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A FOURTH-ORDER BOX METHOD FOR SUGLVING
THE BOUNDARY-LAYER EQUATIONS

By Stephen F. Wornom

Langley Research Center

 SUMMARY

A fourth-order box method for calculating high-accuracy numerical _ :
- solutions to parabolic, partial differential equations in two variables

or ordinary differential equations is presented. The method is the natural
extension of the second-order Keller "Box" scheme to fourth order and is
demonstrated with application to the incompressible, laminar and turbulent
boundary-iayer equations. Numerical results for high-accuracy test cases
show the method to be significantly faster than other higher-order and
second-order methods available today.

INTRODUCTION

Recently, attention has been given to numerical Methods for solving
the bouhdary-]ayef equations which have truncation errors that are of
higher order than the second-order methods presently in use today. The
term higher order will refer in this paper to the truncation error in the : %
coordinate normal to the body surface. The truncation error in the tan- L
gential coordinate is second order. The advantages of higher-order me thods ' ;
are twofold. First, they can be used to obtain a numerical solution as
accurate as a second-order method with considerabiy less computer time and
storage or, alternatively, they may be used to produce a significantly more o
~accurate solution for the same amount of run time and storage as a second- "
order method. ' | | ' ' ) '
| The higher-order methods proposed thus far for the boundary-layer equa-
tions consist of three-point schemes which fall into two classes. The first
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class consists of collocation procedures which are fourth order for uniform 5 g
meshes. These procedures treat the functional value and certain derivatives L
as unknowns at three collocation points and can be derived via Taylor Series
(Hermite) or polynomial interpolation (Spline). In this category are the
Padeé approximation of kreiss| or so-called compact scheme®, the Mehrstellen?
formulation, and the formulation of Petersq. The second class consists of
- methods for variable meshes. In this category are the Spline collocation :
methods of Rubin and Graves® and Rubin and Khos]a5’7. Both classes are -
similar in that the resuliting finite-difference equations involve three '
nodal points, but are different in that the first class is restricted to
constant meshes whereas the second class is applicable to variable meshes.
One disadvantage of the higher-order methods involving three nodal ﬂ ;
points is that the usual boundary conditions for incompressible flow, : é
u=v=0 at the surface and uu, as the boundary layer merges with the ’
the mainstream, are no longer sufficient since the resulting system of C
finite~-difference equations contains two more unknowns than eguations.
This difficulty is usually finessed by adding an additional boundary
condition at the cuter edge of the layer and an additiona]lequation or _
boundary condition at the surface boundary. The choice of which additional i :
boundary conditions or equations to use is not clear. o
Another disadvantage that is evident in some higher-order methods is
the complexity of the resulting nonlinear finite-difference equations and
the associated difficulty of solving them efficiently at each column. For
example, the "Spline 4" method of Rubin and Kho-51a\6-’7 wolild seem to require
the solution of a 5X5-block tridiagonal matrix in order to solve the fully- o
coupled -incompressible boundary-layer equations, A simpier solution scheme, . a
which "Tags" the continuity equation one iteration behind the momentum egua- o
tion, is reported by Rubin and Knos1a®. Since the equations in this scheme C
are solved uncoupled, the errors will diminish in a linear manner with each
iteration. In contrast, the better second-order meihods, such as the Davis
Coupled Scheme® (DCS) or the Keller Box Séhemeg (KBS), solve the equations
fully coupled with Newton iteration and thus, for laminar flows, quadratic'
convergence is achieved. Hence, the advantages of some higher-order methods,
- relative to second-order methods, may be diminished or Tost entirely in
practical engineering calculations. '
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The purpose of this repoyt is to present a fourth-order box method for
obtaining numerical solutions to parabolic, partial-differential equations ‘in
two variables or ordinary differential equations, with application here to
the steady, two-dimensional, incompressible, Taminar or turbulept boundary-
layer equations. The method has the following features: (1) The method
results in finite-difference equations that involve only two nodal points
and therefore is formally fourth-order accurate on all grids, (2} the method
results in a 3X3 matrix of unknowns at each nodal point when the equations are
solved in a coupied manner, (3) the method utilizes Newton iteration and
demonstrates quadratic convergence for laminar flows, and (4) the methcd
requires only the standard boundary conditions u =v =0 at the body sur-
face and u -+ u, as the boundary layer merges with the mainstream. In short,
the method is the natural fourth-order extension of the second-order Keller
Box Scheme; it is an example of a general class of high-accuracy, two-point
methods discussed briefly by Ke11er]0. Keller offers an operation-count
analysis that suggests that such methods may be superior to the well-knovn
KBS (with Richardson extrapolation) to achieve accuracy less than or equal
to O(hs). The validity of this conjecture is borne out in the present
formulation and numerical results. |

SYMBOLS
AysBy | 3X3 matrices defined by equation (27)
a4 : i,jth element of the A
bij H ” i,jth.element of.the Bn_
'.C. | 3%3 matrix given by equation (31)
Cf ' | surface skin friction coefficient,
ke
Cf' value of bf' for 640 intervals across the boundary -~

~exact - layer
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Sexact

constants in grid stretch function - see equation (42)

~ 3X3 matrix given by equation (37)

coefficients in the solution technique - see
equat1ons (32) to (34)

percentage errot in the wall shear - see equation (41)
damping factor - see equation (10c).

normalized longitudinal ve1oc1ty component in the
boundary layer f = u/U

represents any sufficiently differentiable quantity
step size in the n coordinate h = A”n-1 = Ny = Mo
von Karman constant, k = .4]

reference Tength

k=l te

components of the vector ﬁh - see equation (26)

e e * Kk %
characteristic Reynolds number Re = P, U L /Uy,

af/dn

vajue of 51 (wall shear} for 640 intervals across the

boundary layer
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&n

defined by equation (10b)

nondimensional inviscid flow velocity in the x-direction
X *
=U/u,

nondimensional time-averaged viscous flow component in
. . .k, K
the x-direction u=u /U,

friction velocity uT* = ‘ﬂrw*l/bmf

nondimensional time- averaged viscous flow component in
the Y-direction V —ﬁJE“ v /U

~ transformed viscous f]ow componeht in the y-direction -

see equation (7)
vector defined by equation {26)

nondimensional position coordinate measured along body
*
surface from leading edge or s*agnation point, x = x /L

stretched normal coordipate Y =[RS ¥

. + * k
- law of the wall coordinate Y =u_y /v,

nond1men510na] physica1 d1stance norma1 to body surfuce'

=Yy /L

vector defined by equation (25)
exponent in grid stretch function - see equation (42) -
~pressure gradient parameter - see equation (8)

step size in n coordinate h = Aoy = My - Tpoy
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boundary-layer thickness measured in the n coordinate.
Defined as the point where u/U; = .95 unless other-
wise noted

boundary-layer thickness measured in the Y coordinate
nondimensional eddy viscosity - see equation (10a)

defined by equation (44)

transformed normal coordinate - see equation (5)

mixing length - see equation (10d)

molecular viscosity
* » 3 + .*' * *
kinematic viscosity v = /p
transformed surface coordinate - see equation (5)
density

* * 0k *
= {u du /3y )

dummy integration variable - see equation (5)

coefficients used to compute s, - see equation (40)
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Subscripts

gxact

Superscripts

(1).(2), or (3)

inviscid flow conditions at y =0
viscous flow conditions at y = 0

free-stream conditions

grid index in n coordinate for finite-difference
formulation

value obtained with 640 intervals across boundary 1ayeh”

present iteration

differentiation with respect to the n coordinate

time-averaged quantity
dimensional quantity

inverse of matriin

vector

ftgnsbose of.a matrix.(or.?ectdfj

- coefficients associated with unknowns s, f; or Vy.
respective]y, 1n equat10ns (32) to (39)
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GOVERNING EGUATIONS

The method is demonstrated with application to the steady, two-
dimensional, incompressibie, laminar or time-averaged turbulent boundary-
Tayer equa\tionsH which are expressed here in Gortler variables'®.

D fy BFN L 8f 62 L qy of _
5n (2 ) = g(f= - 1) - 2&f 5 0 (momentum)

o2 5 e g | {continuity)

with boundary conditions

-+
1]

v=0 at n=0 (noslip, no injection)
and
f+1 as n+w,

Other quantities are given by

(M

(2)

(4)
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A

and
=1 +e (9)
The eddy viscosity e 1is given by]3
e =t Bn] (10a) o
where é
2.2 2
te FARYROUEAEE (100)
F=1-exp (-Y7/26) (10c)
and *’
AL - k_YY .. '
5" .085 tanh (*:'ﬁ@“gg’) (k = -4]) (]Od) §
The variables in equations (1) to (10) are nondimensional as shown in the 1ist E
of symbols. -
FINITE-DIFFERENCE EQUATION FORMULATION g
The usual approach for reducing a set of differential equations to a set
of finite-difference equations is to express the partial derivative terms as ﬁ
finite-difference quotients and substitute those into the differential equa- : i
tions to obtain a set of finite-difference equations. Here we reverse the ; é
procedure and substitute the d1fferent1a1 equations into a f1n1te-d1fference o

expression to obtain & set of finite-difference equat1ons.
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The finite-difference expression around which the method is formulated
is given by

' 2
_h_ | 1 h It 1] ) 5 -
%~ %1772 (gn ¥ gn—l) ¥ Tﬁ'(gn " Gpq) T O(07) = 0 (1)

where h' is the variable step size, n, - n _q» in the normal coordinate n
and () =9( )/on with g vrepresenting any sufficientiy differentiable
quantity. As mentioned previously, equation {11) is not new. It is the

fourth-order member of a general class of high-accuracy, two-point methods
for boundary-value problems discussed by Keller‘o. Liniger and Willoughby
analyzed the stability of equation (11} as an implicit method for soiving

initial-value probiems for stiff systemS'bf ordinary differential equations.

14

| Hirsh2 used the expression to formulate boundary conditions for the three-

point “"compact" scheme applied to the incompressible driven cavity problem.

A key step in the present procedure, as with the second-order Keller Box
Scheme, is to reformulate the problem in terms of a first-order set of partial
differential equations. This is done by defining s 2 3f/9n and rewriting
equations (1) and (2) as |

2t - vh) = 26 20k (14 6) #2 12
rAss =V ) = 28 T (1 + B) - 8 (momentum) (12)
af _ ' .
=S | {(shear) (13)
LA -2E of . f. (continuity) (14)
o 13 - o _
If we now define g as a vector
o Yas - vf) o : - {18)
R o _
g=9 f o -~ {18)

v | (17}
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> -
then gl will be the right-hand side of equations (12) to (14) and g" its
derivative with respect to the n coordinate, as follows:
£2 \
2 5+ (1 +8) £2 - (18)
’*
g = 5 > (19)
f
-2 - f (20)
-
! 1
2 |2 2T+ (1 4 p) (fs)] (21)
-+, ' 1 ?
g-I = /(28 - 1) Lvs + s:'s(f2 1) + 332. -t ]s[s] (22)
i
' 3s
( | -2 5 - (23)

where equation (1) has been used to express s’ in terms of the dependent
variables f, s, and v (eq. (22)). Substitution of equations (15} to (23)

. into equation (11) Teads to three nonlinear finite-difference equations.

The 9( )/8¢ terms in these equations are written so as to hkandle either
the Crank-Nicolson scheme, where they are approxlmated by a central difference
quotient, or a scheme where they are approximated by three points; thus in
either case making the equations second-order accurate in the £ coordinate
and fourth-order accurate in the normal coordinate n. These nonlinear
equations are then Tinearized by Newton's method with the exception of the
term t' Is|s in equation (22) and the quantities § and 5 which are
used to compute A and v,

Application of Newton's method yields three linear f|n1te~d1fference

equations which can be expressed as

Ny

(24)

n“n-1 nmon

"
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where
3 = (sh,fl,viyT (25)
n n
- T
w, = {p, ) (26)
S L PR T b1 by Byg
An = 121 32 g3 byy By by (27)
831 33 A3 P31 Pap by

The superscript 1 in equation (25) denotes the present iteration value.

A.» B,» and ﬁn are functions of the dependent variables evaluated at
the 1i-1 diteration and/or at the previous & stations. Equations (24)

must be solved repeatedly until an acceptable Jevel of convergence is

- obtained. Although the double-subscripted matrix elements change values

with the index n, the index n 1is suppressed here for simplicity. The

superscript i will be suppressed from here on for the same reason.

Appendix A shows how 851 @nos 853 b21,'b22, by, and q, are obtained,
The boundary conditions are

: f1 =vy =0 {No siip, no injection) - (28)-
and |
fo=1 - (29)

It is noteworthy that, since equations (24) can be applied at the outer
boundary, the total number of finita-difference equations available exactly
balances the total number of unknowns. In coptrast, a thrée-poiht method
formulated in terms of f, s, and v ({since it could not be applied at the
outer boundary) would result in more unknowns than equations and hence the

12
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method would réquire additional boundary conditions or use of three-point
backward differencing at the outer boundary or a combination of both.

The resulting linear system of finite-difference equations (24) can be
solved in the relatively simple manner which is presented here.

If equations (24) are applied at n=2 (n =1 being the surface and
n =N locating the outer boundary) and the boundary conditions f] =V = 0
are applied, three equations with four unknowns are obtained. Thus, we may
solve for three of the unknowns in terms of the fourth unknown.

Since fN is known at the outer boundary, it is convenient to solve for
S1s Sp and v, in terms of f,, in anticipation of the general form of the

‘recursion relations to be derived subsequently. Thus, at n= 2, equa-

tions (24) can be rewritten as: ‘
b o
(52:575¥p) " = €70y = (byysbppib3p) T (30)
where
_ o -
by 3y by
=ty Ay Dy (31)
b 8.,. _ b
031 31 33|

- .If we next appls equations (24) at n =3 and use equations (30) to
eliminate 5n and V, as unknowns, the result is again'three equations and
four unknowns; namely, fz, f3, V3o and Sq Thus, we may solve for three of
the unknowns in terms of the fourth unknown. Here we solve for f,, V3s Sgs
in terms of f3; this order being dictated by the choice at n = 2 which was
made with the consideration of the outer boundary condition fN =1, IF this
procedure is repeated for n =4, ..., N, the following general form is
obtained for the three unknowns written in terms of the fourth:
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1

—h
11}

-
1

- dn(]) + enﬂ)fn

4B v e (Br

3 3
6,3 4 e Bp

/

n=3,4, ..

(R} N-

where the superscripts 1, 2, and 3 in parentheses identify the coefficients
associated with the unknowns s, f, and v, respectively.

The coefficients
given hy

(dn(n,dnmdn(a))T D

with
byq
Dp = | P2
b
14

31

1 2 3 1
6,0, g (2, g @) (1),

- (a13’a23'a 3)Td(3)]

(1)
Ao ¥ a11e -1

359 T 8y

*ags8,

]em i

(1 )
a3y * -a319n+1 T 233801

-1 T
" Dy {Bypibypsbyp)

(3)' |

(3)

23¢ n-

o)

] [(pn’qn’r )7 - (agpappag) N

13

23

33 _

(2) (3)
et s and ?n are

(36)

(37)



Examination of equations (32) to (37) reveals that while the solution for
cannot be computed as we proceed

the dependent variables Sy f and i
(2), 4 (3), ¢ (1)
3 ] n 3

toward the outer boundary, the coefficients dh(l), dn
en(z), and en(a) can be computed if the initial values dz(]), d2(3),
92(1), and e2(3) are known. These initial values are found by comparing
equations (32) and (34) evaluated at n = 2 with equations (30). The
initial values are:

.' T .
AR 4,9} = ¢ pjagery) (38)

| T
1 : (33 . -1 T
(82( ), W ez ) =-C (b12=b22:b32) . (39)
where ¢, w are coefficients to compute s from the following equation

When the outer boundary is reached, equations (32) to (34) can now
be solved for sy, f, ;, and v, since the outer boundary condition

fN =1 can be applied. Knowing fN_1,'we can next compute Spw1 fN-Z’ and
Ya-1 and Tikewise all the values of sﬁ, fn‘ and Y proceeding from the
outer boundary toward the solid boundary. ' ' :

RESULTS AND DISCUSSION

" Figure 1 shows the percent error in the wall shear versus the number of
intervals across the boundary layer, N-1, for the present method, the Spline 1
-method of Rubin and I(hos]a-6 and the KBS for stagnation point flow (B = 1). The

number of intervals were 5, 10, 16, 20, 32, 40, 64, 80, 128, 160, and 320. The
~ Spline 4 method was unstable for five intervals and thus no point is shown. For

15
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this case the governing equations reduce to a set of ordinary differential
equations. The error in the wall shear is defined as '

E. = 100 Isexact - S]'/sexact (41)

whersa Sexact is the value of 51 from the higher-order methods with 640
intervals across the bhoundary layer. The mesh size for this case varied
across the layer (e.q., fny = .05 for N = 11) with the last computational
point being at My = 24.2538. The equation used to generate the grid is
given by

Ny = ¢ 5/ (1 # c]tn)“, (42)

where
cg = ny (1 #¢p)® | (43)
gy = (/06 e

and -
e, = ;-;4, ws8.26 . O us)

The two extra equations needed for the Spline 4 method were taken as

sy=10 (46)
and equation (11) applied-at n = 2 to the shear equation. |
Figure 1 shows both the present method and the Spline 4 method of Rubin
and Khos1a6 to be fourth-order accurate for a variable mesh. However, for
the same number of nodal points across the boundary layer, the present method

16
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is approximately 10 times as accurate as the Spline 4 method for a variable
mesh size. To judge the efficiency of the different higher-order methods,

the computer run times for the different methods were compared for three
high-accuracy solutions to this problem; namely, ET =,15, .015, and .0015.

To achieve an error of E, = .15 the present method, the Spline 4 method,

and the KBS solutions were computed with 7, 11, and 27 nodal points, respec-
tively. (See fig. 1.) The convergence criteria for these three cases required
the value of ET between consecutive iterations to be accurate to two signif-
icant figures. Results are summarized in tables I, II, and II1. These tables
show the prasent method to be significantly faster than the Spline 4 and the
KBS to achieve the same degree of accuracy. It should be noted that a key
reason for the greater efficiency of the present method over the Spline 4
method is due to the present equation formulation which allows the resulting
finite-difference equations to be solved efficieht1y in a coupled manner using

Newton's method.

Figure 2 shows a plot of the percentage error in the wall shear versus
the number of intervais across the boundary jayer for a model turbulent
problem for the present method and the KBS. The equations for this case were
obtained from the nonsimilar equations by setting B =0 and 3( /38 =0,

- The Reynolds number was 1.88 million, £ =1, § = 24.5 with the outer boundary

located at My = 60. Convergent solutions using the Spline 4 could not be
obtained for this case. (The possibility of a coding error exists in the
program and this will be investigated further.) The constants in equation {42)
for the n grid distribution are Cy = 05 and o = -109. Figure 2 shows the
present method to be slightly better than third-order accurate for the model
turbulent problem. 1In order to determine the efficiency of the present method,
solutioné were computed with both methods for a .l1-percent error in the wall
‘shear. The present method requires approximate1y 21 nodal points and the |
KBS 92 nodal points. Results show the present method to be approximately

3.83 times faster than the KBS to achieve the same order of accuracy. All
calculations were made on a CDC Cyber 175 computer with a FORTRAN Extended
Compiler, optimization level = 0. The same calculations would require about

2.5 times more CPU time on a CDC 6600. o under-relaxation was required for

either test case.
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CONCLUDING REMARKS

A fourth-order box method for calculating high-accuracy numerical solu-
tions to parabolic, partial differential equations in two variables or ordinary
differential equations has been presented. The method is the natural extension
of the second-order Keller "Box" scheme to fourth order and has been demon-
strated with application to the incompressible, Taminar and turbulent boundary-
Tayer equations. Numerical results for high accuracy test cases show the
present method to be significantly faster than other higher-order and second-
order methods available today to achieve the same accuracy, For the test
cases reported on the governing equations reduced to ordinary differential
equations. Calculations for nonsimilar cases have been complieted and wil
be included in a later report,

Richardson extrapo]ation'to zero mesh size has not been considered in
the present paper. Keller has shown this technique to be a valuable one
for jmproving the accuracy of the KBS; hence, a Tinal comparison must be

made on this basis.
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APPENDIX A
SHEAR EQUATION COEFFICIENTS

We show here how to identify the matrix elements of An‘ B, and the
vector component of Wn for equations (24). The procedure is illustrated for
the shear equation for laminar, similar flow (& = 1, 9( )/9& = 0) where for

the shear equation

g="° (A1)
g =s (A2)
g" = =vs+B(f2-1). : , {(A3)

Substitution of equations (A1) to (A3) into equation (11) evaluated at the

ith iteration yiers the FoI]owing nonlinear finite-difference equation

g(sg+s;_1). .h.z..[ws) +s*(f2> .t

f f:”
- (vs)n - B ‘(f2 11] | (A4) ..

Equation (A4) is now Tinearized via Newton's method which can be shown to

correspond to the following linearization for the products (vs)1 and (f?) :

(VS)i = Vi-]s'i + Visi-.l - (Vs.)_'i"'l : (AS) .
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() = 26 - ()

.A6)

Applying equations (AS5) and (A6) to equation (A4}, the linear finite-difference

equation can be written as

where

“and
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TABLE I.- E. = .15 PERCENT (ERROR IN WALL SHEAR)

Method

Mesh Points

[terations

cPU

__(a)

CPU/CPUypg

Present
Spline 4
KBS

7
n
27

3
1
3

0,008

0,033

0.015

ACPU = Central processing time in seconds.

TABLE II.- E,. ® .015 PERCENT (ERROR IN WALL SHEAR)

Method

Mesh Points

Iterations

CPU

CPU/CPUKBS

Present
Spline 4
KBS

n
18
81

3
10
3

0.0M
0.042
0.040

0.26
1.05
1.0

TABLE III.- E.= .0015 PERCENT (ERRCR IN WALL SHEAR)

Method -

Mesh Points

Iterations

CPU

CPU/CPUygg

Pre§ént

Spline 4

KBS

20
31
251

3
9
3

0.015

0,058

0.122

6.12
0.48
1.0

P R

1
F
E:
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Figure 1.~ Percent error in the wall shear versus the number
of intervals across the boundary layer.
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