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ABSTRACT

This paper gives a mathematically rigorous derivation of first-order

corrections to multi-impulse approximations to the solutions to space flight

optimization problems with bang-bang control. The rocket is subject to an

inverse square gravitational force and to a thrust force with constant magni-

tude. The mass decreases linearly with time. It is assumed that an optimal

impulsive solution has been obtained for a problem with given initial and final

conditions. The method may then be used to obtain first-order corrections to

the initial values of the costate variables. Indications are given on how the

theory may be extended to higher order corrections. 'file theory is applied to

intercept and rendezvous problems.
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FIRST ORDER IMPULSIVE SOLUTIONS

J. F. Andrus*

University of New Orleans, New Orleans, La.

Introduction. This paper is concerned primarily with first -order correc-

tions to impulsive approximations to optimal space flight maneuvers. Theoretically,

higher order corrections can be obtained in an analogous manner. An example

problem is the determination of the ignition and burnout times and the time-

Histories of the thrust control angles which define a minimum time, exoatmos-

pheric maneuver from a given initial orbit to a given final orbit. Several

coast and powered phases may be included. Only problems with constant thrust

magnitude, F, and fuel burning rate magnitude, i , , on each thrust arc are

considered.

The impulsive solution is defined  to be the limit of the bounded thrust

solutions as l increases without bound, where F - c^ and c is the constant

exhaust velocity. The corrections are in terms of the parameter L = 1/_

They are the first and higher order terms of the Taylor series expansions of

the variables about t = 0.

Research sponsored in part by Univ. of New Orleans and by Northrop under

NASA Contract NAS8-20082.

Index categories: Spacecraft Navigation, Guidance, and Flight -Path Control

Systems.

*Assoc. Prof. of Math. Formerly Member of Sr. Tech. Staff of Northrop in

Huntsville, Ala. Member AIAA.
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The problem of obtaining corrections to impulsive solutions !:as been

studied independently by this author and several men 
2-6 

associated with

Princeton University. Refs (2) and (4) are concerned with the problem of

constant F/m, whereas (3) and (S) extend the work to Lite problem considered

in this paper. The latter works make use of expansions in terms of two

parameters;namely, initial thrust acceleration and the rocket jet exhaust

velocity. Ref. (6) considers applications to low-thrust mission analysis.

The present paper is an extension of Ref. (7) to cover general initial

conditions as well as final conditions. Moreover, the necessary conditions

are given in a more explicit form. Both papers emphasize mathematical rigor

In the development of the corrections.

State and Costate Equations. The basic problem is the determination of

the optimal vacu•im flight of a space vehicle from a prescribed set of initial

conditions co a given set of final conditions. The flight has at least one

coasting phase and is to be optimized with respect to payload.

The equations of motion are

y 
= m L (, ) + G(t,y),	 m = -3

where L(A) is the optimal steering vector X/1^1. The parameters F and r are

zero on coast arc-s. The costate vector A is the solution to the costate

equations

.. _ Q( t l y .' )

Let t  and t  be the initial and final times on the k-th thrust are for

k = 1,2,...,N. Let K be the so-called "switching function" satisfying the

equation

REPROUUCIBL'I i 1 1 1 . , ; ,



c U(X , j )
m

where U =	 i'i. 1'he necessary conditions of optimality include the condi-

tion K = 0 at times t  and t  for k - 1,2,...,N except sometimes for time tl

and time t  if they correspond to the initial time to and the final time tf,

respectively.

Impulsive Solutions. Assume that for each non-zero value of E in some

neighborhood of zero there is a solution y(t,, ), y(t,, ), A (t,t ), a(t,, ), K(t,E_),

n► (t,._), tk (,), t k (
	 t 	 to the boundary condition problem. .'ere y, for

example is cons4dered to be a function of the two arguments, t and 	 it is

also assumed that the impulsive solution exists; i.e., that the variables

approach finite limits as , approaches zero. In Ref. (1) and later in this

paper it is shown that, in the limit, t  = t k , y(tk ,0) = y(tk ,0), .^(t k ,0) = a(tk,0),

, (t k . n ) = ^(rk,0),

Y(t k ,0) = y(t k ,0) + c[,n

m(tk,0)
V k (0) = c n	 _

m(tk,0)

m(tk,U)
J i.[a (t k ,o) J

m(tk,0)

where	 Gk = IY( t k , 0 ) -	 k, 0)1.

The multi-point boundary-condition problem for the impulsive case involves

the choice of 
yo' 901ko1Xo,Ko,t1,t2"'" t

N , and t  such that K(t k ,0) = U for

k = 1,2,...,N; such that Kkt k ,O) = 0 for k = 1,2,...,N (except sometimes for

k = 1 and /or k = N); and such that the given initial and final boundary conditions,

including transversality conditions and a scaling condition upon a, are all

satisfied.
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Notation. "et y k (f_) - Y[tk(f),E), Y00 - At 00,C]. Y - ay/ae,

yt - y - ay/at, Yk^ - yek + t kc y k , etc.

Also let L*(t,e) = L[a(t,E)J, G*(t,e) = G[t(E),y(t,e)], and so on.

The symbol cl (t n ) will denote a finite summation of terms of the form

n l 	 n2
a 	 )t:	 [Gt k C ) ]	 [U*

* 	 Il3
1

where n i ,n 2' n31 and

1(r) is bounder+ .:it

whenever K k (0) = 0.

coefficient a(e) in

n are non-negative integers such that n l , +-n 2+n3 > n and

nin some neighborhood of , - 0. observe that Uk(0) = U

The symbol d(E n ) is used instead of • (^ n ) when each

the summation is a constant.

The General Procedure. Suppose for example that one of tt,e constraints

is y  - a. Then y f (E)	 a is an identity in t. Therefore, yfcU) 0, yfEc(0 - 0,

etc. If y  corresponds to y N , then 
yNr- 

0. This paper gives an expression

which relates ykf_(0) to y  (0). Moreover, Yk+l,, may be written in terms of

Yk,, Y
kf.' tkF , and t k+i	 Ultimately the condition y fr (0) = 0 can be expressed

as a linear equation in the unknowns 
X oc' hoc' t

le (0), etc. Similarly the other

boundary conditions lead to linear equations. The linear equations may be solved

for the unknown derivatives. Once A Oe (0) for example has been calculated,

one may correct the impulsive value ,1 0 (0) by adding the first-oruer correction.

Ea	 (0) with	 = 1/;-.
O

Problems arise in the applications of the procedure lust described. These

are elaborated upon below.

Let '.t k = t  - t  and Am  = m  - m k . Since	 mk = -.".t k/F:, L'Hospital's

rule gives the equation At kc (0) = -,'.m k (0).	 In general,

d mn'	
d	 to+1,

"k	 1	 k

di n
	 11+1 dcn+l
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at	 0. fl ►us, for example, once t  (6) is known, t k (0) can be easily

calculated. Rather than considering 
L  

(0) and t kt (0) to be the unknowns on

the k-th thrust arc, the unknowns will be tki (or 1  and AmkE•

It will become evident that on any thrust arc for which F' k (0) = 0, the

conditions K k` (0) - 0 and K kf (0) - 0 are dependent. In order to obtain rn

independent condition, the condition K kte (0) - 0 will be expanded and it will

be discovered that the condition will involve only first derivatives with respect

to E. In general, the condition d o F k/dt t' = 0 (or d°Kk/de n = 0) will be replaced

by do+1 K /d, n+1 = 0.k	 ^

Derivatives over Coast Arcs. In general

Yk+l,e	 tk+l,e yk+1 + [ay k+1/dY k^ (Yke -kt. yk ) + [ ^ Yk+1 /ayk^ (Ykt -kf k)

y	 = t	 G*	 + ( Y	 / a Y I( y -t Y.) + [ 3 Y.	 /ay	 -t G *k+1,^	 k+1,^ k+1	 k+1	 k	 ke ke k	 k+1	 k ](Y kE ke k)

^k+l,t	 tk+l,e^k+1 +	 k+l/aYk](YkE._tkryk) + [aAk+1 /aYk Yke —t kEk )

+ [ aa.
k+l / aa. k ]( A ke —

t ke a k ) + [Da k+l /aa k i0 k —tkeQk)

^k+l,f	 tk+l,cQk+l + [as k+l /lYk^ (Ykc —t kE k) + 
(aa k+I /,ay k l(Yke —t ke k)

+ [ aa k+l a k ]( a .^ e -t ke a k ) + [3a
k+1

/, 
k](Yke-tke^?k)

%+1,e - mke

where the transition matrices of partial derivatives can often be expressed in

closed form as on a Kepler arc or in the case of G = -(.,2y where . i:: 	 constant.

}q

Ad
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The derivatives of K can be derived from the relationship Kk+l

Kke + (c/mkWXk+ll-lakl). Thiis

K	 + (c /M )it	 U	 - t
K k+1,^	 kc	 k	 k+1,r k^l	

U
k: k

+ (1/1 k
l)[A k+l (X k+l,c -t k+l,e x k+1 )	 xk(Xkc-tkcxk W.

If K 	 0 and ^.k+l - 0, the latter equation reduces to the simple condition

	

k+l
A
	^ ^	

0
k+l,e	 k kc 

applying wh?n c = 0.

".ntegrals which Approach Zero. Consider a function f(n,A,y,y,m,t) which

has continuous partial derivatives and such that f*(t,c) - f[a(t,c),^(t,c),y(t,E),

y(t,F),m(t,c),tj is continuous and bounded in the interval [t k (c), t k (c)] within

some neighborhood of c = 0. Let

t (E)

1(e) = I t k (c) f*(t,c)dt
k

By a mean value theorem for integrals,

t
k 

(C)

I(e) = f*[t(c).c] I t(t) dt = At k (0 f*1t(0'c1
k

For some 't in the interval [t k ,t k ^. Since f* is bounded, I(c) - o(f.).

Now let

	

J(c) = Itk
	

It
(t) f*(t,t)dt di

	k 	 k

(1)
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By the mean value theorem far double integrals,

J(E) - f *(f,e); ck 
fT dt 	dT - :: tkf*(t.	 ) _ 1)(c2)

k k

for some t in the interval [tk,tk].

From the rules for differentiations under an integral sign it follows

that

	

_ _	 t

Tr- I(E) = tkcfC - tkcfk + fTk f
k

e dt

where

t 
	

t 	 *T	 *Ti .	 *T	 *T^
t f* dt = I t (f X a

E + f  aE + f y y e + fy y E + fmmcjdt
k	 k

*
If it is assumed that the components of f^ and the other partial derivatives

are bounded in some neighborhood of c = 0, then the mean value theorem implies

Lnat

f tk f *dt - [ f
*1 

(ca ) + f*1 (E,1 ) + f *T (ey ) + f *T (cy ) + ! * (cm ) ]	 At

t 
	 c	 a	 c	 a	 c	 y	 c	 y	 c	 m	 c t

= t E

where t is In [t k ,t k J.	 It must now be argued that the functions cAc[t(c),c].

etc. are bounded for E # 0 within some neighborhood of t = 0. For example,

it will be shown that cm	 bounded. can a thrust are m 	 1/c2. Therefore
E	 E

t (L)	 I	 t(^)—th(c)
cm c [t(L),E] = cm c [t k (O ' ] ef t. (c)	

2 dt = t:m ` [t k (c). ] *	 c
K	 ^

But [t( )-t k ( )]/. _ ..tk ( ) where lim [.'.t k ( )/ ] =	 L  (0).	 'Therefore (t-tk)/
• .0



is bounded within some neighborhood of 	 0. Also tm (t k ,t) is bounded provided

m (tk-1,t) is bounced since tm r is constant over a coast " rc. Eventually the

bounded:,ess of tm [t k ,tj depends upon whether or not tm (t o ,,) is bounded; but
t

m (t ,^_) is zero.	 Hence	 dl/dc in o(t-).
t	 o

	Similarly it can be argued that t n 	^3E^3nm /
n, cn3ny /,,n, etc. are bounded

within some neighborhood of c = 0 for n = 1,2,... . The gc , eral idea employed

is that factors of c in the denominator of the terms in the equations of variation

ire removed by multiplying by factors of e. Finally it can be concluded that

ndn INc n 	o(c) and c
n-1 dn

J/dcn 0 o(c).

Now it is possiule to define the symbol e(c m), m - 1, denoting a function

m	 m-1 n n	 n	 m-1 n-1 n	 n
(c ), a function a(c	 )c d I/de	 (n - 0,1,...). a function o(c	 )c	 d J/dc

(n - 0,1,2...), or a sum of such fur-tiont;. Employing the conclusions of the

preceding paragraph it can be shoun that

pa	
e(t m ) = e(cm p)

dcp

for m	 p > 0 and that A(e) - a(c). Observe that one can not state with assurance

that	 v
de 

(cnl) - a (c m- 
1 ) because 3 (c ) has a factor a(c)  which is bounded w0 h in

ome neighborhood of c - 0 but whose derivatives may not exist. Little is

known about a l.c) because it may correspond to a function evaluated at an in-

determinate time t(c).

Changes over Thrust Arcs. In this section expressions of the form

k ( . ) = 
yk ( ' ) + Y k (') + 6(t j )+ Yk(, ) = yk(') + Y(t_) + 0(t 3 ),... will be derived

for the non-impulsive case. For example, the change in y over a thrust arc

will be expressed as some function Y k ( ) plus a second-order term (4(t 2). Similar

expressions will be obtained for the first derivatives with respect to 	 The

expressions for the higher derivatives, though complicated, can be obtained

similarly.
101"HOIDUCLA ii i U,

«L PAG N lS 1"t)"
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The ftrst step is to fit expressions for the integr als of G*. Since

m - -1/,, repeated integration by parts gives

t k G*dt -	 [mG*) t k +t; t k mG*tdt
k	 k	 k

t k 	 1 2 2 ,*	 ** t 	 3
- -^ [mG*j t - z (m ( , t]t

tk - 1
4'C^2 

2
^m Gv L ) t + H( )

k	 k	 k

and so on. Since the first derivatives will be of primary concern, ordinarily

the expansion will only be carried out to the second - order term 9(^ 2 ). The

double integral is simply

k
L

t l't G*dt dT	 2 
2 

(m 2 c;* I t k + eAt kmkGt + GG
k k	 k

Now the changes in y and y over a thrusting phase will be examined. Since

Y - (c.•/m)L + G,

	

t	 *	 t

yk	
tk. + ` " t	 t m *k 	

dt dt + 
f tk ft G*dt d i

	

kk	 k	 k

	

mk	 *	 * t k	 t
- At k y k - cEm k ( n— ) Lk - cE:(ml. ] t + ftk 

ft G* dt di

	m k 	k	 k k

t	 *	 t
Ay^^=c^r. 

t 
km dt+ 

ftk G*dt
k	 k

+ cf:[mLt)t	
t

k 
+ fk 

G* dt + 8(r j)

K	 k

c(^. mk )Lk	 :m

m

+ cfk(.'n	 k )I.t k

k	 k

Since a - Q(t,y,a),

kk = At k a k + ,'t 
't 

t1*dt dt
k	 l:

t k a. k + 9(E2)

t
kQ*dt

k	
t 
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_ - E[mQ*] tk + 9(E 2 ) .
k

Since K = c U (X
m

x
AKk = c 

It k 
m

* 
dt = cEU k kn mk + cc2Ut mk kn mk + A(E3).

k	 mk	 k	 mk

An alternative procedure employing series expansions in terms of E leads

to the same results. However, it is difficult or impossible to prove, in a

logically rigorous way, that such series converge or that they can be

differentiated.	 y.

Changes over Thrust Arcs in the Limit. Letting E approach zero in the

expressions obtained in the preceding equations,one obtains Ay k (0) = 0,

Ayk (0) = c kn(mk/ mk)L* L)' (0) = 0, Aa (0) = 0, and AKk (0) = 0. Since JLk l = 1,

it follows as in Ref. (1) that at E = 0, AV  = c kn(mk / mk),

m
lc 

= mk exp(-AVk/c), and Ay  = AVkLk.

Taking derivatives of the expressions obtained for Lyk , etc. in the

preceding section and taking the limit as E a-prcaches zero, one obtains

*
Aykc (0) = -A mkyk -

 
a 
k 
L 
k

A&c. (0)	 c_ (^mkmke-mkGmkE ) Lk + OVkTkE - Lmk k + akLtk
mkmk

*	 *
^a kE (0) = -Amka k , DakE (0) 	 lmOk , aKkE (0) = UkAVk

c1KkEE(0) 
_ 2c 

Uk (Lmkmke mkpmkE ) + 2AVkUkE + 2akUtk

mkmk

`	 where ak = DVkmk + Amkc and ak = AVkmk + Amkc. Since the direct calculation

i
of ak and ak involves subtraction of nearly equal numbers, one should employ

H.

the series expansions

,'

S,	 a  = cmk (AV k
/c)2 Z	 (n+2)n (AVk/c)n

n=0
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a k 	Cmk (AVk/c)2 w (-1)n+l (n+2)^ (GVk/c)n
n=0

If K = 0, then U  - 0 so that AK C' 0.	 hen the condition K kc (0) = 0

implies Kkc	 0. in this case the condit:or. Kkee 
= 0 jhould be emploved rather

than one or the conditions, K k` (0) = 0 and K ke (0) - 0, in obtaining the first-

order corrections. Tue condition K kEE = 0 is simply

a

^k

X

ke r Xk^kc _ _ AV (, T

,

k J AkQk)
k

Summary of Conditions. The multi-point bounaary-condition problem will be

summarized as an example for problens in which the initial and final phases of

the flight are thrusting phases.

Corresponjing to the initial point there is the scaling condition d i a l 	1

and initial conditions h(yl'yl,Xl,i1)	 0, where h stands for a column vector

with five or six components, some of which -nay represent transversality con-

ditions. (The conditions may be simply expressions of initial values of y and y.)

The vector h has only live components if K l = 0, in which case condition (2)

also applies. As e..;;lained earlier the condition :,_= 0 is not employed. In

any case the equatic- K1E = 0 need not be included explicitly because it can be

triviall y satisfied by setting K 1 _ 0. Therefore, corresponding to the initial

point (or initial thrust arc), we have the fol?cwing seven conditions

T	 _

^1^1E	 0

ahah	 ah	 11,
^)y I ylE + ay1 yle + aal a le + aal a

le = n

a

Al^lr. + a.1 is _ - AVl 
(a1a1+a1r21)

(applies if K 1	 0)

► ta i i ^^^r>>	 ^^^.^.["r y OF rttl0

(2)



There are also the 13 unkn(w ns' y lr_' yle' Ale' ^lC' Am 
IL, 

corresponding to

the initial point.

For each intermediate thrust, conditions (1) and (2) apply and there

re two unknowns; namely, t ic and Ara	 on the k-th thrust arc.kc

Condition (1) with k = N-1, corresponding to thi- equation K Nc = 0 is

X ;v
T^ NE:_ X N-1

T X N-1,e = 0. 	 This corresponds to the final point.

Corresponding to the final point there are given conditions

g(tN'yN'yN'ANoANoKN)	
0 where g has six or seven components, some of which

may represent transversality cond i tions. The vector g has only six components

in the case that K 2 - 0. Then the condition (2) with k - N applies. It

corresponds to the condition KNcE . 0. In this case the condition K 2e = 0

or any equivalent condition must not be employed. Hence, corresponding to the

final thrust arc, we have the eight conditions

T	 _ T	 _

^N X Nc	 ^N-1XN-1,^	 0

aNa Nc + aNaNE 	
AVN 

(aNa N + aNc1N)

(applies if N = 0)

,
19J 9 	

_ &__

- 
y N E +	 yNe + 

_— 
ANE +	 XNe s -AVNal+aN d

DYN	ayN	
3X 
	

DA 
	 (^KN

since KNc=GVNXNXN' The two unknowns, 
tNc 

and AmNc , correspond to the final point.

(if one of the conditions is simply t  = given num>er, them t 	 0.)

Therefore, for the thrust-coast- thrust problem there ..re 15 linear equa -

tions and 15 unknowns. For each additional intermediate thrust arc there are

two additional equations and unknowns. It is understood that y NL , for example,

in the above equations will be expressed, by means of equations c;erived earlior

in this paper, in terms of the indicated unknowns.

. ^1



13

An Intercept Problem. As an example consider a thrust-coast intercept

problem in which the vehicle moves from a given point in state space to a

point with given position components. The time of intercept is also specified.

in this problem t o must be identified with t l . Since ^i Xi = 1

X l iX le M 0	 (3)

Since y 2 is fixed, we have y2e = 0 so that

ay2y
el + . yEl = 0

ay l 	ay 

But 
y el - yle -t le y l s Ayle + Am

l yl - -a 1 ,1 1 and 
y^l	

+= 11L - It 	 = 
Ayle + Au

► 1 G1 =

- C ^,m1E a 1 + AV1XIE + a1(I-X1X1 )a l at E - 0.
:n1

Therefore,

-a ay2 a + ay2 -	 m a + AV X + a (I-x a I )1	 = 0	 (4)
1 a — 1	 )	 m	 le 1	 l le	 1	 1 1	 1

y l	 yl	 1

Equations (3) and (4) may be written in matrix form as

	

ay	 ay

m	 e 
	

e

	

a y	
Am1e^	 /y

1	 1	
ay 

1	 ^(

	u 	
^1T	

ale	
` 0

J 



(5)

where

14

Y - al ay2 a l - a l a= (I-a1J^1T>al
^y l	3Y1

Therefore

-1

_ in	 T /3Y2
Am1E	 c x1 l

a—yl

s

-1

	

J 	 1	 T (3 Y 2

	

!//	 \	 y1

We observe that in general

in

—AV 1 	 Y

a l	0

	

^2 f 3Y2 x 1 +

Y2 	

^1

ay l	 ayl

In an intercept problem the transversality conditions imply that X 2 = 0. Therefore,

- - 3y 2 ^ -1 ay2

i	
ay1	 3y1 1

Utilizing the latter equation and equation (5), it may be shown that

mla l	 T,

^tnl C.
	 c	 1 1

	gal	
T

lE	 AV  ^ 1 ^11	 ^1^

at t = 0. Starting with the requirement that ). 2 = 0, it may also be shown

that
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aY2 -1

	
aa2	

ax 	 3y2

^1L _ T
	

a1 - x - 
T Ay
	 - ^1e

3y l 	ayl	 ayl	 ayl

Let t  = 0, t 2 = 380, u = .388 x 10 i5 m 3 /sec 2 , c = 4100 m/sec, R - 22

kg-sec/m, m l = .168920 x 10 5 kg-sec t /m, yi = (.287253 x 10 7 m, .590785 x 107

m, .777376 x 10 5 m), y  = (-7326.35 m/sec, 3219.14 m/sec, -474.472 m/sec),

y2 = (0, .655630 x 10 7 m, 0). A solution to the boundary condition problem

gives t l a 86.00 sec, X 	 (.6618, .3727, .6505), a 1 T = (-.1725 x 10-2,

-.1198 x 10-2 , -.1596 x 10-2).

The impulsive solution yields ti	 -Gm i /B = 76.64 x 1 = (.6631, .3557,

.6587), A1  = (-.1726 x 10 -2 , -.1149 x 10-2 , -.1617 x 10-2 ). A first-order	 '4r^

correction to the impulsive solution gives t l = 84.04, X11 _ (.6623, .3726,

.6503), a 1T = (-.1726 x 10 -2 , -.1198 x 10-2 , -.1596 x 10 -2 ). The error in

,1 1T , for example, has been reduced from (.00121, 01701, .00823) to (.00041,

.00004, .00013).

A Rendezvous Problem. Consider a thrust-coast-thrust rendezvous problem

in which the vehicle moves from a given point in state space to a point with

given position and velocity components. The time of rendezvous is specified.

For simplicity we take G = -g where g is constant. Therefore, Q = ; = 0. we

identify t o with t  and t  with t 2 . The boundary conditions are y 2 (E) -: constant,

Y
2 
(c) = constant, a 1T (E)a l (E) = 1,K 2 (E) = 0.

Following a procedure similar to that of the intercept problem, we obtain

ml	
T

Gm1E 	 cGT (a l + a 2^1 ^2)

m 2 ( a l-a 2 )	 T
Gm

2E 	 cGT	 (^1 n
2 - 1) - Am

le

a l
-a 2 	 T

X 16	 AT V 1 ^ ( ^1 ^2 ) ^1 - ^2^

K'.'P1:O'^U('ll;ll,[1'Y c_^F' 1111:

1S POO R

I



_
-1—

`` 1-a 2 	 _	 T
le	 ^lE	 AT2	

AV2 [ ^'1	 (^2 ^12^

+ (m - 2m + m)[1 - (A Ta 1 )^ x2	 1	 l 2)

where AT - t 2 - tl.

Consider the numerical problem in which t 1 = 0, t 2 = 380 sec, m l M .17

x 10 kg-sec5	 t/m, 8 - 22 kg-sec/m, c = 4100 m/sec, gT = (4.63 m/sec t , 8.00 m/sect),

y1T = (.18 x 10 7 in, .63 x 10 7 m), y 2T = (.413102 x 10 7 in, .501462 x 10 7 m),

A = (.68 x 104 m/sec, -.2 x 10 4 m/sec), y 2T = (.528352 x 10 4 m/sec, -.505836

x 104 m/sec). The optimum solution is t 1 = 50 sec, t 2 = 350, a 1T	(.8, .6),

a1T = (-.002, -.004).

r =Tlie impulsive solution yields t 1 = -► 6.47, t 2 = 35` '̂ .^4̂7 , ` 1	 (.8414, .5404),

T
Al = (-.001733, -.004010). The impulsive solution with a first order correction

added is t  = 49.64, t 2 = 350.60, X11 = (.7992, .6060), 1T = (-.001979, -.0=65).
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