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ANALYTICAL STUDY OF THE OPTIMUM GEOMETRIC CONFIGURATION OF

A SPACE SHUTTLE MATERIALS LABORATORY

By

Forrest P. Clay, Jr, and J.E. Hueser

INTRODUCTION

This final report indicates the extent to which the specific tasks out-

lined in the original grant (NGR 47-003-082) and the subsequent continuations

have been addressed. Each of the tasks have either been completed with docu-

mentation in the form of published journal articles and oral presentations,

indicated in the list of publications, or have been partially completed with

additional proposed effort continued in a subsequent grant (NSG 1271).

FEASIBILITY STUDY OF THE MOLECULAR SHIELD

The theoretical analysis of the feasibility of the molecular shield

concept has been completed. It was concluded that there are no inherent

physical constraints which prohibit attaining a background density inside

the molecular shield of less than 10 3 cm 3 for the projected range of Shuttle

orbit heights (publs. 1 and 2). A m odel has been proposed to evaluate the

effects of the relative size and relative outgassing rate of anticipated

experiments (publ. 3)(see Appendix I).

Experimental apparatus is being assembled to evaluate the desorption

characteristics of several potential shield construction materials and to

determine the acessary processing required to reduce the outgassing rate

of both the shield and experimental hardware prior to launch.

A Monte Carlo program has been developed and is presently being used to

evaluate the effects of Shuttle related sources on the density in the vicinity

of and inside the shield.



DESIGN, DEVELOPMENT, AND EXPERIMENTAL EVALUATION OF QUADRUPOLE

MASS SPECTROMETER CIRCUITS

The design and development of flight prototype circuits for analytical

instrumentation to be used in conjunction with the molecular shield was

initiated or continued under grant NGR 47-003-082 and is presently being

funded under grant NSG 1271.

The areas of highest priority were determined to be circuits for the

following mass spectrometer functions:

a. Ion source voltage supplies

b. Quadrupole excitation circuits

c. Mass line reference voltage supplies

d. Mass line selection circuits

e. Ion counting circuits.

As significant advances were made the results were documented (publs.

4 through 7). A detailed description of the present status is presented in

Appendix II.
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PARTIAL LIST OF PUBLICATIONS GENERATED UNDER THIS GRANT

1. Melfi, Leonard T.; R.A. Outlaw; and F .J. Brock: "Molecular shield: An
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698, May/June 1976.
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2. Hueser, J . E.; and F.J. Brock:

an orbiting molecular shield."

1976.
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J. Vac. Sci. Technol., 13, 702, May/June

3. Hueser, J.E.,; S.K. Park; and F . J. Brock: "The effect of experiments on

the density distribution in a molecular shield." To be published, see

Appendix I.

4. Clay, F.P., Jr.; F.J. Brock; and L.T. Melfi, Jr.: "The emission efficiency
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niques for maintaining constant emission." Published abstract, Virginia

J. of Sci., 224, No. 3, Fall 1973.

5. Clay, Forrest P., Jr.; F.J. Brock; and Leonard T. Melfi, Jr.: "Switching

regulator emission control circuit for ion sources." Rev. Sci. Instrum.,

46, 528, 1975.

G. Clay, F.P., Jr.; L.T. Melfi, Jr.; and F.J. Brock: "Evaluation of a

thoria coated iridium cathode for an ion source." Published abstract,

Virginia J. of Sci., 26, No. 2, Summer 1975.

7. F.P. Clay, Jr.: "Circuit innovations associated with the design of a

flyable quadrupole mass spectrometer." Published abstract, Program of

43rd Annual Meeting of SESAPS, November 1976.



APPENDIX I

THE'EFFECT OF EXPERIMENTS ON THE, DENSITY

DISTRIBUTION IN A MOLECULAR SHIELD*

J.E. Hueser l , S.K. park2 , and F.J. Brack'

1 Department of Physics and Geophysical Sciences, Old Dominion University,

Norfolk, Virginia 23508.

2 Analysis and Computation Divisior
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A steady state, collisionless flow analysis has been made of the density distribution

within a hemisphere-disc system due to independent, uniformly distributed internal gas

sources. The model mny be used to estimate the density within a molecular shield,

deployed from the Shuttle Orbiter, which contains internal experiments having a

prescribed gas source. Contour plots of the density distribution within the system

are presented for disc-to-hemisphere radius ratios of .1, .3, .5, .7, and °.or disc-

to-hemisphere surface emission flux density ratios of .01, 1, 100. The hemisphere-

disc system is compared to the empty hemisphere and it is found that if the disc.

emission flux density is the same as the hemisphere and the disc radius is not

greater than 1/3 of the hemisphere radius, the increase in density at the center

of the hemisphere-disc system is less than 50%.
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INTRODUCTION

There are experiments planned for the Shuttle Orbiter which require a very low

background gas density. it has ', peen shown that this condition can be satisfied in

a molecular shield deployed from the orbiter 
(1,2) 

within which the density due to

all atmospheric species is less than 103 cm-3. However, there are some experiments

which have intrinsic gas sources associated with outgassing of the apparatus, sample,

etc., and some experiments which release gases internally during the experiment. In

this class of experiments, it is probable that the gas density within the molecular

shield is principally due to the internal gas sources.

An estimate may be made of the molecular density distribution within the molecular

shield for this class of experiments by analyzing the density distribution in a geo-

metric model with adjustable parameters which can be chosen to represent the important

properties of the molecular shield with an experiment installed. For present purposes,

these properties are: (1) the magnitude of the gas source associated with the experi-

ment, and (2) the mean probability of molecular escape through the channel between

the experiment and the molecular shield. It is the purpose of this paper to analyze

the internal density distribution for a model which is geometrically similar to the

molecular shield and which has two independently adjustable parameters.

MODEL

An analytically amenable model which consists of a hemispherical shell of radius 5

Ro and a disc of radius R. is shown in Fig. 1. A uniform source flux density

v°, corresponding to surface outgassing originates at the surface of the hemisphere,

and a uniform source flux density v l , corresponding to the experiment gas source

originates at the surface of the disc. Both v° and vi are assumed to be in

thermal equilibrium with the isothermal surfaces of the model and to have a cosine

angular distribution with respect to the local surface normal. suppose the experiment

e
gas source is N (the number of molecules leaving the experiment per unit time), then

the model is matched to the experiment by setting N = nR2vl and adjusting the annular1

`_ f



area Tr(Ra - Ri) to approximate the molecular escape probability of the molecules

released by the experiment.

ANALYSIS

The calculation of the molecular density within the model first requires the

calculation of the emission flux density distribution for each surface. At a disc

surface increment dsi (see Fig. 2), there is an incident flux density v i , con-

sisting of molecules emitted from surface elements of the hemisphere dso, in a

direction such that they can reach . dsi. Particle conservation at ds i requires that

the emission flux ,density Ve equals the sum of' the incident flux density V i and

the flux density vi which originates at dsi , that is

Vi + Vi = V 	 (1)

Under the assumption that the angular dependence of the emission flux density is given

by a cosine function, the flux density emitted by a surface element must satisfy the

relation

ve ! Icosydw	 (2)
n

where Icosy is the emission flux density per unit solid angle, y is the angle

between the surface normal and du), and R indicates that the integration extends
3

over the half-space solid angle into which all molecules are emitted. From symmetry

it is clear that I is independent of the azimuthal coordinate. It follows that

Ve a VI	 (3)

The incremental flux density dvi incident on dsi emitted from dso must satisfy	 {

the relation

dvidsi = locosy0d odso ,	 (4)

and from Fig. 2 it follows that

dwo = cosyidsi/P 2	(5)

Substituting Eq. (5) into Eq. (4), integrating over dso, then substituting this

result and Eq. (3) into Eq. (1) gives

nIi = vl + 1 IocosyocosYidso/P 2 	(6)
E

7



where E indicates that the integration extends over the surface of the hemisphere.

From Fig. 2 it follows that

-2	 '
oosyocosyidso/p2 . (1 - Asin9 coso){1 - 24sin9 coso + x 2 } sing cos9 dodo	 (7)

! Substituting Eq. (7) into Eq. (6) and recalling that I° is independent of ¢, the

integration over 0 may be performed 
(3) 

and Eq. (6) may then be written

r/2	 -3/2
Ii (k) = vi/n + 2 /2 I°(0)(1 + h2cos2e){1 + 2n2cos29 + n4}	 cos9 sine dO ,	 (8)

(oucuv ) .

At a hemisphere surface element dso (see Fig. 3), there is an incident flux

density vio of molecules emitted by all surface elements dso in a direction such

that they can reach dso, and an incident flux density vii of molecules emitted

from all surface elements dsi of the disc in a direction such that they can reach

dso. 'There is also a source flux density v° leaving ds o. Particle conservation

at dso requires that the sum of these flux densities be equal to the emission flux

density from dso, thus

vio + vii + v° = nio	 (g)

`	 where Eq. (3) has been used to eliminate v  in terms of I°. The flux incident on

dso emitted from dso must satisfy the relation

dv io dso = i0cosy'0ds'0dm' 	 ,	 (10)

where from Fig. 3 it follows that

dm' = cos .dso/p 2	(11)

and

dso/Ro = sing ' dB' do 
	 (12)

Since both dso and dso' are on the surface of the hemisphere, it follows,that

Rocosyocosyo/p 2 = 1/4	 (13)

Similarly, the flux incident on ds o emitted from ds i is given by

dviids° = Iicosyidsidmi	(14)

and from Fig. 3 it may be seen that



Substituting Eqs. (11) and (13) into Eq. (10) and integrating over the surface of the

+ hemisphere; substituting Eq. (15) into (14) and integrating over the surface of the

disc; and then substituting these results into Eq. (9) yields

*I° - v + (4R2 ) -1 J i dsa + J I cosyicosydsi/a2
	E 	 o

where E indicates that integration is over the surface of the hemisphere and c

indicates that integration is over the surface of the disc. From Fig. 3 it may be

seen that

cosy icosyds1/a2 = ,(1 - /csine cose c ) ( 1 - 24sine cos^i + /t2 }
-2
 cose h42doi 	(17)

Substituting Eqs. (12) and (17) into Eq. (16) and recalling that the functions I°

and Ii are independent of the azimuthal angles, the ^i and % integrations

may be performed (3) and Eq. ( 16) may then be written

	

A/2	 !t'
I°(e) a v%rt + 2 fo I°( 6)sine de + 2 J° Ii (R a + n2cos2e) (1 + 2n2cos2e

v-3 /2	 (18)

	

+ X4 1	 cose ACIA	 , (0<6_n/2)	 ,

where the prime on a in the first integral has been dropped since it is a definite

integral, and V is the disc radius normalized by Ro.

F.qs. (8) and (18) are a coupled set of integral equations, the solutions of which

yield the functions Ii (X) and I0 (8). It is convenient to write these equations

in dimensionless form by applying the following set of transformation equations

(which also remove their explicit dependence on the emission flux densities):

Ji (/t) = nIi (h) / (v + 2v° )

Jo (e) = nI°(e)/(v i + 2v°) - (1 + vi/(2v°)}-1 }

Eq. (8) may then be written

n/2

i W = 1 + 2 J° J°(8)g(n,6) sine d8 	 , (0<n<n1)

and Eq. ( 18) may be written

J°(6) = 2 n^2 J°(8)sin8 de + 2 J° Ji (n)g(n,g)nan	 , (0<8<n/2)

(16)

(19)

(20)

(21)
9
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where

f

	

	 g(n,e) - (1 + n2cos2e){1 + 2L2cos 4) + n4} 3/2 rose 	 (22)

Appendix A gives an outline of the numerical method used to solve Eqs. (20) and (21).

Solutions of Ji (n) and Jo (e) are presented in Fig. 4 for values of the system

parameter n' = .1, .3, .5, .7.

Having determined the emission functions Ii ()L)and Io (B) it is now possible

to determine the density distribution within the hemisphere. The molecular density

at a distance p (see Fig. 5) from an emitting surface element is given by

dn(P) ° r(2vm) -ldv(P)	 (23)

where vm = (2kT/m) 1/2 . Continuity of flux at the point p requires that

dv(P)ds = dvedse	,	 (24)

and from Fig. 5, ds - p 2dwe. Assuming that the emission flux angular distribution

has a cosine dependence, the incremental emission flux in the direction y is
e

given by

s

	

	
dve - I cosy  dwe	(25)

Eq. (23) may then be written

dn(P) - r(2vm)-12 cosy  dse/p2	 (26)

Applying Eq. (26) to the emission functions I i (A) and I0 (0), the density at a

point (p,p) within the hemisphere (see Fig. 6) is given by

n (p ,u) = T( 2vm)
-1 {! Io (e)cosyo dso/po + f I' (n)cosyi dsi/Pi}	 .	 (27)

E	 c

where E indicates integration over the surface of the hemisphere and c indicates

integration over the surface of the disc. From Fig. 6 it follows that

cos- d o/ po= {1 - p(sinusinecos^ + cosucosB)} { l - 2p(sinusinecosm

-3/2	 (28)
	•+ cosucosB) + p 2 1	 sinbdBdoo

and

cosyidsi/pi = pcosu{p 2 - 2pnsin cosoi + n2}- 
3/2 

ndRd^i	 (29)

10



Substituting Eqs. (28) and (29) into Eq. (27) and using the transformation Eqs. (19)

and then performing the integrations over ^i and 00 (3) , yields the normalized

density distribution within the hemisphere

RI	
r/2

ft(p,N) s 2pcosp fo Ji (Q.)f1(P,N,h )hd& + f0 10(9)f2(p,N,9)sinede

	

+r/2
	

(30)

+ {1 + vi/(2v°)} 1	 fo f2(p,p,8)sined8

where the norma :tization relation is given by

n(P,N) . (vi + 2v°)d(p,N)/(rvm)
	

(31)

and where

f1(P,N,n) = E (q l) {X2 - 2Rpsinp + p 2 } 1 {!C2 + 2Apsinp + p2} 1/2
	

(32)

and
-1	 -1 /1

f2(P.N,B) _ {(1 - P2)F.(c.)(1 - 2pcos(8 - N) + p2)	 + K (q2)}( 1 - 2p cos (8 + p) + p2)

(33)

and where_ K(q) is a complete -alliptic integral of the lst kind, E (q) is a complete

•	 elliptic integral of the 2nd kind (3) , and tike m6duii are given by
-1

qi	 41Lpsinp( /c2 + 24psinp + p 2)	 ,	 (34)

2	 -1
42 a 4psinpsine(1 - 2pcos(e + p) + p2) 	 (35)

Eq. (30) has been solved numerically for p = .01( . 01).99 and p = 0.0(2 ) 80, 81(1)85,

85.1(.1)89.9 degrees. Solutions were generated for values of the system parameters:

K' _ .1(.1).9 and v i/vo = .01, .1, 1, 10, 100. Plots of constant density contours

within the model are presented in Fig. 7 for the system parameters h' _ .1, .3, .5, .7

and vi/vo = .01, 1, 100. These curves are normalized with respect to the density

(normalized) at the origin, the value of which is written on each figure. Thus the

normalized density at any point (p,p) is the produced of the contour parameter and

7(0,0). Inserting this product into Eq. (31) yields the molecular number density

at the point (P,N)•

11



DISCUSSION

The hemisphere-disc system is compared to the empty hemisphere in Fig. 8 (using

data taken from ref. 2 for the empty hemisphere). The ordinate is the density at the

center of the hemisphere-disc system (p = 1/2, p - 0) divided by the density in the

empty hemisphere at the same point. The abscissa is the normalized disc radius, h'.

curves are presented for emission flux density ratios v i/vo W .01, 1, 100. Since

V /v a .01 implies that the disc gas source is negligible compared to the hemisphere,

the lower curve may be interpreted (approximately) 'as the increase in density due to

the reduction in molecular escape probablity by the disc, The upper curve illustrates

the rapid increase in density if the total gas source is dominated by the disc

(vi/vo - 100) even for a relatively small disc radius.

To minimize the density within the molecular shield during flight, the radius of

the shield should be large with respect to an experiment installed within the shield

and the experiment apparatus should be thoroughly degassed. Assuming that the shield

radius is approximately a factor of 3 larger than the mean radius of an installed

experiment and that the experiment outgassing rate is approximately the same as the

shield outgassing rate (since both would have exper,kenced the same degassing treatment

prior to flight) , the density within the shield-experiment system may be estimated by

evaluating the density within the hemisphere-disc model. Under these assumptions the

model parameters have the values h' = 1/3 and Vi/v° = 1. A typical value for the

outgassing rate of a thoroughly degassed metal is v = 3 x 10 7 cm 2 sec-1 (molecular

hydrogen). From Eq. (31), for a temperature of 300 K, and the data shown in Fig. 7e,

the density at the center of the system (p = 1/L,*u = 0) is n(1/2, 0) = 1293 cm-3.

This may be compared with a density of 974 cr 3 at the same point in ar, empty hemis-

phere (2) . Thus inserting an experiment not exceeding 1/3 the size of the hemisphere

and having an equal outgassing rate increases the density at the center of the system

less than 50%.
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APPENDIX A

The coupled integral equations, Eqs. (20) and (21), may be solved simultaneously

by the method outlined below. Let:

Yi = Ji ( ri )	 .	
(Al)

X. = Jo (e i )	 r	 (A2)

ri s ir e	i = 0, 1, 2., 3,...m	 ,	 (A3)

n
 2.	 = 0, 1, 2, 3,...n	 (A4)

(1 + r2cos20 )cosec

Kid 
a	

3/
2 = g(ri , 9^)	 (AS)

[1 + 2ricos2B^ + riJ

Then Eqs. ( 20) and (21) may be written in discretized form (where the w's are the

weighting factors of the integration formula used)

n

yi = 1 + (n/n) E , Kijwj xj sinej	,	 i - 1, 2, 3,...m	 ,	 (A6)

1"1

nn
	

Cm

xi = Tr(4n) - 1

	

	 E 
wkxksinek + 2(r'/m) iLl Kijwiriyi	 7 = 1, 2, 3,..

. n	 ,	 (A7)

k=1

with the ancillary equations

n
YO = 1 + (n/n) E K07w^xj sine^	 (A8)

]=1

n

G
p	 c

mc

X0 = ir(4n)-1	wkxksinek + 2(r'/m) L KiOwiriyi 	 (A9)
k=1	 i=1

4.

E

r

ks-	 U

Using matrix notation Eqs. (A6) and (A7) may be written

Y - Lm + (a/n) KWnSX	 (A10)

X = n(4n)-1 L n L T WnSX + 2(r'/m)KTWmRY 	 ,	 (All)

where Lm, L  are column vectors o f length m e n with all elements equal to 1,

K is an mxn matrix with elements Kid , Wm, Wn, S and R are diagonal matrices

13
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I_^a

with elements wit wi t sin0 i , and r  respectively, Y, X are column vectors of

length m, n with elements y i, xi respectively, and ( • ) T denotes transpose.

Eliminating Y in Eqs. (A10) and (All) yields

Ax - B	 ,	 (Al2)

where

A - In - ir(4n)-1LnLnWnS - 2ar'(mn)-1KT%RKWnS	 r	 (A13)

B m (2r'/m)KTWmRLm ,	 (A14)

and In is the nxm identity matrix. Solving Eq. (Al2) for X and substituting the

results of Eq. (A10) yields the solution for Y and substituting these results into

Eqs. (AS) and (A9) gives x0 and y0.

Numerical experimentation revealed that with n = 100 and m = r'n this method

produces X and Y solutions with a relative error < 10 6 for the full range of

(r,8) and r' < .7. The weights wi were chosen by 'Simpson's rule.
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APPENDIX II

DESIGN, DEVELOPMENT, AND EXPERIMENTAL EVALUATION OF

'	 QUADRUPOLE MASS SP8tJTROMETER CIRCUITS

A design for an efficient and accurate emission regulator for the ion

source was reported in the literature (see publ. 5). This circuit has been

simplified (see fig. 1) to incorporate a different collector power supply

and to reduce the parts count of the regulator circuit by eliminating the

negative power supply for the op amps. This was made possible by the use of

recently introduced CMOS op amps thet allow the output to range essentially

rail to rail. This circuit has been evaluated while driving a thoria coated

iridium cathode in an 0 2 atmosphere at various pressures, as shown in table 1.

The emission current changed by approximately 0.1 percent as the oxygen pressure

ranged from 8 x 10- 9 Torr to 5 x 10-1,' Torr. The ratio of cathode heater power

to bus power to the regulator was better than 0.6.

Two U' voltage generators have been designed- -one digital and the other

analog. The digital circuit generates a stairstep output where each step can

be of preselected height. The analog circuit (see fig. 2) produces a linear

ramp with adjustable slope and start-and-stop voltages which may be easily

programmed. This design will permit adjustment of the mass range by changing

two voltages, rather than requiring a mechanical resetting of a potentiometer.

Work is continuing on the construction of printed circuit versions of the

breadboarded circuits, so that a system test can be made. The last major

design problem is the RF amplifier to supply the iV voltages for the quadru-

pole. This work is being continued under grant NSG 1211.

A portion of the effort under grant NSG 347-003-082 has been spent in

the redesign of the ±U amplifier systems occasioned by the appearance on the

market of chopper stabilized integrated circuit op amps. Figure 3 shows the

schematic of the tU amplifier circuit. IC1 and IC 3 are precision chopper

stabilized op amps. The combination of IC1 and Q 1 produces a high voltage,

non-inverting op amp with gain controlled by the 6.8 meg resistor and the

220 K resistor in the negative feedback loop. Similarly, IC Z and Q2 are

connected as a high voltage op amp in the inverting mode. Thus, a single

positive going input signal U' drives both +U and -U amplifiers. This

`	 drive, U', can be either a linear ramp or a stairstep function. IC3 is an

f^i



error sense amplifier that detects any difference between the +U and -U

t	 outputs and feeds the amplified error back to the input of IC2 in the

proper phase to cancel the difference between +U and -U. The trim adjust-

ments allow the following operating modes:

(1) I -UI = I +UI

(2) 1-UI - 1(+U) + k1I

(3) 1 -U I = I +U(l + k2) I

where kl is a selected fixed offset voltage and k2 is a selected constant

that produces a proportional offset. If the mechanical alignment of the quad-

rupole rods is ideal, then mode (1) would be used.

Table 2 shows the performance of the circuit using carbon resistors in

the feedback loop. The outputs are highly symmetrical, i.e., track each other;

however, they do not track the input at high voltages, the departure from

linearity being almost five percent. This effect is due to the fact that

carbon resistors have an R = f(V) characteria'c9.c that is non-negligible.

Table 3 shows how the substitution of metal film precision resistors in the

critical feedback circuits eliminates the effect. The ±U outputs not only

track each other with low error (< 0.1 percent) but the outputs now track

the input with an error of < 0.1 percent, an improvement of a factor of 50.

(see table 1 and table 2.)

Figure 4 and figure 5 vhow the x-y plotter output for the +U and

-U amplifiers when driven by a linear ramp function. The circuit has been

tested using a stairstep function to determine that the op amp output settling

time was consistent with the design requirements.

The design of an electron multiplier and ion counting circuits were not

worked out during this reporting period and will be addressed in a subsequent

grant.
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Maximum change in gain = 4.87%.
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Table 2. ;U amplifier performance with carbon 6.8 meg ohm
resistors in ff:edback divider circuit.

U'	 (v)
+

U U	 (v) % Diff.	 Gain

0.05005 1:G62 1.655 -0.181 33.207

0.10091 3.351 3.354 -0.089 33.208

0.14937 4.961 4.9,5 -0.081 33.213

0.2002 6.649 6.653 -0.068 33.209

0.2998 9.950 9.964 -0.060 33.215

0.3997 13.273 13.281 -0.061 33.206

0.5007 16.613 16.622 -0.054 33.179

0.6995 23.201 23.211 -0.043 33.168

1.0016 33.192 33.205 -0.038 33.139

1.5006 49.636 49.655 -0.038 33.077

2.003 66.100 66.166 -0.024 33.000

2.502 82.359 82.374 -0.018 32.917

3.001 98.454 98.465 -0.011 I	 32.807

3.503 114.551 114.559 -0.007 32.700

4.002 130.419 130.420 -0.0008 32.588

4.501 146.297 146.292 0.003 32.503

5.001 161.962 161.949 0.008 32.386

5.500 177.462 177.449 0.007 32.266

6.000 192.864 192.843 0.011 32.144

6.500 208.14 208.10 0.019 32.022

7.002 223.29 223.23 0.027 31.889

7.502 238.32 238.27 0.021 31.767

8.602 253.24 253.19 0.020 31.647

8.201 259.13 259.08 0.019 31.597

r a

Maximum difference between U - U = 0.181%.
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Table 3. ±U amplifier performance with film 6.8 meg ohm
resistors in feedback divider circuit.

e
U'	 (v) U+	 (v) U	 (v) %	 Diff. gain

0.05000 1.581 1.582 -0.063 31.620

0.10087 3.191 3.192 -0.031 31.635

0.15044 4.759 4.760 -0.021 31.634

0.2000 6.329 6.330 -0.016 31.645

0.2520 7.973 7.973 •-- 31.639

0.3006 9.514 9,514 -- 31.650

0.4000 12.656 12.656 -- 31.640

0.5012 15.860 15.860 -- 31.644

1.0001 31.649 31.649 -- 31.646

1.5016 47.519 47.519 -- 31.646

2.001 63.328 63.328 -- 31.648

2.500 79.118 79.118 -- 31.647

3.003 95.024 95.024 -- 31.643
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