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Abst rac t  

Pressure d i s t r i b u t i o n s  around c i r c u l a r  and c i r c u l a r / s t r a k e  c y l i n d e r s  

were measured i n  a  wind tunnel a t  Mach numbers from 0.6 t o  1.2 w i t h  

6 6 Reynolds number independently v a r i a b l e  from 0 . 1 ~ 1 0  t o  1 .Ox10 . The l o c a l  

pressures are in tegra ted  over t h e  c y l  inder  sur face t o  determine t h e  

v a r i a t i o n  o f  drag c o e f f i c i e n t  w i t h  both Mach number and Reynolds number. 

E f fec t s  o f  tunnel bl oc kage are  evzluated by comparing resu l  t s  from 

c i r c u l a r  c y l i n d e r s  o f  var ious diameters a t  ccmmon Mach and Reynolds 

number condi t ions.  Compress ib i l i t y  e f f e c t s  are concluded t o  be respons ib le  

f o r  a s l  i g h t  reduc t i on  o f  t he  drag c o e f f i c i e n t  near Mach 0.7. Drag 

increases w i t h  s t rake  height, presumably approaching a maximum drag 

corresponding t o  a f1  a t  p l a t e  con f i gu ra t i on ,  



1.0 Introduct ion 

The s t a t l c  long i tud ina l  farces and moments f o r  a i r c r a f t  and miss i les  

a t  high angles of at tack can be predicted by senri-.mpirical techniques 

which combine the l i ft force derived from potent ia l  flow theory w i th  a 

force a t t r i bu ted  t o  the separation o f  the viscous cross flow.' The 

viscous term must be evaluated from an experimental l y  determl ned cross 

f l ow  drag coe f f i c ien t ,  Since the a i r c r a f t  or  m i ss i l e  i n  a cross f low 

appears as a two-dimensional b l u f f  body (wi th  app l ica t ion o f  slender body 

theory), the drag coe f f i c i en t  may be a funct ion o f  both cross flow Mach 

number and Reynolds number. 

The drag coef f ic ient  i s  also a funct ion o f  the pa r t i cu l a r  shape of 

the vehicle cross section. Consequently, drag coe f f i c ien ts  o f  e n t i r e  

fami l i es  o f  e l l  i p t i c ,  polygonal, and wind-body combination cross-sectional 

shapes must be determined from wind tunnel tests.  As an a l ternat ive,  a 

method has been proposed which computes the drag coe f f i c ien t  o f  a body o f  

non-circular cross section based on an equivalent c i r c u l a r  section. 2 

Numerous wind tunnel tes ts  have been conducted t o  measure the drag 

coef f ic ients  o f  c i r c u l a r  and non-circular b l u f f  cross sections. Most o f  

these have been i n  e i t he r  o f  two Mach number ranges: ( 1 )  the low subsonic 

where compressib i l i ty  e f fec ts  can be ignored and blockage e f f e c t s  are 

minimal; or  (2)  f u l l y  supersonic f low. I t  is wel l  known t ha t  a t  l o w  Mach 

numbers (MS .25) the drag coe f f i c ien t  i s  dominated by Reynolds number 

effects. However, the actual values are influenced by stream turbulence, 

surface roughness and wall  inter ference so t ha t  considerable scat ter  ex is ts  

i n  the data. For Mach numbers greater than 2.0 the avai lab le  data ind ica te  

1 i ttl e dependence on Reynolds number and the agreement among various 
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invest igators i s  good. Reference 1 contains an extensive bibliography of 

exis t ing c i rcu la r  cylinder d rag  data.  

Until now, few attempts had been made t o  measure the drag coef f i c ien t  

o f  b l u f f  cylinders through the transonic range. Wind tunnel t e s t s  a t  Mach 

numbel s approaching transonic have yielding drag coeff ic ients  influenced 

t o  an unknown extent  by wall interference.  3'4  A f l i g h t  tes t  pograrn5 using 

sounding rockets with c i rcu la r  cylinders extended from the t a i l  f i n s  

produced drag coeff ic ients  for Mach numbers from 0.5 t o  7 ; 3  but  with no way 

to  separate t h e  ef fec t s  o f  Mach number and Reynolds number. 

The purpose of the wind tunnel investigation reported here was t o  

determine drag coeff ic ients  for c i rcu la r  and c i rcu la r / s t rake  cross sections 

through the transonic speed range. The application i s  t o  provide t h e  

empirical d a t a  required t a  predict  the aerodynamics o f  f l i g h t  vehicles a t  

high angles of a t tack.  T h i s  research was supported by Grant 156-2123 f ro r  

the NASA Ames Research Center. 

2 .0  Experimental arrangement 

The experiment was carried out i n  the Two-by-Two-Foot (61cm x 61cm) 

Transonic Wind T u n n e l  a t  the NASA Ames Research Center. The f a c i l i t y  is a 

slosed-return, variabl e density tunnel equipped w i t h  an adjustabf e ,  

f lexibl  e-wall nozzle and a s lo t t ed  t e r t  section.  Stagnation pressure can 

be v a r i e d  from 0.16 t o  3.0 atmospheres, yielding a Reynolds number range 

6 6 from 0 . 5 ~ 1 0  to  8 . 7 ~ 1 0  per f o o t  with Mach number independently var iable  

from 0.2 t o  1.4. 

For these two-dimensional t e s t s  the s lo t ted  sidewalls were replaced 

with solid walls incorporating c i r cu l a r ,  optical g lass  windows through which 



the  ends o f  the  models were mounted (See Figure I ) ,  The s l o t t e d  sect ions 

remained i n  the  f l o o r  and c e i l i n g .  A c a l i b r a t e d  d r i v e  system was at tached 

t o  the  window frame t o  r o t a t e  the w i  ndow-model combination. Shadowgraah 

and sch l ie ren  techniques were used ex tens ive ly  t o  v i s u a l i z e  shock f o r -  

mations and the shedding o f  vo r t i ces .  

3.0 Models 

Seven models were used du r ing  the  course o f  t he  experiment. Four were 

c i r c u l a r  i n  cross sec t ion  w i t h  diameters o f  1.91, 2.54, 3.81, $;id 5.0;. 

centimeters. Three others o f  2.54crn diameter were mod i f ied  by the addi t i o n  

o f  a t h i n  s t rake running the  l eng th  o f  the  model and a re  i d e n t i f i e d  i n  

t h i s  repo r t  by the r a t i o  o f  the  scrake he igh t  t o  the diameter -- s/d = 1.2, 

1.55, and 2.0. Figure  2 i s  a sketch o f  the  model cross sect ions. The 

straked cy l inders  were tested with the  strakes normal t o  the  tunnel flow. 

A1 7 o f  the  models were machined from 303 s ta in less  s tee l  stock t o  a smooth 

f i n i s h  but  not  h i g h l y  pol ished. The roughness he igh t  was 1.6x10-~ctn 

measured i n  the  a x i a l  d i r e c t i o n .  Each c i r c u l a r  c y l i n d e r  contained nine 

sur face pressure o r i f i c e s  separated by 40 degrees o f  circumference and 

staggered laterally about the  center f o u r  inches o f  t h e  model. The straked 

models, which could no t  u t i l i z e  the  r o t a t i o n  c a p a b i l i t y  o f  the  i n s t a l l a t i o n ,  

were provided w i t h  17 o r i f i c e s  d i s t r i b u t e d  around the  circumference. I n  

adh i t ion ,  o r i f i c e s  were located on the  forward and rearward faces o f  t h e  

strakes -- a t o t a l  of  e igh t  o r i f i c e s  on the s/d = 1.55 and 2.0 models and f i v e  

on the s/d = 1.2 model. The o r i f i c e s  were connected by tub ing  t o  pressure 

transducers which, in turn, provided e l e c t r i c a l  s igna ls  t h a t  were d i g i t i z e d  

and recorded. 



4.0 Computation of drag coefficnets 

Surface pressures were recorded in the form of pressure coeff icents ,  

C = nrn s t  eackl ci: the nine or i f ices  as the c i rcu la r  models were 
0 LP,v,Z: ' 

2 

rotated in  incr~aenzs  of three degrees. The subscript I'm" re fe rs  t o  the 

s t a t i c  pressure, dens'ity, and velocity of the undisturbed flow ahead of 

the mod21. Components of the pressure coeff icients  paral le l  t o  the f r e e  

stream direct ion were then summed over the circumference t o  yield a drag 

coeff icient ,  CD, based on the projected model area normal to  the  flow. 

Drag coeff icients  f o r  the straked cylinders were computed in  the same 
- 

manner except tha t  the  models could not be rotated. 

5.0 Results and discussion 

Figure 3 i s  a matrix of the  models and conditions tested.  Reynolds 

number i s  based on the  diameter of each of the  c i rcu la r  modeis, and i n  

the case o f  the straked models, on the 2.54cm diameter. 

Tables 1 and 2 summarize t he  uncorrected drag coeff icients  computed 

for  the c i rcu la r  and straked cylinders,  respectively. 

5.1 Blockage effects .  The interference of wind tunnel walls w i t h  the  

flow past a bluff body i s  always of concern and t h i s  concern i s  amplified 

as the t e s t  Mach number approaches unity. For t h i s  reason circular  

cylinders of diameters of 1.91, 2.54, 3.81, and 5.08cm coi'responding t o  

solid blockages of 3.1, 4.2, 6.2, and 8.4 percent, respectively, of the  

tunnel cross  section were tested a t  identical Mach and Reynolds conditions. 

The resu l t ing  drag coeff icients  a re  plotted as a function of Mach number 

and model diameter-to-tunnel height r a t i o ,  djh, in Figures 4a and 4b. 



Blockage e f f e c t s  a re  apparent ly e l iminated by the  s l o t t e d  f l o o r  and c e i l i n g  

a t  Mach numbers up t o  0.6. From Mach = 0.6 t o  0.9 the  higher blockages 

increas ing ly  a l t e r  the  drag c o e f f i c i e n t ;  the measured C,, i s  g rea ter  than i t  

would be if the tunnel wa l ls  were no t  present. A t  Mach 1.0 blockage 

e f f e c t s  a re  extreme. A t  supersonic Mach numbers the  e f f e c t s  a re  moderate 

and appear t o  lessen w i t h  increased Mach number. Also, a+ Mach 1.0 and 

greater  t he  e f f e c t  o f  blockage on the drag c o e f f i c i e n t  has reversed com- 

pared t o  the subsonic cases; the computed CD's  a r e  l ess  than the  un in ter fe red-  

w i  t h  values would be. 

Use has been made o f  Figure 4b t o  ob ta in  c rude ly  corrected drag 

c o e f f i c i e n t s  f o r  Mach numbers o f  1.0 and greater  by ex t rapo la t ing  the  curve 

f o r  a p a r t i c u l a r  Mach number back t o  zero blockage. The r e s u l t i n g  

corrected CD4s f o r  Mach numbers equal t o  1 .O, 1 .l, and 1.2 are about 1.90, 

1.70, and 1.60, respect ive ly .  

Figure 5 shows t h a t  a t  Mach = 1.0 the e f f e c t  of blockage i s  t o  a l t e r  

t h e  l o c a t i o n  o f  separation, and consequently, the value o f  t h e  pressure 

c o e f f i c i e n t  over the  a f t  po r t i on  o f  the  cy l i nde r .  Figure 6 presents the  

v a r i a t i o n  w i t h  blockage o f  pressure c o e f f i c i e n t s  averaged over t he  separated 

flow region o f  the  cy l i nde r  f o r  Mach numbers o f  1.0 and h igher .  Since the  

pressure coe f f i c i en ts  f o r  the Mach 1.0 curves i n  F igure 5 a re  e s s e n t i a l l y  

constant o v e r  the rea r  o f  the cy l i nde r ,  t he  pressure d i s t r i b u t i o n  could 

reasonably be mod i f ied  t o  r e f l e c t  the  extrapolated value o f  about -1.25 

from Figure 6. When t h i s  i s  done the r e s u l t i n g  computed drag c o e f f i c i e n t  

i s  1.92, i n  agreement w i t h  Figure 4b. 



5. 2 Mach nucber ef fects  Earlier wind tunnel investigations by 
3 5 Knowler and Pruderi. and ! iat t4 and fl ight t e s t s  by Welsh showed a f i r s t  

maximum i n  the drii2 c~lzfPicient of c ircular  cylinders a t  a Mach number of 

about 0.65 which preceeds the absolute maximum near Mach 1.0. The dashed 

curve i n  Figure 7 shows the resul ts  of Welsh for a cylinder w i t h  a fineness 

r a t i o  of 60. In those experiments, Reynolds number changed w i t h  Mach 

number so t h a t  either could be responsible f o r  the drag reduction. In many 

cases the reduction coincided w i t h  a Reynolds number i n  the low speed 

"cr i t ica l"  range, In the present t e s t s ,  Mach number was varied w i t h  

Reynolds number he?c! constant and the maximum s t i l l  occurred, The observations 

pertaining to  this  drag reduction which w i l l  now be discussed m u s t  be  due 

entirely t o  compressibility effects.  

From results of Gowen and perkins6, a t  Mach numbers from 0.3 t o  0.7 

where the f ina l  separation i s  laminar, the point of boundary layer separation 

moves forward on the front  side o f  the cylinder and the suction pressure 

over the back s i d e  increases. T h i s ,  combined w i t h  the increased s t agna t ion  

pressure, raises  the drag coefficient from about 1 .2  to 1.6. Schlieren 

photographs from the present t e s t s  indicate tha t  as Mach number increases 

above 0.7 the separation point sh i f t s  rearward and pressure distributions show 

that the base pressure becomes 1 ess negative. For instance, from Figure 8a 

fo r  Mach equal t o  0.9 separation i s  a t  about 85 degrees and the value o f  

the base pressure coefficient is  about -Q.9. Th2 resul t  S S  a reduction o f  

the drag coefficient as  seen i n  Figure 7. A t  a Wack number o f  7.0 

(Figure 8 b )  separation occurs a f t  o f  100 degrees b u t  the suction has increased 

t o  a corrected C o f  about -1 -25  and the  corrected drag coefficient i s  1.92. 
P 



As Mach number increases supe rson i ca l l y  t he  l o c a t i o n  o f  sepa ra t i on  remains 

f i x e d  a t  about 110 degrees bu t  t he  base pressure s t e a d i l y  increases caus ing 

lower  drag c o e f f i c i e n t s .  Th is  t r end  con t inues  t o  h igher  supersonic Mach 

numbers where Gowen and Perkins found a base C o f  -0.1 and a drag 
P 

c o e f f i c i e n t  o f  1.35 f o r  Mach equal t o  2.9. The range o f  C,, i n d i c a t e d  

by the symbols f o r  the  present  t e s t  i n  F igure  7 a t  subsonic Mach numbers i s  

due t o  v a r i a t i o n  w i t h  Reynolds number. For Mach numbers o f  1.0 and 

g rea te r  the v e r t i c a l  bars  i n d i c a t e  t h e  est imated u n c e r t a i n t y  i n  t h e  co r rec ted  

values. 

While i t  i s  reasonable t o  assume t h a t  a t  Mach numbers approaching 

u n i t y  compress ib l i t y  e f f e c t s  should begin t o  dominate t h e  f l o w  around t h e  

c y l i n d e r ,  t h e  mechanism which f i x e s  t h e  separa t ion  premature iy  compared t o  

a low speed t u r b u l e n t  separat ion a t  t h e  same Reynolds number i s  s t i l l  

unc lear .  Sch l i e ren  photographs i n  F igures 9 show t h e  development o f  shock 

waves on a c i r c u l a r  c y l i n d e r  and on i t s  wake and t h e  shedding o f  v o r t i c e s  

a l t e r n a t e l y  f rom one s i d e  and then t h e  o the r .  A t  Mach numbers o f  0.6 and 

0.7 nea r l y  normal shocks a r e  s i t u a t e d  on t h e  shou l i e r s  o f  t h e  c y l i n d e r  

co inc iden t  w i t h  t he  p o i n t  o f  f l o w  separat ion.  A t  Mach numbers o f  0.8 and 

g rea te r  these d is turbances become more and more ob l i que  and a normal shock 

of inc reas ing  s t r eng th  develops on t h e  wake. The a rc  i n  t h e  f i r s t  quadrant 

and near c i r c u l a r  spot  above thz  models a re  f a u l t s  i n  t h e  windows. Also 

unexplained i s  t h e  behavior o f  t h e  s u c t i o n  pressures on t h e  back s i d e  o f  

t h e  cy l i nde rs  i l l u s t r a t e d  i n  F igures 8a and 8b. A t  l ower  Mach numbers t h e  

pressures become more negat i ve  proceeding from the  p o i n t  o f  separa t ion  toward 

the  rea r  s tagna t ion  po in t .  For Mach numbers o f  0.9 and g r e a t e r  t he  pressures 

remain constant  w i t h  c i r c u m f e r e n t i a l  angle i n  t h i s  reg ion .  



5.3 Reynolds number k i f e c t s .  The decreasing dependence o f  drag 

c o e f f i c i e n t  on Reynolds number as Mach number approaches u n i t y  i s  i l l u s -  

{.ted i n  F igure 10. Only a t  the  lowest t e s t  Mach number o f  0.6 does a 

t ,  end e x i s t  a f t e r  a1 lowance f o r  t he  blockage e f f e c t .  The pressljre d i s t r i -  

but ions i n  F igure 11 show t h a t  the  increase i n  drag c o e f f i c i e n t  as Reynolds 

6 number increases t o  about 0 . 7 ~ 1 0  i s  the  r e s u l t  o f  later  separat ion a t  

g r e a t e r  s u c t i o n  pressures. This behavior i s  j u s t  the  opposite o f  t h a t  a t  

low speeds where delayed separat ion r e s u l t s  i n  l e s s  negat ive base pressures. 

6 As Reynolds increases above 0 . 7 ~ 1 0  the drag c o e f f i c i e n t  decreases s1 i gh t ly  

due to  improved pressure recovery, 

Also ind ica ted  in Figure 11 fo r  a Mach number o f  0.6 i s  the c r i t i c a l  

pressure c o e f f i c i e n t ,  C *, a t  whSch t h e  local f l o w  becomes sonic. A t  the 
P 

higher Reynolds numbers the supersonic reg ion  begins about 65 degrees from 

the  f ron t  s tagnat ion b u t  the f l o w  remains completely subsonic a t  t h e  

l o w e s t  Reynolds number. Loca l l y  supersonic f l o w  ex is ted  f o r  a l l  t e s t s  a t  

Mach numbers o f  0.7 and greater. 

5.4 Roughness e f fec ts .  F igure 12 shows the e f f e c t  on prer,sure d i s t r i -  

but ions o f  0.005cm spher ica l  roughness appl ied uni formly around the circum- 

ference o f  t he  2.54cm diameter model. A t  Mach numbers up t o  0.9 the roughness 

produces more negat ive peak pressures f o l  lowea by greater  recover ies 

r e s u l t i n g  in decreases i n  the drag c o e f f i c i e n t s .  A t  Mach 1.0 and higher  the 

pressure d i s t r i b u t i o n s  are unaf fected by the a d d i t i o n  o f  roughness. 

5 .5  Straked models. Figure 13 i s  a pressure d i s t r i b u t i o n  t y p i c a l  o f  

those measured on the straked cy l i nde rs .  Even a t  the smal lest  s t rake  

he igh t - to -cy l  inder  diameter r a t i o ,  s/d, o f  1.2 the  s t rake edge i s  the  

d i v i d i n g  po in t  between the p o s i t i v e  and the suc t i on  pressures. 



I t  was apparent from the  tes ts  on the circular models tha t  computed 

drag coefficients o f  t h e  straked models would be  s i g n i f i c a n t l y  affected 

by tunnel bl ockirge near Mach 1.0. Consequently, "corrected" values for  

the drag coefficients are estimated from the circular results.  Figirre 14 

i l lus t ra tes  the application o f  a quadratic equation t o  the circular  

cylinder data a t  Mach = 1.0 f o r  the r a t io  of the corrected to uncorrected 

drag coefficients. The value of the drag coefficient a t  zero blockage i s  

arbi t rar i ly  chosen as  1.90. Assuming that the variation of measured drag 

w i t h  solid blockage o f  the straked models grossly follows the variation for 

the circular cylinders, the quadratic equation i s  applied to the measured 

drag coefficients for the straked models. The blockage rat ios  f o r  t h e  s/d = 

1 .2  a1:d 1 .S5 models are 0.05 and 0.065, respectively. I t  i s  realized that 

th i s  i s  a questionable assumption since the  primary e f f e c t  o f  blockage on 

the  circular cyl inder i s  to change the location of separation (recal l  

Figure 5) xhile for t h e  straked cylinders, separation must remain fixed 

a t  the strake edge. Nevertheless, corrected CD's with a n  estimated hncar- 

tainty less than 2 10% are p lo t ted  in Figure 15 f o r  Mach 1.0, together with 

uncorrected value; for the res t  o f  the Mach number range. I n  each case 

the  drag coefficient i s  based on the plan area o f  the strake. The d r a g  

coefficient versus Mach number curves in Figure 15 possess the same f i r s t  

maximum as Figure 7 for the circular models. I n  a d d i t i o n ,  there appears t o  

be an increasing Reynolds number influenc,~ on the Mach number a t  which the 

maximum occurs as the s/d r a t io  i s  increhqed. Comparison o f  wake widths in 

Figure 16 determined from shadowgraphs o f  the :,'.I = 1 ,55 model a1 so produces 



t rends  w i t h  both Reynolds number and Mach number. The width, b, i s  taken 

a t  one diameter downstream from the model and i s  nondimensional i zed  by t he  

s t r a k e  he ight ,  s. F igures 17a and 17b p resen t  t he  t r e n d  i n  drag c o e f f i c i e n t  

i n  go ing from a c i r c u l a r  cyl Snder toward a f l a .  p l a t e  c o n f i g u r a t i o n  f o r  

t h e  va r ious  Mach numbers t es ted .  A s c h l i e r e n  photograph of t h e  s / d  = 1 . 5 5  

s t raked  rodel i s  reproduced as F i gu re  18. 

6.0 Concl uding remarks 

A ser ies  o f  two-dimensional c i r c u l a r  and c i r c u l a r / s t r a k e  cyl i nde rs  has 

been tes ted  i n  a t ranson ic  wind tunne l .  As Mach number increases thro:rgh 

t ranson ic ,  t he  pressure drag increases u n t i l  about Mach 0.7, remains cons tan t  

o r  decreases s l i g h t l y  t o  Mach 0.9, increases s i g n i f i c a n t l y  near Mach 1.0 and 

decreases w i t h  ' increasing supersonic Mach numbers. The l e v e l i n g - o f f  o f  t h e  

d rag  v a r i a t i o n  p r f o r  t o  t h e  major drag r i s e  n e m  Mach 1.0 i s  concluded t o  be 

a  c o m p r e s s i b i l i t y  e f f e c t  and n o t  a  Reynolds number e f f e c t  as specula ted 

i n  prev ious i n v e s t i g a t i o n s .  The effect of i n c reas ing  Reynolds number on 

t he  c i r c u l a r  c y l i n d e r s  i s  t o  s l i g h t l y  inc rease  t h e  d rag  b u t  t h i s  e f f e c t  

d imin ishes as  Mach number approaches u n i t y .  A r t i f i c i a l  su r face  roughness 

has 1 i t t l e  e f f e c t  on t he  d rag  c o e f f i c i e n t  a t  h i gh  subsonic Mach numbers and 

nc e f f e c t  f o r  Mach = 1.0 and h igher .  The drag o f  a  s t raked  c y l i n d e r  

increases w i t h  s t r a k e  h e i g h t - t o - c y l i n d e r  diameter r a t i o ,  appa ren t l y  

approaching a maximum corresponding t o  a f l a t  p l a t e  c o n f i g u r a t i o n .  
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" Cylinder diameter in cm Reynolds number x 

Table 1. Uncorrected dxag coefficients - circular  models. 
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Table 2. Uncorrected drag coefficients - stmked models, 
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Figure 10, The var ia t ion  of circular cylinder drag coefficient with 
Rsynolds number, 
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Figure 11, The effect of Reynolds number on circular cylinder 
pressure distributions. 
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Figure 12, The effect of ar t i f ic ia l  surface roughness on pressure 
distributions f o r  the d = 2.54 cm circular model. 



Figure 13. A pressure distribution typ ica l  of those measured 
for t h e  circular/stmke models. 
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Blockage Ratio- sIh 

Figure 14. Cuma fit t o  the effect of tunnel blockage on the 
computed b g  coefficfent at Iriach = I r O .  
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Figure 15, The var ia t ion  of drag with 1;bcch number for the 
straked cylf nders, 
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Fi,me 16. The variation of t h e  non-dlmensionalized wake w i d t h  
of the straked cylinders with ICch number and  
Reynolds number. 



Stroke height- C y l inder diameter Ratiods/d 

Figure l7a. The var i a t ion  of dmg; coefficient w i t h  s txake  he igh t -  
to-cylinder diameter r a t i o ;  19arch number = 0.6 Lo 0,R. 
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Figwe 17b. As in Figure 17a except Fach number = 0.9 t o  *.'$. 



F";~it:f~ j q r  SchlSlaren @gto@* of t he  s / d  = 3,55 s t m k ~ l I  r ~ i e l  ; 
ii4 7.33~10' i i * ~ h  - 1. Or 


