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SECTION 1

INTRODUCTION AND SUMMARY

1.1	 INTRODUCTION

*
This report is the Third Interim Technical Report covering three

studies performed by The Charles Stark Draper Laboratory, Inc., for
the NASA Goddard Space Flight Center during the period from August 1,

1974 to October 31, 1975. These studies were as follows:

(1) Modified Landmark Utilization Study - An investigation into

the use of range and range-rate measurements combined with

known landmark sightings using earth sensor imagery to esti-

mate spacecraft attitude, orbital ephemeris, and gyro bias

drift. The original. Landmark Utilization Study 
(1)** 

had

investigated the combined use of star and known landmark

sightings.

(2) Development of Star and Landmark Measurement Equations -

A detailed analysis of star and landmark measurement errors

and sensitivities.

(3) Horizon Utilization Study - An investigation into the use

of horizon measurements for estimation of spacecraft atti-

tude and gyro bias drift.

Most of these studies represent a natural follow-on to previous

studies performed by CSDL for GSFC pertaining to the optimal treatment

of attitude and orbital ephemeris information for spacecraft that gen-

erate high--resolution imagery of the Earth. (A brief description of
the previous studies is given in the next subsection). One of the long-

range goals of this overall effort has been to determine how spacecraft

attitude and orbit data can best be used to improve the mapping accur-

acy of a multi-spectral scanner.

* A fourth task involving the actual use of army searchlights with
Landsats 1 and 2 is still underway and a complete report on this
effort will be made in the Final Report.

** Superscripts refer to numbered references at the end of this report.

1-1
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1.2	 PREVIOUS STUDIES

Since July 1971, the Draper Laboratory has performed various

studies for GSFC pertaining to the determination of attitude and orbital

ephemeris for an advanced Earth observation Satellite WOS). These

are briefly described chronologically in the following paragraphs.

Initial SIMS Trade Study. This study (2,3,4) provided GSFC

with technical data that could be used for selection of an optimum

Stellar-Inertial Measurement System (SIMS) for EOS. From a large

number of initial SIMS candidates the following three candidates were

selected for detailed evaluation:

SIMS-A Strapdown gyros and 	 Derived from
strapdown star mapper	 Honeywell SPARS

SIMS-S Strapdown gyros and 	 Derived from TRW
gimbaled star tracker	 PPCS/PADS

SIMS-C 3-Axis gimbaled gyro 	 Subsystems
platform and strapdown	 defined by CSDL
star mapper

A significant accomplishment of this study was the generation of

statistical data showing how well the spacecraft attitude and gyro bias

drift could be estimated for each candidate. use was made of an opti-

mal smoother to obtain 'least squares' estimates of attitude and gyro

bias drift after processing star measurements over several orbits.

Detailed SIMS-A Study. This study (5) was a more detailed and

accurate Monte Carlo simulation of SIMS A. This confirmed the statis-

tical estimates of accuracy obtained in the previous study. Performance

data was also generated showing the effects of certain bias errors that

had not been modeled before in earlier covariance studies. These in-

cluded errors such as gyro scale factor error and gyro input-axis mis-

alignment.

0
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Attitude Determination with Landmarks. This was an investigation
(5) to determine how well spacecraft attitude and gyro bias drift could

be estimated using known landmarks in the sensor imagery. The pro-

mising results indicated a possible backup method of attitude deter-

.	 mination in the event of star sensor failure.

Mapping Error Sensitivity to Errors in Spacecraft Attitude and

Orbital Ephemeris. The main objective of this study (6) was to deter-

mine the effects of errors in spacecraft attitude and in orbital ephe-

meris on the ability to determine the locations of unknown landmarks

relative to known landmarks. Emphasis was placed on landmark location

accuracy within the continental USA. One significant result was the

discovery that errors in spacecraft attitude and gyro bias drift have

a reduced effect on mapping errors due to the presence of certain

negative correlations.

Attitude and Ephemeris Determination with Landmarks and Stars.

This study (l) was an investigation into the use of star sightings

together with known landmarks to estimate spacecraft attitude, gyro

bias drift and orbital ephemeris. A 12-state covariance analysis was

employed for the simulations. one important finding was that known

landmarks could be used together with star sightings to satisfactorily

estimate orbital ephemeris.

Artificial Landmark Implementation. This study (1) was an investi-

gation into the feasibility and practicality of establishing a national

system of artificial landmarks suitable for automated recognition.

1.3	 SUMMARY

Section 2 reports the results of the modified landmark utilization

studies. A covariance analysis is used to compute satellite state

uncertainties with emphasis on systems involving landmark sightings,

and tracking facilities. Equations governing the cooiiinate trans-

formations, the state dynamics, and the estimation process- are given.

Simulation results are given for parametric variations of measurement

noises and vpdate frequencies, and for various combinations of measure-

ment systems.

i
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Section 3 derives generalized measurement equations for star and

landmark sightings. The derived equations are specific to certain types

of star trackers and landmark sensors, but consider general types of

noise sources.

Section 4 presents the results of a study aimed at the use of

infrared horizon measurements for satellite attitude and gyro bias

drift updates. Measurement equations are derived, the state and esti-

mation equations are given, and simulation results are presented. The

results consider variations in measurement noise and update frequency

for both sun-synchronous and earth--synchronous orbits.

i
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SECTION 2

MODIFIED LANDMARK UTILIZATION STUDY

2.1	 INTRODUCTION

The purpose of the Modified Landmark Utilization Study is to

investigate the use of ground or navigation satellite tracking measure-

ments of range and range-rate together with the use of known landmarks

observed in the imagery of a multi-spectral scanner (MSS), to estimate

spacecraft attitude, orbital ephemeris and gyro bias drift. This sys-

tem configuration was proposed as an alternative to the one studied

in the original Landmark Utilization Study (1) . The original study con-

sidered the use of star measurements together with known landmark

observations. The present study is thus the original study "modified"

to incorporate range and range-rate measurements.

This study considers radar measurements of the range and range-

rate between an Earth Observation Satellite (EOS) and either a ground

tracking station or a navigation satellite of the TDRSS (Tracking and

Data Relay Satellite System) type. For the ground tracking configu-

ration, the use of two unified S-Band System radars located at Merritt

Island, Florida and at Goldstone, California, are found to be suffici-

ent to give satisfactory tracking of EOS over the continental USA. For

the navigation satellite tracking configuration, two geosynchronous

TDRSS satellites located over the equator at 41 and 171 degrees west

longitude are employed.

The Earth Observation Satellite is assumed to be in a circular

sun-synchronous orbit with an inclination of 99 degrees and an altitude

of 1000 km (540 nmi). This study also includes the effect of gravitat-

ional harmonic uncertainties. Figure 2-1 illustrates a typical obser-

vational pass over the continental USA. The ground tracking stations

at Merritt Island and Goldstone are indicated. Shown on board the

satellite is a multispectral scanner whose beam sweeps back and forth

across the ground track to generate a swath of imagery 90 nmi (167 km)

wide.

*Although the swath width for Landsat and the planned EOS is 100 nmi
(185 km), the present study is restricted to using landmarks over
a smaller swath width since this was the desire of GSFC.

2-1
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-axisUnder nominal attitude conditions (that is, witia the X

along the local horizontal,ard zero roll and yaw angles), the space-

craft body axes (XB ,YB ,Zg ) are oriented as shown in Figure 2--1, with

X  in the direction of spacecraft motion and Z  pointing to nadir. It

is assumed that the spacecraft has three orthogonal body-mounted gyros

•	 aligned with its principal body axes.

In this study optimal filtering techniques are used to process

the landmark and the range and range-rate measurements. Since the

study is primarily concerned with obtaining a statistical measure of

performance in estimating spacecraft attitude, orbital ephemeris, and

gyro bias drift, a covariance type of analysis is used. Here, the

covariance matrix of the uncertainties in the estimates of the state

parameters is propagated and updated using Kalman filter equations.

This approach yields a statistical indication of achievable performance

for a given system error and measurement noise model.

it should be noted that there are drawbacks to limiting an error

analysis to covariance matrix processing alone. one drawback, of

course, lies in the simplifying assumptions relative to modeling of

spacecraft orbit and attitude history. Another is found in the incom-

plete modeling of system biases and random processes. To minimize the

effects of modeling inadequacies, all important error sources should

be modeled. If the statistics for certain states are truly Gaussian,

the Kalman filter in linear form can be shown to be optimal. However,

if the statistics of some states are poorly known or incorporate non-

zero biases, the effort to incorporate poorly modeled states may result

in unacceptable performance.

Consider States

One example of a state modeling problem in the present study is

that associated with the TDRSS satellite ephemeris uncertainties. Dur-

ing the relatively short time of data processing in the present study

(typically,	 it would seem reasonable to expect very little

change i.i the TDRSS satellite ephemeris uncertainties. Hence,

measurements by TDRSS can be considered

2-3
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highly time-correlated or as hawing bias components. Rather than

model these uncertainties as white noises, or estimable biases,another

approach is to model them as "consider" states. This approach enables

the Kalman filter to recognize the presence of the "consider" state

variable errors which are unobservable while minimizing the number of

estimator or covariance states. The consider state equations are given

in section 2.7. Results are given in Section 2.8.4 comparing esti-

mation uncertainties with TDRSS ephemeris uncertainties modeled as

white noises and as consider states.

Gravitational Harmonic Uncertainties

The effects of gravitational harmonic uncertainties are included

in all covariance runs made for this study. Also taken into account

is a 0.2 PPM uncertainty in the main gravitational constant, µ. The

term-by-term difference between the two most recent Smithsonian gravi-

tational models, SEIII (1973) and SEII (1969), as represented in the

C and S expansion coefficients (through n,m = 10, 10 ) is initially

defined to be equal to the one sigma uncertainty in knowledge of these

coefficients. These differences are subsequently scaled down to match

propagation data obtained from GSFC for 5 orbits. The scaling effect-

ively defines the one sigma uncertainties as one--third of the difference	
-.J

between SEII and SEIII coefficients.
3

To model these uncertainties directly using Monte Carlo techni-

ques would be excessivly time--consuming. As an approximate and fea-

sible alternative, ephemeris uncertainty covariance matrices, repre-

senting the portion of the orbit that is inaccessible to radar track-

ing, are generated by Monte Carlo runs with randomized gravitational

constant uncertainty. In the covariance runs made for this study this

ephemeris uncertainty covariance matrix is incorporated into the simu-

lations at the start of each pass over the USA. Thus the gravitational

harmonic uncertainties acting over that portion of the orbit which is

beyond radar coverage is approximately accounted for. The effect of

these uncertainties on that portion of the pass over the USA having

radar coverage is not modeled, since it is relatively negligible.

2-4	 1
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2.2 SUMMARY

This report presents the analytical equations and uerformance

results of the Modified Landmark Utilization Study. The study investi-

gates the use of range and range rate measurements by ground or TDRSS

•

	

	 tracking stations, in combination with landmark and/or star measure-

ments, to update a state vector which includes EOS spacecraft attitude,

oribtal ephemeris and gyro bias drift. Optimal Kalman filter techniques

were used to process the different types of measurements. A covar-

iance analysis that gives a statistical indication of performance in

estimating spacecraft attitude and orbital ephemeris was adopted for

'	 this study. For studies involving TDRSS ephemeris uncertainties,

"consider" states were added to the covariance data processing to im-

prove the modeling. The study is restricted to the use of landmarks

and ground tracking stations within the continental USA and Alaska.

The effect of gravitational harmonic uncertainties is also incorp-

orated into the simulations.

Comparative data is presented showing the performance obtained

with various-combinations of the indicated measurements. Data is also

presented showing the sensitivity of performance to variations in the

following parameters:

(1) Initial uncertainties in spacecraft attitude, orbital

ephemeris and gyro bias drift.

(2) Ground tracking station location uncertainty.

(3) Range and range-rate measurement noise.

(4) Number of range and range-rate updates per pass.

(5) Number of landmark updates per pass.

(S) Landmark position uncertainty.

2--5



The data presented shows that range and range-rate measurements

alone can be used to satisfactorily estimate orbital ephemeris, but

that landmark measurements must also be incorporated to satisfactorily

estimate spacecraft attitude and gyro bias drift.

2.3	 COORDINATE SYSTEMS

This section defines the reference coordinate systems or frames

used in the error study and simulations. These primary reference

frames are the following:

Basic Inertial (I--frame)

Orbit-Oriented Inertial (0-frame)

Body-Fixed (B--frame)

2.3.1 Basic Inertial Coordinate System (1-Frame)

The coordinate axes for this system are defined in Figure 2--2-

The axes XI and Y  both lie in the equatorial plane with X I pointing

towards the vernal equinox. Axis Z I points along the north polar axis

of the Earth. Star catalogs normally give the directions of stars in

this coordinate system.

2.3.2 Orbit-Oriented Inertial Coordinate S ystem (0-Frame)

This system of axes is also defined in Figure 2-2. The coordinate

system is oriented relative to the basic inertial coordinate system

through the angles n and i. The first angle is the right ascension of

the orbit ascending node, and the angle i is the orbit inclination.
a

This orbital plane does precess slowly about the earth's rotational

pole due to oblateness of the earth. However, the orbit--oriented co-
	 I

ordinate system is defined herein to be an inertial frame since, in our

simulations, orbit plane rotation due to precession is ignored as it

would add unnecessary complexity to the simulations. Since real rota-

tion of the EOS orbit plane is a small fraction of a degree over the

course of a typical simulation, the distribution of available stars is

not affected by such precession. The transformation matrix T 01 , from
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coordinates is given by:

	

s SZ	 0

	

co	 0	 (2-l)

	

0	 1

Thus a star vector 5 0 in

given the star vector sl in
t	 ^

basic inertial to orbit-oriented inertial

1	 0	 0	 CD

T01	 0	 ci	 si	 -SR

0	 -si	 ci	 0

where c denotes cosine, and s denotes sin

the orbit-oriented frame can be computed,

basic inertial coordinates.

	

s0 = T01 s 1	 (2--2)

2.3.3 Spacecraft Body-Fixed Coordinate System (B-Frame)

_J

The axes of this system are such that X B , YB , and Z  are respect-

ively the ro^1, pitch and yaw axes of the spacec=aft. The nominal

orientation of these axes is as follows:

XB - is along the projection of the spacecraft velocity 	
i

vector onto the local horizontal plane

Y 
	 - is normal to the orbital. plane

Z 
	 - is along the local nadir

The orientation of the B-frame with respect to the 0-frame is shown in

Figure 2-3. The transformation from the O--frame to the B -frame is

through the Euler angle sequence of pitch (0), roll	 and yaw (^)

as shown in Figure 2-3 and expressed by:

	

0	 1	 0	 1	 0	 0	 CO	 0 -SO	 c0	 s6	 0

TBO =	 0	 0 -1	 0	 CO sq)	 0	 1	 0	 --so	 ce	 0

	

-1	 0	 0	 0 -S* cq)	 s'p	 0	 cep	 0	 0	 1

(2-3)
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The input axes for the strapdown gyros are ideally colinear

with the spacecraft body-fixed axes, so that X g = XB , Yg = Y$ and

Zg = Z$,

2.4	 SYSTEM EQUATIONS

2.4.1 General Comments

In the present study the state to be estimated consists of

twelve parameters which comprise 3 attitude angles, 3 orbital position

components, 3 orbital velocity components, and the bias drift of each

of 3 gyros. These parameters can be represented as the components of

a twelve dimensional state vector x. The dynamic behavior of the sys-

tem with the above state can be described by the following nonlinear

differential state equation:

x = f (x, u, t)
	

(2-4)

where t is time and u is the noise introduced by gyro random drift,

gyro quantization, etc_ . A priori information about the statistics

of the noise u is given by the covariance matrix Q where:

E I u (t) uT (T) I= Q • 6 ( t -T)
	

(2-5)

At some arbitrary time, tn , a measurement z (tn) is taken. This mea-

surement is related to the state through the measurement equaktion:

Z ( tn ) = h (x (tn ) , v (tn ) , tn )
	

(2--6)

where v (tn) is the measurement noise of a zero mean white gaussian

process whose covariance matrix R is given by:

E [v (tn) vT(tn-1) ) = R • 6(t n- t n-1 ) 
	 (2--7)

For the special case where Equations 2-4 and 2-6 are linear, the stand-

ard Kalman Filter would be used to obtain optimal estimates of the
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state. However, in the present case, these equations are nonlinear

and must be linearized before using the so-called "Extended Kalman

Filter". This linearization is generally performed around the esti-

mated values of the state. In the present covariance analysis, how-

ever, there is no estimated state and use is made of the known nominal

state for this purpose.

For the Extended Kalman Filter, the new state and measurement

vectors are defined as:

Ix = x - Xnom	 (2-8)

8z = z - ?nom

The corresponding state and measurement equations are:

dx = F Sx	 + G 6u	 (2-9)

Sz = H dx	 + A dv	 (2-10)

where the matrices F, G, H, and A are:

	

F = o f	 G =	 f

8 x	 9 u
w x nom	 x nom

U = 0	 u = 0	 (2-11)

	H = ah	 A = ah

	

^x	 av
: -nom	 x nom
v = 0	 v = 0

2.4.2 State Dynamics

The original nonlinear state of the system x is defin ed as the

following twel ,:N dimensional vector:
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XT _. ( B r a *, BX F By r B z , X, Y, Z, vx, Vy , vZ)T(2-12)

where

6,0,q - Miler angles defining the body attitude with

respect to the orbital frame.
r

	

	 `

BX$ By , Bz - Bias drift of roll (X), pitch (Y), and yaw (Z) gyros

Components of the spacecraft position vector in the	 +

Basic Inertial frame

vx , vy , vz - Components of the spacecraft velocity erector
in the Basic Inertial frame

The egi,ations that relate the Buler rates 	 the spacecraft

k6dy rates ( wX , Wy , w Z ), measured by the X, Y, and Z gyros, are given by:

6	 si r-O	 -cq,/co	 0	
41x

-	 car	 0guy	 (2-13)

Sc SO/cc	 -s^co/co --1	 u^Z	 5

or in matrix notation:

= G ( ) w	 (2-14)

where 	 = (0,^,^Y)

T
W	 WX, Wy , W21	

i

G M = the matrix in Equation 2-13. 	 s

The relationship between the gyro measured body rates Wand the

true body rates (w,• ) sensed by the gyros is:

DW t (2-15)w =	 -i•	 ^

where	 WT = (0, -Wo , 0)	 (Clio = orbital. rate) 	 (2-16)	 ^



_.	

d

and D represents the gyro drift rate which can be expressed as follows:

D = B + ri	 (2 -17)

where B = gyro bias drift

n - additive white noise (gyro random drift).

The gyro random drift is assumed to be a zero mean white gaussian

noise whose covariance matrix Q is given by:

E	 [n (t) r)T (T) 1 = 0 ' b (t- r)	 (2--18)

Equations 2-14 can therefore be rewritten as:

F = G{^) r_t + G(^) B + G(E)n	 (2-19)

Since the components of the B vector are unknown constants, they should

be included as additional elements to be estimated in the state vector.

This can be done by augmenting Equation 2-19 and including B in the

state. Recalling that for constants there are no dynamics:

BT =	 (0, 0, 0)	 (2-20)

Hence, Equation 2-19 can be changed to:

0 3 	G(F)	 G (^)

	

+	 (u^ + n)	 (2-21)

B	 03	 03	 B	 03

where 0 3 is a 3 x 3 null matrix.

Since the orbital dynamics are uncoupled with the attitude angle

dynamics, their description is given by a separate set of first-order

ordinary differential equations:

*For the purposes of this study, the gyro bias drift is assumed to be
unknown. However, in normal practice, a portion of the gyro bias drift
is Usually known and is compensated for whet ► integrating the outputs
of the gyros.

z -1 z
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r	 v

V	 -u	 (2-22)

^rl3 r

where

YT 
= (Vx r vy r vZ)

E  
= (x, y r G)

µ = gravitational constant

The combined state of the system for attitude, orbital ephemeris, and

gyro bias drift can be written as:

x  = (E T , BT , rT , vT )	 (2-23)

where the dynamics of this state are given by Equations 2-21 and

2--22. Kowever, both equations are nonlinear zid must be linearized

around the nominal state values. Let a new 12 dimensional state be

defined as follows:

6x  = (SST , SBT, 6r  SvT}	 (2-24)

where

S _	 ^o r Sr = r - r

(2-25)

SB = B - BB dv = v - vo

	In Equations 2-25 the vectors r
o	 -o
and v are the position and velocity- 

for a nominal circular orbit with an orbital rate w0 , and

T =	 ( W ot, 0, 0), B	 = (01 0 ' 0)



To linearize Equation 2--21 define:

F 1 =^	 G(&) wt	 0	 0	 0

0	 0	 -ca
0

0	 4+	 0
0

(2--26)

0	 -1	 0
G1 

y c {^)	 =	 1	 0	 0	 (2-27)

0	 0	 -1

so that the linearized expression for Equation 2-21 can be written as:

S	
^1	

G1 
	 i G 

	

+	 do	 (2-28)
6B	 03	 03	 dB	 03	

-

To linearize Equation 2-22 define:

a	 -w	 rF2 
= o 

J	
Irl3 -

r = r

( r2 - 3x 2 } -3xy	 -3xz

	-3xy	 (r2_3y2) -3yz	 (2-29)

	

r 5	 -3xz	 --3yz	 (r2-3z`)

where x, y, and z are the components of xa and r is the magnitude of

ro . The linearized expression for Equation 2-22 can now be written as:

dr	 03	 13	 6r
_	 (2--30)

dv	 F2	 03	 6v

where 1 3 is a 3 x 3 identity matrix.
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E

Having determined the linearized state equations for both atti-

tude and orbital ephemeris (Equations 2-2B and 2-30), these equations

may be combined to represent the state equation of the full linearized

state as follows:

&x = Fax + Gan	 (2-31)

where ax is given in Equation 2-24 and

F1	G1	 03	 03	 G1

0 3	 03	 03	 03	 03
-	 =0 3	 03	 03	 13	

G	 03	 (2-32)

0 3	 03	 F2	 03	 03

Since F 1 and G 1 are time invariant, because of linearization

around the nominal state instead of the estimated state, a transi±ion

matrix can be derived for the attitude state Equation 2-26 using

Laplace transform techniques:

t
1	 0	 0	 0	 -Atk	 0

q)att (k,k-1) =	 0	 C	 -S t S1w0	0	 (1-C) /w0

0	 S	 C	 (1-C) /m0 	0	 -S /w0

-----_-----	 (2-33)

0 3	 t	 33

where k and k--1 denote the times (tk and tk-1 ) of the present and

previous measurements: w  is the orbital rate; At  = tk-tk-1;S=sin(a)`

C = cos (a); and A = woAtk.

The derivation of the transition matrix for the orbital ephemeris

state equation (Equation 2-30) is more complicated since F 2 is time

varying. However, an approximate solution (9) in local vertical co-

ordinates is:
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(2-C)	 S	 0	 S /W0	 2(1-C) /w0 	 0

(2S-3A)	 (2C-1) 0	 2(C-1) /w0 (4S-3A) /m0	0

(DLV (k,k-1) =	 0	 0	 C	 0	 0	 S/wa

w0 (3A-S)	 w0 (1--C) 0	 (2-C)	 (3a-2S)	 0	 (2--34)

W0 (C-1)	 -w0S	 0	 -S	 (2C-1)	 0

0	 o	 S	 0	 0	 C0

The transition matrix in Equation 2-34 can be expressed in basic in-

ertial coordinates as follows:

(D eph (k,k -1) = T 4)LV (k, k-1) TT	(2-734a)

where:

T	 - TILV	 03

0 3	 TILV

_	 T
TILV	 T0I TOLV

C	 -S	 0

TOLV - S	 C	 0

0	 0	 1

The transition matrix for the combined state for perturbations on atti-

tude, gyro bias drift, and orbital ephemeris is therefore:

Batt (k, k-1)	 0 6

Ck, k-1) =	 06	 4Deph(k,k-1)	 (2-35)

where 06 is the 6 x 6 null matrix.
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2.5 MEASUREMENT EQUATIONS

For this study the measurement data is primarily collected from

two instruments, the multi-spectral scanner and the tracking radar.

The first measures the line-of-sight (LOS) to known landmarks while

the second measures range and range rate from either ground stations

or navigation satellites. Also included in the study for comparison
0

purposes is measurement data from the star tracker (8 FOV) of the LOS

to known stars. The measurements are usually assumed to be corrupted

by white noise.

2.5.1 Landmark Measurements

Landmark measurements are obtained by using a multi-spectral

scanner (MSS) whose beam sweeps back and forth across the ground track

to generate a 90 mile wide swath of ground imagery (see Figure 2-1).

Under the nominal attitude conditions considered in this study, the

maximum angular excursion of the beam from local vertical is 4.8 0 . The

direction of the beam in body coordinates is defined by the angles

*M and 6M . Here a  is the sweep angle, measured positively about the

x body axis, between the z body axis and the beam; and 
S  

is nominally

zero and is primarily introduced to account for errors in the remaining

dimension of angular measurement.

Since the beam is always near the local vertical, the downrange

and crosstrack errors in landmark position were modeled as equivalent

angular errors in a  and 6M . It should be noted that a full scheme in-

cluding state estimation would require a more exact error model. The

above simplified model was considered to be adequate for this covariance

analysis. No consideration was given to landmark altitude error since

the system sensitivity to this error is relatively small.

7

The unit vector

body coordinates is:

1	 0

lm$ =	 0	 caM

0	 saM

defining the measured LOS to the landmark in

0	
CO 	 0	 sSM	

0	
saM

-saM 	 0	 1	 0	 0 - -sa.M co M	 (2-36)

CCE M 	 -s QM 0	 c BM	 1	 caMC8 M
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The estimated LOS to the landmark in body coordinates is the

following unit vector:

lmB = TBO TOT Unit (1 - r)	 (2-37)

where r is the estimated spacecraft position vector and 1 is the land-

mark position vector, both in basic inertial coordinates at the time

of measurement.

2.5.2 Range and Range-Rate Measurements

The range and range--rate measurements represent the range and

the range rate between EOS and either a ground tracking station (USES

radar) or a navigational satellite.

The range from a tracking station to the spacecraft is simply:

Rs 	r,TI	 (2-38)

and the range rate is:

Rs - (v - vT )	 (r	 ^)	
(2-39)

where r, v are the spacecraft position and velocity vectors, and KT,

IT are the tracking station position and velocity vectors in basic

inertial coox.linates at the time of measurement.

For this study the tracking station may be either (1) a ground

tracking station, or (2) a geosynchronous navigational satellite. For

either type of tracking station, the station velocity is given by:

YT = ru T x ET	 (2-40)

where 
w 

is the inertial earth angular rate of the tracking station

with respect to the center of the Earth.
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Only one type of star tracker is considered in this study, and

it is used only to supplement other types of measurements. This is the

8 0 FOV star tracker somewhat similar to the CT401 tracker of Ball

Brothers Research Corporation. This is a strapdown tracker with no

gimbals. The measured direction of a star passing through the FOV is

electronically indicated by two angles a  and R T - These are used in

the following equation to obtain a unit vector defining the measured

LOS to the star in body coordinates.

caT 	0	 -s8T	 1	 0	 0	 0	 saTcaT

sB =	 0	 1	 0	 0	 caT	 saT	 0 - -saT 	(2-41)

saT 	0	 ca 	 0 --saT 	ca 	 -1	 -caTcaT

The estimated LOS to the star in body coordinates is given by

the following unit vector:

s B = TBO '01 I
	 (2-42)

where sz is the unit LOS vector to the star in basic inertial coordi-

nates and TBO is a function of the estimated body attitude angles 6,

and 0. (See Equation 2-3). A more detailed model of this tracker

is discussed in Section 3.

2.5.4 Linearization of Measurement Equations

The extended Kalman Filter requires that the measurement equations

be in a linear form, here given as:

6z = Hi 6x + Hci 6 x + Ai 6!.i	(2-43)

where Hi is the sensitivity of the measurement to the state, H ci is j

the sensitivity to the consider states, x, and A i is the sensitivity

of the measurement to the noise. (Consider states are discussed in

Section 2.6). The subscript i is replaced by M for the MSS landmark

sightings, by R and R for the range and range rate measurements and by

T for the star tracker measurements.
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Landmark Measurement

Linearization of the estimated landmark measurement equation ..

yields the following:

HM -	
a1m$

-
[TI3OTOI Unit (1-r} (2-44)	

v

DX
^ x

x=^
w 0

= 8	 [T.] TO1 (2-45)
ax	 x=xo

Unit (1-r) + 
TBOTO2 a IUnit(l--d

x=Kou	 ``x 

=	 H	 ,H	 jH	 j
I	 rOrOrO	

III	 i	 H	 rH	 ,	 0 ;	 °;° (2-46)
71—x r —z ^o o^or0^-0

where the following are the submatrices (or vectors) due to differentia-

tion with respect to the state elements:

-5'3

0 r

[ce T	 Chit	 (1-r)

°^	 —
(2--47)

e 0	 0 0
4

0 0 a1'

H
r`

-
-

0
T	 Unit	 (1-r)

O1
(2--48)	 1

ce	 -se 0

0	 0 l 1

H. 1, T	 Unit	 (1-r)
OT

(2-49)	 r
IF -s0	 c0 0

(1X - x)
2
 -d2

Hx 1
= TBO2T01 (2-50)

da (ly -	 y)(lX - x}

(1	 -	 z) ( lX - x)

( lx - X) ( 1y - y}

Hy = TB0 TOY	
l (ly - y}2 - d 2 (2-51)

2
d" (1z	 -	 z} ( 1y	 -- y)

*Note that only two rows are given for the matrix H M since only two
of the three components of a "unit" LOS vector are needed to complete-
ly define the line-of-sight to a landmark, star, etc..
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(lX - x) (lz - z)

Hz = TBO Tor?	 (ly 01 Y) (1 z - z)	 (2-52)

	

2	 d3
(lz - z) 2 - d2

?	 where 1X , ly , and l z are the components of the landmark position l

computed in basic inertial coordinates at the time of measurement:

TBO2 is a 2 x 3 matrix containing the first two rows of TBO , and

d = 1 .1-r I.

As stated earlier, landmark position errors and MSS measurement

errors are both modeled as noises in a  and aM . The sensitivity of the

landmark measurement to these errors is represented by the following

matrix:

a lm$ 	0	 c aM
AM -	 -	 (2-53)

	

avN 	-caMcaM	 saMC'am 
_ aMMeas

am $MMeas

Range Measurement

Linearization of the range measurement equation yields:

	

HR = aRs	 - a 	 TJ)	 (2-54)

	

ax	 ax

x=xo

HR - (0, 0, 0, 0, 0, 0 , H Rx , HRy, HRz' 0, 0 , 0)	 (2-55)

where the following equations are due to differentiation with respect

to the state elements:
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" x = R	
(r0	 - rT0 )	 (2-56)

s

HRY 	 R	
(rl -- rTl )	 (2-57)

s

HRz	 R	 (r2 - rT2 )	 (2-58)
S

Range measurement error is modeled as affected by two types of

noises, first by the additive noise v Rl on the range measurement itself,
and second by the noise v_R2 due to uncertainty in tracking station ephemeris.

The sensitivity to the first noise is simply unity.

ARI	 =	 DR 	
= I	 (2-59)

avRI

The sensitivity to tracking station ephemeris uncertainty modeled

as white noise is:

A	 _	 a 	
-	

a	 ^r - r
R2	 av	

(2- 6 G)R2	 avR2	
—T _rT=rTO 	 rT=rTO

AR2	 — [HRx' H
Ry , HRz , 0, or 01	 (2-61)

where the H's are given by Equations 2-56 through 2-58. Here the

change in sign is due to the fact that differentiation is with respect

to ET and not to r as in the H equation.

The corresponding measurement noise variance equation for use in
the Kalman update equation is:

AR	 A	 R A 
'I'	

R	
T	

(2--62)R	 - R1 l R1	 R2 2 AR2

Note here that the term "ephemeris" is used for a tracking station
on the ground or in orbit.

v

m

s

j

a
3
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d

{ where

Rl -	 (Var	 (RN)] (2-63)

E
RN =	 the range measurement noise

R2 CIE, Reph TIL (2-64)

and where Reph is the tracking station ephemeris uncertainty covariance

matrix in local vertical coordinates and TIL is a transformation matrix

from local vertical to basic inertial. coordinates.

Range Rate Measurement
i

When the range rate equation (Equation 2-39) is Linearized, the

i
i

result is:

H -	 s (2-65)
R ;)xax IL - r

x--0 	—	 -	 x=xo -'

HR =	 (0,	 0,	 0,	 0,	 0,	 0,	 HRx , HRy , Hkz ,	 HRk , k1Ry,	 HRZ ) (2-66)

9
Y

where the following equations are obtained by differentiation with
3

respect to the state elements:

a

H'Rx
=	 lz	 [RS	(v0 - 'To	 )-Rs	(r0 - rT0 )l

R
(2-67)

s
j

-	 ^3

HRy
RZ	

[Rs	 ( vl - v^, l 	) -RS	 ( rl - r`P1 ) ] (2-68)

s

HRZ =	
LRs	 (v2 - v^ 2	)-Rs	(r 2 - r IZ ))

s
(2-69)

k

7

7̂

qq!

'

i

s
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HRX	
1

R	
(r0 - 'T0 }	 {2-70)

s

HRY -L- (r1 - rTl)
	

(2-71)
R
s

tZ -	 1	 (r2 - rT2)	 (2-72)
Rs

Range rate measurement uncertainty is also modeled as affected

by two types of noises. First is the noise v 3 in the doppler measure-

ment itself, and second is the noise v R2 due to tracking .station ephemeris

uncertainty.

The sensitivity to the first noise is simply unity.

Ak, = aRs 	 = 1	 (2-73)

av3

The sensitivity to tracking station ephemeris uncertainty

is: 

AFt 2

aRS	 = a	 (v_ - vt)	 {r -fit )	 (2-74)
-

31f	 _	 Dv R2	 I r "' rt
T	

I

--T o	 ET^ TO

lr ^O	 ^T-uT0
and

A'2 = -- [HR*t, HR y , HR z , HRx, %, HW '	 (2-75)

where the H's are given by Equations 2-67 through 2-72. Here the

change in sign is due to the fact that differentiation is with respect

to ^ and 
YT 

and not r and v.
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The corresponding measurement noise variance equation for use in

the Kalman update equation is:

RR	 ARl R3 Ak, + AR2 R4 A-	 (2-76)

where

R3 = War (RRN))	 (2-77)

RRN = the range rate measurement uncertainty

R4 - TIL Reph TILT	 ( 2-78)

where Reph and T IL have been defined previously.

Stag Tracker Measurement

Linearization of the estimated star tracker measurement equation yields

the following:

__	 a 1
HT	 ax I TBO x = x TOISI	 (2-79)

^	 E	 1

	

,	 !	 i	 1	 ^ 	 1

_ 	 o ,a ,0 to t0 ,0 ,0 E0 10
-

[lie

	 s t	 i H

	

i	 i

`	 where

[-ce 
-s9 0

HO	
a	 0	 0	 TOI SI	 (2-80)

0	 0	 a

—$	 -ce --so 0	
T 0 SI 	 ( 2 -81)

a	 a	 1
H	

-s6 co a	 TOI ST	 (2-82)

The measurement angles of the star tracker are:

aT	 = c'T	
+ 

vcx
Meas	 True	 T

aT	 = BT	 + v	 (2-83)
Meas	 True	 BT

*See footnote on page 2-20.
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where v and v are the random measurement errors which may be ex-,^T 	^T

Pressed as the components of the random vector

vST = vaT	 ( 2-84)

vR	
+T

whose covariance matrix RT is defined as follows:

2

	

^	 D

aT	 J

E 
(vSTv5TT)	

RT 6(t - T) =	 2	 6(t	 T)	 (2-85)

	

D	 ct
sT

The sensitivity of the star measurement to the random errors is:

J

as 	 -SsT SCI T	
coT COLTAT - 

av	 =	 (2-86)
—ST aT - 

a 
	 -caT	 D
Meas

5T - RTMeas

^'g3R,GDUCIBU Iyy Or '1i iN

rl±i,I,ciU' AL 
RAGE IS PO()p
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2.6 KALMAN FILTER EQUATIONS

The equations for the filterering technique are the extended

Kalman Sucy equations for discrete measurements. These equations con-

sist of two parts: 1) propagation between measurements, and 2) updating

whenever a measurement is taken. since the linearized state equations

in this study lend themselves to a closed-form solution, the transition

matrix 4) (tk ,tk-1 ) of Equation 2-35 can be used for propagation of the

covariance matrix from one measurement to the next as follows, where a

new notation is adopted so that subscripts k and k-1 denote the times

of measurement (tk and tk-1)'

Pk	 ^k.k-1 Pk-1 ^k.k--1	 Gk Qk Gk	 (2-$7)

where

Pk-i - updated covariance matrix at time tk-1

Pk	- covariance matrix at t  before updating

Gk ,Qk - are defined in Equations 2-32 and 2-18.

The updating equation at time t  is given by:

Pk	 =	 Pk - Kk Hk Pk	(2-88)

where

K  is the Kalman gain matrix defined by

K 	 =	 P k Hk (Pk + Hk Pk Hkl
-1
	(2-89)

Recursive solution of Equations 2-87, 2-88, and 2-89 provides the

filtered value of the covariance matrix at any desired time.

s
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2. 7 CONSIDER STATE EQUA'TION'S

2.7.1 Introduction

	

i

Optimal performance of the Kalman filter depends on accurate

description of the statistics of the measurements involved. This im-

plies that the estimator should accurately model all real world states.

It may develop that some states can be neglected because they are

truly negligible. In other cases the statistics of the states may be

poorly known or the states may incorporate non--zero biases. Here the

attempt to incorporate poorly modeled states in the estimator may result

in poor performance, since the estimator is trying to fit the data to

an incorrect model.

A useful, approach is to have the estimator "consider" the

effect of poorly modeled states (but not to make estimates of them;

when estimating the "desired" states. An important advantage of this

approach is that the number of estimated states is not expanded while

the effects of "consider" states are still taken into account.

2.7.2 Consider State Equations

The equations for the estimation problem with "consider" states	 0

are as follows:

Define

(2-90)
--c

where

x is the twelve dimensional vector defined by

Equation 2--12

x  is the " consider" portion of the new state vector
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The covariance matrix for x T is:

P	 =	 P	
C 
	 (2-91)

c
CT W
P

where	 P	 E (x x T )	 (2-92)

W	 = E ( xC xcT }	 (2-93)

Cp 	E (x xT 	(2-94)

2.7.3 Consider State Dynamics

Since a circular orbit with a nominal attitude history is assmned

in this study, a transition matrix can be used here for propagation of

the covariance matrix. The covariance propagation equation for the

state ET is

P r- 	 (DT 
PC q,TP + GT QTG,T̂,	 (2 - 95)

(where the subscripts k and k-1, to denote times of measurement,are

omitted for simplicity) and where

PC - covariance matrix at time tk-1 after update,

(before propagation)

P ,:: - covariance matrix at time t  after propagation,

(before update)

QT
	 (2-96)

	

T 

=	

0	 Qc

G 
	 =	 G	 0	 (2--97)

0	 G
C -
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Qc - white noise matrix associated with the consider

states

G 
	 - identity matrix (12 x 12 here)

0	 W	 (P	
0
	

(2-98)
o	 4)c

where 4) is the consider state transition matrix.
c

Substituting Equations 2-91 and 2-97 into 2-95, we obtain for the

propagated covariance matrix the following:

1

P

T

 = P
	

Cc	 p	 (2-99)

C 
p 
T w`

where

P	 = 0 P T + GQGT 	(2-100)

Cp = ^p Cp qT	 (2-101)

W, _ qc W 4)C+ 	 GcQcGT	 (2-102)

For the present study the consider states are taken to be the

ephemeris uncertainties in position and velocity associated with each

of the two TDRSS satellites stationed over the equator.

The consider state transition matrix, 4)c , is then given by:

`Dc = 
4)

c1 	 0	 (2-l03)

0 	 c2

where (
^c1 

and 1D c2 are the six-by-six transition matrices associated

with the ephemeris uncertainties for each of the two TDRSS satellites.

These matrices are identical in form to the transition matrix given in

Equation 2-34 for the EOS ephemeris state. In this Casa the term w  of

Equation 2--34 is the orbital rate of TDRSS.

f

6

i

l
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2.7.4 Consider State Measurement Equations

9	 The measurement equation incorporating the consider states is:

X_

Z -	 [H i HCl	 x	
+ AT n	 (2104)

-c

or

z =	 HT xT + A
T n	 (2--105)

where

HT = [H Hc ]	 (2-106)

and

H is the sensitivity of the measurement to the state, x.

HC is the sensitivity of the measurement to the consider

state, 
xC.

2.7.5 Consider State Filter Equations

The Kalman filter equations for the covariance are as follows

where the updating equation at time, t k . is given by:

Pc = Pc -- KT HT PC	(2-107)

where Pc and PC are the covariance matrices before and after updating,

and

KT = PC HT [HT PC HT + RT ]
.l	

(2-108)

RT = AT F [n nT ] AT	 (2-109)
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Here there is no interest in updating the consider state, x c , but

only the state, x. Therefore, only those rows of K T which pertain to
x are calculated. This gain is called K X• That is , choose KT

such that:

K
KT =	 x	 (2-11U}

a

Combining Equations 2-61 and 2--106 yields:

'•lK x = (PT HT + C'p He T) (HT P 'c HT T + RT)	 (2-111)

where

HT Pc HTT + RT = HP ' HT + HC ' HT + H C rT HT + H WHT + R,	 (2-112)p c	 c p	 c c

The updating equations for P, C  and W can be shown to be

P	 = P - x  ( HP^ + HCCpT } 	 (2-113)

C 
	 = C  - K x (HCp + He W } f	 (2-114)

W	 = W^.	 (2-115)

It should be noted that the update in Equation 2-114 should be

carried out even if the consider state sensitivity He is zero, such

as would be the case when landmark measurements are used.
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2.8 ERROR STUDY RESULTS

2.8.1 Introduction
F

f'

	

	 The results presented in this section give performance data on

the landmark, range and range-rate update configuration. The previous

report, Interim Technical Report No. 2 (1) , had presented results on

the landmark--star configuration.

The present study assumes radar range and range-rate measurements

made by either (1), two ground tracking stations (located at Merritt

Island, Florida and Goldstone, California), or (2), two TDRSS (1) geosyn-

chronous navigational satellites located over the equator. Most of the

r results are generated for landmark observation case 2, which includes two

passes over the continental USA. (See Figure 2-4). The material presented

in Section 2.8.5 shows that additional passes over the USA and Alaska have

a relatively small effect on reducing estimation uncertainties. Figure 2-5

illustrates the four-pass case and Table 2-1 briefly describes all of the	 a

cases used in the study.

The landmark location data is generated artifically, since no

realistic data was conveniently available nor was considered necessary

for this type of study. Most performance results are generated using

only two landmark updates per pass over the continental USA. The land-

mark location data is obtained at points within the USA by selecting

random values of the multi-spectral scanner (MSS) beam angle. The

maximum scan beam angle is + 4.8 1 corresponding to + 45 miles on the

ground. (See Figure 2-1). The landmarks are located near the north

and south USA borders for the given pass.

For the ground tracking stati-^ G .. _.-irions, five simultaneous

range and range-rate updates per pass are assumed. The first pass is

tracked by Merritt Island and the second by Goldstone. Minimum allow-

able radar beam elevation is 5 degrees. For the simulations with TDRSS

tracking, eighteen simultaneous range and range-rate measurements by

both TDRSS stations are assumed. TLe TDRSS satellites are located at

41 and 171 degrees west longitude over the equator. More TDRSS measure-

ments are possible because of the greater covezage of EOS orbits from

the vantage point of the TDRSS satellites.
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TABLE 2-1

LANDMARK OBSERVATION CASES

North Lat u e	 eg..
Case Pass

At Start At EndNumber Number Region*--.

1 1 50 30 USA

2 1 5.0 30 USA

2 50 30

3 1 50 45 USA

2 50 30

3 50 45

4 1 50 30 USA

2 50 30 +

3 65 60 Alaska

4 65 60

5 1 50 45 USA

2 50 30

3 50 45

4 65 60 Alaska.

5 65 60

*USA denotes



For the comparative simulations using.a star.tracker.,,only..One
6

type of star tracker is assumed. This is tha body fixed 8 square

FOV tracker which electronically tracks a star as it passes through
the FOV. For the relevant runs the stars are chosen at equal orbital
intervals (20 stars per orbit) with-randomized locations within the

tracker's field of view.

The performance results presented here are generally the uncer-

tainties in the Kalman filtered estimates of spacecraft attitude., gyro

bias drift and orbital ephemeris after processing landmark., range and'

range-rate measurements for two passes. The results are the square

roots of the principal diagonal terms of the 12 x 12 covariance matrix.

They provide a good statistical indication of performance in estimating

the state parameters.

2.8.2 Nominal Values Used in Study

Unless otherwise stated, the nominal values of the error sources

a,-id parameters used to generate the performance results are as given

here. Although some of the values may not represent the best or latest

estimates, it is felt that they are satisfactory for the present study.

The landmark.measurement uncertainty used in this study (15

meters) is a composite number representing both uncertainty in the

landmark location in Earth cooreinates and uncertainty in the multi-

,	 spectral scanner measurement. Two assumptions are made concerning the

landmark. First it is assumed to have no associated recognition pro-

cess errors, and secondly it is assumed to be essentially a point
source. These requirements are met by the searchlight landmark des-

cribed in Reference 1. There are four basic uncertainty sources in

this measurement, namely:

1) artificial landmark surveying errors,

2) earth pole wander and rotation rate variations,

3) MSS resolution,

4) scan rate and timing errors.
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The uncertainty numbers associated with each of these sources are some-

what arbitrary, for example surveying accuracy can be increased in

steps by applying more and more sophisticated techniques.

Estimates For the uncertainty in each category are as follows:

surveying	 10 meters,

earth wobble	 3 meters,

MSS resolution	 10 meters,

scan errors	 4 meters.

The root sum-of-square value for these uncertainties is 15 meters.

Further discussion of the sources of these numbers is given in section

3.3.

The nominal values for uncertainties in the range and range-rate

measurements (10 meters and 0.012 meter/sec) include both biases and

white noises in the measurements. Because of the limitations imposed

upon the present study the radar biases are not modeled separately as

estimatable states or as consider biases, since more extensive analysis

and simulations would have been required. Although the data given in

the literature for these noises varies somewhat, it is felt that the

above values are reasonable selections.

The nominal value for ground tracking station location uncertainty

is assumed to be 5 meters along each axis. This figure has been chosen

because Merritt Island and Goldstone are particularly well surveyed,

although the nominal location uncertainty for all USES (United-S Hand

System) radars is 10 meters.

TDRSS Ephemeris Uncertainties

The choice of a suitable TDRSS ephemeris uncertainty covariance

is a difficult problem. The only available TDRSS uncertainty covar-

iance was printed in a 1971 report (ll} on the TDRSS system. This co-

variance was reprinted in a 1973 NASA report on "Navigation.Systems

Characteristics, Rev 1". (12) However this covariance may have repro-

duction errors since one of the cross-correlation coefficients is

greater than unity. Nevertheless this covariance is used in the TDRSS

simulations after appropriate modification.
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Two other TDRSS ephemeris uncertainty covariances are also used
in the simulations for comparative purposes. Data for the first covar-

iance was obtained from GSFC and represents a somewhat pessimistic

estimate:. These assume position uncertainties about four times greater

than for the first covariance. Data for the second covariance antici-

pates future state-of-the"art improvements in determination of TDRSS

ephemeris. Here position uncertainties are about 5o times smaller than

for the first set of uncertainties.

Gravitational Harmonic Uncertainties

All covariance runs made for this study include the effects of

uncertainties in the gravitational harmonic C & S coefficients as well

as in the gravitational constant, u. A separate study was first under-

taken where the term-by-term differences between the most recent Smith-

sonian gravitational models (SEII (1969) and SEIIi (1973)) were treated

as if equivalent to one sigma uncertainties and where the gravitational

constant uncertainty was 0.2 PPM. The effect on the computed EOS orbit

beyond radar coverage (fox both GTS and TDRSS) was determined for each

term. It was found incidentally that the C and S .coefficients having

the most significant effect on EOS orbit were those associated with

the following n, m pairs: 2,2; 3,3; 5,5; 6,2; 6,5; 6,6; 8,7. By sum-

ming the ephemeris error results of numerous Monte Carlo runs for which

the C and S coefficients were randomized, an uncertainty covariance

matrix was obtained that represented the ephemeris uncertainties at the

point that radar coverage commences prior to passage over the USA. This

covariance was then scaler: to match data obtained from GSFC for 5 orbits.

With ground tracking coverage,the square roots of the uncertainty

covariance diagonals were as follows:

(altitude, down range, crosstrack):

(2.6, 14.3, 3.3, .013, .003, .002) meters, meters/sec

With TDRSS tracking,because of better coverage,the corresponding

uncertainties were:

(3.0, 6.8, 7.8, .007, 003, .003) meter:,,meters/sec

k.

a.:



For the 12-state covariance simulation studies this ephemeris

-	 uncertainty covariance matrix was summed with the propagated 12-state
r

	

	 covariance at the point for each pass when radar coverage commences
prior to USA passage.

The nominal values of the error sources and parameters are

as follows:

Initial State uncertainties (lo)

Attitude (Pitch. Roll, Yaw) -	 60 aresec (each)

Gyro Sias Drift -	 0.03 deg/hr (each)

Ephemeris Position

Attitude -	 20 meters
Downrange -	 50 meters

Crosstrack -	 20 meters
Ephemeris Velocity

Altitude -	 0.05 meter/sec

Downrange -	 0.02 meter/sec
Crosstrack -	 0.02 meter/sec

Gyro Error Sources (la)

Random Drift

Quantization

Landmark Measurements (16)

Landmark Position

Downrange

Crosstrack

- 0.01 deg/hr (white noise)

- 0.1 aresec

-	 15 meters

-	 15 meters

8° FOV Star Tracker

Measurement Error (lc)	 5 aresec/axis

Field-of -View 	8 x 8 degrees.
Pointing Direction	 towards zenith

Star Distribution	 star randomly selected

in FOV after each 18

degrees of orbital motion
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Range and Range Rate Measurements (lc)

Slant Range	 10 meters

Slant Range Rate 	 0.012 meter/sec

GTS Location	 5 meters (each)

TDRSS Ephemeris (Position & velocity;

Altitude, Downrange, Crosstrack)

1971 Report

(1.5, 276, 128; .020, .001, .009) meter,meter/sec

GSFC

(150, 100.0, 500; .073, ..011,.036) meter,:meter/se.c

Future State-of-the-Art

(5, 5, 5;.00037,.00037,.00037}	 meter,meter/sec

Gravitational Coefyicient Uncertainties (lv)

Gravitational Constant, U	 0.2 PPM

C&S Coefficients	 (See previous comments)

Normal Conditions for Observation Runs

Landmark observation Case 2 (Includes 2 passes over

continental USA)

2 Landmark updates per pass

5 Range and Range Rate updates (simultaneous) by

Merritt Island on first pass and by Goldstone on

second pass

Run starts at equator at 98° east longitude on ascending

node and passes over north polar region before making

first pass over USA

Run ends just south of last landmark update on second

pass over USA

2.8.3 Com2arative Results with Different Measurement Conf.igura:tions

Before presenting the re;alts obtained with different measure-

ment configurations, it will be useful to show the effects of using a

single type of measurement for updating the estimation uncertainties.
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Table 2- 2 gives performance data after processing with a single type of

measurement. All data presented includes the effects of two passes over
the USA.

For comparison the state uncertainties for the case where no
measurements are made are presented in the first row of Table 2-2. In

this case the covariance matrix of uncertainties is simply propagated

without update with any measurements. The increase in attitude un-
certainty is due to the uncertainty in gyro bias drift, while the in-
crease in satellite altitude and downrange position uncertainty is due
to the effect of initial altitude uncertainties on the computed gravity
feedback.

The next row shown the effect of star sightings with the B° FOV

star tracker where it is assumed that 20 stars per orbit could be seen
with the tracker. The results show a very significant decrease in the
attitude and gyro bias drift uncertainties. However the ephemeris un-

certainties were not improved at all. This is because star sightings

do not provide any information on satellite position.

The third row of Table 2-2 gives the effects of measurements of

known landmarks where two landmark updates per pass over the continental

USA were used. The results show only a moderate decrease in attitude

and drift uncertainties and a relatively slight decrease in ephemeris

uncertainties. Note that the pitch attitude and ephemeris uncertainties
are greater than their initial values.

The next row shows the effect of range and range rate measure-

ments by ground ':racking stations (Merritt island and Goldstone) where

it was assumed that the range and the Lange rate measurements were made

simultaneously. The results contrast sharply with those for star sight-

ings. Here there is a very significant decrease in ephemeris uncertain-

ties, while there is no improvement in attitude and gyro bias drift un-

certainties. The last row also shows the effect of range and range rate

measurements taken from the planned geosynchronous Tracking and Data

Relay Satellite System (TDRSS). Although more measurements per pass

(16) were made (because of better converage of the EOS orbit by TDRSS),

the performance is markedly inferior to that with ground trackir.g. This

is primarily due to the relatively larce initial ephemeris uncertain-

ties assumed for the TDRSS satellites. This will be discussed in the
next subsection.
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TABLE 2-.2

KALMAN FILTER PERFORMANCE WITH

SINGLE TYPES OF MEASUREMENTS

N
i

W

State Estimation Uncertainties 10
Type
of

Attitude
(aresec.)

Gyro
(10-3

Bias
de

Drift
/hr)

Position
(meters)

Velocity
(meters/sec)

Measurement Pitch Roll Yaw X Y I 	Z I	 Alt.1 Range Track Alt. Range jTrack

Initial State uncertainties:

60	 60 60 30 30 30 20	 50 20 .05 .02 .02

No
Measurements 273	 83 83 30 30 30 101	 745 20.5 .749 .075 .020

Stars 2.0	 1.8 14.9 15 0.4 1.0 101	 745 20.5 .749 .075 .020

Landmarks 94	 4.7 26.8 24 12 22 57	 460 20.0 .482 .039 .020

Range
and Range Rate

(GTS) 273	 83 83 30 3.0 30 2.8	 4.6 7.B .012 .003 .020

Range
and Range Rate

(TDRSS) 273	 83 83 30 30 30 10.1	 44.4 16.8 .040 .010 .016

Notes; Nominal number of measurements per pass or per orbit
are assumed for each measurement type. See Section 2.7.2

GTS - Ground Tracking Station

?fib
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Table 2-3 shows the performance for various measurement configura-

tions. The first row shows the results when using both star sightings

and known landmark measurements. The decrease in attitude uncertainty

is due .almost entirely to star information, since it is almost the

same as with stars alone. However the decrease in attitude uncertainty

enables the landmark information to be used mote effectively to reduce

the ephemeris uncertainty. The next three rows give the state uncer-

J

	

	 tai'nties that result from a measurement configuration that combines

known landmarks and range and/or range rate ground tracking. The de-
r

crease in ephemeris uncertainty is -assentially the same with range and

range-rate updates taken alone, as compared with the configuration where

landmarks are included in the measurements. However the existence of

range and .range rate information enables the landmark measurements to

be very effectively used to reduce the pitch and roll attitude uncer-

tainties as well as the Y bias drift uncertainty. The other two rows

show that range-rate measurements are more effective than range measure-

ments in decreasing ephemeris uncertainties.

The next to last row of Table 2-3 gives the results of using stars

and range and range-rate information with no landmarks. Here the de-

crease in attitude uncertainty is due entirely to star sightings, while

the decrease in ephemeris uncertainty is due entirely to range and
range rate information. The addition of landmark measurements to this

configuration decreases attitude uncertainties slightly to the lowest

uncertainty level of any combination considered.

2.8.4 Comparative Results with Ground Tracking and TDRSS Satellites

Table 2-4 compares the performance of ground and TDRSS tracking

for the cases with and without uncertainties in the positions of the

ground stations or TDRSS. Landmark measurements were also used in all
of these. cases. The ground tracking stations had a nominal location un-

certainty of 5 meters per axis. The TDRSS satellites were assumed to

have initial ephemeris uncertainties of 15, 276, 128;.020, .001, .009

meters and meters/sec in altitude, downrange and crosstrack. The

associated covariance matrix is from a 1971 report. (11) (See Section

2.8.2). For Table 2-4 the TDRSS ephemeris uncertainties are modeled as

consider states.



TABLE 2-3

KALMAN FILTER PERFORMANCE WITH

DIFFERENT TYPES OF MEASUREMENTS

N
I

^A
Ln

Types State Estimation Uncertainties Zia)
of Attitude Gyro Bias Drift Position Velocity

Measurements (aresec) (10-3 de hr) (meters) (meters sec)
Pitch Roll I Yaw X Y Z Alt.	 Range Track Alt. Range I Track

Initial State Uncertainties:

60	 60 60 30 30 30 20	 50 20 .05	 .02 .02

Landmarks
and

Stars 2.0	 1.7 14.9 15 0.4 1.0 15.0	 15.3 10.2 .030	 .015 .02

Landmarks
& Range 3.2	 3.0 26.8 24 0.7 22 6.6	 9.2 10.6 .016	 .007 .020

Landmarks &
Range Rate 2.6	 3.0 26.8 24 0.6 22 3.1	 5 . 7 10.3 . 014	 .003 .020

Landmarks &
Range &
Range Rate 2.5	 2.7 26.8 24 0.6 22 2. 8 	 4.6 7.8 .012	 . 003 .020

Stars & Range
& Range Rate 2.0	 1.8 14.9 15 0.4 1.0 2.8	 4.6 7.8

Landmarks &
Stars & Range
& Range Rate 1.6	 1.5 14.1 14 0.3 0.9 2.8	 4.6

Notes: Nominal number of measurements per pass or per orbit are assumed for each measurement
type. See Section 2.7.2. Ground tracking stations used for range and range rate
measurements.
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TABLE 2-4

KALMAN FILTER PERFORMANCE WITH

GROUND AND TDRSS TRACKING STATION MEASUREMENTS

Tracking Station

Ephemeris

Uncertainties

State Estimation Uncertainties (la)

Attitude (.aresec) Position (meters)

Pitch I Roll IYaw Alt. I	 Rance I	 Track

Initial Uncertainties Are: 60 60 60 20 50 20

Ground Tracking Stations

Zero Locat.Uncert. 2.4 2.5 26.8 2.1 2.8 6.6

Nom.Locat.Uncert. 2.5 2.7 26.8 2.8 4.6 7.8

TDRSS Satellite Stations

Zero Ephem.Uncert. 3.2 2.3 26.6 4.8 11.2 3.1

Nom.Ephem.Uncert. 9.2 4.1 26.7 9.7 44.3 16.8

i

a

'xt

1',M

A

Note: All data obtained with nominal number of range

and range rate and landmark measurements.

TDRSS ephemeris uncertainties modelled as consider states.
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Table 2-4 shows that with zero ground station and TDRSS location

uncertainties, the position estimation uncertainties with TDRSS meas-

urements compare favorably with ground tracking results, particularly

in crosstrack. However with nominal ground station and TDRSS location

uncertainties the position estimation uncertainties are markedly worse

with TDRSS tracking. Note for example that the downrange position

uncertainty is only slightly less than the initial uncertainty.

TDRSS Ephemeris Uncertainties Modeled as Consider States

The TDRSS ephemeris uncertainties are associated with a state

that is highly time-correlated over the simulation time intervals of

this study. Since the errors in this state will not undergo very much

change during those time intervals, it is approQriate that they be

modeled as consider state biases rather than as zero bias white

noises. With this type of modeling the Kalman filter estimator

"considers" the effect of imperfectly modeled states (but does not

measure or estimate them) on the estimation of the "desired" states.

Since the TDRSS ephemeris uncertainties may have non-zero means rel-

ative to the data intervals studied, the treatment of these uncer-

tainties as "consider" states implies better modeling of the real

world data. The analysis and equations for "consider" state pro-

pagation and update are presented in Section 2-7.

While it is better to model the TDRSS ephemeris uncertainties as

consider state-a rather than as white noises, it is nevertheless of

some interest to investigate Kalman filter performance with both mod-

eling types. Table 2-5 compares estimation performance for the two

types of modeling with three sets of initial TDRSS ephemeris uncer-

tainties. These were given in Section 2.8.2 and are repeated here

for the readers convenience. The three sets of initial ephemeris un-

certainties are: (1) an adverse estimate obtained from GSFC, (2) a

conservative estimate first given in a 1971 report, and (3) a future

state-of-the-art estimate now being used in other unrelated CSDL

studies. The one sigma ephemeris uncertainties in meters and meters

per second for the three sets are:
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TABLE 2-5

KALMAN FILTER PERFORMANCE WITH

DIFFERENT TDRSS EPHEMERIS UNCERTAINTIES

N

Tracking Station State Estimation Uncertainties (.la)
Ephemeris Attitude (aresec) Position (meters)

Uncertainties (1a) Pitch I Roll I	 Yaw Alt.. F Ra..ae Track

Initial Uncertainties Are:

60 60 60 20 50 20

0 3.2 2.3 26.6 4.8 11.2 3.1

With GSFC Ephemeris Uncertainties Modelled as:

Noises 23.7 4.2 27.0 18.9 114.4 17.7
Consider States 39.6 4.6 27.1 27.2 195.1 19.9

With 1 71 Shuttle Study Ephemeris Uncertainties Modelled as:

Noises 6.5 2.8 26.7 9.7 30.0 8.4

Consider States 9.2 4.1 26.7 9.7 44.3 16.8

With Future State-of-the-Art Ephemeris Uncertainties Modelled as:

Noises 3.3 2.3 26.6 4.9 11.9 3.3

Consider States 3.6 2.3 26.6 5.1 13.7' 3.7

Note: All data obtained with nominal number of range

and range rate and landmark measurements.
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Alt.	 Dnrng. Crtk.	 valt	 Vdnrng vcrtk

	

GSFC conserv. 1) 150,	 1000,	 500;	 .073,	 .011,	 .036

1971 rpt	 2)	 1.5,	 276,	 128;	 .020,	 .0011,	 .0025

Future est.	 3)	 5,	 5,	 5;	 .00037,	 .00037, .00037

Table 2-5 shows that the Kalman filter performance is consistent-

ly worse when the TDRSS ephemeris uncertainties are modelled as "con-

sider" states than when modelled as white noise. This is to be antici-

pated, since use of "consider" states represents a more realistic model-

ling of possible biases. Table 2-5 also shows that with consider state

modelling,the Kalman filter performance for ephemeris uncertainty esti-

mation is only satisfactory with future state-of-the-art TDRSS ephemeris

uncertainties. With 1971 Shuttle study uncertainties the downrange

estimation uncertainty is only slightly less than the initial uncertain-

ty.
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2.8.5 Filter Performance for the Five Landmark Observation Cases

Table 2-6 presents the Kalman filter estimation uncertainties

at the end of the last pa y.= for the five different landmark obser-
vation cases. (;a pe Table 2-'.). Numerically these cases correspond to
the number of passes over the continental USA, and if Case 4 or 5,

over Alaska as well. To track the last two passes a third USBS radar

tracking station located at Fairbanks, Alaska, is used for range and

range rate measurements.

Table 2-6 shows that most of the improvement in performance is

accomplished by the end of the second pass. Only slight improvement

results as the number of passes is increased from two to five. in

going from Case 2 to 3 it is noted that the ephemeris uncertainties

did not decrease as one might expect. For example, the downrange un-

certainty is 6.6 meters for Case 3, while it is 4.6 meters for Case 2.

The reason for this irregularity lies in the choice of EOS orbital

paths for the different cases. To make possible three observational

passes over the continental USA (Case 3), a somewhat different inertial

orbital path from that for Case 2 had to be used. Because of the

different relationships of the EOS orbital paths with respect to the

ground tracking stations for Cases 3 and 5, as opposed to those for

Cases 2 and 4, the estimation uncertainties are moderately different

from what they would have been if the same inertial orbital path had

been used for all cases.

2.8.6 Kalman Filter Performance as a Function of Orbit Angle
,

Position Estimation Performance

Figures 2-6 and 2-7 show graphically the effect of propagation

and update of the position estimation uncertainties for Cases 2 and 4

when using landmark measurements and ground tracking range and range

mate measurements. For comparison, .Figure 2-8 shows the position un-

certainties for Case 2 when using star sightings and the same ground

tracking mesurements.

ki



TABLE 2-6

KALMAN FILTER PERFORMANCE FOR

DIFFERENT LlWDMARK OBSERVATION CASES

N
1
r

Landmark State Estimation [uncertainties (la)

Observation Attitude (aresec) Position (meters)

Case Pitch Roll Yaw Alt. Range Track

Initial Uncertainties Are:

60 60 60 20 50 20

1 3.7 5.2 34.3 12.3 9.7 19.2

2	 (nom) 2.5 2.7 26.8 2.8 4.6 7.8

3 2.4 1.9 21.2 3.2 6.6 6.1

4 2.0 1.9 18.4 2.3 3.6 6.2

5 1.9 1.6 16.9 2.4 4.4 4.8

Notes: 2 Landmark Updates/Pass

5 Range and Range Rate Updates/Pass by Ground Tracking
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Figures 2 -6 and 2-7 show how effectively range and range rate

measurements reduce the altitude and downrange position uncertainties

on the first update of each pass for Cases 2 and 4. Subsequent updates

on r=he same pass only reduce the uncertainties slightly. The marked

T increase in downrange uncertainty,and to a lesser extent the altitude

position uncertainty, after the first USA pass is due to the presence

of relatively large velocity estimation uncertainties. The operation

`	 of the Kalman filter on the velocity uncertainties is shown in Figure
2-7 by the marked reduction in peak downrange and altitude position

uncertainties resulting after the second and third passes. The cross-

track uncertainty is more cyclical than the other uncertainties. This

uncertainty is progressively reduced after each pass.

Figure 2-8 shows graphically for Case 2 the effect of using star

sightings with the same range and range rate measurements. It is seen

here that the reduction in the downrange and altitude uncertainties at

the start of each pass over the USA is not as dramatic as was the case

in Figures 2-6 and 2-7 where landmarks were used.

Attitude Estimation Performance

Figures 2-9 and 2-10 show graphically the attitude estimation

performance when using landmark, range, and range rate measurements.

Figure 2-11 does the same with landmark and star measurements.

Note in Figures 2-9-and 2-10 that significant reductions occur

in the attitude uncertainties (particularly those of pitch and roll)

during the passes over the USA and Alaska. In these cases, the only

information provided on attitude was that obtained from the landmark

measurements during the passes over the USA and Alaska. Two landmark

measurements were made on each pass. Most of the reduction in attitude

uncertainty during a pass occurs during the first landmark update of

each pass. In addition, it is seen that most of the reduction occurs

.in pitch and roll since the landmark is always near the local vertical.

Note that the performance in Case 2 (Figure 2-9) is essentially the

same as that of Case 4 (Figure 2-10)during the first two passes since

Case 4 is essentially an extension of Case 2. Also note in Figure 2-10

that the uncertainty in pitch remains low and does not grow as rapidly
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after the second pass. This is due to the fact that the uncertainty

of the Y (pitch) gyro bias drift was greatly improved by the updates

of the second pass.

In Figures 2-9 and 2-10 it is seen that the roll and yaw uncer-

tainties become oscillatory after the first pass. Note that the fre-

quency in yaw is twice that in roll, and that there is a definite phase

relationship between the two. The reason for the oscillatory behavior

is due to a complex relationship between roll, yaw, roll gyro bias

drift, and yaw gyro bias drift, and the. fact that updates are made only

during the passes over the continental USA and Alaska, which occur at

somewhat the same portion of the satellite orbit.

In dramatic contrast to Figure 2-9 and 2-10, Figure 2-11, with

star sightings in combination with landmark measurements, shows a very

different performance in attitude estimation. This is primarily due

to the fact that many mote updates are made in attitude (20 star sight-

ings per orbit plus 2 landmark measurements per pass). Note that the

frequent updates of attitude throughout the orbit causes the uncertain-

ties of all attitude components to reach almost steady state values

after the first orbit.

2.8.7 Performance Sensitivity to System Errors and Parameters

In this section the sensitivity of Kalman filter performance to

various system uncertainties and parameters is investigated. These

include the following:

1) Initial ephemeris uncertainty

2) Initial gyro bias drift uncertainty

3) Ground tracking station location uncertainty

4) Range measurement noise

5) Range rate measurement noise

6) Landmark position uncertainty

7) Number of range updates per pass

8) Number of range-rate updates per pass

9) Number of range and range-rate updates per pass

No data is presented on the sensitivity to initial spacecraft
attitude uncertainties since the performance in estimating the
ephemeris and attitude was virtually unaffected by values of these
uncertainties up to 15 times nominal.

4
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1.0) Number of landmark updates per pass

11) Gyro random drift and quantization

12) Gravity harmonic uncertainties

These are considered separately in the following paragraphs.

Sensitivity to Initial Ephemeris Uncertainty

Figure 2-1.2 shows the effect of variation of the initial ephemeris

uncertainty (all six components varied simultaneously) on position and

attitude estimation uncertainties. This figure demonstrates that even

when the initial ephemeris uncertainty is ten times its nominal value,

the altitude and crosstrack position uncertainties are only slightly

affected, while the downrange uncertainty is moderately increased. As

might be expected the effect on the attitude uncertainties is neglig-

ible.

Figure 2-13 shows that only the yaw attitude uncertainty is

affected by increases in the initial gyro bias drift uncertainty about

all axes. In this case it is seen that the position estimation un-

certainties remain unaffected.

Sensitivity to Ground Tracking 'Station Location Uncertainty

Figure 2--14 shows that the performance in estimating spacecraft

position is strongly affected by an increase in the tracking station

location uncertainty (assumed equal in all dimensions). For example,

an increase in the location uncertainty from 5 (nominal) to 10 meters

increases the downrange estimation uncertainty from 4.5 to 5.9 meters.

This is to be expected since the location uncertainty effectively adds

to the range measurement error.

Sensitivity to Range Measurement Noise

Figure 2-15 shows the effect of variation in the range measure-

ment noise while maintaining nominal values for the errors in range

rate and landmark measurements. It is seen that as the , range measure-

ment noise is increased, the performance in estimating spacecraft

position levels off at values which happen to be those primarily obtained

with range rate measurements alone. Note that there is little to be
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gained from range measurements when the one-sigma noise in these

measurements exceeds about twice the nominal value of 10 meters.

Sensitivity to Range Rate Measurement Noise

Figure 2-16 shows the effect of variation in the range rate

measurement noise while maintaining all other conditions at nominal.

In contrast to the results just shown for range measurement noise in

Figure 2-15, it is seen that the sensitivity to range rate noise ex-

tends over a much larger range of variation in this parameter. This

is also seen to be the case in Table 2-3.

Sensitivity to Landmark Position uncertain y

Figure 2-17 shows the sensitivity of performance to landmark

position uncertainty when landmarks measurements are used in combination

with ground tracking measurements. It is seen that the performance in

estimating attitude is strongly affected by a variation in the land-

mark position uncertainty, while the performance in estimating space-

craft position is essentially unaffected. This is as expected since

the landmark measurements provide the only data on attitude, while the
ground tracking measurements, with the assumed high accuracies, dominate

the performance in estimating spacecraft position. If landmark measure-

ments had been used with star sightings instead of ground tracking

measurements, the reverse situation would have occurred, where the star

sightings dominate the attitude performance and the landmark measure-

ments provide the only information on spacecraft positiion. (See

Figure 2-18 of Reference 8). In either case, it is important to note

from Section 2.7.2 that the landmark position uncertainty is treated

in this covariance study as being the overall error associated with a

landmark measurement.

Sensitivity to Number of Ranee Updates per Pass

Figure 2-18 shows that approximately 15 range updates per pass

are required to reach asymptotic levels in position estimation per-

formance when no range rate measurements are included. Although the

conditions under which this data was generated are not considered to

be quite nominal since the nominal range rate measurements were not

k
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included, the data at least shows the effect of varying the number of

range measurements in combination with the nominal number of landmark
ti=

_ measurements.	 Also note in Figure 2-18 that only two or three range
i' updates are required per pass in order to achieve minimum attitude

estimation uncertainties.

' Sensitivity to Number of Range Rate Updates per Pass
i

Figure 2-19 indicates that minimum position estimation uncer-

tainties are achieved after about 5 range rate updates per pass when

no range measurements are included.	 Note that it takes fewer range

rate updatesp	 per pass, as compared to range updates per pass, to

r' achieve minimum estimation uncertainties. 	 Also note that only two or

three range rate updates per pass are required to reduce the attitude

uncertainties to minimum levels.

Sensitivity to Number of Range and Range Rate Updates per Pass

Shown in Figure 2-20 is the sensitivity of performance to the

number of updates per pass with both range and range rate measurements.

Here it is seen that the affect on performance is not much different I
from that in Figure 2-19 where no range measurements were made. In

addition, it is seen that five range and range rate measurements (the

nominal number used in this study) yield results which are fairly close

to what would be obtained if more range and range rate measurements

were used during a pass.

Sensitivity to Number of Landmark Updates per Pass

As was true in Figure 2-17 for sensitivity to landmark position

uncertainty, Figure 2-21 shows that the attitude estimation uncer-

tainties are reduced by increasing the number of landmark updates per

pass, while the uncertainties in estimating spacecraft position remain

unaffected. Note that only two landmark updates per pass are required

to bring the attitude uncertainties close to their minimum levels.

Again it is important to note that the results in Figure 2-21 (like

those in Figure 2-17) were generated for the case of no star sightings.

If landmark measurements had been used with star sightings instead of

range and range rate measurements, the performance in estimating

spacecraft position would have been affected to some extent by the

number of landmark updates per pass. (See Figure 2-13 of Reference 8).
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Sensitivity to Gyro . Random Drift and Quantization

Performance results were generated with various values of gyro

random drift up to six times the nominal value of 0.01 degree per hour.

For this amount of variation the results showed that random drift had

no affect on the position estimation performance and only a slight in-

fluence on attitude estimation performance.. For example, a six sigma

random drift on each gyro resulted in pitch, roll and yaw uncertainties

of 2.6, 3.1, and 27.1 aresecs, respectively, while nominal values of

random drift resulte3 in 2.5, 2.7, and 26.8 aresecs.

Studies of sensitivity to gyro quantization noise also produced

similar results. The attitude uncertainties for a six sigma quanti-

zation noise on each gyro were almost the same as those for a six sigma

random drift on each gyro.

Sensitivity to Gravity Harmonic Uncertainties

In Section 2.1 the gravity harmonic uncertainties were defined as

being equal to a constant times the difference between the corresponding

C and S coefficients of the two most recent Smithsonian gravitational

models (SEII and SEIII). This constant (0.33) was chosen so that the

resulting ephemeris error data would match the results obtained from

GSFC for five orbits. Inspection of equivalent data from other studies

indicate that the above definition is probably pessimistic. In Table

2-7 some performance results are shown for various values of the gravity

harmonic uncertainties relative to the nominal values defined above.

This table clearly shows that the indicated changes in the harmonic un-

certainties have negligible affect on the attitude estimation uncer-

tainties, while the affect on the position estimation uncertainties is

moderate.

r'i

aa

t
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TABLE 2-7

SENSITIVITY TO GRAVITATIONAL HARMONIC UNCERTAINTIES

4

N
1
V

Gravitational State Estimation Uncertainties (la)
Harmonic

Uncertainties Attitude aresec Position meters
_itch Roil	 I Yaw Alt. I	 Range Track

Initial State Uncertainties Are:

60 60 60 20 50 20

0 2.5 2.6 26.8 2.3 4.5 6.6

0.50 2.5 2.6 26.8 2.5 4.5 6.9

1 a 2.5 2.7 26.8 2.8 4.6 7.8

2 a 2.6 2.8 26.8 3.6 4.9 10.0

4 a 2.6 3.1 26.8 4.9 5.5 13.4

6 a 2.7 3.3 26.9 5.9 6.1 1.5.4

Notes: Landmark Observation Case 2
2 Landmark Updates per Pass
5 Range and Range-Rate Updates per Pass (Ground Tracking)



2.9 CONCLUSIONS

In contrast to the previous study (l) where star and landmark

measurements were used to estimate spacecraft attitude, orbital
i

ephemeris, and gyro bits drift, the present study is primarily con-

cerned with how well the same state parameters can be estimated when 	 I

using landmark measurements in combination range and/or range rate

measurements with respect to ground tracking stations or the proposed

Tracking and Data Relay Satellite System (TDRSS). For purposes of	 .i
comparison, some results of the previous study are included with the

results of the present effort in Section 2.8, In the previous study

it was found that landmark measurements alone (See Table 2-2) were not 	 {

sufficient to estimate all twelve state parameters. (At least, this
a

was the case for landmarks visible to the multispectral scanner of

Landsat or the proposed EOS). however, by using both star and land-

mark measurements, it was found that very good performance could be

obtained in estimating all twelve state parameters (See Table 2-3). In

this case, the star sightings were the primary source of data for esti-

mating spacecraft attitude and gyro bias drift, and the landmark meas-

urements provided the only information on orbital ephemeris. However,

when landmark. measurements are used only with range and/or range rate

measurements (See Table 2-3), the landmark measurements play a reverse

role in that they provide the only data for estimating spacecraft

attitude and gyro bias drift, while the range and/or range rate meas-

urements dictate the performance in estimating orbital ephemeris. In

comparing the attitude performance for these two cases in Table 2-3,

it is seen that the performance is noticeably better when using star

sightings. However, the following differences, which favor the star

tracker, should be noted:

1) More star measurements (20 per orbit) were made than

landmark measurements (2 per pass).

2) The star measurements were uniformly distributed

throughout each obit, while the landmark measure-

ments were restricted to that part of the orbit over

the USA.
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3) Some of the stars were further from the local

vertical than any of the landmarks due to the

larger field-of-view of the star tracker (B°
f

square). Consequently, the performance in	 3

estimating yaw attitude should be better for

the star measurements.

4) The assumed accuracy of the star measurements

(5 aresecs per axis) is somewhat optimistic for

the star tracker being considered for this type

of mission, while the accuracy assumed for the

landmark measurements may conceivably be more

realistic.

However, regardless of the relative merits of star and landmark measure-

ments in estimating spacecraft attitude, it is seen from the general

results of this study that landmark measurements are very versatile

in that they can be used as the primary or backup data source for

attitude or orbit determination.

In this study, performance results were generated for landmark

measurements in combination with range and range rate measurements

from either TDRSS or ground tracking stations. (See Table 2-4). In the

case of TDRSS it was found that the performance was not as good as with

ground tracking stations primarily because of the larger uncertainties

adopted for the ephemeris of TDRSS. if these uncertainties were re-

duced by two orders of magnitude, the resulting performance in esti-

mating spacecraft attitude and orbital ephemeris would probably be com-

parable with that obtained with ground tracking.

From the sensitivity 6tudies made with landmark measurements,

combined with range and range rate measurments with respect to ground

tracking stations, the following conclusions can be made:

1) On17 twn observation passes over the USA are required

for reasonable performance in estimating both attitude

and orbital ephemeris.

A
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2) it is not necessary to use Loth range and range

rate measurements with landmark measurements in

order to obtain good estimation performance. For

example, range rate measurements combined with

landmark measurements do almost as well as when

range measurements are included, (See Table 2-3).

3) Only two landmarks are required on each pass over

the USA in order to achieve almost steady state

performance in estimating spacecraft attitude.

(See Figure 2-21).

4) Variation of the landmark position uncertainty and

the number of landmark updates per pass had no

affect on orbital ephemeris estimation. Only the

attitude performance is affected by these para-

metrs. (See Figures 2-17 and 2-21).

5) About two updates per pass are required in range or

range rate in order to achieve near- -steady state

performance in estimating pitch and roll. (See

Figures 2-18, 2-19, and 2-20).

6) The performance in yaw is essentially independent

of range or range rate measurements.
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SECTION 3

STAR AND tANDMARK MEASUREMENT EQUATION DEVELOPMENT

3.1 INTRODUCTION

In this section the results are presented for the study task

pertaining to the development of detailed measurement equations for

the basic onboard navigation measurements. Since the navigation

system for EOS may rely extensively on computations done at a ground

processing center, it may be possible to treat the larger state

vectors associated with a more detailed set of measur- ment models.

Two types of measurements are considered; namely a star direc-

tion measurement using a star camera device, and a landmark di.recf-on

measurement using a multispectral scanner. The scanner is assur.^:d to

be one that scans from side to side at a constant rate.

The previous treatments of the measurements for these two

sensors (l) assumed that the basic measurements were angles and that

the associated errors were white noise. In fact the basic measure-

ments are voltages and time intervals. These are converted to angles

by meats of computations which introduce errors beyond those arising

in the measurement of the basic quantities.

If the basic measurements are taken to be angles, as was done

previously, the errors arising from conversion of basic measurements

to angles must be accurately represented. "owever it is simpler and

more direct to enter the basic measured quantities into the navigation

estimation equations. This approach may only, be tractable when ground

based computations are considered since use of the raw measurements

along with more detailed error models implies increased computational

requirements.
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3.2 STAR TRACKER MEASUREMENT EQUATION

3.2.1 Introduction

Several potential navigation system configurations for EOS

involve star tracking devices. A leading candidate for this applica-

tion is a star "camera" device such as the Ball Brothers CT401 star

tracker. This type of tracker has the attribute that it acquires and

tracks stars by means of a scanning electron beam, and therefore

requires no moving mechanical parts. It is a body-mounted device
whose optical axis is often aligned with the spacecraft negative z B

-axis (local zenith).

The task addressed here is to derive a measurement model speci-
fically for a tracker of this type. The goal of the derivation is a
model that is very general i.e., ,includes all the major noise types
and sources. Essential steps in the derivation include formal state-

ments of the tracker fundamental measurement and the state-vector,

measurement-vector relationship, derivation of the formal partial

derivative equations, and definition of the form of the output-measure-

ment relationship.

3.2.2 Basic Tracker Operation and Measurement

The tracker has a square field of view several degrees on a side,

and the center of the field is pointed at some selected direction in
spacecraft body coordinates. There are two modes of operation, namely

the search and track modes. In the search mode the scanning electron

beam is driven over a uniform scan pattern by ramp and stepped voltages

in the directions of the major axes of the field of view. When a star
signal, represented by a beam current increase, is detected at a se-

lected threshold value, the associated search voltages are observed,
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and their values are used to define the star direction. When a star

has been "found", it is then tracked (in the track mode) by a re-

stricted field scan operation, and changes in star position due to

spacecraft motion are added to the basic location voltages that were

obtained at acquisition. Thus the basic star tracker measurements are

a pair of voltages along nominally orthogonal axes. The relationship

between these voltages and the angles defining the star location in

the field of view is not, however, a simple proportion because of

various distortions of the scan geometry. Instead, a functional rela-

tionship between the basic analog voltages and the star position

angles is derived by means of calibration against a test star pattern.

Discussion of this functional relationship is deferred until later.

Detailed description of the tracker operation can be found in

Reference 13.

3.2.3 Formal Measurement Equation

The relationship between the measurements, state, and noise

levels in the device is intrinsically nonlinear. It can be written as

z = z	
--c

(x, x , v)	 ( 3-1)
— 

where z is vector whose elements are the measured quantities, x is

the spacecraft and tracker state vector, x  is a vector of unestimated

variables 
(14,15) that affect the state covariance ("consider" para-

meters), and v is a vector of white noises. The state x for this

problem consists mainly of quantities defining the spacecraft attitude

such as attitude angles and gyro bias drift, and estimatable biases in

the star tracker.

Assuming that the estimation process to be applied for navigation

will be linear, we expand Equation 3-1 in a Taylor series keeping only

first order terms. The formal linearized measurement equation is thus
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az	 az	 az
dz=	 ax +	 dx +	 dv	 ( 3-2)	 °a

ax	 a1RC —e By

In the case of covariance propagation studies, as for example in

Section 2 of this report, the a's represent statistical deviations

of variables from nominal values. In an actual estimation application

the Vs represent deviations of the true slate from the estimated

state. The partial derivative convention used here is the following:

az.

axj = hij

so that differentiation of column vector z by column vector x yields

a matrix H (with elements h ij ). The matrices H, H e = 3z/axc,

A = az/3v are here termed measurement "sensitivity" matrices. Thus

equation 3-2 may be written

dz = Hdx + Hc dxc + Adv

In the case of the CT401 star tracker the measurement vector (z)

is taken to be the scan voltages mentioned previously, namely

z = ^vxl

Y

(3-3)

As implied by z, the nominal boresight axis of the tracker is taken to

be the z axis.

There are many potential sources of contributions to the

measurement error (dz in Equation 3-2). First, there are possible

state uncertainties consisting of spacecraft attitude and several

tracker bias errors that might be estimated. Secondly there are un-

estimated busses or "consider" biases, (16,17) and thirdly., there are

white noise sources. The major error sources in the star tracker

measurement are listed below in Table 3-1 along with representative

one sigma values.

RFPRnDUCIBILITY 0 i
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TABLE 3-1

MAJOR ERROR SOURCES, TYPES AND REPRESENTATIVE VALUES*

Estimatable Biases

Alignment

Geometric calibration

r	 Mechanical Distortion

Temperature Measurement Bias

Magnetic Field Measurement

Consider Biases

Temperature Fluctuations

Magnetic Field Fluctuations

Star Intensity Estimates

5 aresec

--	 20 aresec

-	 5 aresec

-	 2.5 aresec/deg

-	 50 aresec/ga.uss

-	 2.5 aresec/deg

-	 50 aresec/gauss

-	 9 aresec/mag

White Noise

Poisson Photon Arrival Rate
	

5 aresec

Electronic Noise
	

15 aresec

Two bias sources, namely temperature and magnetic field varia-

tions, can be included in either bias category, depending upon the

The representative error values are based in part upon
Reference 13, and in wart upon conversations with R.L. Cleavenger
of Ball Brothers Research Corporation and R. Doxie of MIT's
Center for Space Research. These errors are very design speci-
fic and therefore cannot be loosely used for any application.
Errors in each of the listed categories can be reduced considerably
by sufficien^7 application of engineering design effort.
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3-6

details of the tracker data reduction. For example, if temperature

and axial magnetic field strength are not measured, then deviations

of these quantities from their calibration values will fluctuate

with random amplitude on a time scale that is long compared to the

•measurement time. These fluctuations would then be treated as con- 	 a
cider biases.

3.2.4 Tracker-Inertial Coordinate Relatignshi

To evaluate the partial derivatives or sensitivity m'afribes

ti, HC  A of Equation 3-2 we write a vector equation relating the

tracker line-of-sight (LOS) to a star, to the inertial direction

of the star. The ei. -or-free relationship is just

	

SB - TBOTOISI	
(3-4)

where TBO and TAI are the coordinate rotations from inertial to

spacecraft body coordinates, as defined in Section Z. S I is a unit-	
A

vector in inertial coordinates defining the LOS to the star being

tracked. $ is the corresponding unit LOS vector to the star in body
coordinates. To simplify the treatment of tracker errors we define

another rotational transformation TBT which transforms from tracker

boresight coordinates to body coordinates. In the tracker boresight

system the star is located in direction ST , and tgUation 3-4 is just

	

T T S = T S	 ( 3-5)

	

BO OI-I
	 Bt

The rotational transform TBT is arbitrary and composed of a pair of

rotations TATg for boresight pointing, and a rotation T O for field of

	

view orientation. We select the convention of having the star tracker 	 ":A

z axis lie along the boresight direction. Thus a star lying along the

boresight has the following direction in tracker .:'?ordinates:

ST -	 0
1l

r '^



This geometry is shown in Fi(.ure 3-1. The general form for ST is

obtained by a pair of rotations from tracker coordinates to the star

direction in tracker coordinates. A rotation about Y T through an

angle a followed by a rotation about X T through an angle 0 yields a

pair of angles in orthogonal planes corresponding to the two electron

beam angles: These are related to scan voltages in the tracker. the

unit vector ST is thus

sin a

5T = - cos a sin 8	 (3-6)
'cos a cos a

Errors in the star position measurement are reflected in the

term on the right in Equation 3-5.

3.2.5 Measurement Error Relationshi s

Errors in alignment of the tracker with the spacecraft axes can

be expressed, as a small angle rotation matrix TE multiplying TBT.

True values of a and a can be represented as the sum of values pre-

dicted from the voltage-angle calibration relationship, and error

values. Thus

= p + Cke

S =gyp + s e .

Equation 3-5 can therefore be expressed in terms of the errors as

TBOTola, - . f TBT T (ae r R e )	 ( 3-7)

with

sin (ap + ae)

=	 - cos (ap + ae } ,in (Sp + se}
	

(3-B)

Cos (a p + ae) cos (S p + se)
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If we let a ( z) and B(z) represent the electron beam angle func-

tions of the voltage, then the form of ap (z) and Bp (z) depends upon

how one calibrates the tracker distortions. The most straightforward

calibration is done by fitting a least squares polynomial to simulated

star test - field measurements (Ref.13).. The test field contains a 9x9

rectangular array of simulated stars, thus the polynomial should not

be of high order.. In Reference 13 first and second order terms are

used. Following that example we write

p = A1 (T-To , B, I-1 Q ) + A2 (T-To , B, I-I0)Vx + A 3 (T-T0 , B, I-I0)Vy

+ A^(T-To , B, I-Io)V2 + AS (T-To , B, I-1 )V2 + A6	 X(T-To , B, 1-1 )VVy .

Bp = Bl (T--To , B, 1-1C ) +	 (similar form).
• (3-9)

The coefficients Ai and Bi are functions of deviations of temperature

(T), magnetic field strength (B), and star magnitude (I) from their

values at calibration. The cross termo, i.e. those terms involving

V  in a and V  in B, occur because the nominally orthogonal planes in

which a and B are measured may be slightly nonorthogonal', and because

certain phenomena such as a strong axial component of the Earth's.

magnetic field cause an effective rotation of the sensor axes.

If one considers the errors in c and B to be— small compared to

their magnitudes, it is then possible to write

0  + ae = (Al + SA 1 ) + (A2 + 6A2 ) Vx + .

Bp + Be = (:BI + 6B1 ) + (B2 + 6B2 )Vx + .	 .
(3-10)

or

ae = 6A1 + 6A2Vx + SA 3Vy +

( 3-]1)
Be	6B1 + 6B 2Vx + 6B 3Vy +	 .

Carrying the small error approximation one step further allows

each of the coefficient errors to be written as an expansion,

namely

.f
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aA	 ami
SA	 ST + ,	 6A + —	 Si +

	

aT	 aB	
B=B	

31	 Tz:^T
T=T	 I 0	 0

Here T 0 and 1 0 are the tracker temperature and star intensity at c6li-
bration, and B is. the axial magnetic field strength (nomiftally zeroc
at calibration). If one adds a first order error in the vbltdgd
measurement, terms of the form AiSV 

i 
are added to the above expression

for those c6dffi.oiehts that are nominally multiplied by voltages, i.e.

An expansion similar 
to 

that in Equation 3-12 may also be

	

constructed for SB	 It should perhaps be emphasized that the coeff-i-
cient errors in Equation 3-12 represent residual errors after calibra-

tion and fitting of the measurements With selected: functions. Both

the nominal coefficients (Aif B i ) and the residual errors in the coef-

ficients (Mi l? SB i ) are functions of the temperature, magnetic field

and star intensity deviations from the nominal calibration values.

3.2-.6 Evaluation of Sensitivity Partial Derivatives

To obtain the desired partial derivatives it is necessary to

differentiate the general geometric relationship (Equation 3-7). This

equation 
is 

aft expression of the relationship between the measurement

Vector z and the state x. We restate the equation as

	

IBOTOIE, ^ TC TBTET (*.', 1)
	

(3-13)

The quOLntities on the left are each functions of the state vector x.

Thus. TBo is a function of the attitude., and Tot and ii are functions

of the ephemeris For manipulative purposes we may therefore express

the left side of Equation 3-13 as a simple function of the state

	

f W = T W T S	 (3-14)
BO	 01=1

The measurement vector z is contained in ST (q, B) of Equation 3-13,
thus

1T = ST [a (Z) , a M
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If one now allows for estimatable bias errors in temperature, star

intensity, tracker alignment, ei.c., the quantities on the right hand

side of Equation 3-13 become functions of the expanded state vector,

and one may write a general form for Equation 3-13 in terms of the

i
	

state vector and measurement vector as

f 	 = T(x)ST Ia(x., z), a(x, z) I
	

(3-.15)

The sensitivity partial H = az/ax can now be obtained in general ford

by implicit differentiation of Equation 3-15. Thus one obtains

3f	 aT	 asT
—ST +T	 ,

ax	 ax	 ax
(3-16)

which is further expanded to yield a solution for az/ax. Expanding the

derivative in the second term.on the right of Equation 3-16 gives

asT —	 asT as	 asp, aR asT as	 as as az
^- — + —^	 -

ax	 as ax	 as ax	 as a 	 a	 az ax

(3-17)

Letting the terms in parentheses be abbreviated as Q 1 and Q2

allows Equation 3-16 to be expressed as

of	 a 	 a 
_ — s + TQ

1 
+ TQ	 (3-18)

	ax r ax	 tax

Solving for 3z/ax produces the desired sensitivity matrix

az	 _	 of (aT
H = — _ (TIC?) 1	 s + TQ	 (3-19)

ax	 2	 ax — a	 1

The inverted quantity TQ 2 involves only derivatives with respect to

the measurement vector. Thus the same equation can be used to evaluate

the sensitivity matrices for consider variables (H c)and white noise

(A) by substituting ?Sc and v for x. For the star tracker, the same

elements of x do not occur in more than one of the terms f, T, and ST.
ThPrPfnrt^ _ fnr anv v Al Aman1- _ twn of f• hP throe ri ehf -hand *Prmc in



we next display some expansion steps in the evaluation,of.`
(TQ2 ).-1 and Ql .	 The matrixQ2 can be written

as 	 ..	 as

avX 	avY

as,as
(320.1

avX 	 avy

as 	 as 

aVx 	 avy

where the elements of ST are given by Equation 3-8.	 Note that the
expanded derivatives forp 2 , when written out in full, are actually

99.	 as. 	 3u	 as. 	 as
+ (3-21) ,A

av 	 R 0	 av3 	 as	 av^

If T is approximately orthogonal, the coefficient (TO 2 } -1 can be
simplified as follows: x

(TQ2 )
..1 

= Q2 1 T-1	 Q21 TT (3-22)

Since Q
2
is a non-square matrix it is necessary to compute the pseudo t

inverse

Q2 l 	Q2 (Q2 Q2 )-
1
 Q2

as 1 (aS2 2	 a$	 2	 ;s	 DS	 aS	 as	 as1	 + 	 2	 2++	 +:.^ 3S 33
( 3) l

az

	

a z1	 1	 1	
az 
i 

az 
2	

az 
l 

az 
2	

az 
^,

az 
2

_
/%

as 	 a5 1	 a52 aS2	 as i as i 	 2	 as 2 x as i 2.
+	 (2_1 +^—	 —	 +

az	 az	 a z 	 az	 az	 az
	

az a1	 2	 1	 2	 1	 2	 2	 2 az 2

(3-23)

where Q2 is obtained by transposing Equation 3-2 0..
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where

p = A2 + 2A4VX + A6 Vy ,

q = B 2 + 2B4 VX + B6Vy ,
(3-25)

u = A3 + 2A5V + A6 Y

v = B.3 + 2B 5V X + B6Vy

Performing the inverse operation algebraically gives

u2 + v cos 2 a	 (pu + qv cos 2 a)

T	 -1(Q2 Q2 )	
= cos 2 a(pv-qu)2

-(pu + qv cos 2 a)	 p2 + q2 cos 2 a

(3-26)

In terms of defined quantities, Equation 3-25, the terms of
Q2 (from Equation 3-20) are:

asl/ aVx = p cos a

as 2/aVx = p sin a sin $ - q cos a cos S

as,/ a V_ = -p sin a cos - q cos a sin s

X

x cos S- v cos a cos S

A

a
y

i
i

a cos 6- v cos a sin 8

(3-27)
3



to summary, the sensitivity partials are gives in general form
by Equation 3-19. Since the variables x, xc, v'apply to only one of
f, T analS,r, at a ..time:,. Equation 3-19 simplified for any given variable
of differentiation. For noise, biases, etc. related to the spacecraft
altitude we have

H (altitude)	 (TO 2)
-1 of	 (3-28)

	

ax	 j

For star tracker alignment errors

aT
H (alignment)	 -(TO2)-1 — ST	 (3-29)

ax

and for tracker internal errors

internal
H (to tracker) -; -Q2 1 01	(3-30)

Since T is generally a product of a nominal rotation matrix and a
small angle error matrix, ie.

I	 .

T = TC TBT ,

the alignment sensitivity can be written

aT
H (alignment)	 -Q2 1 T r	 - 5T .

3x

5.2.7 Sensitivity Example

suppose we wish to calculate a particular sensitivity matrix

element. As an example we pick a`,Tx/a(6T) where ST is a temperature
error 0T may be a bias if temperature is measured onboard the space-

craft; or a consider type error if temperature is not measured). Let
&T be the first element of x or xc or v. Then from Equation 3-30

avx	
- (Q 2 1 Q1) 11

30T)

{
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^	 Q2
cat (pv-qu)

-(pu + qv cat ) p2+ g2ca2 	u ca u sa sa	 -u sa ca

	

-v Ca ca	 -v co sa

(3-31)

where c and s denote cosine and sine, respectively. Using Equations

3-13 and 3-14, and the vector form of Q1 for a single element, gives

ca

	aA	 3A	 3A	 DA	 MaA	 1
(Q ) • =	 Sa sa	 1 + ---2V + 3V +-4V2 + 5V2 + 6V V J
1 31	

(BT	 aT 
X 

aT y aT X 
aT y aT X y

(-sa ca

0

	

as	 as	 aH	 as	 as	 as

	

+ -ca ca	 1 + ZV + 3V + 4V2 + 5V2 + 6V V ).

	

(BT	 3T X aT y aT X aT y 3T X y

-ca sa

(3-32)

Picking a = = 0, i.e. the sensitivity at the center of the

field of view, and multiplying out Equation 3-31 gives

v	 u	 0

1

Q-1 -
2	 (pv-qu)
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From Equation 3-32

1-EA Terms

(Ql)jl	 -1•EB Terms

C
	

y	 I

therefore
s

as	 _ avX	 1
(v-ZA Terms - u • EB Terms)	 (3-33)

DXT 11	 a(ST)	 (pv-qu)

Examination of the forms of p, q, u, v, as given in Equation 3-25,
show that normally

A2 >> B2
A3 « B3

A4 :> B4

A5 c< B5

A6	 B6

This is because the cross-coupling terms due to rotation and non-

orthogonality are nominally small. Also A6 and B6 are small with

A 6 V y << A2 , etc. These inequalities imply that

p >> q, v » u

so that Equation 3-33 becomes approximately

aV	 1	 -1 a
X = --- • v • EA Terms - --(A)

J(6T)	 pv	 p aT

I

I
i



or

3A	 aA2	 aA3	 aA4 2	 8A5 2	 aA6
t	 l + V + rV + —V + V + v V	 4

DT	 aT Xo aT yo aT xo aT Yo aT XO Y°
3Vx

a CST)

	

(A2 + 2A4VX0 + NVyo)	 T T1	 c

>>.: (3-34)

where T = Tc is the calibration temperature, and the subscript

"o" for the voltages indicates the values assumed at a = R = fl.

The behavior. of Equation 3-34 can be seen more Clearly by considering

the tracker calibration to be linear without cross-coupling. Then

Equation 3-34 reduces to

aA	 aA1	 2V
avx	 aT	 aT xo

a (ST)

	

	
(3-35)

A2

The intuitive content of this equation is more clearly displayed by

som.e.manipulations. We first re-express the right side

aA	 aA

aT + aT X0

as	 as '

A	 a (ST) /(avx
2

Substituting into Equation 3-35 and solving for Oa/MT) yields

as	 as	 avx

a(M T avx a(aT)
(3-36)
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3.3 LANDMARK MMSUREMENT EQUATION

3.3.1 Introduction

One of the primary instruments being planned for an EOS type

satellite is the multispectral scanner. This device is a natural for

. navigation measurement using landmarks within the fieald of view.

There is an important system advantage in using the device in this

manner, and that is that landmark sightings can provide both attitude

and ephemeris information simultaneously. For example, it is shown in

Section 2 that scanner sightings of landmarks coupled with range and

range rate measurements from ground stations could obviate the need

for a star tracker onboard the spacecraft.

This section derives a general measurement equation for the

landmark sightings including all of the known potential error sources.

The equation is made deliberately general so that various error

sources that are small are not overlooked and can be systematically

dropped if desired when the equation is applied in practice.

3.3.2 Basic Scanner Operation and Measurement

The scanner moves a small field of view across the Earth's sur-

face at a rate designed to give full area coverage. At regular time

intervals the sensor output is sampled to yield a sequence of effec-

tive picture elements. If a known landmark has a distinguishable out-

put, its position within a scan can be in principle determined by ap-
plication of a recognition process. To this end it has been suggested

that searchlights and mirrors be used as landmarks since they are

nearly point sources with distinguishable spectral characteristics.

The searchlight and mirror types of landmarks yield a sharply defined

signal that is essentially confined to two picture elements.' Thus if
the approximate position of the landmark is predictable over a limited

part of the scan,it may be passible to use a finer signal sample

interva: in order to establish the position of the landmark to within
one optical resolution element.

3-18
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Fundamental to the navigation problem is the association of
-	 event times-within the s"canner'system with universal time which is

.	 used in. ephemeris calculations. 	 Since the scanner scans at a known

rate, the inertial scanner pointing direction can be obtained.by db-
serving the universal time at the beginning of a scan on which the

landmark is sighted, and adding to the estimated starting position-an.
i

angle which is a function of the scan rate and the time between scan

initiation and landmark detection. 	 The fundamental measurement is

,..	 therefore the time interval between scan initiation and landmark

sighting.

i-	 If the navigation calculations are to be done at an earth facili-
ty it will be necessary to transmit from satellite to earth the scan w
initiation timing pulse (probably for several scans) and the time in-`
terval between detection and initiation. 	 The latter can presumably be 1

processed onboard the satellite:.
i

3.3.3 Formal Measurement and Noise

f

The linearized measurement equation considering the various cate-
J.

gories of noise is

az	 az	 ax
az	 6x +	 —	 Sx	 +	 dv_

ax	 a	 av

where x, xc , _v are defined in Equation 3-1. 	 for the multispectral

nranner z is simply a scaler z -► At.

The geometric equations (discussed below) relating scanner line-

:.:. of sight to orbit:-inertial coordinates involve the.basic .meas.urement..... t

(time of landmark sighting) by means of direction cosines of the scan
angle a.	 The linear scan angle-time relationship assumed here is only
one of a number of possible a(t) relationsh ps.which result from var-
ious mechanical. scanner designs. 	 The linear: relationship is relevant

to rotating mirror scanners as in the Nimbus and ITOS satellites, the
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ERTS scanning mirror, and rotating satellites such as ATS . L, .II.;

Pioneer 10, and SMS. We write the linear (error-free) relationship as

a = a (to) + &At.	 ( 3-3.7)

where a(to) is the angular deviation of the scanner field of view from

null at scan initiation., & is the scan rate, and At is the landmark

detection time interval. The true value of a includes errors whose
sources are identified by examining the differential form of Equation

3-37. Thus

Sa = Sao + (6&) (At) + (a) 6 (At) . 	 (3--38)

Here Gab represents an uncertainty in the scan field width, 6a repre-

sents a scan rate uncertainty, and S(At) a timing error. The latter

consists of two errors, namely

6 (At) = Std - 6t 	 (3-39)

where td is a time-of-detection error and 6 t is a scan initialization

error. Scanner related sources for these errors are listed below in

Table 3-2. These were obtained in part from discussions with 0. Wein-

stein of GSFC and from..Reference 18. The initial scan position bias

is due partly to the internal scanner mechanism and partly to the

alignment of the scanner with the spacecraft body axes. The scanner-

spacecraft body alignment error is treated separately as a small angle

rotation matrix in the discussion which follows. Angular alignment

errors are'expected to be on the order of 100 u rad.

The consider biases are slowly changing errors of random ampli-

tude, for example, errors associated with changes in calibrated settings

due to temperature fluctuations.

Since no time-of-detection algorithm has been designed and no

tests have been made, the random error associated with. detection cannot

be closely estimated. However the searchlight experiment data



c 	 _..	 -,- 	 -3 	: 'f'ur'y	 +	 ^.

'R te . -	 -	 -	 - -. i	 _::	 -. ..i•

TABLE 3-2'
,

MSS LANDMARK .SIGHTING.ERRORS

''- Estimatable Bias Errors ,(1a):

Initial Scan Position (Soso )	 - 4 0 rad

Scan Rate Bias '(6x) Owl .$ =

Consider Bias Errors I a:)

Initial Scan Position Due to
Thermal Changes and Wear (Sap.)	 - < 4 ji rad

s Scan Rate Drift ( S&)	 - .003—

Initiation Time Error (Stp )	 -
-

10 %
..

of interval:
J	 .:.

I

White, Moises (1a)

Side-To-Side Scan Line ii:ser (SBA) - 4 u rad

k Scan Line Synchronization (Sto )	 - 4 u rad

Time of Detection ( Std)	 - 10 V rad ?
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generally show the landmark confined to a single or atmost two picture Ai

elements. Thus if the midpoint of the maximum signal picture: e.lemen:t

is. used as a markei the uncertainty will be roughly a half picture

element. The discrimination accuracy could be improved-by using a

smaller sampling interval fora period defined by the expected landmark

sighting time interval,

3..3.4 Scanner- Inertial Coordinate Re^ationshii3	 r

The nominal vector relationship between landmark, spacecraft and
scanner line of sight vectors in spacecraft body coordinates can be

written as

	

TT u = T lm	 (3-40)
BO OI- SS—

Here TBO and TOZ are the rotation matrices defined above, and T RS is a

rotation describing the orientation of the t:ca+ner in spacecraft body

coordinates. Previously (Ref. 1) T AS consisted of a single 90° rota-

tion corresponding to,an x axis boresight aimed straight down along

the body z axis. in the interest of generality TBS is defined here to

be a three angle rotation matrix. u is a landmark position unit vec-

for in inertial coordinates and 1m is a unit vector along the scanner

line of sight towards the landmark. In the presence of errors the gen-

eral form of Equation 3-40 changes only by the matrix T(Sy) which rep-

resents small angle. errors in the scanner alignment with the spacecraft

body axes. T(6y) is introduced as a multiplier of T
BS

. Thom error form

of u is given by

i	 1-r+dl
^_U

	

	 (3-41)
d

where r is the satellite position vector, 1 is the landmark position

vector, and 61 is a landmark position error. The scalar d is just the

magnitude of the vector numerator. Figure 3-2 .illustrates the land-

mark sighting geometry.

3-22



i1

jR
^

SCANNER
OPTICAL AXIS\ \

SIT 300:

tJ	 ^

r

Figure 3-2 Landmark Sighting Geometry
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The individual rotations are defined as follows; 90 0 about.body y axis;

through angle A about Z,'; through angle B about Y'; finally through an-

gle C about X'. In the scanner coordinate system at any instant, the
scan direction will be defined by the nominal scan angle a. Thus the
nominal form of lm is just

cos (ao + az.)

lm	 sin (ao + az) .	 ( 3-43)

0

where z is the measured time of detection z = td - to. Since the line
scan type of multispectral scanner which we are considering here resis-

ters six scan lines simultaneously, it is possible to have a displace-

ment error in a landmark sighting when the landmark image falls between
two detectors. Considering this displacement to be the angle 0, and
adding the error sources in a (Equation 3-38), gives the actual lm

value, namely

Cos (a + dao + daz + a6z) cos

lm	 sin (a + Sao + daZ + adz) cos B
	

(3-44)

sin 0
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surement is thus (combining Equations 3-40, 3-41, and 3-44)

1X +&ix 	x.,	 cos (a ± Sao + 8az + ;6z) cos S

T T	 i + $1 - y	 T T(&¢). sin. (a + 8a + daz + aSz)..cos 5HO Or d	 y	 Y	 AS	 o

1z + 61z - z	 sin 0

3.3:5 Evaluation of the . Sensi,tiyi:ty Partial Derivatives

Equation 3-45 can be written .in.the same general form a6 Equation

3-15, namely

f(x) = T( x)lm[ac(x,x),R(x.,z))

To obtain the sensitivity to the state we again solve

of	 aT(x) ^	 alm
=	 lm + T(x)-=

ax	 ax	 T" ax

for BA/ 3 x. The result is (here z is a scaler)

a^	
l a^	

aT,.
H = — - (TO 2 )	 — - —IM + TQi 	(3-46)

ax	 (ax	 ax

Rewriting with T-1 multiplied out gives

T.
H = 0.21 ^ T-1-af- - T-1—lm f- 4I	 (3-47)

ax	 a5c— 
	
))

y

9
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A

-sin a

aim as
Q2 =	 . =	 cos a	 a .	 (3-9.8)

Da Az

Q

where partial derivatives are evaluated at nominal (error-free) condi-

tions. Taking the inverse gives

1

Q21 =	 (-sin a cos a a)	 (3-49)
a

It remains to calculate the other terms in Equation 3-47. Let the

state vector be defined as follows:

XT = (81^14) i Bxr By ► BZ ; XO'Y1 z " X,y,z; 61x ,61y ,61 z ,8(X ► 86s6Y,6a) .

The angles 6, 0, 0 are the altitude definition angles contained in the

rotation T$o introduced in Equation 3-40. This matrix is defined in

Section 2.4. Bx , By , Bz are gyro bias drift rates also defined in Sec-
tion 2.4. The quantities dl are landmark position biases corresponding

to an uncertainty in the geoid location of a known landmark. For ex-
ample, if the landmark is a search light surveyed in by common survey

techniques, the magnitude of this error is approximately lQ meters(19)
State vector element's x, y, z are j ust the satellite coordinates, Sy

is the scanner-body alignment bias (may have three components.), and

6a, 86 and 6a are-as defined above.
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The first three state elements enter Equation 3-44 only through

the first term in brackets.	 These we may write

_	 1	 -1 of
He 	 02	

T	 -- ,
ax

aTHo

= Q21 T-1	 TOlu (3-50)
ax

Now T = TESTdY , thus T-1 = T6y TBS .	 Since TES is orthogonal

T-1 = TBS , and since T(6Y) is infinitesimal T-1 (6y) z TT (6y). Substi-as
tuting Q_

2
	in Equation 3-49) and T -1 yields

^,^,^	
1 {-sin a cos a	 0)TBS
 DT 	 Toi	 , (3-51)
a	 ax

where x here represents only elements e, 4s, ip.	 T( 6y) does not appear

because its nominal value is the identity matrix.	 Evaluating the par-

tial derivative gives ( the nominal values of 0 and * are 00)

_CO	 -so	 0	 0	 0	 0

aTEO	 amso= h0 =	 0	 0	 0	
,	

= h* =	 -CO	 -Se	 o
ae	 a^

so	 —CO	 o	 o	 0	 1

0	 o	 0

aT 220 T 
h	 =	 -so	 Ce	 0

0	 0	 0

F

.3-27
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az
= JhaK

ae

az
= JhOK

a^

aZ
=JhK,

0-5

Where J 
= Q2l TBS and K = TOIu .

Elements of H for the second set of state vector elements also

involve. only derivatives of f, thus

_l

Hd l	 Q2

T	 au

TBS TBO ToI a xT f
(3- 5

Evaluating the derivatives of u gives

-uX . 
+.

 a2,
-uxuz

au L au

a(a l )	 lx d3	 X Y a(dly)	 1 	
T3

-0 z u x -uzUy



1 TBS TSOTOI , then the H elements associated with dl areLet I n 
Q2 

az
= I h1 r

a(six) 	x

az
= I h

Mai y ) 	 —ly

az
I h	 (3-55)

a (61z)	 --1z

The sensitivity to satellite position is identical to the above

except for a change of sign, thus

az
_ -I hl r

ax	 x

az
- -S hl

By	 y

ax
•	 = -1 h	 (3-56)

a(z)	 =lz

•

	

	 Sensitivity to 6y involves the second term of Equation 3-47.

Thus

DT ( 6 Y)
H 6 y = —Q2 l	 lm

a(6 Y)
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If we write

1	 0	 0

TOY) =	 0	 1	 6Y

0 -6y 1

then

0	 0	 0

aT

Y)	
0	 0	 1	 = hay

s.(6 

0	 -1	 0 .

and
A

Hby 
= -Q^ hsylm	 (3-57)

The remaining three state elements involve the last term of

Equation 3-47, and can be expressed as:

Recall that Q 1 is defined as alm W, or in this case

	

21m as	 alm as

¢1 s. 8x as axT	 .

One of these terms is therefore associated with each of aa o , 60 and

6s.. Differentiating Equation 3-44 where a is taken to be the "true"

value, i.e. a = a + 6a, with 6a representing the error terms., gives

-sin a

	

0
1 
(6a=	 eos a	 •1

0
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thus for this state element

-sin ct

Ha a	(-sin a cos a 0 cos 01

•	

0	

C&

0

For 60 we have

0

H	 (-Sin a cos a 0) 0	 0	 (3-59)

Finally for N&

(3-60)
OL

3.4 C014CLUSIONS

it is possible to derive general and realistic measurement equa-

tions for optical navigation sensors following a three-step procedure.

The steps are:

(1) Determine the actual measured quantity in terms of the sen-

sor operation (e.g. pulse time, voltage levels, etc.), and

the types of noise associated with the measurement (e.g.

bias, white, etc.).

(2) Write the geometric state, measurement, and error relation-

ship in general form

g M f(x)

where z is the measurement vector and x is the state vector.
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(3) Differentiate this relationship implicitly to obtain .the

linearized measurement equation used in the linear estima-- 	 j

tion of nonlinear systems.

These steps have been applied to star tracker and multispectral

-	 scanner measurements. Specific models of these devices were considered,

and the resulting measurement equations are fairly comprehensive.

3-3.2
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in this report the performance results are given for one type of

hypothetical horizon sensor. This sensor is assumed to be a body-fixed
device which simultaneously senses the Earth's horizon at a number of

equally spaced points and provides an indication of local vertical. In

other words, it may be looked upon as a device which essentially
tracks the center of the Earth. The measurement equations for this

device are presented in Section 4.3.2. To simplify matters, it is

assumed in this first analysis that the Earth's horizon is circular.	 ti9

However, as indicated later .in the comments on the performance results

(Section 4.4), the next step in this study would include consideration

of the actual non-circular shape of the Earth's horizon, which would

provide some additional information on yaw attitude.

It should be noted that measurement equations have also been
developed for a second type of horizon sensor, but are no's presented

in this report since they have not yet been incorporated in the computer

simulation. This device consists of two small FOV sensors which spin

about body-fixed axes in such a manner that one conically sweeps across

the northern hemisphere while the other sweeps in a similar fashion

across the southern hemisphere.

4.2 INFRA-RED HORIZON UNCERTAINTY

Various studies (22,23) have shown that the 15u bands of CO 2 pro-

vide horizon markers that display the least sensitivity to variations

in atmospheric phenomena such as cloudiness and surface effects. Accord-

ingly, most of the theoretical and experimental programs aimed at IR

horizon fluctuation assessment have been confined to this spectral

region. Theoretical analyses by Wark (24) , and Thomas et al (25) have

shown maximum altitude fluctuations of 3 to 4 kilometers for the one-

half maximum radiant intensity marker after corrections for latitude

and season have been made. These fluctuations are primarily due to

short term temperature variations. Fluctuations of this magnitude have

been confirmed experimentally by Dodgen (22) , and Girard (26} . For a

satellite at 1000 km altitude, a 4 km displacement on the horizon sub-

tends an angle of about 0.06 degree. At geosynchronous altitude the

angular subtense is 0.004 degree.
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4.3 STATE AND MEASUREMENT EQUATIONS

1=_
In this initial covariance analysis, frequent use is made of the

analytical techniques and definitions previously described in Section 2

for the Modified Landmark Utilization Study. Also included in this

study are most of the coordinate systems defined in Section 2.3.

4.3.1 State E uations

The state of the system x is defined as the following six dimen-

sional vector

xT -	 (6, ,tP, Bx ,By ,Bz }	 (4-1)

where

Euler angles defining the body attitude with
respect to the orbital frame.

Bx ,By,Bz - Bias drift of roll W, pitch (Y), and yaw (Z)
gyros.

The state equation for this system is the previously derived

Equation 2-21 of Section 2. Since this equation is non-linear, use

is made of the corresponding linearized expression of Equation 2-28

where the adopted state parameters represent the perturbations of the

original parameters. The transition matrix for the linearized state

equation is that given in Equation 2-33.

4.3.2 Measurement Equations

•

	

	 As previously indicated in Section 4.1, the horizon sensor is

assumed to be a body-fixed device which simultaneously senses the

Earth's horizon at a number of equally spaced points and provides an

indication of local vertical which is analytically represented as a

unit LOS vector to the center of the Earth.

For the purposes of this study, it is assumed that the satellite
position and velocity are known without any uncertainty.
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The estimated direction of this unit LOS vector in body co-

ordinates is:

LOS - THO TOI Unit (-r)	 (4-2)

where r is the estimated satellite position vector in .basic inertial

coordinates, and TO1 and TBO are the coordinate transformation matrices

defined in Section 2.3.

The unit vector defining the measured LOS to the center of the
Earth in body coordinates is:

1	 0	 0	 co	 0	 s$	 0

u LOS	 0	 ca	 -sa	 0	 1	 0	 0	 (4-3)

0	 sa.	 ca	 -so	 0	 co	 1

where a and 0 are Euler angle rotations about the roll (X) and pitch

(Y) axes of the spacecraft, respectively. These measured angles con-

sist of the true angles plus a measurement noise (v) which is assul

to be white and gaussian. In equation form,

a - aTrue + v 

0 r	 True + vs

The linearized measurement equation for this case is:

Sz = H dx + A dV

where the matrix H is*

H _ au LOS
3x

1 2i = 2Eo

ax [TBO I 	 TOI Unit (..r)

^X-Xo

UO
	 H
	

0 1 0	
0

0 i 0 1 0 J
5eee footnote on page 2-20.

(4

(4-

x [ T80 To, Unit (-r}
J

x=xo

(4
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where Eo is the nominal state (i.e., O=V=0) and

_e
-ce	 -se 0 ToI unit	 (-r) (4-7)
0	 0 0

_ 0	 0 0 T^I
Unit (-r) (4-8)

. -ce	 -s8 0

H^ 00 1 Tot Unit (-r)
3

(4-9)

-s9	 ce 0

The matrix A in Equation 4-5 is:

A	 =
a au LOS e 0 Ca (4-10)

v

y

-cao cso 	Sao COo

a =a
S =Oo

which for the nominal case of ao = ao = 0 is:

A =	 0	 1	
(4-1.1)

	

-1	 0

4.3.3 Filter and Smoother Equations

The computer program written for this study allows for the

selection of either a forward filter estimation scheme or a Fraser

Two-Filter Smoother (10) . In either case, the data interval is assumed

to begin at time t 0 = 0 and ends at time tn , with measurements occur-

ring at equally spaced times tl , t2 , t 3 . . . , or alternatively, at

equally spaced orbit angles al ► x2'X3' -	 "Xn•	 The time between
measurements is represented by At  = At = constant. The time of

interest is assumed to be t
i
 where tl < t^ - tn'

4-S
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The forward filter is a standard Kalman filter using the

following equations to recursively update the covariance matrix of

the state estimation uncertainties from to to the time of interest.

tj:

Pk	
"k, k-1 Pk-1 k, k-1 GQGT	 ( 9-12)

K  = Pk H 	 [Rk + H  Pk Hk) -1 	 (4-13)

Pk = [I - Kk Hk I Pk [I - Kk Hk)T + KkRkHT	(4-14)

where Pk is the covariance of the state estimation uncertainties just

before tk ; Pk is the covariance of the state estimation uncertainties

just after tk ; Q is the covariance matrix of the gyro random drift

(Equation 2-18); and G is

G =	 G1	 (4-15)

43^

where G1 is given in Equation 2-27.

The Fraser Two--Filter Smoother makes use of two Kalman filters.

one to process the data forward from the beginning of the data inter-

►al to a point of interest, and the other to process the data back-
wards from the end of the data interval to the same point of interest.

The resulting estimates of the two filters at the point of interest

are then combined in an optimal manner to obtain a smoothed estimate.

The forward filter is the filter previously described. The backward

filter is also a Kalman filter; however, it must first be expressed

in information form since the value of Pk at end of the data inter-

val is unknown. To do this an information matrix U  is defined as

follows:

Uk = Pk -1	 (4-16)

where the initial value of this matrix at the end of the data interval

is assumed to be:

Uk =n = Un = D	 (4-17)

4

k

a
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where n corresponds to the time of the last measurement. Starting at

tk = tn,the information matrix is updated as follows:

Uk = U + Ak Rkl Uk	 (4 -18)

Afterwards, the matrix is propagated backwards as follows with updates

d
being. made at each measurement time in accordance with Equation 4-18:

Uk-1 _ ^k 
.kl [(I - 3k CT) Uk (1 - Jk GT)T

+ Jk Q-1 JkI (Ok, k-1	 (4-19)

where

Jk = Uk G ( GT Uk G + Q-1)-1	 (4-20)

The final smoothed value Pion of the covariance matrix at the time of
r	 .

interest (t^) is obtained from the two filter values P i and U  as

follows:

P^^n = (I - K^ Ua) P, (I - K^ U .} T + K. U '
^ K

T
3

where

K
i 

- P
i 

HI - P
i 

Ui) -1 
I T

(4-7f.)

(4-22)

and U  and Pj are given by Equations 4-19 and 4-12 respectively.
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4.4 PERFORMANCE RESULTS

4.4.2 Introduction=

The results presented in this section represent the performance
obtained with the Fraser Two-Filter Smoother for a satellite in.both a

geosynchronous and a sun synchronous orbit. The latter orbit was used
primarily to provide data for comparison with the results which were
obtained at geosynchronous altitudes.

In all cases the satellite was assumed to be in a local vertical
attitude with rotation occurring only in pitch. The nominal values of

the error sources and parameters are as follows:

Initial State Uncertainties (1Q)*

Attitude (Pitch, Roll, Yaw)	 -	 60 aresec (each)

Gyro Bias Drift	 -	 0.03 deg/hr (each)

Horizon Sensing Errors (lc)

Assumed to be a white noise. Values given with performance results.**

Gyro Error Sources (1 )

Random Drift	 -	 0.01 deg/hr (white noise)

Quantization	 -	 0.1 aresec

4.4.2 Performance Results for Geosynchronous Satellite

In Table 4-1 the performance results are shown for a geosyn-

chronous satellite. Data is presented showing the effect of variation

j	 in the total data processing interval (i.e., number of orbits), the

* To simplify matters in this preliminary study, the uncertainties
in satellite position and velocity are assumed to be zero.

** It should be noted that the horizon errors given with the perfor-
mance results are treated as equivalent angular errors in indi-
cating the direction of the center of the earth. The values
given represent the one sigma values about the pitch and roll axes.

REPRODUL'MILM OF T f ,
4-B
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State, Est. mat on'Uncertain es Tro,

Data Update Horizon Estimation Attitude Gyto..Bias Drift
Case Interval Interval Error Point {aresee3 .(10-3 de /hr)

(orbits) (degrees.) (aresecs) (orbits) Pitch Ro11 Yaw X Y 'Z

1 2 20 36 0.25 9.9 10.5 60.6. 4.4 0.12 0'.44',

2 2 2 36 0.25 3.3 3:.7 59.6 4.3 0.05 0.14

3 2 0.5 36 0.25 .1.9 2.3 59.5 4.3 0.04 0.::08

4 4 20 36 2 4.6 7.5 59.5 4.4 0.05 0..31

5 4 20 2 2 0.8 1.0 59.4 4.3 0. 02 0.0.3'

6 8 20 36 0..25 6..3 6.6 60 4.3 '0.02 0;22

7 8 89 36 0.25 11.9 11..4 61 4.4 0.03 0`.45

r_

i

t"

TABLE 4-1

FRASER SMOOTHER PERFORMANCE FOR GEOSYNCHRONOUS SATELLITE

mm
^:
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horizon sensing error, the interval between updates with horizon meas-
urements (in degrees of orbit), and the point at which the smoothed
estimate was made U .e., number of orbits since the start of the total

data processing interval).

The first three rows of Table 4-1 show the effect of variation
in update interval. Here it is seen that a decrease in the update
interval (or an increase in the frequency and number of updates).
improves the performance in estimating pitch, roll, pitch (Y) gyro
bias drift, and yaw (Z) gyro bias drift. However, it is noted that

almost no change occurs in the performance for yaw attitude and roll

(X) gyro bias drift.

Cases 4 and 5 of Table 4-1 show the perrormance for four orbits

of data processing and two different values of horizon sensing error.

It is seen that reducing the horizon sensing error from 36 to 2 aresecs

results in a significant improvement in all of the state parameters

except for yaw attitude and roll gyro bias drift which remain essent-
ially at the same values as in all other cases of Table 4-1.

Cases 6 and 7 of Table 4-1 show the performance for eight orbits

of data processing and two different update intervals. In comparing

Case 6 with Case 1, which are similar except for the size of the data

processing interval, it is seen that an increase in the data process-

ing interval results in a definite improvement in performance except

for the same two state parameters mentioned previously.

The fact that no significant difference occurs in the performance

for yaw attitude and roll gyro bias drift for all cases in Table 4-1

does raise some question as to why this is so. At first glance, it

would seem logical that no improvement would occur in yaw since the
horizon measurements in the present situation provide information only
in pitch and roll. However, it should be noted that the spacecraft is
assumed to have a nominal local vertical attitude at all times, and

that information on roll attitude at one point in orbit becomes infor-
mation on yaw attitude at a point 90 degrees ahead or behind in the



orbit. This fact is clearly illustrated by the following two equations

showing the relationships between the errors in roll ( f), yaw ( ^), roll'

gyro bias drift (Bx) and yaw gyro bias drift (BZ):*

602 = C d¢ l.-S . SPI + w dBX +. (1rW	
8HZ	 (4-23)

" = S d0l+C So l
 + (I-C) SBx - m dBZ	(4-24)

where the subscripts 1 and 2 denote two points in orbit separated by

the orbit angle d; S - Sin M; C - Cos (a); and w is the orbital rate.

If X = 90 degrees, Equation 4 -24 becomes:

6*2 = Sa
l +	 dBX -	 dBZ	 (4-25)

which shows that a roll error (60 1) at one point in orbit becomes a

yaw error (6* 2 ) at a point 90 degrees ahead. It is also interesting

to note that Equation 4-25 can be used to indicate the relationship

between the uncertainties in yaw attitude and roll gyro bias drift of

Table 4-1 by neglecting the small values of 66 l and dBZ , so that:

	

"2
= m dBX 	(4-26)

Substituting 4.3x10-3 deg/hr (or 4.3x7.0-3 aresec/sec) for dBX (from

Table 4-1) and w = 7.27x10 -5 radians/sec, gives 59.1 aresecs for 602

which is close to the values given in Table 4-1. This close relation-

ship between the performance in estimating yaw attitude and roll gyro

bias drift has been found to be the case in most of the EOS studies

conducted at CSDL.

The pact that there is no change in the roll gyro bias drift per-

formance for the various cases of Table 4-1 may also seem strange since

one would normally expect the present type of local vertical measure-

ments to provide more information on roll gyro bias drift than yaw

gyro bias drift. Actually, the performance in estimating roll gyro

bias drift is better at the beginning of data processing. This is

clearly seen in Figure 4-1 which shows the performance of the forward

*These equations can be obtained from the transition martix in Equation
2-33. It should be noted in Equation 4-23 and 4-24 that the errors in
gyro bias drift are assumed to be fixed between points 1 and 2.

4-11
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filter for the first 90 degrees of orbit.	 The results in Figure 4-1

are for Case 2 of Table 4-1 where an update was made after each 2
degrees of orbital motion.	 Note in Figure 4-1 that the performance
for yaw M gyro bias drift eventually becomes better than that for
roll (X) gyro bias drift.	 Also note that the rate of improvement in

- filter performance for yaw	 bias drift isper-	 y	 gyro b,	 greater than that for
roll gyro bias drift at the end of the data interval in Figure 4-1.
Shown also are the smoothed estimates at 90 degrees which are the
same values given in Table 4-1 for Case 2.

4.4.3 Performance Results . for Sun S.nchronous Satellite
Forur o	 p	 previous results given for ap.	 p ses of comparison with the

geosynchronous satellite, some performance results are shown in Table

4-:2 for a satellite in a sun synchronous orbit like- that used in the
stud	 of Section 2.	 In contrast to they	 previous orbit which had an
altitude of 35,860 km and an orbital rate of 7.27x3.0-5 radians per
second:, the sun synchronous orbit has an altitude of 1,.0:00 km and an

y' orbital rate of 10'" 3 radians per second.	 In Table 4-2 it is seen that

all of the results were generated for a data processing interval of
x four orbits.	 Except for the difference in orbital period (and rate),

the conditions used to generate the results for Case 1 of Table 4-2

are the same as those for Case 4 of Table 4-1.	 Note that the per-
formance in estimating pitch and roll is essentially the same for these
two cases, while the performance in estimating yaw is much better for
the case in Table 4-2.	 Also note in Table 4-2 that the general per-
formance in estimating gyro bias drift is significantly worse than

F; that of Table 4-1.	 This result is primarily due to the fact that

a there is much less time between successive attitude updates for the

cases in Table 4-2 because of the higher orbital rate..

k In Table 4-2 it is seen that the performance in estimating yaw

attitude and roll (X) gyro bias drift is essentially the same for all
of the cases anal.Yz.ed.	 This was also found to be .true for all of the
cases of Table 4-1.	 Also note that the relationship between the
uncertainties in yaw attitude and roll gyro bias drift of Table 4-2
agrees with the relationship in Equation 4 -26 when the appropriate
orbital rate	 w	 = l0-3 radians/sec	 is used..k
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TABLE 4-2

VRASER SMOOTHER PERFORMANCE FOR SUN SYNCHRONOUS SATELLITE

State Est mat on Uncertainties 	 la
Data Update Horizon Estimation Attitude Gyro Pas Drift::`

Case Interval Interval Error Point (aresec) (10'	 de /hr)
(.orbits) (degrees) (aresecs). (orbits) Pitch. Roll Yaw X. Y	 Z

1 4 20 36 2 4.3	 7.3	 27.2 26.9 	 0..6	 4.2

2 4 20 2 2 0.5	 0>.6	 26.5 , :.26.8	 0.:1	 0.3

3 4 18 2 2 0.4	 0.5	 26.8 26.8	 0,.1	 0.2.

4 4 5 2 2 0.4	 0.4	 26.8 26.8	 0.1	 0.2

5 4 2 2 2 0.3	 0.4	 26.8 26.8`	 0.1	 0:.2
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