
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



e
t,

S

C

S:ry

3

i

A NEW LOOk AT DECOMPOSITION OF TURBULENCE

FORCING FIh'7,D AND THE STRUCTURAL RESPONSE

By

ii K. Lin & S. Maekawa

March 22, 1976

(NASA°Clt-149511) it 41W LOCK AX	 N77-15988

D CGMIUSITICN Cx IUaDULzNCh POilCING FIzLD
hN0 ltiz .3Tr,,ULIUEAL tcr:SeQNSh (Iilinois Uuiv,)
22 p 1IC Ai,l/MF A(1	 CSLL 01A	 Unclas

G3/JZ 1507

Backup Document for AM Synoptic Scheduled
for Publication in the AIAA Journal, May 1977

s

a
1

Department of Aeronautical and
Astronautical Engineering

101 Transportation Building
University of Illinois at

Urbana-Chaiupaign
Urbana, Illinois 61801

Y
3



'II

A NEW LOOK AP DECOMPOSITION OF TURBULENCE FORCING FIELD AND

THE STRUCTURAL RESPONSE

Y. K. Lin and S. Maekawa

University of Illinois at Urbana-Champaign, Urbana, Illinois

Abstract

Measured cross-spectrum of a turbulence field usually shows some

decay in the statistical correlation in addition to convection at a

characteristic velocity. Under such a random excitation the computation

of structural response statistics becomes much more tedious than that

which would be the case if the turbulence were convected without decay; i.e.

convected as a frozen-pattern. It is shown in this paper that a decaying

turbulence can be decomposed into frozen-pattern components thus permitting

a simpler way to calculate the structural response. The procedure so de-

vised also provides a relationship whereby the measured input spectra can

be incorporated. For illustration the theory is applied to an infinite

beam which is backed on one side by a fluid-filled cavity and is c.iposed

on the other side by the turbulence excitation. The effect of the free

stream velocity is also taken into consideration.
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A NEV LOOK AT MCOI•IPOSITION 01' TURBULENCE FORCING FIELD AND a

THE STRUCTURAL RESPONSE

Y. K. Lin* and S. Mackawall

University of Illinois at Urbana-Champaign, Urbana, Illinois

Introduction

From the standpoint of structural response calculation the simplest

mathematical model for an atmospheric or boundary-layer turbulence is one
i

that is statistically homogeneous in space and is convected in a given

direction as a frozen pattern. 	 The second part of the assumption is known

as Taylor's hypothesis which often results in tremendous computational

savings.	 In some cases it may be the key assumption making the problems

solvable.

However, experimental measurements of real turbulences invariably show

that spatial decays do exist in the cross-spectra or cross correlation func-

tions.	 Such decays are indicative of the change in turbulence patterns as

they move clown-stream. 	 Thereforu, results obtained from a frozen-pattern

analysis are just crude estimates which stand to be improved when a better

method becomes available, c

The primary objective of this paper is to shots that a decaying turbulence
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can be constructed by superposing infinitely many frozen-pattern components

with random amplitudes and convected at different velocities. Then the

structural response can also be similarly superposed with each component

corresponding to one frozen-pattern component in the forcing field.

To focus attention on the essentials, the discussion in this paper

will be restricted to one-dimensional space coordinate. 	 Ile shall begin by

reviewing some basic relations for the frozen-pattern case as building blocks

for the later superposition. Then the proposed superposition will be devel-

oped. Finally, as an example, the theory will be applied to an infinite

beam under the excitation of a supersonic boundary-layer turbulence.

Frozen-Pattern Turbulence

An example of one-dimension'al structure exposed to the excitation of a

turbulent pressure field is depicted in Fig. 1. The x coordinate frame is

stationary with respect to the undeformed structure, and it will be referred

to as the fixed frame in the sequel. If the pressure is truly of a frozen

type and is convected at a constant velocity U  in the positive x-direction,

then it is a random function of x - U ct. Such a random function can be ex-

pr,essed as a Fourier-Stieltjes integral as follows:

p(x - Uct)

	

	
i(wt -. kx) dF(k)	 (1)

J

where the frequency w and wave number k are related to the convection speed

U  as w/k = Uc . It is known from the random process theory that

E fdF (k I) dF*Ck2) } =_Sp (k1) 6(k 1 - k2) dk 1 dk 2	(2)

iw
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where E{ } represents the ensemble average, an asterisk denotes the complex

conjugate, and S
1)
(k) is the wave-number spectrum in a coordinate frame moving

at the velocity U  (referred to as the moving frame in the sequel).

The cross-correlation function E {p(x l - Uct l) p(x2 - Uct 2)) of the pres-

sure, referred to the fixed frame, can be calculated simply by use of Hqs. (1)

and (2). This function, denoted by Itp , depends only on g - U c 
T where E = x  - x2

and T = t  - t2 , and it is related to the moving-frame wave-number spectrum

Sp (k) as follows:

R (^ - U T) _
 J_w

weik(UcT - ^) S
p (k) dk	 (3)

p 

If a Riemann-Fourier transform is taken of Eq. (3) we obtain the fixed-frame

frequency cross-spectrum of p:

0 (^, w) = 1	
I - W^

 itp'( - U c
T) e-iwT dT

IplI Sp ( ') e-i(w/Uc)	 (^4)
c	 c

Equation (4) shows that the fixed-frame frequency cross-spectrum of a frozen-

pattern turbulence has a special form where C appears only in the imaginary

exponent. This equation also provides a simple formula to convert from Sp(k)

to (p M w)•

Conversely, to convert from 4) p (E, w) to Sp(k):

Sp(k)	
(Ucj('p(0, kUc )	 (5)

Evaluated at	 = 0 the cross-spectrum (Dp (^, w) reduces, of course, to the

usual spectrum.

We emphasize that Eqs. (4) and (5) are valid only if the turbulence is

{
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strictly of a frozen pattern, and is convected at speed Uc.

Equation (1) suggests that structural response to it frozen-pattern

turbulence can be constructed from a fundamental solution where the excita-

tion is just a convected sinusoidial pattern of unit amplitude. Thus, let

11(x, k) exp(iwt) be the steady-state solution for

{ 11(x, k) oxp(iwt) } = exp [i(wt - kx)] 	 (G)

where, symbolically,01r represents a linear operator in x and t• , pertaining

to the dynamic problem at hand. Of course, this solution must satisfy all

the necessary boundary conditions. Then the solution to

w (x, t) } = P(x - Uc t)	 (7)

after reaching stochastic stationarity, may be expressed as

w(x, t) _
 J-M

11(x, k) exp(iwt• ) dF(k)

F-
H(x, k) exp(iu ckt) dF(k)	 (8)
m

It follows that the cross-correlation function of the structural response

is

){ w(xl , t l ) w(x2 , t 2) }
M

T (( H(xl, 'Y "*(x 2'
11*(x2 k2) e iuc (k 1t I - k 2t 2) Sp(kl) d(k l - k2 ) dkl dk2

JJ-JJ^

11(x1, 
k) 

11*(x2, 
k) e iuc k(t I - t2) Sp (k) d 	 (9)

As expected, this correlation function is dependent only on t  - t 2 . If it is

desired to calculate this correlation function in the frequency domain, we may
z

substitute Eq. (5) into Eq. (9) and change U'k to w:

t

F
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E( w(x l , t l) w(x2 , t2)}

11(x 1 , w/Uc) a*(x2 , w/uc) 
aiw (t l - t24p(0, w) dw	 (lo)

In terms of the input and output spectra the relations are extremely simple

and illuminative; they are:

in the wave number domain:

Sw (xl , x2 ; k) = II(x l , k) "(X2  k) sp (k)	 (11)

in the frequency domain:

4)w (x1 , x2 , w) = II (xl , w/Uc) 1i* (x2 , w/Uc) 4)p (0 , w)	 (12)

When x  = x2 these formulas reduce to those for the usual spectra, and they

have the same form as the well-known result for a single degree of freedom

system in the random vibration theory. The simplicity is a direct consequence

of the fxozen -pattern assumption.

Decaying Turbulence

Measured frequency cross-spectra for real turbulences with respect to a

fixed frame of reference have the general form of

gyp (, w) _ ^ p (0, w)	 ( ) eXp(-iw^/Uc) 	 (13)

where V is an even non-negative definite function of 	 having an absolute

maximum equal to one at = 0 and approaching to zero at large absolute values 	 °f

of C. This form is sometimes attributed to Corcos l . A number of researchers

have reported curve-fitted results for 4
p
(0, w) and V (Q.- For representative

works we 'cite the papers by Bu11 2 , Willmarth and Wooldridge, and Maestrello, et.al.n
;

Implicit in Eq. (13) is that a real turbulence is not 'a frozen one.
7yi
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To obtain a theoretical spectrum consistent With Eq. (13) we propose

the following representation for a general turbulence pressure

p(x, t) = J^f)( x - ut) dG(u)	 (14)

Equation (14) implies that p(x, t) is a superposition of infinitely many

frozen-pattern components, each having a random amplitude dG(u) and a con-

vection velocity u. Such velocities can assume either positive or negative

values. Of course, each frozen-pattern component can, again, be decomposed

into sinusoids. Thus,

p (x, t) _ 
	
ei(uOt - Px) dF(R, u) dG(u)	 (15)

and its fixed-frame correlation is

E{ p(xi , t1 ) P(x2 , t2)}

= 1111 Ci(uloltl

	 u 2 (1 2t2) - i(S1x1 - 02x2)

E{ dF(S1, u1) dF*(0 2 , u2) dG(u l) dG*(u 2)}	 (16)

In order that this correlation function may depend only on g = x 1 - x 2 and

T = t 1 - t2 , which we shall assume to be true, the ensemble average under the

integral sign in Eq. (16) must have tale form

E{ dF(S 1 , u 1 ) dF*(R 2 , u 2) dG(u 1 ) dG*(u2)}

Sp (o i l u1 ) 6(0 1 - S 2) 6(u 1 - u2) do  
dot 

du  du g 	(17)

Substitution of (17) into (16) results in

IIrI
I^r

RI^(E, T) - 11 ci(ouT
	 Sp((l, u) do du	 (18)

We now apply a Fourier transformation to obtain the fixed-frame frequency

spectrum

.

sA



d p K, w)	
2tt l^oolipM	

dT
T) C_iwT 

J

w 1

	 -iwc/u 
S	

11

-WIU, °	 p(u, u
J 

du

Clearly Eq. (19) is a generalization of

f

 Eq. (4).

To compare Eqs. (19) and 13), the latter is Fourier-transformed

to yield	 W

2F j

- p (w, F) oiga d9

_ $p (0, w) T (a - w/Uc)

where	 ,

Y (v) =	 e'er dE	 (21)
2tr 

Therefore,

	

p (, w) = p(0, w)	
T 

(a - w/Uc) a-ia^gy 
	
da	 (22)

Letting a = w/u we obtain

d'p	w) = 4p (0 , w) 	 IU2	 cT (u - Vi) c
_iw 

/u du	 (23)

Then equating 4)p and dd)p we find a formula to compute Sp (w/u, u)

as follows:

Sp (w/u, u) = I-w/uf T (w/u w/Uc) Tp (0, w)

W

=I--W l7hp(0, w) JV ( g) exp[ iE(w/u - w/ U c)) d&	 (24)
2Trm _M

Iie frequency cross-spectrum for the structural response can be ob -

tained by a similar superposition. Thus by -a generalization of Eq. (12),

(19)

(20)

.... ,
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%('1' x2 ' w) = I-j .0  l
II (xl , w/u) II*(x2 0 w/u) 5p (w/u, u) du	 (25)

Or, lotting k = w/u,

%(xI , x2 ; w) = 
F_.IkI

II(Xl , k) II*(x2 , k) Sp (k, w/k) dl:	 (zG)

Now since

Sp (k, w/k) = I k I`^p( 0 , w) Y ( k - w/Uc)

we obtain a very simple result

%(xl, 
x21 w) = (Pp(0, w) 

[WII(xl, k) 11*(x2, k) 'Y (k - w/U c) dk	 (27)

An Example

As an example, the theory will now be applied to an infinite beam shown

in Fig. 1. The beam is backed on the lower side by a space of depth d which

is filled with an initially quiescent fluid of density P2 and sound speed a2.

On the upper side the beam is exposed to the excitation of a supersonic

boundary-layer turbulent pressure p. The fluid on the upper side of the beam

which carries the turbulence has a free stream velocity U., density p l and

sound speed al.

As the beam responds to the excitation its motion will generate additional

pressures in the fluid media on the upper and lower sides. Denoting these

generated pressures by p l and p2 , respectively, the governing equation of the

beam motion is given by

2
EI

I
D 22

4 

	 = P + (P I 
- p 2)	 (28)

ax	 at	 z^0

For the purpose of determining the "wave-number response function"

II(x, k) the turbulent pressure p should be replaced by exp[ i((6t• - kx)] and
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the structural response w equated by 11(x, k) exp(iwt) - A(k) exp(-ikx)

exp(iwt). Furthermore, we shall make the usual approximation that p l can

be calculated without regard to the presence of the turbulence. Then pl

is governed by the equation

	

2	 2

(at + U^ 2x)2
 pl - alt 

(a 2 + a 2) p l = 0	 (20)

	

ax	 az

and subject to the conditions that p l can propagate only in the positive z

direction, and that

! 
1	 ^	 a	 ^-

aZl l z-0= P 1	 C at	 ul^ ^ x /

The solution for p l , when evaluated at z=0, is known to be 5

k(w/k - UM) 2

(P ) z_ - iP a 	
A(k) -ikx eiwt	 (30)1 -0	 1 1 

f (w/k -. U,^) 2 - a 1 2 ] }

The pressure generated on the lower side of the beam is governed by

the equation
2

22 - a22 (a22 'F a22) P2 = 0 	 (31)
at 	 ax	 az

and subject to the conditions

ape

2z	
0 at z = -d

and

aP2
az =	 P 2 w at z=0

The solution for p 2 , when evaluated at z=O, is given by

2 c
(p , ) `_O = Pzw	

ot'yd	 -ikx '
WtY A(k) e	 e	 (32)

r

e

n
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where
z

Y2 = l nJ -1,2
2 

Equations (30) and (32) can now be substituted into Eq. (28) to find

A(IO , recalling that p must be replaced by exp[ i(wt - kx)] and w by A(k)

c
-ikx 0iwt. The result may be expressed as

A(k) = 1/Q

where

R = EIk4 - mm2.l ip I al k 
(w/k - 

Urp) 2

i

[(w/k - 
Uj 2 - a12}z

+ p2w2 (cotyd)/y	 (33)

711us ,

H(x, Q = exp(-ikx)/Q 	 (34)

Ile are now ready to compute the structural response spectrum due to the'

excitation of a convected decaying turbulence. For the input spectrum of

the turbulent pressure, Eq. (13), we shall use a form proposed by Ma.strellod,

for which

V(0 = exp C -	 )

where 6 is the boundary-layer thickness and a is an experimentally determined

quantity. Corresponding to this > function we have

T (k - w/Uc) {tra6	 [(a6) -2 + (k - w/Uo)2]}-1

Having determined I1(x, }:) and T (k - w/Uc) the cross-spectrum of the structural

response may be computed using Eq. (27). The integration ever k must be

carried out 	 however, on a digital comuiter.

{ Figure 2 shows the computed results for the frequency spectrum (i.e.,

when x } = x2) of the structural response using the following physical data:

is



and expe

a

Al

A2

A3

A4

rimentally determined consti

4.4 x 10-2

7.5 x 10-2

-9.3 x 10-2

-2.5 x 10-2

properties of the Licam

El (bending rigidity)	 3.945 x 104 N-In 2

in (mass per unit length) = 9.746 kg/111

properties of the surrounding fluid media

P l	 P2	
P (density) = 0.11015 kg/m 3

al =a
2	-

1 (speed of sound) 261.6 io/soc

U. (free stream velocity 
on 

upper side of beam)	 575.6 in/sac

U
c
 (convection velocity of the turbulence) 	 0.75 U.

d(cavity depth) = 0.1178 111

properties of the turbulent pressure 4

decay factor exp

6	 14
4) P (0,W)	 spectral density 2 U
	

0 n

	

WN

-	

A -1,

 n=l

6(boundary-layer thickness) 	 0.279 m
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Concluding Remarks

The theory developed herein is applicable to any turbulence forcing

field which has a cross-spectral density of the form of Eq. (13). It is

particularly useful in dealing with boundary-layer turbulence for which

r	 the decay in correlation is much more significant than that of the

atmospheric turbulence as far as structural response is concerned. For

this reason we have chosen an example to illustrate the application of

the theory which includes the effect of a cavity and the effect of the

free stream velocity. These are main features in the problem of fuselage

panel vibration under the excitation of boundary-layer turbulence. The

infinite unsupported beam is perhaps the simplest structural model possible

which still allows co sideration of these features. The advantage of a

simple model is to avoid the burdensome iw-ithematical details and concentrate

on basic principles.

A better representation of fuselage panels can be obtained by adding	
Z

evdnly spaced elastic supports to the infinite beam. The model then be-
	 l

comes a periodic structure; i.e., a structure which is composed of identical

sub-units and for which analytical studies have been carried out exten-

sively
6,7,S,9,10,11. 'rhe elastic.supports give rise to multiple reflections

and the solution bect+a^ns considerable more complicated. Details of this

solution will be reported in another paper12

Further extensions to the two-dimensional case are obvious. With

small modifications the solution for the periodic beam can be changed to suit
•	 5

the case of a row of panels simply supported along two parallel edges. In

the sense of Levy's series solution to plate problems involving Liao simply 	 y
X

G

ti



supported parallel edges, the solution is still mathematically exact.

s
Ilowever, if the structural model has more than one rota of panels then

only approximate solutions are possible since the spatial variables now

cannot be separated. Although new concepts are not required in treating

the two dimensional problems the machine computation time call

astronautically and such studios may best be carried out in the industry.

n
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List of Fi p ure C1tions

Figure 1. An infinite beam under the excitation of boundary-layer turbulence.

Figure 2, Spectral density of structural response,
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