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ABSTRACT

Statistics are presented for the estimates of rain rate from an attenuating
frequency radar. Included in the estimates are the effects of fluctuations in
return power and the rain-rate/reflectivity relationship, as well as errors
introduced in the attempt to recover the unattenuated return power. In addi-
tion to the Hitschfeld-Bordan correction, two alternative techniques are con-
sidered, The performance of the radar is shown to be dependent on the method

by which attenuation correction is made,
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STATISTICS OF RAIN-RATE ESTIMATES FOR

A SINGLE ATTENUATING RADAR

I. INTRODUCTION

Meteorological radars that require relatively high spatial resolution or
sensitivity, but that are limited as to the antenna size or transmitted power,
make desirable the use of higher frequencies. At X-band frequencies and higher,
however, the signal may undergo significant attenuation by the intervening rain
as it travels to and from the rain-scattering volume of interest, Therefore,
the utility of such a system is in part dependent on the accuracy by which the
nonattenuated power, as indicative of the rain rate in the scattering volume
alone, can be constructed from the measured return power,

To estimate the rain rate, R, for a single radar system, the reflectivity
factor, Zt' is required. The latter quantity can be found directly from the
radar equation only if the attenuation, k, is expressible as a function of either
the reflectivity factor or some measurable quantity of the radar system,
Because a number of such approximations for attenuation are possible, the
question as to which rain-rate estimate should be employed reduces to the choice
of the approximation that in some way optimizes radar performance, As will
be shown, the accuracy of the rain-rate prediction is strongly dependent on the
parvcular approximation adopted,

The procedure given here is to form three different estimates of rain rate

that involve the empirical (k, Z,), (Z¢, R) relations and the measurable



quantities of the radar system, Treating as random variables the return power
from each range bin, as well as certain parameters that relate (k, Z¢) and

(Zyy, R), the mean and variance of cach of the estimates are then computed as
functions of range and number of independent samples, Calibration errors

and finite gignal-to-noise ratios are also considered,

I1. RAIN-RATE ESTIMATES
From the standard meteorological radar equation, including attenuation

effects, the measured return power may be written as [Battan, 1973]

Pir) = CZ(r) [Iu": f5 ks “‘]/f’ (1)

2
|

On using the relation k =oZg, then,

P(r) = ('?tlr)[m—nz -‘-"‘ zy ) d‘]/l’: o

where Kk = one-way attenuation in dB/km
P = measured radar return power averaged over N independent samples
r = range in km
C = radar calibration constant

For convenience, the auxiliary quantity, Z is introduced in terms of

m?

the defining relation:

Py = CZ_(r)/r? (3)

8]




Or, on combining equations 1 and 2,

Sa L Xt
Zin = L i1 2% Rg0d (4)

The quantity, Z,,, may be interpreted as & measured reflectivity factor
in the sense that it can be found directly from the measured power and the known
values of range and calibration constant,

The reflectivity factor, Z and rain rate, R, are usually given in the form
of a power law relation that may be written as R = uztb. To estimate the rain
rate, it is necessary to express Z, in terms of the measured quuitity, Zm; or,
more simply, given the function,zm 8(Z¢) (equation 4), it is required to find
the solution of the inverse problem, Z; = g'l(Zm). If such a solution exists,
the rain rate then becomes F.=a [ g " (Zm)]b-

To invert equation 4, it can be seen that, if all attenuation effects are ne-

glected, a crude approximation io Z¢ would be
2r) = Z (1) (5

For any higher order approximation, the Z; that appears in the exponent
of equation 4 is replaced by its preceding approximation, For first- and second-

order iterations, this procedure gives

¥
- 5 Iy
1Z(r) = /.m(l') 10%:% = 4 Zin(s) ds (6)

R 4———-—--—————————-——-—-—-—-_—;.—._=—-'h—‘
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and
2 . sxa L tad
Zir) = /mfflfu LI ) lhld\

or

r

Zr) = Z_(r)exp (0.2 (In I(Jmf 24 (w) V-2 aln I',*;f Zi (u)du g (7)
m m 4 m dw)

An exact solution for Zy = g'l (7 an be found by using a procedure

m) €
similar to that given by Hitschfeld and Bordun [1954), Taking the logarithm of
both sides of equation 4, differentiating with respect to range, and, finally,

using the substitution, u - Z:", vields the first-ovder linear differential equation,

lll I w)
=3 Bufiry + Kg = 0
dr (H)
where
S
K=02alnlO
) d
fr) = — In /
t|l
then,

L

] /
nir) = ¢- Kp Z"‘"tw)dw] y

“m 0

5 ~ m.—«nncvm H\ UP fH
; D y PO OR




The condition, Zy (0) = Z, (0), requires thatc = 1, and therefore,

HBZ2.(r) = /mm:’tl . I\:i[ 22 (w)dw)' /¥ (10)

Approximating the integrals in the foregoing equations by summations over
the relevant range bins and substituting the expressions for Z, of equations
7, and 10 into the Z-R reluation yield the following estimates of rain rate

6

at the nth range bin:

n

IR" = ;|Z"'l‘I| exp (Kb Z £ Z:” ) (11)
i=1
n i
b — = b 2 2 P = L g
R, =l exp (Kb E' €, 2, >xp (K 2 € /’n-n )) (12)
d |
n
H-1 o oy r ! .
’Rll £ ‘Ilmn//(l E kp ; (51 Z"‘:’ ’b'fu (13’
where
r n

z

/ ZP(s)ds = !
m mi
i=1

(1]

W
wn
M

s = range resolution in km

£ = | i #Fn
W i =n
€=l jJ#Fi

J
i 1
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The estimates of rain rate given in equations 11 to 13 are exact in the sense

that statistical fluctuation and offset errors have been excluded, If N independent

jth

pulses are summeoed over the range bin, the average return power is a random

variable given by [Marshall and Hitschfeld, 1953; Stogryn, 1975)

A =2
Pl " i 'I
or
A
l‘nn s “mi la

where the quantities, Py and Znge Are the expectations of the return power and
the measured reflectivity factor, respectively, The probability density function
of fis

N¥ _-\'I',N 1
L%

brrigeeres (>0 (14

pf) =

If, in addition, calibration errors are introduced in which C = Cirue (1 + E)y
then,

2 =7 £l + E) (15}

mi mi

A
Replacing Zy, in equations 11 through 13 with Z 4 results in the following

rain-rate estimates:

'R = caZ” " exp (Kbe? Z ¢ 25 1) (16)

n mn 0 “mia
(R |

G




IR = L".I'/.b o x
a . . (17)

exp }th“ [E € 2017 exp (Kpe? € z! )]'

=1 —I

WBR = caZ® fP/(1 - KB z e, ff ZL)° (18)
=]
where
K=02salnl0
¢ =1/l +E)=C,,IC

Quantities a and e in the above ¢« uations are chosen to be independent

2

random variables with variances of 9 2

and 95 and means equal to their re-
spective tr.e values. Quantities b and P are assumed to be fixed.

Appendix A describes the behavior of the iterative approximations and their
relationship to the Hitschfeld-Bordan solution, Appendix B provides a gener-

alization of the estimates to the case of finite signal-to-noise ratios.

Ul, STATISTICS OF THE RAIN-RATE ESTIMATES
The measures of performance for the rain-rate estimates are taken to be
the mean and variance. Although it is sometimes necessary to use Monte Carlo
techniques for generating the statistics, under certain conditions approximate
analytic expressions can be found by direct integration,
A, First-Order Estimate
Assuming that the random variables (a, a, fl’ f2' «++ {,) are independent,

the variance of the first-order estimate at the nth range bin, Rn’ may be
7




™~

written as,
var(R ) = E(RY) - £7(R ) (19)

where

22 8 n-) 2 FU ¢l
' S »J (20)

r ap £ /
”ihc 1 ma Ry " l'. (¢ mi o

I\ o od TI0 a3 ad VE 2
“Rni ¥ lm '”l + “m”u [k'“ sy B

o . - P 5 h/ : ap. £ e
R ) = 2o E, [Imtln" et Cmn tnlT) T g @ S »] 1)

and
E(a) = a_, var(a?) = ¢?
™m a

p‘ =(.2s i."f bin 10

For large N, the expectation with respect to fl (1i=1, 2, ... n) may be
approximated by the firsi=order term of a saddle=~point integration, Because
B s usually near 1, an alternative procedure may be used that yields a some-
what more accurate result, To evaluate the expectation with respect to
fi(i=1, 2, ... n=1), the term exp (. fl“) (where L = Py qu is treated as
a constant) is expanded about 2 = 13 for the integration over (n' exp (2 ff:) is
expanded about s&fr? = 0, For the final integration over e, a normal distribution
is assumed with mean ¢ = and variance ~.02.

Negleeting terms involving powers of @ greater than 2, the first and second

moments of the first-order rain rate may be written

- : 2
BRD) ~ 20 (0} +al) Y Ko m TP 22)
i=0
; pEPRODUCIBILITY OF THL
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2 2 12
b or oo (s pe-L S Lp)
B AL E K et
m m 1 ]
i-0

E(Rn\
where
p = l,ilai
n- 1
4= p[ 73‘:1 1+ 611, D am
i=1

i
Ki & z dy bl-k

k=0

; *I[@2-8)b+N+k

(pl lelﬂl‘(l + 60, ] [(" 1 ll, 0 ﬁ]

b =
(N - 1)kl N@-6,) b+ k8
0 = l
n =1
- DA | 7 H
hl (= 50 ) I)l Z Zmi
=1
n =1
b= 0L 60) (D2 NP N P 7 D
TR T
where

l')l

0

=p, B -1 (Q-InN)

plz (B - /N

= et o P | N () S TS T

z3%)

mi
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and

I i
H (q.p) =a/p : -
(1 +-2q°/n)/2p i 2

Hna

'
H=Hh q.p

For the foregoing unprimed quantities, 6o = 03 the primed quantities are given
by the same expressions, but with 5, =1,
B, Second-Order Approximation
The rain-rate estimate for the second-order approximation may be written
in the form-
0 i
R = ca Z;'m f: exp }pl o [E. €, l:u I':: exp (p, a 2' € Z:" l":)] : (24)
i j

where,
p, = 0258 In 10

thus,

- 4 L g5 Al
E(R ) = ¢c*(g® + a*)Z *
n a

m Tmn
n n | ’
. 2h 8 ) = 3
% l-_“ ‘I'Ill l-,rl (1, exp [lnp| Z £ ?’,mll';J exp(p, a Z ¢ zmj ,1:,])‘ (25)
i=1 EX)
and
S
ElR ) = ¢ i : ¥
n m mn
" n i ,
‘ 2 h i i : g i g g
x E | IIII lhllu exp [dh' z:l [ A A expUp, « Z| ‘ /'"u'j' )‘ (26)
; )
10
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With respect to the independent random variables “1' f2' iVih fn). the

expectation in equation 25 may be written as

.[[ f 2 (x, = Inx) ® pup

n
[Japl Z ¢ llmx:’ exp (ap, 2 lm’ f }] o dx dx, Ldx

[u\ . n]

For large N, the saddle points occur at approximately X; = Y= 2 8 s B
Evaluation of the integral results in the asymptotic approximation [Gradshteyn

and Ryzhik, 1965; Felsen and Marcuvitz, 1973]

n -
1 kg ()~ exp [ap, Y e 2y, E S/ + 10N + 172888 )"

i=1 mi =1

An identical procedure is used for equation 26. Tuaking the expectation with

respect to o, letting u = p{e - ¢ ), and combining the previous results gives

m

b

) $ ) .. n
E(R)) = ¢? (o] +al)Z f o’ gl'.lldu//fr (1 + 1/I2N + I/ZHHNz) (27

m mi

)

b 2 = n
E(R )~ ca Z f e ¥ g'{unlu/ﬁr (1 + 1/12N + 1/288N") (2%)

-

where
i

g n S Z 7
) - 2. 7
gu) = exp []p| (u/fp + @) E ¢, —/‘-' c|: uwp ot o) € m’]

‘mi =1
i=1

g'( u) = J .,g(,l,l l

11



The remaining integrals were computed by means of a Gaussian-Hermite
quadrature, /
C. Hitschfeld-Bordan Estimate

A problem arises in calculating the statistics of the Hitschfeld-Bordan

estimate because the rain-rate estimate becomes imaginary when

To circumvent the problem, a Monte Carlo technique is used, As before,
the estimate is characterizcq by its mean and variance, In addition, however,
it is necessary to define a failure rate as the percentage of times the estimated

rain rate is imaginary.

1IV. RESULTS AND DISCUSSION

The results of the three rain-rate estimates for a radar operating at 8,75
GHz are shown in the Figures, The Z{-R, k-Zt relations were derived from the
tabulated values of Medhurst [1965] and Stephens [1961] and are approximated
by Zy = 307.1 Rl' 54, k =5,5 x 1079 Zto' 84. For reasons of economy, both the
mean and variance are plotted on the same graphs as functions of range for
values of N of 100 and 1000, The "X' and "0O" labeled points represent, re-
spectively, the variance and mean of the rain-rate estimatcs (normalized to the
true value) as computed by the Monte Carlo method. Where present, the solid

and dashed curves represent the variance and mean as calculated from the

approximate analytic expressions found in Section II. Unless otherwise noted,

12



an increase in N results in a decrease in variance and an increase in mean.

The change in the latter quantity, however, is not significant.

Comparison of analytic and Monte Carlo evaluations of the stati stics are
shown in Figures 1 and 4, and 2 and 5 for the first- and second-order estimates,
respectively, In addition to the qualitative insight that may be gained, the
analytic results eliminate the spurious fluctuations that arise from the Monte
Carlo generation at small values of variance, It can be seen that the approx-
imation for the second-order estimate for N = 100 is somewhat crude, implying
that higher order terms are needed in the multiple=integral saddle-point tech-
nique.,

The remaining graphs presented here were found by computing the sample
mean and variance of 1000 simulations per range bin, To achieve adequate
plotting resolution, the upper limit for the normalized variance was set at 2,
which resulted in zero failure rates for the Hitschfeld-Bordan estimates that
were plotted.

The most prominent features of the results follow:

e In the absence of radar calibration errors and for low rain rates and

small lff R U‘? , the Hitschfeld-Bordan estimate is relatively unbiased-

a consequence of the fact that the true reflectivity factor has been

exactly expressed as a function of the measured reflectivity factor, 2
e Even in the absence of calibration 2rrors, the first- and second-order

estimates are biased by an amount proportional to the total attenuation,

13



The use of higher order estimates tends to decrease the offsct error
(Figures 1, 2, 4, and 5).

e In gencral, the error variances are largest and the sensitivity to
calibration errors are most pronounced when a Hitschfeld=Bordan
estimate is used (Figures 3 and 6). Because of the appearance of the
ca and cﬂa factors in all the estimates, the effects of calibration
errors are dependent on the statistics of a and e, Note that the

2 "az : o2P

02, fe<l (i.e,, the radar

variances of these factors are c -~

calibration constant is larger than the true value), a smaller error
variance is expected than if the calibration constant were underpredicted
{(c >1). This type of behavior is indicated in Figures 7 through 12,

e The rain-rate estimate for nonattenuating radar at the nth range bin

can be written as

The two characteristics that distinguish R, from the attenuated es-
timates are:
4. The calibration error enters into the estimate only through
the multiplicative factor, c.
b. The estimate is independent of the preceding range bins,
A comparison between attenuating and nonattenuating radars can be obtained

by noting that the mean and the variance of the latter are independent of range

14
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(assuming large signal-to-noise ratios) and nearly equil to the values of the
attenuated radar in the first range bin, The vertical deflection from this con-
stant mean and variance indicates the additional errors that arise in using an

attenuated frequency in conjunction with a particular reconstruction technique,

V. CONCLUSIONS

Three attenuation correction procedures have been considered that have
led to the corresponding rain-rate estimates, For all estimates, an attempt
has been made to inclide the effects of fluctuations in the averaged radar return
power and the variability in the Z-R, k-Z relations. For several combinations
of meteorological conditions and radar parameters, the mean and variance were
computed and plotted as a function of range,

The results indicate that, in addition to the Hitschfeld-Bordan procedure,
alternative correction schemes exist that lead to rain-rate estimates with smaller
error variances and a decreased sensitivity to positive offsets in the radar cal-
ibration constant, On the other hand, corrections such as the first-order algo-
rithm may lead to estimates that significantly underpredict the true value of
rain rate,

Although it is impossible to choose the ""best' correction technigque without
specifying the radar parameters and performance criteria, a few general
characteristics of the various order estimates can be seen,

For a well-calibrated radar using relatively accurate k-Z, Z-R relations,

higher order correction techniques may be employed. When the possibility of

15



significant errors exist, the lower order estimates must be used to avoid large
error variances and large positive biases of the estimate,

It is reasonable to assume that, given a radar design and performance
criteria, there will be some k™ order estimate (with k finite) that optimizes
the radar performance, For the criteria given, this estimate will represent
the best compromise between the extreme cases of no attenuation correction

and the attempt at exact correction,
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APPENDIX A

The u"h order approximation to Z; is given by

S
"2 = Z (r) exp(](f ' |Z“lrl dr) (A1)

subject to the conditions that

uz(”

"

Z (v

m

]

"Zo)= 7 (0) = Z, (0)

Taking the logarithm of both sides of equation Al, differentiating with
respect to range, and letting u = kZ'ﬂ yields the difference differential equa-

tion,

du /dr = - Bu_(f(r) + K/u )
(A2)

where

fr) = d(nZ_)/dr = (1/Z ) dZ_/[dr

From the definitions of Uz (r) and Z¢(r) and by induction, the following

two conditions can be shown to hold for all values of r:

"z 2" 2
Z,(n = "2

19




To show that lim nZ(r) = Zy(r), consider the series and an upper bound,
N~ o

lim Z lhllrb ks lZml=||m INZIH . l.mtrll u’.ul . /"_un

N'-'.m'n-l N0

From the solution of the differential eq ation (equation 10), it can be seen
r

that Z(r) is bounded {f K!:/. ZS\(I') dr< 1, Therefore, under this condition,
O

the series converges, implying that

im z-""'yeo

n —+oo

or, equivalently,

N | n i)
bim (u /u_ )= hm " l/ Z) =1

I
n-+>® L et

In the limit of large n, the difference differential equation becomes
du" [dr = -ﬁl'(rm" - K (Ad)

subject to the cendition, n'.Z(u) - Zm(u). But this differential equation and

initial condition are identical to those satisfied by Zl (equation 9), so that

lim "l(rl = Zlm

n —. 0

20 i
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APPENDIX B

The generalization of the estimutes to *he case of finite signal-to-noise
rutios is straightforward, The power available at the receiver is now the sum
of N independent sumples of return power, plug receiver noise, Assuming that
the noise power, Py is stucisticully independent of the backscattered power,
p(r), but follows the same distribution, the power from the receiver can be

written us [Stogryn, 1975)

P = (Pir) + P! (B1)

As before, defining the measured reflectivity factor by

2. =P /C
m
whaor
€=C,,01+E
then,
.l = . 2 .
Z, =P+ Py /C, (1 +E)
or at the ith range bin,
'A - - '
2 =127 (1 +P/P(D/] +F) (B2)

mi

Comparison of equation B2 with equation 15 of the main report shows that
the effect of finite signal to noise is to introduce an additional term (1 + p, /p(r))
into the definition of the meusured refiectivity factor. Proceeding us before,

21
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Zy is expressed as a function of Z by various order approximations that,
in turn, lead to three estimates of rauin rate analogous to those of equations
16 through 15,

For example, the first-order rain rate becomes

»
R, = caZy, f, (1 + By/B, ()" exp (Ko’ Lo 6 Lyl (14 RURIOY ) (B3)

mi
(L ]
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Figure 10, Statistics of the Rain-Rate Estimate for First-Order Attenuation Correction

(R =25 mm/hr, o, = a/20,7, = *,10, ¢ = 2/3).
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Figure 11, Statistics of the Rain-Rate Estimate for Second-Order Attenuation Correction
(R= 25 mm/hr, = = a’20, 5, = 2/10, ¢ = 2/3).
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Figure 12. Statistics of the Rain-Rate Estimate for Hitschfeld-Bordan Attenuation Correction

(R=25 mm/hr, o= a/20, o, = 10, c = 2/3).



