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1. Introduction and Motivation

This paper presents preliminary results which, in our opinion, repro-	 ii

sent a first necessary step in the systematic computer aided design of

reliable control systems for future aircraft. It is widely recognised that	 {

advances in active control aircraft and control configured vehicles will

require the automatic control of several actuators so as to be able to fly

future aircraft characterised by reduced stability margins and additional

flexure modes.

As a starting point for our motivation we must postulate that the

design of future st,,, !tiility augmentation systems will have to be a multi-

variable design problem. As such, traditional single-input-single-output

system design tools based on classical control theory car iot be effectively

used, especially in a computer aided design context. since modern control

theory provides a conceptual theoretical and algorithmic tool for design,

especially in the Linear-Quadratic-Gaussian (LQG) context (see kthans Ill

for example), it deserves a special look as a starting point in the investi-
i!

gation.	 !!i

In spite of the txemendous explosion of reported results in LQG

multivariable design, the robustness properties have been neglected.

Experience has shown that LQG designs "work" very well if the mathematical

G :i4i .

........................

RY

models upon which the design is based are scmewhat accurate. There are

several sensitivity studies involving "small parameter perturhations"

associated with the LQG problem. We submit, however, that the general

problem of sensitivity and even stability of multivariable LQG designs

under large parametric and structural changes is an open research area.

It is useful to reflect upon the basic methodology in classical
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tbsocy which dealt with such lire parameter changes. The

overall sensitivity and stability considerations were captured in the

definition of gain and ykasm margin 	 If a closed-Loop system was cbaraa-

terised by seasonable gain and phase margins, than

(a) reasonable changes in the parameters of the open loop transfer

(b) changes in the loop gains due, for example, to saturation and

other nonlinearities

could be accomodated with guaranteed stability and at the price of somewhat

degraded performance.

Although LQG designs are 	 oriented nonetheless their

ft- amency-domain interpretations are important, although not universally

appreciated. For example, for the case of single input single output

linear-quadratic (LQ) optimal designs Anderson and Moore (2) hors shorn

that I4)-optimal designs are characterised by

(i) an infinite gain margin property

(11) a phase margin of at least 60 degrees.

Such results are valuable because it can be readily appreciated that at least

in the single-input-single-output case, modern control theory designs tend

to have a good degree of robustness, as measured by the cl"Asical criteria

of gain and pl±ahse margin.

Advances in the mnitL-input-multi-output case however have been

scattered and certainly havw not arrival at t2& cookbook design stage.

Miltivariable system design is extremely c*Wlex*. To a certain extent

* Evan the notion ot'what constitutes a --4ero' of a multivariable transfer
matrix was not fully apSwediatei until nuvently.
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the numerical solution of	 is very easy. however, fundamental

understanding of the structural intordepemdsmrise and its uteractions with

the weighting matrices is not a trivial natter. go believe that such fu de-

mental understanding is crucial for robust designs as well as for reliable
t

desigae that involve a certain Angree of redundancy in controls and sensors.

2be recent S.M. thesis by 0=9 (3) represents a preliminary yet posi-

tive contribution in this area. In fact the technical portion of the paper

represents a slight modification of some of the results reported in (3). In

particular we focus our attention an the stability properties of closed loop

systems designed an the basis of 14-optimal techniques when the system	 '^j

matrices and loop gains undergo large variations.

The main contributions reported in this paper are the eventual results

of generalising the concepts of gain margin and of performing large -pertur-

bation sensitivity analysis for multivariable linear systems d wigned via

the IQ approach.

We warn the reader that such additional theoretical and applied 	
f

research is needed before the implications of these theoretical results

can (a) be full- understood and (b) translated into systematic "cookbook"

procedures that have the sane value as the conventional results in classical

servxw&chraaisa design.

This paper is organized as follows: in Section 2 we present an 	 i

explicit parametrization of a s abclau of linear constant feedback maps

that never destabilise an originally open-loop stable system, and establish

I
some of its properties. In section 3, we apply this construct to obtain

several new closed-loop structural stability characterizations of multi-input

IQ-optisal feedback maps. Ne conclude in section 4 with a brief discussion
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a[ de sulos000s of do a wswite at two a!or Sor	 or-a&" itsoetiw

.	 lseieei isi}^.

l) 1!s liaeer ties-loweriaat sysbani

s(t) - a s(t) • • u(t)
s (t) - R s (t) -

res^e i (t) E 1C	 i (•) - eta" vs~

u (t) E	 • (•) - come of wsabor

`	 s (t) E	 s (•) • wtput wsopcoc

ao^/ A E Rte°'
c	 —

RT E Rr^°

Will be 6onotsd br t (a, ^, R=). UMs !t is iss+aloVMt to the discwiM.

rs will shorbsa the aotatioa to L (A. 8) , Md nbse +e the choice A	 i,o a1Mr

tsw the aoatouct, we will just w t.

if the ustris A to stable (L. 0. all ai+ wluss of a haw striatlr

`	 ROV&tiw real parts), we will mar to 1(& 1 IN as a stable -!stem.

2) nW - rasrls specs of
•pU - amllspece once") of t

1t W - root of

2) Oiwou "w arstom t Uy J !_) .

a(A1 t) oowtsollabls sotispecs of do pair (AA ^)

. J
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• w^I c of t" pair (117, A)

° f1 o a Ai-1)

i•1

s) if Q c	 is p"itiw ss>riiiaite, we will write

Q>^

if Q is positive dismiss, we dll .writ.

Q>0.
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2•	 of somi destabilisime goodomok ores

Ift basis esr dimmuse own with

}	 ^tyoa 1

Given do stable system I (aJ ^) . Let

_ M 
A 

(jr E e° (a + t 0) is otile )

i.e. f(I) is the set of all faaiaok amps thst never I IEMilisa an arisaaaily

epee-Lssp stile agetae , wbeae

•(t) A 0% (t)
Z&mUy, one w wM libm to be able to saglicitly peramstrise S(E),

but as this is a wall-kos m I I -table peablaim, our etrat.sy bar. is to

Leak par a min .0	 I sties at a (b nftially) sufficiently qwmwal

at f (1).

so basis by first raoallims ame stamdard :Wqpwt7p. resultes

Z,a..ia 1 (.b.w..a

(1)	 zt a is stable, them the lqupr v egoatios

to+,yl +Q -o-- --
with Q> 0 has a glim solutiaa P> 0.

if in addition (QIA , U to observable, tban t > 0.

(ii)	 if

(1) s > o, Q > o .Patieft t + a=t + Q • 0

(2) (Q , JO is detectable

Thee L ±a •itwhle-

i

o

fit") u It!!  sad (Q^, O) in observable (detectoD -0 , then for all

1 > 0, b > 0 and fbr all i, t=, the pair (12-^^-F-R , A + h tr)
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is iiaesabla	 J.

ftewe

OW (.I ) * men 141, p*. 2M

fat iii), aao 141. !'. 299

fte (iii), am 101, gyp. W.

2b lsooead, the tsllM IUM datiattiaa UM M metal:

Dafiait im 2

rw any eta" to Lot

LP(A) N 3, oil AL *eK < o)

zi+w d (c>2JS 1+ AIR <0)

ONX"*  ' LIP(A) is is dal a WiMer aiiaat of the met of all positivo-

aridafiait+s astsiass at dl=moiaa a.

SCENE"

sappoos that

O

A-	 , 11 <0, )L2 <0
0 A2

"NOR

L* W •	
K, 912 -7 0 L	 ill + A2)2 

2

[12 R2
	 'K2 '— 0	 1^	 4AIx2	 0'12

	

^:. r 3^ 	 N21 > 0 iff a, > 0, K > 0, '4'K2 > K2

	

I KU W2 J	 40	 12

.	

cal . A2) 2

	

aad that `	> 1, ors* .O.e.lttT itf al -.
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fIP W is a wawa camas i.e. [^. a LV W ispiaes

4^31 + °A t ZAPW fer all °l > 0, a2 > 0

LL) [ s LP%) n Lt(%) Implies z c Lf% + ^)

R t L* W implies [ s V % + B(S - woIK)

pywe

we are mar res" tic intsoiwoe srr fi=st cseclal reoultr

Lamnw 3

Lot A be stable.

Than U1 + (r - 1010 is stable for all [ c LP (A) and for all M > 0,

r - -nT mach that R(r) C RW .
If R m Lt+ (A) , thaw the sw0itiem R(w) C R(K) can be anitted.

lot

ea-trA41-JW1	 11

Since [ E Lt W , we bove Q > 1 a d A stable implies (9 , LU #is

alwWs detectable.

bM

R^ ♦ ^=[ ♦ Q-J	
J

asK(A+ (.-polo + (A+ (n-10LO =it +21cMR +Q- (s n c ♦ c n= b -o	 ^!

bet [ n K	 it - o miwoa n - -Nr.

If R E L11+ W, thaw Q> 0

r t ^Q • — N y (n . to -1010) is	 .ibiab implies (A + W4010
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Is stabIe dy Laser 1 (ii) .

otherwise, anowne t(K) C R(M)

Miab iwies that thsrs Mists V ouch that n V N or that

(/-M)t • (V- I)NR.

^j► defining s Iv_ - IDN-'

FT i N-n[

sA0

10 I

In Lssn l (iii) , we have that

(	 + _ M [, 11 + (M - N)[) is detectable.

by Lea 1 (ii), we therefore have (A + (N - M)R: stable.

Q.E.D.

A special case of Lowers 3 was established by Barnett and Storey

in [S).

Sy specialising low s a 3; we ierlediatwly obtain an explicit parametri-

zation of a subclaa of	 feedback. First we introduce:

Definition 3

Given the stabla st str E (b1 N) • let

sl (ZD Q {C? E fe's	 (S - L)	 =1^[, S - -5, L > 0,

ai6 sitter [ t LF+(t) or else

it C LP(A) with t(s) C s(I.) )

so am now state osr srsait as:

I	 •	 '01

. 1 n
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Theorem l

Given the stable system E(A, B), then

MGT r S1 (E) implies (A + B GT) is stable

(ii)	 eA 
tQ a tdt > f^ , (A+B GT) T  g e (A+B GT) tit

fo" 0

*isre Q > 0 is such that K A + ATK + Q 0 and G  
A 

(S - L)BTK E Sl( E) .

Proof

^1)	 Lot M - B L BT , N - B S BT in Lasses 3, and the result follows

directly.

(ii) Let Q > 0 be such that

KA+ATK4Q • 0	 ^^)

Then we

'

 have

JK a	 a T  g eAtdt
0

Next rewrite M as

K(A+B GT) + (A+B GT ) TK+ (TKB L BTK+Q) 0

Where GT (S - L)9K E Sl(E)

Which implies K s J	 e(^+ T)Tt ( 2R B L BT  + Q)a(- -	 dt
0

hone*sA tQ eAtdt	 a (A + B GT) TtG a (A + B GT) tdt0̂	1
+T	

CO 
e (A+B GT KBLB)Tt	 T1Ca (A+B GT)tdt•	 ---	 ---

f0
T

or ^^ sA- tQ eNt dt > a s(A+B G
T) t Q e(A+B GT)t dt

O

Q.B.D.

i ! 1
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It cam► be easily shown that all the eigenvalues of the feedback term

B(S - L)BTK have non-positive real parts (the term -B L B 
T K has only real

eigenvalues while B S B 
T 
K has only pure imaginary (conjugate pairs) eigen-

values or zero eigenvalues). This observation, and the content of Theorem l(ii),

makes it convenient to interpret S 1 M as a natural generalization of the

clwwept of 'negative' feedback to the multivariable and multi-input case.

The next two corollaries are easy consequences of Theorem 1.

f

Corollary 1.1

Let E (A, B) be a system with a single input, i.e. let B be a column

(nxl) vector b. If gi, ..., gT E S 1 MA, b)), then

a.gi E S 1 M for all a. > 0, 1 - i t ..., j
-1

Proof

Each
T
 is of the form s.bTK. for some admissible r i p Ki,

so ^.l aigi =1 airibT^
=
- 	

-1 airier)

But from Lemma 2 (1) , K3 E LP (Fa; implies i a.rA E LP (A) for all
i-1

air. 10 hence	 aic T E LP(A) for all a. > 0.
=1

Q.E.D.

Corollary 1.2

Suppose there exists L > 0 such that B L BT E LP(AT).

Then (A - B L BT (K + N)) is stable for all K > 0 and N - -NT such

that R 	 D R(i1i) .

r -

^e	 I ^;
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If B L ST E LP* (AT) actually, then the condition R(K) :) R(t) can be

witted.

Proof

Immediate from 'taking the transpose' in Lomas 3.

Q.E.D.

Theorem 1 has illustrated the importance of LP(A). It is therefore

useful to have an alternative characterization of LP(A)s

PtOPosition 1

LF(A) is AT-invariant, i.e. for x11 [ E LP(A)

ATR(- C R(K)

Proof

KELP (A) if f L A + AT[ + H HT - 0 for soar H

We claim that

• OX) - M (Hr, A) - unobservable subspace of (UT, 1U

^ T
Pbr [ - f 0 t H NT s^t at

so z E n(<T, A) implies H a tz - 0 fox all t E R which implies z E NW.
f' 7

Oonwazwely, s e W(K) implies sTL z - 0 which implies	 IS e-jt dt - 0
v0

or R &- z - 0 for all t e R , i.e. z e n (X , A).

TO complete the rwww%f sots tLet

R(1U - R(s=I - rWl

- n (1I .11)1

- coat.-ollable smbspece of tee ^) .
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out my controllable subspace of AT is necessarily an A=-invariant subspace.

Q.E.D.

rrwarkt The significance of P:opositioo 1 is that it provides a systssatic

memns for generating all naafis of LP (A). Par asasPle, if A has distinct,

real eigearaloa, than wnesy i E LP(A) is of the fora

R • PIN P

*m the rows of Pare last eigearec Tors of to i.e.,

g A - A P A - diagonal (ll' •••• la)

and M - diagonal (a,, .... 
an 

ni > 0, i- 1,  ....• n.

Thus, all members of LIP (A) can be trivially generated once P is

While membership in 51 (1) is sufficient to guarantee closed-loop

stability, it is of coarse not necessary, i.e. 8 1 (1) is a strictly proper

.abset of f(1). Intuitively, if the open-loop .Ystssi is stable 'e-mail-'

to begin with, it men tolerate a oeatain -- mm i of 'positive' feedback with-

aft leading to closed-Loop Instabilt.ty. In otber words, the poles of the

open-loop systems can be shifted to the right by feedba ck without destroying

stability so long as none of thee ?gat shitted into the crowd right-half

PLOWS. by allowing seek additiowal aoa8sstabilLai" feedback, theralbfrs,

as oWht to be able to 'enlarge' 8 1 (1). Ewe pm wisely, we be"t

oltaeitlst d

Giwa the stable system 1(A,& 1) and off L > S. L E 0', let

Lim, L) 
A 

(a> OJRA ♦ L=t ♦ 3KaL1=R<0)

Y'̀ (I. L) 1 (R > ^11 + 	 + 4 t;t ! L < 2)
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i
r
	 .

Definition S

Given the stable system E(R, B), let

S2(1) 0 (G E R IGT (L + S) B , L - L , S -ST,
A

L > 0, L > L, and either

[ E LP+ (E, L) or else R E LP(E, L)

with R(L + S) C R(L - L) )

Tbsotem 2

Given the stable system 2: (A,  8) . then

GT E 62 (E) implies (A + b GT) is stable.

!	 4

1.

The pzoof follows by a straightforward e:tsnstan of the proof of

Less 3 and The o 	1, and hence is omitted.

Q.Z.D.

mark: It can be easily seen that Theor em I is just a speciza cast of

Theorem 2 (with L S 0 and L < 0, S2 (E) will be reduced to S1 (E)). Note

that in the general case covertA by 11-- em 2, -so definiteness assumption
A

is mass of L^ and thus various Omdstur+es' of 'positive' and 'negative

fes^bm0ts are allowed.

The mesh proposition pta►iddms mutbsr clarification on oar parametri-

nation sohene. First dafias:

fl(D) {^ E eaIGT - D o1R, D E e arbitrary.

[ER°amd[>0)

72 to) {gT c ena lt(c=s) < W(Ai.

II



-15-

l^roMit_ 2

!1 (B) n !2 (B) -

!l (B) ll ?2 (s)

i.o. any feedback op GT E R^ is either is the sat ! 1 (B) or alas t2(a).

ft"Of

Us need only to slow that

!1 (.) - (GT E 0'1M(C& - s(G=) }

ltioersityt

lapQoss c= E !1 (9) , i.s. there GKIRts D E 0' sM K E R"Zn	 > o

such that G 	 D 9TK. Tbsn

GTB DT D BTK B DT > 0

so IIK(GTB) > W(G H DT)- BK(D BTK a A fi, W(D B"Y.) - W(GT)

Sufficiency:

Take V = G T B and obaae that the e"ation

GT m GTB BT 

has a solution K > 0 if R(ez)

Q.Z.D.

We now relate the o pi -1 eat of l&Vjv o itian 2 to 21 Fi 	 2. Observe

first that S2 (E) ^ !1 (Z) , and bam ors parsrtrinatioa adr	 faila to

aspbare any	 l+as^as! Imp c !2 (1) . 2bst Z (I) (1 t2 W /
JA demonstrated by fte followl" tsiwW an"p1a:

a	 . v . to 13 C 1p
- - 1'	 0. k - [

0	 1
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l	 1
and (b + b T	 1	 is stable.

	

0	 aZ

Mote, however, that it a is of fall rank, then the not 72 (a) is MOT

generic in Rte®.

The awe Labrosd--- quastioa, 'in S2 (1) generic (i.e. donee) in

s(tl n *1 (H)T • is at frosent ummAV d.

Out results so far have been on sTstsas I(1►, s) WUcb are open-loop

slabLt the question nest arises as to mat the situation %=M be for

pystass Utich are MOT op=-loop stable (i.e. A Me unstable poles) . !br A

unstable it is of coarse not possible to write data I------ type equations,

Om is remladed, hawwr, of the algebraic Micostil equations, Jade", we

daw the fblloftaq iat	 tatiaw of the traditiaael IQ-aptiaisatioa

prables:

OrgMltlea 6

titaua (b, s) a stab	 pair, let

LQ(Ap u (s '_ ols - [ (^, 1 1Jt t4) ftC .ass a > 0 and some I?

snob tbat (Mr, 1) is a detectable pair)

class R^ ^► 	 a=) dsmsbss t*s rmigns positive sami^istiaite solution to

00 aleiee<ic Micah Mnmtiaa:

!^^• a^a- [a27%%+ n 	 0

Pow a ,asses. we .dll dwasks am	 set ar W& I$ A .

WAVAUM 7

sy^ ^^s=s^"^^as•	 a''0
R s sm& M }
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proposition 3

Given any stabilizable system E(A, B),

GT E S3 (E) implies (A + B GT) is stable.

The above propneition merely summarizes the well-known 'standard'

results of IQ-,optimal feedback theory (see [1], [4)). However, the inter-

pretation here of the LQ-optimal feedback class (S3 (E)) as a parametrization

of a subclass of stabilising feedback is interesting.
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3.
	 of Linear

in this section we 	 bow the parametrization schems do loped

Is the pwavious section can be applied to oWAin characterisation of the

Closed-hoop :structural stability properties of ,systems under L(-optimal

feedback. fibre prwciMly, we establish an explicit parametrization of a

general clam of structural perturbations in the control feeiack gains

as wall as in the control actuation matrix (s) that leave the closed-loop

wistem stabilised. These now results, we believe, are the natural genesal-	 a

ientlmns of some earlier results of Anderson and no-re 121.

No begin by first recalling tram Lemon 2(111) that, for A stable,

E E LP W 0110078 inpllies It E LF(A - i L iT[) i however, for A unstable and

R > 0 suah that (A - A L iTi) is stable, it fired 1102 be true that

E L*(L - i L aTW W. The following snam le Underscores this mfortunate

state of affairs.

1-	 I

1 3 	 ST	 2 0	 1 0

0 0	 0 1	 0 1

-1 3
Ulm (L - i L iTil •	 is stable , but

---- 0 -1

LL--	 LL	 -2 2
A(A - , L A0 ♦ (L - L L IA0 TV. •	 ^! 0

2 -2

Nnwwr, we have as folle"A ! imb0s+setisg cb,

lk^4
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Proof

SMkidiate from the Ricoati equation. Q.E.D.

In other words, the above unfortunate state of affairs cannot

occur if K is an LQ-solution.

Mir are now ready to state our first Main result of the section:

fte nras 333 ( Infinite Gain Margin P& rty)

Let R E LQ(A, 3j R)

Then

(A - ( B (S + L) B + • (N + M) f I lU is stable for all

L>K1, M>0, g - -ST , R(8)CRM -R1)

M - -ST , R  C It

s arbitrary

Proof

We have R E LP (A - s R 15TRI, so by Lemma 3,

(A - a R 1DTR + (V - Q) K) is stable for e i N > o V -VT

such that R(V) C W".

TakeV - IB M - R )• +•M3

and  -• 3 B +iN•

end we are duos.

Q.E.D.

For t s 0, ?I-- my 3 is a generalization of the ' infinite gain Margin'

pc^opetty at LQ-optical teemm* fat single-input Big	 :first noted by

EMiM:son w d now* (11, ubo Wwsmd that the feedback gain veetee 3 - ;^T[

em be slit pUad br r1 sesLc 41 2, 1 dtb wa dsstss&* stabi.Utyo the
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proof they used involves classical nyquist techniques. Theorem 3 not ov'y
i
i	 generalises this property to multi-input systems, but allows more cospli-

atred alterations of the feedback gain vectors; moreover, it makes the proof

of this property much more transparent.

A
!bt D 10 0, Theorem 3 allow for changes in the B matrix itself

without destroying stability. One useful interpretation is the following.

Suppose that the optimal feedback gain matriz has been oomputed for

a nominal 26, but that the actual value of B during system operation is

aihaMsd to a • -Bo +	 Then the feedbackterm becomes (E ls TK +

^t ?K . ,s long as D; • a  + M) It for suss • - -M= , M > Or	 en 3

will gaarsaree us that the system will remain stable. (!br example,

4-do , a ), 01. Nwe cospliosted cause are allowed.

A
Alternatively, the Case t 0 can be istte:preted as allowiap for

the possibility of adding eatsa oaatrolless, aid -a l these extra feedbacks

to ' ilme-tws • the closed-loop bslhsvior of the original system- U more

ulstenmt3a ssploitatica of .t►is fdaa rill be dealt with in a fature pMli-

opt.Uns mss also 131).

1hum m 3 has dealt with Ma Case Mss the "negative' feedback gains,

mbo. are allowed to InCr6s s in magnitudes tee oaaver-i sitmaticm, 'Abom

ru In psttva • feedback value ass zedund is magsitmde (or rhea allttleaal

490aftla• ftedb i s rive iadssb O to asstird in t o inset 0 01 "sitloas
r

Ali
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Theorem 4 (Gain Reduction and Robustness Property)

I.rt K > 0 be the Riccati solution to the IQ-problem (A, B, R, g)

where R > 0 and (g1/2 , A) detectable. Then

(i) (A - B (M + N) * K) is stable

for all M > 0 such that M > 2 R71
N - -NT

(ii) If (g1/2 , A) is actually observable, then

(A - B (M + N) 9TK + K71 (Q + N)) is ,slable

where M, N are as above, and

^ - ^T issuchthat A < 1 	1g g	 2-2g, R( 2g-g»R(g)
and N -N is such that R( 2 g - g) D R(N) .

Proof

(i) Let Ec ^- F. ( (A - B R 1BTK), B^ - Z. 	 , B)

Then we have K E LP (Ec1 1.R 1) from the Riccati equation, and so by

Theorem 2,

(Ac + B(M - N) BTK) is stable for all M < a R 1

N - -NT

or cA - B(R 1 - M + r)aT1U in stable

let M - R 1 - M > ^ R 1 , and the propf is complete.

(ii) Let A (A - B (M + N)1T 	 the Riccati equation we have

4%	 TK 	 + A c K + KBOX- R1)8=K+21-0

Since (g1/2 , W -,nbsesesble implies K > Or K 1 exists, so we have

K(A+K 1(g +NI) '> (1►̂+NC 1(g +il))lt +LB(211-R1)BTL

A

+(g 
_ 22) . 0

Nsace, subject to the oaadition Q > Q, R( Q - Q) R(g + N)

it ar be shorn that

.-
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( (¢'21) + R f (III - R 1)! [, %
+ A l (Q + O1) is ebNrwbla

T1NM by Leann 1(iii) , (its ♦ R l (Q + ^) is stable.

Q.R.O.

ftsorm 4(1) is a 9mumali:atioa of the kaoMa •4aia reduction

tolerance • peoparty of Le-aptistl feedback. This iatarpe+statiow is most

traasparsft is the special case Vbwe t 1 • diay. (al , ... , .) mad

M • ding. (al, ..., a). • = O. "M the eciyiaal iadivi0aal lMdbeck

loops we of the foam

ni • -aib, So i • 1, ..., a

Me theorua stabs that, it this special came, the wyetain remains

stable if the feedback yair are reresed to

b
b lowq as a 	 ai.

Noes aoep►liaaRad eases ass of course allowed.

by eepeatiaq the a6ditieaal tram Cl (l  + H? as a modal pertw-

betica trim " of the open-loop matrix iy we oen me Seorr 4 (ii) to per

foes unite perttebatloa seasitid - analysis.

Tba AmIU d" simple ale il3astsalee the ueetelssss et tbia

.S 0	 1
Ift 1^	 b•

0 -1	 1
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1 2	 1

It w tam I-	 • ^^?
2 i

loan we obtain the aleebaic Riccati solution as

l 0
c-

0 1

Md din grtAmal lfsadbact gais g'= • -2(3L 11

!	
012 +Y

dr my -
1112- Y 02

01 O
u	 .S 1

<

	

012 

02

	 1 3

w we mosumd by Ummz s t (ii) that

Y
+ aba'

-Y	 -2 +82

+

Is stdas tar all s >

OaaaLis tfa tallarb* staa"l c l

(a)	 Y•IiV 14.0.2•a

no

_2'
♦ • .^

s	 -2'

a+i

stoble tar all a >	 sad

(1-)=
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I 

stable for all at > 2

and 81 , 02 such that

i) 01 
< .S, 82 < 3

ii) (.S - Y1 ) (3 - 62 ) > 1

(b)	 Y - 812 - o,

we be"

s+a1 0
+ab

. 

0	 -2+O

toms if $1 - 0, tbu PartedM system is stable for all 02 <"

Orar UGre gemeral Cares amm of 000rse allowed.

Ss eIow smamplO tins abarm that the combined effaat of feedeack

Oa'1s "suatiemmid	 m ar ago minty of the oPem-lesp system

^msm^sbass (PBea amd aseltiM tWMu) cam be tolerated by a linear quadratic

damiga vlthmut LsOiay to clu' aa-lsap inatabillty. Sim sobmmtmeas PROPMrtt

0 . 1	 se tlr	 d slam damsrwm male attaiwAmm.
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4. Concluding Remarks

-ZS-

Since further applications of the parametrization results established

in this paper to reliable stabilisation synthesis and decentralized stabili-

zation coordination will be made in a future publication, we will reserve a

fuller discussion of the implications of our approach until then. At this

point, however, we would like to point out an important implication for

caciti al design that is immediates the ability to perform feedback 'loolr

sbapleg ' analysis.

in any realistic synthesis problem (keeping a system stabilized,

localising particular distrubances, etc.) there is usually a large number

of feasible solutions. While the use of cost-criterion optimisation (e.g.

IQ) in theory allows the desig=ner to pick exactly one such solution, in

practice, the difficulties of judging or Sully incorporating the relevant

cost comsidsratimx& and their trade-offs as well as the often gross model

..taimties and physical variabilities of the systems and the eontrollars,

aseessitab further sensitivity analysis or trial-and-error 'hedging' about

am mcaimal solution. it is therefore very important in the computer-aided

deal" oostsat that the *feasible solution space' structure be known in

car details to faailitate end iaide the conduct of iterative search. In

this t+agsay. a mice merit of a 'classical' design technique like root-locus

L that' it provides an earl teat- famatioeal dspemdemoe of the closed-loop

srmtee stseotae+ss (distrihstiom of poles mad seam) an the control structure

lsaaimst IMW . Oomeww, suck classical appecaebes become totally intractable

,am thses is a ameltIVU amber aC csmet.vllers, veils 'modern' 'state-space'

llamas dasimet desk p ted altmees Jibs 'pole-placament' algoritdu and

• fir	 • dmsi*a satme r j&I stlsms drmimbaalm of providing little
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structural information about the solutions they generate, and moreover such

tachnigues are guided more by mathematical convenience than by pysical

interpretation.

From this perspective, the parametrization results established

earlier appear to be promising in providing the basis for a new iterative

design algorithm that will overcome the last-mentioned dravbac,..s.

Several years ago Fosenbrock [6] suggested a	 multi-

loop feedback design techn:kgne (the 'inverse Nyquist array' method) which

he motivated also as an attempt to overcome some of the above-mentioned

dr+mmbacks. Rio approach is in contrast with ours, which is a 'time-domain'

approach. It will be interesting to investigate the connection, if any,

between the two approaches.

I .	 ,y.
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