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COMMENT ON THE RELATION BETWEEN THE NONADIABATIC COUPLING	 j
1

AND THE COMPLEX INTERSECTION OF POTENTIAL ENERGY CURVES

Richard L. Jaffe

Ames Research Center

SUMMARY

Simple relations are discussed that provide a correspondence

between the complex intersection of two potential surfaces and the

nonadiabatic coupling matrix element between those surfaces. These

are key quantities in semiclassical and quantum mechanical theories

of collision-induced electronic transitions. Within the two-state 	 -

approximation, the complex intersection is shown to be directly

related to the location and magnitude of the peak in the nonadiabatic

coupling. Two cases have been considered: (I) the avoided crossing

between two potential surfaces, and (II) the spin--orbit interaction 	 1

due to a 2P halogen atom. Comparisons are made between the results
i

of the two-state model and the results of ab initio quantum chemical
L	 :^

calculations.-
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The first quantum mechanical calculations of collision-induced

electronic transitions for model triatomic systems have been reported recently

1
[1,2]. These studies considered electronic-to-vibrational [1] and

electronic-to-rotational [2] energy transfer in nonreactive collisions of
i

2P1/2 
halogen atoms with hydrogen molecules. In addition, semiclassical

i

calculations have been carried out for electronic transitions in H+ + D2 [3]

and H2 + F(

2 

P 1 /.2 ) [4] collisions based on the method developed byMiller

and George [5]. Previously, quantum mechanical (6] and semiclassical (7]

calculations had been reported for fine --structure transitions in atom-atom

collisions. In the quantum mechanical studies, electronic transitions are

induced by the nonadiabatic coupling matrix elements between the initial

and final adiabatic electronic states (potential coupling). These coupling

matrix elements can be calculated from the electronic wave functions or, to
I

	

	 1

a'good approximation, from the adiabatic electronic potential surfaces them-

selves [1,8]. For diatomic systems, adiabatic potential surfaces of the

same symmetry and multiplicity do not intersect for real values of the

nuclear' coordinates, but complex-valued intersection points (branch points)_

do exist [9-13]. For larger systems, the surface of complex intersection

always has a higher dimensionality than the surface of real intersection.
i

The semiclassical' theory makes use of the complex intersections to effect

transitions between the potential surfaces. The collisions are simulated

by classical trajectories which are analytically continued from one potential

surface to the complex intersection and back to the second potential surface.	 3

The probability for making such a transition shows a roughly inverse dependence

j

2

t



on the distance from the real axis to the complex intersection point. The

two methods are similar in that the factors which govern the magnitude of

the transition probability are derived from the adiabatic potential surfaces

involved. Davis and Pechukas [14] and Pechukas et al. [15] have shown that

the semiclassical treatment is indeed a limiting case of the quantum mechanical

theory. However, the problem of locating the complex intersection points

must still be solved before semiclassical calculations of electronic transitions

can be undertaken.

Ab initio molecular orbital calculations of potential energies at

complex values of the nuclear coordinates have recently been performed

for four systems. The location of the complex intersection points has been 	 3

determined for the3a and 4a states of HeH [10], the two lowest singlet

states of H 3 [11] and the lowest ZE and 2H states of collinear H2F [12]

and Hf [13] In the first two systems, the potential surfaces for the two

states exhibit avoided crossings for real-valued geometries, while, in the

latter two systems, the potentials are parallel in the limit of separated

C
H+ + F-and H2 + F, and are split by the spin-orbit coupling of the fluorine

atom. There is no avoided crossing of the HF + potential curves which diverge

as the internuclear separation is decreased. For the collinear H2  system, the

two states show (in addition to the asymptotic behavior discussed above)

an avoided crossing at small HF distances. These studies have shown qualita-

tive relationships for the_locatign of the avoided crossing, the actual
3

complex intersection point, and the extremum in the nonadiabatic coupling.; 	
l

For these systems, the complex intersection points were located by the analytical

continuation of rational-fractions which had been numerically fit to the

energy difference between the potential surfaces [16,17]. The real part of

3
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the complex nuclear coordinate at an intersection point was found to be

approximately equal to the value of that coordinate at both the extremum

in the nonadiabatic coupling and the avoided crossing.

In this paper, the relationship between the complex intersection point

and the nonadiabatic coupling is explored. It is shown that formal

connections exist for special cases within the two-state approximation.

The results for these cases are presented in Sections 2 and 3 and discussed

in terms of the results of the complex -valued ab initio molecular orbital

calculations. The above relationship can be used to help locate the complex

intersection points for cases when the results of 'complex-valued molecular

orbital calculations are not available. Section 4 contains some concluding

remarks.

2. Case I: The avoided crossing'

In the two-state model of an avoided crossing, the electronic Hamiltonian

matrix is given by

H	
H 1 1(r) H12 (r)	 ,	

(1)
1

H12(r) H22 (r)

r	 where r is a vector that represents all the nuclear coordinates. The

{	 potential energies of states 1 and 2 are

E	 H11 + H22 + 1 j DE	
(23	 2	 (")	 )

i	 where

AE' _ [(H22 - 
H11)2 + 4H2 112 	 (3)

r
1

Y

I 4



is the energy difference between the two adiabatic states. The nonadiabatic

coupling between the states for coordinate a, in this approximation, is

given by [8,12]

H12 9(H22 - H11)
Al 2a	

AE2	
as	 (4)

In the following treatment, we assume that the electronic transition

occurs only through motion along one generalized coordinate r and that

the coupling matrix element H 1 2 is independent of that coordinate. We also

define the quantity f equal to H22 H11 
and use primes to signify partial

differentiation with respect to r.

Extrema in AE occur at those values of r for which

AE'	 ff' /AE	 ,	 (5)

that is, when f 0 or f' _ 0. Examination of DE" reveals that AE

is a$ways a minimum when f = 0. This case corresponds to the avoided inter-
_	

I
section ( r rm) Extrema in the nonadiabatic coupling are found by solving

J

aX12r	 H12 f^^	 2H 12f [f ' 
2

lr=r
C
	AE2	 AE

From eq. (6) we conclude that the system will exhibit an extremum in the

f avoided intersection only if f = f" = 0.

	

nonadiabatic coupling at apoint :.o a d	 t	 y

To determine the condition for rm = Rer
0
, the real part of a point of

complex intersection, we first expand f(r) in a Taylor series about , rm:

	

(r - r ) 2 fn (r)	 (r - r) 3 f w (r )
f (r) _ (r - rm) f' (rm) + '	

m 

2	

m +
	

m 

6	

m +	 (7)

t

I	
5
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At a complex intersection point (AE 0) f (rd must be pure imaginary and

equal to ±12H 12 . Since f is a real function of the complex variable r,

Re ro = rm only if all even power terms in eq.(7) are zero (i.e., f(2n)(rm) 	0)•

This condition encompasses the one found above for r c = rm.

10 funvtional forms for f which exhibit the property Rer o _ rm = rC

are

f = ar b	 (8)

and

f = A sin(ar - b)	 (9)

a, b, and A can be functions of any of the coordinates except r. Equation (8)

has been used in the Landau-Zener treatment of electronic transitions [18]

In both cases,

rm = b/a and AE(rm) 2H12

The location of the com lex intersection points for f given b e (8)p	 P	 g	 Y q•

are
iAE(r)

r o 	m

	

rm ±	 a 	 (10)	 ^

1

and the magnitude of the nonadiabatic coupling at r C is a/2AE(rm). Thus

Ix12r l has a single maximum of height 1/2 Imr o . This provides a demonstra-

tion of the behavior found in the semiclassical calculations; namely, the

transition probability falls off inversely with the distance from , the real_

axis to the complex intersection point. When f is given by eq. (9),

complex intersection points are given by

f AE(r ) 1
r0 a r ± a sink

	

m	 1 I A m 
J	

(^ l)
LLL

6



and

Aa
X12r (rc ) 	20E(rm)	 (12)

while JX12r I is not simply proportional to 2/Imr o , it still decreases with

increasing Imr 0 . For both cases, the strength of the transition is proportional

to the slope of f at r - rm.

The half width, W, of the peak in X 12 provides a measure of the

degree to which the electronic transition is localized around r c . W is

equal to r+ r-, where r are obtained by inversion: of eq. (4) with

X12r 
s X12r(rc)/2. For f given by eq. (8):

r± rm ± AE(rm) /a	,	 (13)

so the half width of the peak in the nonadiabatic coupling matrix element

is simply 2 pE(rm) /a [X12r (rm)l_
1

• Thus, the stronger the coupling, the more

localized the transition.

The reliability of this model can be tested by comparison with the

ab initio data for Hee and H3. For Hee [10], the energies of the 3a and 40

states (E 3Q and E4Q ) were determined from the third and fourth eigenvalues'of a

16 x 16 electronic Hamiltonian matrix as a function of r, the internuclear

separation. The avoided crossing was located at r m = 3.6440 bohr, the value

of r that minimized DE = Edo - E3o . The electronic transition in H2 + H+ H2 + H

`

	

	 collisions occurs between the first and second singlet potential surfaces of

H3. In this, system, for collinear or isosceles triangle geometries, there are

two nuclear coordinates , * r and R, and the loci of avoided crossings and complex

* For collinear geometries, r and R are the distances between the central atom

and the two outer atoms with r < R. For isosceles triangle geometries,

r and R are the base and altitude of the triangle, respectively. In the

first and second. sinjzlet states o v+____...,f .^ 3 , r corresponds to the vibrational
coordinate for H2 and H2, respectively, and R corresponds to the translational

coordinate.



r^

intersection points lie on curves of (r,R) through configura,tiaa. space.

Ab initio calculations were performed to locate r  and r0 for fixed values

of R [11]. It was found that rm is roughly unchanged for values of

R > 6 bohr, indicating that the electronic transition is effected through

vibrational motion during the collision.

For these two systems, a can be obtained from the slope of a linear f:t

of r versus f = ±{[AE(r)]
2
 - [AE(rm)]2 }1/2

** and Imr0 is predicted from 	 -►

eq. (10) The results are shown in table 1 for four sets of data from the

ab initio calculations. For small H 12 , the errors in the results of the moee'_

are less than 1/2% when compared with the ab initio data, as can be seen fo r

the HeH
4-F

 and H3 R = 9 bohr results in table 1. However, for larger d12,

the model breaks down. f(r) is still nearly linear and Imr 0 can be pred-c°.ad

to within 90% of the true value, but the model cannot account for the shift in
I

Rer0 away from rm. The fitting of f(r) to a rational-fraction in r [17]
I

improves the two-state model. However, ro and r^ could no longer be deter-mined

analytically and the relation rm r,= Re ro would no longer hold.

Thus, this simplified model of an avoided crossing is quite accurate Then

applied to systems with weak coupling (H 12 ) for which a definite relation

exists between the factors that influence the quantum and semiclassical

transition probabilities. This implies that the electronic transition i;;

localized at r rm add the complex intersection points can be located with

the use of the real-valued potential energy surfaces. However, for stronger

coupling, the correspondence between the two methods no longer holds, and

_	 1
I

** f is positive for -r < rm and negative for r > rm.	 e

8



one must know the potential energies at complex values of the nuclear

coordinates to carry out semiclassical calculations of electronic transitions.

3. Case II: Spin- -orbit coupling and fine-structure transitions

The spin orbit interaction for atom-atom and collinear atom - d a`om collisions

involving 2P  halogen atoms can often be treated within the framework of a.

two-state approximation [ 7,12,19,20]. In these systems, the nonrelat_ly°.stic

description of the halogen atom has a degenerate ground state which splits

into 2P 3 /2 and 2P 1/ 2 components upon the inclusion of spin-orbit coup?_ ng.

The potential curves for an A + X collision (A is any nondegenerate ator:ic

or diatomic species and X is a halogen atom) are parallel at large A_g

separations with an energy difference equal to a, the halogen atom spuu nw:bit_

splitting. These asymptotes correspond toA + X ( 2P 3/2) and A-= X (2'?,/2^

The potential curves are subject to the same constraints regarding real and

complex intersections as in the case of an avoided crossing.

Within this approximation, the complete Hamiltonian matrix is given. by

eq. (1) with H	 V + X/3,H = V , and H = (2)1/2(X/3) . V and V_, are
11	 11	 22	 E	 12	 IT L

the nonrelativistic potential energy surfaces for the lowest , n and E. states

of the system [12]. For this case, eq. (3) becomes 	 1

AE _ [(AV + X/3)2 + 8X2/911/2 	 (14)

where AV = VIt - V^. At the asymptotic limit, AV = 0 and AE equals X.
r

The complex intersections occur when AV AVo,

1AVQ	a_exp [±i cos (-1/3)]	 (15)

is

1

9



If AV + (a/3) equals zero, there will still be an avoided crossing with its

associated complex intersection points as in case I. However, additional

complex intersection points are caused by the asymptotic behavior of AV.

Since AV can be qualitatively represented by functions like x -n or e-x,

the relations found for case I are not applicable to the spin-orbit case.

Preston, Sloane, and Miller [7] have fit AV to an exponential function

in the internuclear separation, r,

	

AV(r) = A exp (-ar)	 (16)

for the Xe + F system in which V  is the ground state. We use this form

in the following treatment of fine-otructure transitions. For collinear

H2 + F, r represents the HF separation with A and a taken to be functions

of the HH bond length. Using eqs. (15) and (16), the complex intersection

occurs when

ro = a [1n n 	 + i cos- 	3(17)
 \

In considering the HF+ system in which V^ < V^ for all r, JAV(r))1

must be fit to the exponential in eq. (16) and r is given by

ro =- [In `` A )± i cos 1 1-F 3) ]	
(17')

L	 ` /

Thus, Im ro depends only on the difference in shape between the nonrelativistic

	

potential curves while Re r o depends on both the strength of the spin-orbit	 j

coupling and the nature of AV. The faster ' AV goes to zero with increasing

r, the greater the electronic transition probability, since the complex

intersection is located closer to the real axis.

10



The nonadiabatic coupling, as given by eq. (4), has extrema at the

values of	 r	 for which

BX12x	
r2aa2AV(rc) r

C 1
JQV(rc)2 - X2^ 0 (18)

r-rc	 3AE(r^)4 ll..

1	
These occur for	 r = ±00 9 where	

X 12	
0, and when	 J AV I _ X.

At the latter point, r = rc , which is given by

rC
	

a 1n (A^ _ Re r o (19)

i

Thus, in this case, as in case I, the location of the extremum in the

nonadiabatic coupling coincides with the real part of the complex

crossing point.	 In addition,

32a	 cos-1\- 3/_
X12r (rc ) 	8	 8Im r o	'	 V^	 VE

(20)

or

^a	 v cos-1C+ 3)
X12r (rc) s _	

4	
_	

8Im r o	VE ' vn	 9 (20)	

3

and

1	 7+21-W -	 In	 V	 V (21)	 1a	
7 - 2V-1-0

or
j E

W = a In 9	 VE > V^	 . (211)

These results, which are summarized in table 2, are also similar to the

relations found for case I.	 However, Im ro, X1 2 (rc), and	 W	 do not depend

on the strength of the spin-orbit coupling.

The available ab initi data can be used to test this model as was done

for case I.	 Calculations of	 VE
 and V

T1
	 as a function of	 r, the H—F

t

11
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separation, have been performed for H 
2 
F [12] in collinear geometries with the

*

	

	 tii--H bond fixed at 1.4 bohr (the equilibrium separation in H 2 ) and HE;'- [13,20].

These calculations incorporated the spin--orbit interaction within the framework

of the two-state model discussed above. In the former system, V. is the

'

	

	 ground-state surface at small r, but 
,g shallow well in the II-state causes

Vh 5 V for r greater than 4.7 bohr. Thus, AV exhibits a minimum of

-2.8 x 10-4 hartrees at 5.4 bohr and cannot be represented by eq. (16). 	 ..

However, r 0 can be predicted from r  and X12r(rc) by using eqs. (17) and

(20). The resulting complex Intersection point, 2.023 ± 0.6331 Bohr, is in

fair agreement with the ab initio value, rp 2.04 ± 0.429i. For HF+,

V^ < VE
 for all r, and 6V is better represented by eq. (16). However, a

plot of In AV versus r shows considerable curvature [13,20] The data from

the ab initio 1.40 calculations of DV are in good agreement for r < 5, but

the results of Jaffe et al. [13] fall off less steeply than do those of ref. [20]

at larger r. The calculated values of r 0 and X12r(rc) for various fits

of these data to eq. (16) are presented in table 3. It can be seen that good

values for Im r 0 and -X12r(rc) are obtained from the fit to the r > 6
a

data and that no fit reproduces Re r 0 and rc
 accurately. However, use of

the ab initio data for r and X (r ) leads to an accurate prediction of thec	 12r c

location of the complex intersection point, even though the 'aetua2`data points

cannot be accurately fi t to eq. (16).

For HF+, it has been noted [7] that AV could be better represented by

AV A exP[ -ar + Sr 2 ]	 (22)

jIn this case, eq. (18) 'becomes a transcendental equation-in r and an

analytic solution for r is not yossible. Numerical determinations of the

i

]

E

12



extreme of 
x 12 

have been carried out for various values of A, a, and ^.

The location of the complex intersections have been shown to be [7,13]

1	 _ ,(
	 1r 0 	a - (a2 - 4a [ln (X 1 i i cos])

1/2
1 i
+ 3	 /25 .	 (23)

The relations between r 0 and Xlzr are in very close agreement with the

above case for S < 0.03 a, but only at S = 0 is r  exactly equal to Re r,,.

In addition, an empirical relation has been found between X12r c(r) and Im r0

X12r(

r 

c)

	

	 /2- 1 a2 - 40 Ina2/4 In
Im r 0

,	 S <1 ^\ rcos-0	 +	 l 4 c s	
( J

(24)

In ref. [13], it is reported that r 0 is quite sensitive to which data

points are used to determine A, a, and S by a least -squares fitting procedure.,

The empirical relation given by eq. (21) suggests that the best value of

Im r 0 is that obtained from the parameters for which the fitted and ab initio

data for X12r(rc) are in closest agreement, provided, of course, that

S <_ a2 /4 In (A/X). This criterion provides a means of selecting the optimum

parameters in eq. (22) when an ab initio calculation of the complex intersection

is not available. Examination of the ,detailed results of the least-squares

	

.fits used in ref. [13] confirms the validity of this procedure. However, r	 a

can only be located to within (0.03 + 0 . 01i) bohr by this method.

4. Conclusions

It has been shown - that 'simple relations exist among the quantities which

govern the electronic transition probability in quantum and semiclassical

scattering theory for two special cases. For an avoided crossing, these

I	 .

r'

13
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relations hold when the coupling between the electronic states (H 12 ) is small

and the transition is localized at the avoided intersection.	 This condition

should encompass most cases with large transition probabilities. 	 In semi-

classical calculations, the complex intersection points can be located with the

use of the slope of a linear fit of H' 1 H22•	 In this way, semiclassical

calculations can be carried out using only real-valued potential' energy
i

surfaces as input.

For the spin-orbit case, it has been shown that the nonadiabatic coupling

j	 and location of the complex intersection points are very sensitive to 	 AV,

the difference between the nonrelativistic potential surfaces. 	 Simple relations

exist for these quantities in systems with relatively short-range interactions

(large a's and small or negative O's in eqs. (16) and (22)).
i

Again, this provides a method to help locate the complex intersection

points needed for semiclassical calculations of electronic transitions when

only real-valued potential energy surfaces are available. 	 However, in this

case more caution is needed as the location of complex intersection points 3

is very sensitive to the functional form used to fit the 	 AV	 versus	 r	 data
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Comparison of predictions from the two-state model of avoided crossings

with complex-valued ab initio MO data

Case	 r AE(r ) a a) r r	 predicted 
b)

qualityc)
m m (hartree o 0 of fit
(bohr) (hartree)

-1
(bohr) (bohr). bohr

+f-d)
HeH	 3.6440 0.00294 -0.0784 3.6440 ± 0.03751 3.6446 ± 0.03751 1.48

H3 collineare)	2.447 0.00117 -0.0542 2.4482 ± 0.02181 2.449 ± 0.02181 1.92

(R -"9 bohr)

H3 collineare)	2.448 0.01683 -0.0527 2.3926 + 0.2959i 2.446 ± 0.31931 5.39

(R = 6 bohr)

H 3
+

	)'	 2.468 0.02621 -0.0515 2.3464 ± 0.4439i 2.468 ± 0.50901 4.67

(R = 6 bohr)

a) Determined by linear least squares fit of f(r)

b) ro predicted = r	 ± iAE(rm)/a.
M.

(fait - fi) 2
1/2

c) Defined as 100 X
E fi
i

d) Data from ref. [10].

e) Data from ref.	 [11] for [5s,2p]	 (3s,lp) basis set.

i

ij



f
i

I

Table 2

Summary of interrelations for case II



w

Table 3

Comparison of the model j th ab initio MO data for HF+
3

Case a A rc
X22r(rc)

r0

(bohr-2) _
(hartree)

(bohr) -2) (bohr) -. ----.
(bohr

fit to r-< 5 data 0 . 91 0.76 6.619 0 .322 6 .619 ± 1.3531

fit to , r >_ 6 data 0 . 39 0.048 .305 0.138 8.305 + 3.15611

fit to all data 0.62 0 . 235 7 .822 0.219 7 .822 ± 1.9851	 1

ab initio results - - 7.4 0.1_
	 7.495 ± 3.0091	 i

,	 r
CO	 (i) predicted from

r . Xi2r(r^)
E:

0.399 0.035 - - 7.4 ± 3.0871

(ii) predicted from

r
0

' 0.409 0.039 7.495 0.145 -`--

a) ab initio data taken

I1

I

from ref. [131.

1

I


