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COMPUTER SIMULATION OF EARTHQUAKES

Steven C. Cohen

Geodynamics Branch

ABSTNACT

Two computer simulation models of earthquakes are studied for the depend-

once of the pattern of events on the model assumpt if)ns and input parameters.

Both models are adaptations from the work of Dicterich (Dieterich, 1972), and

represent the seismically active region by mechanical blocks which are connected

to one another and to a driving plate. The blocks slide on a friction surface. In

the first model we employ elastic forces and time independent friction to simulate

main shock events. We find that the size, length, and time and place of event

occurrence are influences] strongly by the magruitude and degree of homogeniety in

the elastic and friction parameters of the fault region. For example, periodi^ally

reoccurring similar events are frequently observed in simulations with near

homogeneous parameters along the fault, whereas, seismic gaps are ., conin-ion

feature of simulations employing large variations in the fault parameters. The

second model incorporates viscoelastic forces and time-dependent friction to

account for aftershock sequences. The periods between aftershock events in-

crease with time and the aftershock region is confined to that which moved in

the main event.
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I. INTRODUCTION

In the absence of a general theory of motion alone; a fault there are at least

five avenues of approach to understanding earthquake dvnamics. 'These avenues

include field investigations, laboratory experiments, simplified theoretical an-

Myses, model building, and computer-numeric simulations. The present paper

focuses on a computer simulation. There are several reasons why such simula-

tions are attractive research tools. The first of these is time compression.

Events spanning many decades, even centuries, can be simulated in a few see-

onds on a high speed computer. The second is convenience in investigating al-

ternative hypotheses. All the conditions of the simulation are under the control

of the progr mmer and the differing consequences of alternative assumptions are

readily identified. The third attractive feature is the great detail with which the

motion can be observed in the simulation. This can be a great aid in explaining

the consequences of the motion. The major difficulty with computer simulations

is the question of correspondence with "real world" phenomena. Highly idealized

models, which are clear in conceptual detail, may not he adequate representations

of naturally occurring situations. On the other hand complex simulations are lim-

ited by our lack of knowledge about naturally occurring conditions and by restric-

tions on computer speed and storage requirements. Furthermore, complex

simulations may be so confusin7 in detail that they are uninstructive in basic

causes and  effects. In the present effort we are aiming primarily for physical

clarity and 'nave, therefore, used conceptually simple ideas and techniques.

I
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Despite this limitation, much of the behavior exhibited by our simulator mimics

natural behavior and certain observed natural phenomena find ready explanation

through this technique.

Most simulators are based on the model of coupled massive blocks first in-

troduced by Burridge and Knopoff (Burridge and Knopoff, 1967) and illustrated

in figure 1. In this model `he fault is divided into coupled blocks which slide on

a frictional surface. The coupling which corresponds to the elastic and viscous

properties of the material is represented by various combinations of springs and

dashpots. The blocks are driven through a coupling to a moving plate. The plate

moves with  drift velocity, u, which is unaffected by the frictional resistance along

the fault. The one-dimensional model of Burridge and Knopoff included ten blocks

some with predominate elastic coupling co their neighbors and some with pre-

dominate Maxwell-viscous coupling. DieOric!r (Dieterich, 1972) elaborated on

the model by including fifty blocks and using the standard linear solid coupling

shown in Figure 1. Otsuka (Otsuka, 1 972) developed a two-dimensional simula-

tor with elastic couplding, and Dieterich (Dieterich, 1973) reported on a three-

dimensional, elastic coupling, simulator.

In the present work we will examine in more detail some one-dimensional

simulators, primarily those clue to Dieterich. We NN-111 examine, in particular,

such questions as how the pattern of stress release in simulator earthquakes

(SEQs) depends on the frictional characteristics of the fault and how simulator

aftershock sequences depend on material properties.

2



It. ELASTIC MODEL

The simplest model that we have employed assumes perfect elastic coupling

between a block and its nearest neighbors and to the driving plate. Consider the

elastic forces acting on the ith Mock of Figure 1

	

Fi = Ki(xi	 + - x i ) + .11 - (x i -	 ; " x i ) + Out - x i )	 (1)

where a is the velocity of the driving plate, t 	 is the time, x i + i	 , x i	 and xi

are the displacements of the i + 1, i - 1, and ith blocks, K, and K i _ i are the

spring constants of the i and i - 1 th connecting springs and K' is the sprin t; eon-

stant of the leaf spring connecting block i to the driving plate. To each block we

also associate a static frictional strength, f', which resists motion. Once t1w

pulling , farce overcomes the frictional resistance to motion the dynamics of the

ith block is governed by the force equation

m ix i = F; - ti
(2)

Ki(xi + i - x i )+ K i _ (xi - i - x i ) + Kant - x i ) - td

where m i is the block mass and fO is the dynamic friction force.

Consider now the situation with all blocks initially at rest and 1' i < f' for

each block. As time advances F i increases clue to the motion of the driving block

and the consequential increase in the driving spring tension. We can associate

with each block a time, t9, at which time the block world first move if unaffected

by the motion of any other block. Thus i

'^

	

h	 K _	 t^

(X0 - x° + ^) +	 (x° - x9_ 1 + —'	 (3)

	

u Lh	 Ki	 Ki
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That block which has the minimum value of ti is the first to move. The subse-

quent motion of all blocks can he determined as follows: No block moves until

pi - f for that block. At that time the block's initial acceleration is

	

X^^	
F° - fd - t^ - I'll

	

i	 (4)
nt i 	rni

The subsequent dynamics is dictated by Equation 2. Initially the block's acceler-

ation is positive and its position and velocity increase. As the tension on the

block is relieved .,y the sliding; motion the acceleration decreases becoming; neg-

ative for sufficient spring; compression. The velocity begins to decrease and

Ultimately goes to xer.) :it which point motion of that block terminates if Yil

< f'. It is evident from }"..: preceeding; equations, however, that the motion of

one ulock will cause compression or expansion of the connecting; springs to its

neighbors. This can stimulate motion of the adjoining; blocks thereby propagating;

the earthquake along the fault. Thus the motion along; the fault is governed by a

set of coupled dynamic equations of the form of Equation 2. Numeric techniques

for solving such equations are well knuw•n and we need comment here only that

the solution would be ambiguous if we did not impose some boundary condition of

the end springs. in the simulations reported here we have assumed periodiL

boundary conditions for N block: (N = 50 in most of our simultations).

Before continuing; the discussion it is instructive to solve analytical1v the

Ample case in which only one block moves during; an earthquake. We further

assume K i	 K i + g = K' and cake as initial conditions x° - xl r + i	 x° = 0. ,'.'hen

4



suppret4sing the subscript i

A	 Kut - I'd
z+ — x =

In	 n!

Since the velocity of the driving plate is ver y slow (-5cm/yr) the quantity Kut

is essentially unchanged during the motion and we let t = t O - constant. 'Mus the

equations of motion becomes

zK	 Kutrl - I•d

nl	 n!

which has the simple solution

3K (t - to)
X = 3 (tit " - 

h	
sin`	

n!	
?	 (7)

But the condition for starting motion is Kuto = f ` so that

I 'S	 ^K t	 I'd
x 	 h (I - a)sin=	

rll ;
; 	 a = fs
	

(8)

We take note of several easily derived consequences. first the tota' displace-

ment of block i due to this event is

1 fS

	

x max - 3 K (I -.r)	 (9)

while the duration of the event is

m
t rilax - to -3K(10)

Notice that the duration of the single block event depends on1v on the mass of the

block and the spring constant and is unaffected by the friction parameters. The

5
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peak Velocity Is

(i6-id)
xmax	

%/Th m
	 (11)

Me typical time scale for re-occurrence of motion in this block is

fs - fd
A"r	 (l2)

Ku

The initial force on block i was Kut,,. The final force is --K(ut (, - 3xntax). Thus

the change in the stress force, n F. is

AF i = 3kx max = :( P , fd )	 (13)

and

AF

!I
	 (14)

The stress force rise in the adjacent block (e. g. , A[: I + i ) is

AF i +	 Kxmax ` 3 (I's - fd )	 (15)

AF i + i

Fi + i	 3o	 _ = H-a^
	 (16)

Notice that the fractional stress changes depend only on the ratio of dynamic to

static friction, independe;it of other material properties. If, for example, a =

0. 8, Were is a forty percent drop in the stress of the ith block due to this event and

a thirteen percent increase in the stress of its neighbors. if this additional stress

rise were sufficient to overcome the frictional strength of the neighbors these

blocks would have been stimulated into motion. Furthermore, the absolute change

in the stress force as a result of the earthquake is determined by twice the

i;
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difference between the static and dYmamic frictional strengths, main independ-

ent of other material parameters.

111. VISCOELASTIC MODEL WITH TIME--DEPENDENT tmr,rION

The elastic mcxlel which we discussed in the last section generates simula-

tions which have many features common to naturally occurring events. These

features include the slow accumulation of tectonic stress and its rapid re'iense by

stick-slip Sliding in earthquakes, the existence of seismic gaps in areas on high
I

frictional and elastic constant variabilit y , and the gradual propagation of it se- e

cession of earthquake events through regions of relative uniform properties.

Events of varying magnitude, ground displacements, and volume are generates.

Nevertheless there are a mrrnher of important phenomena which cannot be simu-

lated ^%ith this model. foremost among these are aftershock sequences. In or-

der w g,.nerate aftershocks we assume some mechanism for the rapid recovery

of all or part of the stress released by the main shock is necesscuy. The tectonic

forces represented by the slowly stretching elastic springs build too slowly to

provide an aftershock mechwiism. By contrast, Burridge and Knopoff (Berridge

:uul Knopoff, 1967) showed that viscous creep folloNN!iig an earthquake can redis-

tribute stress in it matmcr which produces aftershocks. Dieterich (lActerich,

1972) proposed partial stress recovery due to viscoelasticity in a region which

slides during .ur earthquake then remains locked while the viscous forces adjust

to the displacement. Wien coupled ultli it post-earthquake weakening of the fault

v
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frictional strength Uds mechunlsm will also generate aftershock sequences. We

now elaborate on this model.

Consider the same mechanical blocks as in the previous section. No%% , , ho%%-

ever. instead of having coupling by simple elastic springs, the coupling is a par-

allel combination of elastic and Maxwellian elements as shown in insert b of Fig-

ure 1. Assuming that the blocks are not proving and that the driving plate vei:r-

(
city is still u. The viscoelastic force equation is

-(t - t+,)/r; 
+(; i - 

to-(t - t i_)/r t - t +(;fir- (t - tl) /r'

+K(x t+ t - xit
)(I-c-(t-ti+)/r,)+K

ti _	 r _^	 t ' x i )(xi	 tl-e-(
t -(,_)/r,_t)

t
(17)

+ K , ur'( I - c" ( 	/'1) + K'u(t - tie" (t - t,)lr;)

- K,X I I - e i` - t)Iri ►

In the proceeding equation we have introduced the follo%ving symbols:

G i =	 force on spring i at time ti+

G i _ i -	 force on sprint; i - 1 at time ti_

G t r -	 force on sprint; i' at time ti

t i+ =	 last time block i or block i + 1 moved

t i_ =	 last time block i or block i - 1 moved

t i	 last time block i moved.

The tau's (r) are the relaxation times of the vtscoelastie system. The condition

for the onset on a simulatior earthquake is

Fi(t) = 11(t)	 (1>3)

8
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where the static frictional strength fs (t), is also a weak function of time increas-

ing slowly from dome minimum value immediately following cessation of block

motion. Equation 17 is a transcendental equation for % , hich can be solved by any

of several numeric techniques. The acceleration and de-acceleration occurring

during an earthquake occur on a time scale much faster than the viscous response

time hence we can ignore viscous properties during the earthquake and write the

following equation of motion

nt,ii - [K i( xi + t - x i ) + K i - t (x i - i - x i ) + K ;1 tit - y]

+[K,i((xi+t -xil-(x!)+t -x°)) +Kt^_1((xi- t - x i)-( x^-
t -xi	 (191

+ K; wa - x i l- (ut^ ► - x° )1^ + 13° +3° + +3i' 1 - f^
. ►

In this equation the first bracketed quantity represents the elastic force due to

the stretching of the purely elastic element of figure lc. The second and third

bracketed quantities represent the forces on the Maxwell elements. The second

bracket gives ne ehanp^ in the elastic force due to stretching*, or compression of

Maxwell elements sprtmc s from their position at beginning of simulation earth-

quake. The third bracket gives the force prior to this stretching or compression.

This ,nodel has two key elements: the vtscoelasti.city is responsible for a partial

recovery of the stress drop occurring; during an earthquake event and the time

dependent friction is responsible for a weakening of the fault strettl;th. The model

operates as follows. Assume initially (for simplicity only) that all elastic and

Maxwell elements are relaxed, that there is no stress acting on any of the blocks.

As in the purely elar-On mode l , stress accumulates with the drift of the driving

9
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plate until one block is stressed beyond its frictional strength and begins to

slide. The subsequent motion may involve one or more blocks depending on the

frictional strength of the oti:cr blocks. The motion of the blocks results in a

stress drop \hose magnitude is determined by the sum of the pro( l ucts of the

spring ecnstants and the change in sprint; stretch. This is all similar to the pure

elastic case. Now, however, wi le the blocks remain fixed following the simu-

lated earthquake the viscous dashpots tend to aciJust to relax the stretch or com-

pression in the Alaxwoll element springs. Consider the primed coupling element

,.v`iich has wldergone a reduction in the spring stretch AL. The resultant stress

drop is (1.' + K;) AL. If the Maxwell element dashpot has sufficient dine to re-

t.L,. the change in the stretch of the K2 sprin t;, then the final stress drop following

viscu.!s adjustment is K' 0 L. Thus the fractional st ess reco%ery of the original

stress drop is K,/(K' + K',). Assume, "or illustrative pvrposes that K, = 3K'

then seventy five percent o f the original stress drop duri,.g a simulation earth-

quake is recovered during the subsequent stress risc due to viscous adjustment.

if the frictional strength of the taiilt in this region is sufficiently reduced after the

ear*h-, s ake compared to the pre-earthquake level and if the viscous response is

sufficiently rapid, then an aftershock will be generated. The process may be re-

seated many times. The reduction in frictional strength along the displaced por-

tion of the fau_tt is a consequence of the finite time required to heal the break sub-

sequent to the slippage. This model uses a friction strength which rises loga-

rithmically N^It.h time since the last slip. The time scai° for the aftershocks is

10



usually of the same order as the Niscous relaxation time. We will )resent il-

lustrations of these aftershock sequences in the following section. We should

emphasize that this aftershock theory is just one of several alternative treat-

ml.ntS of the aftershock problem. Subsequent papers will deal with computer

simulations employing; other theoretical models,

IV. RE iULTS

We now discuss the results of simulations using; the models dl[F , ussed in the

previous sections. We first consider the simple case of purely elastic coupling;

between the blocks and the driving; plate. Figure 2a shows block acceleration,

velocity, and displacement versus time for typical small two block event. 'Phis

SEQ was initiated when the elastic forces acting; on block 44 overcame the static

frictional strength of the block. The block begins to move with a peak accelera-

tion 11 cm/sec t . * As Uiis block slides to the right and begins to relax the force

acting; on it, additional force is applied to blocks 43 and 45 by the compression

and extension of the i = 43 and i -- 44 spring::. At — 7 seconds after the initiation

of the event, the force on block 43 has reached the frictional strength limit of that

ble and it too begins to move to the right. As both blocks continue to slide to

the right additional force is applied to blocks 42 and 45. Nevertheless these

blocks remain unmoved as even the additional stress clue to the motion of blocks

*The acceleration, velocity, displacement, and time axis shown on Figure 2 are scaled by the independent
parameters f. K. and m. Thus, for exampic, the forty second time scale of Figure 2 is arbitrary to the
extent that independent parameters can be changed. See the Appendix for the scale relationships.

- v

11



44 and 43 is insufficient to overcome the frictional strengths. The moving blocks

c3ntinuc to deaccelerate until they come to rest at —34 and 39 seconds after the;

initiation of the event. The force con(litions on Uav fault hreeeeding and following

this SEQ are also shown in F igur(a 2. Notice the stress relaxation in the moved

blocks and Uac stress; buildup in the adjacent unmoved blocks. In Uic case where

the frictional and elastic properties of the fault region vary only slightly from

block to block, this predisposes this unmoved border region to motion in a sub-

sequent SEQ. By this mechanism the location of SEQ's propagates down the en-

tire fault leaving few, if any, seismic gaps. We can see this more clearl y in an

event plot as shown in F tgure 3. In this plot each line summarizes pertinent in-

formation concerning one SEQ. The first column gives the event number, the

second the time of occurrence of the SEQ. The third column of fifty spaces rep-

resents the fifty blocks of the fault used in our simulations. Motion of a particu-

lar block during the event is indicated by an X; otherwise the apace is left blank.

Thus in event 316 at time -5.147 x 10 1 `a seconds, blocks 6 through 9 moved wid

all other blocks remained stationary. The fourth column gives the block number

of the first block to move in the event, and the fifth column tells the total number

of blocks displaced in the SEQ. Figure 3 is an event plot for which all K' = 1

x 161 
-7 

dyne/cm, K i = Ki /2, and the f were in the range (1.95-2.05)x 10 20 dynes.

All the blocks have an equal mass of 2.8 x 10 28 grams. Notice that in this case

there is a cycle of similar events which tend to repeat themselves. Although

there is no true periodicity of events, there is an approximate characteristic

12



time interval of about 2. 5 x 10° seconds during which almost all blocks along the

fault move at least once.

By contrast W this case where the elastic and frictional properties vary only

slightly from block to block, we now consider a case, Figure 4, in which the

friction is allowed to vary randomly Yrom 1 x 10 20 to 3 x 10 21 dynes. In this

case there is considerably more scatter in the location of SEQ's.

Figures 5 and 6 show two other cases of some interest. In Figure 5 the

frictional strength varies smoothly from a winitnum value of about 1 x 1020

dynes at blocks 1 and ,50 to a maximum value near 3 x 10 2`  dynes in the middle

of the fault. The function chosen to represent this variation is f^ = 3. 16 x 1020

exp(-(i - 25.5)/24.5)' - 0.16 x 10 20 (dynes). Because of the symmetry of the

fault equal simultaneous events occur on the right and left sides of the figure.

Two distinct patterns are observed. In the early stages of the simulation the

pattern of SEQ events traces out the friction curve. The weaker elements move

frequently with small slippages while the stronger elements are more resisUalt

to being displaced. Gr.ulu.dly, however, the pattern evolves into one in which

large sections of the fault move in uiscretc steps separated by intervals of little

activity in those sections. Tlw reoccurrence time between the large events de-

creases with time while the number of blocks involved increases. After the larg-

est of these events has been completed much . f the tension in these sections of

the fault has been relieved, and the earlier pattern of tracing out the friction

13
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curve its repeated. This behavior is characteristic of a situatWn in which the

fault goes through a charge-discharge cycle. During the charging phase stress

gradually accumulates and the small events which cio occur only partially relieve

the mounting stress. Finally a large event or events discharge most of the ac-	 '

cumulated stress after which the cycle begins anew.

In Ftgrure G the friction is, as in Figures 3 and 4, randomly distributed, but

now the limits on the random number generator are 0-1 x 10 20 dynes. The par-

titular distribution used is shown on the figure. We notice in Figure G that the

weak elements move frequentl y , often in single block events.

A critical factor in determining the number of blocks that move in a given

SEE is the relative magnitudes of the connecting anti leaf springs. Larger values

of the leaf sprint; constiutts (relative to that of the connecting springs) favor events

with a large number of blocks moving. The explanation is simply that with the

larger leaf spring constant the tension between the moving plate and the associated

connected block can be relieved with a relatively small displacement. This small

displacement coupled to the weaker spring constant of the connecting sprint; is

less likely to induce motion in the adjacent block than it would if the situation

were reversed.

Three examples of sirnulations using the viscoelastic model are shown in

Figure 7. The effect of the longer time constant in reducing the number of after-

shocks and in increasing their inter-event period is obvious. Results generated

v

14

Ll



by the viscoelustic model are very sensitive to the relative values of the elastic

and viscous parameters. We have performed simulations with many combinations
K'

of these parameters in the ranges 10 16 dynes fc: K' < 101 8 dynes, 0. 1 <— < 10,

K2
	 KZ	 K 0

1. 5 < k and 
K' 

5, 10 < z: and r < 10° , U < fs < 3 x 10' dynes and 0 < fy

< U. 99.

Several general observations can be made.

1. For simulations in wh)ch K = K' and K 2 = KZ the number of blocks mov-

ing during a typical event rises as the system advances from an unstressed to

highly stressed state. Eventually a condition is reached when a high fraction of

the simulation events involve Al or nearly all blocks. This condition is influenced

to some extent by the choice of periodic boundary conditions.

2. Conditions favoring a large number of aftershocks include small visco-

elastic response times and larger values of K2 with respect to K'. The former

condition assures that the full effects of the viscoelastte stress recovery will be

rapid compared to the time for appreciable rise in the frictional strength. The

second condition implies that an appreciable portion of the initial stress drop

during the SEQ is subsequently reduced so that the post-SEQ stress level ap-

proaches the pre-SEQ level.

3. The aftershocks tend to have smaller displacements than the main

shock. This is consistent with the trend observed in nature and with the fact that
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only a partial stress recovery occurs. It is not true however, that there is a

monotwe decrease in the average displacement with aftershock number. The

exact nature of the aftershock displacements depends in a complicated manner on

the frictional characteristics, viscoelastic parameters, and number of blocks in-

volved in the event.

1. The mean time between aftershocks tends to increase with time. For

som ^ simulations the time interval between the main and first aftershock is the

miramum time interval between events in a sequence. In other cases the mini-

mum time interval occurs between the first and second aftershocks. In either

case there is a subsequent trend toward increa sing periods between aftershocks

provided ,aftershocks with a common epicentral block are considered. For

aftershocks with different epicentral blocks there may be a super-position of

several sequences, each involving its own epicentral block. Alternatively, the

behavior mav he more complicated. Some of the, simulated aftershock sequences

show a logarithmic increase in the number of ;aftershocks with time, consistent

with '^rnori's (Omori, 1894) observation of a (a + bt) -1 dependence of aftershock

frequency on time following the main shock. In other cases there are consider-

able deviations from this siniIAL; uLuc dependence.

5. The aftershock region is generally confined to the region of the main

shock. The number of blocks displaced in an aftershock is less than or some-

times equal to the number displaced in the main event.

W

-q.:
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V. CONCLUSIONS

In this paper we have begun our examination of various numerical simulators

of earthquakes. We have focused attention on two theoretically simple models,

one employing elastic forces and Buie-independent friction, We other employing

viscoclastic forces and time-dependent friction. Our central conclusions are as

follows:

1. When the elastic and frictional parameters are nearly uniform from

block to block the SEQ's are characterized by a propagation of successive events

down the fault. Conversely, seismic gaps are more likely to occur when there

are large variation~ in the elastic or frictional parameters.

2. The periodic reoccurrence of similar SEQ events is frequently observed

in cases where the parameters of the fault and the blocks are nearly homogeneous

from location to location. The reoccurrence time is determined primarily by the

difference between the static and dynamic friction and by the elastic constants of

the springs.

3. Simulator events involving large displacements tend to involve the mo-

tion of several blocks. The simultaneous motion of adjacent blocks lessens the

displacement restricting clastic forces between blocks.

1. Frictionally weak elements tend to move frequently with cone, mitant

small average displacements.

17



6. In the viscoelastic model the aftershocks exhibit several characteristic

features:

1. the period between aftershocks increases with time following the

main event,

h. the magnitudes and block displacements of the aftershocks are less

than that of the main shock. However, there is no consistent de-

crease in aftershock magnihide with time,

c. the aftershocks are confined to the region of the main event. Fewer,

or at most the same, number of blocks are involved in aftershocks.

7. The occurrence of aftershocks in the viscoelastic model is enhanced by

short viscoelastic time constant, r, and by large values of the ratio 2

Several features concerning numerical simulators await further investiga-

tion. These features include, among others, the exploration of alternative earth-

quakes theorfes particularly with respect to fault friction instability and aftershock

occurrence. Also deserving examination in the correlation among the inj)ut and

output parameters of the model. For example, King (King, 1975) has observed

in his mechanical models the statistically valid relationship: log (Energy released)

5. As the ratio, — , of the elastic driving force constant W connecting
K

force constant increases, the length of the average SEQ event decreases.

16



= A + B log(Nd) where N is the numtxr of blocks involved in the event, a Is the

average block displaceinent, and B - 1. We have observed u sine lar correlation

in our numerical simulations. Finally a detailed examination of the importance

of boundary conditions and geometry and topolujZ , in two and three dimensional

models also awaits further discussion. We holx; to address some of these ques-

tions in subsequent papers.

19
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FIGURE CAPTIONS

F igiire 1. Mechanical block representation of fault. Each block which rests on

the friction surface is coupled to nearest neighbors and to the driving;

plate which moves to the right with velocity u. (a) elastic coupling cle-

anent - perfect spr ing Mth spring constant K. (b) viscoelastic coupling

with spring constants K and K 1 and dashpot viscosity rl.

Figure 2. Example of a two block SEQ. The displacement velocity, and icceler-

ation of blocks .13 and 44 are shown as a function of time. This SEQ

occurred early in a simulation when the pre-SEQ stresses on Idocks

42-45 were equal. After the SEQ the stress on the moved blocks has

been reduced while the stress on the adjacent unmoved blocks has

risen.

Figure :3. Event plot for simple elastic force model with K' = 1 x 10 17 dyne/cm,

K I = 5 x 10 1 "dyne/em and f' randon v distributed in r..ige (2 t 0.5) x

10 10 dyne.

Figure 4. Event plot for simple elastic force model with K' and K, as in Figure

:) but f; randomly distributed in range (2 t 1) x 10 20 dyne.

Fi,'-We 5. Event plot for simple elastic force model with K^ and K, as in figures

3 and 4 and f  = 3. 1(i x 10 20 exp(- (i - 25. 5)/24. 5) 2 - 0. 16 x 1020

(dynes).



FIGURE CAPTIONS (Continued)

F igure 6. Event plot for simple elastic force model with K; and K, as in Figures

3-5 but fs randomly distributed in range 0 < V < 1 x 10'" dyne.

Figure 7. Event plot for viscoelastic force model with time deywndent friction.

The parameters of the simulation are K; 1 x 10' 	 = 3K j , K,	 ...:
M

= 1 x 10^ ^, K, 1 = 3Kj , 1 x 10 20 dyne < f^ (i„) < 3 x 10 20 dyne, fd

= 0. 98 f i (to ), f i (t ) ` i i (t0 ) I 1 , 0.021 log (1 + t - t ( ^) I .
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Figure 6. Event plot for simple elastic force model with
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 as in Figures 3-5 but f s randomly distributed
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Figure 7. Event plot for viscoclastic force model with
time dependent friction. The par.uneters of the sim-
ulation are Kj = 1 x lU 1 s , K"^ = 3Ki , Ki = 1 x 10 7,
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0. 98 f , (t 0 ), f (t) = f i (to) 11 + 0. 021 log (1 + t - t0 ) 1.
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Figure 7. (Contir. •u :r.)
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APPENDIX

SCALING LAWS

The results of a simulation can be scaled according to the following relationH

derived froth Equation 2.

Given: the results from a simulation performed with independent parameters

f' K' m'

Define:

= Fat' (A 1)

K = CK'	 (A.-')

in = Dm'	 (A.3)

Then:

X=Cx'	 (AA)

X -	 X	 (A.5)

B
X = F) X'	 (A.6)

to =	 t^	 (A.7)

1	 At = —fS At'	 (A.$)

where At' is a time interval associated with block motion. We have assumed

At' << tt) .
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