15.16

15.16

15.27

15.27

15.36

15.10

14.22

13.22

12.24

JJ = .727

—

—
21.53

22.30

22.10

21.88

22.07

—
21.74

20.34

18.91

17.62

16.62

15.76

15.33

15.03

14.90

14.80

14.73

14.75

14.72

14.72

14.75

14.85

14.72

14.05

13.37

12.64

n = 1.068
__

—
28.71

28.59

28.71

28.47

28.53

—
26.95

24.73

22.00

19.26

1.7 . 51

16.20

15.33

14.79

14.50

14.40

14.31

14.29

14.22

14.24

14.29

14.50

14.42

13.85

13.13

12.41

Q = 1.282

32.02

32.43

33.01

32.89

32.72

32.54

32.66

32.08

30.81

27.84

24.05

2 0 . 4 3

17.99

- 16.34

15.25

14.57

14.20

14.05

13.94

13.88

13.87

13.79

13.88

14.16

14.15

13.70

13.15

12.11
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Swirl Velocity: Re = 3220

Axial Location: r. = -.67

Applicable Errors Analysis, Group A

.044

.062

.088

.132

.176

.220

.263

.306

.349

.392

.477

.519

.561

.645

.687

.728

.810

.851

.892

n = .727

2.62-2.97

—
3.43

4.13

4.40

4.73

—
4.78

4.62

4.48

4.04

3.84

3.60

3.13

2.89

2.56

1.82

1.46

—

Swirl Velocity

n = 1.068

3.5-5.1

4.58

5.16

6.03

6.47

6.79

—
6.89

6.72

6.52

5.87

5.54

5.20

4.49

4.12

3.63

2.53

1.89-2.05

1.22-1.38

(cm/s)

n = 1.541

5.42

—
7.25

8.66

9.41

9.78

9.90

9.81

9.52

9.10

8.18

7.55

7.17

6.13

5.57

4.94

3.34

2.58

1.52
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0.0
.044
.089
.132
.176
.220
.263
.306
.349
.392

.435

.477

.519

.561

.603

.645

.686

.728

.769

.810

.851

.891

.912

.932

Swirl Velocity:

Axial Location:

Applicable Errors

n = 1.068*

.07

.17

3.03

4.64

5.55

6.20

6.51

6.61

6.59

6.47

6.24

5.97

5.67

5.30

5.00

4.66

4.29

3.93

3.46

2.95

2.41

1.84

1.56

1.06

Re = 3220

Z/r± = -.67

Analysis, Group B

Swirl Velocity (cm/s)

n = 1.282*

0.0

.11

3.88

5.49

6.91

7.59

7.97

8.10

8.09

7.89

7.62

7.27

6.90

6.45

6.08

5.67

5.19

4.71

4.13

3.49

2.80

2.09

—__

n = i.54i**

.07*

—
5.36

—
8.39

—
9.41

—
9.44

—
8.59

—
7.99

—
-7.06

—
6.06

—
4.86

—
3.42

—

—__

*fo = 75 KHz.

**fo = 25 KHz, except r//r = 0.
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r/
ri

0.0

.044

.089

.132

.176

.220

.263

.306

.349

.392

.435

.477

.519

.561

.603

.645

.686

.728

.769

.810

.851

.891

L Velocity:

L Location:

Lcable Errors

fi = .727

-.10*

.04*

4.70**

6.09**

6.87*

7.41*

7.57*

7.56*

7.36*

7.12*

6.78*

6.40*

5.99*

5.58*

5.18*

4.84*

4.47*

4.18*

3.78*

3.31*

2.70*

1.95*

Re = 454d

Z/r. = -.67

Analysis, Group B

Swirl Velocity (cm/s)

8 = 1.068

-.10*, +.04**

-.04*

—
8.48**

10.23**

10. 63*, 10. 86**

10.91**

10.89**

10.65**

10.22**

9.55**

8. 94*, 8. 98**

8.50**

7.83**

7.35**

6.94**

6.45**

5.98**

5.40**

,4.58**

3.66**

2.48*

n = 1.282

-.14*, +.01**

-.07*

—
10.95**

12.21**

13.17**

13.29**

13.15**

12.72**

12.15**

11.43**

10.76**

10.01**

9.31**

8.75**

8.19**

7.60**

7.01**

6.39**

5.56**

4.59**

3.31**

*fo = 75 KHz.

**fo = 25 KHz.
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Swirl Velocity: Re = 6000

Axial Location: 'r. = -.67

Applicable Errors Analysis, Group A

.035

.053

.071

.093

.115

.159

.202

.246

.289

.332

.375

.418

.460

.503

.544

.587

.628

.670

.711

.753

.794

.835

.875

.916

936

n = .727
__

6.46

7.09

8.03

8.87

10.25

10.90

11.01

10.80

10.30

9.53

8.98

—
7.73

7.03

6.73

—
5.95

5.54

5.21

4.71

4.11

3.45

2.45__

Swirl Velocity

n = 1.068

7.16-9.94

8.55-10.98

10.42-10.98

—
13.08

14.99

15.99

16.18

15.63

14.89

14.17

13.07

—
11.28

10.53

9.84

—
8.58

7.90

7.37

6.64

5.64

4.45-4.76

2.73-3.17

1.72-2.39

(cm/s)

fl = 1.282

—
9.25-10.

10.27-13.

13.91-14.

15.77-16.

18.13

19.22

19.45

18.98

18.06

16.99

15.70

14.55

13.56

12.56

11.70

10.94

10.22

9.58

8.80

7.93

6.79

5.50

3.39_ _

63

75

95

32
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Axial Velocity: Re = 2560, n = 1.770

Applicable Errors Analysis, Group A

Axial Velocity (cm/s)
r/ ^Axial

ri -30.6 mm -22.6 mm -14.6 mm -6.6 mm Location

-.089 12.76 12.97

-.044 12.97 13.22

-.022 13.07

0.0 13.09 12.89' 12.34 10.10

.022 13.06

.044 13.09 12.98 12.24 9.58

.089 13.16 12.97 12.46 10.72

.133 12.84 12.39 12.06 10.53

.178 12.13 11.52 11.33 10.27

.222 11.07 10.46 10.39 9.71

.266 9.80 9.41 9.28 8.91

.311 8.70 8.42 8.44 8.14

.355 7.74 7.61 7.62 7.48

.399 6.99 6.95 6.98 6.92

.444 6.42 6.46 6.51 6.50

.488 6.04 6.12 6.16 6.16

.532 5.79 5.92 5.93 5.99

.577 5.67 5.88 5.86 5.86

.621 5.65 5.85 5.81 5.85

.666 5.70 5.90 5.92 5.90

.710 5.78 5.94 6.03 6.09

.754 5.84 6.04 6.07 6.18

.799 5.76 5.84 5.90 6.15

.843 5.35 5.36 5.44 5.76

.865 4.97 4.88

.887 4.47 4.40 4.14 4.99

.910 3.67
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Axial Velocity: Re = 2560, ft = 1.770

Applicable Errors Analysis, Group A or Group C(*)

-.044

0.0

.044

.089

.133

.178

.222

.266

.311

.355

.399

.444

.488

.532

.577

.621

.666

.710

.754

.799

.843

.887

.910

.932

Axial Velocity (cm/s)

-4 . 0 mm

6.93

6.35

6.11

7 .42

8.34

8.86

8.82

8.48

7.97

7.41

6.92

6.50

6.21

6.04

5.92

5.92

5.99

6.16

6.24

6.16

5.75

5.14

—__

-3. 0 mm

5.75

5.07

4 . 6 6

6.14

7.37

8.27

8.54

8.38

7.96

7.41

6.97

6.58

6.27

6.11

5.98

5.95

6.01

6.19

6.28

6.18

5.80

5.19

—__

-1. 0 mm

—
2.05

1.87

3.59

5.44

7.05

8.02

8.14

7.95

7.57

7.12

6.75

6.41

6.18

6.06

—
6.07

6.25

6.33

6.22

5.90

5.41

—__

+1. 0 mm

—
-.11*

.18*

.21*

1.77*

3.56

5.09

7.60

8.04

8.02

7.67

7.28

6.90

6.63

6.40

6.29

6.24

6.31

6.36

6.50

6.34

5.93

5.55

4 .95
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Axial Velocity (cm/s) Re = 2560, fi = 1.7.70

r/

+8 mm +10 mm

.044

.088

.132

.175

.219

.263

.306

.342

.385

.429

.473

.517

.560

.604

.648

.692

.736

.779

.823

.867

.910

.932

.954

or

.50*

.32*

.07*

-.44* -

-.39*

—
—

—
6.63-7.32

8.71

8.44

7.95

7.47

7.06

6.79

6.60

6.56

6.55

6.64

6.59

6.23

5.35

«- 4.82-5

«- 4.01-4

(Group A
Group C*)

.58*

.35*

-.21*

1.00*

-.78*

.14*

1.24*

3.29

—
8.83

8.55

8.09

7.60

7.16

6.87

6.67

6.60

6.65

—
6.63

6.25

5.35

.05 -»•

.35 •+

.044

.088

.132

.175

.219

.263

.307

.351

.395

.438

.482

.526

.570

.614

.658

.701

.745

.789

.833

.877

.899

+15 mm

-.60*

-.18*

-.53*

-1.13*

-.71*

1.06*

2.65*

5.12

6.72

8.13

7.95

7.53

7.03

6.72

6.50

6.43

6 .47

6.57

6.70

6.64

6.22

5.30

ri

.043

.086

.129

.172

.216

.259

.302

.345

.388

.431

.474

.517

.560

.603

.647

.690

.733

.776

.819

.862

.905

^ | (Axial
+24 mm Location

5.62

5.26

5.41

5.30

5.90

6.50

7.28

7.10

6.79

6 .43

6.19

5.94

5.76

5.69

5.66

5.66

5.80

5.87

5.83

5.34

4.81

3.57

(Group B
or Group C*)

(Group B)
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Axial Velocity (cm/s) at r = 0

vs.

Axial Distance Upstream of Apparent Bubble Nose

Re = 2560, n = 1.777
Applicable Errors Analysis, Group A

E Axial Distance from Bubble Nose (mm)

- H 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

w

^ -3.2 1.64 3.29 5.13 6.52 7 .72
c

•rH

°- -5.2 5.14 6 .48 7 .66 8.72 9.49 10.08 10.48
tr>
c

% -7.2 7 .74 B .69 9.41 9 .99 10.49 10.81 11.18
to
nj

S -9.2 9 .73 10.32 10.74 11.12 11.43
u-i
o
g -11.2 10.81 11.43 11.68 11.89 12.06
•H
4-1

g -13.2 11.72 11.82 12.06 12.13 12.28

^

.« Avg. 1.64 3.29 5.14 6.50 7.71 8.71 9 .54 10.13 10.63 10.97 11.44 11.75 11.98 12.10 12.28

01



VO
ON Axial Velocity Inside Breakdown Envelope

Re = 2560, tl = 1.777
Applicable Errors Analysis, Group C

C 53
S Fn

ISPi
^B1§

1̂
"*

i
co

•H
-M
(flu
0
M

,_4
t)

•H
•d«

0

.42

.85

1.27

1.69

2.11

2/54

2.96

3.38

1
A

-.11

-.11

.18

.20

.21

.35

1.77

- -

COLUMN

COLUMN

Distance Downstream of Nose (mm)

2 3 4
B A B A B A B

.07 -.07 .05

.22 -.03

.28 -.11 .14

-.08

.4 .12 .30

.35

.53 1.00

1.59

— — — — "• —

A = Mean (Time Averaged)

B = Average Fluctuation

.07

0.0

.03

-.07

-.11

0.0

.18

.70

•""* "~

Axial

.11

.14

.14

.14

.50

.70

™* ""•

Velocity

Amplitude, Peak

.18 .11

.18 .11

.09 .14

.11 .14

-.11 .18

-.18 .14

— —

—

(cm/s) .

to Peak (cm/s) .

5
A

—
.25

.21

.11

-.07

-.14

-.31

-.28

B

—
.07

.14

.11

.25

.18

.53

.35

-CONTINUED-



Axial Velocity Inside
Breakdown Envelope (CONTINUED)

Distance Downstream of Nose (mm)

1
-*

i
c
o
•H
4J
a
oo

^
IT)
•H
•0

«

0

.

1.

(2.

2.

3.

4.

5.

5.

85

69

11)

54

38

23

07

92

6 7
A B A

.18 .11 .35

—
0.0 .28

-.11 .21 0.0

-.28 .18 -.21

-.21

.14

—

—

8
B

.14

—

—
.28

.35

.35

.53

--

A

.50

.32

.07

--

-.44

-.39

- -

~" "*•

B

.40

.71

.71

—
1.00

.71

- -

• ""

9
A

.54

.32

0.0

—
-.53

-.53

.07

—
•— —

B

.28

.78

.99

--

.70

.70

1.06

- -

~.~

10
A

.58

.35

-.21

—
-1.00

-.78

.14

1.24

3.29

•

•

1.

-

1.

1.

1.

1.

1.

B

28

71

06

-

00

10

30

35

80

-CONTINUED-



to Axial Velocity Inside
00 Breakdown Envelope (CONTINUED)

Distance Downstream of Nose (mm)

11

^»

1
M

0
•H
4J

O

3
f-H
(d

•H
-d
«

0

.85

1.69

2.54

3.38

4 .23

5.07

5.92

A

.35

.19

-.57

-1.41

-.97

-.25

1.70

B

.53

1.24

2.12

- 1.06

1.24

.71

1.59

12
A

-.51

-.53

-.94

-1.50

-1.05

0.0

2.12

B

1.40

2.10

2.80

1.00

.88

2.1

1.8

13
A

-.77

-.81

-1.17

-1.48

-1.06

-.25

1.94

3.53

B

.7

2.4

2.8

1.1

.88

.78

1.2

1.6

14
A

-.81

-.42

-.88

-1.31

-.88

. 42

2.19

3.89

B

.7

2.8

2.8

.88

.71

1.1

1.4

1.4

15 16
A

-.60

-.18

-.53

-1.13

-.71

1.06

2.65

5.12

B A B

.7 .24 .5

2.8

2.5 .46

9 — — — —

1.1
2.1 1.23

2.1

2.1



Swirl Velocity: Re = 2560, fl = 1.770

Applicable Errors Analysis, Group A

.089

.132

.176

.220

263

306

.349

392

435

477

519

561

.603

645

687

728

769

810

851

891

932

Swirl

-30.6 mm

5.28

7.03

7.87

8.48

8.77

8.86

8.69

8.47

8.18

7.82

7.44

7.01

6.56

6.10

5.56

5.04

4.43

3.67

2.98

2.22

—

Velocity (cm/s)

-22. 6 mra

5.17

6.75

7.81

8.30

8.63

8.75

8.73

8.47

8.15

7.79

7.40

6.97

6.56

6.07

5.55

4.97

4.36

3.68

2.99

2.19

1.40 1.

.̂ Axial
-8 mm Location

—
5.89

6.52

—
—
7.93

8.15

—
7.88

7.53

7.21

6.90

6.50

6.08

5.62

5.14

4.58

3.96

3.20

2.52

72-1.99
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Swirl Velocity: Re = 2560, fi = 1.770

Applicable Errors Analysis, Group A

r/
i -6.0 mm -3.0 mm 0 mm ""Location

Swirl

-6.0 mm
3.74

5.55

6.15

—
7.43

7.69

7.95

7.88

7.76

7.50

7.17

6.88

6.50

6.08

5.62

5.14

4.58

3.96

3.20

2.52

1.72-1.99

Velocity (cm/s)

-3.0 mm
2.73*

4 .58 ,3 .76*

5.35

6.02 3.

6.65

7.03,6.84*

7.51

7.55

7.51

7.33,7.17*

7.11

6.85

6.50

6 .08 ,6 .03*

5.62,5.57*

5.14

4.58

3.96

3.20

2.52

1.72-1.99 1.

0 mm

—
—

2 . 8 9

65-3.86

4 .77

5.56

6.17

6.65

6.92

6.91

6.88

6.68

6.41

6.08

5.71

5.27

4 .77

4.14

3.41

2.62

62-1.84

.089

.132

.176

.220

.263

.306

.349

.392

.435

.477

.519

.561

.603

.645

.687

.728

.769

.810

.851

.891

.932

*Measurements taken when breakdown was more
stable in axial position (see text).
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Swirl Velocity: Re = 2560, n = 1.770

Swirl Velocity (cm/s)

0

.044

.088

.132

.175

.219

.262

.305

.347

.381

.423

.465

.507

.549

.591

.632

.673

.714

.755

.796

.837

.877

.917

.957

Axial
Location

+ 8 mm

.04*

—
.87*

1.05*

1.06*

.88*

.84*

.98*

1.60-2.15*

4.39

5.32

5.97

6.29

6 .42

6.35

6.13

5.78

5.43

4.97

4.44

3.81

3.14

2.22

1.39-1.62

0

.044

.087

.131

.174

.217

.260

.303

.345

.388

.430

.472

.513

.555

.597

.638

.679

.720

.761

.801

.842

.882

.922

.962

Axial
Location

+15 mm

0*

1.37*

1.73*

1.80*

1.06*

1.28*

2.16*

2.62

3.67

4.65

5.36

5.86

6.02

5.90

5.75

5.45

5.08

4.64

4.13

3.59

2.94

2.12

1.34

.53

.034

.077

.120

.163

.205

.247

.289

.331

.373

.415

.456

.497

.538

.579

.620

.660

.701

.741

.781

.821

.861

.900

.939

Axial
Location

+24 mm

3.48

4.58

5.20

5.28

5.62

6.12

6.37

6.86

7.14

7.33

7.35

7.22

6.96

6.61

6.22

5.78

5.28

4.76

4.26

3.76

3.19

2.50

1.51

Group A Group B • Group A
or Group C* or Group C*
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S3
o
N)

Swirl Velocity Inside Breakdown Envelope

Re = 2560, n = 1.777
Applicable Errors Analysis, Group C

Distance Downstream of Nose (mm)

|
*-
c
0

•H
•P
ido
o

i-t
rt

•rH

1

0.0

.84 '

1.26

1.68

2.10

2.52

2 .94

3.35

3.77

4.18

5.00

5.83

2 3
A B A

.04 .15* .04

.33 .07 .48

.63

.63

.55

.48

.48 .18 .48

.55

.84

—

—__ - __ __

B

.22*

.11

.07

.04

.06

.04

.06

.15

.26

—

—__

4
A

.07

.55

.66

.74

.77

.74

.66

.55

.55

—

—
— — •

B

.22*

.15

.11

.07

.07

.07

.06

.04

.07

—

—__

5
A B

—

.59 .20

—
.88 .09

.88

.96 .09

— —
.92 .08

—

.70 .07

1.06 .22

— — — —

6
A

.04

.55

—

.88

»

.99

— •

1.03

—
.81

.80

1.35

B

.26*

.59

—
.12

*.—

.12

—
.10

—
.08

.10

.36

COLUMN A = Mean (Time Averaged) Swirl Velocity (cm/s).

COLUMN B = Average Fluctuation Amplitude, RMS (cm/s).

*These data include contribution from fluctuations in radial velocity.
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to
o
UJ

Swirl Velocity Inside
Breakdown Envelope (CONTINUED)

Distance Downstream of Nose (mm)

I

Ir
)

>
ca

ti
o

n

a
(0

•H

&

0.0

.84

1.68

2.52

3.35

4.18

5.00

5.83

6.64

7
A

.04

—

.92

1.03

.99

.92

.77

1.06
__

B

.26*

—

.17

.18

.17

.15

.09

.22
__

8
A

.04

—

.87

1.05

1.06

.88

.84

.98

1.60-
2.15

B

.17*

—
.24

.18

.18

.15

.11

.16

.36

9
A

.04

.44

.92

1.21

1.06

.95

.86

.98

1.60-
1.96

10
B

.30*

.28

.26

.18

.17

.16

.15

.12

.36

A

~

.44

.92

1.25

1.10

.88

.84

.98

1.60-
1.78

B

—
.26

.22

.18

.20

.16

.16

.15

.33

11
A

.07

.44

1.11

.84

.81

.88

1.02

2.0

B

.30*

.33

.37

.37

.18

.18

.16

.33

*These data include contribution from fluctuations in radial velocity.
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K5

° Swirl Velocity Inside
Breakdown Envelope (CONTINUED)

Distance Downstream of Nose (nun)

12

I

c
0

•H

^ (0
M O

— ' OHi
H
10
•H
•a
10
K

0.0

.84

1.68

2.52

3.35

4.18

5.00

5.83

6'. 6 4

A

—

—
1.36

1.43

.88

.70

.91

1.17
__

B

—

—
.44

.74

.50

.18

.23

.18
__

13
A

0

—
1.47

1.07

.77

.70

1.17

—

—

B

.74*

—
.63

1.03

.73

.44

.26

—__

14
A

0

1.37

1.66

1.54

.95

.92

1.46

—

—

B

.93*

.74

.74

.99

.66

.44

.26

—

—

15
A

0

1.37

1.73

1.80

1.06

1.28

2.16

2 .62

3.67

B

1.18*

.92

.81

.92

.66

.48

.18

.26

.25

16
A

0

1.48

1.84

2.10

1.54

1.76

2.37

—__

B

1.37*

1.03

.85

.74

.62

.40

.18

—

—
*These data include contribution from fluctuations in radial velocity.
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