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1. Introduction and Motivatiom

This paper presents pmlw results which, in our opinion, repre-
sent a first necessary step in the systematic comouter aided design of
reliable control systems for future aircraft. It is widely recognized that
advances in active control aircraft and control configured wvehicles will
require the automatic control of several actuators so as to be able to fly
future aircraft characterized by reduced stability margins and additiomnal
flexure modes.

As a starting point for our motivation we must postulate that the
design of future st:bility augmentation systems will have tc be a multi-
variable design problem. As such, traditional single-input-single-output
system design tools based on classical control theory caraot be effectively
used, especially in a computer aided design context. Since modern control
theory provides a conceptual theore:ical and algorithmic tool for design,
especially in the Linear-Quadratic-Gaussian (LQG) context (see Athans [1]
for example), it deserves a special look as a starting point in the investi-
gation.

In spite of the tremendous explosion of reported results in LQG

multivariable design, the robustness properties have been neglected.

Experience has shown that LQG designs "work" very well if the mathematical o

) Ceooe . 4

models upon which the design is based are somewhat accurate. There are | .= /

several sensitivity studies involving "small parameter perturbations® | .. .,
JUST iBatien

associated with the LQG problem. We submit, however, that the general
problem of sensitivity and even stability of multivariable LQG designs Y
under large parametric and structural changes is an open research area. | ;. &

It is useful to reflect upon the basic methodology in classical ﬁ ;
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servomechanism theory which dsalt with such large parameter chamges. The
oversll sensitivity and stability comsiderations were captured in the

dafinition of gain and phase margine. If a closed-loop system was charac-

_anmdmm,ﬁ.

(a) reasonable changes in the parameters of the opem loop transfer

functions

(b) changes in the loop gains dus, for example, to saturation and

other nonlinearities
ocould be accomodated with guaranteed stability and at the price of somewhat
degraded performance.

Although LOG designs are time-domain oriented nonetheless their
frequency-domain interpretations are important, although not universally
appreciated. For example, for the case of single imput single output
mm.:u: (LQ) optimal designs Anderson and Moore (2] have shown
that LQ-optimal designs are characterized by

(1) an infinite gain margin property

(i) a phase margin of at least 60 degrees.

Such results are valusble because it can be readily appreciated that at least
in the linqlrimt-oimlw case, modern control theory designs tend
umammum.umecm1matmu
of gain and phase margin,

) Advances in the multi-input-multi-output case however have been
mmﬁmymmmiwlatmmuigm.

Maltivariable system design is extremely cosplex®, To a certain extent

* Bven the notion of what constitutes a “tero” of a witivariable transfer
~ matrix was not fully apyreciated until rwcently.
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the numerical solutiom of LO-optima) is very easy. However, fundamantal
undsrstanding of the structural interdependencies and its uteractions with
the weighting matrices is not a trivial matter. We believe that such funda-
santal understanding is crucial for robust designs as well as for reliable
designs that involve a certain Jdegree of redundamcy in controls and semsors.

The recent S.M. thesis by Wong (3] represents a preliminary yet posi-
tive contribution in this area. In fact the technical portion of the paper
represents a slight modification of some of the results reported in (3]. 1In
particular we beum!tmtmmtbowlitymiudcum
systems designed on the basis of LQ-optimal techmigues when the system
matrices and loop qains undergo large variatioms.

The main contributions reported in this paper are the eventual results
of generalizing the concapts of gain margin and of performing large-pertur-
bation sensitivity analysis for multivariable linear systems dosigned via
the LQ approach.

We warn the reader that much additional theoretical and applied
research is needed before the implications of these theoretical results
can (a) be fully understood and (b) translated into systematic “cookbook"
procedures that have the same value as the conventional results in classical
servisechwisa design.

This paper is organized as follows: in Section 2 we present an
explicit parametrization of a subclass of linear constant feedback maps
that never destabilize an originally open-loop stable system, and establish
some of its properties. In section 3, we apply this construct to cbtain
several new closed-loop structural stability characterizations of multi-input

1Q-optimal feedback maps. We conclude in section 4 with a brief discussion
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Splyk o
1) The limsar tiss-isveriaat systea

x(t) = & z(t) + B ult)

s(t) = _l_’g(t)-

where x(¢) ¢ ¥* 2(*) = state vector
uie) ¢ ¥ u(*) = cemtrol wector
s(t) ¢ & 3(.) = cutput veoc'or
ad ac ™
B c ™™
N c R

will be denoted by I(A, B, E'). Whers X' is irreleveat to the discussiom,
we will shorten the motatiom to L(A, B), and wvhere the choice A, B ia clear
from the comtext, we will just wee I.

If the satrix A is stable (i.e. all eigenvalues of A have strictly
mnmm).nﬁnm:ut(gg,g’)-.mm

2) R¢x) = range space of K
W(K) = sullspece (hezmel) of X
R(K) = rank of K

3) Given the systen I(a, B, X'),

ng,g)‘mmammgy
drm) +20) + ...+ 2" 0w

N 4 4 3 o . - . "
L s R i e R e e e A
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-q’.y‘ mdﬁ.m(!'.y

N

4 12 ¢ ™™ i5 pesitive semidefinite, we will write
229
If Q is positive defiaits, we will write

g>e.




Given the stable systss L(a, B), let
s 2 (g ¢ ™2 + 36" 10 ctabie)

1.e. S(I) is the set of all fesdback maps that mever destabilise am originally
epen-loop stable oystsz, vhese

se) 8 g"x(e)

Ideally, one would like to be able to emplicitly parametrise S(I),

but as this is a well-knowm intractable problem, our strategy here is to
look for a simple persmetrisstiom of a (hopefully) sufficiemtly gemeral
subset of s(I).

-muzmmmwmpumu.

Lomma 1 (Wonham)

(1)

If A is stable, them the Lyspumov equatiom
2a+a’Rege0
with @ > 0 has » wmique solution P > 0.

1f in adaition (@2, A) 1s cbeervable, them P > 0.

p ¢
() 220,0>0 ratisfyPA+AR+Q=0
(2) (@, &) is detectable




-P=

is chasrwvable (douestable).

or (L), ses (4], pp. 290
foxr (11), sees (4), pp. 299
for (114), ses l‘,. | a2z,

To proceed, the following defiaition will be uwseful:

Pefinition 2
For any stable A, let
pw ¢ (x _lu A’k < 0}
'w @ (x>olxa+ax<o)

Bamark: LP(A) is in gemeral a prgper subset of the set of all positive-
semidefinits matrices of dimsmsiem =n.

rmple
Suppose that

;-[:‘ :J.Alu:. A, <O

Thea
K 20 (xlolez
]|:,>o'l‘" —an, ]‘:z}
5 Kl 2
ote that 20 42K >0, K >0, >
['n 3 e e 5’
. "z’z .
and that 21, with eguality i2 A, = A,.




iamm 2
1) DQ“.**:!J.&.&CD@W

“OQ*CD@ nmolgo..,:o

) Eew@) Nira) tepliss X ¢ 1A, ¢ A)
1) K €LIA) isplies K € 122 ¢ B(S - LB'D)
L. 4
Straightforwerd.
We are mow ready to istroduce our first crucial result:
Iemma 3
Let A be stable. <
Then (A + (u - ggﬁmumgcu@ummg;g, |
N = -u% such that RN C R |
12 X ¢ 12°(2), them the cemdition R(N) C R(U) can be cmitted. |
— |
Lot i
gf-ma+ax
Since X € LP(A), we have @ > O, and A stable implies (g2, A) s
always detectable.
Wow
EA+AE+Q=0,
OEALE-WD + A+ M-WOEMAE+Q- EUE+EN D =0

o e -
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ie stable by Lemms 1 (11).
Otherwise, assums R(W) C R(N)
Which implies that there exists ¥ such that N = V M or that
W-WE- ¥- DNE
oy detining 3 & (v - D'/’
8%

(VETIE KK, A+ (M- MK is dstectable.
By Lesma 1 (ii), we therefore have (A + (N - M)K) stable.
Q.E.D.

A special case of Lemma 3 was established by Barnett and Storey

in (S).

By specializing Lemma 3, we immediatyly obtain an explicit parametri-.

satiom of a subclass of stabilizing fesadback. PFirst we introduce:
Definition
Given the stable system I(A, B), let

8,0 8 (F e ™" = (s - a’x, - 8", L20,
-n.su-c;cn’(y or else
K € LP(A) with R(8) C R(L)}

e caR Now stats owr result as:

e S

ey . - e s o i o dl _aades
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Iheorem 1

(1)

(11)

where
Proof

(1)

(11)

Given the stable system L(A, B), then

g’ € 8,(I) implies (A + B g’) is stable

. Tp— - T T T
[&‘g.—‘-‘ae:f BRE) e AB I,
o
gzoumhmt'x_5+f5_+g-gnd§re(g_-_)g’;csl(t).

let M=BLB, N=BSB in Lesma 3, and the result follows
directly.
Let O > O be such that

KA+AK+Q=0 )

- Then we have

= % A
K= L c—tgetdt

Next rewrite (*) as

: T
5(_A_+£§T)+(.A_+!§r)£+(2KBLBTK+Q)'Q_

where '8 (s - )_l_'_x_e 5, ()

T
(s St 4

o 0 T TT T
nence [ Rgan [T JR4REV BRI,
0 0

o o T T
va [0 aade (s &hre,
0

t
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Remark

It can be easily shown that all the eigenvalues of the feedback term
B(S - &)!’5 have non-positive real parts (the term -B L ETE has only real
eigenvalues while B s_nrg has only pure imaginary (conjugate pairs) eigen-
values or zero eigenvalues). This cbsarvation, and the content of Theorem 1(ii),
makes it convenient to interpret sl(t) as a natural generalization of the

concept of 'negative’ feedback to the multivariable and multi-input case.
The next two corollaries are easy consequences of Theorem 1. {

Corol 1.1
Let I(A, B) be a system with a single input, i.e. let B be a column

(nxl) vector b. If g , «-e, g; € 5,(Z(a, b)), then

g 019‘: € Sl(t) for .11 (!i Z.O. i= 1' eeceyp j

n‘:hg‘.j.loft:l'nfor:-zr:’_bs1

T
log 1’4 éarb g(-airigi)

But from Lemma 2(i), 51 € LP(A} implies ﬁ airisi € LP(A) for all
=]

for some admissible ri, 51, i

' T
hence > 0.
a,r, >0 é; @.g, € LP(A) for all a, >0

Q.E.D.
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1f !g__l_, € LP‘(&,) actually, then the condition R(K) D R(N) can be
~ omitted.

Proof
Immediate from ‘'taking the transpose’ in Lesma 3.
Qo'.bo

Theorem 1 has illustrated the importance of LP(A). It is therefore

useful to have an alternative characterization of LP(A):

Proposition 1
| LP(A) is _A_T-mnd.nt, i.e. for all K € LP(A)

ATR(K) C R(K)

KELP(A) iff KA+AK+HHE =0 for some H

We claim that
W(R) = l(!’. A) = unobservabls subspace of (f. A)
- T
!u_x_-L AEtun’ 2 ae
% x € NN, A) implies Hotx = 0 for all t € R which implies x ¢ N(K).
o=
mxy,gc-(;)muug’xx-ommm{ | %)%ae = 0
L 4

_ - ]

To complete the proof, note that
RE - @) - w@t

- we’, w0t
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mmmmgfumunf-mmm.

Q.EB.D.

Bamark: The significance of Proposition 1 is that it provides a systematic
means for gemerating all mesbers of LP(A). Por example, if A has distinct,
real eigenvalues, then <very K € LP(A) is of the form

where the rows of P are left eigemvectors of A, i.e.,
ZQ.A!,A.M(xoooo'x.)
.-m (-1' eeceyp -.)' -‘ :og 1 - 1' see, R,

Thus, all mesbers of LP(A) cam be trivially gensrated once P is

known .

mmuslmumzcmwwmwm
stability, it is of course mot necessary, i.e. tl(t)hamicﬂ.ym
Zabset of S(I). Imtuitively, .¢ the open-loop system is stable ‘encugh’
to begin with, it can tolerate a omtain amount of ‘positive’ feeddeck with-
nmocm-mwuey. In othex words, the poles of the
open—-loop systam can be shiftsd to the right by fesdback without destroying
'munm-mdummmmam:mmt
-pl-. wmuummm.m.
we ought to be able to ‘emlarge’ l'(t). MM we have:

Sefipition ¢

u—mmmtgn-‘-xn LcF.ht

', w *g»ejuoa'vtuu’v!)

o . Py
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Definition 5
Given the stable system L(A, B), let
5, 2 (" ¢ ™" = L+ 98"k, L= L") 5 - 5,

5:0‘(2,9 or else K € LP(Z, L)

with R(L + §) C R(L - L)}

Theoren 2

Given the stable system L(A, B), then
6" € 8,(I) impliss (A + B G") is stable.

i

The proof follows by a straightforward extemsion of the proof of
lezsma 3 and Theorem 1, and hence is omitted.

Bamark: It can be easily seen that Theorem 1 is just a speciul case of
Theores 2 (vith L = 0 and L < 0, 5,(E) will be reduced to 5, (I)). Note
that in the generazl case covercd by Theorem 2, 0 definiteness assumption
ic made of L, and thus warious ‘mixtures’ of ‘positive’ and ‘negative’
feetbacks are allowed.

The next proposition provides further clarificatioa on cur parametri-
sation scheme. First define:
r,® & (&F ¢ #™|c" = p 5"k, b ¢ ©™ arbierary,
Eec X amd K > 0)

r,® & (& ¢ ™ |m(c’® < migh).
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Progosition 2
r,@®Nr,e -4

P (U, m -

i.0. any qug’tl_hdM in the set 7, (B) or else 7,(B).

Proof
We need only to show that

r® - (c* « ™™ = =(cH)

Suppose G € ¥, (B), 1...&.“2:"5:!",5?_2

o RK(G'D) > MK(G'B DT)= BK(D 37K B D’) ~ MK(D B'K) = BK(G’)

Sufficiency:

Takegangmwmeﬂ.m

T -c'BB'K

[3)

has a solution K > 0 if .(!’!) = ‘(2’).

We now relate the comtaamt of Proposition 2 to Theorem 2. Cbesrve
first that sz(t)grl(!).-lh.ao-mm-‘-mhh
wmymmchr,g. mcmnrzg ré
is demcmstrated by the followiang trivial emample:

[ s} e

i S i popers e, -t o e o o d &

[P S
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A, 1

sl (;4-21,)-[
0 A

]hwh.
2

Wote, however, that if B is of full rank, then the set F,(B) is WOT
gemeric in K™,
_ The more interesting quastion, ‘is '2“:’ generic (i.e. dense) in
S(E) NP (B)? is st present unsolved.

Our results so far have been on systsms I(A, B) which are open-loop
~stable; the question next arises as %o what the situation would be for
systems which are NOT opsn-loop stable (i.e. A has unstable poles). For A
wituotm_mmumu“wm.
One is reminded, however, of the algebraic Riccati equations; indeed, we
have the following imtezpretation of the traditicmal IQ-optimisation

prablem:
Dafimitios |
~ Given (A, B) a stabilisable pair, let
00, » 2 (x20/E-x, 3, & 5" for some 2> 0 md some &7

such that (N7, A) is a detectsble pair}
where E(A, 3, B, §') demotes the waique positive semidefinite solutiom to
the algebraic Ricoati equetica:
EA+AE-EBNNE+EN -0

Por R flai, w» will denste the corresponding set as 10, By D).
tingsien 7
o® (e ™| - g 200
Ee 100, » B}

.
T T P TR m————

e w o>
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Proposition 3

Given any stabilizable system I(A, B),

G" € 5,(I) implies (A + B G") is stable.

Remark

The above proprsition merely summarizes the well-known ‘'standard’
results of LQ-optimal feedback theory (see [1], [4]). However, the inter-
pretation here of the LQ-optimal feedbuck class (83 (£)) as a parametrization
of a subclass of stabilizing feedback is interesting.
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3. Structural stabili mmummw
d

nmmmmmmmumm*mm

in the previcus section can be applied to obfain characterisation of the
closed-loop structural stability properties of systems under LQ-optimal
feedback. More precisely, we establish an explicit parametriszation of a
general class of structural perturbations in the control feedback gains
as wall as in the control actuation matrix (B) that leave the closed-loop
Gystem stabilised. These new results, we believe, sre the natural gemeral-
isations of some earlier results of Anderson and Moore (2].

We begin by first recalling from Lesma 2(iii) that, for A stable,
K € LP(A) alvays implies K € LP(A - B L B'K); however, for A unstable and
K> 0 such that (A - B L B'K) is stable, it need NOT be true that

’gcu(p_-ggg’g. The following example underscores this unfortumate

Eemple
[1 3 s [2 o] [1 o]
a- , 320 - . K=
o o 0 1 o 1
Then Q-g&_’g-[.: :T is stable, but

E€e Y V=K@ -3EDD
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Proof
Immediate from the Riccati equation. Q.E.D.

In other words, the above unfortunate state of affairs cannot
occur if K is an LQ-solutiom.

hmmnﬁyéomuouﬁrst-inumltofthomtm:

Theorem 3 (iInfinite Gain Margin Property)
let K € 1O(A, B; R)

Then

(A - (B(S + L)B® + B(M + WB'IK) is stable for all
2Eh n20 5.8

e

Q.E.D. -

Por § = 0, T™heorem 3 is & gemeralization of the ‘infinite gein margin’
property of LO-optizal feedbeck for single-input systems Tirst noted by
Andarecn and Moore (11, vho showed that the fesdback gain vector §' = - = b'K
o= bo miltiplied by sny scaler @ 2 1 without destroying stability) the 4

. S _a . oA adve
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M they used involves classical Nyquist techniques. m- 3 not only
Muu this property to multi-input systems, but allows more compli-
cated alterations of the feedback gain vectors; moreover, it makes tlie proof
of this property such more transperent.

leo,msnmmmummnnuuimu

wvithout destroying stability. Ome useful interpretation is the following. )

Suppose that the optimal feedback gain matrix has been computed for
nu!‘.mtmmnmlﬂmofgmmmmdmh
changed to B = B + B,. Then the fesdback term becomes (B.X 'B 'K +
3,27'3"0. As longas B, =B (4 + WR for some ¥ = -, X > O, Theorem 3
will guarantee us that the system will resain stabla. (For example,

3, =@, a>0). Mre complicated cases are allowed.

nmmy.mmifg'muwumm
the possibility of adding extra comtrollers, and using these extra feedbacks
D»'M'&dﬁmmd&lmm (A more

. systematic exploitation of this idea will be dealt with in a future publi-

option; see also (3]).

| “-3hnhnnd&~a~~ﬁo'm"m-hi.
otn. am climnd oo Snescoss in Sagnitate; the eamvesve situstien, vhen

e ‘mepative’ fosfhack gaine are refuced in mageituie (or vhem additicmal
"puattive’ feafhocks are ixjectel] Ls ammined in the mext peopositions

o et bl el . oLt Lo il s bl . MR o e 2l L e s
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Theorem 4 (Gain Reduction and Robustness Property)

(i1)

Proof

Let K > 0 be the Riccati solution to the LO-problem (A, B, R, Q)

1/2

and (0" ', A) detectable. Then

2>9
v

(

>

B(M + y_igu-ubn

-1

foral1§>9_suchthlt!> R

N

NN

If (21/2, A) is actually observable, then

(A - B(M + N)B'K + K'1(Q + N) is stable

where M, N are as above, and
Q-Er is such thatai%g, R( lg g)Dn(g)
and-!l:--i‘r is such that I(E-Q-Q)Dl(i).

(i)

(11)

Let XCQ A ((ﬁ-aflf—'g)-;@c'l)

Then we have K € I.Pﬂ:c: %!.1) from the Riccati equation, and so by

Theorem 2,

a T 2 el -1
(A, + B(M - N) B'K) is stable for all ¥ < >
LR o

)!_’5) is stable

|:>

or (A -B(R! -

let !-A- R -

|:>
I

, and the proof is complete.

3

+
>1i
2
M+

Let A e(A-n(
1 -

N3 K). From the Riccati equation we have

xi +RT_ +KB(2M - R )g’;q»g-g_

since (g'/%, A)-cbeervable implies X > 0, K ' exists, so we have

kG + K <n*znHe,,+s‘(n*§ns*szm.'-5")a's
+Q-20) =0

Bence, subject to the conditica 39> R(30-POrg+ ®

it can be shown that
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‘\l‘ﬂ'ﬂ + KB - 5.1’!:!_. A ¢+ fltﬁ + H)) is cbesrveble .

Thus by Lesma 1(414), (A + K71(Q + M) is stable.
' Q.B.D.
L -4
Theorem 4(i) is a generalization of the known ‘gain reductiom
tolerance’ property of LO-cptimal fesdback. This interpretatiom is most
transparent in the special case yhen X ! = diag. (8,0 cccr a) ama
N = diag. ‘.1' Y l.).!ig. Thea the originmal individual fesdback

P

hn.imo!thbu

P e em—— e e T -

8 =-ed’ 1=, .., 2
The theorem statss that, {u this special cass, the wystsn remaiss
stable if the fesdback gains are reesed to
IRE N |
s, >
® long as a, i-u‘.
hmmmdmnu.

By interpreting the adfitiomal term K (D + H) as & model pertur- ,
bation term §A of the opem-loop mstrix A, we cam uce Theorem 4(ii) to per- |
form finite pertwbation semsitivity amalysis.

The follcwing sisple emmple illustrates the uwsefulzess of this

- Ea _

Ol ’[i] |

| alCbo s




L 2 ﬂ
S

Then we cbtain the algebzaic Riccati solution as

SN

and the optimal fosfback gain g*® = -2(1 1)

o

N [ 8, luov]
82" & !

v SR 8 'u] . [-5 1] 1
. L6, & . 3
we are assured by Theorzsa 4(ii) that
Se+8 Bty + aha
[.n_, S Y
mm——————_ S s

Aca '

is stable for all & > §

Consifder the following special cases: ‘

@ veh, B =80

[': :“’] sapy’  oubleforalla>i mdf, such the
:-:;-— n-.‘,fq.s-;-,[;'«.,,«u‘l}'
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) 1-‘12-6'
We have

2

3¢ (4
“ +abg*®  stable for all a > &
° -2+
and B8,, B, such that

huﬁ-o.mmwummm|’<x.
Other more gesacral ceses are of coarse allowed.

The above example thus shows that the combined effect of feedback
oair reduction sand perturbetios of umosrtainty of the opss-loop system

' paramsters (poics sed coupling tesms) cem be toleratsd by a limear guadratic

@ssign without leading to cl: wé-loop imstability. This robustmess property

of ¥in LQ-Tesfback Gssige desrves Bere attestion.
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Since further applications of the parametrization results established
in this paper to reliable stabilization synthesis and decentralized stabili-
sation coordination will be made in a future publication, we will reserve a
fuller discussion of the implications of our approach until then. At this
point, however, we would like to point out an important implication for
practical design that is ismediate: the ability to perform feedback 'loop~
shaping’ anziysis.

In any realistic synthesis problem (keeping a system stabilized,
localizing particular distrubances, etc.) there is usually a large number
of feasible solutions. While the use of cost-criterion optimization (e.g.
1Q) in theory allows the designer to pick exactly one such solution, in
pzactice, the difficulties of judging or fully incorporating the relevant
cost comsiderations and their trade-offs as well as the often gross model
mummmofmmmmmmuu-,
asceseitate further semsitivity amalysis or trial-and-error 'hedging' about
the nomimal sclution. It i3 therefore wery important in the computer-aided
Gesign context that the 'feasible solution space’ structurs be known in
] m.h facilitate and guide the comnduct of iterative search. In
this regard, a major merit of a ‘classical’ design technique like root-locus
is that it provides an explicit fumccional dependence of the closed-loop
systen structures de.ﬂm)ummmlm
(Sesdback gain). Howsver, such classical approaches becoms totally intractable
when there is a mltiple mmber of comtiollers, while ‘modern’ 'state-space’
linser fesdback design techmiques like ‘pole—placesent’' algorithm and
‘Qyatio-fesdiback® dosign suffer th: sexicus drawbeck of providing little
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structural information about the solutions they generate, and moreover such
tachniques are guided more by mathematical convenience than by physical
interpretation.

P!o-thhporlpoctivc_, the parametrization results established
earlier appear to be promising in providing the basis for a new iterative
design algoritim that will overcome the last-mentioned drawbacks.

Several years ago Rosenbrock (6] suggested a frequency-domain multi-
loop feedback design technique (the 'inverse Wyquist array' method) which
he motivated also as an attempt to overcome some of the above-mentioned
drawbacks. His approach is in contrast with ours, which is a 'time-domain’
approach. It will be interesting to investigate the comnection, if any,
betwesn the two approaches.

s gl SaaBnE sl s
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