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This investigation is concerned with the interaction
between a turbulent flow and certain types of structure-re-
sponding to its excitation. The turbulence is typical of
those associated with a boundary layer, having a cross-spectral
density indicative of convection and statistical decay. -4
number of structural models are considered in the invéstigation.
Among the one-dimensional models are an unsupported infinite
beam and a periodically supporﬁéd infinite beam, The first
model is used o develope the basic ideas which are then
applied to ‘the more realistic second model resembling
the fuselage construction of an aircraft. For the two-dimen~
sional case a simple membrane is used to illustrate the Type
of formulation applicable to}QQStwtyo-dimensional structures,
However, a small random variation in the ﬁ;ﬁbr;he tension is
ineluded in ‘the analysis since ideally uniform tension never
exists in pracfice. Moreéver, ‘the mathematical approach used
in dealing with random membrane tension can be adapied to
treat other random structural properties in general, Both the
one~dimensional and two-dimensional structures mentioned above
are backed by a. cavity filled with an initially quieséent
fiuid to simulate the acoustic environment when the structure
forms cne side of a cabin of a sea; or air-craft,

It is shown that a decaying turbulence can be con-
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structed from superposing infinitely many components, each of
which is conveéted as a frozen-pattern at a different velocity,
This superposition scheme reduces greatly the computation Eime
by reducing to dne-half the number of integration which must
be performed on a computér. Furthermore, the scheme provides
a convenient way in which experimentally measured cross-
spectral density of the turbulence pressure fluctuation can

be incorporated directly in the computation,

The resﬁlts of the structure-turbulence interaction
are presented in terms of the speetral densities of the struc-
tural respbnse and the perturbation Reynolds stress in the
fluid at the vicinity of the interface, It is found that
important spectral peaks of the structural response will not
appear if decays in the turbulence is neglected in the analysis,
Thus; the usual Taylor's hypothesis of frozen-patiern turbulence
is unconservative as far as the assessment of structural
reliability is concerned. The peffﬁrbation Reynolds stress
is indicative of the change in the skin-friction drag due %o.
structural motion, It is.shown that, given the statistical
information of ‘the boundary-layer turbulent pressure field, the.
perturbation Reynolds stress can be changed by varying.the
structural parameters, Therefore, the present study is poten-
+ially useful for designing flight or marine structures to

minimize the total skin~friction drag.
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I. INTRODUCTION

In recent years, there has been considerable interest
in the response of panel systems to random pressure fields.
An alrcraft fuselage excited by boundary-layer turbulence or
by the efflux of a Jet engine is a good example, The objec-.
tives of such investigations [1-6] vary from minimizing struc-
fural fatigue damage to reducing noise radiation from the
panel system to either outside or inside of the ecabin,
Recently, another important application has been suggested,
namely, to design a panel system for the exterior of a vehicle
such that the total skin-frietion drag force over the wvehicle
is a minimum,

The typical panel system of an alrcraft fuselage is a

multi-span structure which is characterized by close clugtering

of natural frequencies in well-defined freguency hands, The
usual normal mode formulation does not lead to practical
results in this case, since it ig almost impossible {0 calcu-
late the normal modes of structures with a large number of
spans due to close proximity of natural frequencies in each
frequency band, However, if all the panels in a system are
identically constructed, then the structural configuration is
spatially periodic and the analysis can be greatly simplified,
Two alternative methods are available to solve the response
preblem of such a spatially periodic sitructure: the transfer
matrix ‘echnigue [10-16] and the wave-propagation approach

[17-21]. The computational simplicity of both methods is
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achieved by utilizing the fact that the entire system is
composed of identical subunits. Although these two methods
are related [227, the transfer matrix technique is more
sultable for analyzing a periocdic sitructure with finite total
length whereas the wave-propagation approach is more suitable
for an infinite periodic structure,

In general, the spatial periodicity is no longer
preserved when the excitation is included in the formulation,
especially when the excitation is a random field., In princi-
ple, it is possible +o0 express the ftotal response under
arbitrary excitation in terms of a fundamental solution which
is the response due to one point-load on the structure.
Mathematically, this fundamental solution is the Green's
function and the total response ean be represented ags a convo-
lution integral, but the actual caleculaiion can become extreme-
1y tedious., One type of random excitation which does not
destroy the gpatial periodieity of the system is that which
is convected as a frozen-pattern at a given veloeity [14,19].
Knovn as Taylor's hypothesis, this is an assumption frequently
made in the anzlysis of tirplane response to atmospheriec
turbulence, Unfortunately, significant decays in the corre-
lation of pressure field have been found in experimental
measurements of boundary-layer turbulences [23-28]. Thus,
calculations based on frozen-pattern models are Just crude
egtimates as far as sitructural regponse to boundary-layer
turbulence is concerned, Recently a scheme has been proposed

[29-30] in which a decaying turbulence field is constructed

et it i e s L T




3

from frozen-pattern components, thus retaining the computa-~
tional advantage of periodic structure models, This scheme
(which we shall call the ™turbulence decemposition scheme®)
will be used in this thesis and applications +to structural
response analyses will be discussed.

More specifically, the advantages of the turbulence'
decomposition scheme will be discussed in Chapter II by
comparing o the conventional point-load analysig, In Chapter
III the basic concepts of the turbulence decomposition scheme
and its application to the structural response spectrum
galeulation will be developed using a2 simple model of an
infinite unsupported heam exposed to a supersonic boundary-
layer turbulence excitation, The effects of surrounding
fluid will be tacen into consideration. In Chapter IV the
unsupported beam will be replaced by an infinite beam on
evenly spaced supports which is a more realistic model of an
actual ajrcraft panel system., The solubtions will be compared
with the experimental resul%s. In Chapter V the case of a
membrane with random structural properties will be comsidered
and the effects on the spectral densities of the structural
responses will be discussed, With potential applications to
skin-friction drag reduction designs in mind, Chapiter VI will
be devoted to the analysis of the Reynolds stress in the

boundary layer,
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II. SPECTRAL ANALYSIS
2.1 Introduction

Measured crogs-spectra of a fdurbulence field usually
show some decay in the statistical correlation in addition +to
convection at a characteristic velocity [235-28], Under such
& random excitation the computation of structural response
statistics becomes much more tedious than that which would. be
the case if the turbulence were coavected without decay; i.e.,
convected as a frozen-pattern [14-19], The conventional method
of analysis is a point-load approach, -.As it will be shown in
+the next secﬁioﬁ, this method requires a numerical double
integration to compute the cross-spectral density ¢f the
response of a one-dimensional siructure., If the forecing field
is a convected frozen~-pattern field, then an alternative
formulation will a2llow ‘the c¢ross—spectral density of the
structural response to be computed without numerical integra-
tions. However, because of the spatial decay in the measured
turbulence spectra, the analysis for gtructural response based
on the frozen-pattern assumption is just a crude estimate.

The method o be discussed in this thesis retains the maximum
computational benefits of the frozen-pattern analysis but at
tﬁe same ftime the actually measured spectrum of turhbulence
field can be incorporated in the caleulation, In this method
a decaying ‘tuwrbulence will be treated as a superposition of
frozen-pattern.components so that the sitruetural response can

be superposed simile iy, In the case of a one-dimensional
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model, this methed requires only & gingle integration instead
of a double integration in the poiﬁt;load analysis, The method
will be called the "turbulence decompositior scheme® in the
sequel,

To extend the turbulence decomposition scheme to a two-
dimensional problem, the actual turbulence field is divided
into gtrips which are rumning parallel to the x-axis, the
direction of the mean flow, ZEach strip can ‘then be decomposed
into infinitely many frozen-pattern components ag in the one-
dimensional case. The total'strucﬁural response is obtained
by summing up the responses due te all the loading strips.

In egsense the point-load scheme is used in the across-flow

direction whereas the frozen-pattern scheme is used in the

along-flow direction,
. In the following sections the one-dimensional case will

be discussed first and then the two-dimensional struciure.
Furthermore, a general itreatment of random structural properties

will be included in the ZFormulation of the two-dimensional

problem.
2.2 The Statistical Properties of +the Excitation

Measured frequency cross-spectra for pressure varia-
tions in a turbulent boundary layer with respect to a fixed

frame of reference have the general form of

59(5 r’? W) = ap(esoammflig)qu (n)exP(“iwg/Uc} (2.1)

AL e

R S T T

P T P L Y SR TRttt B BTN

Y i i



where Ué is a characteristic velocity, and *i and |, are non-
negative definite even functions of § and.q, respectively,
These two funchtions have an absolute maximum equal to one at
the ofigin and they approach to zéro at large absolute values
of ‘the argument. The general form, Eq. (2.1), is sometimes
attributed to Corcos [23]. A number of researchers have
reported curve-fitted résults for §p(0,0,u0, ¢i(5) and ¢2(ﬂ).
Por representative works we cite the papers by Bull [241,
Willmarth and Weoldridge [25], and Maestrello, et al [26-28].
Implicit in Eg. (2.1) is that a real ‘turbulence is not a frozen
one, We note that the above pressure spectrum reduces to that
of a‘plane wave field if ¢2¢q) = 1, and .it would corFespond to
a frozen-pattern turbulence if ¢1(E) =1,

For additional physical insight and later use in sample
caleulations, two measured spectra are given belows

For a subscnic boundary layer [26,27]:

I, L3

o L st 3 - Kl

‘I’P(Ososw) = ERT nE:L Ape (2.2)
by (5) = exp (- 45 )  (2.3)
bpoq) = e (- T (2.4)
ﬁi = 0,240 B4 = 0,470

Ay = 1,08 Ky = 3.0

Ay = 1.80 Kq = 14,0

A =2



7
-3 -3
0=« (1.2 x 10 7) (Um/él) + 1,15 x 10 ~ sec
U= 0.8 U,

where U, is the free-stream velocity, a, denotes the speed of
sound in the field, §%* represents the boundary-layer displace-
ment thickness, and © is the average eddy lifetime.

For a supersonic boundary layer [287:

b - 2% ol
= _18 7 _
B (0,0,0) = 57— E Ao Tk (2.5)
- g
Py (8) = exp ( -'-*1'5') (2.6)
| - 7]
. a(q) = exp ( - =% (2.7)
-2 -2
Ay = Wk x 10 Ky = 5.78 x 10
Ay = 7.5 % 10 K, = 2,43 x T
Ay = =93 x 10"2 Ky = 1.12
Ay = <205 x 107 Ky = 11,57
c(i = 3 0(2 = 0.26
U, = 0.75 Us

Where § is the boundary-layer thickness which is defined as
the distance from ‘the boundary at which the dverage value of

the turbulence veloecity reaches 0.99 Uy.
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2,3 Point-Load Analysis

Consider a unit concentrated load at x =& on a one-
dimensional structure where x is measured along the stiructure,
parallel to the flow direction; We obtain a frequency response

function H(x,8,w) by solving the equa'tioi‘z
~ jwt 1wt
L { B(xyz,0) e } = 8(x-g) e (2.8)
where J{ } represents.-a linear differential operator in x
and 5, and §( )} is a Dirac delta function., Then, the cross-
spectral density of the structural response @w(xi’xé’m) is

caleulated from

£
J U, o7, o) T y08,00)

@P(Ei-’éz,w) dEld?,‘z ;2.9)

N, S,

Qw(xl ’xz lw) =

<

where @P(EI;-EZ_,OO) is the -cross-spectrum of the pressurémuf—':".e:{;d,'v
4 is the length of the structure under consideration, and an
asterisk denotes the comp;i.ex conjugate, It is assumed that
the loading is a spatially homogeneous random process; there-
fore, the cross-spectrum @p depends on £ 1-52. Altheugh this
method is quite sitraightforward, long computer time is required

to carry out the double integration in Eg. (2.9).
2.4 Frozen-Pattern Analysis

12 the pressure is truly of a frozen type and is

convected at a. constant veloeity U, in the positive x-direc-

i
N
i
i
H
i

N et
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tion, then it is a rafidom funetion of x - U,t. Such a random - 3

function can be expressed as a Fourier-Stieltjes integral as

follows:

T~ k) anik) (2.10)

o0
1 ilw
p(x - U %) = Je (
Where . the frequency w and the wave-number k are related to the

convection speed U, as w/k = Uy. It is known from the random

process theory that
BlaR(ky) aF*(p)} = Sp(ky) Sy -l) dEdly . (2.11)

where E{ } represents the ensemble average, and Sp(k) is the

wave-number spectrum in a coordinate frame moving at the

velocity U, (referred %o as the moving frame in the sequel).
The cross-correlation function E{p(xl-Ucti) p(xz-Uc'tz)}

of the pressure, referred to the fixed frame, can be calculated

simply by use of Egs. (2.10) and (2.11). This function,
denoted by Rp, depends only on & - UT where § = x; - X5 and

T = ‘b_l - ts, and it is related ‘to the moving-frame wave-number

spectrum Sp(k) as follows: =

i 1k(UeT - g) .
RP(E - Ue'C) -‘--Le Sp(k) dk (2.12)

- If a Riemann-Fourier transform is taken of Eq. (2,12) we

obtain the fixed~frame frequency cross-spectrum of p:
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(an) E Ei?j Rp(’é - U,.T) e~ 0T 4t

— O}

—Z.(‘-D/UQ)E

("’) (2.13)

lUcI
Equation (2.13) shows that the fixed-frame frequency cross-

spectrum of a frozen-pattern turbulence has a special form

‘where £ appears only in the imaginary exponent., This equation

also provides a simple formula to convert from Sp(k} to

@P(E,u». Conversely, to eonvert from @P(i,uﬂ to Sp(k)s
Sp(k) = [v.} @p(o,kuc) (2.14)

Evaluated at §€ = 0 the cross-spectrum @P(E.av reduces, of course,
to the usual spectrum. We emphasize that Egs. (2.13) and (2,14)
are valid only if the turbulence is sirictly of a frozen-
pattern, and is convected at speed U,

Equabtion (2.10) suggests that the structurzl response
%0 a frozen-patiern Turbulence can be constructed from a
fundamental solution where the excitation is just a convected
ginusoidal patiern of unit amplitude. Thus, let H(x,k) exp(iwt)

be the steady-state solution for
L {H(xyk) exp(iwt)} = exp[ilwt - kx)] (2.15)

Of course, this solution must satisfy all the necessary

boundary conditions, Then the solution to

L {w(x,5)} = plx - U, %) (2.16)
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after reaching stochastic stationality, may be expressed as

-]

:
H(x,k) exp(int) dF(k)

-~ D

oo
¢

= | H(x,k) exp(ilgkt) daF(k) (2.17)

-0

W(x,t) =

N—

It Follows that the cross-correlation funetion of the structural

response is
E£W(x1 '.tl) W(xz ’.t?.)}

1 ' iU (keby - kot
-—-” Hix, k) H*(x,,k,) e oty - o)
Sp(kl) 5(1{1 - k) dk,dk,

: - %
10k (%y Z)Sp(k) dk  (2.18)

o3
=.f H(x, k) H#*(x5,k) e
-3
As expectied, ‘this correlation function is dependent only on
ti - ﬁz. If it is degired o calculate this correlation func-
tion in the frequency domain, we may substitute Eq. (2,i4)

iﬁfb‘Eq}_(g.La)‘and change Uk %o w3
E{w(x,»t, ) wlxgty)]

iw(tl

oo -t )
= J H(x, ,0/U,) E*{x,,0/T,) e 2 ¢, (0,w)dw (2,19)

In terms of the input and output spectra the relations are

extremely simple and illuminative; they are:
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in the wave-number domain:

Sw(xl,xa;k) = H(x;,k) H*(xz.k) Sp(k) (2.20)

in the frequency domaing

By (X 1 %p500) = Hlxy ,0/U) B¥(x5,0/T,) 2(00w) (2.21)

When Xy = Xp these formulas reduce to those for the usual .
spectra, and they have the same form as the well-known result

for a single degree of freedom system in the random vibration

theary.

It is appropriate +to call the H funetion in Egs.
(2.20) and (2.21) the wave-number response function for
convected frozen lead to distinguish it from the H function
in Bq. (2,9) which is the frequency response function for
point load.

The advantage of the frozen-pattern assumption is
clear, To obtain the cross-spectrum of the response, noc
integration is required under this assumption while a double
integration is needed in éhe point-load analysis, Eq. (2.9).
Unfortunately, significant decays in the correlation have
been found in experimental measurements of boundary-layer
turbulences., Thus, correlations based on frozen-pattern
models are just crude estimates, at least for the calculation

of structural responses to the boundary-layer ‘turbulence,

S T S e B T
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2.5 Turbulence Decomposition Scheme - One-Dimensional Case

In the one-dimensional case measured frequency cross-

gspectra have the general £orm of
D (2sw) = Tp(0,0) () exp(-iwh/Up) (2.22)

which is reduced from Eq, (2.1). Implicit in Eq. (2.22) is
that a real turbulence is not a frozen-pattern one,

To obtain & theoretical specirum consistent with Eq.,
(2,22) the following representation of a general turbulence

pressure is proposed:
| o
p(x,t) = J B(x - ut) ac(w) - (2.23)

Eq. (2.23) implies that p(x,t) is a superposition of infinitely
many frozen-pattern components, each having a real random
amplitude dG(u) and a convection velocity u., Such velocities
can assume either positive or negative values. O0Of course,

each frozen-pattern component can, again, be decomposed into

sinusoids, Thus
| T i(ukt - kx
p(x,t) =H el(u ) dF(k,u) da(u) (2.24)

and its fixed-frame correlation is

E{p{xy»ty) plxy5,%,)3
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1;‘Jj]j expli(uglkyty - upkptp) - ilkyxy - kpxp)]

-0

E{dF(kl,ul) dF*(kgvuz) dG‘(ul) dG(uz)]' {2.25)

In order that this correlation function may depend only on
E = xlj - Xg and T = 'hl - 'ta, which we shall‘ assume to be frue,
the ensemble average under the integral sign in Eq. (2,25)

must have the form
E{dF(kl,ul) dF*(kg:ug) dG(ul) dG‘(ug)}
= Sp(kl,ul) S(kl - kz) S(ul - uz) dkidkzdulduz (2.26)

Substitution of Eq. (2.26) into Eq, (2.25) results in

R0 = || P 5 (u) ak e (2.27)

i
N

We now apply a Fourier transformation to obtain the fixed-
frame frequency spectrum

HJ R,(,T) o Cat

-

=

Qp(g ) =

T

I_ljii e-:_w’;/u Sp(%)-,u) du (2.28)

n
|
3 ——8

Clearly Eq., (2.28) is a generalization of Eq. (2.13),
To compare Eqs. (2,28) and (2.22), the latter is

Fourier-transformed to yield



15

—1-, oo.“ . L ’ .

= J 5 o7 05 = T(0,0) Pk - ) (2.29)
where

V(v) = 57 J p) o az (2.30)
Therefore,

- _ ~iE

T, (5.0) = T (¢, Iw - @) &7 ad (2.3

o800 = Bylom) | T - ) ¢ )

Letting o = Wi, we obtain

7@ - ) T e (2.32)

101
2

<Fp($.(ﬂ) = @P(Osw) J -

Then -equating ‘bp and E-P we find a formula to compute
Sp(w/u,u) as Tollows:

spéu) =[] veg -.__gj %, (0,0)

o
= !ﬁl EP(Q y0) J (&) exp[1E(F ~ 'I'(%)] aE (2.33)

The frequency cross-spectrum for the structural
response can be obtained by a similar superposition, Thus

by a generalization of Eq. (2.21),
) =] & @ @) 5 @y ;
D, (x, 1x,50) = J lulﬂ(xl-"u) H*(x,,2) S Epu) du (2.34)

or, letting k = wWu,

L R e

§
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0 (%1 9%, 50) =J i—%;[H(xl,k)‘H*(xg.k) (kP dk (2,35)

Now, since
oy = L ——
SpUeg) = 1 T (0,0) ¥ (s -2

we obtain a very simple result

H*(lek) Wk - "UL‘"}":) dak (2-36)

As a check we note that when the turbulence is frozen-pattern,

P(E) =1 and

¥(v) = &(v) (2,37)

fhen Eq, (2.36) reduces to ‘the same form as BEq,(2.21),

In the case when the structural acceleration.response is

the main concern of the problem, Eq. (2.36) is changed to

o

Qﬁ(xj_'xz‘“’) = (-04 629(0!“3) J H(xl yk)
8 xyK) Bk - ) ak (2.38)

2.6 Turbulence De¢omposition-Scheme - Two-Dimensional Case

Generaiizati&n'of'fhé rgsﬁlts pbtained'in ‘the last

section to a two-dimensional pressure field is Straightforward.
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Assuming that such a pressure field can be decomposed into

frozen-pattern components, we have

<0 .
p{x,¥,8) = Jﬁ(x - ut,y) dG(u) (2.39)
‘ 00 .
where both T and ¢ are random functions and P is a frozen-
pattern component of p. Each component pressure f can again
be constructed from frozen-patiern sinusoids., Thus

i(ukt - kx
p{x,y,t) = H el( ) dF{k,usy) dG{u) (2,40)

Rl ]

In order that the cross-correlation of the random pressure

‘E{p(xl,qi,tl) P(X5,¥p.55)3 is dependent_ogly_pn =% - X5

T=¥ - Yor a0d T= % - tz;'the cross-correlation of dFdG

mugt have the form
E{AF(ky 0y 57y ) dF*(kp,0p,75) dG(u;) de(uy)}
< 5 () S0y - %) S - u)
dk, dk, du, duz‘ (2.41)

Then, it cén be shown that the cross-spectrum of p has the
form

7 1 | -0/
@P_(S.T[._w) =J m sp(‘%’f:unq} e dp- . (2-}4’2)

Equating Eq. (2.42) with the general form of_%hg measured

turbulent pressure spectra, Eq. (2.1), results in
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Sp(%)'nufq) = I%le(% - %‘;‘) EP(O.O.UJ) 1[-’2('71) (2.43)

where ¥; is the Fourier transform of mi; i.84y

T (V) = o= Jq:i(’s} 7 az (2.44)

It is clear from Eq. (?.#O) that, in this case, the
structural response can glso be constructed from a fundamental
solution which is obtained by 1ettiﬁg the excitation be some
suitable frozen-pattern simusoid, Denote this fundamental .
solution by'H(x,k,y,y',uﬂ and let H exp(iwt) be the steady-

state solution for
iwk it - kx)
J-{H(x-k;y;:&r‘:w) e }=e _ . Sy - ¥} (201"5)
where J. represents a linear operator in x, y and +. The
physical meaning of H is self-explanatory; it is the complex
amplitude of the steady-state structural response at {%x,7)
due to a strip of excitation along y = y° which is conveeting

in the x~direction, Then, the scolution to
wa(xsyrt)]’ = P(xr?fst) - (2046)

after reaching the stochastic stationality, may be expressed

as

b o
iwt
w(x,¥y,t) = dy! H(X, kK, 7,7 w0) e
4 .

—ca

aF (k') aee)



19
b =)

= de*” (e, gyt ka) e aR(l,u,y) A6(8) (2.47)
0 -

where b is the width of the structure in the y-direction. The
crogs-correlation of the response is, therefore, obtained as

Pollows:

E{W(Il $Tq0 .bi ) W(—xz 1Yo '-tz )}

. 2
i} H dyjdys m ( ORI LY
0 = |

i(kwt, -k uztz?

H*(xz,kz,yz,yé.kz_uz) e 111 2

Spliy g a¥] = ¥3) S0y - Kp) S(uy - up)

dkidkzdulduz

) H ay; ays ” H(xy ok, ¥y Vo kui H*{3p, k5,75, k0)
T o ug)
e S, (u,yy - ¥y) dk du . (2.48)

Subgtituting Eq. (2.43) into Ea. (2.48) and applying a Fourier

transformation, we obtain the cross-spectrum of the structural

response
0y (g 1355 ¥7 Y29
= EP(O,O,(D) jJ dyidyé }l H('xlvkryl :Yisw)
¢ e

2 ¥ e b ke £ E S (21T S
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H*(xﬂg,‘k,yz,‘yé,w) }%"1(1: - —%’;)‘ Yo (v - v3) dk (2.49)

The reason for not using the same decomposition scheme in the
y-direction as that for the x-direction is the absence of true
trend of convection which can be seen in BEq. (2,1). Thgrefqre,
the correlation leg.ggth -of the random foréing ':E'ie_ldi;;_"hhé., Y
direction seldem extends beyond one panel and the structural
ré‘s.ponsé‘-- can be compﬁi:‘ed quite accurately using a structural
model consisting of just one row of panels rumning in the x-

| direction. For such a model the usual Ievy series representa<.
tion o‘:f the y-direction response is adequate and the double
integration on -y a.nd. yé in Bq. (2.49 ) ean be. carriéé. out
without difficulty, |

| | Thus far, the structural properties are assumed to be
deteriniﬁisfic; therefore, the freguency response function H

is a deterministic function, Sometimes it may be of interest
to include fhe effects of randoem varlability of the structural
properties in the caleculation, then H becomes a random process.‘
In this case the cross-correlation of the structural response

becomes

E{.w(xlﬂyl By ) _“'-(32;; Yorta)ld
b

= ” dyj'_dyé /”[JE{'H(xl’kl’yi'yi’kiul)

—

H*(xz-:k'z_.r'?s’fg!Yé?vkzu_g)_ d-_l_‘_‘(kl_ruivyi) dF*(kzsuz_rYé)

. -da(uy) de(us)l e_i_(klult_i - E21_1-2t.2) (2.50)
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If the structural properties and the turbulence properties are
independent of each other, which is a reasonable assumption,
the ensemble average inside the integral of Eg. (2.30) is
separable. Again, using Eq. (2.41) we have

E{W(Xl 'yl ati ). w(xz’YZ'tE)}

=L

b [+-]

S.(k,u,yf - ')eﬂmzdkdu (2.51)
plrthe ¥y Yo s
The cross-spectrum of the structural response is obtained by

a Fourier transformation of Eq., (2.51), resulting in

Qw(xl 1X59¥1 932 ;)

= Ep(o!osw) Jf dyidYé J E£H(x1 sknyi 93’3’_:‘0)
O —oa

(%] [
H*(xa,k,yz,yz'.w)} y, (& - «--Uc) 1112('.5@: - ya) dk (2.32)
2,7 Conclusion

The ‘turbulence decomposition Schgme hags been discussed
and compared with the conventional point-load approach. I%
has been shown that a decaying and convecting turbulence
pressure field can be constructed from frozen-pattern components,
each having a different convection velocity, and that this new
scheme simplifies greatly the analyses of random propexrties of
structural responses under ‘the excitation of boundary-layer

turbulence pressure, In paticular, only a single integration
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: is required to comqué ﬁhe crogs-spectrum of the structural
response ins%ead'bf a'doub;e integration.in the poiﬁt-load
approach, The?iptegration involves a wave-number response
function'whicﬁ is the résponse.ofrthe structure to a unit
convected sinuseid. In the following chapters applications
of this scheme will be discussed for some structural configu-
rations and flow field problems, |

s g ded e e ezt azm e
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III, UNSUPPORTED INPINITE BEAM
3.1 Introduction

A simple model which, nevertheless, retains mos+t
%@po:ﬁanﬁ_ﬁeﬁyures ofrgigcraft panels in a boundary-layer
éﬁ#ifgﬁﬁé;; is the infinite beam shown in Fig.3.1. The
beam is backed on the lower side by a space of depth 4 which
is filled with an initially quiescent fluid of density Fb and
sound speed a,. On the upper side the beam is exposed to the
excitation of a supersonic boundary-~layer turbulent pressure
P. The fluid on the upper side of the beam which carries - -
the turbulence has a free-gtream velocity U,, density fl’ and
sound speed &4, An attual panel system of an aircraft is
reinforced by stringers and frames so that this unsupported
beam is not a good representation at low frequency range.
However, at high frequencies, ‘the turbulence eddy size is
much smaller than individual panels, Then the effect of the
constraints at the stringers and frames becomes neg;igible,
In any case ‘the infinite beam model is an ideal one which can
be used ‘to show the wtility of the turbulence decomposition
method as wéll as the structure-fluid interaction without the

burden of mathematical complexities,

3.2 Wave-Number Response Function of the Infinite Unsupported

Beam

As +the beam responds to the excitation pressure p(x,%)

e e e e ies v s e L ae e
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Fig. 3.1, An unsupported infinite beam under the excltation

of boundary-layer turbulence




25

its motion will generate additional pressures in the fluid

media on the upper and lower sides, Denoting these generated

Pressures by py and Po, respectively, the governing equation

of the beam motion is given by

L 2
2w 2% _ .
EX >l +m 342 P+ (P1 - Pg)z=0 (3.1)

where B denotes the Young's modulus, I is the moment of
inertia, m is ‘the mass per unit length of the bean,

For the purpose of determining <the wave~number
response function, H(x,k), the turbulent pressure p should
be replaced by exp[i{wh - kx)] and the structural response W
equated with H(x,k) exp(iwt) = A(k) exp(~ikx) exp(iwt),
Furthermore, we shall make the usual approximation that Py
can be calculated without regard to the presence of <the

turbulence, Then Py is governed by the equation
' 2
3 S 2 2,2 )
Go *Ues) Dy -2 (5 +=3) p, =0 (3.2)
3% 3x’ *1 182 322 71

and subject to the conditions that p; can propagate only in

the positive z-domain, and that

3Py _ > 3.2 it - kx)
)50 = o €5 * G AlE) e (3.3)

The solution for Dy when evaluated at z = 0, is known ‘to be
[31]

2
. k{w/k = Uss)
(plr)z=0 - “lflall:(w/k - Um)z_ aIZJE

i(wt - kx)

A(k) e (3.4)

S e Yz i T S
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Some comments about Eq, '(3.4) are in order: (1) w/k is the
speed at which the sitructural motion A(k) exp[i(wt - kx)] is
propagated along the beam, (2) A structural motion generates
no pressure in the adjacent fluid Iﬁedium if it is propagated
at the same velocity as that of the fluid medium (the case of
W/k = Us)e (3) Theoretically, the generated pressure attains
an infinite amplitude when the propagation velocity of the
gtructural motion relative to the medium is equal to the speed
of sound (the case of {w/k - Ux| = a,, the shock-wave effect),
(4) when this relative velocity is less than the speed of
gounds; ‘i.e., |0W/k - U] < a;s ‘the generated pressure should
provide additional inertia for the structural motion (the
apparent mass effect); therefore, a negative imaginary value
should be given to the square-root [{w/k - Um)a- a12]% in the
calculation.,

The pressure generated on the lower side of the beam

is governed by the equation

2 -l
F- Yoy o7 2
"2 2 a a v,
-~ 8 (5 +—35) P, =0 (3.5)
a'hz 2 axz az2 2

and subject %o the conditions

sz

Sz 0 atz=-d (3.6)
and,

ap i -

a_zz = '“I"z“’z A(x) T W0F ) ata=o0 (3.7)

The solution for p,, when evaluated at z = 0, is given by



trd) - : - :
() g = P07 E%L_‘M y otlut - ) . (3.8)
where S
T2 o2
¥ = 2% ¥ (3.9)

For small d (shallow cavity) and Kz > 0, this pressure provides

additional stiffness on the structural motion but for certain
ranges of d value it can change to an added mass., When

r2< 0, ¥ becomes imaginary in which case

cob(rd) _ _ cothlval
¥ vl

(3.10)

Again, the Py term has the effect of an added mass on the
structural response,

Eqs. {3.4) and (3.8) can now be substituted into Eq,
(3.1) to find.A(k) and, therefore, H(x,k), recalling that p
nust be replaced by exp[i{wt - kx)] and w by A{k)exp[ifwt-kx)].

The result may be expressed as

H{x,k) = A(k) g~ X
k2 (/s = Up)®
o+ f’zwz gq;h_i(}’_d_)_}-l ez""'i'l'Ex (3.11)

This wave-number response function E can now be substituted
into Bg. (2.36) to obtain the cross-spectral density of the

structural displacement response,
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3.3 Numerical Example

Numerical computations have been carried out for +the
frequency spectrum (i,e., when x; = x; in Eq. {2.36) ) of the
structural response using ‘the following physical data:

properties-of .the beam: o
ET (beriding $igidity) = 3.935 % 10° N-n®
m {mass per unit length) = 9.746 Kg/m
propertiés of the surrounding fluid media:
Py = P = P (air density) = 0.11015 Kg/m’
a; = 85 = a {speed of sound) = 261,6 m/sec

U, {free-stream velocity on upper side of beam)

= 575.6 m/sec
d (cavity depth) = 0,1178 m
properties of the supersonic boundary-layer turbulence

pressure [28]:

e-Kﬁ(kDIS/ﬁn)

Mo
£
e
o

ﬁé(o,uﬂ = gpectral density =

e

#(E) = decay factor = exp (-

S
o)

Ucé(characteristic convection veloecity of the

‘urbunlence). = 0.75 Us

k - @y = 1
o T st + (- /)]

S {hauhdaryalayer thickness) = 0,279 m

experimentally determined constants
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o = 3
Ay = bhox 10" ¥y = 5.78 x 107
Ay = 7.5 x 107 Kp = 2,43 x 107"
hy = =9.3 x 10:2 Ky = 1,12

Ay, = -2,5 x 10 Ky, = 11,57

Fig.3.2 shows the computed displacement frequency
spectrum of the structural response under the assumption of
a truly frozen-pattern turbulence ({(£) = 1), There appears
only one peak around 475 Hz and the value of spectrum decreases
rapidly as the frequency increases. The existence of the peak
can be explained as follows: In the absence of surrounding
fiuids; the wave number of the free structural motion would
be (mu?/EI)*. The wave number of the frozen-pattern turbulence,
kX, is related to the circular frequency w by k = W/Us., A
yesonance. (called coincidence) occurs when these two wave
numbers are egual [327, In the present case this coincidence
frequency is found at 466 Hz. Therefore, the pezk in Pig,.. 3.2
results from the coincidence of the wave numbers of the frozen-
pattern turbulence and -the free structu?al notion, The small
difference between the peak frequency in Fig. 3.2 and the
estimated value above comes from the effect of the surrounding
fluids on the structural response., _

Fig. 3.3 shows the spectrum of the structural displace-
ment response when the measured spectrum of the turbulence
pregsure field is used in the computation, This spectral

density has many peaks in contrast with only one peak in the

Ot S

e L L T

< P



0, (0), n?/Hz

10'15

10'16

10'17

10

10'19

10-20

30

. 1 L i I
0 250 500 750 1000 1250

frequency, Hz

Fig. 3.2 Frequency spectrum of structural displacement

under frozen-pattern turbulmce excitation



AN

10 -

10'15

-16

By(w)s 1/ Hz

io0

-18
10

\

250

500

750

frequency, Hz

1000

1250

Fig. 3.3 Frequency spectrum of structural displacement

under the excitation of the decaying turbulence



S S VLA

5

frozen-patiern case, Since infinitely many frozen-pattern
components are present in the turbulence, the turbulence
spectrum has also infinitely many wave-number components
at each frequency. Thus, the coincidence (if we may use
this terminology in this case) occurs at each fréquency.
However, the response magnitude may be small if a frozen-'
pattern component which generates a coincidence wave in the
structure has little contribution to the turbulence gpectrum
at that frequency. Therefore, even the coinéidence is present
at each frequency, its magnitude varies as the frequency
changes and some of them appear as peaks in the response
spectrum,

A comparison of Figs., 3.2 and 3.3 shows that the
frozen-patiern assumption is unconservative which leads to
lower estimates for the structural response and the radiated

noise level
3.4 Conclusion

The theory developed in Chapter II has been applied
to the simple example of an unsupported beam exposed to
boundary-layer excitations. The effect of a cavity and the
effeet of the free~stream velocity are included in the
analysis. The gpectral density of the structural displace-
ment response was calculated using the measured turbulenca
pressure spectrum of a supersonic boundary layer and the
result was compared with the soiutiqﬁ obtained for the ideal

frozen-pattern turbulence, This comparison has shown that
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the frozen-pattern assumption leadz to considerably lower
estimates for the structural response, Thus, we may conclude
that the frozen-pattern assumption should net be used in the

computation of the structural response spectrum under the

excitation of a boundary~layer turbulence pressure,
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IV. PERIODICALLY SUPPORTED INFINITE BEAM
4.1 Introduction

In this chapter the iurbulence decomposition scheme
will be applied to the amalysis of an infinite.beam supported
at uniformiy spaced intervals by elastic springs. The elastic
supports are simplified versions of reinforcing stringers of
an aircraft fuselage., Although an aircraft fuselage is a very
complicated multi-panel system its dynamic behavior is gimilar
40 that of the periocdically supported beam described above.
The one-dimensional beam problem, however, 1s more suitable
for fundamental studies since basic concepts can be developed
without the burden of mathematical details., Thus, the analysis
of the present chapter will be restricted again ‘o one spatial
coordinate.

At the first sight the problem of a periodic beam may
not appear more diffieult than that of any other structure if
one asccepts ‘the linearity.assumpﬁion and uses a normal-mode
formulation, In practice, however, the normal mode of a
periodic beam of many spans cannot be calculated aceurately
due to close clustering of natural frequencies in frequency
bands. The futility of the normal mode approach in dealing
with a large number of spans has led to two alternatives: the
wave propagation approach (space-harmonic analysis) [17-21]
and the transfer matrix approach [10-161. The two alternative
methods are closely related, however., The so-called free wave

propagation constants in the first method are the natural
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logarithms of the eigenvalues of the basic transfar matrix in
the second method [22]., The compubtational simplicity in both
methods is obtained by utilizing the fact that the entire
system is composed of identical sub-units in the formulation.
The fundamental solution required for the construction of the
total strucbural response is one correspondiﬁg to ‘the excita-
tion of a frozen-pattern sinusoid, To obtain this fundamental
solution the formulation will follow Mead's wave propggation
method, but will take into account the effecet of free-stream -
veloecity on the same side of the turbulence excitation and the
effect of a cavity on the opposite side of the excitation, As
a mmerical example, the spectral density of the structural
response will be computed and the results will be compared with

experimental measurements,

.2 Wave-Number Response Function of the Infinite Periodic

Bean

A sketeh of the structural model is shown in Fig. 4.1,
gurrounded by the same acoustic environment as that assumed in
Chapter III.

The governing equation of the beam motion not directly

over an elastic support is given by

L 2 .
3w oW

D + m =p+ (D4 - P2)pm, (4.1)
ax4 atz . 27z=-4

where D denotes the bending rigidity and m is the mass per
unit length of the beam, The additional pressure fields

denoted by py and Py are generated in the fluid media on the
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upper and lower sides, respectively, due to the beam motion,
For the purpose of determining the wave-xiumber. Fesponse
function, H{x,k); the turbulent pressure p should be replaced
by exp[i(wt - kx)] and the structural response w by H{x,k)
exp{iwt). Thus, Eq, (4.1) becomes

alPH

2
(D—g - nwH) e
ox

ot Hot-kx) (py - Pz)z=d (8.2)

The forcing function explilwt - kx)] gives every span the same
excitation but with a phase-lag mg = k{ from one span to the
next. In this sense Mg may be considered as ‘the imposed phase-
lag of the excitation., To satisfy the spatial periocdicity in
the strucetural response Mead suggested the followi.ng series
form L':‘L_‘B]:

H{x,k) = no-‘:“;_o;'.hﬁ exp(- Ya¥) (4.3)

T
where
Sy = Jy + 2o = k4 4 2nm (4.4)

Without the elastic supports the wave-number response function
would be :}ué‘b ‘the one term associated with the fercing phase-
lag /ué., The elastic supports give rise to multiple reflec-' -
tions, thereby admitting other Fa values,

For the induced additional pressure P,y We apply the
game assumption used in ‘the precheding chapter. Then pl is

governed by the sguation
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2 2 : '
2 =0 (.5)

2 3 42 22
GErhsd -2 3t 3N

and subject to the conditions that , can propagate only in

the region z > d;, and that

ap 2. i
() geq = Py (30 + Uy 208 F (4.6)

3z
The s_olu‘bion for 12 corresponding tc each component in the

wave-number response function Ay exp(-i}tnx/i) is known. The

total p, can then be obtained by superposition. This pressure,

when evaluated at z = 4, is given by [31]

D "V:i.a T (un-Uw)z‘
o= T O nt b ey, - 0P a2 T

G0t - Sret] (&.7)

where

wl

Un T {#.8)
The same comments which were made previcusly relative to Eq,
(3.4) apply in this case :to each term in Eq, (4#.7). Each
component now has a different propagation speed U, instead
of the one propagation speed w/k in Eq. (3.4), TFor emphasis ;
and clarity these comments are restated as follows: (1) u, is
the speed at which ‘the component structural motion An exp[i(wt
- Py )] is propagated along the beam, (2) A component

structural motion generates no pressure in the adjacent fluid

SERA IR TN

medium if it is propagated at the same velocity as that of the

Lo

otk 3 L SR R



39

fluid medium (the case of un = Ug)e (3) Theoretically, the
generated pressure attains an infinite amplitude when the
propagation velocity of the structurazl motion relative to
the medium is equal to the speed of sound (the case of Iun -
U.,,I = a,, ‘the shock wave effect). (&) When this relative
velocity is less than the speed of sound; i.e., lun - m[ < aq
the generated pressure should provide additional inertia for
the structural motion (the apparent mass effect); -therefore,
a nega:l::.ve vmagn.nary value should be given to the square-root
l:(un - m) - 3y :I% in the ecalculation.

The induced pressure Po in the fluid medium 0 €z < d

is governed by

2. 52 2

3 7po a“ .

o ( o+ —5).p, =0 (%#.9)
B'&z’ 2 %% 322’2

and subject +to the conditions

4D
”ﬁ =0 gtz =0 (4,10)
310 2 jwt

3

-P0" H e atz =4 (hail)

The solution for p,, when evaluated at z = 4, is given by

eo cob(¥pd) i@t - p,x/L)
Py z=d - cmoz nz..eo An__-inh_ ® & (h.12)

where

2 _ w2 Pp2
= (az) - {i) (}‘1'513)
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For a small 4 and a positive K‘na, the n-th component of this
transmitted pressure Py gives rise to additional stiffness
on the struetural motion and for cerdain ranges of d value
it can become an added mass to the system., When Tnz is

negative, ¥, becomes imaginary in which case

cot(¥,d)  coth[¥,d] 5.14)
| y
n

and the component always contributes to fthe system inertia
regardless of ‘the value of d, L

Equations (4.3), (K.7) and (%.12) can now be substi-
tuted into Egq., (4.2) to obtain

2o in o) exp(-ipnx/l) = exp(-ipxA2) (4,15)
‘where
@) = &% nd » Cay - o)
n) = - m¢
? o ) LGy - 10 a2
2 cot(¥pd)
+ ol ,o_n—- (5.16)

To determine the amplitude An we follow Mead's
procedure [19] and calculate the virtual work done by the
external forces acting on the structure and by the internal
forces in the structure through a virtual displacement
e-i (wt - }ijl‘l'./l}

SAj
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Excluding the elastic supports, the virtual work done within

one span of the beam is

— S b1
§W, = 845l Z

L
o An CP(n)J e‘l}*nx/f"- eiﬂjm dx

0

)
) J T H g (%.17)
0

The elastic supports are characterized by a translational
spring constant Ky, a translational inertia M, a torsional
spring constant K.y and a Torsional inertia I, Thus the

virtual work contributed by each elastic spring is

SWy = SWy + SV,

= (K, - MP) SA; E Ay + (g - To©)
& say 3B (%.18)

Since the structural motion is spatially pericdic <the virsual
work done throughout the entire structure is proportional to
that of a periodic unit. Therefore, the principle of viritual

work can be stated for a periodic unit as follows:
SWy + §Wy + SW, = 0 (4.19)

which leads to the simultaneous algebraic egquations:

K, Me2 oo Kp - Imzﬂj s My
ApQ) = Rt T TR M
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1, if § =0
{ (4,20)

0, if J# 0

In actual computations the number of simultaneous equations
nust be trunecated, One can, for example, solve a system of
2N + 1 equations corresponding to -N < j £ N. The choice of
N must be such that the truncated version of the wave-number
response, Eq. (%.3), do not change appreciably by further
increase of ‘the number of terms used in the computation,

Equations (4,20) are defived for finite Ki - Mu? and
finite K. - Iu?, and these equations cannot be reduced %o
those for supports rigid in translation or rotation, For
example, if the supports are rigid in translation then X,
becomes infinitely large, but the summation of all the A,
must be zero since the deflection &t each support is zero,
and the product of these two becomes indefinite. To deal
with this case, substitute

e

n#0

into Egq., (&.3) to obtain

(e-ijin}t/.e _ e"i)‘ox/-ﬂ)

H(x,k) = T 4 (4.22)
=weo I

n#0
Gorrespondingly, virtual displacements are chosen in the

form of

ipsx/R ) ei}&oﬂl) ~iwt

S.A.j (e e
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Then, instead of Eq. (4.20), one obtains from a similar

derivation
. e K - I6 Py -Pow = flo
A50(3) + 9(0) B A, + = T noee 1 4o
n#0 n#0
= _1’ j # 0 (I+¢23)

It is interegting to note that if the supports are rigid in
translation but without constraints in rotation (the case of
hinge supports) the equations for Aj can be decoupled. TFor

such a case, Eq, (&.23) reduces to

A(3) + 9(0) T A, = -1, §#0 (s,24)
n#0

Eq., (4.24) shows that the product Ajm(j) is independent of j;

i.Ec;
A1) = Agp(2) =0 0 0 e (%.25)

Thus, substituting

Ay = A0(3)/o(n) (%.26)
into Eq. (4.24), one obtains equations involving only one
unknowns

- ¥ i - (4.27)

Aol E 5 = 21

which is solved readily to give

|
]
i
i
1

T o s g
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-1

- . hod 1
A-j = ’E@(a)m(o)ng_“ tp(n) (4-28)

Uncoupled solutions such as Eq, (4.28) are not
regtricted to the case of hinge supports. In fact, if one
of the two infinite sums in Eq. (4.20) can be dropped, a
substitution of the type of Eq. (4,26) is possible which is
the key for reducing Eq. (4.24) to Eg. (¥.27) containing only
one_Aj in each equation, This is the case when either
Ky - Mdz =0 or K, ~ Ia? = 0; i,e,, when the elastic supports
offer no transiational constraint or no rotational constraint,
If the rotational constraint is infinite, one again
camot obtain a reduced equation from Eq. (4.20) which is
valid only for finite support constrainis. To derive a reduced
equation one must use the zZero slope condition at the supports

=m0

oA, =0 (4.29)

The remaining procedure is very similar to that leading to
Eq. (4.204)

Now, we are ready to compute the speciral density of
the gtructural response., Once Aj are determined by either
one of Eqs. (4.20), (4.23) or (4.28) depending on the problem,
they can be substituted into Egq. (4.3) to obtain the wave-

nunber response function, H. ~PFurther substitution of this
H function into Ea. (2.36) along with the statistical proper- i

ties of the turbulence pressure gives the cross-speciral

T B AT L T L
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density of the structural displacement response,
4,3 Numerical Example

To illustrate the application of ‘the present ‘theory,
the spectral densities of the acceleratica response at a mid-
span location (i.e., % = x, = 4/2) have been computed based
on the following physical data:
properties of the beam:
D (bending rigidity) = 3.935 x 10}'} N-n®
£ (span-length) = 0,508 m
m (mass per unit length) = 9,746 Kg/m
properties of the surrounding fluid media:
Py = Pz = P (density) = 0.11015 Ke/m”
ay =8y = a (speed of sound) = 261,6 m/sec
U (free-stream velocity on upper side of beam)
= 575.6 m/sec
d (ecavity depth) = 0.1178 m
properties of the turbulent pressure [28]:

- 15 % K, (ol 8/ U)
Qp(0¢o) = spectral density =3 T nﬁl L, e

§(&) = decay factor = exp(-i%%)

U, (characteristic convection velocity of the
‘turbulence) = 0.75 Uy,

S (boundary-layer thickness) = 0,279 n

A =3
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-2 -

Ay = bk x 10 K1=5.?8x102
-2 -1

Az=?.5x10 K2=2.Li-3x10
-2

Ay = =9.3 x 10 . Ky = 1.12

Ay = -2.5 x 107 K, = 11.57

Except for the additional information about the span length £
the above physical data afé the same as +those used previously
for the unsupported beam, and they were taken from a recent
experiment on a multi-panel s&stemf[EB]. The structural
specimen used in this experiment was actually a two-dimensional
panel array as shown in Fig. 4.2, Therefore, some data have
been converted to their one-dimensional. equivalents, For
example, the bending rigidity D of the beam was the average

" value for the skin and the reinforcing stringers over a unit
width, and the speclific mass m was obtained similarly.
Although the actual structural specimen had only seven spans
and the two end-spang were somewhat shorter, it was felt {that
the theory of an infinite periodic heam on evenly spaced
supports should give a reasonable result for the response
spectrum at the center of‘the middle span where accelerometer
A20 was located (referred to Fig, #.2), and where the effects
of the end gpans were least important. The translational
congtraints provided by the supporbing frames were sufficiently
gtrong to justify taking the translational spring constant XK
of the supports to be infinite (i.e., the deflections at the
gsupports were assumed to be zero)., For the rotational con-
straints we selected K. = 60 N-m/rad and I = 3.3 x 10'“ Kg-mz.

Thege are ‘the one-dimensional equivalents of the torsional

A L R L D R, e e
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constraints of the frames if the torsional mode of each frame
is a half-sine curve,

In order to minimize the computer cost, the computation
was carried out only to 3000 Hz and at the intervals of every
50 Hz. The resolution of the computed spectrum was compromised
someﬁhat by the use of coarse intervals, but ocur main objective
was to £ind the general trend which could be revealed by the
values at 50 Hz intervals., .

In Fig, 4.3 thevcomputed spectrum is shown along with
the experimental spectrum. As it is customary, the experimen-
tal spectrum is one-sided (restricited to the positive frequen-
cy domain); therefore, the theoretical spectrum has been
converted by multiplying the computed two-sided values by
two. It also should be noted that the experimental results
were obtained using a filter of 1 Hz bandwidth. This accounts
for its much more rugged appearance than the theoretical one
computed at much larger intervals of 50 Hz. Furthermore,
experimentally obtained signals may contain noise other than
the structural response. Although the theoretical and the
experimental curves show the same general +trend, the former
is lower than the latter throughout the entire frequency
range investigated, Thils is to be expected since the theo-
retical curve represents the average between the panel response
and the stringer response, whereas the experimental curve

shows the panel response alone,
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L,3 Conclusion

B

The case of fluid-loaded infinite periodic beamn,
congidered in +this chapter, is one of the very few where
a mathematically exact solution for the wave-number response
function, H, can be obtained, If the beam is finite in length
then the method of transfer matrix may be more preferable;
however, the effect of fluid loading cannot be accounted for

exactly {in ‘the mathematical sense) at the present time,

Further extensions to the two-dimensional case of
panel systems are obvious, If only one row of panels is
considered,; and if the two parallel edges of the panel row
are assumed +t0 bz simply supported, then separation of spatial
variables is possible in expressing the structural response,
This is the well-known Levy's type sclution for plate
problems., With small modifications, the solution for the
one-dimensional beam case can be changed to suit such a panel
row problem, When more than one row of panels are included
in the structural model the separation of spatial variables
in the structural motion is no longer mathematically exact,

but a separable form can still be used as an approximatien,

Although new concepts are not required in{treating such two-
dimensional problems, ‘the machine computation time can become

extremely excessive and burdensome to small research budgets,
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V. MEMBRANE WITH RANDOM TENSION

5.1 Initroduction

e et BT B AL e

The unsupported infinite beam and the periodically

supported infinite beam discussed in the preceding chapters
are idealized models., However, actual struetures cannot be

constructed in ideal wanners., The material properties vary

i T i B 14 T ket

randomly throughout the entire structure and manufacturing
errors always.exist in size and shape such as the span length
and the crogs-~section of a2 beam, the pre-tension in a membrane,
ete, It has been shown by Lin and Yang [33-35] that in the
cage of a periodic beam ‘the randomness in ‘the structure
properties causes appreciablevvariations in the structural
response from the ideal model results., In this chapter, the
structural response of a membrane to the subsonic boundary-
layer turbulence will be invegtigated. The pre-tension in
the membrane will be treated as a random process In space,
and the membrane is surrounded by an acoustic environment

gimilar to that in the preceding chapters,
5.2 Wave-Number Response Function of Membrane

The structural model chosen for the present study is
a2 membrane which is infinitely long in the x-direction and is
fizxed along ¥ = 0 and ¥ = b as shown in PFig. 5.1. This
membrane is backed on the lower side by a cavity of depth
d which is filled with an initially guiescent fluid of density

Po and sound speed ap. On the upper side the membrane is



p(turbulence presgure)

Fig. 5.1 An infinite membrane with random tension under the

excitation of boundary-layer turbulence
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exposed to the excitation of a subsonic boundary-layer turbu-
lent pressure p. The fluld on the upper side of the membrane
which carries the turbulence has a free-stream velocity U,
density £4 and sound speed aj. The design pre-tension in the
membrane is Tg; however, it will be assumed that this uniform
tension can only be achieved in the x-direction but in the
manufacturing process 2 small random variation €f(x) has
developed in the y-direction where € << 1,

As the membrane responds to the excitation its motion
will generate additional pressures in the fluid media on the
upper and the lower sides. Denoting such pressures by p, and

Doy respectively, the governing equation of the membrane is

given by
2 ' 2 2
3w aW A~w . W
m—g + ¥ — = Tq =3 = £, + €£(x}] —
at® 3t~ "0 52 T K0 ay2
=p+ (B - Ppl,__ 54 : (5.1)

where m is the mass of the membrane per unit area, ¥ is the
viscous damping coefficient,

As discussed in Chapter II, the fturbulent pressure
p should be replaced by explif{wt - kx)] &(y - y') and the
gtructural response w'by Hix, kX, 7:y",w) exp(iwt) for the
purpose of determining the wave-number response function
H{x,X,¥>¥"'s@w). Thus, Eq. (5.1) becomes

2 2

3°H, iwt
{-mefH + i¥0H - T, —:——5 - [mg + €2(x)] =53 ™

x2 ay?

e e TR T
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i(wt - kx
- gt ) 8y - v') +(p; - D), 4 (5.2)

The boundary conditions for the wave-number response funection
H are

H{xyk,yyy'sw) = 0 aty=0, 0 ' (5.3)

These boundary conditions are automatically satisfied if H is

expressed in a Levy type series

ca nny
H{x, k¥, 5" ,00) =n;_z__l Sln—" jﬁn(}hkvy W) e JJux d)'l
= 5.}.[,)
In the sequel ‘the symbol Angu) will be used in lieu of A, (u,

k,y'",00) for compactness.

For +the determinatiop of the radiation pressure Py»
we use the usual approximation that it can be calculated
without regard to the presence of the turbulence, Under this

condition, the radiated pressure Py is governed by

2 2 2
v ui®p - g st ) p, =0 (5.5)
. j°) + + B, = .
3% Qa 1 1 ax? ayz azz 1
with the boundary condition
3Py 2 2 dwt
32 Jgeg = " flb- Us3g) He (5.6)

The exact solution for i is unknown but in close proximity

+0 the membrane Pl can be approximated by the expression
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p = e sin ~— J Bn(zip) e I dy - (5.7}
Substituting Eq. (5.7) into Eg. (5.5), multiplying both sides
of the equation with sin(n'my/b) exp(%y!x), and integrating

over « < X <oand 9 < y< b, one obtains

glzp) - K2 g ap) =0 (5.8)
where
200 =2 + @02 Q%Z-éﬁyoz (5.9)

Equation (5.8) is solved, with the condition that p; only

propagates in the negative z-domain, to give
g, (2sp0) = Cp () expll, (4)z] (5.10)

Substituting Eqs. (5.4), (5.7) and (5.10) into Eq.(5.6), and

using the orthogonality properties, we have

(w - anjl)z kn(p)d
Clp) = £ kn()  ©

Ay () (5.11)

Therefore, the radiation pressure pl, when evaluated at

z = -d, is
D9
= £ elmt % sin [ Unp)
L] DR A T ()

A () e~ % ap | (5.12)

B eIt el s
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The transmitted pressure P, is governed by ‘the

Helmholtz equation

2
37 P 2(32 32 az

———
-

342 3x? ayz

=) p, =0 (5.13)

and is subject to the boundary conditions

222
3z

0 atz=0 (5.14)

3Dy 2 iwt
FYe fém He at z = -d {5.15)

1

b

3y =0 at y=0, Db (5-16)

The conditions (5.14) and (5.16) corresponds to the ideal
case where ‘the bottom and side walls of the cavity are

acoustically hard., The solution of this system is given by

_ 2 inte w ry 4 n
Pz|z=_d" P e n§1 rEO ©® Ty nalr) ne - e
n+r=odd
T cot En(u)d —inx
j Em A () e an (5.17)
where
_2 2 2 71,2
B = ) - p - 6 (5.18)
2, r =20
a(x) = | (5.19)
i, r#0

Substituting Eqs. (5.%), (5.12) and (5.17) into Eq. (5.2), we
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have
QA U+ E R (OB, 0
+ E(-I-l-’-r-)a TA (A) [—lj £(x) ei(J”l - Mz dx] ax
b n 21
= &) S - x) sin T {5.20)
where
2 nt, 2 2 - (w - Um,;u)2
o (p) = -mu + ivw + To(—_;) + T =~ )
(5.21)
tkp(W)d  n 1
(1) =pw? 3 16 2%
ha = O
L4r=0dd (5.22)

In the present study Eq. (5.20) will be solved for the

following two cases:
case I 3 £(x) =0

case IT ; £{x)

"
i

- Xj exp(ijvx), Ey =0

k
Case I corresponds to the ideal uniform tension problem; i.e.,
the tension in the membrane ig equal %o the constant T, in all
directions, Case II represents the case where random varia-
tion of tension in the membrane can be expressed as a super-
position of sinugoidal variations, The fundamental wave
number v will be agsumed to be deterministic and the complex

amplitudes, Xj. random variables,
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CASE I 3 f(x»=10

In this case Bgq. (5,20) reduces to

®, (1) Ay +£§1 AU By () = ) sin = S(u - k)

(5.23)

which is an infinite set of simultaneous equations in An. In

actual computations the number of simultaneous equations must
be truncated. One can solve a system of N equations corre-
sponding to 1 < n =< N. The choice of N must be such that

the truncated version of the structural response, {(5.4%), is
sufficiéntly accurate and it does not change appreciably by
further increase of the number of terms, After truncating
+the number of simultaneous equations, Eqa, (5.23) can be

written in a matrix form

£k, 0] (a0} = {P} &(u - k) (5.24)

where the elemenits of the matrix K1 and the vector P are

Ky o0 =@ (0 5 o+, (0 (5.25)
p = & sin 2 (5.26)

and Snﬂ iz a Kronecker delta having the property:

1, n=J{
S . = .2
o {0’ iid (5.27)

The soluwbion of Ea. (5.24) is
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AGuY = [ T {23 S - %) (5.28)

Substitution of Eq, (5.28) into Eg. (5.4) yields

N nny
H(x’kiyly.lw) = X R sin (5.29)
n=1 = b

where R, is the n-th 'elemen'b of the vector R which is defined

as
=1 s
(R} = [k, ()] (P} % (5.30)
R - - M
CASE II 5 f(x) = Z X; exp(ijvx), Xp =0
J&=N

In this case Eq, {3.20) reduces 'bo.

M ' . a2
Fnlp) A() + oZ Ag () Uy (0 + €7

M . _ R . nuy!
jE-M xj“'n(}" + jv) = ('f) sin —= S(p - k) (5.31}

where the number of the simultaneous equations has been

Ytruncated to N, In a maitrix form
M
0K, ()1 {a(p)} + e[K,] = S {A(p + gv)d
j==M

= {P} S(4 - k) _ (5.32)
where the elements of the matrix KZ are

N s > (5.33)
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which show that the matrix K, is a dlagonal matrix. To solve

e R R T s T L

Eq. (5.32) {A()} is expanded in a series, keeping in mind
that € is a small quantity,

A3 = PaqY + eltag0d + €0AG0T + * + ¢ (5.30)

Substituting Eq. (5.3%) into Bg, (5.32), and grouping terms

of the first and second powers of €, one obtains

[ky (07 24003 = L83 Sl - %) (5.35) !
103 = M © )3 6
[ ()T A} = - [Kp] 3£-M X0 AQ + §v) (5.3

M 1 .
- Il 2 KA + ) (5.37)

J==

A MR
Bq. (5.35) is solved to give

Cagd = & GoT™ (5 S - ) (5.38)
Substituting Eq, (5.38) into Eq. (5.36), we have

M

a3 = - g GoT 5] Kyl (s 0T
£p} 8(p + jv - k) (5.39)
Likewise,
Cagol = Do GOTHET B B X g
j‘l Kl }.A 2 j=-M g=-M J xq

Ky (1 - o) T L, [y (o + 39 - an) T
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(P} S + v - @ - k) (5.40)

Thus, to the order of 62, we have

N nny M 3
H(x, X, 72yt sw) = n§1 sin——[R, + € 'E-M X; ¥
M ik .
2 * Jad
+€° g I XiX G 1 (5.4)
j=.M g=-M J

where_Rn has been defined in Eq. (5.30), and Fg and Ggg are

the n-th elements of the following two vectors, respectively,

3 | ' -1 -1 s .
(79} = LKy (x - 39017 [Kp] [Ky ()T (@3 o720 = V)%

(5.42)
(%% =[x, (& - 3v+ )T 06T [K, (- 39770,
[k, ()7 (5} ik = ¥ * )z (5.43)

Now, if the random variables Xj, J= 1,2, ¢ N,

have zero means: i.e.,
EX;1=0, §=-My 0 r el ot e W (5.40)
then the mean value of the wave-number response function H is

N M

nny 2 M *_ Jja
EfH]l= £ sin—{R +€ T T B[X: x Jao 73
n=1 b Rn j=-M = d g n
(5.45)

We note that the first term on the right side of Eq. (5.45)

is the same as ‘the wave-number response function for the ideal
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uniform tension membrane, (5.29), and the second term gives
the contribution from the random variation in the tension

field. The cross-spectrum of the response function H is

EBLH(R, Koy o3 W) H¥ (% X, 70 » ¥4 sw) ]
Kol oy K1l ¥z

N N nny, Any, " 5 M M
= & I sin—]/ sin—j {R Ri + € I =
n=1 f=1 B2 i=-M gq=-M
o ood 0¥ qj* ja %
E[Xj xq] L¥, By + Ry G +ap Ry 1} (5.46)

where x; and y; should be substifuted into the variables with
the subscript n and xp and y5 should be substituted into those
with the subsecript L, _
For the gpecial case where X5 are statistically in-
dependent of each other and identically distributed random

varizables, and
2 .
S s 3 =4

#*
Xs X 1= N
BLX; X, ] {O,j#q (5.47)

Egqs, (5.45) and (5,46) reduce to, respectively,

N oy vars Mo
= ¥ gin-—% 4 ———= T d4 .18
E[H] I sing Ry + = Ey %0 1 (5.48)
N N ony, ANYo *
EHH*]= £ = sin'—““l sin {R. R
n=1 f=1 b b “fa Y
2 2
Y. o M . s + 2 3% ==
T =0 Jj _3* Ja JjJ *
+ P 35..1.{ [Fn Fl + R G + Gy le} (5.49)
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(5.50)

is the coefficient of variation of the random tension in the
y-direction., We note that due to the assumption of uncorre-
lated Xj, Eq., {5.49) becomes linear in each harmonic component
of random tension field in the sense that the solution can be
obtained by solving for ezch harmonic tension field variation
separately and then superimposed to obtain the total correla-
tion,

Now, the cross-spectrum of the sitructural response
ean be obtained by substituting into Eq, (2.52). Generally
the integration over k in Egq. (2.52) must be performed numer-
ieally, but the integrations over yi and yé can often be
calculated analybtically., To illustrate we shall assume that

the decay factor of the pressure field in the y-direction,

U, (¥; - ¥3)» can be expressed as

U,y (yf = ¥3) = exp(-{y] - ¥31/Q) {5.51)

where Q is an experimentally determined turbulence scale,
Substitution of Eas., (5.49) and (5.51) into Eq. (2.52)

results in

(I)w(xl ,Xz:}'l lyz ,LO)

By

_ N N
= @p(0,0,uﬂ Wl(k - ﬁ_) { = lE sin

- 2 2

NE[()U’*()V————E
2 U X X +
g=1 =t -~ DS 1 At 42 ~
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(Vpg, 321 Vo, 3(x) + Upglxy) Wiy s(xp)

* Vg, 5 (%) Tpplxp) )T} I, ak (5.52)

where Uns’ vﬁs,j' and wns,j are the elemenits in the n-th

row and s-th column of the following matrices, respectively.

001 = & [K 0T (5.53)

(V301 = - &) [ (k- 9T I%] [k (017

=i{k = jv
e:r.( iv)x

(5.54)
iy = @) [ 0T KT IR (5 - )T K,]
[k, (£) % & (5.55)
and
I = 1 ..E..S
S (1/a)% + (sm/p)? @ ST
s/b +9/b

(/)% + (s/D)? (1/R)% + (+7/0)?

f- L%+ (%74 (™Y 556
In carrying out the numerical computations {the most time-
consuning part is the inversion of matrix K, beside the
numerical integration over k which cannot be avoided,
Therefore, in the actual computation, only the diagonal
terms of Ky matrix will be kept to save the computer time,

Hence the coupling of modes due to the effect of transmitted
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pressure, P, wWill be neglected,
5.3 Numerical Example

The following physical data are used in the numerical

calculation;
properties of the membrane (Mylar membrane):
P {density) = 1,304 x 10'“’ l‘b‘-—Secz/inu
+ (thickness) = 0.00035 in
n (mass per unit area) = p%
Ty (tennion) = 0.35 1b/in
b (width) = 7 in
Vp (coefficient of the random tension variation) = 0.1

v {fundamental wave number of random tension harmonies)
1

= in~
properties of surrounding fluid media:

Pr = Pp = density = 1.15 x 1077 .'Lb;secz/inu

a4 = ap = speed of sound = 1,34 x 104 in/sec

U, {free stream velocity on the upper side of the

membrance) = 1200 in/sec

d {cavity depth) =1 in

properties of ‘turbulence:s 3 S*
" : 1 g* T Knlwl
@ (0,0,0) = spectral density =555~ Z 4, e =
P 2 U n=1 n
Uc {(characterisbtic convection veloeity of the -
turbulence) = 0.8 Uy . JIEL
U e

4 (E) = decay factor in thé x-direction = e c
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i
¥ (k- Q) =
170wy sL(/v,e® + (k - w)?]
il
¢2(n) = decay factor in the y-direction = e ot 8%
(Q = «5%)

$* (boundary-layer displacement thiclkness)

= 0,046.x-Re™0*2
Re = U x/v
x = 24 in

2,269 x 107% in?/éec

i

and experimentary determined constants

A, = 0,240 K, = 0.470

Ay = 1,08 K, = 3.0

Ay = 1.80 Ky = 14,0

A =2

0 (eddy lifetime) = -(1.2% x 1077) (U2, )

+1.15 x 1077 sec

Fig. 5.2 shows the spectral densities of structural

regpongse at x, = X, {the speétral densities of structural

i
response is homogeneous in the x~direction, hence 1t is not

a function of x, or xz) and y, =¥, = b/2 with or without the
random variaztion in the membrane tension computed under the
agsumption of a frozen-pattern turbulence {(i.e., ml(s) =1).
Furthermere, only two harmonic terms of the random tension

1 (=1) and -v = .71 in"*

field, corresponding to v =T in”
(j = -1),; have been included in the computation, We rsecall
that the crogs-correlation of the structural response is

linear in each harmonic component of the random tension field
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when the random amplitudes of the tension, Xj, are statisti-
cally uncorrelated with each other, The spectral density of
the structural response in the absence of random tension
ghows no peak within the frequency range shown in the figure,
while several peaks appear if the random tension is taken into
account, This change in appearance can be explained as
follows., Since the exciting pressure is assumed “to be a
frozen-patiern turbulence, the wave number k of the turbulence
is related to the frequency by k = ®/U,, Without random
tension the wave number of the response, M, of an infinite
membrane unsupported in the x-direction must be egual tocq/Uc.
Therefore, the coincidence resonance [ 327] would oeccur when one
of the diagonal elements of the influence coefficient matrix
Ky could become zero., If the induced pressures, p; and Pss
are neglected, this would happen when

- mef * To(]f;‘—w)2 + TO(TJ“-’;)a =0
However, numefical computations have shown that the lefit-hand
gide of this equation is always positive for any value of w,
Thus, coincidence can never occur when uniform tension T is
acting on the membrane alone, When the random tension terms
are included in the computation, there appear perturbation
termg which have factors of the form of [Ki(k - jv)]"l, j=.
Hlg#2,+ ¢ ¢, in the wave-number response function H, Thus
a shift of the wave number in the structural response from

k to k¥ - jv occurs. When J = 1, +the coincidence frequency
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can be calculated from the eguation
2 7T, 2 W 2 _
- my” + 76 +T0(Uc -v) =0

For n = 1 and 2, this equation has solutions

i
[ 2ad

f = 371 Hz, 720 Hz, for n
£ = 425 Hz, 665 Hz, for n = .

No solution exists if n is greater than ‘two, There is no
coincidence resonance when j = -1, Note that these values
are only rough estimates of ‘the peak frequency gince the
induced pressure fields, Py and pa, which have been ignored
in the estimates provide additional inertia or stiffness to
change the structural response, thus altering these peak
frequencieé.

Fig. 5.3 shows the spectral densities of structural
response using the measured spectrum of turbulence pressure
in the computation. Other specifications are the same as
those used in obtaining Fig. 5.2. In this case, however,
greater frequency intervals at every 50 Hz were used to save
the computer time instead of 10 Hz interval iIn Fig. 5.2.
Although the details are missing in this figure as compared
to Fig. 5.2, the major effect of the random tension, which
raises the spectrum values at some freqguencies by several
orders of magnitude, can bhe seen clearly. The comparison

with Fig. 5.2 alsc shows that the frozen-pattern assumption
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is unconservative, resulting in gross underestimates in the

structural regponse calculation,
5.0 Conclusion

The turbulence decomposition scheme was applied to the
two-dimensional.problem of a membrane with randem tension
field, The Levy's series representation was usged to describe
the variation of the wave-number response functien, H, in ‘the
y-direction, Therefore, integrations in the y-direction
needed to calculate the cross-spectrum of the structural A
response could be carried out simply with only a single inte-~
"gration remaining to be done numerically on a computer, The
effect of +the randomness in the structural properties was
also investigated, in particular the random non-uniform tension
in the membrane, It has been shown that with a coefficient
of variation of only 10% in the tension field the structural
response spectrum may be increased by several orders of
magnitude at some frequencies, The variation of the tension
field need not be accidental, but it may be caused intention-
ally to create a spectral peak, for example, beneficial to
skin-friction reduction. This proposition may be investi-
gated in the fubture. The sultability of the frozen-patiern
agsunmption was, again, examined in this chapter and the same
eonclusion as in Chapter III was drawn; namely, it leads to
underestimation of structural response and omission of some
important peaks in the speciral density of the response. Thus,

the use of +the frozen-pattern assumption should be avoided for
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the analysis of the structural response spectra under the
boundary-layer turbulence excitation,

In Chapter III-V, the emphasis has been placed on
gtructural motions, In the next chapter our focus will be

shifted to the skin-friction drag reduction itself,
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VI, REYNQOLDS STRESS ON A COMPLIANT SURFACE
6.1 Introduction

From observing the swimming of dolphins and amazed by
the smooth motion of fhe fish Kramer hypothesized that
favorable interactions between the flabby skin of the fish
and water could reduce the skin-friction drag on the fish,

. Since then many researches, experimental [36-37] as well as
theoretical [38-417], have been carried out in this field to
find the mechanism of this highly applicable phenomenon.
Aircraft and ship designers are especially interested in this
problem since reduction of skin-friction will result in a
decrease in fuel consumption, It has been estimated that the
skin-friction drag of an aircraft can be as high as 50% of the
total drag. Although some experimental studies performed on
very flexible membraﬁes have indicated friction-drag reduction
in fully turbulent boundary layers, the theoretical follow-up
has not been as successful. For historical reviews of previous
works the reader is referred +to [36,371.

Ornie requirement for a successful theoretical analysis
is a thorough understanding of the complicated structural
motion under the excitation of the boundary-layer turbulence
[371, to which Chapters III-V of this thesis were directed.
Another requirement is the knowledge of the changing flow
field resulting from the struectural motion, In this chapter
a perturbation approach similar to that used by Ffowcs
Williams [487 and Blick [417] will be applied to compute the
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perturbation Reynolds stress near the structure-fluid interface.
The analysis will be related directly to the two structural
models considered in previous chapters, The first model, a
one-dimensional unsupported heam will be used again to present
the basic concepts, and then these concepts will be applied %o
the more realistic model of a one-dimensional infinite beam on
evenly spaced supports.; In both cases the ‘turbulence decompo-

sition scheme will be utilized,
6,2 ‘Theory

Pig, 6,1 shows a one-dimensional infinite beam which
is basically the same beam considered in Chapter III, As the
beam responds to excitations its motion will generate addi-
tional pressures in the fluid media on the upper and lower
sides, Ag Dbefore, denoting these induced pressures by pi and
Do respectively, the governing equation of the beam motion

is given by

2 L 2
3w ow ad w 3w
Mot h e b BI—- = T—5 = p + (P; - Py)on (6,1)

Equation (6.1) differs from Eg. (3.1) in that a pre-tension T
and a viscous damping eoefficient'q have been included,

The turbulence pressure field p can be expressed in
the form previously introduced in Chapter II:

olx,t) = H o1 (Wt = kXJ' gne 1) de(u) (6.2)

00



p (turbulent pressure)
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Fig. 6.1 One-dimensional infinite beam under the

exeitatisn of boundary-layer turbulence
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The meaning of the functions F and G has been discussed in
Chapter II, We recall that in the integrand the circular
frequency w is related to the wave-number k and the component
convection velocity u by the relationship w = ku, Now, the

induced quantities w, Py and P, can be expressed as follows:

wix,t) = ” 2, u) el UEY = XX} qnuy ds(w)  (6.3)

pl(x.y.t) = L( P, (k,u,¥) ei(um - k’:’:)citF(k,u) daGg(u)
e (6.44)
P, (x¥,%) = ” Py (k,uyy) ot (uK - kx}dF(R,u) aG(u)

(6.5)

where H, Pl’ and P2 may be called -the wave-number response
functions for the structural displacement, the radiated
pressure,; and the transmitted sound, respectively,

To determine the radiated pressure on the upper side
of ‘the beam, p s we use the usual agssumptlion that the addi-
$ional pressure can be obtalned without regard to the presence
of the turbulent pressure P. Then, p, can be obtained In the

same way as in Chapter III;

(u - eo)
Pl (k'u, f)lal ;k/uz %u -‘U )2 H(k,u) (6.6)

where U, denotes the free-siream velocity of the fiow on the
upper side of the beam, For the case of incompressible fluid,

we let a, —»>oco, Then Eq. (6.6) reduces to
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P, (k,,0) = Pyl - Ty) H(ku) (6.7)

Following the same procedure as in Chapter III, the pressure

generated on the lower side of the beam is found to be

E (,1,0) cot(J - a22 kd/éz) H(E) 6.8)
5 Uy ‘Pz J;——_k/a U (6.

where the bottom wall of the cavity is assumed to be agousti~

cally hard. Taking the limit a,-s o, we have the incompress-

ible flow solution

2 coth(kd) yey y) (6.9)
k

Pz(k,u,o) = oW

For what follows we shall restricet our attention to the in-
compressible case, ‘

Substituting Egs. {6.2)-(6.5),.{6.7), and (6.9) into
Fa. (6.1), one ohtains

2
H(k,u) = [-mu@ + inw + Dk4 +‘Tk?_- pikl{u - T.)

2 coﬁh(kd)]~1

(6.10)
k

- sz
This equation is similar +to those derived in [41,487,
however, in ‘these references the effects of the radiated
pressure p, was not taken into account.

Let the velocity components of the turbulent boundary-
layer flow on the upper side of the compliant plate be T + u'

and ¥ + v°, where W and . are the velocity components when

e oo -
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the boundary is rigid and u® and v' are periturbation velocities
induced by the structural motion, Now assume that the pertur-

bation velocities, u®' and v', can be expressed as power ueries

in y;
u'(x,y,t) = nﬁﬂ an(xst) Yn ~{6,11)
Vix,7,8) = £ b_(x,%) y° (6.12)
n=0 ,

From the conservation of mass of an incompressible fluigd,

we have

du* av?
3% T35 =0 (6.13)

n order that this condition is satisfied the coefficients
in Egs., {6.11) and (6.12) must be related as follows:
1 3apg (x:%)

bn(x,t) =-= ™ for n =1,2,* « + (6,14)

Phepefore, substituting Eq. (6.1%#) into Eq. (6.12), we have

v(X,¥,t) = be(x,t) - T = ¥ (6.15)

The boundary conditions at the beam surface are
a(w) + u'(x,w,s) = 0 (6.16}

3wix,t)

= (6.17)

F(w) + v'(x,w,t) =

Taking Taylor expansions of U{w) and V(w) about y = 0, and
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neglecting the high order terms of w, one obtains

T(0) + & v O (6.18)

ulw) 3y y=0" ay’y=0"

vi{w) = ¥(0) + ( ) ot m0 (6.19)

gsince T(0) and ¥(0) are zero and the continuity of the

unperturbed fluid requires that

(av

- ou =
3770 = = Gxly=0 = 0

Substituting Egs. (6.11) and (6.18) into Eq. (6.,16), one

obtains
2 B 0 & _a_E
ao(x,t) + ai(x.t)w + az(x,t)w + = =G50 w
(6.20)

Keeping only the first term on the left-hand side of this ’
equation, we have

ao(x,'t) = «~Uw ' (6-21)
where U is defined as

U= Y (6.22)

¥ y=0
In a similar way we obtain from Eqs, (6.15), (6.17) and (6,19),

b (2) = da,(x,t) - i aal(x,t) 2 3w
o ax 27 ax %

(6.23)
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Again, retaining only the first term on the left-hand side,

= W
bo(x,'t) - a't (602“‘)

Equation (6.24) confirms what might have been concluded from
intuitive reasoning that the perturbed velecity in the y-
direction is equal to +the structural motion in that direction.

Substituting Egs. (6.21) and (6,2%4) into Eqs (6.11) and (6.15),

we have
u'(l':iYit) = - UW(_X.‘I.'-) + g a (x,'t)yn {6.25)
n=1 =~
dw(x,%t) dwl{x,t)
Vi (x,¥st) = Syl R R v’
= da, 4 (x,%)
-z & et vl (6.26)
n=2 n ox

in addition to the continuity equation and the boundary
conditions, the veloecity components in the flow field must
satisfy two momentum equationsg, one in the x-direction and
the other in the y-direction. However, it is sometimes more
convenient to replace one of these two equations by a diffusion
equation governinz- the vorticity perturbation.

av* ou'

w'(xav’,'t) = Ix " '5'5;-— (6.27)

In the proximity of the structure this diffusion equation

is given by

a2 a2 .
awe _ 2o 8
3t V(axz + 5 ) wJ (6.28)
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where Vv represents the coefficient of wviscosity., We shall
apply this diffusion equation next to caleulate the higher
order coefficients in the power series of u' and v'. Since
w' results from the structural motion it can be expressed

in a form similar to Egs, (6.2)=(6.5); i.e,,

oo
w' (X, 7,t) = (j Olk,u,y) ei(ukt - k=) ar(k,u) dg{u)
_Jm (€6.29)
Substituting this expression into Eq. (6.28), we have
a® o iuk
gz-ﬂ(k.u.y) - (¥ + —5) O(k,u,y) = 0 (6.30)

with the condition that the vortieity vanishes at infinity,
A solution for thig differential equation may be expressed as

k%

— iu
Qkyu,y) =Dk,u) expl-(62 + =7 3] (6.31)

where +he function £ is to be determined. Expanding the
exponential function on the right-hand side of Eq, (6.31) in

a Taylor series about y=0, one obtains

- ' n
. P noa2 iuk 2
expl-(k° + —-“)%y] =z ——i! -1)7 (k )2

Therefore; Eq. (6.29) can be written as

('l oa pel n
w' (X,7°%) ﬁ QLlk,u) nﬁg—;—‘i—,—- 1) (6 + "“")2
LUkt = kXD niy 1y dc(u) (6.32)
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However, from Eqs. (6.25)-(6.27)

2 2
_ 3%w(x,t) 3%w(x,t)
w (X, 7s) =3t 3g "~ al(X.t) + E——ggg““— U
- 2a2(x,'t)]y + oo 0 0 (6133)

In consistence with the representations of w and w', Egs.,

(6.3) and {6.29), each a, also can be expressed as follows:

©a

a,{x,%) = JI A (kyu) e

- Ba

Ll - kXD aoe u) actu) (6. 34)

Substituting this egquation and Eq,., (6.3) into Eg. (6.33),
=]
2 2
w'{xs¥st) =‘[f Luk H(k,u) - 4, (k,u) - UkH(ku)y

—_0n

iukt - kx) dr(k,u) da(u)

- 2-A-2 (ksu)yj e
. + higher order terms in y {6,35)

By equating coefficieats of yn in Eqs, (6.32) and (6,35),

we obtain
AGku) = wH(iu) - 4, (k) (6.36)
atkw 02+ 5% - nfamu + 20,000 (6.37)

Eliminating ) from these two equations, we have

muk -3

Ai(k u)y = uk H(k u} - (k R EUK H{k,u)
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+ 245 (k,u)] (6.38)

To calculate Al and Aa we use the momentum equation

in the x-direction

_ i - ' 3 (T '

a(u.,+,_u _) + (‘a + ul) M—)— + (-Tf o v') —-M
3t 3x 3y
' 3(p + Dy )

I S A KA (6.39)
P1 3x

However, for the rigid wall case, we have

3W , _ ?G , _ 3u 1 3p 2_

— et A — T — = e —= + VWG U 6.40

3% 3x vay Pq 3x v ( )
Thus, by subtracting Bg. (6.40) from Eq. (6.39) and neglecting

the square terms of perturbation velocities, one obtains

2p
—_ T — T 1 i
3t ax 3x ay dy Py 9%,

(6.,41)
It has been shown in Egs. (6.18) and (6,19) that at the

proximity of the beam U and ¥ can be apuroximated as follows:

il

U.(G) + (“é‘g_‘)y:o y-)- s 8 = Usf

-

ay)

il
o

_ 3V
Hy) =TO) + (Flymg T+ * *

Thus, ‘the Navier-Stokes eguation for the perturbation

velocities near the compliant surface can be approximated as
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aut au?t ap
3% + Uy-u— VU= "%I a_x1 + vyu! (6.42)
SubS‘ti‘tu'ting EC}_S. (6.4), (6925); (6.26)’ and (6034) in Eq_n

(6,42) and letting yv = 0, we obtain

L ixp, (k,u,0) = ~V[UKH(k,u) + 24, (k,u)] (6.43)
Py 1
Therefore
ik U .2
Az(k,u) 2v|o 1(k u,0) "'"E'k H{k,u} (6.44)

Eliminating A, (k,u) from Egs. (6.38) and (6.44),

iuk
Al(k u) = uk H{k,u) +—-§-— (k + = =) %Pl(iz u,0) (6.85)
Now, substituting Eas. (6.3), (6.4%4), and {6,.45) into Eas,

(6.25) and (6.26), we have

ut{x,y,%t) = X B{k,u,¥y) ei(uk.h - =) dF(k,u) dG{u)
S (6.46)
v {x,y,t) = JJ C{k,u,¥) ei(uk’t - ) aF{k,u) dag(u)
™ (6.57)
vihere
Bk, :mk
f’

Py (k,u,0)}y + higher order terms in y (6.48)
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C(k,u,y) = iuklH(k,u) - ikUH(k,u)y
+ higher order terms in y (6,49)

The Reynolds stress associated with the perturbation

velocities, u' and v', is defined as#
©(x,¥y) = pyE(u'v'} (6.50)

The usual minus sign associated with the definition of the
Reynolds gtress is dropped here since, as shown in.Fig. 6.1,
the positive v' is taken to be opposite to the conventional
direction. Now, substituting Eqs. (6.46) through (6.49) into

Bg, (6.50) and applying Eg. (2.,26), one obtains

o(y) = ” T(k,uyy) Splk,u) dk du (6.51)
in which
2(k,u,y) = p lukUHE" + p[-ikv°mH" - iu?adHE"

2 . 1
uk, -

gk (ka " :1.v ) Z

F1

+ higher order terms in y (6.52)

3%
+ P H Ty

Since o = ku and the wave-number specirum of the turbulence

# In theory, the imaginary parts in the expressions for u'
and v?! should be zero; however, some approximaftions have
been used in the analysis which may lead to non-zeroc
imaginary parts in these expressions, Such superfluous
terms should be discarded in calculating the Reynolds
gtress. Therefore, instead of Eq. (6.50) one can write

T(xyy) = PlE[Re(u') Re{v')]
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pressure, SP’ can be expressed in terms of the frequency

spectrum using Eqg. (2.33), Eq. (6,51) can be changed also to

o(y) = J[ D0 Bhy) Tp(0w) Wl - ) dk @ (6.53)

-— Oy

where 55(0,&0 denotes the frequency spectrum of the turbulence
pressure and ¥ accounts for the decay property with respect to
spatial separation, Due %o statistical stationzlity and homo-
geneity of the sitructural motion, the first three terms in the
right-hand side of Eq, (6.53) vanish, Thus the expression for

the Reynolds stress. reduces to

(y) = ” ok (2 4 W Ty (10 o) w8y

T, (0,w) U(k - %’g) dk dw (6.54)

We now define a Reynolds number, R, based on the

wave convection velocity w/k and the wavelength 2T/ k;

_ (w/x)(Ru/k) _ w
2TV ‘Okz

R (6.55)

Assuming this Reynolds number, R, is large, the square-root
in ‘the integrand of Egq. (6,54) is expanded in a Taylor series
about 1/R = 0;

a +i\‘—,“-)'%=/i_%;(1 +§3§-'%
=jizw(1+-é-%+cno) (6056)

Por values of R much greater than unity, the first fterm of the

geries alone is adeguate, Thus,



87

oo

f
<(y) = h F_P].(k’k'o) H* (k'k) y
T,(0,w) ¥(k - §-) dk dw (6.57)

¢
This expression of the Reynolds stress differs from Eq, (33)
in [487 in that the radiation pressure, P;, takes place of the
pressure fluctuation. As shown in the process of obtaining
Eq, (6.42), the radiation pressure is more directly related
to the perturbation velocities and, therefore, o the pertur-
hation Reynolds stress than the unperturbed turbulence pres-
sure on ‘the rigid wall, Thus, ‘this expression of ‘the Reynolds
stress seems to be more plausible than that in [41,48].

Now, substitutiongz Egqs, (6.7) and (6,10) into Eg.
(6.57), and keeping only the real part which represents the
physical Reynolds stress, we have

2

. ) Wk B 5
() ""‘ﬁfim @ - 0% ([omed + DE o+ T

© 2 2 coth(kd) 2 22
- ?1kci’“ Uo) = Py x4 MW}y

Eb(Gsuﬁ Pk - %i) dk dw (6458)

It is clear from Eq, (6.54) that the perturbation Reynolds
gtress vanishes when there 1s no pressure radiation; i.e.,

Py (k,-‘}%,o) = 0, This happens when the wave propagation speed
ef the struectural meticn, w/k, becomes equal to the free-stream
velocity of the flow, U, Of course, in the absence of struc-

tural motion the perturbation Reynolds stress also must be zero,
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If the beam motion is favorable the Reynolds stress may become
negative, It has been suggested (48] that such a negative
Reynolds stress in the viecinity of the surface may deprive
the turbulence in the boundary layer with energy supply and,
‘therefore, the turbulence level may decrease, As seen in Eq,
'_(6.58) the sign of the perturbation Revnolds stress can be
altered by changing the structural properties. However, the
relationship is subtle and extensive numerical studies would

be required to reach any quantitative conclusions,

6.3 Periodically Supported Beam

The structural model used in the preceding seection
for a preliminary investigation of the change in the Reynolds
stress in the fluid due to structural motion was an unsupneried
infinite beam, However the results obtained there can bu
extended easily to the case of periodically supported infinite
beam, This model is shown in Fig. 6.2, and it resembles more
realistically the construction of an airplane fuselage,

The governing equation of the beam motion not directly

on the support is giver by

L
2 3w 22w
n2 g pt +ig) F-T
3> 3% ax 3x?

=p+ (pl - pa)y:o - (6.59)
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Fig. 5.2 One-dimensional periodie beam under ‘the

excitation of boundary-layer turbulence
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where 77 denotes the viscous damping coefficient, g is the
loss factor of the beam material, D is the beam rigidity, and

m, Ty p, and p, are the same symbols used in the preceding

sectionf For the purpose of determining the wave-number
response function, H(x,k,u), the turbulent pressure p should
be replaced by exp[i(ukt - kx)] and the structural response
w equated with H{x,k,n) exp(iukt). Other induced guantities
should also be replaced by their wave-number response functions
in the same manner,

Since the supports give rise to multiple reflections
of the propagation wave in the structure, the same expression

for the wave-number response funection H as that used in Chapter

IV is suitable; i.e,,

H(x,k,u) = n‘::i_’_- H, exp(-ipx/1) (6.60)
where
A = p +2nom= kd + anw (6.61)

The radigted pressure Py ig governed by the eguation

2 2
(_a_+U§__)ap :a.‘?('a—'w—a ) p, =0 {6.62)

and subject to ‘the conditions that p, can propagate only in

the region y > 0, and_that

3D s
Sl _ .y 8 42 iukt
{ )y=0 =ik + U g)" He (6.63)
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 The solution of this system, when evaluated at y=0, is given

oy
= =i S H
Py T oipgE & My ( %')[Wn - ? - aiz]%
. %%
ei(uk’h - ﬂnX/vQ) (6,64)
where
o=l - (6.65)

The solution for the case of incompressible flow can be

obtained by taking the limit a, -»oee; i.e.

K3 e:;.({m't - Pax/l)

T (6.66)
where |
91(}'*1 @ e (6.87)

f‘n-

Th.e *hransmrbted pressure Py in the flui-d,mg@it}m_

-d = y - 0 is governed by

3“p,
Py 2,3 a (6,68)

!
o

- =) p, =
at? 2 ax®  ayR T2
and subject to the conditions
ap | | P
—a;r-g = { at vy = =g : (6:59)
3Dy 2 iu
3?2' = ~ppluk)” H T g y=0 (6.,70)
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The solution for Pos when evaluated at y = 0, is given by

oo t{rnd) ;3 - "
p, = Fg(“k)znz i co rnn en.(ul:t pPnx/L) (6:71).
where
2 _uk2 Pn2 . :
Wt - (67

Taking the limit By = 00y Ed, (6,71) reduces to the incom-

pressible flow solution

| oo coth(t,d/0) .
e, S s

(6.73)

At this point it is of interest to note that the Hn
are not all independent of each other due to the constraints
at the periodic simple supports. A%t these supports the

deflections are zero, Thus by substituting x = 0 into Hg.
(6.60),

H(O,k,u) = § H =0

or  Hy=-3 H (6.74)
n#0

Hence, an alternative representation for H is

H(x,k,n) = an H, (e-i}‘nx& - e“i}xoxﬂ) (§975)
naéa

e
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which is also a better representation from a computational
point of view. Substituting Eqs. (6.66), (6.73) and (6.75)
into Eq. (6+59)) one obtains

n‘g_& [p(n) o ©(0) e-i"(oxﬂ] H, A
n#o
= iUkt - pigx/l) (6.76)

where

oi{n) = .m(uk)2 + i'r’(uk) + D(1 + ig){ Pn) + T(Fn)

- pdmaEd L0 - °°T’;ff£ A
7
- (6,77)
To determine the coefficieﬁ'ts Hn we apply the well-known
virtual work principle, Specifically, we assume a viritual

digplacement

Sw = 8H, I:ei'}’!iix/'q - ei}'!ox/ﬁ ] e_iukt (6.78)

The virtual work done by the internal and external forces
must sum up to zero. Due to the spatial periodicity of ‘the
structural response and the virtual displacement, it is only
necessary 0 apply the virtual work prineiple to one periodic
unit, Thus, multiplying Sw to both sides of Eq. (6.76) and

integrating over 0 <« x « {, we have

p(§) Hy + 0(0) E Hy,

N=wbo

nFQ

-1 for j#0 {6.79) -
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Equation (6,79) shows that the product m(3j) H.’i is independent

of js quts

Uy = (2)Hp = ¢+ ¢ = @Iy = ¢ ol o

—

Thus, substituting

H, = 59(3)/p(n) (6.80).
into Bq, (6.79), we obtain an equation involving only one
unknown

=] 1 T '.
o ‘! mamm— T2 ey 3 . 6381
Hatp(a)cptﬂ)ng_m (o) 1 for J#0 . {6.81)

which is solved readly to give

By = [o(Dp(0) T =T for g 40 (6.82)
Denote the velocity components of the turbulent
boundary-layer flow on the upper side of the beam again by
U+ u® and ¥ + v* where U and ¥ are the components correspond-
ing to a rigid wall., 1In view of Eq. (6.60), the perturbation
veloeities, u® and v*, can be expressed as power series in y

as follows:

o oo i{ukt - psxA)
wi(gyit) = By B ALY Lt - g/ (6.83)

vyt = 55 550 S A

From Eqs, (6.83) and (6,8%4) and the continuity equation for

I B T S LT ST T ST
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an incompressible fluid;

qu' | dv' _ l. '
3 Tay -0 (6.85)

one obtzins

T E by, R

n=0 j=-to 4 J

@ e n~1 i(ukt - JA-X/JQ.) Nl
" n§1 jg_oo ¥ Bnj © ’ ny

Multiplying both sides of the equation by exp(i}xjx/l) and

integrating over 0 < x < {, we have

3

—

Therefore, by substituting Eg. (6.86) into BEg. (6.8%),

48

oo i
Vgt = F DBy + 5, & (o) Ay g, 97

a0

ei(“’“ - ) (6:87)

The non-slip condition on the plate surface can be

gtated as
Tw) + u'(x,wet) = 0 (6,88)

and

aW(th) (6n89)

F(w) + v'(x,w,t) = 3T
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Paking Taylor expansions of W(w) and V(w) about y = 0, and

neglecting the high order terms of w, we have

- 3 By
wlw) = (3";}' y=0 ¥ (6.90)
T({w) = 0 (6,91)
Substituting Eqs. (6.83) and (6;90511nx§“Eq;7(6;88), oqef;
obtains

€0

ikt - psx/2)
.E m(AOj + Aljw + Aaa-wa o+ u‘. 0 ,) eI{_-ﬂi P’;}x/

Keeping only the first term on the left-hand side of +this
equation, we have

05 = U H; (6.92)
where
g = c%ggy=o {6.93)
Similarly, from Eqs. (6.87), (6.89) and (6.91);.
Boj = lukH.

3 (6.94)
Now, substituting Eqs. (6.92): and (6;9&)'iﬁ$o Egs. (6.83)
and (6,87), we obtain’
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' (2,¥,t) = Z (-?H + 21A ) e i(ukt - }ﬁxZQJ

3—_&:
(6.95)
oo . i}l- ao 1 i}l. . n
’ = I | . —_—
V(XY ) j§ (iukH, 7 UHsy + I, n'fil Ayq, 39 )
I(ukt - A% ) (6.96)
The vorticity perturbation
av? an' ‘
w (¥, %) = 3x g;_ (6.97)

must satisfy the diffusion equation near the beam;

2 2
aw! d .}
= g (6.98) -
3t ax”  ay '

In view of Eqs. (6.95) and (6.96), we may assume that the
vorticity perturbation has the form
e i(ukt - pax
w(x,yst) = T 0. e ( P'] A (6.99)
J=aoe J
Substituting Eq. (6.99) into Eq,. (6.98), multiplying both
gides of +the equation by exp(;gjxﬂﬂ), and integrating over

0.<x ~{, one obtains

2 : |
2 254, - [()u d —1-\-,"‘5](13 0 (6.200)

ay®

Under the condition that the vorticity can diffuse only in

the positive y-domain, the solution of Eq. (6.100) is found

b i e P W R M iR Lk

LoD e ;e et
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0y =0 exnl- t(fi) ¥ ’“““Jz}

Expanding the exponential function in alTaylor series about

¥y = 0, and substituing the result into Eq. (6.99), we have

(D'(stlt) = E
e’-(“k’“ - PyF)  (6x1o1)
However, from the definition of the vorticity, w' alsc can be

-expressed as follows, using Egs. (6.95) and (6.96); -

wrayt) = T el sy - LG g « 20,50

=—h
+ higher order terms in yk el(um; f‘,]x/ﬂ*)
(65%02)

Equating coefficients of ¥y in Eus, (6.101) and (6.102), one

obtains
0. = u}c(ﬂ—é)n. - Aqs (6.153*)*
'3 R B |
— s 2 juk-¥ . 2 L
Ardd? + 2 o B2 s on, (6.100)

Eliminating Q. from these equations, we have

oy -u}:(}! F,—; 2, iuk -

J)H - D =T E(PJ)UH + 24551




an ’she Na.va.er-s-l:okes eq_ua:hlon :E'or -the per'bur"ba-hn.on

_veloci'b:.es :m “bhe vz.c:.m.ty of *bhe bea.m ca:n 'be wr:.'t'ben as ;

.. S ap | e e
au’ 1 . PP
a't & Uy a + th‘ Fl B:x'. -i' ‘ﬂv‘o‘u (5,106’) .

| Subs*ba.’cutmg mas. (6 66), (. 95) and (6 95) :mfto Eq. (6 mer

2 and 1e~!:1:1ng y_ = 0, we a'b'ta:.n

Mul‘blplymg bo"hh gides of ‘the. equab::.on by exp(z.}.l x/ﬂ.) and

integrating over 0 < x < L, one ob"bams

- 1 1}13 U My .2. ) .
substitution of Eq. (6.1C8) inmto Eq. (65105) yields
By = uk(ff-)::.j + Pv[(t » 25 2 ii’gp . (64109)

Now, substituting Eqs. (6.108) and (6 109) m‘to Eqs. (6495,
and (6. 96), we heve

' (x,7,t) = :g' R; e R (6a110)
o ‘..'_“t_ i
vI(x,¥t) = § i el('llk- ﬂaxfi) ('__611_11)

B XN




where SR
J Rj'=_-UH + {ukfp }‘ 1uk

* fhfcesher order -eem. iy O (earmy

Ll

[T

Hé'nc%e that the veloecity components, u' and v*, obﬁaiﬁed-
here are induced by a frozenwpattern,componenxg g#ﬁ[i(ﬁkt -
kx)1, of the turbulent pressure p; therefore, ég;asﬁj exp(
~$ﬁ5$l£) and jglm:sj exp(-%pjxﬂl) are ‘the wave-number response
functions of ‘the velocity components, u' and v', respectively.
Thus, the total veleocities induced by the turbulent pressure

. p-are obtained by superposiition as follows:

% ei{uk‘t - f‘a‘x/‘“

LR aF(k,u) aG(u)

(6.114)

o J

§——8

u'{x,y,t) = J

g s i(u}rb - }153{/./?.)

3 D

dF(k,u) d&(u)
(6.115)

V(X ¥et) =

1

The perturbation Reynolds stress near the beam ean

now be computed from
olxmiy) = pEu] - (6.116)

Substituting Eqs. (6.112)-(6.115) inio Eq, (6.116), one obtains

ek e e

3):{ : ”L( = 3‘*{ ﬁ-‘;:a“jy e

ulity - '{"1 UH;y + higher order terms iny (6.113)

A e e A AR 4 S TR Ak ey pieasel ey e e
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;'5 3:; e (kw) eizn(:l . n)x/i

(k,u,y) e,_ RSy e -{-s;-.n.'s)'

As in 'the precedmg sec'!::mn, ‘the n.m:egra'tlon varla.‘ble a :.n

'Eq. (6. 117) may be replaced by cu/k and the wave-number spec‘t:rum,
of ‘t_he turbulence pressure_, _Sp y replaced by the frequency
spectrum $o give

| = f] B 7 a7 7
B _(0,w Wk-.‘-”; dkdm  (6.119)

where the specific expression for Tnjoe obtained b{y‘ subgtituting
Egs. (6.112) and (6.113) into Eq. (6.118) is given as follows:

rogBy) = o iwvg + p (-1l )uzﬂnn

]“n W=k %
- iw ( )H ;j P )t( + 5 Plnﬁj,_} ¥
+ higher order terms in y- A (6;,120)_
' Since the structural motion iz a stationary random process in
. | time, the first term in the expression of Ty,; does not con-

tribute bo the integral when substituted into Eq. {6,119}, In

this periodic besm case, liowever, <the s;pa:hial homcgenei'hy of
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the . stfﬁétﬁrai.motioﬁ is destroyed baééﬁié of thé'su§pbrﬁs,'
Gonsequenmly, %he perturbatlon Reynolés gtress near a perzodlc
beam isyarfun tion of the ‘spatial varlahle X« A re;sonable
measﬁra‘qf.#hg nat¢e££eet o£ the pgrturbatlgn Reynolds_s%ress
appears to be the spatial average defined aé.foiléws;. L
-a:(:n :f- { Ty) & (6.121)
o A

Again, deflne Reynolds nuwher
R = —""2" (611_22)

Eqs. (6.119) and (6,120) may be substituted into Bgh (6.121),..
and the reéult is gimplified by expanding the square-roob

ferm in a Taylor series about i/R = 0, Keeping only the real
pa:t of the_expression which represents the physical average

Reynoclds siress, one obtains

<T(y)> = ﬂ I TnE R) 00) e v
F_(0,0) ¥(k - ) ak dw (6.123)
D T, |

Finally, substitution of Eqs. (6.67) into Ea, (6.122) yields

' ([ o 2 ,wl 2, 2
| ““”}"H I = Ll el S

-0

3_(0,w) ¥k - £-) dk do (6.124) .
P ¢
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6.4 Concluding Remarks

Expressions for ‘the perturbation Reynolds stress
induced by fluid-solld interaction were obitained for two
structural models. The firgt structural model, an infinite
unsupported beam, was used to develope the bzsic concepts of
the analysis, The results were then extended to the second
model of an infinite beam, simply-supported at equal intervals,
The second model is a more realistic model for ‘the typical
fuselage construction of an airplane., The effeet of the radi-
ation pressure was included in ‘the formulation, The pertur-
bation Reynolds stress involves a double integration with an
integrand depending on the beam motion and radiated pressure,
The complexity of the expression permits only qualitative
discussions in this thesis., Hopefully, quantitative results
can be documented after extensive numerical situdies in the
future.

The radiation pressure, Py s required in the present
anulysis has been obﬁained.frcm a wave equation for inviscid
fiuid, More rigorously the viscosity in the fluid and the
velocity profile in the bhoundary layer should be taken into
account when determining the radiation pressure, However, at
the present time no closed form solution is known of this more

accurate wave sgquation,
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. VII, GENERAL CONCLUSION

This investigation has been concerned with the inter-
action between a turbulent flow and certain types of siructure
responding to its excitation, The turbulence is typical 6f
‘those associzted with a boundary layer, having a cross-spectral
density indicative of convection and statistical decay, It .
has been shown that a decaying turbulence can be constructed
from sﬁperposing infinitely many components, each of which is
convecting as a frozen-pattern at a different velocity. %his
turbulence decomposition scheme reduces greatly fhe computation
time by reducing to one-half the number of integration which
must be performed on a compuber, Furthermore, the scheme
provides a convenient way in which experimentally measured
cross-spectral density of the turbulent pressure fluctuzation
can be incorporaited directly into the computation.

The results of The structure-turbulence interaction
were pregented in terms of The spectrai densities of the
structural response and the perturbation Reynolds stress in
the fluid at the vicinity of the interface. A number of
structural models were.considered in the investigation,

Among the one-dimensional models were an unsupported infinite
beam and a periodically supported infinite beam. . The first
model was used to develope ‘the basic ideas which were then
applied'to the more realistic second model resembling the
fugelage construction of an aircraft. For the two-dimensional

case . .¢ membrane was used to illustrate the type of
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formulation applicable ‘to most two-dimensional structures,
However, a small random variation in the membrane tension

was ineluded in the analysis since ideally uniform tension

never exists in practice. DMoreover, ‘the mathematical approach

used in dealing with random membrane tension can be adapted
to treatb other random structural properties in general, BRoth
the oneldiménsimnal and two-dimensional strucﬁuresﬂmenticned
above were backed by a space filled with an initially
quiescent fluid to simulate the acoustic environment when
the structure forms one side of a cabin of a seg- or alr-
craft,

It has been fouad that import=nt spectral peaks of
‘the sﬁructurél response will not appear if decays in the
tuibulénce is neglected in the analysis, ‘Thus, the usual
Taylor's hypothesis of frqzen-pattern'turbulence is uncon-
servative as far as the assessment of structural reliability
is concgrnea. The pefturbation Reynolds stress is indicative
of the change in the skin-frietion drag due to structural
motion. It has been shown that, given the statistical
information of the boundary-layer turbulent pressure field,
the perturbation Reynolds stress can be altered by varying
the structuval parameters, Therefore, the present stqdy.is
potentially useful for designing flight or marine structures

40 minimize the total skin-friction drag.
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