General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
FORMULATION OF CONSUMABLES MANAGEMENT MODELS

7 JANUARY 1977

CONTRACT NO. NAS9-14264

CONSUMABLES DATA BASE WORKBOOK

Prepared by

M. A. Zamora
Systems Analysis Section

TRW
DEFENSE AND SPACE SYSTEMS GROUP
FORMULATION OF CONSUMABLES MANAGEMENT MODELS

CONSUMABLES DATA BASE WORKBOOK

Prepared by

M. A. Zamora

Systems Analysis Section
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INTRODUCTION</td>
<td>1-1</td>
</tr>
<tr>
<td>2 ACTIVITIES</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1 Activity Definition</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2 Activity Consumables Data Specification</td>
<td>2-4</td>
</tr>
<tr>
<td>2.3 Consumables Data Application</td>
<td>2-7</td>
</tr>
<tr>
<td>3 SHUTTLE SPACECRAFT ACTIVITIES</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1 OMS Maneuver</td>
<td>3-3</td>
</tr>
<tr>
<td>3.2 RCS Translation Maneuvers</td>
<td>3-7</td>
</tr>
<tr>
<td>3.3 Attitude Hold</td>
<td>3-10</td>
</tr>
<tr>
<td>3.4 Rendezvous</td>
<td>3-13</td>
</tr>
<tr>
<td>3.5 Station Keeping</td>
<td>3-16</td>
</tr>
<tr>
<td>3.6 Docking</td>
<td>3-19</td>
</tr>
<tr>
<td>3.7 Undocking</td>
<td>3-22</td>
</tr>
<tr>
<td>3.8 Passive Thermal Control (PTC)</td>
<td>3-25</td>
</tr>
<tr>
<td>3.9 EVA</td>
<td>3-28</td>
</tr>
<tr>
<td>3.10 Intravehicular Activity (IVA)</td>
<td>3-32</td>
</tr>
<tr>
<td>3.11 Manipulator Operations</td>
<td>3-35</td>
</tr>
<tr>
<td>3.12 IMU Alignment</td>
<td>3-38</td>
</tr>
<tr>
<td>3.13 Payload Bay Doors</td>
<td>3-41</td>
</tr>
<tr>
<td>3.14 Payload Consumables</td>
<td>3-44</td>
</tr>
<tr>
<td>3.15 Computer</td>
<td>3-47</td>
</tr>
<tr>
<td>3.16 TV</td>
<td>3-50</td>
</tr>
<tr>
<td>3.17 Downlink</td>
<td>3-53</td>
</tr>
<tr>
<td>3.18 Uplink</td>
<td>3-56</td>
</tr>
<tr>
<td>3.19 Fuel Cell Purge</td>
<td>3-59</td>
</tr>
<tr>
<td>3.20 Eat</td>
<td>3-62</td>
</tr>
<tr>
<td>3.21 Sleep</td>
<td>3-65</td>
</tr>
<tr>
<td>3.22 Waste Management</td>
<td>3-68</td>
</tr>
<tr>
<td>3.23 APU Checkout</td>
<td>3-71</td>
</tr>
<tr>
<td>3.24 (Reserved)</td>
<td>3-74</td>
</tr>
</tbody>
</table>
3.25 Flight Common

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.25.1</td>
<td>Description</td>
<td>3-77</td>
</tr>
<tr>
<td>3.25.2</td>
<td>Consumables Data</td>
<td>3-77</td>
</tr>
<tr>
<td>3.25.2.1</td>
<td>Common (GSE to GSE)</td>
<td>3-77</td>
</tr>
<tr>
<td>3.25.2.2</td>
<td>Prelaunch (GSE to Liftoff)</td>
<td>3-81</td>
</tr>
<tr>
<td>3.25.2.3</td>
<td>Ascent</td>
<td>3-84</td>
</tr>
<tr>
<td>3.25.2.4</td>
<td>Post Ascent (MECO to Insertion)</td>
<td>3-87</td>
</tr>
<tr>
<td>3.25.2.5</td>
<td>Insertion (Insertion to Orbit)</td>
<td>3-90</td>
</tr>
<tr>
<td>3.25.2.6</td>
<td>On-Orbit (On-Orbit to Deorbit Prep)</td>
<td>3-93</td>
</tr>
<tr>
<td>3.25.2.7</td>
<td>Deorbit Preparation (Deorbit Prep to Deorbit Burn)</td>
<td>3-96</td>
</tr>
<tr>
<td>3.25.2.8</td>
<td>Deorbit (Deorbit to Entry Interface)</td>
<td>3-99</td>
</tr>
<tr>
<td>3.25.2.9</td>
<td>Entry (Entry Interface to SR)</td>
<td>3-102</td>
</tr>
<tr>
<td>3.25.2.10</td>
<td>Landing (Stop Roll Out to GSE)</td>
<td>3-105</td>
</tr>
</tbody>
</table>

4 DATA SOURCES AND MAINTENANCE PROCEDURES

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCES</td>
<td></td>
<td>R-1</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>2-1</td>
<td>Activity Definition Profile</td>
<td>2-3</td>
</tr>
<tr>
<td>2-2</td>
<td>Activity Definition Data Sheet (Sample Form)</td>
<td>2-5</td>
</tr>
<tr>
<td>2-3</td>
<td>EVA Activity Definition</td>
<td>2-8</td>
</tr>
<tr>
<td>3-1</td>
<td>OMS Maneuver Profile</td>
<td>3-5</td>
</tr>
<tr>
<td>3-2</td>
<td>RCS Translation Maneuver Profile</td>
<td>3-8</td>
</tr>
<tr>
<td>3-3</td>
<td>Attitude Hold Profile</td>
<td>3-11</td>
</tr>
<tr>
<td>3-4</td>
<td>Rendezvous Profile</td>
<td>3-14</td>
</tr>
<tr>
<td>3-5</td>
<td>Station Keeping Profile</td>
<td>3-17</td>
</tr>
<tr>
<td>3-6</td>
<td>Docking Profile</td>
<td>3-20</td>
</tr>
<tr>
<td>3-7</td>
<td>Undocking Profile</td>
<td>3-23</td>
</tr>
<tr>
<td>3-8</td>
<td>Passive Thermal Control Profile</td>
<td>3-26</td>
</tr>
<tr>
<td>3-9</td>
<td>EVA Profile</td>
<td>3-30</td>
</tr>
<tr>
<td>3-10</td>
<td>IVA Profile</td>
<td>3-33</td>
</tr>
<tr>
<td>3-11</td>
<td>Manipulator Operations Profile</td>
<td>3-36</td>
</tr>
<tr>
<td>3-12</td>
<td>IMU Alignment Profile</td>
<td>3-39</td>
</tr>
<tr>
<td>3-13</td>
<td>Payload Bay Doors Profile</td>
<td>3-42</td>
</tr>
<tr>
<td>3-14</td>
<td>Payload Consumables Profile</td>
<td>3-45</td>
</tr>
<tr>
<td>3-15</td>
<td>Computer Profile</td>
<td>3-48</td>
</tr>
<tr>
<td>3-16</td>
<td>TV Profile</td>
<td>3-51</td>
</tr>
<tr>
<td>3-17</td>
<td>Downlink Profile</td>
<td>3-54</td>
</tr>
<tr>
<td>3-18</td>
<td>Uplink Profile</td>
<td>3-57</td>
</tr>
<tr>
<td>3-19</td>
<td>Fuel Cell Purge Profile</td>
<td>3-60</td>
</tr>
<tr>
<td>3-20</td>
<td>Eat Profile</td>
<td>3-63</td>
</tr>
<tr>
<td>3-21</td>
<td>Sleep Profile</td>
<td>3-66</td>
</tr>
<tr>
<td>3-22</td>
<td>Waste Management Profile</td>
<td>3-69</td>
</tr>
<tr>
<td>3-23</td>
<td>APU Checkout Profile</td>
<td>3-72</td>
</tr>
<tr>
<td>3-24</td>
<td>(Reserved)</td>
<td>3-75</td>
</tr>
<tr>
<td>3-25.1</td>
<td>Common Profile</td>
<td>3-79</td>
</tr>
<tr>
<td>3-25.2</td>
<td>Prelaunch Profile</td>
<td>3-82</td>
</tr>
<tr>
<td>3-25.3</td>
<td>Ascent Profile</td>
<td>3-85</td>
</tr>
<tr>
<td>3-25.4</td>
<td>Post Ascent Profile</td>
<td>3-88</td>
</tr>
<tr>
<td>3-25.5</td>
<td>Insertion Profile</td>
<td>3-91</td>
</tr>
<tr>
<td>3-25.6</td>
<td>On-Orbit Profile</td>
<td>3-94</td>
</tr>
</tbody>
</table>
3-25.7 Deorbit Preparation Profile ... 3-97
3-25.8 Deorbit Profile ... 3-100
3-25.9 Entry Interface Profile .. 3-103
3-25.10 Landing Profile .. 3-106

LIST OF TABLES

2-I Consumables Data Sheet (Sample) ... 2-6
2-II EVA Consumables Data Sheet ... 2-9
3 Shuttle Activities Summary ... 3-2
3-I OMS Maneuver Consumables Rates ... 3-6
3-II RCS Translation Maneuver Consumables Rates 3-9
3-III Attitude Hold Consumables Rates .. 3-12
3-IV Rendezvous Consumables Rates ... 3-15
3-V Station Keeping Consumables Rates 3-18
3-VI Docking Consumables Rates ... 3-21
3-VII Undocking Consumables Rates ... 3-24
3-VIII Passive Thermal Control Consumables Rates 3-27
3-IX EVA Consumables Rates ... 3-31
3-X IVA Consumables Rates .. 3-34
3-XI Manipulator Operations Consumables Rates 3-37
3-XII IMU Alignment Consumables Rates 3-40
3-XIII Payload Bay Doors Consumables Rates 3-43
3-XIV Payload Interface Consumables Rates 3-46
3-XV Computer Consumables Rates ... 3-49
3-XVI TV Consumables Rates .. 3-52
3-XVII Downlink Consumables Rates ... 3-55
3-XVIII Uplink Consumables Rates ... 3-58
3-XIX Fuel Cell Purge Consumables Rates 3-61
3-XX Eat Consumables Rates .. 3-64
3-XXI Sleep Consumables Rates .. 3-67
3-XXII Waste Management Consumables Rates 3-70
3-XXIII APU Checkout Consumables Rates 3-73
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-XXIV</td>
<td>(Reserved)</td>
<td>3-76</td>
</tr>
<tr>
<td>3-XXV.1</td>
<td>Common Consumables Rates</td>
<td>3-80</td>
</tr>
<tr>
<td>3-XXV.2</td>
<td>Prelaunch Consumables Rates</td>
<td>3-83</td>
</tr>
<tr>
<td>3-XXV.3</td>
<td>Ascent Consumables Rates</td>
<td>3-86</td>
</tr>
<tr>
<td>3-XXV.4</td>
<td>Post Ascent Consumables Rates</td>
<td>3-89</td>
</tr>
<tr>
<td>3-XXV.5</td>
<td>Insertion Consumables Rates</td>
<td>3-92</td>
</tr>
<tr>
<td>3-XXV.6</td>
<td>On-Orbit Consumables Rates</td>
<td>3-95</td>
</tr>
<tr>
<td>3-XXV.7</td>
<td>Deorbit Preparation Consumables Rates</td>
<td>3-98</td>
</tr>
<tr>
<td>3-XXV.8</td>
<td>Deorbit Consumables Rates</td>
<td>3-101</td>
</tr>
<tr>
<td>3-XXV.9</td>
<td>Entry Consumables Rates</td>
<td>3-104</td>
</tr>
<tr>
<td>3-XXV.10</td>
<td>Landing Consumables Rates</td>
<td>3-107</td>
</tr>
<tr>
<td>4-I</td>
<td>Activity Cross Reference</td>
<td>4-2</td>
</tr>
<tr>
<td>4-II</td>
<td>Average RCS Propellant Requirements</td>
<td>4-6</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

The purpose of this document is to update the consumables characteristic data presented in reference 1. These data, associated with the performance of the mission activities and required as input to the Mission Planning Processor for the consumables calculations, reflect the current data obtained from the sources identified in Section 4. The activity data is defined in terms of discrete time periods having a distinct rate for each consumable required to support the performance of a given operation.

The data is structured in a series of "Consumable Data Worksheets" for each activity that includes a profile of its operations and the rate of each consumable required to support the given activity. The data worksheets provide for the uniform specification of consumables data, allows for the ready identification of the consumables affected by a given activity, and facilitates the updating process.

Section 2 defines an activity and the data that must be included in the data worksheets and presents as an example of its use and application the consumables data requirements for the performance of the EVA.

Section 3 of this report includes the consumables data for the activities currently identified for the Shuttle Spacecraft. Section 4 identifies the consumables data sources and provides detail information to facilitate the maintenance process.
2. ACTIVITIES

2.1 ACTIVITY DEFINITION

In general, an activity is defined as a series of operations* performed in a prescribed sequence in order to effect a distinct crew and/or spacecraft related function. The activities are used as the basic building blocks to formulate a mission and should include every event to be performed, from those routinely scheduled in support of the crew life support and spacecraft maintenance functions, to those required to attain specific mission objectives.

The performance of an activity is usually preceded by a series of preparatory steps during which specific subsystems required to support the given activity are activated. Likewise, at the completion of the activity these subsystems must be deactivated and the spacecraft returned to its normal operating configuration. Thus, the activity is divided into three time periods; a preparation period, the activity itself, and a post-activity period. These time periods consist of "K", "J", and "L" operations respectively, where:

\[K = \text{number of operations prior to the reference start time of the activity} \]
\[J = \text{number of operations performed between the reference start and reference stop times of the activity} \]
\[L = \text{number of operations performed after the reference stop time of the activity, and} \]
\[N = \text{total number of operations, i.e., } N = K + J + L. \]

Each operation within each of the three time periods is characterized by a time duration \((\Delta T) \) and a consumable rate \((R_i) \). The operations

*The term "operation" is here used to mean a time interval for which a consumable rate remains constant.
within each of the three activity periods are further characterized by a fixed time duration except for the last operation of the "J" period which is open-ended. The time duration of the fixed time operations is specified in the activity definition. The time duration of the open-ended operation in the "J" activity period is calculated in the Mission Planning Processor from the defined fixed time ΔTs and either the activity reference start and stop times, or the ΔV requirements specified by the user (via keyboard entry) during the construction of the timeline.

In summary and in order to perform the consumables analysis, the definition of the activity must contain:

a) The number of operations performed within each of the three activity periods.

b) The time (ΔT) required to perform each of its operations with the exception of the last one (in the "J") activity period which is open-ended.

c) A corresponding rate (Ri) for each consumable used during each operation.

d) The pre act and post-act ΔTs.

Figure 2-1 depicts a typical activity for which there are 3 "K", 4 "J", 2 "L", and 9 "N" operations and the pre-activity and post-activity ΔTs are X and Y hours, respectively. It should be noted that level changes in this figure are intended to show consumables step rate changes at specified times within the activity and that these levels do not correspond to the magnitude of the rates. The actual magnitude of the various consumables rates are specified in a tabular form that will be introduced subsequently.
"N" OPERATIONS

N1 = (ATK1, RK1)
N2 = (ATK2, RK2)
N3 = (ATK3, RK3)
N4 = (ATJ1, RJ1)
N5 = (ATJ2, RJ2)
N6 = (ATJ3, RJ3)
N7 = (ATJ4, RJ4)
N8 = (ATL1, RL1)
N9 = (ATL2, RL2)

NUMBER OF OPERATIONS: K 3 ; J 4 ; L 2 ; N 9 (TOTAL)

Figure 2-1. Activity Definition Profile
2.2 ACTIVITY CONSUMABLES DATA SPECIFICATION

The consumables data to be specified for each activity consists of a qualitative and a quantitative part. The former should include a general description of the objectives of the activity, crew size, types of consumables required, operational sequence, limitations, assumptions, as well as the parameters (independent variables) to be specified by the user via keyboard entry when using the Mission Planning Processor during the construction of the timeline. The quantitative part includes the consumables data as defined in the preceding section and is to be specified by means of uniformly formatted data sheets. The first of these is to present a graphical description of the activity illustrating the operations performed during the three activity periods as shown in Figure 2-1, and should also include the pre-act and post-act ΔTs. The second data sheet is to specify for each consumable as required, the ΔT and the corresponding consumables rates for each operation performed in the activity. Sample data sheet forms are included as Figure 2-2 and Table 2-I.

The structure of the activity consumables data specification as described in the preceding paragraph was designed to satisfy a twofold purpose; that of establishing an identifying relation with the Mission Planning community, and that of providing the data required for the consumables analysis. In regard to the latter, the format chosen allows for the uniform specification of the consumables data throughout the planning cycle. During the early planning stages when data is ill-defined, an activity might consist of one single operation representing an average consumable rate. As the cycle moves closer to the operational phase and the data becomes better defined, the activity can include as many operations as there are consumable rate changes. In addition, the format allows for the ready identification of the consumables associated with any given activity, and should facilitate the updating and maintenance process.
Figure 2-2. Activity Definition Data Sheet (Sample Form)
Table 2-I. Consumables Data Sheet (Sample)

CONSUMABLES DATA SHEET

ACTIVITY

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>ΔT (HRS)</th>
<th>EPS WATTS</th>
<th>RCS A FT/SEC-HR</th>
<th>OMS A FT/SEC-HR</th>
<th>ECS O2 #/HR</th>
<th>ECS N2 #/HR</th>
<th>ECS H2O #/HR</th>
<th>ECS L10H CAN/HR</th>
<th>APU FUEL #/HR</th>
<th>APU H2O #/HR</th>
</tr>
</thead>
</table>

REMARKS:
2.3 CONSUMABLES DATA APPLICATION

As an illustration of the concepts defined in the preceding sections, the consumables data associated with the Shuttle EVA performance is presented in the following paragraphs.

2.3.1 DESCRIPTION

The objective of the Extra Vehicular Activity (EVA) is to allow one or more crewmen to egress the pressurized cabin into free space for the performance of a given mission objective. The activity is initiated by the crew donning the Astronaut Life Support Assembly (ALSA) that provides a safe and conditioned environment. A pure oxygen prebreathing cycle from a portable oxygen supply follows to effect denitrogenization of the crew after which the egress into free space is accomplished via the airlock. At the completion of the assigned task in free space the crew returns to the airlock, the pressure of which is increased and equalized with that of the cabin to allow the crew entry and the re-establishing of normal systems configuration. The activity is completed with the crew doffing and recharging the ALSA package. The influence variables for this activity are start time, stop time, and number of crew members involved.

2.3.2 CONSUMABLES DATA

The consumables data associated with the EVA is herein included in Figure 2-3 and Table 2-II. Figure 2-3 depicts a plot profile of the activity from where it can be seen that the pre-activity period has one ("K") operation, the activity period is characterized by one ("J") operation and two ("L") operations are performed during the post-activity period, for a total of 4 ("N") operations for the overall activity. In addition, Figure 2-3 also specifies the ATs for the pre-activity and post-activity periods as 3.5 and 13.0 hours respectively. Table 2-II gives the consumables rates and the ATs associated with the performance of each operation. The consumables required are:
CONSUMABLES DATA SHEET
ACTIVITY DEFINITION
ACTIVITY: EVA

Figure 2-3. EVA Activity Definition
Table 2-11. EVA Consumables Data Sheet

CONSUMABLES DATA SHEET

ACTIVITY EVA

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>ΔT (HRS)</th>
<th>EPS Watts</th>
<th>RCS A/FT-SEC-HR</th>
<th>OMS A/FT-SEC-HR</th>
<th>O_2 #/HR</th>
<th>N_2 #/HR</th>
<th>H_2O #/HR</th>
<th>LiOH CAN/#HR</th>
<th>FUEL #/#HR</th>
<th>H_2O #/#HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✓</td>
<td></td>
<td></td>
<td>3.5</td>
<td>177.29</td>
<td></td>
<td></td>
<td>0.2857*M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
<td></td>
<td></td>
<td>≈</td>
<td>1507.57</td>
<td></td>
<td></td>
<td>-0.073*M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.096*M</td>
</tr>
<tr>
<td>3</td>
<td>✓</td>
<td>.04</td>
<td></td>
<td>.04</td>
<td>390.97</td>
<td></td>
<td></td>
<td>61.75</td>
<td>204.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>✓</td>
<td>12.96</td>
<td></td>
<td>12.96</td>
<td>390.97</td>
<td></td>
<td></td>
<td>0.179*M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS: *Where M is equal to the number of crew members performing EVA*
EPS - The EPS consumables (WATTS) required for EVA correspond to the power required for the activation and operation of flood lights, TV cameras and monitors, and other communications equipment used by the crew while outside the pressurized environment.

ECS - ECS consumables include:

O₂: The oxygen requirements during EVA have two components; one relating to direct crew functions such as the prebreath cycle, suit pressurization and ALSA recharge; and the other to non-crew related requirements such as the quantity required to repressurize the airlock at the completion of the EVA. The corresponding rates are shown in Table 2-II as #/HR with a note to multiply by the number of crewmen those reflecting crew related functions. The negative rate included for the "J" operation (N=2) corresponds to the metabolic oxygen not supplied by the main oxygen supply to the crew while on the ALSA, since a rate for the duration of the mission is included in the Flight Common Activity.

N₂: The nitrogen requirements correspond to that quantity used to repressurize the airlock prior to the crew ingressing to the Shuttle cabin.

LiOH: The CO₂ generated by the crewmen while on the ALSA package is removed by this unit, consequently, the negative rate shown corresponds to that quantity of LiOH not used by the cabin CO₂ removal system during the EVA performance and already included in the Flight Common Activity.
3. SHUTTLE SPACECRAFT ACTIVITIES

The consumables data for the activities currently identified for the Shuttle Spacecraft are included in this section. As reported in Reference 2, the activities were selected with a view toward compatibility with those activities defined in Reference 3 while maintaining the structure required to perform the consumables analysis.

The activity data is presented using the worksheets defined in Section 2. The parameters included in the worksheet specify the consumables rates directly for the ECS and APU and indirectly for the EPS, RCS, and OMS systems. The EPS data input reflects watts (rate of energy consumption) which is separated into the direct consumables of H₂ and O₂ required in the output processing. The RCS and OMS data input reflect acceleration (rate of change of ΔV) which is weighted to spacecraft mass properties and separated into the direct consumables of fuel and oxidizer in the output processing.

Table 3 gives a summary of the presently defined activities and includes the consumables associated with the performance of each activity.

The 24 activities presented include the consumables requirements for distinct mission events to be selected by the user to construct the timeline for a given mission. In addition, a common activity which includes the consumables required to support the launch; orbital crew life support and spacecraft routine maintenance functions; deorbit and landing operations is included in Section 3.25.
<table>
<thead>
<tr>
<th>NO.</th>
<th>NAME</th>
<th>ECS</th>
<th>RCS</th>
<th>OMS</th>
<th>(\frac{O_{2}}{2})</th>
<th>(\frac{H_{2}}{2})</th>
<th>LI2OH</th>
<th>FUEL</th>
<th>(H_{2}O)</th>
<th>TOTAL CONS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OMS MANEUVER</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>RCS TRANSLATION</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>ATTITUDE HOLD</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>RENDEZVOUS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>STATION KEEPING</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>DOCK</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>UNDOCK</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>PTC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>EVA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>IVA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>MANIPULATOR OPS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>IMU ALIGNMENT</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>PAYLOAD BAY DOORS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>PAYLOAD CONSUMABLES</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>COMPUTER</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>TV</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>DOWNLINK</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>UPLINK</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>FUEL CELL PURGE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>EAT</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>SLEEP</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>3</td>
</tr>
<tr>
<td>22</td>
<td>WASTE MANAGEMENT</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>4</td>
</tr>
<tr>
<td>23</td>
<td>APU CHECKOUT</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>3</td>
</tr>
<tr>
<td>24</td>
<td>(RESERVED)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.1 OMS MANEUVER

3.1.1 DESCRIPTION

The objective of this activity is to realize a change in the orbit of the Shuttle using the thrust generated by the OMS engines. The activity is initiated by the performance of an IMU alignment, after which the GN&C, RCS, and OMS subsystems are configured by the crew to the desired thrusting program, a rotational maneuver using the RCS thrusters is then performed to place the Shuttle in the attitude required for the burn. Ignition of the OMS engines is then effected to the thrust level and for the time duration necessary to attain the desired orbital change, with RCS thrusting used during OMS firing to maintain the proper attitude. An RCS trim burn, if required, follows OMS engines shutdown, after which a second RCS rotational maneuver is performed to fix the spacecraft attitude in the new acquired orbit. Reconfiguration of the spacecraft subsystems by the crew completes the OMS maneuver. The influence variables for an OMS maneuver are start time and ΔV required by the maneuver. The stop time, as dictated by the required burn time, is calculated internally.

3.1.2 CONSUMABLES DATA

The consumables data associated with the performance of the OMS maneuver are presented in Figure 3-1 and Table 3-I. Figure 3-1 depicting the operations profile for the activity shows that the pre-activity period is 1.5 hours and consists of 3 "K" operations. The activity period consists of one open-ended "J" operation whose time duration is to be calculated in the Mission Planning Processor. The post-activity period is 0.50 hours and is characterized by 2 "L" operations. Table 3-I gives the ΔTs for each operation and the associated rates for the consumables, which are:

EPS - The EPS consumables correspond to the power required to operate the equipment associated with the IMU alignment performance; the OMS engines; such as isolation and propellant feed valves, heaters, etc., and the additional GN&C equipment required for programming and control of the thrusting operation.
RCS - The RCS consumables consist of the propellants required for the IMU alignment and to perform the rotation maneuvers to fix the spacecraft attitude prior to and at the completion of OMS engines firing. An equivalent acceleration of 9.90 ft/(sec-hr) for a period of 0.167 hours is used to obtain the propellant requirement to perform each rotation maneuver. The RCS propellant required for attitude control during OMS firing as well as for the trim burn are TBD.

OMS - The OMS Propellant is the consumable required to effect the desired orbital change. The acceleration $F(\Delta V)$ and the burn duration $\Delta(\Delta V)$ ("J" operation ΔT) are calculated in the Mission Planning Processor from the ΔV requirements.
CONSUMABLES DATA SHEET

ACTIVITY DEFINITION
ACTIVITY OMS Maneuver

REFERENCE START	 REFERENCE STOP

1.5
TIME	 TIME	 0.5

PRE-ACT AT 	 POST-ACT AT

NUMBER OF OPERATIONS: K 3 ; J 1 ; L 2 ; N 6 (TOTAL)

Figure 3-1. OMS Maneuver Profile
Table 3-I. OMS Maneuver Consumables Rates

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>ΔT (HRS)</th>
<th>EPS WATTS</th>
<th>RCS A FT/SEC-HR</th>
<th>OMS A FT/SEC-HR</th>
<th>O₂ #/HR</th>
<th>N₂ #/HR</th>
<th>H₂O #/HR</th>
<th>L10H CAN/HR</th>
<th>FUEL #/HR</th>
<th>H₂O #/HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>√</td>
<td></td>
<td></td>
<td>1.0</td>
<td>546.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>√</td>
<td></td>
<td></td>
<td>.33</td>
<td>1565.86</td>
<td></td>
<td></td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>√</td>
<td></td>
<td></td>
<td>.17</td>
<td>2158.52</td>
<td></td>
<td></td>
<td>9.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>√</td>
<td></td>
<td></td>
<td>θ(ΔV)</td>
<td>3451.21</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>√</td>
<td></td>
<td></td>
<td>.33</td>
<td>957.57</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>√</td>
<td></td>
<td></td>
<td>.17</td>
<td>1550.23</td>
<td></td>
<td></td>
<td>9.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

CONSUMABLES DATA SHEET
ACTIVITY OMS Maneuver
3.2 RCS TRANSLATION MANEUVERS

3.2.1 DESCRIPTION

The objective of this activity is to effect an orbital change of the Shuttle by the use of the RCS thrusters. A preparation period during which GN&C equipment is activated and a rotation maneuver performed to fix the spacecraft attitude precede the translation burn. The activity is terminated after the targeted thrust has been achieved. RCS translation maneuvers are typically used during rendezvous, docking, and undocking operations. The influence variables for an RCS translation maneuver are start time and ΔV required by the maneuver. The stop time, as dictated by the required burn time, is calculated internally.

3.2.2 CONSUMABLES DATA

The 5 minute preparation period in which a rotation maneuver to fix the spacecraft attitude is performed has one K operation as shown in Figure 3-2, and the J operation corresponds to the translation burn. Table 3-II presents the ΔTs and the corresponding consumables rates. The time and propellant required for the translation maneuver are calculated in the MPP from the ΔV specified. The consumables include:

EPS - The electrical power required to activate the RCS and associated control equipment. Note that the rates included correspond to the automatic mode of operation.

RCS - The RCS propellant requirements include an equivalent acceleration of 19.92 ft/(sec-hr) for a period of 0.083 hours for the rotation maneuver.
CONSUMABLES DATA SHEET
ACTIVITY DEFINITION
ACTIVITY RCC Translation Maneuvers

NUMBER OF OPERATIONS: \(K = 2; J = 1; L = 0; N = 3 \) (TOTAL)

Figure 3-2. RCS Translation Maneuver Profile
Table 3-II. RCS Translation Maneuver Consumables Rates

<table>
<thead>
<tr>
<th>(\Delta T) (HRS)</th>
<th>EPS WATTS</th>
<th>RCS A FT/SEC-HR</th>
<th>OMS A FT/SEC-HR</th>
<th>ECS (\text{O}_2) #/HR</th>
<th>ECS (\text{N}_2) #/HR</th>
<th>ECS (\text{H}_2\text{O}) #/HR</th>
<th>APU (\text{LiOH}) CAN/HR</th>
<th>APU FUEL #/HR</th>
<th>APU (\text{H}_2\text{O}) #/HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (\checkmark)</td>
<td>.417</td>
<td>957.57</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (\checkmark)</td>
<td>.083</td>
<td>1550.23</td>
<td>19.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (\checkmark)</td>
<td>(\Theta (\Delta V))</td>
<td>1550.23</td>
<td>(F (\Delta V))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:
3.3 ATTITUDE HOLD

3.3.1 DESCRIPTION

The objective of this activity is to attain and hold within a specified deadband the Shuttle Spacecraft in a given attitude for a specified time period. The activity starts with the crew performing a rotation maneuver to place the spacecraft in the desired attitude. This attitude is then maintained at the desired deadband by the RCS thrusters. The influence variables for an attitude hold are start time, stop time, spacecraft altitude, and type of hold (local vertical or inertial).

3.3.2 CONSUMABLES DATA

This activity consists of a 0.167 hours preparation period in which the rotation maneuver is performed after the proper GN&C configuration is achieved. The attitude is then maintained for as long as it is required by the automatic firing of the RCS thrusters. Figure 3-3 shows the one "K" and "J" operation required while Table 3-III gives the ΔTs and rates for the consumables used, which are:

EPS - The EPS consumables correspond to the activation of the GN&C and RCS equipment as well as the heater requirements.

RCS - The RCS propellant requirements include the rotation maneuver, entered as an equivalent acceleration of 5.98 ft/(sec-hr) for a period of 0.167 hours in Table 3-III, and the equivalent acceleration required to hold the spacecraft attitude. This latter quantity $F(a, I)$ is calculated in the MPP from the altitude a and the hold type indicator I.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
CONSUMABLES DATA SHEET
ACTIVITY DEFINITION
ACTIVITY ATTITUDE HOLD

NUMBER OF OPERATIONS: \(k_1 \); \(j_1 \); \(i_0 \); \(n_2 \) (TOTAL)

Figure 3-3. Attitude Hold Profile
Table 3-III. Attitude Hold Consumables Rates

CONSUMABLES DATA SHEET
ACTIVITY ATTITUDE HOLD

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>ΔT (HRS)</th>
<th>EPS</th>
<th>RCS</th>
<th>OMS</th>
<th>ECS</th>
<th>APU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>.167</td>
<td>TBS</td>
<td>5.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TBS</td>
<td>F(a,I)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:
3.4 RENDEZVOUS

3.4.1 DESCRIPTION

The objective of this activity is to place the Shuttle in the proximity of another spacecraft by means of a series of propulsive maneuvers. The operations caused by this particular activity correspond to the TPF maneuvers which are initiated when the crew activates the GN&C and RCS subsystems to the desired configuration in preparation of the performance of a rotation burn to fix the spacecraft attitude, after which a braking burn is performed. A second rotation maneuver performed at the completion of the braking burn completes this activity. Note that the operations to achieve orbital transfer through TPI, or docking, are not included. The OMS maneuver activity is used for the phasing, height, co-elliptic, and TPI burns. The influence variables for the rendezvous activity are start time and ΔV required for the braking burn.

3.4.2 CONSUMABLES DATA

As shown in Figure 3-4, this activity has 1.0 and 0.5 hours "K" operations during the pre-operation period in which the guidance and control equipment is activated. Three "J" operations are performed during the next time period corresponding to the two rotation maneuvers and the braking burn. An open-ended "L" period follows and is used to reconfigure the Shuttle subsystems. Each of the two rotation burns are entered as an equivalent acceleration of 9.90 ft/(sec/hr) for 0.167 hours. The ΔV required for the braking burn and entered by the user is used to calculate the acceleration F(ΔV) and the burn time θ(ΔV). The operations ΔTs together with the consumables rates, are presented in Table 3-IV, and include:

- EPS - The electrical power required for the operation of the GN&C and RCS subsystems.
- RCS - The propellant quantities used to perform the rotation and braking maneuvers.
CONSUMABLES DATA SHEET
ACTIVITY DEFINITION
ACTIVITY Rendezvous

NUMBER OF OPERATIONS: $K_2; J_3; L_1; N_6$ (TOTAL)

Figure 3-4. Rendezvous Profile
Table 3-IV. Rendezvous Consumables Rates

<table>
<thead>
<tr>
<th>Activity</th>
<th>Rendezvous</th>
</tr>
</thead>
</table>

CONSUMABLES DATA SHEET

ACTIVITY: Rendezvous

<table>
<thead>
<tr>
<th>Activity</th>
<th>Rendezvous</th>
</tr>
</thead>
</table>

CONSUMABLES DATA SHEET

Activity: Rendezvous

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>ΔT (HRS)</th>
<th>εPS</th>
<th>RCS</th>
<th>OMS</th>
<th>ECS</th>
<th>APU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✓</td>
<td></td>
<td></td>
<td>1.0</td>
<td>180.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
<td></td>
<td></td>
<td>.5</td>
<td>1137.57</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>✓</td>
<td></td>
<td></td>
<td>.167</td>
<td>3144.13</td>
<td>9.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>ε(ΔV)</td>
<td>1593.90</td>
<td>F(ΔV)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>.167</td>
<td>3144.13</td>
<td>9.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>∞</td>
<td>1593.90</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

CONSUMABLES RATES

<table>
<thead>
<tr>
<th>Activity</th>
<th>Rendezvous</th>
</tr>
</thead>
</table>

Remarks:

- Remarks for each activity.

Remarks:

- Remarks for each activity.
3.5 STATION KEEPING

3.5.1 DESCRIPTION

The objective of this activity is to maintain a given spatial relationship between the Shuttle and another free flying spacecraft. Although not limited to, this activity usually forms part of the rendezvous or separation sequences where a waiting period is required to satisfy specific mission and/or spacecraft requirements prior to docking or after undocking. The activity is preceded by a short preparation period in which navigation and communication equipment is activated. Spacecraft pointing or attitude hold requirements to be effected with the RCS subsystem, if required, are not included herein. The influence variables for station keeping are start time and stop time.

3.5.2 CONSUMABLES DATA

The consumables for this activity consist of the electrical power required to operate the navigation and communications equipment. As shown in Figure 3-5, a 0.083 hours "K" preparation operation precedes the open-ended "J" operation. The consumables rates are given in Table 3-V.
CONSUMABLES DATA SHEET
ACTIVITY DEFINITION
ACTIVITY Station Keeping

NUMBER OF OPERATIONS: K_1; J_1; L_0; N_2 (TOTAL)

Figure 3-5. Station Keeping Profile
Table 3-V. Station Keeping Consumables Rates

CONSUMABLES DATA SHEET
ACTIVITY Station Keeping

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>ΔT (HRS)</th>
<th>EPS WATTS</th>
<th>RCS A FT/SEC-HR</th>
<th>OMS A FT/SEC-HR</th>
<th>ECS O₂ #/HR</th>
<th>ECS N₂ #/HR</th>
<th>ECS H₂O #/HR</th>
<th>ECS LIOH CAN/HR</th>
<th>APU FUEL #/HR</th>
<th>APU H₂O #/HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>1.5</td>
<td>180.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>~</td>
<td>400.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:
3.6 DOCKING

3.6.1 DESCRIPTION

The objective of the docking activity is to establish a physical connection between the Shuttle and another spacecraft. Docking is normally performed after a rendezvous sequence and preceded by station keeping and includes the propulsive maneuvers using the RCS subsystem to achieve contact. The activity includes a rotation and a docking burn. The influence variables for Docking are stop time (contact) and the docking burn ΔV.

3.6.2 CONSUMABLES DATA

Figure 3-6 shows the profile for this activity which includes a 1.33 and an 0.167 hour preparation ("K") operation in which the systems (GN&C and RCS) are activated and the rotation maneuver is performed; and a single "J" operation corresponding to the docking burn. Table 3-VI includes the consumables and their associated rates which are:

- **EPS** - The electrical power required for the GN&C and RCS subsystems in addition to docking lights, radar, and other communications equipment.

- **RCS** - The RCS propellant required for the rotation maneuver is entered as an equivalent acceleration of $9.90 \text{ ft/} (\text{sec-hr})$ for 0.167 hour. The dock burn acceleration $F(\Delta V)$ and burn time $\delta(\Delta V)$ are calculated internally.
CONSUMABLES DATA SHEET
ACTIVITY DEFINITION
ACTIVITY Docking

NUMBER OF OPERATIONS: k 2; j 1; l 0; n 3 (TOTAL)

Figure 3-6. Docking Profile
Table 3-VI. Docking Consumables Rates

CONSUMABLES DATA SHEET

ACTIVITY Docking

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>ΔT (HRS)</th>
<th>EPS WATTS</th>
<th>RCS A FT/SEC-HR</th>
<th>OMS A FT/SEC-HR</th>
<th>O₂ #/HR</th>
<th>N₂ #/HR</th>
<th>H₂O #/HR</th>
<th>LIOH CAN/HR</th>
<th>FUEL #/HR</th>
<th>H₂O #/HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✓</td>
<td></td>
<td></td>
<td>1.33</td>
<td>180.00</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
<td></td>
<td></td>
<td>0.167</td>
<td>659.66</td>
<td>9.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>✓</td>
<td></td>
<td></td>
<td>θ(ΔV)</td>
<td>659.66</td>
<td>F(ΔV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:
3.7 UNDOCKING

3.7.1 DESCRIPTION

The objective of this activity is to effect the separation of the Shuttle from another spacecraft. The activity is initiated by the configuration and activation of the GN&C and RCS subsystems to perform a translation burn to achieve the physical separation. The activity is completed after a rotation burn is performed to fix the Shuttle to the desired attitude. The influence variables for undocking are start time (separation) and the separation burn \(\Delta V \).

3.7.2 CONSUMABLES DATA

The consumables data is the same as that defined for the docking (see Section 3.6.2) except that the order for the propulsive maneuvers is reversed. These data are presented in Figure 3-7 and Table 3-VII.
CONSUMABLES DATA SHEET
ACTIVITY DEFINITION
ACTIVITY: Undocking

Figure 3-7. Undocking Profile
Table 3-VII. Undocking Consumables Rates

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>ΔT (HRS)</th>
<th>EPS WATTS</th>
<th>RCS FT/SEC-HR</th>
<th>OMS FT/SEC-HR</th>
<th>ECS O₂ #/HR</th>
<th>ECS N₂ #/HR</th>
<th>ECS H₂O #/HR</th>
<th>APU LiOH CAN/#/HR</th>
<th>APU FUEL #/#/HR</th>
<th>APU H₂O #/#/HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0.167</td>
<td>659.66</td>
<td></td>
<td></td>
<td>9.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>θ(ΔV)</td>
<td>659.66</td>
<td></td>
<td>F(ΔV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td>180.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
3.8 PASSIVE THERMAL CONTROL (PTC)

3.8.1 DESCRIPTION

The objective of this activity is directed toward the utilization of the space environment to achieve thermal control of the Shuttle. PTC is effected by rotating at a given rate the spacecraft about one of its axes to expose the entire Shuttle to the desired environment. The activity is used to stabilize the spacecraft temperature during prolonged periods of drift flight, or to thermally condition a given subsystem prior to the performance of the activity, such as the warming of fuel lines prior to the performance of propulsive maneuvers.

3.8.2 CONSUMABLES DATA

The consumables data for PTC is TBD.
CONSUMABLES DATA SHEET

ACTIVITY DEFINITION

ACTIVITY: PASSIVE THERMAL CONTROL

TBD

Figure 3-8, Passive Thermal Control Profile

NUMBER OF OPERATIONS: K, J, L, N (TOTAL)

REFERENCE START TIME

REFERENCE STOP TIME

PRE-ACT AT

POST-ACT AT

CONSUMABLES RATES CHANGES

TIME

REFERENCE TIME

REFE
Table 3-VIII. Passive Thermal Control Consumables Rates

CONSUMABLES DATA SHEET
ACTIVITY PASSIVE THERMAL CONTROL

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>ΔT (HRS)</th>
<th>EPS</th>
<th>RCS</th>
<th>OMS</th>
<th>ECS</th>
<th>APU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WATTS</td>
<td>A</td>
<td>A</td>
<td>O₂</td>
<td>N₂</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FT/SEC-HR</td>
<td>FT/SEC-HR</td>
<td>#/HR</td>
<td>#/HR</td>
<td>#/HR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

REMARKS:
3.9 EVA

3.9.1 DESCRIPTION

The objective of the Extra Vehicular Activity (EVA) is to allow one or more crewmen to egress the pressurized cabin into free space for the performance of a given mission objective. The activity is initiated by the crew donning the Astronaut Life Support Assembly (ALSA) that provides a safe and conditioned environment. A pure oxygen prebreathing cycle from a portable supply follows to effect denitrogenization of the crew after which the egress into free space is accomplished via the airlock. At the completion of the assigned task in free space, the crew returns to the airlock, the pressure of which is increased and equalized with that of the cabin to allow the crew entry and the re-establishing of normal systems configuration. The activity is completed with the crew doffing and re-charging the ALSA package. The influence variables for this activity are start time, stop time, and number of crew members involved.

3.9.2 CONSUMABLES DATA

The consumables data associated with the EVA is herein included in Figure 3-9 and Table 3-IX. Figure 3-9 depicts a plot profile of the activity from where it can be seen that the pre-activity period has one ("K") operation, the activity period is characterized by one ("J") operation and two ("L") operations are performed during the post-activity period, for a total of 4 ("N") operations for the overall activity. In addition, Figure 3-9 also specifies the ΔTs for the pre-activity and post-activity periods as 3.5 and 13.0 hours respectively. Table 3-IX gives the consumables rates and the ΔTs associated with the performance of each operation. The consumables required are:

EPS - The EPS consumables (WATTS) required for EVA correspond to the power required for the activation and operation of flood lights, TV cameras and monitors, and other communications equipment used by the crew while outside the pressurized environment.
ECS - ECS consumables include:

O₂: The oxygen requirements during EVA have two components; one relating to direct crew functions such as the prebreath cycle, suit pressurization, and ALSA recharge; and the other to non-crew related requirements such as the quantity required to repressurize the airlock at the completion of the EVA. The corresponding rates are shown in Table 3-IX as #/HR with a note to multiply by the number of crewmen those reflecting crew related functions. The negative rate included for the "J" operation (N=2) corresponds to the metabolic oxygen not supplied by the main oxygen supply to the crew while on the ALSA, since a rate for the duration of the mission is included in the Flight Common Activity.

N₂: The nitrogen requirements correspond to that quantity used to repressurize the airlock prior to the crew ingressing to the Shuttle cabin.

LiOH: The CO₂ generated by the crewmen while on the ALSA package is removed by this unit, consequently, the negative rate shown corresponds to that quantity of LiOH not used by the cabin CO₂ removal system during the EVA performance and already included in the Flight Common Activity.

H₂O: The potable water requirements correspond to that quantity for panel recharging.
CONSUMABLES DATA SHEET

ACTIVITY DEFINITION

ACTIVITY EVA

CONSUMABLES RATES CHANGES

<table>
<thead>
<tr>
<th>3.5 HRS</th>
<th>PRE-ACT ΔT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13.0 HRS</th>
<th>POST-ACT ΔT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NUMBER OF OPERATIONS: K_1; J_1; L_2; N_4 (TOTAL)

Figure 3-9. EVA Profile
Table 3-IX. EVA Consumables Rates

CONSUMABLES DATA SHEET
ACTIVITY EVA

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>ΔT (HRS)</th>
<th>EPS WATTS</th>
<th>RCS A FT/SEC-HR</th>
<th>OMS A FT/SEC-HR</th>
<th>ECS O₂ #/HR</th>
<th>ECS N₂ #/HR</th>
<th>ECS H₂O #/HR</th>
<th>ECS LiOH CAN/HR</th>
<th>ECS FUEL #/HR</th>
<th>ECS H₂O #/HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✓</td>
<td></td>
<td></td>
<td>3.5</td>
<td>177.29</td>
<td></td>
<td></td>
<td>0.2857*M</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
<td></td>
<td></td>
<td>~</td>
<td>1507.57</td>
<td></td>
<td></td>
<td>-0.073*M</td>
<td>-</td>
<td>-0.096*M</td>
<td>-0.096*M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>✓</td>
<td></td>
<td></td>
<td>.04</td>
<td>390.97</td>
<td></td>
<td></td>
<td>61.75</td>
<td>204.75</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>✓</td>
<td></td>
<td></td>
<td>12.97</td>
<td></td>
<td></td>
<td></td>
<td>0.179*M</td>
<td>-</td>
<td>.925</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS: * Where M is equal to the number of crew members performing EVA
3.10 INTRAVEHICULAR ACTIVITY (IVA)

3.10.1 DESCRIPTION

The objective and characteristics of the IVA are similar in nature to those of the EVA inasmuch as it involves the egress of one or more crewmen from the Orbiter cabin. In the IVA the transfer is to a pressurized area which is the same as that of the Orbiter cabin, and therefore is performed in the unsuited mode, i.e., without the use of the pressurized suits, and without the necessity to unpressurize the airlock. If the transfer is to an unpressurized payload or to an atmosphere contaminated vehicle, the activity becomes an EVA.

3.10.2 CONSUMABLES DATA

The IVA consumables data is presented in Figure 3-10 and Table 3-X and consists of the electrical power required for TV monitoring. The negative CO₂ rate corresponds to that quantity produced by the crew while outside the Orbiter cabin and absorbed by the payload cleansing system. This rate needs to be deducted since the flight common activity considers a constant rate removed in the Orbiter cabin for the duration of the mission.
Figure 3-10. IVA Profile

CONSUMABLES DATA SHEET
ACTIVITY DEFINITION
ACTIVITY: IVA

CONSUMABLES RATES CHANGES

REFERENCE START
TIME

REFERENCE STOP
TIME

NUMBER OF OPERATIONS: K 0; J 1; L 0; N 1 (TOTAL)

PRE-ACT ΔT

POST-ACT ΔT
Table 3-X. IVA Consumables Rates

CONSUMABLES DATA SHEET
ACTIVITY_IVA

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>ΔT (HRS)</th>
<th>EPS WATTS</th>
<th>RCS A FT/SEC-HR</th>
<th>OMS A FT/SEC-HR</th>
<th>O₂ #/HR</th>
<th>N₂ #/HR</th>
<th>H₂O #/HR</th>
<th>LiOH CAN/HR</th>
<th>FUEL #/HR</th>
<th>H₂O #/HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✓</td>
<td></td>
<td></td>
<td>75.0</td>
<td>0.096Μ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.096Μ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS: *Where M is equal to the number of crewmen on IVA
3-11. MANIPULATOR OPERATIONS

3-11.1 DESCRIPTION

The objective of this activity is to provide the Shuttle with the capability to remotely control the deployment and retrieval/service of payloads. The activity consists in the operation of electromechanical devices that physically remove the deployable spacecraft out of the payload bay to be released into space. These operations are supported by the activation of flood lights and television monitoring equipment. The retrieval/service operation is the same as above except that the order in which the operations are performed is reversed to effect the capture of the free flying spacecraft. The influence variables for this activity are start time and stop time.

3-11.2 CONSUMABLES DATA

The consumables requirements for this activity consist of the electrical power required to operate the special equipment used in the operations, such as motorized driver, flood lights, television equipment, etc. Figure 3-11 and Table 3-XI depict the activity profile and consumables rates respectively.
CONSUMABLES DATA SHEET

ACTIVITY DEFINITION

ACTIVITY: MANIPULATOR OPERATIONS

NUMBER OF OPERATIONS: \(K \), \(J \), \(L \), \(N \) (TOTAL)

Figure 3-11. Manipulator Operations Profile
Table 3-XI. Manipulator Operations Consumables Rates

CONSUMABLES DATA SHEET

ACTIVITY: Manipulator Operations

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>ΔT (HRS)</th>
<th>EPS</th>
<th>RCS</th>
<th>OMS</th>
<th>ECS</th>
<th>APU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✓</td>
<td>✓</td>
<td>.2056</td>
<td>2582.04</td>
<td>WATTS</td>
<td>FT/SEC-HR</td>
<td>FT/SEC-HR</td>
<td>O₂ #/HR</td>
<td>N₂ #/HR</td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
<td>✓</td>
<td>1995.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:
3.12 IMU ALIGNMENT

3.12.1 DESCRIPTION

The objective of this activity is to align by means of star tracker measurements the Inertial Measurement Unit of the Shuttle with respect to some coordinate system. The activity, as a rule, is performed automatically by a computer, is initiated by the crew loading the desired parameters and totally executed by the computer. If the IMU alignment errors exceed the tolerance limits, a course alignment requiring a rotation maneuver using the RCS system must first be performed and then followed by the automatic procedure to complete the alignment. One such maneuver is included in this activity. The influence variables for this activity are start time and stop time. This activity should be used when an alignment is to be performed independently of the OMS maneuver and the deorbit preparation, since it is included as a part of these activities.

3.12.2 CONSUMABLES DATA

The consumables data is presented in Figure 3-12 and Table 3-XII. Figure 3-12 shows the preparation period to consist of 3 ("K") operations that include the equipment warm-up period and the rotation maneuver. The "J" operation corresponds to the automatic computer procedure. The consumables rates are presented in Table 3-XII and include:

- **EPS** - The electrical power to operate the GN&C and RCS subsystems.
- **RCS** - The propellant required for the rotation maneuver, which consists of an equivalent acceleration of 5.98 ft/(sec-hr) for a period of .167 hours required for the operation.
Figure 3-12: IMU Alignment Profile

CONSUMABLES DATA SHEET

ACTIVITY DEFINITION

ACTIVITY: IMU Alignment

REFERENCE START	 REFERENCE STOP

TIME	 TIME

PRE-ACT AT	 POST-ACT AT

NUMBER OF OPERATIONS: K 3 ; J 1 ; L 0 ; N 4 (TOTAL)

CONSUMABLES RATES CHANGES

0.67
Table 3-XII. IMU Alignment Consumables Rates

CONSUMABLES DATA SHEET
ACTIVITY IMU Alignment

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>ΔT (HRS)</th>
<th>EPS WATTS</th>
<th>RCS A FT/SEC-HR</th>
<th>OMS A FT/SEC-HR</th>
<th>O₂ #/HR</th>
<th>N₂ #/HR</th>
<th>H₂O #/HR</th>
<th>LIOH CAN/HR</th>
<th>FUEL #/HR</th>
<th>H₂O #/HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>.42</td>
<td>957.57</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>.08</td>
<td>1018.89</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>.17</td>
<td>2569.12</td>
<td>5.98</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>.50</td>
<td>61.32</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

REMARKS:
3.13 PAYLOAD BAY DOORS

3.13.1 DESCRIPTION

The objective of this activity is to effect the operations required to open and close the Shuttle Payload Bay Doors. Payload bay doors are opened by means of electromechanical actuators to provide access to the payload and to deploy the radiator. This operation is performed as soon as the Shuttle arrives at its desired orbit. The doors are closed immediately prior to reentry. The influence variables are start (open) and stop (close) time for the payload bay doors in the open position.

3.13.2 CONSUMABLES DATA

The consumables required for this activity correspond to the electrical power required to operate the electromechanical driver to open and close the payload bay doors. In addition, since the radiator is deployed as the payload bay doors are opened, the power requirements include that required to activate and maintain operational the freon pumps in support of the active thermal control subsystem. The activity profile and consumables rates are presented in Figure 3-13 and Table 3-XIII, respectively.
Table 3-XIII. Payload Bay Doors Consumables Rates

CONSUMABLES DATA SHEET
ACTIVITY Payload Bay Doors

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>h (HRS)</th>
<th>EPS WATTS</th>
<th>RCS A FT/SEC-HR</th>
<th>O2 #/HR</th>
<th>N2 #/HR</th>
<th>H2O #/HR</th>
<th>LIOH CAN/#</th>
<th>FUEL #/#</th>
<th>H2O #/#</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-83</td>
<td>1</td>
<td>✓</td>
<td>✓</td>
<td>.0958</td>
<td>2328.09</td>
<td>1645.54</td>
<td>2326.9</td>
<td>1814.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>.0958</td>
<td>2328.09</td>
<td>1645.54</td>
<td>2326.9</td>
<td>1814.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:
3.14 PAYLOAD CONSUMABLES

3.14.1 DESCRIPTION

The objective of this activity is that of supporting the payload operations. This support consists of the electrical energy and/or other consumables supplied to the payload from the Shuttle storage and distribution systems.

3.14.2 CONSUMABLES DATA

The consumables data for this activity are to be specified by the user as the activity is scheduled using the Mission Planning Processor. An example of these data is shown in Figure 3-14 and Table 3-XIV.
CONSUMABLES DATA SHEET
ACTIVITY DEFINITION
ACTIVITY PAYLOAD CONSUMABLES

NUMBER OF OPERATIONS: K_0; J_1; L_0; N_1 (TOTAL)

Figure 3-14. Payload Consumables Profile
Table 3-XIV. Payload Interface Consumables Rates

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>(\Delta T) (HRS)</th>
<th>EPS WATTS</th>
<th>RCS FT/SEC-HR</th>
<th>OMS FT/SEC-HR</th>
<th>ECS (O_2) #/HR</th>
<th>ECS (N_2) #/HR</th>
<th>ECS (H_2O) #/HR</th>
<th>ECS LiOH CAN/HR</th>
<th>ECS FUEL #/HR</th>
<th>ECS (H_2O) #/HR</th>
<th>APU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✓</td>
<td></td>
<td></td>
<td>TBS</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
3.15 COMPUTER

3.15.1 DESCRIPTION

The objective of this activity is to support the computer requirements of the payload imposed on the Orbiter. The influence variables for this activity are start time and stop time.

3.15.2 CONSUMABLES DATA

The consumables data consists of the electrical power required to operate the computer. The activity profile and consumables rates are included in Figure 3-15 and Table 3-XV.
CONSUMABLES DATA SHEET
ACTIVITY DEFINITION
ACTIVITY COMPUTER

NUMBER OF OPERATIONS: K_0; J_1; L_0; N_1 (TOTAL)

Figure 3-15. Computer Profile
Table 3-XV. Computer Consumables Rates

CONSUMABLES DATA SHEET

ACTIVITY COMPUTER

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>ΔT (HRS)</th>
<th>EPS WATTS</th>
<th>RCS A FT/SEC-HR</th>
<th>OMS A FT/SEC-HR</th>
<th>ECS O2 #/HR</th>
<th>ECS N2 #/HR</th>
<th>ECS H2O #/HR</th>
<th>ECS LiOH CAN/HR</th>
<th>ECS FUEL #/HR</th>
<th>ECS H2O #/HR</th>
<th>APU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/</td>
<td>~</td>
<td></td>
<td></td>
<td>TBS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:
3.16 TV

3.16.1 DESCRIPTION

The objective of this activity is to provide additional television coverage. This activity already scheduled is scheduled during the performance of EVA or Manipulator Operations. The influence variables for this activity are start time and stop time.

3.16.2 CONSUMABLES DATA

The consumables for this activity correspond to the electrical power requirements for the operation of the TV system. Figure 3-16 and Table 3-XVI present the profile and rates for this activity.
CONSUMABLES RATES CHANGES

PRE-ACT ΔT

REFERENCE START TIME

REFERENCE STOP TIME

POST-ACT ΔT

NUMBER OF OPERATIONS: K, J, I, L, O, N, T (TOTAL)

Figure 3-16. TV Profile

CONSUMABLES DATA SHEET
ACTIVITY DEFINITION
ACTIVITY IV
<table>
<thead>
<tr>
<th>Activity</th>
<th>TV</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPS</td>
<td>129.0</td>
</tr>
<tr>
<td>RCS</td>
<td></td>
</tr>
<tr>
<td>OMS</td>
<td></td>
</tr>
<tr>
<td>Cons 1</td>
<td></td>
</tr>
<tr>
<td>Cons 2</td>
<td></td>
</tr>
<tr>
<td>Cons 3</td>
<td></td>
</tr>
<tr>
<td>Cons 4</td>
<td></td>
</tr>
<tr>
<td>Cons 5</td>
<td></td>
</tr>
<tr>
<td>Cons 6</td>
<td></td>
</tr>
<tr>
<td>Cons 7</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

Table 3-XVI: TV Consumables Rates

CONSUMABLES DATA SHEET
3.17 DOWNLINK

3.17.1 DESCRIPTION

The objective of this activity is to support the downlink requirements of the payload. The influence variables for this activity are start time and stop time.

3.17.2 CONSUMABLES DATA

The consumables requirements for this activity include the electrical power required for the operation of the communications subsystem of the Orbiter. Figure 3-17 and Table 3-XVII show the activity profile and associated consumables rates.
CONSUMABLES DATA SHEET
ACTIVITY DEFINITION
ACTIVITY DOWNLINK

NUMBER OF OPERATIONS: K₀; J₁; L₀; N₁ (TOTAL)

Figure 3-17. Downlink Profile
Table 3-XVII. Downlink Consumables Rates

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>ΔT (HRS)</th>
<th>EPS WATTS</th>
<th>RCS A FT/SEC-HR</th>
<th>OMS A FT/SEC-HR</th>
<th>ECS O₂ #/HR</th>
<th>ECS N₂ #/HR</th>
<th>ECS H₂O #/HR</th>
<th>ECS LiOH CAN/HR</th>
<th>ECS FUEL #/HR</th>
<th>ECS H₂O #/HR</th>
<th>APU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TBS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
3.18 UPLINK

3.18.1 DESCRIPTION

The objective of this activity is to support the uplink communications requirements of the payload. The influence variables for this activity are start time and stop time.

3.18.2 CONSUMABLES DATA

The consumables data required for this activity consist of the electrical power required for the operation of Shuttle communications subsystem.
CONSUMABLES DATA SHEET

ACTIVITY DEFINITION

ACTIVITY UPLINK

NUMBER OF OPERATIONS: K 0; J 1; L 0; N 1 (TOTAL)

Figure 3-18. Uplink Profile
Table 3-XVIII. Uplink Consumables Rates

CONSUMABLES DATA SHEET
ACTIVITY UPLINK

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>ΔT (HRS)</th>
<th>EPS</th>
<th>RCS</th>
<th>OMS</th>
<th>ECS</th>
<th>APU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WATTS</td>
<td>FT/SEC-HR</td>
<td>FT/SEC-HR</td>
<td>O₂</td>
<td>#/HR</td>
</tr>
<tr>
<td>1</td>
<td>Δ</td>
<td>~</td>
<td></td>
<td>TBS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:
3.19 FUEL CELL PURGE

3.19.1 DESCRIPTION

The objective of this activity is to provide for the purging of impurities from the reactants used in the production of electrical energy. The activity is initiated with the activation of purge line heaters used to preclude the possibility of line freeze-up due to the accumulation of moisture, after which small quantities of oxygen and hydrogen are alternately expelled using vent valves to effect the purging. The influence variables for this activity are start time and stop time.

3.19.2 CONSUMABLES DATA

The consumables required for this activity consist of the electrical power required for the operation of the in-line heaters. A 0.267 hour preparation period constitutes the one ("K") operation followed by a 1.02 hour ("J") operation as shown in Figure 3-19. Table 3-XIX presents the consumables rates associated with the performance of this activity. The actual O_2 and H_2 quantities expelled during the purging operation are considered negligible and not included herein.
CONSUMABLES DATA SHEET
ACTIVITY DEFINITION
ACTIVITY: FUEL CELL PURGE

NUMBER OF OPERATIONS: K 1; J 1; L 0; N 2 (TOTAL)

Figure 3-19. Fuel Cell Purge Profile
Table 3-XIX. Fuel Cell Purge Consumables Rates

CONSUMABLES DATA SHEET
ACTIVITY FUEL CELL PURGE

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>ΔT (HRS)</th>
<th>EPS (WATTS)</th>
<th>RCS (FT/SEC-HR)</th>
<th>OMS (A)</th>
<th>ECS (O_2/#/HR)</th>
<th>ECS (N_2/#/HR)</th>
<th>ECS (H_2O/#/HR)</th>
<th>ECS (LiOH CAN/#/HR)</th>
<th>APU (FUEL/#/HR)</th>
<th>APU (H_2O/#/HR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>.267</td>
<td>97.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1.017</td>
<td>97.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:
3.20 EAT

3.20.1 DESCRIPTION

The objective of this activity is to provide the food preparation facilities onboard the Shuttle Spacecraft. The activity is initiated by a short preparation period in which heaters are activated to heat up and maintain hot the food and water required for meal preparation. The activity is completed when the crew finish eating. The influence variables for this activity are start time and stop time.

3.20.2 CONSUMABLES DATA

The consumables required for this activity are the food, water, and electrical power required for meal preparation. The water and electrical power rate requirements are given in Figure 3-20 and Table 3-XX. The food is inventoried separately and not included as part of the consumables.
CONSUMABLES DATA SHEET
ACTIVITY DEFINITION
ACTIVITY EAT

Figure 3-20. Eat Profile
Table 3-XX. Eat Consumables Rates

CONSUMABLES DATA SHEET
ACTIVITY EAT

| N | K | J | L | \(\Delta T \) (HRS) | EPS WATTS | RCS A FT/SEC-HR | OMS A FT/SEC-HR | ECS \(O_2 \) #/HR | ECS \(N_2 \) #/HR | ECS \(H_2O \) #/HR | APU LiOH CAN/#HR | APU FUEL #/HR | APU \(H_2O \) #/HR |
|---|---|---|---|-----------------|----------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 1 | ✓ | ✓ | .5 | 571.83 | | | | | | | | |
| 2 | ✓ | ✓ | 1.0 | 571.83 | | | | | | | | 0.66* M |

REMARKS: *Where M is equal to the number of crew members eating.
3.21 SLEEP

3.21.1 DESCRIPTION

The objective of this activity is to provide for the sleeping facilities for the crew onboard the Shuttle. The activity is preceded and followed by a 1.0 hour preparation and post-activity period allocated for personal hygiene. The influence variables for this activity are start time and stop time.

3.21.2 CONSUMABLES DATA

The consumables data for this activity are presented in Figure 3-21 which shows the preparation, activity, and post-activity operations K, J, and L, respectively. Table 3-XXI depicts the consumables rates which consist of:

- **EPS**: The electrical power required for the operation of the waste management system prior to and at the completion of the sleep period, and also the operation of bunk and panel lights used during sleep.

- **ECS**: A negative oxygen rate is included, corresponding to the difference in the metabolic consumption allocated for the duration of the mission in the Flight Common Activity and that actually used while the crew is asleep.

- **RCS**: The RCS requirements include the propellant required to maneuver the spacecraft to the sleep attitude, and to maintain this attitude for the 8 hour sleep period duration.
CONSUMABLES DATA SHEET
ACTIVITY DEFINITION
ACTIVITY SLEEP

NUMBER OF OPERATIONS: $K_1 \quad J_1 \quad L_1 \quad N_3$ (TOTAL)

Figure 3-21. Sleep Profile
Table 3-XXI. Sleep Consumables Rates

CONSUMABLES DATA SHEET

ACTIVITY: SLEEP

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>(\Delta T) (HRS)</th>
<th>EPS WATTS</th>
<th>RCS A FT/SEC-HR</th>
<th>OMS A FT/SEC-HR</th>
<th>ECS (O_2) #/HR</th>
<th>ECS (N_2) #/HR</th>
<th>ECS (H_2O) #/HR</th>
<th>ECS LIOH CAN/HR</th>
<th>ECS FUEL #/HR</th>
<th>ECS (H_2O) #/HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>√</td>
<td>1.0</td>
<td></td>
<td></td>
<td>204.09</td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>√</td>
<td>8.0</td>
<td></td>
<td></td>
<td>158.20</td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td>-0.01475*M</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>√</td>
<td>1.0</td>
<td></td>
<td></td>
<td>204.09</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS: *\(\Delta \) between 450 to 360 BUT/HR metabolic consumption
3.22 WASTE MANAGEMENT

3.22.1 DESCRIPTION

The objective of this activity is that of providing for the waste management functions of the crew onboard the Shuttle. The influence variables for this activity are start time and stop time.

3.22.2 CONSUMABLES DATA

The consumables required for this activity correspond to the electrical power required to operate the waste management equipment. These data are presented in Figure 3-22 and Table 3-XXII.
CONSUMABLES DATA SHEET
ACTIVITY DEFINITION
ACTIVITY: WASTE MANAGEMENT

REFERENCE START REFERENCE STOP
TIME TIME

PRE-ACT ΔT

REFERENCE START
TIME

REFERENCE STOP
TIME

POST-ACT ΔT

NUMBER OF OPERATIONS: K 0; J 1; L 0; N 1 (TOTAL)

Figure 3-22. Waste Management Profile
Table 3-XXII. Waste Management Consumables Rates

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>ΔT (HRS)</th>
<th>EPS</th>
<th>RCS (FT/SEC-HR)</th>
<th>OMS (FT/SEC-HR)</th>
<th>ECS</th>
<th>APU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✓</td>
<td>.55</td>
<td>211.25</td>
<td>TBS</td>
<td>TBS</td>
<td>TBS</td>
<td>TBS</td>
<td>TBS</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
3.23 APU CHECKOUT

3.23.1 DESCRIPTION

The function of the Auxiliary Power Units (APUs) is to provide mechanical shaft power to drive hydraulic pumps for the operation of the aerosurface controls, main engine gimbal, landing gear, main wheel brakes, and nose wheel steering. The APUs are used during prelaunch, ascent, entry, and landing, and these operations are included in the Flight Common Activity. The objective of this activity is to provide for the checkout of the APU in addition to and independently of the operations already included in the Flight Common Activity. The influence variables for this activity are start time and stop time.

3.23.2 CONSUMABLES DATA

The consumables required for this activity are the fuel (hydrazine) used for the operation of the turbines and the water used in the water boiler required to control the hydraulic fluid temperature. Figure 3-23 and Table 3-XXIII present the activity profile and associated consumables rates.
CONSUMABLES DATA SHEET
ACTIVITY DEFINITION
ACTIVITY APU CHECKOUT

REFERENCE TIME

PRE-ACT ΔT

REFERENCE START TIME

0

REFERENCE STOP TIME

POST-ACT ΔT

NUMBER OF OPERATIONS: K: 0; J: 1; L: 0; N: 1 (TOTAL)

Figure 3-23. APU Checkout Profile
Table 3-XXIII. APU Checkout Consumables Rates

CONSUMABLES DATA SHEET
ACTIVITY APU CHECKOUT

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>ΔT (HRS)</th>
<th>EPS (WATTS)</th>
<th>RCS (FT/SEC-HR)</th>
<th>OMS (A)</th>
<th>ECS (A)</th>
<th>APU (HRS)</th>
<th>FUEL (#/HR)</th>
<th>H₂O (#/HR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>√</td>
<td>~</td>
<td></td>
<td></td>
<td>636.0</td>
<td>171.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:
3.24 (RESERVED)
CONSUMABLES DATA SHEET
ACTIVITY DEFINITION
ACTIVITY ________

NUMBER OF OPERATIONS: K__; J__; L__; N__ (TOTAL)

Figure 3-24. Reserved
Table 3-XXIV. Reserved

CONSUMABLES DATA SHEET

ACTIVITY

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>ΔT (HRS)</th>
<th>EPS</th>
<th>RCS</th>
<th>OMS</th>
<th>ECS</th>
<th>APU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WATTS</td>
<td>FT/SEC-HR</td>
<td>A</td>
<td>FT/SEC-HR</td>
<td>O₂</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

REMARKS:

RESERVED
3.25 FLIGHT COMMON

3.25.1 DESCRIPTION

The objective of this activity is that of providing the routine operational support functions to prepare, launch, insert into orbit, maintain in orbit, deorbit, and land the Shuttle Spacecraft. The activity covers the crew life support and subsystem operations from GSE disconnect during prelaunch to GSE transfer after landing.

To facilitate the specification and maintenance of the consumables data, this activity was subdivided into ten segments or sub-activities that represent discrete time periods associated with the performance of distinct mission functions. These sub-activities are:

1. COMMON (GSE to GSE)
2. PRELAUNCH (GSE to LIFTOFF)
3. ASCENT (LIFTOFF to MECO)
4. POST-ASCENT (MECO to INSERTION)
5. INSERTION (INSERTION to ORBIT)
6. ON-ORBIT (ON-ORBIT to DEORBIT PREP)
7. DEORBIT PREP (DEORBIT PREP to DEORBIT)
8. DEORBIT (DEORBIT to ENTRY INTERFACE)
9. ENTRY (ENTRY INTERFACE to SR)
10. LANDING (SR to GSE)

The start and stop times for each sub-activity are controlled by the block phase times BPT(I) specified in the Mission Planning Processor.

3.25.2 CONSUMABLES DATA

3.25.2.1 COMMON (GSE TO GSE)

This sub-activity includes the consumables required to maintain the crew and spacecraft from the time the Shuttle goes to internal power during prelaunch to the time in which the transfer is made to GSE power after landing. The profile and consumables rates for this sub-activity are presented in Figure 3-25.1 and Table 3-XXV.1 and they include:
EPS - The electrical power required to operate that equipment associated with the crew life support functions, and to maintain the spacecraft operational. A load of 2556.42 watts is included as an average heater requirement. This figure, taken from Reference 1, will be updated as heater duty cycle data become better defined.

ECS

O₂: a) The oxygen required to make up the cabin leakage at the operating pressure.
 b) The oxygen required for metabolic consumption.

N₂: The nitrogen required for cabin leakage make-up.

H₂O: The water consumed or used by the crew for all functions except food preparation which is accounted for in the EAT activity.

LiOH: The lithium hydroxide cannisters required for the CO₂ removal from the cabin atmosphere.
CONSUMABLES DATA SHEET
ACTIVITY DEFINITION
ACTIVITY GSE-GSE

NUMBER OF OPERATIONS: K 0; J 1; L 0; N 1 (TOTAL)

Figure 3-25.1. Common Profile
Table 3-XXV.1. Common Consumables Rates

CONSUMABLES DATA SHEET
ACTIVITY FLIGHT COMMON

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>ΔT (HRS)</th>
<th>EPS WATTS</th>
<th>RCS A FT/SEC-HR</th>
<th>OMS A FT/SEC-HR</th>
<th>ECS O₂ #/HR</th>
<th>ECS N₂ #/HR</th>
<th>ECS H₂O #/HR</th>
<th>L1OH CAN/HR</th>
<th>APU FUEL #/HR</th>
<th>APU H₂O #/HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>y</td>
<td>~</td>
<td></td>
<td></td>
<td>6508.36</td>
<td>.1+.073*M</td>
<td>.3166</td>
<td>.237*M</td>
<td>.021*M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS: *Where M is equal to the number of crew members*
3.25.2.2 PRELAUNCH (GSE TO LIFTOFF)

This activity includes the activation of the majority of the spacecraft subsystems after transfer to internal power. The profile and consumables rates consisting of the electrical power requirements are presented in Figure 3-25.2 and Table 3-XXV.2. The consumables also include the fuel and water required for APU operation which is activated .083 hours prior to liftoff.
CONSUMABLES DATA SHEET
ACTIVITY DEFINITION
ACTIVITY GSE-LO

NUMBER OF OPERATIONS: k 0; j 2; l 0; n 2 (TOTAL)

Figure 3-252. Prelaunch Profile
Table 3-XXV.2. Prelaunch Consumables Rates

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>ΔT (HRS)</th>
<th>EPS WATTS</th>
<th>RCS A FT/SEC-HR</th>
<th>OMS A FT/SEC-HR</th>
<th>ECS O₂ #/HR</th>
<th>ECS N₂ #/HR</th>
<th>ECS H₂O #/HR</th>
<th>L₁OH CAN/HR</th>
<th>APU FUEL #/HR</th>
<th>APU H₂O #/HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>.083</td>
<td>~</td>
<td>19024.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>.083</td>
<td>20279.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:
3.25.2.3 ASCENT (LIFTOFF TO MECO)

This activity covers the operations from liftoff to Main Engine Cutoff and includes in the consumables the fuel and water required for the APU's operation in addition to the electric power. Figure 3-25.3 and Table 3-XXV.3 depict the profile and consumables rates for this sub-activity.
CONSUMABLES DATA SHEET
ACTIVITY DEFINITION
ACTIVITY LO-MECO

NUMBER OF OPERATIONS: K 0; J 1; L 0; N 1 (TOTAL)

Figure 3-25.3. Ascent Profile
Table 3-XXV.3. Ascent Consumables Rates

CONSUMABLES DATA SHEET

ACTIVITY _ASCENT_

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>ΔT (HRS)</th>
<th>EPS WATTS</th>
<th>A FT/SEC-HR</th>
<th>RCS A FT/SEC-HR</th>
<th>O$_2$ #/HR</th>
<th>N$_2$ #/HR</th>
<th>H$_2$O #/HR</th>
<th>LIOH CAN/HR</th>
<th>FUEL #/HR</th>
<th>H$_2$O #/HR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td>~</td>
<td>17,363.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>481.2</td>
<td>246.54</td>
</tr>
</tbody>
</table>

REMARKS:
3.25.2.4 POST ASCENT (MECO TO INSERTION)

This activity spans from MECO to Insertion and includes the consumables requirements as given in Figure 3-25.4 and Table 3-XXV.4, which are:

EPS - The electric power required for the electronic equipment operation.

RCS - The propellant quantity required for ETS, 4 fps ΔV, is entered as an equivalent acceleration of 800 ft/(sec-hr) for a period of .006 hours.

APU - The fuel and water required to maintain operational the APUs during this time period.
CONSUMABLES DATA SHEET
ACTIVITY DEFINITION
ACTIVITY MECO-ETS

NUMBER OF OPERATIONS: k 0; j 3; l 0; n 3 (TOTAL)

Figure 3-25.4, Post Ascent Profile
Table XXV.4. Post Ascent Consumables Rates

CONSUMABLES DATA SHEET
ACTIVITY POST ASCENT

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>ΔT (HRS)</th>
<th>EPS</th>
<th>RCS</th>
<th>OMS</th>
<th>ECS</th>
<th>APU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WATTS</td>
<td>A FT/SEC-HR</td>
<td>A FT/SEC-HR</td>
<td>O₂ #/HR</td>
<td>N₂ #/HR</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0.0144</td>
<td>17610.71</td>
<td>-</td>
<td>17610.71</td>
<td>442.2</td>
<td>245.97</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>0.006</td>
<td>17610.71</td>
<td>769.2</td>
<td>17610.71</td>
<td>442.2</td>
<td>245.97</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>~</td>
<td>176.071</td>
<td>-</td>
<td>176.071</td>
<td>442.2</td>
<td>245.97</td>
</tr>
</tbody>
</table>

REMARKS:
3.25.2.6 INSERTION (INSERTION TO ORBIT)

This activity covers the Insertion to Orbit period and includes in addition to the electrical power consumables, the fuel and water required for APUs operation. Figure 3-25.5 and Table 3-XXV.5 include this sub-activity profile and consumables rates.
CONSUMABLES DATA SHEET
ACTIVITY DEFINITION
ACTIVITY INSERTION

NUMBER OF OPERATIONS: K 0; J 2; L 0; N 2 (TOTAL)

Figure 3-25.5. Insertion Profile
Table 3-XXV.5. Insertion Consumables Rates

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>ΔT (HRS)</th>
<th>EPS WATTS</th>
<th>RCS A FT/SEC-HR</th>
<th>OMS A FT/SEC-HR</th>
<th>ECS O₂ #/HR</th>
<th>ECS N₂ #/HR</th>
<th>ECS H₂O #/HR</th>
<th>ECS LIOH CAN/HR</th>
<th>APU FUEL #/HR</th>
<th>APU H₂O #/HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0.083</td>
<td>17827.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14592.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:
3.25.2.6 ON-ORBIT (ON-ORBIT TO DEORBIT PREP)

The consumables requirements for this activity consist of the electrical power required to provide the crew life support functions and to maintain the spacecraft operational in conjunction with the Common activity (3.25.2.1). The profile and consumables rates are given in Figure 3-25.6 and Table 3-XXV.6. The decreasing power levels seen at the start of the activity correspond to the reconfiguration of the spacecraft subsystems at the completion of the Ascent and Orbit Insertion operations.
CONSUMABLES DATA SHEET
ACTIVITY DEFINITION
ACTIVITY ON-ORBIT

NUMBER OF OPERATIONS: K 0; J 4; L 0; N 4 (TOTAL)

Figure 3-25.6. On-Orbit Profile
Table 3-XXV.6. On-Orbit Consumables Rates

CONSUMABLES DATA SHEET
ACTIVITY ON-ORBIT

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>ΔT (HRS)</th>
<th>EPS WATTS</th>
<th>RCS A FT/SEC-HR</th>
<th>OMS A FT/SEC-HR</th>
<th>O2 #/HR</th>
<th>N2 #/HR</th>
<th>H2O #/HR</th>
<th>L1OH CAN/HR</th>
<th>FUEL #/HR</th>
<th>H2O #/HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>.681</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>1.156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>2.158</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>~</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
3.25.2.7 DEORBIT PREPARATION (DEORBIT PREP TO DEORBIT BURN)

The objective of this activity is the configuration of the Shuttle subsystems to perform the deorbit and entry operations. The activity includes a 0.133 hours checkout of the APUs required in preparation for the deorbit and entry phase, and an IMU alignment. The activity profile and consumables rates are given in Figure 3-25.7 and Table 3-XXV.7.
CONSUMABLES DATA SHEET
ACTIVITY DEFINITION
ACTIVITY DEORBIT PREP

NUMBER OF OPERATIONS: K₀; J₄; L₀; N₄ (TOTAL)

Figure 3-25.7. Deorbit Preparation Profile
Table 3-XXV.7. Deorbit Preparation Consumables Rates

CONSUMABLES DATA SHEET
ACTIVITY DEORBIT PREP

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>ΔT (HRS)</th>
<th>EPS WATTS</th>
<th>RCS A FT/SEC-HR</th>
<th>OMS A FT/SEC-HR</th>
<th>ECS O₂ #/HR</th>
<th>ECS N₂ #/HR</th>
<th>ECS H₂O #/HR</th>
<th>ECS LiOH CAN/HR</th>
<th>APU FUEL #/HR</th>
<th>APU H₂O #/HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>√</td>
<td>1.52</td>
<td>5954.90</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>√</td>
<td>0.23</td>
<td>7813.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>321.0</td>
<td>171.63</td>
</tr>
<tr>
<td>3</td>
<td>√</td>
<td>0.39</td>
<td>6968.36</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>√</td>
<td>~</td>
<td>8184.99</td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:
3.25.2.8 DEORBIT (DEORBIT TO ENTRY INTERFACE)

The objective of this activity is to effect the deorbit of the Shuttle Spacecraft by the use of the OMS propulsion system. The activity includes in addition to the deorbit maneuver, the operation of the APUs systems in preparation of the entry phase. The consumables requirements and their associated rates are included in Figure 3-25.8 and Table 3-XXV.8. The OMS propellant quantity allocated for the deorbit burn will be calculated in the MPP from the ΔV specified by the user. The propellant requirements from the RCS system are entered as an equivalent acceleration of 9.58 ft/ (sec-hr) for a period of .167 hours. The RCS system is used to place the Shuttle in the deorbit attitude.
CONSUMABLES DATA SHEET
ACTIVITY DEFINITION
ACTIVITY _DEORBIT_

NUMBER OF OPERATIONS: K_0_; J_2_; L_0_; N_2_ (TOTAL)

Figure 3-25.8. Deorbit Profile
Table 3-XXV.8. Deorbit Consumables Rates

CONSUMABLES DATA SHEET

ACTIVITY DEORBIT

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>AT (HRS)</th>
<th>EPS</th>
<th>RCS</th>
<th>OMS</th>
<th>ECS</th>
<th>APU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>.167</td>
<td>15368.53</td>
<td>9.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>.171</td>
<td>13382.63</td>
<td></td>
<td></td>
<td></td>
<td>728.4</td>
</tr>
</tbody>
</table>

REMARKS:
3.25.2.9 ENTRY (ENTRY INTERFACE TO SR)

This activity includes the consumables requirements from entry interface to stop roll out and are constituted in addition to the electrical power to the fuel and water required for the APUs operation. Figure 3-25.9 and Table 3-XXV.9 present the profile and consumables rates.
NUMBER OF OPERATIONS: K 0; J 1; L 0; N 1 (TOTAL)

Figure 3-25.9. Entry Interface Profile
Table 3-XXV.9. Entry Consumables Rates

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>ENTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPS</td>
<td>RCS</td>
</tr>
<tr>
<td>OMS</td>
<td>ECS</td>
</tr>
<tr>
<td>wt</td>
<td>h</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>FT/SEC-HR</td>
<td>FT/SEC-HR</td>
</tr>
<tr>
<td>O2</td>
<td>N2</td>
</tr>
<tr>
<td>#/HR</td>
<td>#/HR</td>
</tr>
<tr>
<td>H2O</td>
<td>LiOH</td>
</tr>
<tr>
<td>#/HR</td>
<td>CAN/HR</td>
</tr>
<tr>
<td>FUEL</td>
<td>H2O</td>
</tr>
<tr>
<td>#/HR</td>
<td>#/HR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>AT (HRS)</th>
<th>EPS</th>
<th>RCS</th>
<th>OMS</th>
<th>ECS</th>
<th>APU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:
3.25.2.10 LANDING (STOP ROLL OUT TO GSE)

This activity includes the consumables for the last mission activity and spans from stop roll out to the transfer to the GSE power. The profile and consumables rates are included in Figure 3-25.10 and Table 3-XXV.10.
Figure 3-25.10. Landing Profile

NUMBER OF OPERATIONS: K 0; J 4; L 0; N 4 (TOTAL)
Table 3-XXV.10. Landing Consumables Rates

CONSUMABLES DATA SHEET

ACTIVITY LANDING

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>J</th>
<th>L</th>
<th>(\Delta T) (HRS)</th>
<th>EPS WATTS</th>
<th>RCS A FT/SEC-HR</th>
<th>OMS A FT/SEC-HR</th>
<th>ECS (O_2) #/HR</th>
<th>ECS (N_2) #/HR</th>
<th>ECS (H_2O) #/HR</th>
<th>ECS LiOH CAN/HR</th>
<th>APU FUEL #/HR</th>
<th>APU (H_2O) #/HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-107</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>✓</td>
<td></td>
<td></td>
<td>.02</td>
<td>16812.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
<td></td>
<td></td>
<td>.03</td>
<td>14409.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>✓</td>
<td></td>
<td></td>
<td>.17</td>
<td>13759.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>✓</td>
<td></td>
<td></td>
<td>~</td>
<td>7139.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:

- w c a
- V
c
- 0
- dQ
- r'
4. DATA SOURCES AND MAINTENANCE PROCEDURES

The purpose of this section is to identify the data sources used to establish the consumables rates for the activities presented in Section 3, and in addition, to provide the user procedural information to facilitate the maintenance of the activities consumables data.

As defined in Section 3, each activity includes a description of the process to be performed, the subsystems required to carry out this process, and the consumables usage rates for each subsystem consumable. The activities structure is based on the SOURCE Data Base activity blocks (Ref. 4) developed for the consumables analysis of the EPS. The SOURCE activity blocks were modified to include the consumables rates for all subsystems and to conform with the Mission Planning Processor format as defined in Section 2.

Consumables rates for the various subsystems were obtained from the following:

EPS - The SOURCE activity blocks (Ref. 4) were used to construct the activities profiles. The EPS consumables rates were derived from the power levels of the activities employed to perform the consumables analysis for the OFT-6 mission (Ref. 5). Table 4-I is herein included as a cross reference of the activities presented in this and the referenced documents. Examination of Table 4-I will show that most of the Flight Common activities (25.1 through 25.10) include more than one SOURCE activity. These groupings were selected to accommodate concurrent SOURCE activities during the mission ascent and descent phases in order to satisfy the input format of the Mission Planning Processor. This activity merging procedure was implemented using the activity utilization defined in the timeline of the OFT-6 consumables analysis (Ref. 5). Additionally, and because of the "pre" and "post" time periods characteristics of the activities presented in this document, individual SOURCE activities representing these time periods were combined into a single activity.
<table>
<thead>
<tr>
<th>NO.</th>
<th>ACTIVITY NAME</th>
<th>SOURCE (REFERENCE 4) BLOCK ACTIVITY NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OMS MANEUVER</td>
<td>301, 407</td>
</tr>
<tr>
<td>2</td>
<td>RCS TRANSLATION</td>
<td>303, 305</td>
</tr>
<tr>
<td>3</td>
<td>ATTITUDE HOLD</td>
<td>309</td>
</tr>
<tr>
<td>4</td>
<td>RENDEZVOUS</td>
<td>409</td>
</tr>
<tr>
<td>5</td>
<td>STATION KEEPING</td>
<td>405</td>
</tr>
<tr>
<td>6</td>
<td>DOCK</td>
<td>411</td>
</tr>
<tr>
<td>7</td>
<td>UNDOCK</td>
<td>413</td>
</tr>
<tr>
<td>8</td>
<td>PTC</td>
<td>301</td>
</tr>
<tr>
<td>9</td>
<td>EVA</td>
<td>417, 419</td>
</tr>
<tr>
<td>10</td>
<td>IVA</td>
<td>415</td>
</tr>
<tr>
<td>11</td>
<td>MANIPULATOR OPERATIONS</td>
<td>451, 453</td>
</tr>
<tr>
<td>12</td>
<td>IMU ALIGNMENT</td>
<td>407</td>
</tr>
<tr>
<td>13</td>
<td>PAYLOAD BAY DOORS</td>
<td>435, 437</td>
</tr>
<tr>
<td>14</td>
<td>PAYLOAD CONSUMABLES</td>
<td>NOT DEFINED</td>
</tr>
<tr>
<td>15</td>
<td>COMPUTER</td>
<td>N/A</td>
</tr>
<tr>
<td>16</td>
<td>TV</td>
<td>421</td>
</tr>
<tr>
<td>17</td>
<td>DOWNLINK</td>
<td>N/A</td>
</tr>
<tr>
<td>18</td>
<td>UPLINK</td>
<td>N/A</td>
</tr>
<tr>
<td>19</td>
<td>FUEL CELL PURGE</td>
<td>431</td>
</tr>
<tr>
<td>20</td>
<td>EAT</td>
<td>423</td>
</tr>
<tr>
<td>21</td>
<td>SLEEP</td>
<td>427, 429, 303</td>
</tr>
<tr>
<td>22</td>
<td>WASTE MANAGEMENT</td>
<td>425</td>
</tr>
</tbody>
</table>
Table 4-I. Activity Cross Reference (Concluded)

<table>
<thead>
<tr>
<th>NO.</th>
<th>ACTIVITY NAME</th>
<th>SOURCE (REFERENCE 4) BLOCK ACTIVITY NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>APU CHECKOUT</td>
<td>207</td>
</tr>
<tr>
<td>24</td>
<td>RESERVED</td>
<td>N/A</td>
</tr>
<tr>
<td>25.1</td>
<td>COMMON (GSE TO GSE)</td>
<td>101</td>
</tr>
<tr>
<td>25.2</td>
<td>PRELAUNCH (GSE TO LIFTOFF)</td>
<td>103, 201, 203, 207</td>
</tr>
<tr>
<td>25.3</td>
<td>ASCENT (LIFTOFF TO MECO)</td>
<td>103, 201, 203, 207, 121, 303, 205, 311</td>
</tr>
<tr>
<td>25.4</td>
<td>POST-ASCENT (MECO TO INSERTION)</td>
<td>103, 207, 121, 303, 205, 209, 307, 311</td>
</tr>
<tr>
<td>25.5</td>
<td>INSERTION (INSERTION TO ORBIT)</td>
<td>207, 121, 307, 105, 309, 401, 107, 403</td>
</tr>
<tr>
<td>25.6</td>
<td>ON-ORBIT (ON-ORBIT TO DEORBIT PREP)</td>
<td>121, 105, 309, 107, 403</td>
</tr>
<tr>
<td>25.7</td>
<td>DEORBIT PREP (DEORBIT PREP TO DEORBIT)</td>
<td>433, 507, 109, 301, 111, 121, 309</td>
</tr>
<tr>
<td>25.8</td>
<td>DEORBIT (DEORBIT TO ENTRY INTERFACE)</td>
<td>507, 109, 301, 111, 501, 503, 121</td>
</tr>
<tr>
<td>25.9</td>
<td>ENTRY (ENTRY INTERFACE TO SR)</td>
<td>507, 109, 111, 503, 509, 121</td>
</tr>
<tr>
<td>25.10</td>
<td>LANDING (SR TO GSE)</td>
<td>507, 109, 505, 121</td>
</tr>
</tbody>
</table>
ECS - All the ECS consumables rates, except as indicated, were taken from Section 4.6 of Volume I of the Shuttle Operational Data Book (Ref. 6). These rates were incorporated in the activities as required and include:

Oxygen
- **Metabolic Consumption:** 0.073#/HR/MAN (1.76#/DAY/MAN), @ 447 BTU/HR.
- **Cabin Leakage:** 0.10#/HR, representing the O₂ proportion of a total atmospheric leakage of 10#/DAY at 3.528 PSI O₂ PP and 14.7 PSI total pressure as per Ref. 6.
- **EVA Preparation:** 2.40#/MAN, corresponding to the crew denitrogenization requirements at 0.80#/HR/MAN.
- **Post EVA:** 0.83#/MAN for suit pressuring.
 - 1.6#/EMU, for EMU recharge
 - 2.97#, for airlock repressurization corresponding to a 150 ft³ volume, a PP O₂ of 3.528 PSE, and total pressure of 14.7 PSI, at 70° F.

Nitrogen
- **Cabin Leakage:** 0.316#/HR, representing the N₂ proportion of a total atmospheric leakage of 10#/DAY at 11.172 N₂ PP and 14.7 PSI total pressure.
- **Post EVA:** 8.25#, for airlock repressurization corresponding to a Volume of 150 ft³, a PP N₂ of 11.172 PSI and total pressure of 14.7 PSI, at 70° F.
- **Potable Water**
 - 0.2375#/HR/MAN for metabolic consumption and food preparation.
 - 12# for panel recharge during EVA.
- **LiOH Cannisters:** 0.02083 CANN/MAN/HR, based on a CO₂ production rate of 2.11#/MAN/DAY, and a CO₂ absorbing capacity of 4.2336# per cannister.

OMS - There are no OMS consumables rates included in the activities. The OMS propellant requirements are internally calculated in the Mission Planning Processor from the spacecraft weight and the acceleration (ΔV) specified by the user to accomplish a given maneuver.
RCS - The RCS consumables usage rates included in the activities were derived from analysis of the RCS propellant budgets for the BRM-1 and BRM-2 missions presented in Reference 7. Table 4-II summarizes the propellant requirements for the performance of those mission activities requiring the use of the RCS subsystem. The rates presented in this table (4-II) correspond to the average propellant requirements as budgeted in Reference 7.

To conform with the activity format defined in Section 2, the RCS consumables rates for the activities presented in Section 3 are given in terms of an equivalent acceleration "FT/SEC-HR" for a specified time period "HRS". The product of these factors and the corresponding constants from Table 4-II resident in the Mission Planning Processor will yield the RCS propellant quantities.

APU Fuel (Hydrazine) - The consumables (fuel) rates presented in the activities for the APU constitute the fuel consumption rates for three units obtained from Reference 8.

APU Water - The consumables (water) rates presented in the activities for the APU constitute the water required to cool the three APU units by means of a water boiler in each unit as obtained from Reference 9.
Table 4-II. Average RCS Propellant Requirements

<table>
<thead>
<tr>
<th>EVENT</th>
<th>REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCS TRANSLATION</td>
<td>26.0 LBS/FPS</td>
</tr>
<tr>
<td>MANEUVER TO FIX ATTITUDE FOR:</td>
<td></td>
</tr>
<tr>
<td>IMU ALIGNMENT</td>
<td>21.0 LBS/MNVR</td>
</tr>
<tr>
<td>SLEEP PERIOD</td>
<td>21.0 LBS/MNVR</td>
</tr>
<tr>
<td>THERMAL CONDITIONING</td>
<td>21.0 LBS/MNVR</td>
</tr>
<tr>
<td>EXPERIMENTS</td>
<td>21.0 LBS/MNVR</td>
</tr>
<tr>
<td>LVLH</td>
<td>21.0 LBS/MNVR</td>
</tr>
<tr>
<td>MANEUVER TO OMS BURN ATTITUDE</td>
<td>43.0 LBS/MNVR</td>
</tr>
<tr>
<td>MANEUVER TO RCS BURN ATTITUDE</td>
<td>43.0 LBS/MNVR</td>
</tr>
<tr>
<td>START/STOP THERMAL CONDITIONING (.5 DPS)</td>
<td>11.0 LBS/EVENT</td>
</tr>
<tr>
<td>ATTITUDE HOLD DURING SLEEP PERIOD</td>
<td>3.0 LBS/HR</td>
</tr>
</tbody>
</table>
REFERENCES

4. Orbiter Electrical Equipment Utilization Baseline, JSC IN, to be published.

7. The Orbiter Configuration Control OMS and RCS Propellant Budget, Revision 1, JSC IN 75-FM-1, August 22, 1975.
