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ABSTRACT

This paper gives a mathematically rigorous derivation of first-order
corrections to multi-impulse approximations to the solutions to space flight
optimization problems with bang-bang control. The rocket is subject to an
inverse square gravitational force and to a thrust force with constant magni-
tude. The mass decreases linearly with time. It is assumed that an optimal
impulsive solution has been obtained for a problem with given initial and final
conditions. The method may then be used to obtain first-order corrections to
the initial values of the costate variables. Indications are given on how the
theory may be extended to higher order corrections. The theory is applied to

intercept and rendezvous problems.
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FIRST ORDER IMPULSIVE SOLUTIONS

J. F. Andrus¥

University of New Orleans, New Orleans, La,

Introduction. This paper is concerned primarily with first-order correc-
tions to impulsive approximations to optimal space flight maneuvers. Theoretically,
higher order corrections can be obtained in an analogous manner. An example
problem is the determination of the ignition and burnout times and the time-
histories of the thrust control angles which define a minimum time, exoatmos-
pheric maneuver from a given initial orbit to a given final orbit. Several
coast and powered phases may be included. Only problems with congtant thrust
magnitude, F, and fuel burning rate magnitude, ¢, on each thrust arc are
considered,

The impulsive solution is definedl to be the limit of the bounded thrust
solutions as [ increases without bound, where F = ciz and ¢ is the constant
exhaust velocity. The corrections are in terms of the parameter e = 1/f.

They are the firsc and higher order terms of the Taylor series expansions of

the variables about £ = 0.

Research sponsored in part by Univ. of New Orleans and by Northrop under
NASA Contract NAS8-20082.
Index categories: Spacecraft Navigation, Guidance, and Flight-Path Control
Systems.
*Assoc. Prof. of Math. Formerly Member of Sr. Tech. Staff of Northrop in
Huntsville, Ala. Member AIAA.




The problem of obtaining corrections to impulsive solutions has been
studied independently by this author and several men "7 associated with
Princeton University. Refs (2) and (4) are concerned with the problem of
constant F/m, whereas (3) and (5) extend the work to the problem considered
in this paper. The latter works make use of expansions in terms of two
parameters;namely, initial thrust acceleration and the rocket jet exhaust
velocity. Ref. (6) considers applications to low-thrust mission analysis.

The present paper is an extension of Ref. (7) to cover general initial
conditions as well as final conditions. Moreover, the necessary conditions
are given in a more explicit form. Both papers emphasize mathematical rigor
in the development of the corrections.

State and Costate Equations. The basic problem is the determination of
the optimal vacuam flight of a space vehicle from a prescribed set of initial
conditions to a given set of final conditions. The flight has at least one
coasting phase and is to be optimized with respect to payload.

The equations of motion are

= EL0) + ey, b =

where L()) is the optimal steering vector »/|\ . The parameters F and / are
zero on coast arcs. The costate vector A is the solution to the costate

equations
Y= Qlt,y,n).

Let tk and ?F be the initial and final times on the k-th thrust arc for
k=1,2,...,N. Letx be the so-called "switching function' satisfying the
equation
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where U = » /|||, The necessary conditions of optimality include the condi-

tion ¥ = 0 at times tk and Ek for k = 1,2,...,N except sometimes for time t

and time E& if they correspond to the initial time t, and the final time t

1

f‘

respectively.

Impulsive Solutions. Assume that for each non-zero value of ¢ in some
neighborhood of zero there is a solution y(t,«), y(t,c), »(t,c), i(t,r), k (tye);
m(t,e), tk(-), Ek(.), tf(=) to the boundary condition problem. .ere y, for
example’ls considered to be a function of the two arguments, t and ¢, It is
also assumed that the impulsive solution exists; i.e., that the variables
approach finite limits as ¢ approaches zero. In Ref. (1) and later in this

paper it is shown that, in the limit, t = t,, y(tk.O) = y(tk.o). %(tk.o) - A{tk,O),

*

“(tk.”) = -‘-.(rk,O),

_ m(tk,O)
y(t,0) = y(t,,0) + clin ——— ] L[ (¢, ,0))
m(tk.o)
m(tk,O)
',Vk(O) =g L e
m(tk,O)
where ”Vk = ;&(EL,O) - &(tk,O)I.

The multi-point boundary-condition problem for the impulsive case involves

the choice of v , v ,X oK ybiatassenyt.y and t. such that «(t, ,0) = 0 for
0 o o’ 1" "2 N k

o’ o f

k=1,2,...,N; such that i(tk,U) =0 for k = 1,2,...,N (except sometimes for

k

it

1 and/or k = N); and such that the given initial and final boundary conditions,
including transversality conditions and a scaling condition upon ), are all

satisfied.



Notation., Let yk(n) = y[tk(t).u]. ;k(‘) = y[?k(t),»], M ay/lae,
T = F ay/at, Yoo =¥ + t, Y ete.
Also let L*(t,e) = L[A(t,e)], G*(t,e) = G[t(e),y(t,e)], and so on.

The symbol :(en) will denote a finite summation of terms of the form

n

atore Mo 01 2wt
where nl.nz,nB, and n are non-negative integers such that nl-l-n2+n3 > n and
a(:) is bounded :ithin some neighborhood of ¢ = 0. OUbserve that Ui(O) = (
whenever ik(O) = 0. The symbol *(tn) is used instead of n(»n) when each
coefficient a(c) in the summation is a constant.

The General Procedure. Suppose for example that one of the constraints
is yf = a, Then yf(>) a is an identity in ¢. Therefore, ny(r) 2 05 yf‘{(u) 0,
etc. If Y¢ corresponds to ;&, then §ﬁ$L 0. This paper gives an expression

which relates ;k‘(O) to y, (0). Moreover, Yie+l may be written in terms of
d L] y t

Yee Yoo tk-’ and tk+l,a' Ultimately the condition yfF(O) = 0 can be expressed

as a linear equation in the unknowns Aoc’ A ; ?1C(0), etc. Similarly the other

(s ]2
boundary conditions lead to linear equations. The linear equations may be solved
for the unknown derivatives. Once AOE(O) for example has been calcuvlated,

one may correct the impulsive value AO(O) by adding the first-oruer correction
EAOE(O) with « = 1/54.

Problems arise in the applications of the procedure just described. These

are elaborated upon below.

] b = - A =m - . Sine \ = =it [ ."Hos ‘s
Let o=ty ty and m o =m o -m Since m, Lk/ , L'Hospital's
rule gives the equation ?tk.(O) = -Lmk(O). In gencral,
n, n+l
d ”mk o 1 d 'tk
d'n n+l d n+1



at « = 0. Thus, for example, once tk (C) is known, Ek~(0) can be easily

calculated. Rather than considering tk‘(O) and k.‘({}) to he the unknowns on

the k-th thrust arc, the unknowns will be t, (or Ekr) anc ‘my .

It will become evident that on any thrust arc for which -k(O) = 0, the
conditions 'k~(0) = ( and _kI(O) = (0 are dependent. In order to obtain ¢n
independent condition, the condition :kr’(O) = 0 will be expanded and it will

be discovered that the condition will involve only first derivatives with respect

to £. In general, the condition a" Tﬁ/d,“ =0 (or dnxk/dnn = 0) will be replaced

n+l = /d!_n+1 =

by d i

0.

Derivatives over Coast Arcs. In general

“ B > _ e =
Yiel,e ™ Ckal, Vel ¥ 1t/ Oty e i) + 1y 0 /3y 1 G =, G)
- G* 5 /1_... — —_— - . / - — — *
Yetl,e = Ckl, Skt b O Vi /IOt V) F DY /0y, 1O -t G)
. ‘ - ks .-_ 2 _..'_. — -__ %*
Metd e ™ Prel, fel T DA/ 1y e ) 4 (00 g POy, 1y -t G)
+ [9r,  JON1(R, <, X) + [3A, . /oN 1(h, -T, O
ket PO g =t M) + 1A 730 108 =2, Q)
f * \" - —. P s . S et = __‘.*
ekl e ™ Tkl een * [P ity 1ty W) 185 19y, 0y, 4 B)
. SR goke. = 2 ¢ = g e el
¥ NIt L) + 1A 1 1y -t Q)

mk+l,u = Mee

where the transition matrices of partial derivatives can often be expressed in

) : &
closed form as on a Kepler arc or in the case of G = -u"y where « iz o constant.




The derivatives of « can be derived from the relationship Ketl ™

Kee * (c/mk)(|kk+1|-|xk|). Thus

- — * S —
“pel,e = ke ¥ /MM Vi T ek
+ AT D6 -t S Rl 6 W T ) O
k k+l" k+l,e k+l,e k+l k' ke ke k
If ;k - 0 and Kkl = 0, the latter equation reduces to the simple condition
T 1
‘et k1,6 Ak Pke = 0 (1)

applying wh2n e = 0.

‘ntegrals which Approach Zero. Consider a function f(A,?,y.ﬁ,m,t) which
has continuous partial derivatives and such that f*(t,e) = f[A(t,g),i(t,n),y(t,a),
y(t,e),m(t,c),t] is continuous and bounded in the interval [tk(e), Ik(c)] within

some neighborhood of ¢ = 0. Let

t. (e)

I(e) = Itk(a)

f*(t,e)dt

By a mean value theorem for integrals,

rzk(t)

HOREL COM R

dt = Atk(e)f*[t(c).cl

For some t in the interval [tk,fk]. Since f* is bounded, I(c) = o(e).

Now let

f*(t,c)dt dr




By the mean value theorem fcor double integrals,

t
J(e) = ex(E,e) 7% sT de dre SacdencE,e) = o(ed)
S - 27k
k "k
for some t in the interval [tk.?k].
From the rules for differentiations under an integral sign it follows
that

t
- - k
de I(e) = tkefn - tszt u ka f: de

where

E &

k k *T . *T *T, *
* =
ftk f* dt ftk (£, + e A + fy V. * f9 y_ + f m )dt

*
If it is assumed that the components of f\ and the other partial derivatives

are bounded in some neighborhood of ¢ = 0, then the mean value theorem implies

that

Fk % *T XT *T *T * ALL
/ fdt = [f "(er ) + fs (er ) +f "(ey ) +f. (ey )+ € (em )] A
tk £ A (> A £ y £ y E W € iut ©

where t is in {tk,zk]. It must now be argued that the functions t*Lli(f),l].
etc, are bounded for ¢ # 0 within some neighborhood of ¢ = 0. TFor example,
it will be shown that em_ i3 bounded. On a thrust arcm = 1/(2. Therefore
- 2
,.E('_) 1 L('—)-ti\(L)

thlE(L),.] = em [t (),c] +£th(‘) S5 dt = em [t (€),.] +

=

t

But [t(.)—tk(‘)]/. = tk( ) where }{g [Ltk(‘)f ] = 'Lkl(U). Therefore (t—tk)/




is bounded within some neighborhood of ¢ = 0, Also nm,(tk.-) is bounded provided

£m (?k—l") is bounded since 'm {8 constant over a coast :rc. Eventually the

bounded:.ess of m [tk,'j depends upon whether or not im (to,!) is bounded; but

t

'm!(to,-) is zero. Hence dIl/di = 0().

Similarly it can be argued that ananmlain, c“a“y/ac“. etc. are bounded
within some neighborhood of ¢ = 0 for n = 1,2,... . The ge: eral idea employed
is that factors of ¢ in the denominator of the terms in the equations of variation
are removed by multiplying by factors of ¢. Finally it can be concluded that

cndnllden = g(e) aud cn’ldnJ/dcn = g(e).

4

Now it is possivle to define the symbol Q(Em). m > 1, denoting a function

1. n=1
E

5(Em), a function 5(Em-l)cndnlldcn (n =0,1,...). a function ﬁ(am- ) &

d"3/de"
(n=10,1,2...), or a sum of such fur~tions. Employing the conclusions of the
preceding paragraph it can be shown that

P -
2—5 0™ = (™ P)

de

for m > p > 0 and that 8(:) = o(e). Observe that one can not state with assurance
d ~m m-1 ‘
that e og(e ) = o(e ) because o(r) has a factor a(e) which is bounded within
some neighborhood of ¢ = 0 but whose derivatives may not exist. Little is
known about a'c) because it may correspond to a function evaluated at an in-
determinate time t(e).
Changes over Thrust Arcs. In this section expressions of the form
F.(6) =y () + Y, () *+ 9(eD), Fo(e) = §,(e) + V() + @(),.0. will be derived
k k k k k
for the non-impulsive case. For example, the change in y over a thrust arc
will be expressed as some function Yk(') plus a second-order term 9('2). Similar
expressions will be obtained for the first derivatives with respect to . The
exprecsions for the higher derivatives, though complicated, can be obtained
similarly.
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The first step is to fi+ expressions for the integrals of G*. Since

h = -1/, repeated integration by parts gives
t, t, t
& G*dt = - [mG*] . +e/ . mG* dt
I’.k tk t

t t

* *
- =c(mch] * - 1 2(a2c") * - Lod(a%c"L")
tk vy

ad)

k 3
1 +6(:7)
2 toe, 4 3 K

and so on. Since the first derivatives will be of primary concern, ordinarily

the expansion will only be carried out to the second-order term 9(-2). The

double }ntegral is simply

_tk A
btk
Now the changes in y and ¥ over a thrusting phase will be examined. Since

t
i _ 1 2. 2. k o 3
G*dt dt = 7 [m (,*}tk - t:_tkmth + @(c7)

V - (C/m)L + G,

adl
adl

) o & e K L* k .1
¥i ™ ALY, * = . f. m=dt dy L = | G*dt d
k kk i tk tk m tk tk
. m * * t t
= At y, = cem (-'.n—-li JL, = ce[mL ] E s k /Y G* dt dr
k”k == k t t t
mk k k k
; t t,
*
by, ™ ? ftk &— dt + ftk G* dt
‘ ' k k
« T i B T
= c(;nfh L + CLmk(?n _k YL + ce[mL, ] k + k G* dt + 9(:3)
- k - t [ - t
m m k K k
k k
Since 1 = Q(t,y,A),
t
. .k[
lk utkAk + {p 'tk Q*dt dr
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t
= - elmg*] * + 0(c%) .
k

Since k = %U(;\ ,5\),

£, x
Ak, = ¢ [ g dt = ceU* n EI—‘-+ cezu m in EE + 9(53).
k Lk m k = tk =

M

An alternative procedure employing series expansions in terms of € leads
to the same results. However, it is difficult or impossible to prove, in a
logically rigorous way, that such series converge or that they can be

differentiated.
Changes over Thrust Arcs in the Limit. Letting ¢ approach zero in the

expressions obtained in the preceding equations, one obtains Ayk(O) = 0,

L i -— * i * e i _ * i
Ayk(O) = c En(mk/ mk)Lk’ Alk(O) =0, Akk(O) = (0, and AKk(O) = 0, Since |Lkl =1,
it follows as in Ref. (1) that at € = 0, ﬂVk = Rn(mk/ E&),

A *
m o= m exp(—AVk/c), and Aik = AVkL .
Taking derivatives of the expressions obtained for Ayk, etc. in the

preceding section and taking the limit as e apprcaches zero, cne obtains

8 —
b () = =t = Enlty

c % * $ ¥
= Uen ot ol A B Bl Siey

"k

[

A (0)

. s * *
Alks(O) = —Amklk, AlkE(O) = - Lkak, AKRE(O) = UkAVk

ol * %*
Bk ee 00 s = U (bmm -mbm ) + 28V, 0, + 23,0,

where ak = AVkmk + Amkc and ak = AVkmk + Amkc. Since the direct calculation

of ay and E# involves subtraction of nearly equal numbers, one should employ

the series expansions

n

E1)
(n+2)!

= cmkcavk/az 5 v, /)"

a
: n=0

Sl s s s il n Sl S e e s e s s U sl s e
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— = 2 = ntl n+l . n
a, Lmk(nvk/C) I (<1) T (Avk/c)
n=0
*
If ¥ = 0, then llk = (0 so that Axk[= 0. hen the condition Kk‘(O) =0
implies :ka = 0. In this case the condit:on :knt = 0 should be employed rather

than one of the conditions, :ka(o) = (0 and xkE(O) = 0, in obtaining the first-

order correctinns. Tue condition :kac = 0 is simply
a
DT Tl --k_ .Tl 'l ¥ -
Ak;\kE r Ak)‘kL - % : “‘.-.Ak 4 Aqu) (2)

Summary ot Conditious. The multi=point bounadary-condition problem will be

summarized as an example for problems in which the initial and final phaces of
the flight are thrusting phases.

Corresponding to the initial point there is the scaling condition AiAl =1

and initial conditions h(yl,il,kl,}l) = 0, where h stends for a column vector
with five or six components, some of which may represent transversality ~on
ditions. (The conditions may be simply expressions of initial values of y and v.)

The vector h has only five components if ¥, = 0, in which case condition (2)

1

also applies. As e.plained earlier the condition = 0 is not employed. In

“1e

any case the equaticn ¥, = 0 need not be included explicitly because it can be

le

trivially satisfied by setting :la = (. Therefore, corresponding to the initial

point (or initial thrust arc), we have the follawing seven cuntitions:

Do )

1 le {
ih ah . d dh
¢ nasgallh o th — =0 {
J_/l le dyl le J)\l le D)\l le
a
% S DT WY, " [
T TRl L &, (%) |
|
|
/

(applies if Ky = 0)

<

REPRODUCIRILITY OF THE

TEY Iy
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There are also the 13 unknavns, Yier Yye AlL' Ale' Amlt. corresponding to
the initial point,
For each intermediate thrust, conditions (1) and (2) apply and there

~re two unknowns; namely, t  and &mkc on the k=th thrust arc.

ke
Condition (1) with k = N-1, corresponding to the equation KNe ™ 0 is
A= AT N = 0. This corresponds to the final point.
W Ne N-1 N-1,¢

Corresponding to the final point chere are given conditions
g(tN,yN,yN,AN,AN,kN) = 0 where g has six or seven components, some of which
may represent transversality conditions. The vector g has only six components
in the case that :2 = 0. Then the condition (2) with k = N applies. It

corresponds to the condition ;ﬁ{ﬁ = 0, In this case the condition :ZE = 0

or any equivalent condition must not be employed. Hence, corresponding to the

final thrust arc, we have the eight conditions

T T =
AA A A
N'Ne ~ N-1*N-1,¢e = © )
' Ty _ _ _a_ Ty T * l
AWe A Ne T AV Oty *+ N %
. l‘
(applies if NS 0) '
) ﬁ
dg — og = g — dg — ST /
+ X, o+ B = -
o UNe & o CHE .= M o ‘e T 8NN e /
YN N N N Y .
o T —
> =MV A . R Am, - “ine int.
since KNe JVN NN The two unkuowns, e and bm, correspond to the final point

(If one of the conditions is simply t

= given number, then t_ = 0.)
N Ne

Therefore, for the thrust-coast-thrust problem there .re 15 linear equa-

tions and 15 unknowns. For each additional intermediate thrust arc there are

two additional equations and unknowns. It is understood that vy for exarnle,

Ne?

in the above equations will be expressed, by means of equations derived earlicr

in this paper, in terms of the indicated unknowns.
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An Intercept Problem. As an example consider a thrust-coast intercept
problem in which the vehicle moves from a given point in state space to a
point with given position components. The time of intecrcept is also specified.

In this problem t, must be identified with tl. Since JITFI -1,

A, A, =0 (3)

Since Yo is fixed, we have Yoo = 0 so that

S [ i | - + — e, 0
= - = A A " - = - = ko=
But Ye1 Y1e tleyl ¥ie ot m Y, alA1 and ¥eq Ye tlcyl Ayls + ﬁmlbl

C 3 1 T
- =4 + -ALA = 0.
= A, Tk, E TRl A, B € = 8
an
1
Therefore,
bt ay e A IAAT)‘" 0 4
i, —= - & Ani, A, # B + - | =
oMt E R T T R b T i
e ¥y 1 |

Equations (3) and (4) may be written in matrix form as

d d \
c Y2 . “Ya ) A \ j
o i AV, —— | Amg y
= o= 1 1 3y le /
™ N 1 | \
0 T A \0
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where
dy dy ¢
omip e ko, el (T T3d
1 i 1 1 Iv 1 1
Ty 3
Therefore
/ 'T; 3y g | H \\ / \
1. Tf( 2\ 1 \
A - —_— '—'—'—' ——
i c M 3T Ay LR
\ yl /‘ \ I
\‘ | \ (5)
| =1 |
1 T 2 / /
\ Alc ) (1-)\l 1 ) g Al / 0 |
1 dy /
9 // N o
We observe that in general
y Iy, ,
A, = '——2- A, + —.-Z A
2 3 1 3y 1
" "1

In an intercept problem the transversality conditions imply that A

2 = 0. Therefore,

2 -1 -

}\-__.‘ig lazg)\

1 BL av. 1
Yy Y1

Utilizing the latter equation and equation (5), it may be shown that

m.a

g TP
Amlf c Al Al
2a
_ 1 i _
Me av, [y A0 = M)

at ¢ = 0, Starting with the requirement that X

) = 0, it may also be shown
that
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. ¥y = 3, A, y
e T 1T MTFE YaT s M
4! Y1 " "1
15 .3 2
Let t, = 0, t, = 380, u = .388 x 10 m /sec”, ¢ = 4100 m/sec, B = 22

kg-sec/m, m, = ,168920 x 105 kg-seczlm, yI = (.287253 x 107 m, .590785 x 107

1
m, .777376 x 105 m), 9{ = (=7326.35 m/sec, 3219.14 m/sec, =474.472 m/sec),

yi = (0, .655630 x 107 m, 0). A solution to the boundary condition problem

T 2

gives t, = 86.00 sec, L (.6618, ,3727, .6505), 31 = (-,1725 x 10 .

1 1
- -

~.1198 x 1072, -.1596 x 10~ 2%).

T

The impulsive solution yields ?1 = -tm /B = 76.64 ) = = (.6631, .3557,

.6587), ilT = (-,1726 x 10-2. -.1149 x 10-2, -.1617 x 10-2). A first-order
correction to the impulsive solution gives El = 84.04, le = (.6623, .3726,
.6503), RIT - (-.1726 x 102, -.1198 x 10™2, -,1596 x 10"%). The error in

RlT. for example, has been reduced from (.00121, 01701, .00823) to (.00041,
. 00004, .00013).

A Rendezvous Problem. Consider a thrust-coast-thrust rendezvous problem
in which the vehicle moves from a given point in state space to a point with
given position and velocity components. The time of rendezvous is specified.
For simplicity we take G = -g where g is constant. Therefore, = % - 0. We
identify tO with tl and tf with Eé. The boundary conditions are ;2(5) S constant,
;Z(E) - constant, AlT(c)Al(c) = l,KZ(E) = 0.

Following a procedure similar to that of the intercept problem, we obtain

by = ~=pF . Ay Ay = L) = bmy
a.=a
\ 17 T
= A [ ' }
“1e T ATV, LOY Ay =]

1:"‘_"]:")‘\iil".“-‘.‘)ii". OF THIL
: AT, PAGE IS POUR
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’ 1 1 Sa ~85 T
B o - —— —_——— - A
Me T Me T 2 ) v [T O]
AT k 2
¢, - 2m +m (1= G, A )]
By = Sy T 2 e
where AT = €. = b,

2 1

Consider the numerical problem in which t, = 0, EZ = 380 sec, mo= .17
x 10 kg-seczlm, g = 22 kg-sec/m, ¢ = 4100 m/sec, gT = (4.63 m/secz, 8.00 m/sucz).
y,| = (.18 x 107 m, .63 x 10’ m), y,t = (.413102 x 10’ m, .501462 x 10’ m),

5,7 = (.68 x 10 wilasg, -2 % 10° mlwec)s v, = (.528352 x i0® ufsec, =.505836

= 50 sec, t. = 350, A\.T = (.8, .6),

x 10 m/sec). The optimum solution is t 2 1

1
A = (-,002, -.004).

= K I’r_
] , = 352,47, 1,0 = (.8414, .5404),

31 = (-.001733, -.004010). The impulsive solution with a first order correction

= 350.60, th = (.7992, .6060), RIT = (-.001979, -.0U4U65).

The impulsive solution yields t, = 46.47, t

added is t, = 49.64, t

1 2
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