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A FOURTH-ORDER BOX METHOD FOR SOLVING
THE BOUNDARY-LAYER EQUATIONS

By Stephen F. Wornom

Langley Research Center

SUMMARY

A fourth-order box method for calculating high-accuracy numerical

solutions to parabolic, partial differential equations in two variables

or ordinary differential equations is presented. The method is the natural

extension of the second-order Keller "Box" scheme to fourth order and is

demonstrated with application to the incompressible, laminar and turbulent

boundary-layer equations. Numerical results for high-accuracy test cases

show the method to be significantly, faster than other higher-order and

second-order methods available today.

INTRODUCTION

Recently, attention has been given to numerical methods for solving

the boundary-layer equations which have truncation errors that are of

higher order than the second-order methods presently in use today. The

term higher order will refer in this paper to the truncation error in the

coordinate normal to the body surface. The truncation error in the tan-

gential coordinate is second order. The advantages of higher-order methods
a

are 'twofold. First, they can be used to obtain a numerical solution as

accurate as a second-order method with considerably less computer time and j

storage or, alternatively, they may be used to produce a significantly more

accurate solution for the same amount of run time and storage as a second-

order method.

- The higher-order methods proposed thus far for the boundary-layer equa-

tions consist of three-point schemes which fall into two classes. The first i
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class consists of collocation procedures which are fourth order for uniform

meshes. These procedures treat the functional value and certain derivatives

as unknowns at three collocation points and can be derived via Taylor Series

(Hermite) or polynomial interpolation (Spline). In this category are the

Pade approximation of Kreiss l or so-called compact scheme 2 , the Mehrstellen3

formulation, and the formulation of Peters 4 . The second class consists of

methods for variable meshes. In this category are the Spline collocation

methods of Rubin and Graves 5 and Rubin and Khosla 6 ' 7 . Both classes are

similar in that the resulting finite-difference equations involve three

nodal points, but are different in that the first class is restricted to

constant meshes whereas the second class is applicable to variable meshes.

One disadvantage of the higher-order methods involving three nodal

points is that the usual boundary conditions for incompressible flow,

u = v = 0 at the surface and u -o- u e as the boundary layer merges with the

the mainstream, are no longer sufficient since the resulting system of

finite-difference equations contains two more unknowns than equations.

This difficulty is usually finessed by adding an additional boundary

condition at the cuter edge of the layer and an additional equation or

boundary condition at the surface boundary. The choice of which additional

boundary conditions or equations to use is not clear.

Another disadvantage that is evident in some higher-order methods is

the complexity of the resulting nonlinear finite-difference equations and

the associated difficulty of solving them efficiently at each column. For

example, the "Spline 4" method of Rubin and Khosla 6,7 would seem to require

the solution of a 5X5-block tridiagonal matrix in order to solve the fully-

coupled incompressible boundary-layer equations. A simpler solution scheme,

which "lags" the continuity equation one iteration behind the momentum equa-

tion, is reported by Rubin and Khosla 6 . Since the equations in this scheme

are solved uncoupled, the errors will diminish in a linear manner with each

iteration. in contrast, the better second-order methods, such as the Davis

Coupled Scheme8 (DCS) or the Keller Box. Scheme 9 (KBS), solve the equations

fully coupled with Newton iteration and thus, for laminar flows, quadratic

convergence is achieved. Hence, the advantages'of -some higher-order methods,

relative to second-order methods, may be diminished or lost entirely in

practical engineering calculations.

2
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The purpose of this repovt is to present a fourth-order box method for

obtaining numerical solutions to parabolic, partial-differential equations 'in

two variables or ordinary differential equations, with application here to

the steady, two-dimensional, incompressible, laminar or turbulent boundary-

layer equations. The method has the following features: (1) The method

results in finite-difference equations that involve only two nodal points

and therefore is formally fourth-order accurate on all grids, (2) the method

results in a 3X3 matrix of unknowns at each nodal point when the equations are
	 W.

solved In a coupled manner, (3) the method utilizes Newton iteration and

demonstrates quadratic convergence for laminar flows, and (4) the method

requires only the standard boundary conditions u = v = 0 at the body sur-

face and u + u e as the boundary layer merges with the mainstream. In short,

the method is the natural fourth-order extension of the second-order Keller

Box Scheme; it is an example of a general class of high-accuracy, two-point

methods discussed briefly by Keller10 . Keller offers an operation-count

analysis that suggests that such methods may be superior to the well-known

KBS (with Richardson extrapolation) to achieve accuracy less than or equal

to 0(h 6 ). The validity of this conjecture is borne out in the present

formulation and numerical results.

SYMBOLS

An ,Bn	3X3 matrices defined by equation (27)

4
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i,jth element of the An

bij	 i,jth element of the Bn

C	 3X3 matrix given by equation (31)
a

Ct	surface skin friction coefficient,

Cf Tw*/(1/2 P^ B^*2/	

s

C
f
	value of Cf for 640 intervals across the boundary

exact	 layer	 m

3
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ii

c0 ,c l	constants in grid stretch function - see equation (42)

D
O	3X3 matrix given by equation (37)

d (1) ,d (2),d 
(3)

n	 n	 n	
coefficients in the solution technique - see

e (1),e (2)ie (3)	 equations (32) to (34)

n	 n	 n

ET	 percentage error in the wall shear - see equation (41)

F

f

9

h

k

L

Y,

pn,gn,rn

Re

damping factor - see equation (10c)

normalized longitudinal velocity component in the
boundary layer f = u/Ue

represents any sufficiently differentiable quantity

step size in the Ti coordinate h = Ann-1 = nn	 nn-1

von Karman constant, k = .41

reference length

Q=1+e

components of the vector w  - see equation (26)

characteristic Reynolds number Re = pwU^*L*/µM*

s	 at/dn
z

sexact	 value of sl (wall shear) for 640 intervals across the

boundary layer	 '•
3
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t	 defined by equation (10b)

U

	

	 nondimensional inviscid flow velocity in the x-direction

U = U*/U„*

t

u	 nondimensional time-averaged viscous flow component in
*

the x-direction u = u */U

u 	 velocity uT*	 I TV,* I/PW

nondimensional time-averaged viscous flow component in

the Y-direction v =.F v* /UM *

transformed viscous flow component in the y-direction -
see equation (7)

vector defined by equation (25)

nondimensional position coordinate measured along body

surface from leading edge or s'agnation_ point, ,x = x*/L*

stretched normal coordinate Y = R e y

law of the wall coordinate Y+ _ uT*y*/v„*

nondimensional physical distance normal to body surface

Y = y*/L*

vector defined by equation (25)

exponent in grid stretch function - see equation (42)
i

pressure gradient parameter - see equation (S)

step size in n coordinate h = Ann-1 - nn nn-1	 Y-F
P

5 r

,x
3
ai

v

v

-f.
wn

x

Y

Y+

y

}
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d boundary-layer thickness measured in the	 n	coordinate.
Defined as the point where 	 u/Ue = .995	 unless other-
wise noted

d boundary-layer thickness measured in the 	 Y	 coordinate

e nondimensional	 eddy viscosity - see equation (10a)

1
A' defined by equation (44)

n transformed normal coordinate - see equation (5)

a mixing length - see equation (10d)

*
N molecular viscosity

V* kinematic viscosity 	 v* = p*/p*

transformed surface coordinate - see equation (5)

P* density

T * wall shear	 T * _ (U*8u*/ay*)
w	 iw

y-0

¢ dummy integration variable - see equation (5)

coefficients used to compute	 s l - see equation (40)
5
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Subscripts

e

u
w

V

n

exact

inviscid flow conditions at y = 0

viscous flow conditions at y = 0

free-stream conditions

grid index in n coordinate for finite-difference
formulation

value obtained with 640 intervals across boundary layer

I

Superscripts

i	 present iteration

differentiation with respect to the rj coordinate

time-averaged quantity

dimensional quantity

-1	 inverse of matrix

vector
a

T	 transpose of a matrix (or vector)

(1),(2), or (3)	 coefficients associated with unknowns s, f or v,
respectively, in equations (32) to (39)

3



GOVERNING E(«)ATIONS

The method is demonstrated with application to the steady, two-

dimensional, incompressible, laminar or time -averaged turbulent boundary-

layer equations ll which are expressed here in Gortler variables 12.

n 
iR 

an) - v an - a(f 2 - 1) - 29f 3f = 0 	 (momentum) (1)

an + 29 a_f + f = 0	 (continuity) (2)

with boundary conditions

f = v = 0 at n = 0 (no slip, no injection) (3)

and

f+1 as	 (4)

Other quantities are given by

(x d. (x)

f0	 2

4

f = u/Ue	 (6)	 t

V = ^E v + 2 C f a /Ue 
	

(7)e
dU

Ue dg ,

8
I	
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and

R= 1 +e.	 (9)

The eddy viscosity a is given by 13

c= t^an^	 (10a)

where

t = 
F2^'2^

Re 
Ue/ .2^
	 (IOb)

F a	 exp (-Y*/26)	 (1 DO

and

W = .085 tanh \ 85 S)
	

(k = .41)	 (lOd)

The variables in equations (1) to (10) are nondimensional as shown in the list

of symbols.

	

FINITE-DIFFERENCE EQUATION FORMULATION 	
i

The usual approach for reducing a set of differential equations to a set

of finite-difference equations is to express the partial derivative terms as

finite-difference quotients and substitute those into the differential equa-

tions to obtain a set of finite-difference equations. Here we reverse the

procedure and substitute the differential equations into a finite-difference

	

	 ?
a

expression to obtain a set of finite-difference equations. 	 }

}

J	 _
9
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The finite-difference expression around which the method is formulated

is given by

gn - g n-1	 2 (9 ,, + gn-1) + 12 `g n - g n-1/ + 0(h
5 ) = 0	 (11)

where	 h	 is the variable step size, nn - nn-1' in the normal coordinate 	 n

and	 (	 )	 _- a(	 )/an	 with	 g	 representing any sufficiently differentiable

quantity.	 As mentioned previously, equation (11) is not new.	 It is the

fourth-order member of a general class of high-accuracy, two-point methods

for boundary-value problems discussed by Keller 10 .	 Liniger and Willoughbyld

analyzed the stability of equation (11) as an implicit method for solving

initial-value problems for stiff systems of ordinary differential equations.

Hirsh 2 	used the expression to formulate boundary conditions for the three-

point "compact" scheme applied to the incompressible driven cavity problem.

A key step in the present procedure, as with the second-order Keller Box

-	 Scheme, is to reformulate the problem in terms of a first-order set of partial

differential equations.	 This is done by defining 	 s - of/2n	 and rewriting

equations	 (1) and	 (2) as	 {
1
S

2

an (Rs - vf) = 2^ 2-
	

+ (1 + 6) f2 - S	 (momentum) (12)

an = s
	 (shear)	 (13)

fi

A

n = -2C a	 - f.	 (continuity) (14)

If we now define	 g	 as a vector

As - of (15)

9 =	 f	 (16)
v	

(17)
`i	 4

10
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then 9	 will be the right-hand side of equations (12) to (14) and 9" its
derivative with respect to the Tj coordinate, as follows:

2^ f, + (l + q f, - a	 (18)

S

2^	 f	 (20)

2 24 B
a s

+ (1 + a) (fs)	 (21)

1	
2_1) +^_ t ISIS

(2Z	 ws  + O(f	 (22)

2g is - s	 (23)

where equation (1) has been used to express s	 in terms of the dependent
variables f, s, and v (eq. (22)). Substitution of equations (15) to (23)

into equation ( 11) leads to three nonlinear finite-difference equations.
The 9( )/a^ terms in these equations are written so as to h-ndle either
the Crank-Nicolson scheme, where they are approximated by a central difference
quotient, or a scheme where they are approximated by three points; thus in
either case making the equations second-order accurate in the ^ coordinate
and fourth-order accurate in the normal coordinate Tj. These nonlinear
equations are then linearized by Newton's nethod with the exception of the
term t'Isjs in equation (22) and the quantities 6 and s, which are
used to compute X and Y

Application of Newton's method yields three linear finite-difference
equations which can be expressed as

Anzn-1 + B n zn 
= W 

n	 (24)



where

zn = (sn,fn,vn)T	(25)

i,

W  = ( p n ,g n ,rn) T	(26)

a ll	 a 12	 a 13	 b11	 b 12	 b13

An =
	 a 21	 a 22	 a 23	 B n	 b2l	 b22	 b23	 (27)

a 3l	 a 32	 a 33	 b31	 b 32	 b33

The superscript	 i	 in equation (25) denotes the present iteration value.

An , BO and	 un	 are functions of the dependent variables evaluated at

thF	 i-1	 iteration and/or at the previous 	 C	 stations.	 Equations (24)

must be solved repeatedly until an acceptable level of convergence is

obtained.	 Although the double-subscripted matrix elements change values
i

with the index	 n, the index	 n	 is suppressed here for simplicity.	 The

superscript	 i	 will be suppressed from here; on for the same reason.

Appendix A shows how	 a
ll , a 22 1 a23 , b21' b 22 > b23, and

	 q n	are obtained.

The boundary conditions are

fl = v1 = 0	 (No slip, no injection)	 (28)
i

and
S

fN = 1	 (29)

j

It is noteworthy that, since equations (24) can be applied at the outer

-boundary, the total number of fin+.t»-difference equations available exactly

balances the total number of unknowns. 	 In contrast, a three-point method
h

formulated in terms of	 f, s, and	 v	 (since it could not be applied at the

outer boundary) would result in more unknowns than equations and hence the

12
z
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method would require additional boundary conditions or use of three-point

backward differencing at the outer boundary or a combination of both.

The resulting linear system of finite-difference equations (24) can be

solved in the relatively simple manner which is presented here.

If equations (24) are applied at n = 2 (n = 1 being the surface and

n = N locating the outer boundary) and the boundary conditions f l = v l = 0

are applied, three equations with four unknowns are obtained. Thus, we may

solve for three of the unknowns in terms of the fourth unknown.

Since fN is known at the outer boundary, it is convenient to solve for

s l , s 2 , and v 2 in terms of f2 , in anticipation of the general form of the

recursion relations to be derived subsequently. Thus, at n = 2, equa-

tions (24) can be rewritten as;

(s2,sl,v2)T = 
0-11;W"2

 - (b12"22,b32 )Tf2 1	 (30)

where

b11	 all	 b13

	

C ^ b 21	 a21	 b23	 (31)

	

b 31	 a31	 b33

.If vie next appl µ, equations (24) at n = 3 and use equations (30) to

eliminate s 2 and v2 as unknowns, the result is again three equations and

four unknowns; namely, f 2 , f3, v32 and s 3 . Thus, vie may solve for three of

the unknowns in terms of the fourth unknown. Here we solve for f 2 , v3 , 53,

in terms of f3 ; this order being dictated by the choice at n = 2 which was

made with the consideration of the outer boundary condition f  = 1. If this

procedure is repeated for n = 4, ..., N, the following general form is

obtained for the three unknowns written in tei^ms of the fourth:

13



s 
	 = dn (1) + en (1) fn (32)

f
n-1 - d n (2) + en(2)fit^	

n =	 3,	 4,	 ..., N. (33)

vn = d n (3) + e n (3) f n (34)

where the superscripts 1,	 2, and 3 in parentheses identify the coefficients

associated with the unknowns s,	 f, and	 v, respectively.

The coefficients dn (l) , d n (2) ,	 d n (3) ,
	

en (1) ,	en (2) ,	 and e
n
 (3)

are

given by

(d (l )	 d	 (2)d	
(3) `T =

J D -1	 I(P	 ,9	 ,r	 ,a	 ,a	 ) Td(1)n	 n	
) T -	 (a 11	 21	 31	 -1nn n	 n n	 n

1
(a13' a23 ,a 33 )Td^ -1

1
(35)

(en(1),en(2),en(3),T = - pn-
1(b12,b22'b32)T	 (36)

ii

with

b11 a12 + a ll	 n-1 + a13en31	 x'13

Dn
b21 a22 + a 21 eni 1 + a 23e(3)	 b 2

(37)

b 31 a32 +
a 31

en- 1 +_a
33en-1	 b33



Examination of equations (32) to (37) reveals that while the solution for

the dependent variables s n , fn , and v n cannot be computed as we proceed

toward the outer boundary, the coefficients d
n 
(1) , d

n 
(2) , d

n 
(3) , a

n
 (1),

en (?) , and e
n 
(3)

can be computed if the initial values d 2 (1) , d2(3),

e2 ( 1 ), and e 2 ( 3 ) are known. These initial values are found by comparing

equations (32) and (34) evaluated at n = 2 with equations (30). The

initial values are:

(d 2 (1) ,	
d2 (3))

T
= C 1 (P 2 , g 2 ,r 2 ) T	(38)

(e 2M , w , e2(3)) T = - C-l(b12,b22,b32)T
	

(39)

where ip, w are coefficients to compute s l from the following equation

s l = > + Wf2 .	 (40)

When the outer boundary is reached, equations (32) to (34) can now

be solved for s N , fN_ l , and v N since the outer boundary condition

fN = 1 can be applied. Knowing fN_ l , we can next compute s
N_l , fN-2, and

v N_ 1 and likewise all the values of s n , fn , and vn proceeding from the

outer boundary toward the solid boundary:

RESULTS AND DISCUSSION

Figure 1 shows the percent error in the wall shear versus the number of

intervals across the boundary layer, N-1, for the present method, the Spline 4

method of Rubin and Khosla6 and the KBS for stagnation point flow (g = 1). The

number of intervals were 5, 10, 16, 20, 32, 40, 64, 80, 128, 160, and 320. The

Spline 4 method was unstable for five intervals and thus no point is shown. For

15
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this case the governing equations reduce to a set of ordinary differential

equations. The error in the wall shear is defined as

ET = 100 I sexact - s 1 1 /sexact	
(41)

whera 
sexact 

is the value of s l from the higher-order methods with 640

intervals across the boundary layer. The mesh size for this case varied

across the layer (e.g., onl = .05 for N = 11) with the last computational

point being at nN = 24.2538. The equation used to generate the grid is

given by

nn = c 0 401 + c l 4n )a ,	 (42)

where

co = nN (1 + cl )a	(43)

f

Y

and
)

t
c l = -.4, a = 8.26 (45)

z

The two extra equations needed for the Spline 4 method were taken as

s N = 0 (46)

and equation (11) applied a -16	 n = 2	 to the shear equation.

Figure 1 shows both the present method and the Spline 4 method of Rubin
4

and Khosla 6 to be fourth-order accurate for a variable mesh.	 However, for

the same number of nodal points across the boundary layer, the present method f

16 )
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is approximately 10 times as accurate as the Spline 4 method for a variable

mesh size. To judge the efficiency of the different higher-order methods,

the computer run times for the different methods were compared for three

high-accuracy solutions to this problem; namely, E T = .15, .015, and .0015.

To achieve an error of ET = .15 the present method, the Spline 4 method,

and the KBS solutions were computed with 7, 11, and 27 nodal points, respec-

tively. (See fig. 1.) The convergence criteria for these three cases required

the value of ET between consecutive iterations to be accurate to two signif-

icant figures. Results are summarized in tables I, II, and III. These tables

show the present method to be significantly faster than the Spline 4 and the

KBS to achieve the same degree of accuracy. It should be noted that a key

reason for the greater efficiency of the present method over the Spline 4

method is due to the present equation formulation which allows the resulting

finite-difference equations to be solved efficiently in a coupled manner using

Newton's method.

Figure 2 shows a plot of the percentage error in the wall shear versus

the number of intervals across the boundary layer for a model turbulent

problem for the present method and the KBS. The equations for this case were

obtained from the nonsimilar equations by setting 0 = 0 and a( )/a^ = 0.

The Reynolds number was 1.88 million, E = 1, 6 = 24.5 with the outer boundary

located at 914 = 60. Convergent solutions using the Spline 4 could not be

obtained for this case. (The possibility of a coding error exists in the

program and this will be investigated further.) The constants in equation (42)

for the n grid distribution are c1 = .05 and a = -109. Figure 2 shows the

present method to be slightly better than third-order accurate for the model

turbulent problem. In order to determine the efficiency of the present method,

solutions were computed with both methods for a .1-percent error in the wall

shear. The present method requires approximately 21 nodal points and the

KBS 92 nodal points. Results show the present method to be approximately

3.83 times faster than the KBS to achieve the same order of accuracy. All

calculations were made on a CDC Cyber 175 computer with a FORTRAN Extended

Compiler, optimization level = 0. The same calculations would require about

2.5 times more CPU time on a CDC 5600. No under-relaxation was required for

either test case.

17
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CONCLUDING REMARKS

A fourth-order box method for calculating high-accuracy numerical solu-

tions to parabolic, partial differential equations in two variables or ordinary

differential equations has been presented. The method is the natural extension

of the second-order Keller "Box" scheme to fourth order and has been demon-

strated with application to the incompressible, laminar and turbulent boundary-

layer equations. Numerical results for high accuracy test cases show the

present method to be significantly faster than other higher-order and second-

order methods available today to achieve the same accuracy. For the test

cases reported on the governing equations reduced to ordinary differential

equations. Calculations for nonsimilar cases have been completed and will

be included in a later report.

Richardson extrapolation to zero mesh size has not been considered in

the present paper. Keller has shown this technique to be a valuable one

for improving the accuracy of the KBS; hence, a final comparison must be

made on this basis.
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APPENDIX A

SHEAR EQUATION COEFFICIENTS

We show here how to identify the matrix elements of A n , On and the

vector component of w  for equations (24)• The pr"edure is illustrated for

the shear equation for laminar, similar flow (2 = 1, a( )/eg = 0) where for

the shear equation

g = f
	

(Al)

9 = s
	

(A2)

g,1 = s I	 vs + s (f2 - I).	
(A3)

Substitution of equations ( Al) to (A3) into equation ( 11) evaluated at the

ith iteration yields the following nonlinear finite-difference equation'

if - 
fn-1 - 2 ^sn + sn-1)	

12 I(vs)n + Si(f2)n 

	

^	 k

E

(vs)n -1 	 B I (f2)i	 - 
1 11 = 0	 (A4)

'	 r

Equation (A4) is now linearized via Newton ' s method which can be shown to

correspond to the following linearization for the products (vs) i and ( f 2 ) 1 	j

	

N O _ vi-lsi + v i si-1	 (vs)
i - 1	 (A5)
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(f2 ) 	 = 2fi-1fi
	 -	 (f2)i-1 46)

Applying equations (A6) and (A6) to equation (A4), the linear finite-difference

equation can be written as

ii
a21sn-1 + a 22fn-1 + a23^n-1 + b 21 s n + b22fn + b23

v
n - qn	

07)

where

l 2

a21 = - h/2 - 12 ^n-1
(A8)

1

a 22 = - 1 -	 fn-1
(A4)

h2 i-1

a 23 - - 12 sn-1
(A10)

2

b21 - " 2 + 12 Vn-1 (All)

2

b22 - 1 +	 fn-1.6
(Al2)

-,

i

b23 _ 12 sn
-1

(Al?)

a
z

and

-h2	 i-1	 i-1	 (	 2 i-1	 2 i-1)1

q n - 12	 C(V S ) n 	 -	(vs) n-1 + Q ( (f )n	
_	 (f 

) n-11 (A14) a
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TABLE III.- ET = .0015 PERCENT (ERROR IN WALL SHEAR)

Method Mesh Points Iterations CPU CPU/CPUr

Present 20 3 0.015 0.12

Spline 4 31 9 0.058 0.48

KBS 251 3 0.122 1.0

r

J

^.

}

i
i

^r

TABLE I.- ET = .15 PERCENT (ERROR IN WALL SHEAR)

Method Mesh Points Iterations
Ca)

CPU/CPU BS

Present 7 3 0.008 0.53

Spline 4 11 11 0.033 2.2

KBS 27 3 0.015 1.0

aCPU = Central processing time in seconds.

TABLE II.- E T = .015 PERCENT (ERROR IN WALL SHEAR)

MathocJ Mesh Points Iterations CPU CPUCPU/	
KBS

Present I	 11 3 0.011 0.26

Spline 4 18 10 0.042 1.05

KBS 81 3 0.040 1.0
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