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SECTION 1

INTRODUCTION AND SUMMARY

1.1 INTRODUCTION

This report is the Third Interim Technical Report covering three*
studies performed by The Charles Stark Draper Laboratory, Inc., for
the NASA Goddard Space Flight Center during the period from August 1,
1974 to October 31, 1975. These studies were as follows:

(1) Modified Landmark Utilization Study - An investigation into

the use of range and range-rate measurements combined with
known landmark sightings using earth sensor imagery to esti-
mate spacecraft attitude, orbital ethemeris, and gyro bias
drift. The original Landmark Utilization Study(l)** had
investigated the combined use of star and known landmark
sightings.

(2) Development of Star and Landmark Measurement Egquations -

A detailed analysis of star and landmark measurement errors

and sensitivities.

(3) Horizon Utilization Study - An investigation into the use

of horizon measurements for estimation of spacecraft atti-
tude and gyro bias drift.

Most of these studies represent a natural follow-on to previous
studies performed by CSDL for GSFC pertaining to the optimal treatment
of attitude and orbital ephemeris information for spacecraft that gen-~
erate high~resolution imagery of the Earth. (A brief description of
the previous studies is given in the next subsection). One of the long-
range goals of this overall effort has been to determine how spacecraft
attitude and orbit data can best be used to improve the mapping accur-
acy of a multi-spectral scanner.

* 3 fourth task involving the actual use of army searchlights wi?h
Landsats 1 and 2 is still underway and a complete report on this
effort will be made in the Final Report.

** guperscripts refer to numbered references at the end of this report.
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1.2 PREVIOUS STUDIES

Since July 1871, the Draper Laboratory has performed various
studies for GSFC pertaining to the determination of attitude and orbital
ephemeris for an advanced Earth Observation Satellite (E0S). These
are briefly described chronologically in the following paragraphs.
Injtial SIMS Trade Study. This study (2’3'4)provided GSFC
with technical data that could be used for selection of an optimum
Stellar-Inertial Measurement System (SIMS) for EOS. Fram a large

number of initial SIMS candidates the following three candidates were
selected for detai.ed evaluation:

SIMS-A Strapdown gyros and Derived from
strapdown star mapper Honeywell SPARS

SIMS-B Strapdewn gyros and Derived from TRW
gimkbaled star tracker PPCS/PRDS

SIMS-C 3-Axis gimbaled gyro Subsystems

platform and strapdown defined by CSDL
star mapper

A significant accomplishment of this study was the generation of
statistical data showing how well the spacecraft attitude and gyro bias
drift could be estimated for each candidate. Use was made of an opti-
mal smoother to obtain 'least squares' estimates of attitude and gyro
bias drift after processing star measurements over several orbits.

(5)

Detailed SIMS-A Study. This study was a more detailed and

accurate Monte Carle simulation of SIMS A. This confirmed the statis-

tical estimates of accuracy obtained in the previous study. Performance
data was also generated showing the effects of certain bias errors that
had not been modeled before in earlier covariance studies, These in-
cluded exrors such as gyro scale factor error and gyro input-axis mis-
alignment.

A



Attitude Determination with Landmarks. This was an investigation

{5)

to determine how well spacecraft attitude and gyro bias drift could
be estimated using known landmarks in the sensor imagery. The pro-
mising results indicated a possible backup method of attitude deter-

. mination in the event of star sensor failure.

Mapping EBrror Sensitivity to Errors in Spacecraft Attitude and
) Orbital Ephemeris. The main objective of this study(s)was to deter-
mine the effects of errors in spacecraft attitude and in orbital ephe-

meris on the ability to determine the locations of unknown landmarks
relative to known landmarks. Emphasis was placed on landmark location
accuracy within the continental USA. One significant result was the
discovery that errors in spacecraft attitude and gyro bias drift have
a reduced effect on mapping errors due to the presence of certain
negative correlations.

Attitude and Ephemeris Determination with Landmarks and Stars.

This study(l) was an investigation into the use of star sightings
together with known landmarks to estimate spacecraft attitude, gyro
bias drift and orbital ephemeris. A l2-state covariance analysis was
employed for the simulations. One important finding was that known
landmarks could be used together with star sightings to satisfactorily
estimate orbital ephemeris.

(L}

Artificial Landmark Implementation. This study was an investi-

gation into the feasibility and practicality of establishing a national

system of artificial landmarks suitable for automated recognition.

1.3 SUMMARY

Section 2 reports the results of the modified landmark utilization
studies. A covariance analysis is used to compute satellite state
uncertainties with emphasis on systems involving iandmark sightings,
and tracking facilities. Egquations governing the coordinate trans-
formations, the state dynamics, and the estimation process are given.
Simulation vesults are given for parametric variations of measurement
noises and uvpdate frequencies, and for various combinztions of measure-
ment systems.




Section 3 derives generalized measurement equations for star and
landmark sightings. The derived equations are specific to certain types
of star trackers and landmark sensors, but consider general types of
noise sources.

Section 4 presents the results of a study aimed at the use of
infrared horizon measurements for satellite attitude and gyro bias
drift updates. Measurement equations are derived, the state and esti-
mation eguations are given, and simulation results are presented. The
results consider variations in measurement noise and update frequency
for both sun-synchronous and earth-synchronous orbits.

- , 1
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SECTION 2

MODIFTED LANDMARK UTILIZATION STUDY

2.1 INTRODUCTION

The purpose of the Modified Landmark Utilization Study is to
investigate the use of ground or navigation satellite tracking measure-
ments of range and range-rate together with the use of known landmarks
observed in the imagery of a multi-spectral scanner (MSS), to estimate
spaceccaft attitude, orbital ephemeris and gyro bias drift. This sys-
tem configuration was proposed as an alternative to the one studied

in the original Landmark Utilization Study(l).

The original study con-
sidered the use of star measurements together with known landmark
observations. The present study is thus the original study "modified"

to incorporate range and range-rate measurements.

This study considers radar measurements of the range and range-
rate between an Earth Obsurvation Satellite {EOS) and either a ground
tracking station or a navigation satellitc of the TDRSS (Tracking and
Data Relay Satellite System) type. Por the ground tracking configu-
ration, the use of two unified 5-Band System radars located at Merritt
Island, Florida and at Goldstone, California, are found to be suffiei-
ent to give satisfactory tracking of EQS over the continental USA. For
the navigation satellite tracking configuration, two geosynchronous
TDRSS satellites located over the equator at 41 and 171 degrees west
longitude are employed.

The Earth Observation Satellite is assumed to be in a circular
sun-synchronous orbit with an inclination of 99 degrees and an altitude
of 1000 km (540 nmi). This study also includes the effect of gravitat-
ional harmonic uncertainties. Figure 2-1 illustrates a typical obser-
vational pass over the continental USA. The ground tracking stations
at Merritt Island and Goldstone are indicated. Shown on board the
satellite is a multispectral scanner whose beam sweeps back and forth
acrosi the ground track to generate a swath of imagery 90 nmi (167 km)
wide.

*Although the svath width for Landsat and the planned EOS is 100 nmi
{185 km), the present study is restricted to using landmarks over
a smaller swath width since this was the desire of GSFC.

2-1
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Under nominal attitude conditions (that is, with the XB—axis
along the local horizontal,and zero roll and yaw angles), the space-
craft body axes (XB,YB,ZB) are oriented as shown in Figure 2-1, with
XB in the direction of spacecraft motion and Zg pointing to nadir. It
is assumed that the spacecraft has three orthogonal body-mounted gyros

aligned with its principal body axes.

In this study optimal filtering technigues are used to process
the landmark and the range and range-rate measurements. Since the
study is primarily concerned with obtaining a statistical measure of
performance in estimating spacecraft attitude, orbital ephemeris, and
gyro bias drift, a covariance type of analysis is used. Here, the
covariance matrix of the uncertainties in the estimates of the state
parameters is propagated and updated using Kalman £ilter equations.
This approach yields a statistical indication of achievable performance

for a given system error and measurement noise model.

It should be noted that there are drawbacks to limiting an error
analysis to covariance matrix processing alone. One drawback, of
course, lies in the simplifying assumptions relative to modeling of
spacecraft orbit and attitude history. Another is found in the incom-
plete modeling of system biases and random processes. To minimize the
effects of modeling inadequacies, all important error sources should
be modeled. If the statistics for certain states are truly Gaussian,
the Kalman filter in linear form can be shown to be optimal. However,
if the statistics of some states are poorly known or incorporate non-
zero biases, the effort to incorporate poorly modeled states may result
in unacceptable performance.

Consider States

One example of a state modeling problem in the present study is
that associated with the TDRSS satellite epvhemeris uncertainties. Dur-
ing the relatively short time of data processing in the present study
{(typically, 2.5 howurs), it would seem reascnable to expect very little
change iu the TDRSS satellite ephemeris uncertainties. Hence,

measurements by TDRSS can be considered




highly time-correlated or as having bias components. Rather than
model these uncertainties as white noises, or estimable biases,another
approach is to model them as "consider® states. This approach enables
the Kalman filter to recognize the presence of the "consider" state
variable errors which are uncbservable while minimizing the number of
estimator or covariance states. The consider state equations are given
in Secticn 2.7. Results are given in Section 2.8.4 comparing esti-
mation uncertainties with TDRSS ephemeris uncertainties modeled as

white noises and as consider states.

Gravitational Harmonic Uncertainties

The effects of gravitational harmonic uncertainties are included
in all covariance runs made for this study. Also taken into account
is a 0.2 PPM uncertainty in the main gravitational constant, p. The
term-by-term difference between the two most recent Smithsonian gravi-
tational models, SEITI (1973) and SEII (1969), as represented in the
C and S expansion coefficients (through n,m = 10, 10 } is initially
defined to be equal to the one sigma uncertainty in knowledge of these
coefficients. These differences are subsequently scaled down to match
propagation data obtained from GSFC for 5 orbits. The scaling effect-
ively defines the one sigma uncertainties as one-third of the difference
between SEII and SEIII coefficients.

7o model these uncertainties directly using Monte Carlo techni-
gques would be excessivly time~consuming. As an approximace and fea-
sible alternative, ephemeris uncertainty covariance matrices, repre-
senting the portion of the orbit that is inaccessible to radar track-
ing, are generated by Monte Carlo runs with randomized gravitational
constant uncertainty. In the covariance runs made for this study this
ephemeris uncertainty covariance matrix is incorpcrated into the simu-
lations at the start of each pass over the USA. Thus the gravitational
harmonic uncertainties acting over that portion of the orbit which is
beyond radar coverage is approximately accounted for. The effect of
these uncertainties on that portion of the pass over the USA having
radar coverage is not modeled, since it is relatively negligible.

A
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2.2 SUMMARY

This report presents the analytical equations and verformance
results of the Modified Landmarxk Utilization Study. The study investi-
gates the use of range and range rate measurements by ground or TDRSS
tracking stations, in combination with landmark and/or star measure-
ments, to update a state vector which includes EQS spacecraft attitude,
oribtal ephemeris and gyro bias drift. Optimal XKalman filter techniques
were used to process the different types of measurements. A covar-
iance analysis that gives a statistical indication of performance in
estimating spacecraft attitude and orbital ephemeris was adopted for
this study. For studies involving TDRSS ephemeris uncertainties,
"econsider" states were added to the covariance data processing to im-
prove the modeling. The study isg restricted to the use of landmarks
and ground tracking stations within the continental USA and Alaska.

The effect of gravitational harmonic uncertainties is also incorp-
orated into the simulations.

Comparative data is presented showing the performance obtained
with various .combinations of the indicated measurements. Data is also
presented showing the sensitivity of performance to variations in the

following parameters:

{1) ZInitial uncertainties in spacecraft attitude, orbital

ephemeris and gyro bias drift.
(2) Ground tracking station location uncertainty.

(3} Range and range-rate measurement noise.

(4) Number of range and range-rate updates per pass.
{5) Number of landmark updates per pass.

(6) Landmark position uncertainty.




The data presented shows that range and range-rate measurements
alone can be used to satisfactorily estimate orbital ephemaris, but
that landmark measurements must alsc be incorporated to satisfactorily

estimate spacecraft attitude and gyro bias drift.

2.3 COORDINATE SYSTEMS

This section defines the reference coordinate systems or frames
used in the error study and simulations. These primary reference
frames are the following:

Basic Inertial (I-frame)
Orbit-Oriented Inertial (O-frame)
Body-Fixed (B-frame)

2.3.1 Basic Inertial Coordinate System {I-Frame)

The coordinate axes for this system are defined in Figure 2-2.
The axes XI and YI both lie in the equatorial plane with XI pointing
towards the vernal equinox. 2Axis 2y points along the north polar axis
of the Barth. Star catalogs normally give the directions of stars in
this coordinate system.

2.3.2 Orbit~Oriented Inertial Coordinate System (0-Frame)

This system of axes is also defined in Figure 2-~2. The coordinate
system is oriented relative to the hasic inertial coordinate system
through the angles Q2 and i. The first angle is the right ascension of .
tﬁe orbit ascending node, and the angle i is the orbit inclination.

This orbital plane does precess slowly ahout the earth's rotational
pole due to oblateness of the earth. However, the orbit-oriented co-
ordinate system is defined herein to be an inertial frame since, in oux
simulations, orbit plane rotation due to precession is ignored as it
would add unnecessary complexity to the simulations. Since real rota-
tion of the EOS orbit plane is a small fraction of a degree over the
course of a typical simulation, the distribution of available stars is
not affected by such precession. The transformation matrix TOI’ from

2-6 REPRODUCIBLILITY OF THE
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Equatorial
Plane Orbital
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Figure 2-2 Basic Inertial and Orbital-
Inertial Coordinate Systems

Spacecraft
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Figure 2-3 Orbital-Inertial and Body-
Fixed Coordinate Systems




basic inertizl to orbit-oriented inertial

1 0 0 cfl
TOI= o ci si -s8
0 -si ci 0

sQ

cf?

where c denotes cosine, and s denotes sine.

coordinates is given by:

0
0 (2-1)
1

Thus a star vector s, in

the orbit-oriented frame can be computed, given the star vector s_ in

basic inertial coordinates.

S0 = Tor &

I

(2-2)

2.3.3 Spacecraft Body-Fixed Coordinate System (B-Frame)

The axes of this system are such that Xy Y

B’ and ZB are respect-

ively the ro.l, pitch and yaw axes of the spacecraft. The nominal

orientation of these axes is as follows:

X - is along the projection of the spacecraft velocity
vector onto the local horizontal plane

¥ ~ is normal to the orbital plane

B
L]
ZB - is along the local nadir
The orientation of the B-frame with respect to the O-frame is shown in .

Figure 2-3. The transformation from the O~frame to the B-frame is

through the Euler angle sequence of pitch (98), roll (¢), and yaw (¢}

as shown in Figure 2-3 and expressed by:

[0 1 o 1 o0 0
Too=10 0 -1 0 oy sy
-1 0 0 0 -sp cy

2-8

cd

0

sb

{2-3)
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The input axes for the strapdown gyros are ideally colinear

with the spacecraft body-fixed axes, so that Xg = Xpr Yg = ¥p and
Zg = ZB.
2.4 S¥YSTEM EQUATIONS

2.4.1 General Comments

In the present study the state to be estimated consists of
twelve parameters which comprise 3 attitude angles, 3 orbital position
components, 3 orbital velocity components, and the bias drift of each
of 3 gyros. These parameters can be represented as the components of
a twaelve dimensional state vector x. The dynamic behavior of the sys-
tem with the above state can be described by the following nonlinear
differential state equation:

x = £ (x, u, t) (2-4)

where t is time and u is the noise introduced by gyro random drift,
gyro quantization, etc. . A priori information about the statistics
of the noise u is given by the covariance matrix Q where:

E [ u(t) u(r)] =0« & (t=1) (2-5)

At some arbitrary time, tn’ a measurement z (tn) is taken. This mea-
surement is related to the state through the measurement equition:
where v (t ) is the measurement noise of a zero mean white gaussian
process whose covariance matrix R is given by:

) (2-7)

T
E [v(t) v (€ )] =R - 8(t ¢

...1) n-1

For the special case where Equations 2-4 and 2-6 are linear, the stand-
ard Kalman Filter would be used to obtain optimal estimates of the




-

state. However, in the present case, these equations are nonlinear

-and must be linearized before using the so-called "Extended Kalman

Filter". This linearization is generally performed around the esti-
mated values of the state. In the present covariance analysis, how-
ever, there is no estimated state and use is made of the known nominal
state for this purpose.

For the Extended Kalman Filter, the new state and measurement
vectors are defined as:

" Ehom (2-8)

(=]
“
i
[

[=])
N
I

L

- 2
—nom

The corresponding state and measurement equations are:

8 F 6x + G éu (2-9)

dz = H &y + A Sv (2-10)

F = of G = »f
% nom X nom
u=20 u=20 {2-11)
H = 3h A = 3h
4 X av
% nom Lhom
v=20 v=20

2.4.2 State Dynamics

The original nonlinear state of the system x is defined as the
following twelve dimensional wvector: '

b e AR S B T L



T

b.4 = (0, ¢, w:er B r V_r Vz] {2-12)

r Bz' Xy Yo Ze Vg .

Y
where

8,6,0 - Buler angles defining the body attitude with
respect to the orbital frame.

Bx’B /B, - Bias drift of roll (X), pitch (¥), and yaw (Z) gyros

Yy
x,v.2 — Components of the spacecraft position vector in the

Basic Inertial frame

vx,vy,vz - Components of the spacecraft velocity wector
in the Basic Inertial frame

The eql.ations that relate the Euler rates (8,¥,¢)to the spacecraft
body rates (mx,my,mz), measured by the X, ¥, and % gyros, are given by:

", 1 - I 7
8 s¢/ce -ci/co 0 W
& = ci 0 -
sy my (2-13)
L$_. i s¢sp/cd  -soci/co ~1_ _mz_

or in matrix notation:

E=clE) v (2-14)

where QT

{f,0,0]

T
w

L

[mxl myr UJZ]

G(E) = the matrix in Equation 2-13.

The relationship between the gyro measured budy rates (w)and the
true body rates {w,) sensed by the gyros is:

w = w, + D (2_15}

where w, = (0, -w_, 0) {w, = orbital rate) (2-16)

- R e T T T S RPN



and D represents the gyro drift rate which can be expressed as follows:

(2-17)

Qg
]

=
+

where B ayro bias drift

additive white noise (gyro random drift).

1=
]

The gyro random drift is assumed to be a zers mean white gaussian

noise whose covariance matrix Q is given by:
T =
E [gf(&) n"(7)] =0Q + &(t-1) (2-18)

Equations 2-14 can therefore be rewritten as:

e .

= G(£) w, + G(E) B + G(E)n (2-19)

t
#*

Since the ccmponents of the B vector are unknown constants, they should

be included as additional elements to be estimated in the state vector.

This can be done by augmenting Equation 2-~19 and including B in the

state. Recalling that for constants there are no dynamics:

BT = (0, 0, 0) (2-20)

Hence, Equation 2-19 can be changed to:

jor
&)

G(£)

[l

G (&)
= + (w, + n) (2-21)

o)
o
Q

i
o

where O3 is a2 3 x 3 null matrix.

Since the orbital dynamics are uncoupled with the attitude angle
dynamics, their description is given by a separate set of first-order
ordinary differential equations: '

*For the purposes of this study, the gyro bias drift is assumed to be
unknown. However, in normal practice, a portion of the gyro bias driit

is usually known and is compensated for wheun integrating the outputs
of the gyros.
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= — -1
x v
v ~1t r (2~-22)
] e
where
vT = {v v v_)
- ' Ty’ Yz
£T = (%, ¥, 2)
U = gravitational constant

The combined state of the system for attitude, orbital ephemeris, and
gyro bias drift can be written as:

xT = (%, 8%, %, v (2-23)
where the dynamics of this state are given by Equations 2-21 and
2-22. However, both eguations are nonlinear znd must be linearized
around the nominal state values. Let a new 12 dimensional state he
defined as follows:

T

sx” = (65", 8%, 6x ov") (2-24)
where
6 = E - &, fr=9zr-1
(2-25)
6B = B-B, §dv=v-~-v
= - o = - =0

In Equations 2-25 the vectors N and v, are the position and velocity

for a nominal circular orbit with an orbital rate Wy and

T T

EO = (mot’ o, 0}, EO = (G, 0, 0}

2-13




To linearize Equation 2~21 define:

3 0 ¢ 0
F. = e G{E) w
1 o = [ = =t :I = 0 -
o]

0 (2-26)
0 mo 0
E=&,
0 -1 0
G, =6 {&) = 1 0 0 (2-27)
0 0 -1
£E=EK

for Equation 2-21 can be written as:

St

Eaad
o]
+—
9]
=
Cn
]
-
"]
—

= + &n (2-28)

(=]
[}
o)

[F%]
o
On
)
o
i

] B r
F, = = —__ =
2 5L | )3
r=r
- o
(r2 - 3x2) -3xy -3x2
- _H -3xy (r2~3y2) -3yz (2-29)
- - 2
r5 -3xz -3yz (r2—32‘)

where x, y, and z are the components of Lo apnd r is the magnitude of

Iy The linearized expression for Egquation 2-22 can now be written as:

Sr ~ 0, I, ir

(2-30)
v P 0 ov

where 13 is a 3 x 3 identity matrix.
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Having determined the linearized state equations for both atti-
tude and orbital ephemeris (Equations 2-28 and 2-30), these equations
may be combined to represent the state equation of the full linearized
state as follows:

§x = Féx + Gg§n (2-31)

where §x is given in Equation 2-24 and

Fy G, 0, 04 G,
03 03 O3 0y 03

Fo= 0, 0, 05 o G = 0, (2-32)
04 04 F, 0, 0,

Since Fl and Gl are time invariant, because of linearization
around the nominal state instead of the estimated state, a transi*ion
matrix can be derived for the attitude state Equation 2-28 using
Laplace transform technigues:

¢att(k,k-l) =

o
o
o

1
[
=
o

________________ .. (2-33)

=]
=

where k and k-1 denote the times (tk and t ) of the present and

k-1
previous measurements: Wy is the orbital rate; by, = tk—tk_l;S=sin(A),

C =cos (A); and )\ = mOAtk.

The derivation of the transition matrix for the orbital ephemeris

state equation {Equation 2-30) is more complicated since F, is time
(9)

varying. However, an approximate solution in local vertical co-

ordinates is:

e )




(2-C} 5 0
(28-3)}) (2c-1) O

@Lv(k:k~l) = 0 0 C
wo(SA-S) wo(l—C) 0
wo(CHI) ~wOS 0

0 Q —mOS

S/wo

2{C-1)/w

[

2(l-C)/u!D
(48—3A)/m°
0

(3A-28)
(2C-1)

0

0 ({2-34)

The transition matrix in Equation 2-34 can be expressed in basic in-

ertial coordinates as follows:

- _ T
PpnikA-1) = T o 0k, k-1) T

where:

T 0

P 2 3
03 TILV

T

Triv = Tor Tonv
c -8 0

Tery = | 8 c 0
0 0 1

(2-24a)

The transition matrix for the combined state for perturbations on atti-

tude, gyro bias drift, and orbital ephemeris is therefore:

att

bk, k-1) = 06 ¢eph(k,k—l)

where 06 is the 6 x 6 null matrix.

{2-35)




2.5 MEASUREMENT EQUATIONS

For this study the measurement data is primarily collected from
two instruments, the multi-spectral scanner and the tracking radar.
The first measures the line-of-sight (LOS) to known landmarks while
the second measures range and range rate from either ground stations
or navigation satellites. Also included in the study for comparison
purposes is measurement data from the star tracker (éaFOV) of the LOS
to known stars. The measurements are usually assumed to be corrupted

by white noise.

2,.5.1 Landmark Measurements

Landmark measurements are obtained by using a multi-spectral
scanner (MSS) whose beam sweeps back and forth across the ground track
to generate a 90 mile wide swath of ground imagery (see Figure 2-1).
Under the nominal attitude conditions considered in this study, the
maximum angular excursion of the beam from local vertical is 4.8°. The
direction of the beam in body coordinates is defined by the angles
Uy and BM. Here Oy is the sweep angle, measured positively about the
¥ body axis, between the z body axis and the beam; and BM is nominally
zero and is primarily introduced to account for errors in the remaining

dimension of angular measurement.

S8ince the beam is always near the local vertical, the downrange
and crosstrack errors in landmark position were modeled as equivalent
angular errors in Gy and BM. It should be noted that a full scheme in-
cluding state estimation would require a more exact error model. The
above simplified model was considered to be adequate for this covariance
analysis. No consideration was given to landmark altitude error since
the system sensitivity to this error is relatively small.

The unit vector defining the measured LOS to the landmark in
body coordinates is:

) 1 0 0 cBM 0 SBM 0 SBM
m, =10 Chy =Sty 0 1 0 0 = | -sopucB, (2-36)
0 Sy, Caryy —sBM 0 cBM 1 caMcBM
2-17
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The estimated LOS to the landmark in body coordinates is the
following unit vector:

m, = T_. T.. Unit (1 - x) (2-37)

BO 01

where r is the estimated spacecraft position vector and 1 is the land-
mark position vector, both in basic inertial coordinates at the time
of measurement.

2.5.2 Range and Range—Rate Measurements

The range and range-rate measurements represent the range and
the range rate between EQS and either a ground tracking station (USES
radar) or a navigational satellite.

The range from a tracking station to the spacecraft is simply:

R, = lz - zgl (2-38)

and the range rate is:

. (v - v} ° {(r - zxr.)
= — T S (2-39)

Iz - rql

where r, v are the spacecraft position and velocity wvectors, and r.,

Yo

inertial cooxrdinates at the time of measurement.

are the tracking station position and velocity vectors in basic

For this study the tracking station may be either (1) a ground
tracking station, or (2) a geosynchronous navigational satellite. For
either type of tracking station, the station velocity is gilven by:

= 11 -
\_rT 2 X ET (2-40)

where w, is the inertial earth angular rate of the tracking station
with respect to the center of the Earth.




2.5.3 8tar Measurements

Only one type of star tracker is considered in this study, and
it is used only to supplement other types of measurements. This is the
8° FOV star tracker somewhat similar to the CT40l tracker of Ball
Brothers Research Corporation. This is a strapdown tracker with no
gimbals. The measured direction of a star passing through the FOV is
electronically indicated by two angles o and BT. These are used in
the following equation to obtain a unit vector defining the measured
1.0S to the star in body coordinates.

caT 0 —sBT 1 0 0 0 SBTcaT
sy = 0 1 Q 0 Cop Stq 01= —Son, (2-41)
sBT o cBT 0 -stq Cln -1 -cBTcaT

The estimated LOS to the star in body coordinates is given by
the following unit vector:

~

sg T Tpo Tor E1 (2-42)
where s; is the unit LOS vector to the star in basic inertial cooxdi-
nates and TBO is a function of the estimated body attitude angles 8,

¢ and ¥. (See Equation 2-3). A more detailed model of this tracker

is discussed in Section 3.

2.5.4 Linearization of Measurement Equations

The extended Kalman Filter requires that the measurement equations

be in a linear form, here given as:

§2z = H, 6x + H ., &x_ + &, 8w, (2-43)
- i - c1 —=C i -3

where Hi is the sensitivity of the measurement to the state, Ho; is
the sensitivity to the consider states, Kot and A is the sensitivity
of the measurement to the noise. {Consider states are discussed in
Section 2.6). The subscript i is replaced by M for the MSS landmark
sightings, by R and ﬁ for the range and range rate measurements and by

T for the star tracker measurements.

e
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Landmark Measurasment

Linearization of

yields the followingf

oL

)

x

H

—0

|
§
1 H
.=
1

i
|
0!
|

the

estimated landmark measurement equation

[:TBOTOI Unit (yg)]

Unit (1-r) + TpaToy %?Elnlt(l__—;_]

(2-44)

X=X
o

{2-45)

x=X
- —0

0 (2-46)
]

o] 1ot tolol

|
1 |I__1Ht§|° |
,D:x:-y[ 210101
1 | H L]

- e -

where the following are the submatrices (or vectors) due to differentia-

tion with respect to the state elements:

|
€=

H

i

BO

oI

1

ki

da-

0
. Top Unit (1-z) {2-47)
0_ .
) Top Unit (1-r) (2-48)
.
. Typ Unit (1-x) (2-49)

2 .2 |
(lx - x)° -d (

] 2-50)

(ly - Y)(lx - %)
(:Lz - z) (1x - x)_
(lx - x)(ly - y)
(1, - 2 - g2 ' (2-51)
(1, - z) (ly - y)

*Note that only two rows are given for the matrix Hy since only two
of the three components of a "unit" LOS vector are needed to complete-

ly define the line-of-sight to a landmark, star, etc..

-
L




(1X - x)(lz - z)

B, = To,Tor — (1, = ¥) (1, - 2) (2-52)

(1, - z)2 - &

where lx’ ly' and 1z are the components of the landmark position‘;

computed in basic inertial coordinates at the time of measurement:

Tro is a 2 ¥ 3 matrix containing the first two rows of Ty
2

d = [1-rj.

o' and

As stated earlier, landmark position errors and MSS measursment

errors are both modeled as noises in Oy and BM. The sensitivity of the

landmark measurement to. these errors is represented by the following

matrix:
_ aln 0 cB
By = =B = M (2-53)
GXM _ —caMCSM saMch
%y T %M
Meas
B, =R
M MMeas
Range Measurement
Linearization of the range measurement equation yields:
H, = Rs o o2 tlz-rh (2-54)
3 ox
X=X, X=X,
Hp = (0, 0, 0, 0, 0,0, Hpys Hp,s Hp,y 0, 0, 0) (2-55)

where the following eguations are due to differentiation with respect
to the state elements:




- X - -
HRx = " (x rTO) {2~56)

S 0
- H — l_ (r - T ) (2"57)
Ry Rs 1 i |
H = 1 (x, - rm) (2-58)
Rz Rs 2 T2

Range measurement error is modeled as affected by two types of

noises, first by the additive noise‘le on the range measurement itself,
and second by the noise v

The sensitivity to the first noise is simply unity.

A = W = 3 (2-59)
R1 =
Rl

The sensitivity to tracking station ephemeris uncertainty modeled
as white noise is:

3 3R R _ .

P T Ty, = g, Bz (2-60)
Lp=Iqg Lq=Tqp

ARZ = - [HRX’ HRy.- Hth Dr Or 0] (2"61)

where the H's are given by Equations 2-56 through 2-58. Here the
change in sign is due to the fact that differentiation is with respect
to Iy and not to r as in the H equation.

The corresponding measurement noise variance equation for use in
the Kalman update equation is:

= T T -
Rp = 2g1 Ry Bpyp  * Bpy Ry Apy ‘ (2-62)
*Note here that the term "ephemeris" is used for a tracking station

on the ground or in orbit.

2-22

*
Vp, due to uncertainty in tracking station ephemeris.
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where

Rl = [var (RN)] : (2-63)
RN = the range measurement noise

R. = T_R . T_7T (2-64)
2 IL “eph "I,

and where Reph is the tracking station ephemeris uncertainky covariance

matrix in local vertical coordinates and TIT is a transformation matrix
-t

from local vertical to basic inertial coordinates.

Range Rate Measurement

When the range rate equation (Equation 2-39) is linearized, the
result is:

Hy = ‘Pg - 3 vmyg) T T ) (2-65)
R X e
=l x=x |z - zpl
~ Zn X=X
=24
Hy = (0,0, 0, 0, 0, 0, Hy, ., Hyo o Hp,, Haoo Hpo, Hey) (2-66)

where the following equations are obtained by differentiation with
respect to the state elements:

-l_—" -

Hex = 22 Ry (vg = Vgg )Ry (rg = xpq) ] (2-67)
s
S | N 3 -
HRy = éﬁa [Rs (vl Vip1 ) R, (r1 rTl)l {2-68)
s
T | _ - _ _
HRz = ;Fr [Rs (v2 Vao } R (r2 rTz)] {2-69)
s
2-23
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1
H: = =— (r -
RX 2 0

- » — l =
ey = = (ry = o)
s
. * — l —
Hpg = = (xy - rq,)
S

(2-70)

{2-71)

(2-72)

Range rate measurement uncertainty is alsc modeled as affected

by two types of noises.

ment itself, and second is the noise vp,due to tracking stacion ephemeris

uncertainty.

The sensitivity to the first noise is simply unity.

. = aR
ARl s

aV3

First is the noise Vs in the doppler measure-

{2-73)

The sensitivity to tracking station ephemeris uncertainty

3R
Bpy = = =
22
2 =g,
LA
and
Aﬁ2 = - [Hﬁx' Héy' Hﬁz'

where the H's are given by Equations 2~67 through 2-~72,

Hegr Hagr Hrp

+

)

(2-74)

Ip=Ipg

Ya=Yrg

(2-75)

Here the

change in sign is due to the fact that differentiation is with respect

to r_ and Y and not r and v.

_T
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The corresponding measurement noise variance egquation for use in
the Kalman update equation is:

° - - .T - 'T —
Rp = 21 Ry Bpy + Bpy Ry Ay (2-76)
where
Ry = [Var (RRN)] (2-77)
RRN = the range rate measurement uncertainty
- T 2~
R, = Ty Reph Too, (2-78)

where Reph and Ts have been defined oreviously.

L

Star Tracker Measurement

Linearization of the estimated star tracker measurement equation yields
*
the following:

s T
Hp = 3% L TBOt] _ To18s (2-79)
’ \ L o'otototo 00101
= 1 ) ! t | ! 1 t ] 1Q
=|Hg §¢ ! Ew ! A T S T R
I ' 1 010'0'0'o'oro0 'o
i ) ' I R ! | | I
where
-cH -s8¢ 0
H, = T s
=8 0 0 0 01 =I (2-80)
0 0 0
H = T S N
=0 -c8 -s8 0 0I =I (2-81;
[0 o 1
H - T s
=y Leh a8 o or =I (2-82)
The measurement angles of the star tracker are:
o = 0 + v
TMeas TTrue aT
8 =B + v (2-83)
TMeas TTrue BT

*See footnote on page 2-20.




where v, and vB are the random measurement errors which may be ex-
T T
pressed as the components of the random vector

= o (2-84)

whose covariance matrix RT is defined as follows:

2
o 0
43
T §{t J4 7 8 (t ) (2-85)
E Wgp¥gp ) Ry R I 2 T
- BT

The sensitivity of the star measurement to the random errors is:

A = Egﬁ _SBT St CB'I‘ Cap
T av = (2-86)
-CQ 0

TMeas T

TMEEIS
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2.6 KALMAN FILTER EQUATIONS

The equations for the filterering technique are the extended
Kalman Bucy equations for discrete measurements. These equations con-
sist of two parts: 1) propagation between measurements, and 2) updating
whenever a measurement is taken. Since the linearized state equations
in this study lend themselves to a closed-form solution, the transition
matrix ¢ (tk,tk_l) of Equation 2-35 can be used for propagation of the
covariance matrix from one measurement to the next as follows, where a
new notation is adopted so that subscripts k and k-1 denote the times
of measurement (tk and tk_l):

P = %%ke1 Pl %koke1 * Gk O O (2-87)
where

Pr_q - updated covariance matrix at time teg

P; - covariance matrix at tk before updating

Gk'Qk - are defined in Equations 2-32 and 2-18.
The updating eguation at time tk is given by:

Py = P;c - K H P;c (2-88)
where

Kk is the Kalman gain matrix defined by

Ky = B, H [P+ H P, 1 (2-89)

Recursive solution of Equations 2~87, 2-88, and 2-89 provides the

filtered value of the covariance matrix at any desired time.
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2.7 CONSIDER STATE EQUATIONS

2.7.1 Introduction

Optimal performance of the Kalman filter depends on accurate
description of the statistics of the measurements involved. This im-
plies that the estimator should accurately model all real world states.
It may develop that some states can bhe neglected because they are
truly negligible. 1In other cases the statistics of the states may be
poorly known or the states may incorporate non-zero biases. Here the
attempt to incorporate poorly modeled states in the estimator may result
in poor performance, since the estimator is trying to fit the data to
an incorrect model.

A useful approach is to have the estimator "considar" the
effect of poorly modeled states (but not to make estimates of them}
when estimating the "desired" states. &an important advantage of this
approach is that the number of estimated states is not expanded while
the effects of "consider" states are still taken into account.

2.7.2 Consider State Equations

The equations for the estimation problem with "consider" states

are as follows:

Define

{(2-90)

Xp <

‘j’xIN

where

% is the twelve dimensional vector defined by
Equation 2-12

X, is the " consider" portion of the new state vector

ey



The covariance matrix for x; is:

P, = P Cp (2-91)
ct W
P
where p =B (x ET) (2-92)
W= E (x_x. ") (2-93)
— T —
Cp =E (x x.) (2-94)

2.7.3 Consider State Dynamics

Since a circular orbit with a nominal attitude history is assumed
in this study, a transition matrix can be used here for propagation of
the covariance matrix. The covariance propagation equation for the
state En 1S

v T uy ot
P. = 05 P_ o, + Gy QpCop (2-95)

(where the subscripts k and k-1, to denote times of measurement,are

omitted for simplicity) and where

P - covariance matrix at time tyeq after update,
{(before propagation)

P. - covariance matrix at time t, after propagation,
{before update)
Qp = @ 0 (2-96)
0
c-—
G = ¢ 0 (2-97)
T 0
C—




0 - vwhite noise matrix associated with the consider

c
states
Gc - identity matrix (12 x 12 here)
6o = | ¢ 0 (2-95)
0 [

where ¢C is the consider state transition matrix.

Substituting Equations 2-91 and 2-97 into 2-95, we obtain for the
propagated covariance matrix the following:

P = P (2-92)
c T
T oy
p
where
t
P = 024 + GQGT (2-100)
' T
= dC_ (2-101)
Cp p “c
v 7 T o
W= e_WeL +G_0G (2-102)

For the present study the consider states are taken to be the
ephemeris uncertainties in position and velocity associated with each
of the two TDRSS satellites stationed over the equator.

The consider state transition matrix, ¢c’ is then given by:

o, =|%1 © (2-103)
0 q)c:2
where ¢cl.and ¢c2 are the six-~by-six transition matrices associated

with the ephemeris uncertainties for each of the two TDRSS satellites.
These matrices are identical in form to the transition matrix given in
Equation 2~34 for the EOS5 ephemeris state. In this casa the term Wq of
Equation 2-34 is the orbital rate of TDRSS.

2-30



2.7.4 Consider State Measurement Egquations

The measurement equation incorporating the consider states is:

X
= i - =
Z [H | Hc] x + AT n {(2-104)
—c
or
2 = Hpx, + AT n (2-105)
where
- | -
HT [HI Hc] {2-1086)
and

H is the sensitivity of the measurement to the state, x.

Hc is the sensitivity of the measurement to the consider

state, x_ .
—-C

2. 7.5 Considexr State Filter Equations

The Kalman filter eguations for the covariance are as follows

where the updating equation at time, tk' is given by:

H 1

PC = PC - Kg HT Pc {2-107)

1
where Pc and P, are the covariance matrices before and after updating,

and

(2-108)

(2-109)
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Here there is no interest in updating the consider state, X.: but

only the state, x. Therefore, only those rows of K _ which pertain to

T
% are calculated. This gain is called K, - That is,choose K

such that:

T

Kx (2-110)

0

=
I

Combining Equations 2-%1 and 2~106 yields:

w}
K = T ' T YT _
x (PT H™ + cp H, ) (HT P_ Hg + RT) {2-111)
where
1 T _ 1 T T T IT T T
HT PC HT + Rp = HP H + HCP Hc + H, Cp H™ + HCWHC + Rp (2-112)

The updating equations for P, Cp and W can be shown to be

_ T . 1 IT
P = P K, (HP + Hccp ), {2~-113)
1 1 1
= —-— K — 2
cp cp « (Hcp + Hc W), {2-114)
]
W = W . {2-115)

It should be noted that the update in Equation 2-114 should be
carried out even if the consider state sensitivity Hc is zero, such

as would be the case when landmark measurements are used.
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2.8 ERROR STUDY RESULTS

2.8.1 Introduction

The results presented in this section give performance data on
the landmark, range and range-rate update configquration. The previous
report, Interim Technical Report No. 2(1), had presented results on
the landmarxk-star configuration.

The present study assumes radar range and range-rate measurements
made by either (1), two ground tracking stations (located at Merritt
Island, Florida and Goldstone, California), or (2), two TDRSS(l) geosyn-
chronous navigationzal satellites located over the equator. Most of the
results are generated for landmark observation case 2, which includes two
passes over the continental USA. (See Figure 2-4). The material presented
in Section 2.8.% shows that additional passes over the USA and Alaska have
a relatively small effect on reducing estimation uncertainties. Figure 2-5
illustrates the four-pass casge and Table 2-1 briefly describes all of the
cases used in the study.

The landmark location data is generated artifically, since no
realistic data was conveniently available nor was considered necessary
for this type of study. Most performance results are generated using
only two landmark updates per pass over the continental USA. The land-
mark location data is obtained at points within the USA by selecting
random values of the multi-spectral scanner (MSS) beam angle. The
maximum scan beam angle is + 4.8° corresponding to + 45 miles on the
ground. (See Figure 2-1). The landmarks are located near the north
and south USA borders for the given pass.

For the ground tracking stati-=~ si _.ations, five simultaneous
range and range-rate updates per pass are assumed. The first pass is
tracked by Merritt Island and the second by Goldstone. Minimum allow-
able radar beam elevation is 5 degrees. For the simulations with TDRSS
tracking, eighteen simultaneous range and range-rate measurements by
both TDRSS stations are assumed. The TDRSS satellites are located at
41 and 171 degrees west longitude over the equator. More TDRSS measure-
ments are possible because of the greater coverage of EOS orbits from
the vantage point of the TDRSS satellites.
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TABLE 2-1

LANDMARK OBSERVATION CASES .

North Latitude (deq).

Case Pass —
Number Number At Start | At End _Region*
1 1 50 _ 30 Usa
2 1 50 30 Usa
2 50 30 ’
3 50 45 Usa

w N
¢n
=
w
=

e

50 45

4 1 50 30 usA

2 50 30 ¥

3 65 60 Alaska

4 65 60 ¢y -
5 1 50 45 usa

2 50 30 L

3 50 45

4 65 60 Alaska

5 65 60 ¥

*USA denotes continental USA.
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For the comparative simulations using a star. tracker,only one.
type of star tracker is assumed. This is the body fixed,ﬂo square
FOV tracker which electronically tracks a star as it passes through
the FOV. For the relevant runs the stars are chosen at egual orbital
intervals (20 stars per orbit) with randomized locations within the
tracker's field of view,.

The performance results presented here are generally the uncer-
tainties in the Kalman filtered estimates of spacecraft attitude, gyro
bias drift and orbital ephemeris after processing landmark, range and
range-rate measurements for two passes. The results are the sguare
roots of the principal diagonal terms of the 12 x 12 covariance matrix.
They provide a good rtatistical indication of performance in estimating .
the state parameters.

2.8.2 Nominal Values Used in Study

Unless otherwise stated, the nominal values of the error sources
and parameters used to generate the performance results are as given
here. Although some of the values may not represent the best or latest
estimates, it is felt that they are satisfactory for the present study.

The landmark measurement uncertainty used in this study (15
meters) is a composite number representing both uncertainty in the
landmark location in Barth coorcdinates and uncertainty in the multi-
spectral scanner measurement. Two assumptions are made concerning the
landmark. First it is assumed to have no associated recognition pro-
cess errors, and secondly it is assumed to be essentially a point
source. These requirements are met by the searchlight landmark des-
cribed in Reference 1. There are four basic uncertainty sources in
this measurement, namely:

1) artificial landmark surveying errors,

2) earth pole wander and rotation rate variations,
3} MSS resolution,
4) scan rate and timing errors.




The uncertainty numbers associated with each of these sources are some=-
what arbitrary, for example surveying accuracy can be increased in
steps by applying more and more sophisticated techniques.

Estimates for the uncertainty in each category are as follows:

surveying 10 meters,
earth wobble 3 meters,
MSS resolution 10 meters,
scan errors 4 meters.

The root sum=-of-sgquare value for these uncertainties is 15 meters.
Further discussion of the sources of these numbers is given in section
3.3.

The nominal values for uncertainties in the range and range-rate
measurements (10 meters and 0.012 meter/sec) include both biases and
white noises in the measurements. Because of the limitations imposed
upon the present study the radar biases are not mnodeled separately as
estimatable states or as consider biases, since more extensive analysis
and simulations would have been required. Although the data given in
the literature for these noises varies somewhat, it is felt that the
above values are reascnable selections.

The nominal value for ground tracking station location uncertainty
is assumed to be 5 meters along each axis. This figure has been chosen
because Merritt Island and Goldstone are particularly well surveyed,
although the neminal location uncertainty for all USBS (United-S Band
System) radars is 10 méters.

TDRSS Ephemeris Uncertainties

The choice of a suitable TDRSS ephemeris uncertainty covariance
is a difficult problem., The only available TDRSS uncertainty covar-
iance was printed in a 1371 report‘ll) on the TDRSS system. This co-
variance was reprinted in a 1973 NASA report on "Navigation Systems
Characteristics, Rev 1“.(12) However this covariance may have repro-
duction errors since one of the cross-correlation coefficients is
greater than unity. Nevertheless this covariance is used in the TDRSS
simulations after appropriate modification.
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Twe other TDRSS ephemeris uncertainty covariances are also used
in the simulations for comparative purposes. Data for the first covar~
iance was obtained from GSFC and represents a somewhat pessimistic
astimate:. These assume position uncertainties about four times greater
than for the first covariance. Data for the second covariance antici-
pates future state-of-the-art improvements in determination of TBRSS
ephemeris. Here position uncertainties are about 50 times smaller than
for the first set of uncertainties.

Gravitational Harmonic Uncertainties

All covariance runs made for this study include the effects of
uncertainties in the gravitational harmonic C & S coefficients as well
as in the gravitational constant, . A separats study was first under-
taken where the term-by=-term differences betweea the most recent Smith-
sonian gravitational models (SEIT (1969) and SEII. (1973)) were treated
as if equivalent te one sigma uncertainties,and where the gravitational
constant uncertainty was 0.2 PPM. The effect on the computed EOS corbit
beyond radar coverage {for both GTS and TDRSS) was determined for each
term. It was found ineidentally that the C and § coefficients having
the most significant efrect on EOS orbit were those associated with
the following n, m pairs: 2,2; 3,3; 5,5; 6,2; 6,5; 6,6; 8,7. By sum-
ming the ephemeris error results of numerous Monte Carlo runs for which
the C and S coefficients were randomized, an uncertainty covariance
matrix was obtained that represented the ephemeris uncertainties at the
point that radar coverage commences prior to passage over the USA. This
covariance was then scaler. to match data cbtained from GSFC fer 5 orbits.

With ground tracking coverage,the square roots of the uncertainty
covariance diagonals were as follows:
(altitude, down range, crosstrack):

(2.6, 14.3, 3.3, .013, .003, .002) meters, meters/sec

With TDRSS tracking,because of better coverage,the corresponding
uncertainties were:

(3.0, 6.8, 7.8, .007, G603, .003) meter=,meters/sec




For the l2-state covariance simulation studies this ephemeris
uncertainty covariance matrix was summed with the propagated 12-state
covariance at the point for each pass when radar coverage commences
prior to USA passage.

The nominal values of the error sources and parameters are
as follows:

Initial State Uncertainties (lo)

Attitude (Pitch, Roll, Yaw)

60 arcsec (each)

Gyre Biag Drift - 0.03 deg/hr (each)
Ephemeris Position
Attitude - 20 meters
Downrange - 50 meters
Crosstrack - 20 meters

Ephemeris Velocity

Altitude - 0.05 meter/sec
Downrange - 0.02 meter/sec
Crosstrack - 0.02 meter/sec

Gyro Error Sources (1lo)

Random Drift - (.01 deg/hr (white noise)
Wuantization - 0.1 arcsec

Landmark Measurements {lo)}

Landmark Position

Downrange - 15 meters
Crosstrack - 15 meters
8° FQV Star Tracker
Measurement Error (lag) 5 arcsec/axis
Field-of-View B x 8 degrees,
Pointing Direction towards zenith
Star Distribution star randomly selected

in POV after each 18
degrees of orbital motion

N
[
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Range and Range Rate Measurements (1o)

Slant Range 10 meters
Slant Range Rate 0.012 meter/sec
GTS Location 5 meters (each)

TDRSS Ephemeris (Position & Veloecity:
Altitude, Downrange, Crosstrack)
1971 Report
(15, 276, 128; .020, .001, .009) meter,meter/sec
GSFC
(150, 1000, 500; .073, .011,.036) meter,meter/sec
Future State-of-the-Art
{5, 5, 5;.00037,.00037,.00037) meter,meter/sec

Gravitational Coef.icient Uncertainties (lo)

Gravitational Constant, u 0.2 PPM
C&S Coefficients {See previous comments)

Normal Conditions for Observation Runs

Landmark Observation Case 2 (Includes 2 passes over
continental USA)

2 Landmark updates per pass

5 Range and Range Rate updates (simultaneous) by
Merritt Island on first pass and by Goldstone on
second pass

Run starts at eguator at 98° east longitude on ascending
node and passes over north polar region before making
first pass over USA

Run ends just south of last landmark update on second
pass over USA

2.8.3 Comparative Results with Different Measurement Configurations

Before presenting the re:i1lts obtained with different measure-
ment configurations, it will be useful to show the effects of using a
single type of measurenent for updating the estimation uncertainties.
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Table 2- 2 gives performance data after processing with a single type of
measurement. All data presented includes the effects of two passes over
the USA,

For comparison the state uncertainties for the case where no
measurements are made are presented in the first row of Table 2-2., In
this case the covariance matrix of uncertainties is simply propagated
without update with any measurements. The increase in attitude un-
certainty is due to the uncertainty in gyro bias drift, while the in-
crease in satellite altitude and downrange position uncertainty is due
to the effeect of initial altitude uncertainties on the computed gravity
feedback.

The next row shows the effect of star sightings with the 8° FoOV
star tracker where it is assumed that 20 stars per orbit could be seen
with the tracker. The results show a very significant decrease in the
attitude and gyre bias drift uncertainties. However the ephemeris un-
certainties were not improved at all. This is because star sightings
do neot provide any information on satellite position.

The third row of Table 2-2 gives the effects of measurements of
known landmarks where two landmark updates per pass over the continental
USA were used. The results show only a moderate decrease in attitude
and drift uncertainties and a relatively slight decrease ir. ephemeris
uncertainties. Note that the pitch attitude and ephemeris uncertainties
are greater than their initial wvalues.

Tha next row shows the effect of range and range rate measure-
ments by ground “racking stations (Merritt Island and Goldstone) where
it was assumed that the range and the range rate measurements were made
simultanecusly. The results contrast sharply with those for star sight-
ings. Here there is a very significant decrease in ephemeris uncertain-
ties, while there is no improvement in attitude and gyro bias drift un-
certainties. The last row also shows the effect of range and rang: rate
measurements taken from the planned geosynchronous Tracking and Data
Relay Satellite System (TDRSS). Although more measurements per pass
{18) were made (because of better converage of the BEOS orbit by TDRSS),
the performance is markedly inferior to thit with ground trackirg. This
is primarily due to the relatively larve initial ephemeris uncertain-
ties assumed for the TDRSS satellites. This will be discussed in the
next subsection.
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TABLE 2-2
KALMAN FILTER PERFORMANCE WITH
SINGLE TYPES OF MEASUREMENTS

State Estimation Uncertainties (lo)

Type Attitude Gyro Bias Drift Position Velocity
of {arcsec) (10-3 deg/hr) {meters) _ {meters/sec)
Measurement PitchIRollIYaw X b4 z Alt.' Range]Track Alt.lRangé ITrack
Initial State Uncertainties:
60 60 60 30 30 30 20 50 20 .05 .02 .02
No
Measurements 273 83 83 30 30 30 101 745 20.5 . 749 .075 .020
Stars 2.0 1.8 14.9 15 0.4 1.0 101 745 20.5 . 749 .075 .020
Landmarks 94 4.7 26.8 24 12 22 57 460 20,0 .482 .039 .020
Range
and Range Rate
(GTS) 273 83 83 30 30 30 2.8 4.6 7.8 .012 .003 .020
Range
and Range Rate
(TDRSS) 273 83 83 30 30 30 10.1 44.4 l16.8 .040 .010 .016
Notes: Nominal number of measurements per pass or per orbit

are assumed for each measurement type.

See Section 2.7.2

GTS - Ground Tracking Station




Table 2-3 shows the performance for various measurement configura-
.tions. The first row shows the reésults when using both star sightings
and known landmark measurements. The decrease in attitude uncertainty
is due almost entirely to star information, since it is almost the
same as with stars alone. However the decrease in attitude uncertainty
enables the landmark information to be used more effectively to reduce
the ephemeris uncertainty. The next three rows give the state uncer-
tainties that result from a measurement configuration that combines
known landmarks and range and/or rarge rate ground tracking. The de-
crease in ephemeris uncertainty is 2ssentially the same with range and
range-rate updates taken alone, as compared with the configuration where
landmarks are included in the measurements. However the existence of
range and range rate information enables the landmark measurements to
be very effectively used to reduce the pitch and roll attitude uncer-~
tainties as well as the Y bias Adrift uncertainty. The other two rows
show that range-rate measurements are more effective than range measure-
ments in decreasing ephemeris uncertainties,

The next to last row of Table 2-3 gives the results of using stars
and range and range-rate information with no landmarks. Here the de-
crease in attitude uncertainty is due entirely to star sightings, while
the decrease in ephemeris uncertainty is due entirely to range and
range rate information. The addition of landmark measurements to this
configuration decreases attitude uncertainties slightly to the lowest
uncertainty level of any combination considered.

2.8.4 Comparative Results with Ground Tracking and TDRSS Satellites

Table 2-4 compares the performance of ground and TDRSS tracking
for the cases with and without uncertainties in the positions of the
ground stations or TDRSS. Landmark measurements were also used in all
of these cases. The ground tracking stations had a nominal location un-
certainty of 5 meters per axis. The TDRSS satellites were assumed to
have initial ephemeris uncertainties of 15, 276, 128;.020, .001, .009
meters and meters/sec in altitude, downrange and crosstrack. The
associated covariance matrix is from a 1971 report.(ll) (See Section
2.8,2), For Table 2-4 the TDRSS ephemeris uncertainties are modeled as
consider states.




TABLE 2-3
KALMAN FILTER PERFORMANCE WITH
DIFFERENT TYPES OF MEASUREMENTS

Types State Estimation Uncertainties (10) |
of Attitude Gyro Bias Drift Position Velocity }
Measurements {arcsec) {(10-3 deg/hr) {meters) (meters/sec) |
Pitctholll Yaw X [ ¥ I b2 Alt. IRange ITrack Alt._TEange ]Track |
Initial State Uncertainties: |
60 60 60 30 30 3¢ 20 50 20 .05 .02 .02
Landmarks
and .
Stars 2.0 1.7 14.9 15 0.4 1.0 15.0 15.3 10.2 .030 .015 .02
[ L8}
1
& Landmarks
& Range 3.2 3.0 26.8 24 0.7 22 6.6 9.2 10.6 .01l6 .007 .029]
Landmarks &
Range Rate 2.6 3.0 26.8 24 0.6 22 3.1 5.7 10.3 .014 .003 .020
Landmarks &
Range &
Range Rate 2.5 2.7 26.8 24 0.6 22 2.8 4.6 7.8 .012 .003 .020
Stars & Range
& R Rat: 2.0 1.8 14.9 15 . .
ange Rate 0.4 1.00 5,8 4.8 7.2} .012 .003 .02
Landmarks &
Stars & Range
& Range Rate 1.6 1.5 14.1 14 0.3 0.9 2.8 4.6
. s 7.8 012 2003 . 020]

Notes: Nominal number of measurements per pass or per orbit are assumed for each measurement
type. See Section 2.7.2. Ground tracking stations used for range and range rate
measurements.




TABLE 2-4
KALMAN FILTER PERFORMANCE WITH
GROUND AND TDRSS TRACKING STATION MEASUREMENTS

Tracking Station State Estimation Uncertainties (lg}
Ephemeris Attitude (arcsec) Position (meters)
Uncertainties Pitc@gl Roll IYaw ' Alt:A] Range I Track
Initial Uncertainties Are: 60 60 60 20 50 20
Ground Tracking Stations
N
A Zero Locat.Uncert. 2.4 2.5 26.8 2.1 2.8 6.6
=3
Nom. Locat.Uncert. 2.5 2.7 26.8 2.8 4.6 7.8

TDRSS Satellite Stations

Zero Ephem.Uncert. 3.2 2.3 26.6 4.8 11.2 3.1

Nom.Ephem.Uncert. 9.2 4.1 26.7 9.7 44.3 16.8

Note: All data obtained with nominal number of range
and range rate and landmark measurements.

TDRSS ephemeris uncertainties modelled as consider states.




Table 2-4 shows that with zero ground station and TDRSS location
uncertainties, the position estimation uncertainties with TDRSS meas-~
urements compare favorably with ground tracking results, particularly
in crosstrack. However with nominal ground station and TDRSS location
uncertainties the position estimation uncertainties are markedly worse
with TDRSS tracking. Note for example that the downrange position
uncertainty is only slightly less than the initial uncertainty.

TDRSS Ephemeris Uncertainties Modeled as Consider States

The TDRSS ephemeris uncertainties are associated with a state
that is highly time~correlated over the simulation time intervals of
this study. Since the errors in this state will not undergo very much
change during those time intervals, it is appropriate that they be
modeled as consider state biases rather than as zero biag white
noises. With this type of modeling the Kalman filter estimator
"considers" the effect of imperfectly modeled states {but does not
measure or estimate them) on the estimation of the "desired" states.
Since the TDRSS ephemeris uncertairities may have non-zero means rel-
ative to the data intervals studied, the treatment of these uncer-
tainties as "consider" states implies better modeling of the real
world data. The analysis and equations for "consider" state pro-
pagation and update are presented in Section 2-7.

While it is better to model the TDRSS ephemeris uncertainties as
consider state: rather than as white noises, it is nevertheless of
gsome interest to investigate Kalman filter performance with both mod-
eling types. Table 2-5 compares estimation performance for the two
types of modeling with three sets of initial TDRSS ephemeris uncer-
tainties. These were given in Section 2.8.2 and are repeated here
for the readers convenience. The three sets of initial ephemeris un-
certainties are: (1) an adverse estimate obtained from GSFC, (2) a
conservative estimate first given in a 1971 report, and (3) a future

 state-of-the-art estimate now being used in other unrelated CSDL
studies. The one sigma ephemeris uncertainties in meters and meters
per second for the three sets are:
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TABLE 2-5
KAIMAN FILTER PERFORMANCE WITH
DIFFERENT TDRSS EPHEMERIS UNCERTAINTIES

Tracking Station State Estimation Uncertainties (lo)
Ephemeris Attitude (arcsec) Position (meters)
Uncertainties (lo) Pitch ] Roll l Yaw alt. l Ra. je I Track

Initial Uncertainties Are:

I 60 60 60 20 50 20
0 l 3.2 2.3 26.6 4.8 11.2 3.1
3% ]
L With GSFC Ephemeris Uncertainties Modelled as:
®©
Noises 23.7 4.2 27.0 18.9 114.4 17.7
Consider States 39.6 4.8 27.1 27.2 195.1 i9.9

fWith '71 Shuttle Study Ephemeris Uncertainties Modelled as:

Noises 6.5 2.8 26.7 9.7 30.0 8.4
Consider States 9,2 4.1 26.7 9.7 44.3 16.8

With Future State-of-the-Art Ephemeris Uncertainties Modelled as:

Noises 3.3 2.3 26.6 4.9 11.9 3.3
Consider States 3.6 2.3 26.6 5.1 13.7 3.7

Note: All data obtained with nominal number of range

and range rate and landmark measurements.




Alt, Dnrng. Crtk. valt vdnrng' vcrtk
GSFC conserv. 1) 150, 10040, 500; .073, .011, .036
1971 rpt 2) 15, 276, 128; .020, .0011, .0025
Future est. 3) 5, 5, 5; .00037, .00037, .00037

Table 2-5 shows that the Kalman filter performance is consistent-
ly worse when the TDRSS ephemeris uncertainties are modelled as "con-
sider" states than when modelled as white noise. This is to be antici=-
pated, since use of "consider" states represents a more realistic model-
ling of possible biases. Table 2-5 also shows that with consider state
modelling,the Kalman filter performance for ephemeris uncertainty esti-
mation is only satisfactory with future state-of-the-art TDRSS ephemeris
uncertainties. With 1971 Shuttle study uncertainties the downrange
estimation uncertainty is only slightly less than the initial uncertain-
ty.
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2.8,5 Filter Performance for the Five Landmark Observation Cases

Table 2-6 presents the Kalman filter estimation uncertainties
at the end of the last pass for the five different landmark obser-
vation cases. (8See Table 2-!}., Numerically these cases correspond to
the number of passes over tne continental USA, and if Case 4 or 5, ;
over Alaska as well. To track the last two passes a third USBS radar
tracking station located ét FPairbanks, Alaska, is used for range and
range rate measurements.

Table 2-6 shows that most of the improvement in performance is
accomplished by the end of the second pass. Only slight improvement
results as the number of passes 1s increased from two to five. 1In
going from Case 2 to 3 it is noted that the ephemeris uncertainties
did not decrease as one might expect. For example, the downrange un--
certainty is 6.6 meters for Case 3, while it is 4.6 meters for Case 2.
The reason for this irregularity lies in the choice of EOS orbital
paths for the different cases. To make possible three observational |
passes over the continental USA (Case 3), a somewhat different inertial ‘
orbital path from that for Case 2 had to be used. Because of the |
different relationships of the EOS orbital paths with respect to the 1
ground tracking stations for Cases 3 and 5, as opposed to those for
Cases 2 and 4, the estimation uncertainties are moderately different
from what they would have been if the same inertial orbital path had
been used for all cases.

2.8.6 Kalman Filter Performance as a Function of Orbit Angle

Position Estimation Performance

Figures 2-6 and 2-7 show graphically the effect of propagation
and update of the position estimation uncertainties for Cases 2 and 4
when using landmark measurements and ground tracking range and range
rate measurements., For comparison, Figure 2-8 shows the positioen un~
certainties for Case 2 when using star sightings and the same ground

tracking mesurements.




TABLE 2-6

KALMAN FILTER PERFORMANCE FOR
DIFFERENT LANDMARK OBSERVATION CASES

Landmark State Estimation Uncertainties (lo)
Observation Attitude (arcsec) Position (meters)
Case Pitch| Roll | Yaw Alt. | Range | Track

Initial Uncertainties Are:

60 60 60 20 50 20

v
oA 1 3.7 5.2 34.3 12.3 9.7 19.2
2 (nom) 2.5 2.7 26.8 2.8 4.6 7.8
3 2.4 1.9 21.2 3.2 6.6 6.1
4 2.0 1.9 18.4 2.3 3.6 6.2
5 1.9 1.6 16.9 2.4 4.4 4.8

Notes: 2 Landmark Updates/Pass
5 Range and Range Rate Updates/Pass by Ground Tracking
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Figures 2-6 and 2-7 show how effectively range and range rate
measurements reduce the altitude and downrange position uncertainties
on the first update of each pass for Cases 2 and 4. Subsequent updates
on the same pass only reduce the uncertainties slightly. The marked
increase in downrange uncertainty,and to a lesser extent the altitude
position uncertainty, after the first USA pass is due to the presence
of relatively large velocity estimation uncertainties. The operation
of the Kalman filter on the velocity uncertainties is shown in Figure
2-7 by the marked reduction in peak downrange and altitude position
uncertainties resulting after the second and third passes. The cross-
track uncertainty is more cyclical than the other uncertainties. This
uncertainty is progressively reduced after each pass.

Figure 2-8 shows graphically for Case 2 the effect of using star
sightings with the same range and range rate measurements. It is seen
here that the reduction in the downrange and altitude uncertainties at
the start of each pass over the USA is not as dramatic as was the case
in Figures 2-6 and 2-7 where landmarks were used.

Attitude Estimation Performance

Figures 2-9 and 2-10 show graphically the attitude estimatien
performance when using landmark, range, and range rote measurements.
Figure 2-11 does the same with landmark and star measurements.

Note in Figures 2-9 and 2-10 that significant reductions occur
in the attitude uncertainties (particularly those of pitch and rell)
during the passes over the USA and Alaska. In these cases, the only
information provided on attitude was that obtained from the landmark
measurements during the passes over the USA and Alaska. Two landmark
measurements were made on each pass. Most of the reduction in attitude
uncertainty during a pass occurs during the first landmark update of
each pass. In addition, it is seen that most of the reduction occurs
in pitch and roll since the landmark is always near the local vertical.
Note that the performance in Case 2 (Figure 2-9) is essentially the
same as that of Case 4 (Figure 2-10)during the first two passes since
Case 4 is essentially an extension of Case 2. Also note in Figure 2-10
that the uncertainty in pitch remains low and does not grow as rapidly
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after the second pass. This is due to the fact that the uncertainty
of the Y (pitch) gyro bias drift was greatly improved by the updates
of the second pass.

In Figures 2-9 and 2~10 it is seen that the rell and yaw uncer-
tainties become oscillatory after the first pass. Note that the fre-
guency in yaw is twice that in roll, and that there is a definite phase
relationship between the two. The reason for the oseillatory behavior
is due to a complex relationship between roll, yaw, roll gyro bias
drift, and yaw gyro bias drift, and the fact that updates are made only
during the passes over the continental USA and Alaska, which occur at
somewhat the same portion of the satellite orbit.

In dramatic contrast to Figure 2-9 and 2-10, Figure 2-11, with
star sightings in combination with landmark measurements, shows a very
different performance in attitude estimation. This is primarily due
to the fact that many more updates are made in attitude (20 star sight-
ings per orbit plus 2 lancmark measurements per pass). Note that the
frequent updates of attitude throughout the orbit causes the uncertain-
ties of all attitude components te reach almost steady state values
after the first orbit.

2.8.7 Performance Sensitivity to System Errors and Parameters

In this section the sensitivity of Kalman filter performance to
various system uncertainties and parameters is investigated. These
*
include the following:

1} 1Initial ephemeris uncertainty

2) Initial gyro bias drift uncertainty

3) Ground tracking station lecation uncertainty

4) Range measurement noise

5) Range rate measurement noise

6) Landmark position uncertainty

7} Number of range updates per pass

8) Number of range-rate updates per pass

9) Number of range and range-rate updates per pass

*No data is presented on the sensitivity to initial spacecraft
attitude uncertainties since the performance in estimating the
ephemeris and attitude was virtually unaffected by values of these
uncertainties up to 15 times nominal.
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190) Number of landmark updates per pass
11} @Gyro random drift and quantization
12) Gravity harmonic uncertainties

These are considered separately in the following paragraphs.

Sensitivity to Initial Ephemeris Uncertainty

Figure 2~12 shows the effect of variation of the initial ephemeris
uncertainty (all six components varied simultaneously) on position and
attitude estimation uncertainties. This figure demonstrates that even
when the initial ephemeris uncertainty is ten times its nominal value,
the altitude and crosstrack position uncertainties are only slightly
affected, while the downrange uncertainty is moderately increased. As
might be expected the effect on the attitude uncertainties is neglig-
ible,

Figure 2-13 shows that only the yaw attitude uncertainty is
affected by increases in the initial gyro bias drift uncertainty about
all axes. In this case it is seen that the position estimation un-
certainties remain unaffected.

Sensitivity to Ground Tracking Station Location Uncertainty

Figure 2-14 shows that the performance in estimating spacecraft
position is strongly affected by an increase in the tracking station
location uncertainty (assumed equal in all dimensions). For example,
an increase in the location uncertainty from 5 (nominal) to 10 meters
increases the downrange estimation uncertainty from 4.6 to 5.9 meters.
This is to be expected since the location uncertainty effectively adds

to the range measurement error.

Sensitivity to Range Measurement Noise

Figure 2-15 shows the effect of variation in the range measure-
ment noise while maintaining nominal values for the errors in range
rate and landmark measurements. It is seen that as the range measure-
ment noise is increased, the performance in estimating spacecraft
position levels off at values which happen to be those primarily cbtained
with range rate measurements alone., Note that there is little to be
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gained from range measurements when the one-sigma noise in these
measurements exceeds about twice the nominal value of 10 meters,

Sensitivity to Range Rate Measurement Noise

Figure 2-16 shows the effect of variation in the range rate
measurement noise while maintaining all other conditions at nominal.
In contrast to the results just shown for range measurement noise in
Figure 2-15, it is seen that the sensitivity to range rate noise ex-
tends over a much larger range of variation in this parameter. This
is also seen to be the case in Table 2-3.

Sengitivity to Landmark Position Uncertainty

Figure 2-17 shows the sensitivity of performance to landmark
position uncertainty when landmark measurements are used in combination
with ground tracking measurements. It is seen that the performance in
estimating attitude is strongly affected by a variation in the land-
mark position uneertainty, while the performance in estimating space-
craft position is essentially unaffected. This is as expected since
the landmark measurements provide the only data on attitude, while the
ground tracking measurements, with the assumed high accuracies, dominate
the performance in estimating spacecraft position. If landmark measure-
ments had been used with star sightings instead of ground tracking
measurements, the reverse situation would have occurred, where the star
sightings dominate the attitude performance and the landmark measure-
ments provide the only information on spacecraft positiion. (See
Figure 2~18 of Reference 8). In either case, it is important to note
from Section 2.7.2 that the landmark position uncertainty is treated
in this covariance study as being the overall error associated with a
landmark measurement.

Sensitivity to Number of Range Updates per Pass

Figure 2-18 shows that approximately 15 range updates per pass
are required to reach asymptotic levels in position estimation per-
formance when no range rate measurements are included. Although the
conditions under which this data was generated are not considered to
be quite nominal since the nominal range rate measurements were not
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included, the data at least shows the effect of varying the number of
range measurements in combination with the nominal number of landmark

measurements. Also note in Figure 2-18 that only two or three range

ERANEE NI e L

updates are required per pass in order to achieve minimum attitude
estimation uncertainties.

Sensitivity to Number of Range Rate Updates per Pass

Figure 2-19 indicates that minimum position estimation uncer-
tainties are achieved after about 5 range rate updates per pass when
ne range measurements are included. Note that it takes fewer range :
rate updates per pass, as compared to range updates per pass, to f
achieve minimum estimation uncertainties. Also note that only two or :

three range rate updates per pass are required to reduce the attitude

uncertainties to minimum levels,

Sensitivity to Number of Range and Range Rate Updates per Pass

Shown in Figure 2-20 is the sensitivity of performance to the

number of updates per pass with both range and range rate measurements.
Here it is seen that the affect on performance is not much different
from that in Figure 2-19 where no range measurements wera made. In
addition, it is seen that five range and range rate measurements (the
nominal number used in this study) yield results which are fairly close
to what would be obtained if more range and range rate measurements

were used during a pass.

Sensitivity to Number of Landmark Updates per Pass

As was true in Figure 2-17 for sensitivity to landmark position
uncertainty, Figure 2-21 shows that the attitude estimation uncer-
tainties are reduced by increasing the number of landmark updates per
pass, while the uncertainties in estimating spacecraft position remain
unaffected. Note that only two landmark updates per pass are required
to bring the attitude uncertainties close to their minimum levels.
Again it is important to note that the results in Figure 2-21 (like
those in Figure 2-17) were generated for the case of no star sightings.
If landmark measurements had been used with star sightings instead of
range and range rate measurements, the performance in estimating

spacecraft position would have been affected to scme extent by the
number of landmark updates per pass. {See Figure 2-13 of Reference 8),
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Sensitivity to Gyro Random Drift and Quantization

Performance results were generated with various values of gyro
random drift up to six times the nominal value of 0.0l degree per hour,
For this amount of variation the results showed that random drift had
no affect on the position estimation performance and only a slight in-
fluence on attitude estimation performance. For example, a six sigma
random drift on each gyro resulted in pitch, roll and yaw uncertainties
of 2.6, 3.1, and 27.1 arcsecs, respectively, while nominal values of
random drift resultel in 2.5, 2.7, and 26.8 arcsecs.

Studies of censitivity to gyro quantization noise also produced
similar results. The attitude uncertainties for a six sigma guanti-
zation noise on each gyro were almost the same as those for a six sigma
random drift on each gyro.

Sensitivity to Gravity Harmonic Uncertainties

In Section 2.1 the gravity harmonic uncertainties were defined as
being egqual to a constant times the difference between the corresponding
C and S5 coefficients of the two most recent Smithsonian gravitational
models (SEITI and SEIIX). This constant (0.33) was chosen so that the
resulting ephemeris error data would match the results obtained from
GSFC for five orbits. Inspection of equivalent data from other studies
indicate that the above definition is probably pessimistic., In Table
2-+7 some performance results are shown for various values of the gravity
harmonic uncertainties relative to the nominal values defined above.
This table clearly shows that the indicated changes in the harmonic un-
certainties have negligible affect on the attitude estimation uncer-
tainties, while the affect on the position estimation uncertainties is
moderate.

L U R




TABLE 2-7
SENSITIVITY TO GRAVITATIONAL HARMONIC UNCERTAINTIES

vi-2¢

Gravitational ~State Estimation Dncertainties (1o)
Uncgiiggﬁties Attitude (arcsec) Position Tﬁetéff)
Pitch‘] Roll ‘I Yaw Alt. I Range“[ Track
Initial State Uncertainties Are:
60 60 60 20 50 20
¢ 2.5 2.6 26.8 2.3 4.5 6.6
0.5¢ 2.5 2.6 26.8 2.5 4.5 6.9
lo 2.5 2.7 26.8 2.8 4.6 7.8
2 ¢ 2.6 2.8 26.8 3.6 4.9 10.0
4 g 2.6 3.1 26.8 4.9 5.5 13.4
6 o 2.7 3.3 26.9 5.9 6.1 15.4

Notes: Landmark Observation Case 2
2 Landmark Updates per Pass
5 Range and Range~Rate Updates per Pass (Ground Tracking)




2.9 CONCLUSIONS

In contrast to the previous study(l)

where star and landmark
measurements were used to estimate spacecraft attitude, orbital
ephemeris, and gyro bivs drift, the present study is primarily con-
cerned with how well the same state parameters can be estimated when
using landmark measurements in combination range and/or range rate
measurements with respect to ground tracking stations or the proposed
Tracking and Data Relay Satellite System (TDRSS). For purposes of
comparison, some results of the previous study are included with the
results of the present effort in Section 2.8, 1In the previous study
it was found that landmark measurements alone (See Table 2-2) were not
sufficient to estimate all twelve state parameters, (At least, this
was the case for landmarks visible to the multispectral scanner of
Landsat or the proposed ECS}. However, by using both star and land-
mark measurements, it was found that very good performance could be
obtained in estimating all twelve state parameters (See Table 2-3}. In
this case, the star sightings were the primary source of data for esti-
mating spacecraft attitude and gyro bias drift, and the landmark meas-
urements provided the only information on orbital ephemeris. However,
when landmark measurements are used only with range and/or range rate
measurements (See Table 2-3), the landmark measurements play a reverse
role in that they provide the only data for estimating spacecraft
attitude and gyro bias drift, while the range and/or range rate meas-
urements dictate the performance in estimating orbital ephemeris. In
comparing the attitude performance for these two cases in Table 2-3,
it is seen that the performance is noticeably better when using star
sightings. However, the following differences, which favor the star
tracker, should be noted:

1) More star measurements (20 per orbit) were mrade than
landmark measuremants (2 per pass).

2} The star measurements were uniformly distributed
throughout each orbit, while the landmark measure-

ments were restricted to that part of the orbit over
the USA,




3) some of the stars were further from the local
vertical than any of the landmarks due to the
larger field-of-view of the star tracker (8°
sguare). Consequently, the performance in
estimating yaw attitude should be better for
the star measurements.

4) The assumed accuracy of the star measurements
(5 arcsecs per axis) is somewhat optimistic for
the star tracker being considered for this type
of mission, while the accuracy assumed for the
landmark measurements may conceivably be more
realistic,

However, regardless of the relative merits of star and landmark measure-
ments in estimating spacecraft attitude, it is seen from the general
results of this study that landmark measurements are very versatile

in that they can be used as the primary eor backup data source for
attitude or orbit determination.

In this study, performance results were generated for landmark
measurements in combination with range and range rate measurements
from either TDRSS or ground tracking stations. (See Table 2-4}. In the
case of TDRSS it was found that the performance was not as good as with
ground tracking stations primarily because of the larger uncertainties
adopted for the ephemeris of TDRSS. If these uncertainties were re-
duced by two orders of magnitude, the resulting performance in esti-
mating spacecraft attitude and orbital ephemeris would probably be com-
parable with that obtained with ground tracking.

From the sensitivity studies made with landmark measurements,
combined with range and range rate measurments with respect to ground
tracking stations, the following conclusions can be made:

1) Only twn observation passes over the USA are required
for reasonable performance in estimating both attitude
and orbital ephemeris.




2)

3)

4)

5)

6)

It is not necessary to use both range and range
rate measurements with landmark measurements in
order to obtain good estimation performance. For
example, range rate measurements combined with
landmark measurements do almost as well as when
range measurements sare included. (See Table 2-3).

Only two landmarks are reguired on each pass over
the USA in order to achieve almost steady state
performance in estimating spacecraft attitude,
(See Figure 2-21).

Variation of the landmark position uncertainty and
the number of landmark updates per pass had no
affect on orbital ephemeris estimation. Only the
attitude performance is affected by these para-
meters. {See Figures 2-17 and 2-21).

About two updates per pass are required in range or
range rate in order to achieve near-steady state
performance in estimating pitch and roll., (See
Figures 2-18, 2-19, and 2-20).

The performance in yaw is essentially independent
of range or range rate measurements.
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SECTION 3

STAR AND LANDMARK MEASUREMENT EQUATION DEVELOPMENT

3.1 INTRODUCTION

In this section the results are presented for the study task
pertaining to the development of detailed measurement equations for
the basic -onboard navigation measurements. Since the navigation
system for EOS may rely extensively on computations done at a ground
processing center, it may be possible to treat the larger state
vectors associated with a more detailed set of measur~ment models.

Two types of measurements are considered; namely a star direc-
tion measurement using a star camera device, and a landmark direct'on
measurement using a multispectral scanner. The scanner is assurcd to
be one that scans from side to side at a constant rate.

The previous treatments of the measurements for these two
sensors(l) assumed that the basic measurements were angles and that
the associated errors were white noise. In fact the basic measure~
ments are voltages and time intervals. These are converted to angles
by means of computations which introduce errors beyond those arising
in the measurement of the basic quantities.

If the basic measurements are taken to be angles, as was done
previously, the errors arising from conversion of basic measurements
to angles must be accurately represented. However it is simpler and
more direct :o enter the basic measured quantities ihte the navigation
estimation equations. This approach may only be tractable when ground
based computations are considered since use of the raw measurements
along with more detailed error models implies increased computational
requirements.

-1




3.2 STAR TRACKER MEASUREMENT EQUATION

3.2.1 Introduction

Several potential navigation system configurations for EQOS
involve star tracking devices. A leading candidate for this applica-
tion is a star "camera" device such as the Ball Brothers CT401 star
tracker. This type of tracker has the attribute that it acquires and
tracks stars by means of a gscanning electron beam, and therefore
requires no moving mechanieal parts. It is a body-mounted device
whose optical axis is often aligned with the spacecraft negative zp"
axis (local zenith).

The task addressed here is to derive a measurement model speci=-
fically fer a tracker of this type. The goal of the derivation is a
model that is very general i.e., includes all the major noise types
and sources. Essential steps in the derivation inelude formal state-
ments of the tracker fundamental measurement and the state-vector,
measurement~vector relationship, derivation of the formal partial
derivative equations, and definition of the form of the output-measure-

ment relationship.

3.2.2 Basic T:acker Operation and Measurement

The tracker has a square field of view several degrees on a side,
and the center of the field is pointed at some selected direction in
spacecraft body coordinates. There are two modes of operation, namely
the search and track modes. In the search mode the scanning electron
beam is driven over a uniform scan pattern by ramp and stepped voltages
in the directions of the major axes of the field of view. When a star
signal, represented by a beam current increase, is detected at a se-
lected threshold value, the associated search voltages are observed,




and their values are used to define the star direction. When a star
has been "found", it is then tracked (in the track mode) by a re-
stricted field scan operation, and changes in star position due to
spacecraft motion are added to the basic location veltages that were
obtained at acguisition. Thus the basic star tracker measurements are
a pair of voltages along nominally orthogonal axes. The relationship
between these voltages and the angles defining the star location in
the field of view is not, however, a simple proportion because of
various distortions of the scan geometry. Instead, a functional rela-
tionship between the basic analog voltages and the star position
angles is derived by means of calibration against a test star pattern.
Discussion of this functional relationship is deferred until later.
Detailed description of the tracker operation can be found in
Reference 13.

3.2.3 Formal Measurement Eguation

The relationship between the measurements, state, and noise
levels in the device is intrinsically nonlinear. It can be written as

z = zix x,, V) (3-1)

where 2z is vector whose elements are the measured quantities, x is
the spacvecraft and tracker state vector, X is a vector of unestimated

variables(14'15)

that affect the state covariance ("consider" para-
meters), and v is a vector of white noises. The state x for this
problem consists mainly of guantities defining the spacecraft attitude
such as attitude angle=s and gyro bias drift, and estimatable biases in

the star tracker.

Assuming that the estimation process to be applied for navigation
will be linear, we expand Equation 3-1 in a Taylor series keeping only
first order terms. The formal linearized measurement equation is thus
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In the case of covariance propagation studies, as for example in
Section 2 of this report, the 3's represent statistical deviations

of variables from nominal values. In an actual estimation application
the 3's represent deviations of the true s:ate from the estimated
state. The partial derivative convention used here is the following:

so that differentiation of column vector z by column vector x yields
a matrix H (with elements hij). The matrices H, H_ = 3E/a§c'
A = 3z/3y are here termed measurement "sensitivity" matrices. Thus

eguation 3-2 may be written

dz = Héx + H 8x_ + Adv .
2 =z cEe v

In the case of the CT401 star tracker the measurement vector (2z)
is taken to be the scan voltages mentioned previously, namely

V
( x) . (3-3)
v

y

3]
It

As implied by z, the nominal boresight axis of the tracker is taken to
be the z axis.

There are many potential sources of contributions to the
measurement error (§z in Equation 3-2). First, there are possible
state uncertainties consisting of spacecraft attitude and several
tracker bias errors that might be estimated. Secondly there are un-
estimated biases or "consider® biases,(16'17) and thirdly, there are
white noise sources. The major error sources in the star tracker
measurement are listed below in Table 3~1 along with representative

one sigma valves.
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TABLE 3-1

MAJOR ERROR SOURCES, TYPES AND REPRESENTATIVE VALUES*

Estimatable Biases

Alignment - 5 arcsec
Geometric Calibration - 20 arcsec

. Mechanical Distortion - 5 arcsec
Temperature Measurement Bias - 2.5 arcsec/deg
Magnetic Field Measurement - 50 arcsec/gauss

Consider Biases

Temperature Pluctuations 2.5 arcsec/deg

Magnetic Field Fluctuations - 50 arcsec/gauss
Star Intensity Estimates - 9 arcsec/mag

White Noise

Poisson Photon Arrival Rate - 5 arcsec

Electronic Noise 15 arcsec

Two bias sources, namely temperature and magnetic field varia-
tions, can be included in either bias category, depending upon the

The representative error values are based in part upon

Reference 13, and in part upon conversations with R.L. Cleavenger
of Ball Brothers Research Corporation and R. Doxie of MIT's

Center for Space Research. These errors are very design speci-

fic and therefore cannot be loosely used for any application.
Errors in each of the listed categories can be reduced considerably
by sufficien: application of engineering design effort.
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details of the tracker data reduction. For example, if temperature
and axial magnetic field strength are not measured, then deviations
of these quantities from their calibration values will fluctuate
with random amplitude on a time scale that is long compared to the
measurement time. These fluctuations would then be treated as con-
gsider biases.

3.2.4 Tracker-Inertial Coordinate Relationship

To evaluate the partial derivatives or sensitivity matfices
H, #,, A of Equation 3-2 we write a vector equation relating the
tracker line-of-sight (LOS) to a star, to the inertial direction

of the star. The er -or-free relationship is just

S (3-4)

$g = TroTorir

where TBO and TOI are the coordinate rotations from inertial to
spacecraft body coordinates, as defined in Section 2. S, is a upit
vector in inertial coordinates defining the LGS to the star being
tracked. §B is the corresponding unit LOS vector to the star in body
coordinates. To simplify the treatment of tracker errors we define
another rotational transformation TBT which transforms from tracker
boresight coordinates to body coordinates. 1p the tracker boresight

system the star is located in direction §T’ and Bquation 3-4 is just

ToTorlr = Tprdr - (3-5)
The rotational transform T is arbitrary and composed of a pair of
rotations TATB for boresight pointing, and a rotation TC for field of
view orientation. We select thé convention of having the star tracker
2z axis lie along the boresight direction. Thus a star lying along the

boresight has the following direction in tracker caordinates:

&
Sp= 0]).

\i
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This geometry is shown in Figure 3-1. The general form for §T is
obtained by a pair of rotations from tracker coordinates to the star
direction in tracker coordinates. A rotatien about YT through an
angle o followed by a rotatican about}(é through an angle 8 yields a
pair of angles in orthogonal planes corresponding to the two electron
beam angles. These are related to scan voltages in the tracker. ‘The

unit vector §T is thus

sin o
Sp = |- cos @ sin 8 . {(3-6)
‘c0s @ cos B

Errors in the star position measurement are reflected in the
term on the right in Equation 3-5. '

3.2.5 Measurement Error Relationships

Errors in alignment of the tracker with the spacecraft axes can
be expressed as a small angle rotation matrix T, multiplying'TBT.
True values of ¢ and B can be represented as the sum of values pre=-
dicted from the voltage-angle calibration relationship, and error

values. Thus

Equation 3-5 can therefore be expressed in terms of the errors as

TaoTorlr = % Teufr (%’ B¢ (3~7)

with

sin (o + o)
P e
8p = - cos (ap + ae) s5in (BP + Be) | (3-8}

cos (ap + ae) cos (Bp ¥ Be)
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If we let a(z) and B(z) represent the electrén beam angle func-
tions of the voltage, then the form of o ({(z) and Ep(z)-depends upon
how one calibrates the tracker distortions. The most straightforward
calibration is done by fitting a least squares polynomial to simulated
star test field measurements {Ref.13). The test field ¢ontains a 9x9
rectangular array of simulated stars, thus the polynomial should not
be of high order. 1In Reference 13 first and second order terms are

% used. Following that example we write
a, = A, (P-T, B, I-I_) + A,(T~T_, B, I-I ol Vg * A3 (T—T ¢ B, I-I )Vy
+ A4(T-T0, B, I-I )V + A (T-T i B, I- I )V + A (T-T , B, I'IO)VxVY .
Bp = By (T , B, I-I,) + . . . (similar form). . (3-9)

The coefficients Ai and Bi are functions of debiations of.temperétﬁre
(T), magnetic field strength (B), and star magnitude (I} from their
values at calibration., The cross terms, i.e. those terms involving

V. in ¢ and V in B, occur because the nomlnally orthogonal planes in
which « and B are measured may be slightly nonorthogonal, and because
certain phenomena such as a strong axial component of the Earth's.
magnetic field cause an effective rotation of the sensor axes.

If one considers the errors in a and B to be small compared to
. their magnitudes, it is then possible to write

2
+
=]
n
+
’
-

. b {Al + 6A1) + {A2 + 6A2)Vx
. _ _ . {3-10)
(Bl + 631) + (B2 + GBZ)Vx P

=
+

™w
]

or

(3-11)

Be dBl + tSBZV‘x + 6B3VY +oee 4 .

Carryihg the small error approximation one step further allows

each of the coefficient errors to be written as an expansion,

namely

R A LA

A T R




BAy A, any o o
A, 2 —= 8T+ —L 8B + — ST+ . . . . (3-12)
T 3B T
T B=B, =T,

Here To and I_ are the tracker temperature and star intensity at cali-
bratidn, and Bc is the axial magnetic field strength (nominally zero
at calibration). 1If one adds a first order error in the voltage
measurement, terms of the form Aiavj are added to the above expression
for those coefficients that are nominally multiplied by voltages, i.e.
A, 1> 1. An expansion similar to that in Equation 3-12 may also be
constructed for GBi. It should perhaps bhe emphasized that the coeffi-
cient errors in Equation 3-12 represent residval errors after calibra-
tion and fitting of the measurements with selected functions. Both
the nonminal coefficients (Ai, B;) and the residual errors in the coef-
ficients (Gai, 651) are functions of the temperature, magnetic field
and star intensity deviations from the nominal calibration values.

3.2.6 Evaluation of Sensitivity Partial Derivatives

To obtain the desired partial derivatives it is necessary to
differentiate the general geometric relationship (Equation 3-7). This
equation is an expressien of the relationship between the measurement
vector 2 and the state Xx. We restate the equation as

TooTorSy = Te TppSpler B) . (3-13)
The qugntities on the left are each functions of the state vector x.
ThUSUTBO-iS a function of the attitude, and TOI and §I are functions
of the ephemeris. For manipulative purposes we may therefore express
the left side of Equation 3-13 as a simple function of the state

£(X) = Tpo () Ty 8y (3-14)

The measurement vector 2z is contained in §T(c, ) of Equation 3-13,
thus ' ' '

3-10
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If one now allows for estimatable bias errors in temperature, star
intensity, tracker alignment, éie., the quantities on the right hand
side of Equation 3-13 become fupnctions of thé expanded state vector,
and one may write a general form for Equation 3=13 in terms of the
state vector and measurement vedtor as

-_f_(_i_i__) = T(E)ET[U-(_}_EJ E)t B{?_‘r E)] . (3-15)

The sensitivity partial H = 92/3x can now be obtained in general form
by implicit differentiation of Equation 3-15. Thus one obtains

T 38
= §T + m;ig ’ {3~16)
ax ¥x

i e

which is further expanded to yield a seolution for 32/9x. Expanding the
derivative in the second term on the right of Equation 3-16 gives

3§T - (:8§T Ei . BS a8 e BS B 3% .
X 3o 3X Bz BB BE' 80X

(3-17)
Letting the terms in parentheses be abbreviated as 0 and Q2
allows Eguation 3-16 to be expressed as
of aT 0z
— o = S + TQ; + TQ,— . (3-18)
3% = 3% T 1 25,
Solving for 3z/%x produces the desired sensitivity matrix
3z _, [3f foar
H=—= (T0,) - - ( Sy + TQ; . {3-19)
9x 0% %

The inverted gquantity TQ2 involves only derivatives with respect to

the measurement vector. Thus the same equation can be used to evaluate
the sensitivity matrices for consider variables (Hc) and white noise
(4) by substituting X and v for x. For the star tracker, the same
elements of x do not occur in more than one of the terms £, T, and §T‘
Therefore, for any x element, two of the three right-hand terms in
equation 3-19 are zero.
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We nekt display some expansion steps in the evaluation of
(7Q,) 7" and Q;. The matrix Q, can be written

P . -

3Vx avy
| os, as, | | |
0, = |2 2| (3-20)
W, v, |
e
vy, v

where the elements of §i are given by Equatibn 3-8, WNote that the
expanded derivatives for’pz, when written out in full, are actually

'33i QSi 3t 3Si 9B

— = — + {3-21)
BVj aa avj o8 BVj
If T is approximately orthogonal, thé coefficient (Tozl-l can be
simplified as follows:
-1 _ -1 _-1 -1 T _
(TQZ) =Q, 7 < Q7 T (3-22)

Since Q, is a non-square matrix it is necessary to compute the pseudo
inverse

-1

' -1 T
Q,

> @ = (05 07" 0]

831\2 N (352)2 . (353)2 BSI BSl . 352 BSZ . aga 353

azl l azl azl azl Bzz az1 322 le 322
a8, 9S8 a5, 38 @S, 38 8S,\2 s, \2 s
11,2 2,33 (1)+( 2)+(3
azl 3?2 azl aza azl azz 322 azz 022
{3-23)

where Qg is obtained by transposing Equation 3-20.
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| 3-23 may be’ Fe-expressed as- o S _

+ qz cos? o ' pb*+.qv cos? o\
g | (3-24)
-+ qv CDs2 4] u2 + v2 0052 o
v where
p = Az + 2A4Vx + AGVy .
q = B, + 2B,V + BgVy ¢ (3-25)
u = A3 + 2A5Vx + Aﬁ.v}l ’
v = ﬁg + ZBSVx + PGVY .
Performing the inverse operation algebraically gives
u2 + v2 cos2 a ={pu + qv c052 a)
(@ 07t = — : - :
cos” a({pv-qu)
«{pu + gv cos2 o) p2 + q2 c052 o
R (3-26)

In terms of defined quantities, Equation 2-25, the terms of
Qg (from Equation 3-20) are:

asl/avx = p cos a

asz/avx = p sin o sin § - g cos « cos B
383/3Vx = -p sin 0 cos B - ¢ cos @ sin B
asl/avy = u coS o

asz/évy = usina cos B - v cos o cos B
353/3Vg = -u sin « cos B - v cos a sin B .

(3-27)
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In summary, the sensitivity partials are given in general form
by Equation 3-19. Since the variables X, :_cé. ‘v apply to oniy one. of
£, T and Sy at a time, Equation 3-.-1_-,_9‘ 5;35.“?915-5193' for any gi_ven va_ri_able
of differentiation. For noise, biases, etc. related to the spacecraft
altitude we have '

q 9f Y
B (altitude) - (70,01 —= . (3-28)
X
For star tracker alignment errors
_p 9T
H (alignment) - -(TQ,} ~ — S, (3-29)
3x !
and for tracker internal errors
internal -1
H (to tracker) -+ -02 Q1 . {3-30)

Since T is generally a product of a nominal rotation matrix and a
small angle error matrix, ie.
T =T Tgp «

the alignment sensitivity can be written
. _ -1 .
H (alignment) - -Q2 T —= 5. .

€ =T

5.2.7 Sensitivity Example

Suppose we wish to calculate a particular sensitivity matrix
element, As an example wé pick avx/ataw) where 6T is a temperature
error (+T may be a bias if temperature is measured onboard the space-
craft; or a consider type error if temperature is not measured). Let
ST be the first element of x or X, or g. Then from Equation 3-30

av

X ~1
—— = -—{0 Q ) -
3 (6T) 2 "1ul
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Using,Eguations 3-26 and 3-27 one can wrige-Q;1

ﬁ2+ vzcaz -{pu + qv cuz) pce p sa sB -p sa cf
‘ ' -q ca cf -q co S8

! -1 _ 1

Qz bt 5
co” (pv-qu) 2. 2. 2 2
. -{pu + gv ca”) p"+ g“co uce use SB -u so eB
L JL -v co cB -v cn SB
(3-31)

where ¢ and s denote cosine and sine,; respectively. Using Equations
3-13 and 3-14, and the vector form of Q1 for a single element, gives

co
3A 3A 3A 54 oA 3A \
Q) = | so st (—1 + —2y 4+ 3y 4 —"-vi + =3y 4 —G-vxv )
3 T X ar Y ar ar ¥ o XY
-50 cf
0
3B 3B 3B 3B 3B 3B
, +] -~co c8 L2y 3y s 4v2 + 5v2 + 5viv )
3T ar ¥ ar Y 3 ¥ s Y o Yy -
-ca 88
. {3=-32)

Picking a = 8 = 0, i.e. the sensitivity at the center of the
field of view, and multiplying out Equation 3-31 gives

v u 0

-1

0
o
I

(pv-qu}
-qg -p 0
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From Equation 3-32
1-IA Terms

[
therefore
9Z = avx 1l
— = {(v*LA Terms - u*IB Terms) . (3=-33)
X 11 3{T) (pv=gu)

Examination of the forms of p, q, u, v, as given in Equation 3-25,
show that normally

Az >> BZ s
Ay << By,
Ag 7> By v
Ag << By ,
AG 2 B6 .

This is because the cross-coupling terms due to rotation and non-
orthogonality are nominally small. Also AS and B, are small with .

Asvy << A,, etec. These inequalities imply that

p>>q,v>>u

so that Equation 3-33 becomes approximately

3V 1 . - l a

—X x> — . v+ IA Terms = — —(A) ,

9 (8T) pv P aT
REPRODUCIBILITY OF ??E ’
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or -

3A 3A, 2A 3R, 3A A
e "‘"'g'on + '—-—3'V o ¥ 4‘0"2‘0 + —~—.~§—v2° + .iv*ov o
T a7 ap ¥ T ar ¥ a7 4

3
vx

3(ST) - | » l

(By + 28,V 5 + AgVyo) T="T

where T = T, is the calibration temperature, and the subscript

"o" for the voltages indicates the values assumed at @ = B = 0.

The behavior of Equation 3-34 can be seen more clearly by considering
the tracker calibration to be linear without cross-coupling. Then
Equation 3-34 reduces to

3a, 9A
-1, 2

% . ar 3T
gy ) (3-35)
A,

v X0

The intuitive content of this equation is more clearly displayed by
some manipulations. We first re-express the right side

oA, A

(Su /(Bu \
A 2(8T) 3Vx

Substituting into Equation 3-35 and solving for (3a/3(8T) yields

da _ do avx

a(sT) 'EVX 3 (8T)
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3.3 LANDMARK MEASUREMENT EQUATION

3.3.1 Introduction

One of the primary instruments being planned for an EOS type
satellite is the multispectral scanner. This device is a natural for
navigation measurement using landmarks within the fiald of view.

There is an important system advantage in using the device in this
manner, and that is that landmark sightings can provide both attitude
and ephemeris information simultanecugly. For example, it is shown in
Section 2 that scanner sightings of landimarks coupled with range and
range rate measurements from ground stations could obviate the need
for a star tracker onboard the spacecraft.

This section derives a general measurement equation for the
landmark sightings including all of the known potential error sources.
The equation is made deliberately general so that various error
sources that are small are not overlooked and can be systematically
dropped if desired when the equation is applied in practice.

3.3.2 Basic Scanpner Operation and Measurement

The scanner moves a small field of view across the Earth's sur-
face at a rate designed to give full area coverage. At regular time
intervals the sensor output is sampled to yield a sequence of effec-
tive picture elements. If a known landmark has a distinguishable out-
put, its position within a scan can be in principle determined by ap-
plication of a recognition process. To this end it has been suggested
that searchlights and mirrors be used as landmarks since they are
nearly point sources with distinguishable spectral characteristies.
The searchlight and mirror types of landmarks yield a sharply defined
signal that is essentially confined to two picture elements.” Thus if
the approximate position of the landmark is predictable over a limited
part of the scan/it may be possible to use a finer signal sample

interval in order to establish the position of the landmark to within
oné optical resolution element.
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'Fundameéntal to the navigation problem is the association of
event times within the scannerfsystem‘With universal time which is
used in ephemeris calculations. Since the scanner scans at a known
rate, the inertial scanner pointing direction can bé obtained by ob-
serving the universal time at the beginning of a scan on which: the
landmark is sighted, and adding to the estimated starting position an
anglé which is a function of the scan rate and the time between scan
initiation and landmark detection. The fundamental measurement is
therefore the time interval between scan initiation and landmark
sighting. o

If the navigation calculations are to be done at an earth facili-
ty it will be necessary to transmit from satellite to earth tﬁe scan
initiation timing pulse (probably for several scans}) and the time in-
terval between detection and initiation. The latter can presumably be
prOcESSed onboard the satellite. : : e

3.3.3 Formal Measurement and Noise

The linearized measurement equation considering the various cate-
gories of noise is

22 3z 82
62 = =— §x + —— 8% 4+ —  §v
— -— —c —
ax ax, v

where x, X,s ¥ are defined in Equation 3-1. For the multispectral
scanner z is simply a scaler z + At.

The geometric equations (discussed below) relating scanner line-
of-sight to orbit-inertial coordinates involve the basic measurement. .
{time of landmark sighting) by means of direction cosines of the scan
angle a. The linear scan angle~time relationship asgumed here is dﬁ1y=

‘one of a number of possible a(t) relationships which regult_ftqm_va?f_ N
ious mechanical scanner designs. The linear relationship is relevant =

to rotating mirror scanners as in the Nimbus and ITOS satellites, the
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ERTS scanning mirror, and rotating satellites such as ATS I, II,
Pioneer 10, and SMS. We write the linear (error-free) relationship as

a = alt) + dat. B (3-37)

where a(to) is the angular deviation of the scanner field of view from
null at scan initiation, & is the scan rate, and At is the landmark
detection time interval. The true value of a includes errors whose
sources are identified by examining the differential form of Equation
3-37. Thus ‘

Sa = 8o + (8&) (At) + (&) S(Aat). (3-~38)

Here-6ao represents an uncertainty in the scan field width, 6& repre-
sents a scan rate uncertainty, and §(At) a timing error. The latter
consists of two errors, namely

§(At) = St ~ 6t (3-39)

d (o]

where td is a time~of~detection error and Gto is a scan initialization
error. Scanner related sources for these errors are listed below in
Table 3-2. These were obtained in part from discussions with 0. Wein-
stein of GSFC and from Reference 18. The initial scan position bias
is due partly to the internal scanner mechanism and partly to the
alignment of the scanner with the spacecraft body axes. The scanner-
spacecraft body alignment error is treated separately as a small angle
rotation matrix in the discussion which follows. Angular alignment
errors are expected to be on the order of 100 p rad.

The consider biases are slowly changing errors of random ampli-
tude, for sxample, errors associated with changes in calibrated settings

- due to temperature fluctuations.

Since no time-of-detection algorithm has been designed and no
tests have been made, the random error associated with detection cannot
be closely estimated. However the searchlight experiment data
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o TABLE 3.2

Estimatable Bias Errors (10)

Initial Scan Position (Sa,) - 4 i rad

Scan Rate Bias (8a) o e 0.1

-gp

Consider Bias Errors (lo)

Initial Scan Position Due to
Thermal Changes and Wear (6a°)

< 4 p rad

Scan Rate Drift (sa) = .003
=6

-

Initiation Time Error (Sto) : - X0 $ of interval

White.Nqises {lg)

rad

|
-
=

Side-To-Side Secan Line Ji::er (GBQ)

Scan Line Synchronization (Sto) | xad

1
e
§ ~4

Time of Detection (St
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generally show the landmark confihed to a single or at most two picture
éléments{ Thus if the midpoint of the maximum Signal picture element
is used as a marker the uncertainty will be raughly a half picture
element. The discrimination aecuracy could be improved by using a
smaller sampllng interval for a period defined by the expectea landmark
sighting time interval.

3.3.4 Scanner-Inertial Coordinate Relationship . .

The nominal vector reiationship between landmark, spaeecrait and
scanner line of sight véctors in spacecraft body coordinates can be
written as

TBOTOIu = Ty lm R ' . - (3-40)
Here Tho and T are the rotation matrices defined above, and TBS is a
rotation describing the orientation of the scanner in spacecraft body .
coordinates. Previougly (Ref., 1) Tpg consisted of a single 90° rota-
tion corresponding to .an x axis boiesight aimed straight down along
the body z axis. In the interest of generality TBS 'is defined here to
be a three angle rotation matrzx. u is a landmark position unit vec-
tor in inertial coordinates and Lm is a unit vector aleng the scanner
line of sight towards the landmark. In the presence of errors the gen-
eral form of Equation 3-40 changes only by the matrix T{8y) which rep-
resents small angle errors in the scanner alignment with the spacecraft
bodg asxes. T(Sy) is introduced as a multiplier of TBS' The error form
of u is given by

1-z+41
= — (3-41)

e »
I

where r is the satellite position vector, 1 is the landmark positien
vector, and §1 is a landmark pesition error. The scalar d is just the
magnitude of the vector numerator. Figure 3-2 illustrates the land-
mark sighting geometry.
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Figure 3-2 Landmark Sighting Geometry
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Lettlng the seanner x axis polnt along the center of the scan
' allows the alignment matrix Tyg to be defined as

CB 0 SA . D
0 1 CA 1
sB 0 0 0

(3-42)

The indiVidﬁal*rﬁtetions'are defified as follows: 90° about body y axis;
through angle A about 2'; through angle B about Y'; finally through an-
gle C about X'. In the scanner cooxdinage eystem at any iﬁstant, the
scan directioh'ﬁ}li be defined by the nominal scan angle a. Thus the
nominal form of lm is just

cos (o +.§zJ'
ln = | sin (a + d2) ], | (3-43)
0

where z is the measured time of detection 2z = tg - to. Since the line
scan type of multispectral scanner which we are considering here regis-
ters six scan lines simultaneously,'it is possible to have a displace?
ment error in a landmark sighting when the landmark image falls between .'
two detectors. Considering this displacement to be thé angle &, and
adding the error sources in o (Equation 3~38), gives the actual 1m

value, namely

cos (o + Sa_ + saz + ad2) cos B

=

im =| sin (« + Sa_ + 842 + &62) cos B | - (3-44)

sin B
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The complete geom@t?ibréguaticp in the presence of errors in the mea-
surement is thus (combining Equations 3-40, 3-41, and 3-44)

/cos (o + 8o + dz + 4bz) cos B\

| sin (o + o + saz + adz) cos 8 |.

siﬁ BT'
(3-45)

3.355'§gglqation of the Sensitivity Partial ngiﬁatngs '

Equation 3-45 can be writtén.in.the same general form as Equation
3-15, namely

£(x) = T(x)1nla(x,2),B(x.2)] .

To obtain the sensitivity to the state we again solve

8f  OT(x) . * 3lm
— = —1m + T{X)—
ax  ax - x

for 9z/3x. The result is (here z is a scaler)

92 -1 af aT. 3 o
H=— = (T0,}) " | = - | —1Im + TQ, (3-46)
ax ax %

Rewriting with p-l multiplied out gives

1 _3f 3T~
g = Q_;l(-r‘]u-: - ('r“l—l_m + Ql)) . (3-47)
oax 23
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Recall that previously

—_— e —

3lm 3a  alm 28
Q, = .
30 9z 98 9z

‘In the present case this becomes [since B = B{z)]

-sin o ”
alm 3a .
Q= — —= cos a Ja, (3—-48)
da az
0

where partial derivatives are evaluated at noninal (error-free) condi-
tions. Taking the inverse gives

-1 '
Q," =7 (-sina cos a 0) . {3-49)
a .

It remains te calculate the other terms in Equation 3-47. Let the
state vector be defined as follows:

X = (8,0,0; ByeByiBys %Y, 28 R, ¥, 23 ﬁlx,ﬁly,ﬁlz,ﬁagda,dy,ﬁé) .

The angles 8, ¢, § are the altitude definition angles contained in the ' .
rotation Tao introduced in Equation 3-40. This matrix is defined in
Section 2.4. Bx, By, Bz are gyro bias drift rates also defined in Sec-
tion 2.4. The quantities 61 are landmark position biases corresponding
to an uncertainty in the geoid location of a known iandmark. For ex-
ample, if the landmark is a search light surveyed in by common survey
ZfeéhﬁiQues, the ﬁadﬁitude of this error is approximately 10 meters!l?
Siéﬁé vector elements X, y, 2 are just the satellite coordinates, 8y
is the scanner-hody alignment bias (may have three components), and

8a, 48 and 6a are as defined above.
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The first three state éelements enter Equation 3-46 only through
the first term in brackets. These we may write

of
= -1 -1 iy
Zo,000 =9 T v
o;t 7t 80 T u (3-50)
= : u . -
2 ax o1—-

1 -1

_ _ -1 _ -1 ; i
Now T = TBSTSV' thus T = TSY TBS' Since TBS is orthogonal

T;é = Tgs' and since T(8y) is infinitesimal Tbltﬁy) £ TT(Gy). Substi-

tuting Qzl (defined in Equation 3-49) andﬂ'l'_l yields

» P r Mgy, - ,
Hy 6,0 = E (=sin a cos @ 0)Tpg —— TyU o {3-51)
: ' ax

-—

where x here represents only elements €, ¢, ¢. T(dy) does not appear
because its nominal value is the identity matrix. Evaluating the par-
tial derivative gives (the nominal values of € and y are 0°)

-Co -89 0 0 0 0

aT T
—B_pn =l 0o o o), —-ny=[-c0 50 o],
96 3¢
s6 -C6 0 o o 1
0 0 0
3T,
. BO _ hy = {-se ce o .
By }
0 0 0
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Elements of the sensitivity vector H for the firstlthree state elements
are thus

0z
— = Eh .ls .
a6 . &

32
— = Jh K
e

0z

aw v (3-52)
wheré 3 = ;' 0. and K = Tou .

Elements of H for the second set of state vector elements also
involve only derivatives of £, thus

-1 7

ﬂﬁl = Q," Tpg - (3-53)

Tao Tor T E

Evaluating the derivatives of u gives

ux + d

-uxuz
au 1
ool 2 2
: =h =—3 “u u — {-u® + a° },
ate1) T x @t Xy FERE D
-u,u, -uzuy
aé y
B(Glz) z
(3=54) .

where u, = lx— x etc. according to Equation 3=-41l. Nominally §1 = 0.




Let I a Qzl Tgs TyoTor: then the H elements associated with 8L are

dz
——=1h,

i a(81.) x
az
—— L ]_11 -

* (81 )

( v Y

9z _
——— =1h . (3-55)
a(81,) z

The sensitivity to sateliite position is identical to the above
except for a change of sign, thus

9z
—_— --I— h .
ax lx
92
— = =T h ’
=2
3y Y
9z
: =-Ih . (3-56)
a(z) z
. Sensitivity to 6y involves the second term of Equation 3-47.
Thus
-1 IT(8Y) -
H, =-R, — 1lm .
8y 2 Sy
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If we write

1 0 0
T(Sy) = 0 1 §y
0 -8y 1
then
0 0
aT
= 0 0 = h
(87 8y
0 -1
and
H, = -0. h . Im (3-57
6y 2 Tey— * _

The remaining three state elements involve the last term of
Equation 3-47, and can be expressed as:

PO |
Hisa_,08,68) = %2 %1~
Recall that Q, is defined as alm/ag?, or in this case
3lm dSa 3alm 38 \
Q =----.—-—-—-—+_—— .
1 3a 3xT 98 9x'

One of these terms is therefore associated with each of 6a°, 88 and
Sa. Differentiating Equation 3-44 where o is taken to be the "true"
value, i.e. o = o + 6a, with da representing the error terms, gives

~-gin o
Ql{ﬁao) = cos a ._-1

0
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thus for this state element

-sin a
1 1
H6 = = - (~sin a cos a O cos a = ~ . {3—58)
— a . -
0 o o
0
For §8 we have
4
1
EGB = - g (-sin a2 cos a 0)] 0O =0 . {3-59)
1
Finally for ﬂa&
Z
= - =, (3=60)
—$a &

3.4 CONCLUSIONS

It is possible to derive general and realistic measurement equa-
tions for optical navigation sensors following a three-step procedure.
The steps are: '

(1) Determine the actual measured quantity in terms of the sen-
sor operation (e.g. pulse time, voltage levels, etc.), and
the types of noise associated with the measurement (e.q.
bias, white; etc.).

(2) Write the geometric state, measurement, and error relation-
ship in general form

glz) = £(x)

where z is the measurement vector and x is the state vectou.
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(3) Differentiate this relationship implicitly to obtain the
linearized measurement equation used in the linear estima-
~ tion of nonl;near systems.

These steps have been applied to star tracker and multispectral
scanner measurements. Specific models of these devices were considered,
and the resulting measurement equations are fairly comprehensive.




' SECTION 4

HORIZON UTILIZATION STUDY =~

4.1 INTRODUCTION

In this report some preliminary results are given fbfﬂﬁhéiﬂﬁﬁia@ﬁﬂ ;§”:,,v,
Utilization Study, which is an investigation into the use of infra~red
(IR) horizon measurements to estimate satellite éﬁtitﬂdééandigyxp*biacig

drift for a geosynchronous earth-observing satellite. 1It-is. agsumed’ :
that the satellite has three orthogonal body-mounted gyros allgned w1th v":v
it's prlnczpal body axes, and that the satellite maintains. a % al 0T
vertical attltude hlstory like that used in the Modlfled Landmark Utlli-;
zation Study of Section 2. - ' ’

The pr;mary objectives of this study are to review what ig pre-s
sently known about the Earth's horizon in the IR region, and determine
what might best be achieved in the estimation of satellite attitude andm;iié
gyro bias drift when using the most acecurate 1nstruments for hcrlzon
sensing. Unfortunately, there,has been some dlfflculty in: 1dent1fY1ng
those instruments which mlght he best for this applicatlon ‘since none-

of the known instruments have accurac1es which are comparable to the o
small angular uncertainty (approximately 0,004 degree) of ‘the IR horlzoni i
when observed at. geosynchrcnous altitudes._ The typlcal ‘agc rac'
devices used for IR horizon sen31ng is ahout 0. 1 degr ' _
,by various ccmpanzes, such as Barnes. Englneerlng‘

measurement accuracy (1nclud1ng horlzon uncer ai
better. : , RPN




In this report the performance results are given for one type of
hypothetical horizon sensor. This sensor is assumed to be a body-fixed
deviece which simultaneously senses the Earth's horizon at a number of
equally spaced points and provides an indication of local vertical. In
other words, it may be looked upon as a device which essentially
tracks the center of the Earth. The measurement equations for this
device are presented in Section 4.3.2. To simplify matters, it is
assumed in this first analysis that the Earth's horizon is circular. -
However, as indicated later in the comments on the performance results
(Section 4.4), the next step in this study would include consideration
of the actual nen-circular shape of the Earth's horizon, which would
provide some additional information on yaw attitude.

It should be noted that measurement eguations have alsoc been
developed for a second type of horizon sensor, but are no: presented
in this report since they have not yet been incorporated in the computer
simulation. This device consists of two small FOV sensors which spin
about body-fixed axes in such a manner that one conically sweeps across
the northern hemisphere while the other sweeps in a similar fashion
across the southern hemisphere.

4.2 INFRA-RED HORIZON UNCERTAINTY

Various studies(22'23) have shown that the 15u bands of CO, pro-
vide horizon markers that display the least sensitivity to variations
in atmospheric phenomena such as cloudiness and surface effects. Accord-
ingly, most of the theoretical and experimental programs aimed at IR -
horizon fluctuation assessment have been confined to this spectral
(24), and Thomas et al(zs) have
shown maximum altitude fluctuations of 3 to 4 kilometers for the one~
half maximum radiant intensity marker after corrections for latitude

region. Theoretical analyses by Wark

and season have been made. These fluctuations are primarily due to
short term temperature variations. Fluctuations of this magnitude have
(22), and Girard(zs). For a
satellite at 1000 km altitude, a 4 km displacement on the horizon sub-

been confirmed experimentally by Dodgen

tends an angle of about 0.06 degree. At geosynchreonous altitude the
angular subtense is 0.004 degree.
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4.3 STATE AND MEASUREMENT EQUATIONS

In this initial covariance analysis, frequent use is made of the
A analytical techniques and definitions previously described in Section 2
. for the Modified Landmark Utilization Study. Also included in this
study are most of the coordinate systems defined in Section 2.3,

® ' 4.3.1 State Equations

The stagg of the system x is defined as the following six dimen-
sional vector: ' ' :

i = (9,¢,UJ, BK'B 'BZ) (4-1)

g
where

8,0,¢ = Euler angles defining the body attitude with
respect to the orbital frame.

B,,B_,B, - Bias drift of roll (X), pitch (¥}, and yaw (%)
b4 gyros.

The state equation for this sysitem is the previously derived
Equation 2-21 of Section 2. Since this equation is non-linear, use
is made of the corresponding linearized expression of Eguation 2-28
where the adopted state parameters represent the perturbations of the
original parameters. The transition matrix for the linearized state
equation is that given in Equation 2-33.

4.3.2 Measurement Eguations

. As previously indicated in Section 4.1, the horizon sensor is
assumed to be a body-fixed device which simultanecusly senses the
Earth's horizon at a number of equally spaced points and provides an
indication of local vertical which is analytically represented as a
unit LOS vector to the center of the Earth.

¥For the purposes of this study, it is assumed that the satellite
position and velocity are known without any uncertainty.

4-3




The estimated direction of this unit LOS vector in body co-
ordinates is:

"

% 108 T

po Tor Unit (-r) | (4-2)
where r is the estimated satellite position vector in basic inertial

coordinates, and TOI and TB are the coordinate transformation matrices

0
defined in Section 2.3.

The unit vector defining the measured LOS to the center of the
Earth in body coordinates is:

N 1 0 0 cB 0 s8 0
B~ | 0 ca -sa 0 1 0 0 (4-3)
0 so co ~50 0 cB 1

where o« and B are Euler angle rotations about the roll (X) and pitch
(Y) axes of the spacecraft, respectively. These measured angles con-
sist of the true angles plus a measurement noise (v) which is assumed
to be white and gaussian. In equation form,

¢ = c’LT:I'.'I:le * Va
{4=-4)
g = BTrue * M
The linearized measurement eqguation for this case is:
62 = H 6éx + A dv (4-5)
where the matrix H is®
du
_ — LOS _ A -
H = 5% = o [TBO Top Unit 5)]
X=X =K,
= 2_ [Thn] T Unit (
= ai BO or nit ""_;)
X=X
R R
= |
- : = 4 =¥ : o ' 0 I ¢ ] (4-6)
[ 1 | 1

#See footnote on page 2-20.
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where x_ is the nominal state (i.e., ¢=¢=0) and

—o
- -ch -50 0 . - -
H, = . o o Top Unit (-r) (4-7)
0 0 0 .
H = Tny Unit (-r) (4-8)
— ~cf ~-s8 0 o1
g o= | O 0 1 T g Unit (-r) (4-9)
v -36 cf 0
- -l
The matrix A in Equation 4-5 is:
3 u
A = a—VLOS = 0 cBy (4-10)
- ~ca, cBo se cBo
a4 =0
—-n©
B =8,
which for the nominal case of a, = B, = 0 is:
A = o 1l (4-11)
-1 0

4.3.3 Filter and Smoother Equations

The computer program written for this study allows for the
selection of either a forward filter estimation scheme or a Fraser
Two-Filter Smcothertlo).
to begin at time ty = 0 and ends at time to with measurements occur-

In either case, the data interval is assumed

ring at equally spaced times tyr tyy t3 . . ., OF alternatively, at
equally spaced orbit angles ll,Az,A3, . . .,An. The time between
measurements is represented by Atk = At = constant. The time of

interest is assumed to be tj where t, < ty 2ty
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The forward filter is a standard Kalman filter using the
following eguationg to recursively update the covariance matrix of
the state estimation uncertainties from to to the time of interest,
t.

j
v T I ' _
B = ‘bk' k-1 Px-1 %, x-1 * G0C (4-12)
v N T |
Kk = By Hk [Rk + Hk Py Hk] (4-13)
P, = [I-K, H1P [I-K HI]T +KRH (4-14)
X k Hel Py x Hx " |

where P; is the covariance of the state estimation uncertainties just
before tei P is the covariance of the state estimation uncertainties
just after tk; Q is the covariance matrix of the gyro random drift
{Equation 2-18); and G is

1 {(4-15)

where Gl is given in Equation 2-27.

The Fraser Two~Filter Smoother makes use of two Kalman filters,
one to process the data forward from the beginning of the data inter-
val to a point of interest, and the other to process the data back-
wzrds from the end of the data interval to the same point of interest.
The resulting estimates of the two filters at the point of interest
are then combined in an optimal manner to obtain a smoothed estimate.
The forward filter is thé filter previously described. The backward
filter is also a Kalman filter; however, it must first be expressed
in information form since the value of P; at end of‘the data inter-
val is unknown. To do this an information matrix ﬂk is defined as
follows:

l_ I_l
u, = Py (4-16)
where the initial value of this matrix at the end of the data interval
is assumed to be:

]
Uy oy =0 =0 (4-17)
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where n corresponds to the time of the last measurement., Starting at
ty ='tn,the'infofmation matrix is updated as follows:

U = u. + BB RY & (4-18)
£ R T T | | | _

Afterwards, the matrix is propagated backwards as follows with updates
being made at each measurement time in accordance with Equation 4-18:

Upy = & 4 [X-3 6y (1-36)H"
+ oo NI e (4-19)
where
J = U 6 (et U, G+ o~ht {(4-20)

The final smoothed value Pj/n of the covariance matrix at the time of
. . .
interest (tj) is obtained from the two filter values P. and U, as

j 3
follows:
P., = (I-K,U)) P. (T -K,UDT + K. U, KT (4-21)
j/n i 73 3 I § i 373 o
where
' LI .
K, = P, [(I -P, U. 4-22
] ] I 3 ]) ] { )

)
and U; and Pj are given by Equations 4-19 and 4-12 respectively.
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4.4 PERFORMANCE RESULTS

4.4.1 Introduction: -

The results presented in this section represéht the performance
obtained with the Fraser Two-Filter Smoother for a satellite -in both a
geosynchronous and a sun synchronous orbit. The latter orbit was used
primarily to provide data for comparison with the results which ﬁeré-
obtained at géosynchronaus altitudes.

In all cases the satellite was assumed to be in a local vertical
attitude with rotation eoccurring only in pitch. The nominal values of
the error sources and parameters are as follows:

Initial State Uncertainties {lo)*

Attitude (Pitch, Roll, Yaw) - 60 arcsec (each)

Gyro Bias Drift - 0.03 deg/hr (each)

Horizon Sensing Errors (la)

Assumed to be a white noise. Values given with performance results.*¥

Gyro Error Sources (1l )

Random Drift - 0.0l deg/hr (white noise)

Quantization - 0.1 arcsec

4.4.2 Performance Results for Geosynchronous Satellite

In Table 4-1 the performance results are shown for a geosyn-
chronous satellite. Data is presented showing the effect of variation
in the total data processing interval (i.e., number of orbits), the

* To simplify matters in this preliminary study, the uncertainties
in satellite position and velocity are assumed to be zero.

** Tt should be noted that the horizon errors given with the perfor-
mance results are treated as equivalent argular errors in indi-
cating the direction of the center of the earth. The values
given represent the one sigma values about the pitch and roll axes.

REPRODUCIBILITY OF 1o+
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TABLE 4-1 |
FRASER SMOOTHER PERFORMANCE FOR GEOSYNCHRONOUS SATELLITE

A “State Dstimation “Uncertainies (10)
Data Update Horizon Estimation - Attitude = [Gyrc Bias Drift
Case Interval Interval Error Point _larcsec) . £-1'0r3 _deg/hr)
{orbits) (degrees) | {arcsecs) {(orhits) Pitch] Roll | Yaw | X Y 2B
1 2 20 36 0.25 9.9 10.5 60.6 (| 4.4 0.12 0.44
-9
5 2 2 2 36 0.25 3.3 3.7 59.6 | 4.3 0.05 0.14
3 2 0.5 36 0.25 1.9 2.3 59.5| 4.3 0.04 0:08
4 4 20 36 2 1 4.8 7.5 59.5 | 4.4 0.05 0.31
5 4 20 ' 2 2 0.8 1.0 59.4 | 4.3 0.02 0.03
6 8 20 36 | 0.25 6.3 6.6 60 | 4.3 0.02 0.22
7 8 89 36 - 0.25 0 11.9  11.4 61 | 4.4 0.03 0.45




herizon sensing error, the interval between updates with horizon meas-
urements (in degrees of orbit), and the point at which the smoothed
estimate was made (i.e., number of orbits since the start of the total
data procegsing interval).

The first three rows of Table 4-1 show the effect of variation
in update interval. Here it is seen that a decrease in the update
interval (or an increase in the frequency and number of updates)
improves the performance in estimating pitch, roll, pitch (Y) gyro
bias drift, and yaw (2) gyro bias drift. Howéver, it is noted that
almost no change occurs in the performance for yaw attitude and rell
{X) gyro bias drift.

Cases 4 and 5 of Table 4-1 show the perrormance for four orbits
of data processing and two different values of horizon sensing error.
It is seen that reducing the horizon sensing error from 36 to 2 arcsecs
results in a significant improvement in all of the state parameters
except for yaw attitude and roll gyro bias drift which remain essent-
ially at the same values as in all other cases of Table 4-1.

Cases 6 and 7 of Table 4-1 show the performance for eight orbits
of data processing and two different update intervals. 1In comparing
Case 6 with Case 1, which are similar except for the size of the data
processing interval, it is seen that an increase in the data process-
ing interval results in a definite improvement in performance except
for the same two state parameters mentioned previously.

The fact that no significant difference occurs in the performance
for yaw attitude and roll gyro bias drift for all cases in Table 4-1
does raise some guestion as to why this is se. At first glance, it
would seem logical that no improvement would occur in yaw since the
horizon measurements in the present situation provide information only
in pitch and rell. However, it should be noted that the spacecraft is
assumed to have a nominal local vertical attitude at all times, and
that information on roll attitude at one point in orbit becomes infor-
mation on yaw attitude at a point 90 degrees ahead or behind in the




erbit. This fact is clearly illustrated by the following two equations
showing the relationships between the errors in roll (¢), yaw (¢}, roll
gyro bias drift (B,) and yaw gyro bias drift (B,):*

] (1-C)

66, = C 86¢4-8 8y; + G 6B, + —==— §B, (4-23)
5¢2 = 8 6¢1+c Sy + Ll—ag-’-ﬁsx- % :SBZ (4-24)

where the subscripts 1 and 2 dencte two points in orbit separated by
the orbit angle A; 5 =~ Sin (A); C - Cos (A): and w is the orbital rate.
If A

990 degrees, Eguation 4-~24 becomes:

80, + = 6B, - = 6B, (4-25)

I

Gwz

which shows that a roll error (6¢1) at one point in orbit becomes a
yaw error (Gwz) at a point 90 degrees ahead. It is also interesting
to note that Equation 4-25 can be used to indicate the relationship
between the uncertainties in yaw attitude and roll gyro bias drift of
Table 4-1 by neglecting the small values of 8¢, and §B,, so that:

= 1 -
6%y = 3 GBx (4-26)

Substituting 4.3'&10-3 deg/hr (or 4.3x10'3 arcsec/sec) for GBx {from
Table 4-1) and @ = ?.27x10-5 radians/sec, gives 59.1 arcsecs for dwz
which is close to the values given in Table 4-1. This close relation-
ship between the performance in estimating yaw attitude and roll gyro
bias drift has been found to be the case in most of the EOS studies
conducted at CSDL.

The fact that there is no change in the roll gyro bias drift per-
formance for the various cases of Table 4-1 may also seem strange since

~ one would normally expect the present type of loeal vertical measure-

ments to provide more information on roll gyro bias drift than yaw
gyro bias drift. Actually, the performance in estimating roll gyro
bias drift is better at the beginning of data processing. This is
clearly seen in Figure 4-1 which shows the performance of the forward

*These equations can be obtained from the transition martix in Equation
2-33. It should be noted in Equation 4~23 and 4-24 that the errors in
gyro bias drift are assumed to be fixed between points 1 and 2.
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filter for the first 90 degrees of orbit. The results in Figure 4-1
are for Case 2 of Table 4-1 where an update was made after each 2
degrees of orbital motion. WNote in Pigure 4-1 that the performance
for yaw (2) gyro bias drift eventually becomes better than that for
roll (X) gyro bias drift. Also note that the rate of imprcvement in
filter performance for yaw gyro bias drift is greater than that for
roll gyro bias drift at the end of the data interval in Figqure 4-1.
Shown also are the smoothed estimates at 90 degrees which are the
same values given in Table 4-1 for Case 2.

4.4.3 Performance Results for Sun Synchronous Satellite

For purposes of comparison with the previous results given for a
geosynchronous satellite, some performance results are shown in Table
4-2 for a satellite in a sun synchronous orbit like that used in the
study of Section 2. In contrast to the previous orbit which had an
altitude of 35,860 km and an orbital rate of 7.27x10-5 radians per
second, the sun synchronous orbit has an aititude of 1,000 km and an
orbital rate of 10”3 radians per second. In Table 4-2 it is seen that
all of the results were generated for a data processing interval of
four orbits. Except for the difference in orbital period {(and rate},
the conditions used to generate the results for Case 1 of Table 4-2
are the same as those for Case 4 of Table 4-1. Note that the per-
formance in estimating pitch and roll is essentially the same for these
two cases, while the performance in estimating yaw is much better for
the case in Table 4-2. Alsoc note in Table 4-2 that the general per-
formance in estimating gyro bias drift is significantly worse than
that of Table 4-1. This result is primarily due to the fact that
thereis much less time between successive attitude updates for the
cases in Table 4-2 because of the highér orbital rate.

In Table 4-2 it is seen that the performance in estimating yaw
attitude and roll (X) gyro bias drift is essentially the same for all

of the cases analyzed. This was also found to be true for all of the

cases of Table 4-1. Also note that the relationship between the
uncertainties in yaw attitude and roll gyro bias drift of Table 4-2
agrees with the relationship in Equation 4~26 when the appropriate

orbital rate w = 10-3 radians/sec is used.
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_ _ TABLE 4-2
' FRASER ‘SMOOTHER PERFORMANCE FOR SUN SYNCHRONOUS SATELLITE

' o 5?5_9::-'@ Estimation Uncertainties (10)
| ~Data | Update Horizon Estimation | =~ Attitude - 1'Gyro_Bias Drift:-
Case Interval ] Interval Erxor Point L {arcsec) {10~ deg/hr)

o

_ 1 lorbits) | (degrees) (arcsecs). (orbits) %Pitch. Roll| Yaw | X Y I Z -
-ﬁlﬁ 3 1 20 36 : 1 a3 : ' '

Pi=%

7.3 .27.2,,vzs.9'vb;s 4.2
20 0.5 0.6 26.8} 26.8 0.1 0.3
10 0.4f' 0.5 26.8| 26.8 0.1 0.2
0.4 0.4 26.8| 26.8 0.1 0.2

0.3 0.4 26.8| 26.8 0.1 0.2
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