This report describes a computer program for solution of the boundary layer equations. The program is an outgrowth of the original procedure developed by Patankar and Spalding at Imperial College, London. Included in the report is a listing of the program and sample data sets. A large variety of two-dimensional flows can be accommodated by the program, including boundary layers on a flat plate, flow inside nozzles and diffusers (for a prescribed potential flow distribution), flow over axisymmetric bodies, and developing and fully developed flow inside circular pipes and flat ducts. The flows may be laminar or turbulent, and provision is made to handle transition. Turbulence modeling includes (1) Prandtl mixing-length scheme throughout the flow; (2) a turbulent kinetic energy (TKE) scheme; or (3) an eddy diffusivity function. For the latter two models, the mixing-length scheme is used in the sublayer region. The program solves the momentum equation, as a minimum, plus any number of diffusion equations. The stagnation enthalpy equation and TKE equation are solved by using the concept of a turbulent Prandtl/Schmidt number. Fluid properties may be treated as constant or variable. Initial boundary layer profiles are user-supplied.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter 1.</th>
<th>INTRODUCTION</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 2.</td>
<td>DIFFERENTIAL EQUATIONS AND TURBULENCE MODELS</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>Convective Transport Equations</td>
<td>6</td>
</tr>
<tr>
<td>2.1.1</td>
<td>The Continuity Equation</td>
<td>6</td>
</tr>
<tr>
<td>2.1.2</td>
<td>The Momentum Equation</td>
<td>6</td>
</tr>
<tr>
<td>2.1.3</td>
<td>The Stagnation Enthalpy Equation</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Boundary Conditions</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Turbulent Shear Stress</td>
<td>12</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Prandtl Mixing-Length Model for ε_M</td>
<td>12</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Turbulent Kinetic Energy Model for ε_M</td>
<td>16</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Constant Eddy Diffusivity Model</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>Turbulent Heat Flux</td>
<td>18</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Constant Turbulent Prandtl Number</td>
<td>18</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Variable Turbulent Prandtl Number</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Laminar-Turbulent Transition</td>
<td>21</td>
</tr>
<tr>
<td>Chapter 3.</td>
<td>FLOW NEAR A WALL</td>
<td>22</td>
</tr>
<tr>
<td>3.1</td>
<td>Computation in the Near-Wall Region</td>
<td>22</td>
</tr>
<tr>
<td>3.2</td>
<td>The Couette Flow Equations</td>
<td>22</td>
</tr>
<tr>
<td>3.3</td>
<td>Using the Wall Function</td>
<td>25</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Momentum Equation</td>
<td>26</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Stagnation Enthalpy Equation</td>
<td>27</td>
</tr>
<tr>
<td>3.4</td>
<td>Bypassing the Wall Function</td>
<td>28</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Momentum Equation</td>
<td>29</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Stagnation Enthalpy Equation</td>
<td>30</td>
</tr>
<tr>
<td>3.5</td>
<td>Routine LAMSUB</td>
<td>30</td>
</tr>
<tr>
<td>3.6</td>
<td>Integral Parameters</td>
<td>31</td>
</tr>
<tr>
<td>3.7</td>
<td>Pipe and Channel Flows</td>
<td>32</td>
</tr>
<tr>
<td>Chapter 4.</td>
<td>METHOD OF SOLUTION</td>
<td>34</td>
</tr>
<tr>
<td>4.1</td>
<td>Transformation of the Equations</td>
<td>34</td>
</tr>
<tr>
<td>4.2</td>
<td>Finite-Difference Equations</td>
<td>36</td>
</tr>
<tr>
<td>4.3</td>
<td>Grid and Slip Scheme</td>
<td>38</td>
</tr>
<tr>
<td>4.4</td>
<td>Entrainment and Grid Control</td>
<td>40</td>
</tr>
<tr>
<td>4.5</td>
<td>The Calculating Procedure</td>
<td>42</td>
</tr>
</tbody>
</table>

 iii Preceding page blank
Chapter 5.
5.1 Introduction 43
5.2 Flow Descriptors and Controls 43
5.3 Body Forces and Sources 48
5.4 Fluid Properties 50
5.5 Boundary Conditions 51
5.6 Initial Profiles 53
5.7 Turbulence Constants 56
5.8 Other Constants and Output 59

Chapter 6.
6.1 Structure of the Program 61
6.2 MAIN .. 62
6.3 STEP ... 62
6.4 WALL .. 64
6.5 AUX .. 65

References ... 67

Appendices
I PROGRAM NOMENCLATURE 68
II OUTPUT NOMENCLATURE 75
III STAN5 PROGRAM 77
IV SAMPLE DATA SETS 121
NOMENCLATURE

\(a \) constant in program correlation for \(A^+ \) or \(B^+ \), or constant in constant eddy diffusivity model, or coefficient in transformed equation (4.7).

\(A_q \) production constant, turbulent kinetic energy equation.

\(A^+ \) damping constant, van Driest damping function (see equation 2.24 for correlation).

\(b \) constant in program correlation for \(A^+ \) or \(B^+ \), or constant in constant eddy diffusivity model, or coefficient in transformed equation (4.7).

\(b_f \) generalized \(x \)-direction body force, momentum equation.

\(B_q \) dissipation constant, turbulent kinetic energy equation.

\(B^+ \) damping constant, Evans damping function (see equation 2.24 for program correlation).

\(c \) constant in program correlation for \(A^+ \) or \(B^+ \), or constant in variable turbulent Prandtl number model, or specific heat of fluid, or coefficient in transformed equation (4.7).

\(C \) constant in differential lag equation to compute effective \(P^+ \) or \(V_o^+ \).

\(C_f/2 \) friction coefficient, \(g_c \tau_o/(\rho U_o^2) \), or \(g_c \tau_o/(\rho_\infty U_\infty^2) \) for pipe and channel flows.

\(d \) coefficient in transformed equation (4.7).

\(D \) damping function to suppress mixing length in the region immediately adjacent to a wall, equation (2.22) and (2.23).

\(\dot{\rho} \) dissipation term, turbulent kinetic energy equation.

\(E \)-surface see Figure 4.1.

\(E_{total} \) total energy flux boundary condition at a wall, \(\dot{M}_o^i \dot{I}_o^i + \dot{q}_o^i \) (see Figure 2.2).

\(g \) local gravitational constant to determine free-convection body force.

\(g_c \) proportionality constant, Newton's Second Law.

\(i' \) fluctuation in static enthalpy.
fluctuation in stagnation enthalpy.
static enthalpy of fluid.
see Figure 4.1.
stagnation enthalpy of fluid, $I_o = U^2/(2g)$.
non-dimensional stagnation enthalpy, $(I_o - I^*)\ U_t/(\dot{q}_o/\rho_o)$.
conversion constant, mechanical to thermal energy.
diffusion term, turbulent kinetic energy equation.
thermal conductivity of fluid.
mixing-length (see section 2.3.1)
mass flux at I or E surface (see Figures 2.2 and 4.1).
Nusselt number, pipe and channel flow, $St \cdot Pr \cdot Re.$
thermodynamic pressure.
non-dimensional pressure, $g_c \nu_0 (dP/dx)/(\rho U_0^3)$.
turbulent Peclet number, program correlation for Pr_t.
Prandtl number, $\mu c/k$.
combined laminar and turbulent Prandtl number, equation (2.14).
turbulent Prandtl number, ϵ_M/ϵ_H (see equation 2.37 for program correlation).
combined laminar and turbulent heat flux, Figure 2.2 and equation (3.2).
non-dimensional heat flux, \dot{q}'/\dot{q}_o.
turbulent kinetic energy
radius
pipe or channel flow Reynolds number, equation (3.29).
enthalpy thickness Reynolds number, $\Delta_z \ U_o/\nu_o$
momentum thickness Reynolds number, $\Delta_z \ U_o/\nu_o$
Re$_{tran}$ Reynolds number (Re or Re$_H$) for transition from laminar to turbulent flow.
generalized energy source, stagnation enthalpy equation.
\[S^+ \] non-dimensional generalized energy source, \(\nu_o s/(\varphi_o U_T) \).

\[S \] energy source term, stagnation enthalpy equation, \(UX/J + s \).

\[Sc_q \] turbulent Schmidt number, \(\varepsilon_M/\varepsilon_q \).

\[St \] Stanton number, \(\varphi_o/\varphi_o (I_o^*-I_o^+) \), or \(\varphi_o/\overline{\varphi_o (I_o^*-I_o^+)} \).

\[T_u \] longitudinal free-stream turbulence intensity, \(\sqrt{u'^2/U_\infty} \).

\[u' \] fluctuation in \(U \) component of velocity.

\[U \] velocity component in \(x \)-direction.

\[U_T \] shear velocity, \(\sqrt{g_c \varphi_o / \varphi_o} \).

\[U^+ \] non-dimensional \(U \) velocity component \(U/U_T \).

\[v' \] fluctuation in \(V \) component of velocity.

\[V \] velocity component in \(y \)-direction.

\[V_o^+ \] non-dimensional \(V \) velocity component at wall, \(V_o/U_T \) or \(\varphi_o/\varphi_o U_T \).

\[w \] \(\varphi_o U_T^3/(g_c q_o) \).

\[x \] distance along surface (see Figures 2.1 and 4.1).

\[x^+ \] non-dimensional \(x \) distance, \(xU_T/\varphi_o \).

\[X \] body force term, momentum equation, \(\frac{\delta k}{g_c} + b \).

\[X^+ \] non-dimensional body force term, \(g_c V_x(I_o^* U_T^3) \).

\[y \] distance normal to surface (see Figures 2.1a and 4.1).

\[y^+ \] non-dimensional \(y \) distance, \(yU_T/\varphi_o \).

\[\alpha \] angle between surface tangent and axis-of-symmetry line (see Figures 2.1a and 4.1), or constant in internal correlation for \(Pr_T \).

\[\beta \] power-law coefficient velocity equation slip scheme.

\[\gamma \] power-law coefficient, diffusion equation slip scheme.

\[\delta_1 \] displacement thickness, equation (3.22a).

\[\delta_2 \] momentum thickness, equation (3.22b).

\[\delta_{.99} \] boundary layer thickness where \(U/U_\infty = 0.99 \).
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta_2)</td>
<td>enthalpy thickness, equation (3.22c).</td>
</tr>
<tr>
<td>(\varepsilon_H)</td>
<td>eddy diffusivity for heat.</td>
</tr>
<tr>
<td>(\varepsilon_M)</td>
<td>eddy diffusivity for momentum.</td>
</tr>
<tr>
<td>(\varepsilon_q)</td>
<td>eddy diffusivity for turbulent kinetic energy.</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>Karman constant, mixing-length model.</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>outer length scale constant mixing-length model.</td>
</tr>
<tr>
<td>(\lambda_0)</td>
<td>program input value of (\lambda).</td>
</tr>
<tr>
<td>(\mu)</td>
<td>dynamic viscosity of fluid.</td>
</tr>
<tr>
<td>(\mu_{\text{eff}})</td>
<td>combined laminar and turbulent viscosity, equation (2.6).</td>
</tr>
<tr>
<td>(\mu^+)</td>
<td>non-dimensional viscosity, (\mu_{\text{eff}}/\mu_0).</td>
</tr>
<tr>
<td>(\nu)</td>
<td>kinematic viscosity of fluid.</td>
</tr>
<tr>
<td>(\rho)</td>
<td>density of fluid.</td>
</tr>
<tr>
<td>(\tau)</td>
<td>combined laminar and turbulent shear stress, equation (3.1).</td>
</tr>
<tr>
<td>(\tau^+)</td>
<td>non-dimensional shear stress, (\tau/\tau_0).</td>
</tr>
<tr>
<td>(\phi)</td>
<td>generalized dependent variable in transformed equation (4.7).</td>
</tr>
<tr>
<td>(\psi)</td>
<td>stream function coordinate.</td>
</tr>
<tr>
<td>(\omega)</td>
<td>non-dimensional stream function coordinate.</td>
</tr>
</tbody>
</table>

Subscripts

<table>
<thead>
<tr>
<th>Subscript</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>axi</td>
<td>axisymmetric (see section 3.6).</td>
</tr>
<tr>
<td>d</td>
<td>downstream edge of finite-difference control volume.</td>
</tr>
<tr>
<td>e</td>
<td>edge of shear layer, equation (2.18).</td>
</tr>
<tr>
<td>eff</td>
<td>effective value.</td>
</tr>
<tr>
<td>fp</td>
<td>"flat plate" value, without transpiration or pressure gradient.</td>
</tr>
<tr>
<td>eq</td>
<td>equilibrium value, equation (2.25).</td>
</tr>
<tr>
<td>N</td>
<td>number of stream tubes.</td>
</tr>
<tr>
<td>w</td>
<td>wall value.</td>
</tr>
<tr>
<td>t</td>
<td>turbulent value.</td>
</tr>
</tbody>
</table>
u upstream edge of finite-difference control volume.

∞ free-stream value.

2.5 join-point value.

Superscript

overbar time averaged quantity, or bulk mean value (Section 3.7).
Chapter 1
INTRODUCTION

In recent years it has become practicable and popular to compute turbulent boundary layers using finite-difference techniques and the digital computer. These techniques have now been developed to the point where one can readily develop one's own program for particular applications, and numerous workers have described their programs in the literature and have made listings or card decks available to others. There is no question that the development of one's own program is a tedious process and the programs become sufficiently complex that a great deal of development effort is usually required. For the user who doesn't expect to devote a great amount of time (and money) on a program it is often more practicable to make use of someone else's program, provided that the program is sufficiently well documented that it can be used intelligently.

It is the objective of this report to describe one such program which has gone through a considerable period of development, and which has been found useful in connection with an experimental turbulent boundary layer research program at Stanford University. Enough people have asked for copies of this program that it seems worthwhile to provide in a more formal way the documentation that is really necessary if the program is to be used properly.

No claim of superiority is made; in fact, there is no question that there are other programs developed for particular applications that are faster and are in some cases even more precise. However, this program is believed to be unique in its degree of generality, in the large variety of different kinds of problems that can be handled, and, in particular, in an input-output scheme that makes it possible to handle a great variety of problems without touching the deck. Very minor modifications in the deck open up a whole realm of additional possibilities.

The original basic program from which this one was developed was the Patankar/Spalding program described in their 1967 book [1]. Much of that program will be recognized in this present version, and a complete understanding of all the details of the present program may require reference to that publication. However, it is hoped that this description will be sufficiently complete to make further study unnecessary in most cases. A later revision of
the Spalding program was published in 1970 [2] in which a number of important improvements were made. Some of these improvements have been incorporated in the present version, and it is our belief that the present version suffers in comparison only with respect to size and speed, and perhaps in accuracy for some unusual types of problems. The largest source of inaccuracy and uncertainty in turbulent boundary layer finite-difference procedures lies in the methods used to model the turbulence, and this has nothing to do with the computational procedure.

The basic features of the program will now be described, and then elaborated upon in the chapters that follow.

The program is designed to solve two-dimensional parabolic differential equations only, i.e., the boundary layer equations incorporating the usual boundary layer approximations. The eddy diffusivity concept must be used in modeling the turbulent stresses, although beyond that point there is great flexibility. The program does not handle re-circulating flows.

The program solves the momentum equation of the boundary layer, as a minimum, plus any number of diffusion equations, all simultaneously. The listing presented in the Appendix is dimensioned to a maximum of five diffusion equations, and the output routine handles only five, but it is a simple matter to increase this number if desired.

A coordinate system for axi-symmetric flows is used so that a large variety of flow types can be accommodated by simple manipulation of variables in the input routine. These include the boundary layer on a flat plate, flow inside nozzles and diffusers (for a prescribed potential flow distribution), flow over axi-symmetric bodies, both developing and fully developed flow inside circular pipes and flat ducts, circular and flat jets and free-shear flows. As presently set up, the program provides for one wall surface, and thus the duct-flow problems are limited to simple pipes and flat ducts with symmetrical boundary conditions. In principle there is no reason why two walls, such as are encountered in circular tube annuli, cannot be handled, but this does require some additional program modification.

The program solves laminar boundary layers as well as turbulent boundary layers, and provision is made for a transition from a laminar to a turbulent boundary layer based on a momentum thickness Reynolds number criterion. Solution of laminar boundary layers is of necessity slower than is possible with
programs developed for laminar boundary layers alone, because the program was
developed for the more complex turbulent problems.

Fluid properties are treated as variable with the properties of any
particular fluid supplied through a separate subroutine. In the present pro-
gram listing the only fluid properties provided are those of air (essentially
the Keenan and Kaye Gas Tables). Properties of other fluids may be intro-
duced by attaching additional property subroutines. Fluid properties may also
be treated as constant, in which case the properties are introduced directly
into the input routine. The types of problems that can be handled with the
present listing are obviously limited by inclusion of only the properties of
air. For example, the program could readily solve a binary diffusion problem,
together with heat transfer, but it would be necessary to append an additional
properties subroutine unless the constant properties mode is deemed adequate.

Viscous dissipation in the energy equation is included as an option con-
trollable through the input routine, so high velocity flows can be readily
sold. Provision is also made for introducing axial body forces and internal
heat generation. A particular provision is made to introduce an axial gravity
force, and this together with the variable property option allows solution of
both laminar and turbulent free-convection problems.

In principle the chemically reacting boundary layer may be solved to
various degrees of approximation, but this does require the addition of source
terms which are not included in the present listing.

Any kind of initial conditions can be accommodated, and the boundary con-
dition possibilities using the input routine, while not infinite, are nevertheless large. Free-stream velocity, rather than pressure, is treated as a
variable boundary condition, and heat and mass flux along a wall may assume
any values. Alternatively, wall enthalpy (or concentration in the case of mass
diffusion) and mass flux may be treated as independent. In the case of duct
flows there is no free-stream and pressure is computed as a dependent variable.

Several possibilities for turbulence modeling are included and can be
activated in a simple manner in the input routine. The Prandtl mixing-length
scheme may be used throughout, or, alternatively, a one-differential-equation
turbulent kinetic energy scheme may be used for the flow outside the sublayer
region. This alternative involves solution of the turbulent kinetic energy
differential equation of the boundary layer, which is simply another diffusion
equation. As another possibility, eddy diffusivity in the outer part of the boundary layer may be evaluated as an empirical function of Reynolds number. In all cases a mixing-length scheme is used to calculate the sublayer near the wall, and two possibilities are programmed. In one the Van Driest exponential damping function is used, while in the other the Evans linear damping function is used. Internal empirical correlations for the damping constants to account for effects of pressure gradient and transpiration are contained in the program, or, alternatively, the user can supply his own constants. Other variations in the turbulence physics can be quite easily made, but this does require some re-programming.

The energy equation, and any other type of diffusion equations, is solved through the concept of turbulent Prandtl number (or turbulent Schmidt number). The program contains an internal calculation for turbulent Prandtl number as a function of turbulent Peclet number, which gives reasonably good results over the entire spectrum of Prandtl number, including the liquid metal region. Alternatively, the user may specify his own turbulent Prandtl number.

The concepts of "slip" values at the wall and a "Wall Function" are employed, allowing the use of a relatively coarse grid in the direction normal to a wall surface. The region adjacent to the wall is computed by numerically integrating the Couette flow forms of the boundary layer equations, but with physics input identical to that used outside the wall region. This option can, however, be bypassed, but at the cost of a greatly increased number of grid points near the wall. The Wall Function is especially useful in high Reynolds number applications where the number of cross-stream grid points can otherwise become excessive.

The program is "almost" independent of any particular dimensioning system. It would be completely independent were it not for the fact that the property subroutine for air which is packaged with the program is based on Btu, ft, lbm units. The dimensioning system to be used is designated in the input routine by two constants.

Finally, a word about the differencing scheme employed is in order, because in this respect it differs from many other programs. A fully implicit scheme is employed for the main dependent variables (velocity, enthalpy, mass concentration, etc.), and this, together with the fact that the conservation equations are always satisfied, in principle allows large forward steps to be
taken without stability problems. However, fluid properties and turbulence properties are handled explicitly, and if these are changing markedly in the flow direction it is not possible to take large forward steps without stability and accuracy problems. The advantage is that nowhere is iteration required. This restriction to relatively small forward steps (typically about one or two boundary layer thicknesses) is not necessarily disadvantageous, because one of the reasons for making finite-difference calculations is that variable boundary conditions can be easily handled, and there is often a need for output data, such as heat flux, at frequent intervals along a surface. Both of these requirements dictate a small forward step size anyway.

The remaining chapters of this report will now expand upon this brief description, culminating in detailed instructions about how to set up a problem and use the input routine. It might well be noted here, however, that the input subroutine (which is actually packaged at the end of the program) contains very extensive descriptive comments, suggestions, and instructions, and is thus a convenient summary of much of this report.
Chapter 2
DIFFERENTIAL EQUATIONS AND TURBULENCE MODELS

2.1 Convective Transport Equations

The types of flows modeled by STAN5 are those described by the parabolic boundary layer equations, which include the continuity, momentum, and stagnation enthalpy equations. They are written to describe flow of a turbulent, compressible fluid over an axi-symmetric body. All equations have been time-averaged, and in the equations all dependent variables and properties are either mean quantities or fluctuating quantities (as denoted by primes). They are also applicable to laminar flows, in which case the turbulent stress and heat flux are ignored. Figure 2.1 describes the coordinate system and typical velocity and stagnation enthalpy profiles. Note the coordinate system is written in terms of the independent variables, \(x \) and \(y \). The radius, \(r \), is a transverse radius of curvature and is related to \(y \) as shown in Figure 2.1(a), and the longitudinal radius of curvature is neglected (i.e., \(\alpha(x) \) in Figure 2.1(a) varies slowly with \(x \)).

2.1.1 The Continuity Equation

The time-averaged continuity equation for this coordinate system is given by

\[
\frac{\partial}{\partial x} (\rho \nu) + \frac{\partial}{\partial y} (\rho \nu y) = 0 \quad .
\] (2.1)

In the above equation and the momentum and energy equations which follow, thermodynamic quantity-velocity fluctuation correlation are neglected.

2.1.2 The Momentum Equation

The time-averaged momentum equation in the \(x \)-direction is given by

\[
\rho \frac{\partial U}{\partial x} + \rho V \frac{\partial U}{\partial y} = -g_c \frac{dP}{dx} + \frac{1}{r} \frac{\partial}{\partial y} \left[r \left(\mu \frac{\partial U}{\partial y} - \rho \frac{U}{V} \frac{\partial V}{\partial y} \right) \right] + g_c X \quad .
\] (2.2)

In the program, the body-force term in equation (2.2) is decomposed into

\[
X = \frac{\partial x}{g_c} + bf \quad ,
\] (2.3)
Figure 2.1. Notation for the differential equations and profiles.
where the first term is a free convection body force in the positive x direction and bf is a generalized, x-direction body force with units of (force/unit volume). The bf term might be used to model magnetohydrodynamic body forces.

Pressure gradient is computed for pipe/channel flows as described in [1,2]. For flows over a surface dP/dx is computed in terms of the free-stream velocity and body force,

$$-rac{dP}{dx} = \rho \frac{dU}{dx} - g_c X.$$ \hspace{1cm} (2.4)

In the momentum equation, the turbulent shear stress, $-u^*v^*$, is modeled using the eddy diffusivity for momentum, ε_M, as defined by

$$-u^*v^* = \varepsilon_M \frac{\partial U}{\partial y} = \frac{\mu_t}{\rho} \frac{\partial U}{\partial y},$$ \hspace{1cm} (2.5)

where μ_t is the turbulent viscosity. The laminar viscosity combines with the turbulent viscosity to obtain an effective viscosity

$$\mu_{eff} = (\mu + \mu_t) = \rho (\nu + \varepsilon_M).$$ \hspace{1cm} (2.6)

Combining equations (2.2), (2.5), and (2.6) yields the final form for the momentum equation that is programmed.

$$\rho U \frac{\partial U}{\partial x} + \rho V \frac{\partial U}{\partial y} = -g_c \frac{dP}{dx} + \frac{1}{r} \frac{\partial}{\partial y} \left[\rho V \frac{\partial U}{\partial y} \right] + g_c X.$$ \hspace{1cm} (2.7)

2.1.3. **The Stagnation Enthalpy Equation**

The time-averaged stagnation enthalpy equation is given by

$$\rho U \frac{\partial I^*}{\partial x} + \rho V \frac{\partial I^*}{\partial y} = \frac{1}{r} \frac{\partial}{\partial y} \left[\left(\frac{k}{c} \frac{\partial I^*}{\partial y} - \rho v^* u^* - \frac{\mu_t}{g_c} \frac{\partial^2 (U^2)}{\partial y^2} \right) \right] + S,$$ \hspace{1cm} (2.8)

where I^* is the stagnation enthalpy of the fluid, defined as $I^* = I + U^2/2g_c J$, and I is the static enthalpy.

In the program, the energy source term in equation (2.8) is decomposed into

$$S = \frac{UX}{J} + s,$$ \hspace{1cm} (2.9)
where the first term is work done against x-direction body forces and \(s \) is a generalized source (energy rate/unit volume). The \(s \) term might be used to model Joulean heating for an electrically conducting fluid or nuclear heating.

In equation (2.8), a model for \(-i'v'\) is required. The term is a correlation involving fluctuations in stagnation enthalpy and cross-stream velocity, and is approximated as

\[
-i'v' = -i'v' + U(-u'v'), \tag{2.10}
\]

where \(i' \) is fluctuation in static enthalpy. The turbulent heat flux, \(-i'v'\), is modeled using the concept of eddy diffusivity for heat, \(\varepsilon_H \), as defined by

\[
-i'v' = \varepsilon_H \frac{\partial i}{\partial y} = \left(\frac{k_t}{c} \right) \frac{\partial i}{\partial y}, \tag{2.11}
\]

where \(k_t \) is the turbulent conductivity. The eddy diffusivities for heat and momentum are related through the turbulent Prandtl number,

\[
Pr_t = \frac{\varepsilon_M}{\varepsilon_H}. \tag{2.12}
\]

The laminar conductivity combines with the turbulent conductivity to form an effective conductivity (divided by specific heat, \(c \)),

\[
\left(\frac{k}{c} \right)_{\text{eff}} = \frac{k}{c} + \left(\frac{k}{c} \right)_t. \tag{2.13}
\]

Equations (2.6), (2.12), and (2.13) are combined to form an effective Prandtl number,

\[
Pr_{\text{eff}} = \frac{\varepsilon_{\text{M}}}{(k/c)_{\text{eff}}} = \frac{1 + \frac{\varepsilon_M}{\nu}}{1 + \frac{\varepsilon_M}{\nu} Pr_t}. \tag{2.14}
\]

Equations (2.5), (2.10), (2.11), and the definitions for \(\varepsilon_{\text{eff}} \) and \(Pr_{\text{eff}} \) are combined with equation (2.8) to give the final form of the stagnation enthalpy equation that is programmed.
2.2 Boundary Conditions

For boundary layer flows in which there are a wall and a free stream, e.g., flow over a flat surface or a body of revolution, the boundary conditions for the momentum equation are given by

\[U(x,0) = 0 \] \hspace{1cm} (2.16a)
\[V(x,0) = \frac{m''_o(x)}{\rho} \] \hspace{1cm} (2.16b)
\[\lim_{y \to \infty} U(x,y) = U_\infty(x) \] \hspace{1cm} (2.16c)

where \(m''_o(x) \) is wall mass transfer per unit area due to fluid injection or suction.

Boundary conditions for the stagnation enthalpy equation are given by

\[I^*(x,0) = I^*_o(x) \] \hspace{1cm} or \hspace{1cm} (2.16d)
\[q''(x,0) = -\frac{k}{c} \frac{\partial I^*(x,0)}{\partial y} = q''_o(x) \]
\[\lim_{y \to \infty} I^*(x,y) = I^*_\infty \text{ (constant)} \] \hspace{1cm} (2.16e)

The wall boundary condition (2.16d) is either a level or a flux. For both cases, if there is transpiration at the surface, the transpired fluid is assumed to leave the surface in thermal equilibrium with it. If a flux boundary condition is specified, then the program requires specification of the total energy flux from the surface. This is related to the surface heat flux, \(q''_o(x) \) as shown in Figure 2.2 for a differential element of surface area.
Boundary layer-type flows with a wall and a line of symmetry, e.g., flow in a circular pipe or a flat duct, have the following boundary conditions at the centerline, \(y = 0 \), and wall, \(y = r_w \):

\[
\begin{align*}
U(x, r_w) &= 0 , \\
V(x, r_w) &= 0 , \\
\frac{\partial U(x, 0)}{\partial y} &= 0 , \\
I^*(x, r_w) &= I_0^*(x) , \text{ or} \\
q''(x, r_w) &= q''_0(x) , \\
\frac{\partial I^*(x, 0)}{\partial y} &= 0 .
\end{align*}
\]

Because such flows are confined flows, the pressure gradient must be determined. This is accomplished indirectly in the program by linking it to conservation of mass: a pressure gradient is computed to conserve the mass flow rate as the momentum equation is integrated in the \(x \)-direction.

Boundary layer flows with a free surface and a line of symmetry, e.g., jets and free shear flows, have the following boundary conditions at the centerline, \(y = 0 \), and the edge of the shear layer, \(r_e \).
\[
\frac{\partial U(x,0)}{\partial y} = 0 , \quad (2.18a)
\]

\[
V(x,0) = 0 , \quad (2.18b)
\]

\[
\lim_{r \to r_e} U(x,r) = U_\infty(x) , \quad (2.18c)
\]

\[
\lim_{r \to r_e} \frac{\partial I^*(x,0)}{\partial y} = 0 , \quad (2.18d)
\]

\[
\lim_{r \to r_e} I^*(x,r) = I^*_\infty \quad \text{(constant)} . \quad (2.18e)
\]

2.3 Turbulent Shear Stress

Turbulent shear stress is modeled using the eddy diffusivity for momentum. The program incorporates three options for modeling \(\varepsilon_M \), as follows.

2.3.1 Prandtl Mixing-Length Model for \(\varepsilon_M \)

The Prandtl mixing-length model relates eddy diffusivity for momentum to the mean velocity gradient by defining a mixing-length, \(\ell \), such that

\[
\varepsilon_M = \ell^2 \left| \frac{\partial U}{\partial y} \right| . \quad (2.19)
\]

The mixing-length for the region near the wall but outside the viscous region immediately adjacent to the wall is given by

\[
\ell = k y . \quad (2.20)
\]

A suggested value for \(k \) is 0.41.

Immediately adjacent to the wall, the viscous sublayer is modeled by introducing a damping function, \(D \), that effectively suppresses the linear dependence of equation (2.20). With the damping function, the mixing-length for the viscous region becomes

\[
\ell = k y D . \quad (2.21)
\]
Two damping function options are available in the program. The first type is the Van Driest damping function,

$$D = 1.0 - \exp \left[-y^+ (\nu_o/\nu)/A^+ \right], \quad (2.22)$$

where $y^+ (\nu_o/\nu)$ is the non-dimensional distance from the wall, expressed in "wall coordinates", defined in Section 3.2, and A^+ is an effective sublayer thickness defined in an analogous manner. The second type of damping function in the program is the Evans damping function,

$$D = \begin{cases} y^+ (\nu_o/\nu)/B^+ , & y^+ (\nu_o/\nu) \leq B^+ \\ 1.0 , & y^+ (\nu_o/\nu) > B^+ \end{cases}, \quad (2.23)$$

where B^+ is an effective sublayer thickness.

The effective thickness of the viscous sublayer is probably the single most important parameter in computation of turbulent boundary layers. The sublayer, though comprising a very small fraction of the total boundary layer thickness, is the region where the major change in velocity takes place and, except for very low Prandtl number fluids, is the region wherein most of the resistance to heat transfer resides. If this region is modeled accurately, only a very approximate scheme is needed throughout the rest of the boundary layer.

Thickness of the sublayer is evidently determined by viscous stability considerations. The experimental evidence is that a favorable pressure gradient (dP/dx negative) results in increased thickness, while an adverse pressure gradient has the opposite effect. Transpiration into the boundary layer (blowing) decreases the thickness, if it is expressed in non-dimensional wall coordinates, while suction has the opposite effect. Surface roughness, while not a subject of this paper, causes a thinning of the sublayer.

The effects of pressure gradient and transpiration on A^+ or B^+ are conveniently expressed in terms of a non-dimensional pressure gradient parameter, P^+, and a non-dimensional blowing parameter, V_o^+, both of which can be either positive or negative. In both of these parameters the main argument is normalized with respect to the same wall coordinate parameters as is the effective sublayer thickness A^+ or B^+.

13
The functional dependence of \(A^+ \) upon \(P^+ \) and \(V_o^+ \) has been deduced experimentally by examination of a very large number of velocity profiles obtained at Stanford [3]. This functional dependence can be directly related to \(B^+ \), and both can be expressed algebraically as

\[
A^+ \left\{ \frac{A_{fp}^+ \text{ or } B_{fp}^+}{a \left[V_o^+ + b \left(\frac{P^+}{1 + cV_o^+} \right) \right] + 1} \right. ,
\]

(2.24)

where

\[
\begin{align*}
a &= 7.1 \text{ if } V_o^+ \geq 0.0, \text{ otherwise } a = 9.0; \\
b &= 4.25 \text{ if } P^+ \leq 0.0, \text{ otherwise } b = 2.9; \\
c &= 10.0 \text{ if } P^+ \leq 0.0, \text{ otherwise } c = 0.0.
\end{align*}
\]

A recommended value for \(A_{fp}^+ \) and \(B_{fp}^+ \) are 25 and 35, respectively.

Equation (2.24) is plotted on Figure 2.3 for \(A^+ \), and in the graph the effects of pressure gradient and transpiration can be clearly seen. Note that a strong favorable pressure gradient forces \(A^+ \) to very high values, and that blowing lessens this effect, while suction increases it. If \(A^+ \) becomes very large, the viscous sublayer simply overwhelms the entire boundary layer, resulting in re-laminarization. The thickening of the sublayer caused by a favorable pressure gradient (accelerating flows) results in a decreased Stanton number simply because the major resistance to heat transfer is in the viscous sublayer.

\(A^+ \), as represented by equation (2.24) and Figure 2.3, has been evaluated under essentially equilibrium conditions, i.e., conditions under which \(V_o^+ \) and/or \(P^+ \) are invariant or, at worst, are varying only slowly along the surface. This is the case of inner region equilibrium. It is probable that when a sudden change of external conditions is imposed, the inner region comes to equilibrium more rapidly than the outer region, although this has not been proved. In any case, under non-equilibrium conditions where \(V_o^+ \) or \(P^+ \) are changing rapidly, it has been observed that the sublayer does not change instantaneously to its new equilibrium thickness, i.e., \(A^+ \) does not immediately
Figure 2.3. The variation of the damping constant, A^+, with V_0^+ and P^+.

assume its new equilibrium value. Since $A^+ = A^+(V_0^+, P^+)$, lag equations of the form (suggested by Launder and Jones [4])

$$\frac{dv_o^{+\text{eff}}}{dx^+} = -\frac{(v_o^{+\text{eff}} - v_o^{+\text{eq}})}{C}$$

(2.25)

are solved to simulate the effect. The term $v_o^{+\text{eq}}$ is the local blowing parameter, and $v_o^{+\text{eff}}$ is its effective value, used to compute the damping constant. A similar equation is solved for P^+. The recommended value for C is 4000.

In the boundary layer momentum equation (2.7), the body force term, X, must exert some influence upon the viscous sublayer thickness. In the program it is assumed that the influence of X upon the damping coefficient is similar to the pressure gradient. Thus a non-dimensional body force, X^+, is computed, and the algebraic sum ($P^+ - X^+$) is used in place of P^+ to evaluate an equation of the form of equation (2.25) for P_{eff}^+.

15
The outer region of the flow, referred to as the wake region, is modeled using a mixing-length directly proportional to the boundary layer thickness. The program input variable FR determines the thickness as $\delta_{(1.00-FR)}$ with a recommended value of 0.01 for FR.

$$\lambda = \lambda \delta_{.99} \cdot$$ (2.26)

A recommended value of λ is 0.085. The outer region is defined as $y > \lambda \delta_{.99}/\kappa$.

There is some evidence that the effective value of λ is larger than 0.085 for boundary layers in which the momentum thickness Reynolds number is less than 5500. This may be a result of the fact that at low Reynolds numbers the sublayer is a larger fraction of the boundary layer and the approximation of a constant mixing-length over the remainder of the boundary layer is less valid. For strong blowing, even at low Reynolds numbers, λ again appears to be close to 0.085, and this is consistent with the above explanation because the sublayer is then thinner. The following equation has been found to describe the observed low Reynolds behavior of λ quite well.

$$\lambda = 2.942 \lambda_0 \text{Re}_M^{-1/8} (1.0 - 67.5 F) ,$$ (2.27)

where $F = \rho_o V_o / \rho \omega U_\infty$ and λ_o is the program input value. If λ becomes less than λ_o, it is set equal to λ_o.

2.3.2 Turbulent Kinetic Energy Model for ε_M

The Prandtl mixing-length is essentially an equilibrium model that can handle turbulent flows with slowly changing boundary conditions. For strongly non-equilibrium boundary layers (especially under adverse pressure gradient conditions or when there is an appreciable amount of free-stream turbulence), a higher level of closure model for the turbulent shear stress is desirable. The turbulent kinetic energy model (TKE model) relates a velocity scale-length scale product to the eddy diffusivity for momentum,

$$\varepsilon_M = \frac{\nu_e}{\rho} = \left(\frac{A}{g}\right) \delta \sqrt{\frac{2}{\lambda}} \cdot$$ (2.28)
where $q^2/2$ is the turbulent kinetic energy of the flow and ℓ is the mixing-length, as defined by equations (2.21) or (2.26).

Actually, the TKE model incorporated into the program is a hybrid model; the Prandtl mixing-length model for ℓ_M is used in the near-wall viscous region and the TKE model for $y^+ > 2A^+$ or $y^+ > b^+$. In principle, the TKE model may be applied in the viscous region, but this requires modification to the length scales for production and dissipation. At present there are no provisions in the program for computing TKE in the viscous sublayer region.

Turbulent kinetic energy of a flow is computed in the program by solving a differential equation of the form

$$\rho U \frac{\partial (q^2/2)}{\partial x} + \rho v \frac{\partial (q^2/2)}{\partial y} = -\rho u'v' \frac{\partial U}{\partial y} - \mathcal{D} + \frac{1}{r} \frac{\partial }{\partial y} (\tau_{q}) \quad \text{(2.29)}$$

In the TKE equation, the production term (the first term to the right of the equal sign) is modeled from equations (2.5) and (2.28), and given by

$$-\rho u'v' \frac{\partial U}{\partial y} = \rho \left(\frac{A_q}{\kappa} \right) \ell \sqrt{q^2/2} \left(\frac{\partial U}{\partial y} \right)^2 \quad \text{(2.30)}$$

The dissipation term, \mathcal{D}, is modeled as

$$\mathcal{D} = \rho (B_q \kappa) \left(\frac{\sqrt{q^2/2}}{\ell} \right)^3 \quad \text{(2.31)}$$

where κ is the von Karman constant.

B_q is the dissipation constant, and it is related to A_q by requiring production to equal dissipation in the logarithmic region near the wall.

$$B_q = \frac{A_q^3}{\kappa^4} \quad \text{(2.32)}$$

For $\kappa = 0.41$, suggested values for A_q and B_q are 0.22 and 0.38, respectively.

The diffusion term, J_q, is modeled as

$$J_q = \rho (v + \varepsilon_q) \frac{\partial (q^2/2)}{\partial y} \quad \text{(2.33)}$$
where \(v \) is the laminar kinematic viscosity, and \(\varepsilon_q \) is related to \(\varepsilon_M \) by a turbulent Schmidt number,

\[
Sc = \frac{\varepsilon_M}{\varepsilon_q}.
\]

(2.34)

A suggested value for \(Sc \) is 1.7.

Boundary conditions for equation (2.29), with a wall and a free stream, are

\[
\frac{\rho u^2}{2} = \left(\frac{\kappa}{A_q} - \frac{\varepsilon_q}{\varepsilon_q} \right)^2 \text{ at } y^+ = \begin{cases} 2A^+ \\ B^+ \end{cases}
\]

(2.35a)

and

\[
\lim_{y \to \infty} \frac{\rho u^2}{2} = \begin{cases} \text{free stream} \\ \text{turbulence level} \end{cases} = \frac{3}{2} \frac{T_u u_{\infty}^2}{U_{\infty}}.
\]

(2.35b)

Equation (2.35b) assumes isotropic free-stream turbulence and \(T_u = \sqrt{u' v'/U_{\infty}} \).

2.3.3 Constant Eddy Diffusivity Model

An alternative to the assumption that mixing-length in the outer region is constant is the assumption that eddy diffusivity for momentum is constant. Eddy diffusivity in this region can be correlated to either displacement thickness or momentum thickness Reynolds number or diameter Reynolds number in the case of pipe-flow. In the program, this option is given by

\[
\frac{\varepsilon_M}{\nu} = aRe^b_M.
\]

(2.36)

In the above expression, suggested values of \(a \) and \(b \) for pipe-flow are 0.005 and 0.9, respectively. For pipe-flow this option is to be preferred to the constant mixing-length option.

2.4 Turbulent Heat Flux

Turbulent heat flux is modeled using the eddy diffusivity for heat. The program incorporates two options for modeling \(\varepsilon_H \), a constant turbulent Prandtl and a variable turbulent Prandtl number.

2.4.1 Constant Turbulent Prandtl Number

The eddy diffusivity for heat is modeled by relating it to the eddy diffusivity for momentum,
\[\text{Pr}_t = \frac{\epsilon_M}{\epsilon_H}, \quad (2.12) \]

where \(\text{Pr}_t \) is the turbulent Prandtl number.

A very simple physical model of the turbulent momentum and energy transfer processes leads to the conclusion that \(\epsilon_H = \epsilon_M \), i.e., \(\text{Pr}_t = 1.00 \) (the "Reynolds Analogy"). Slightly more sophisticated models suggest that \(\text{Pr}_t > 1.00 \) when the molecular Prandtl number is very much less than unity. A suggested value for gases is 0.90.

2.4.2 Variable Turbulent Prandtl Number

An improved model for \(\text{Pr}_t \) is to allow it to vary with distance from the wall, as suggested from experimental data from Stanford [3]. Several conclusions can be drawn from the Stanford data. First, the turbulent Prandtl number, at least for air, apparently has an order of magnitude of unity. Thus the Reynolds Analogy (\(\text{Pr}_t = 1.00 \)) is not a bad approximation.

The second conclusion is that \(\text{Pr}_t \) seems to go to a value higher than unity very near the wall, but is evidently less than unity in the wake or outer region. The situation very close to the wall is especially vexing because it is extremely difficult to make accurate measurements in this region, and yet it seems evident that something interesting and important is happening in the range of \(y^+ \) from 10.0 to 15.0. The behavior of \(\text{Pr}_t \) at values of \(y^+ \) less than about 10.0 is highly uncertain but fortunately not very important, because molecular conduction is the predominant transfer mechanism in this region. At the other extreme, in the wake region \(\text{Pr}_t \) does not need to be known precisely, because the heat flux tends to be small there.

Another conclusion, for which the evidence is not yet very strong, is that there is some small effect of pressure gradient on \(\text{Pr}_t \). Data suggest that an adverse pressure gradient tends to decrease \(\text{Pr}_t \), and there seems a tendency for \(\text{Pr}_t \) to be increased by a favorable pressure gradient (an accelerating flow). Transpiration, apparently, does not influence \(\text{Pr}_t \) unless there is an effect very close to the wall that is hidden in the experimental uncertainty in this region.

Incorporated into the program to predict the general behavior of turbulent Prandtl number for gases, as well as low and high laminar Prandtl number fluids, is a conduction model for \(\text{Pr}_t \). The model simulates the idea that an
"eddy" exchanges energy both in transit in the vertical direction and while equilibrating with the surrounding fluid at the end of its travel. From analytical considerations, the model is expressed by

\[Pr_t = \left(\frac{\alpha^2}{2} + \alpha Pe_t - (cPe_t)^2 \right)^{-1} \left(1.0 - \exp\left(-\alpha/cPe_t\right) \right) \]

(2.37)

In the above equation, \(Pe_t \) is the turbulent Peclet number, \((c_M/\nu)Pr\), and \(\alpha = \sqrt{1/Pr} \), where PRT is the asymptotic value of \(Pr_t \) for large \(y^+ \), in the wake region. The programmed value for \(c \) is 0.2, and the suggested value for PRT is 0.86. Equation (2.37) is plotted in Figure 2.4 for three values of \(Pr \) using these constants.

![Figure 2.4. Variation of turbulent Prandtl number with \(Pr \).](image)

20
2.5 Laminar-Turbulent Transition

In laminar boundary layers, disturbances to the flow will either die out or grow; if the disturbances continue to grow, there will be a region downstream where transition occurs, beyond which fully turbulent flow will eventually be established. The onset of transition depends to a large extent upon whether the prevailing boundary conditions have a stabilizing or a destabilizing effect on the flow. Smooth surfaces and favorable pressure gradients (acceleration) can cause the former, and rough surfaces, adverse pressure gradients, and free-stream turbulence can cause the latter effect.

For two-dimensional boundary layer flows over a smooth surface, with a constant free stream velocity, and with moderate free-stream turbulence, the onset of transition is usually considered to be related to a critical momentum thickness Reynolds number, Re_{tran}. This is analogous to flow in a pipe where $Re_{\text{tran}} = 2300$. Once transition commences, it will continue until the flow becomes completely turbulent.

Transition is modeled in the program by flagging the program to commence computation of turbulent shear stress and heat flux when the flow momentum thickness Reynolds number, Re_M, exceeds Re_{tran}. To effect a gradual transition, the local value of A^+ is modified according to the empirical equation

$$A^+ = A^+ + (300.0 - A^+) \times \left\{ 1.0 - \sin \left(\frac{1.57}{Re_{\text{tran}}} \left[Re_M - Re_{\text{tran}} \right] \right) \right\}^2 , \ (2.38)$$

for the region in the downstream flow direction where $Re_M \leq 2Re_{\text{tran}}$. This equation has the effect of smoothly increasing the turbulent viscosity in the near-wall region. A suggested value for Re_{tran} is 200. Transition with B^+ is handled in a similar manner.
Chapter 3
FLOW NEAR A WALL

3.1 Computation in the Near-Wall Region

Computation of a flow field involves solving the finite-difference equations at discrete nodes in the cross-stream direction. The nodal spacing, or grid, can be coarse if velocity and enthalpy profiles are slowly changing between nodes. For a turbulent flow, large gradients in velocity exist with the near-wall region requiring a fine nodal spacing. It is customary in most finite-difference turbulent calculations to have at least as many nodal points in the near-wall region (say the inner 20 per cent of the boundary layer) as are used in the remaining coarse part of the grid.

In computing near-wall flows in this program, the Couette flow form of the boundary layer equations are solved between the wall and a point near the wall, the join point. At the join point the Couette flow solutions are matched to the finite-difference solutions, in terms of velocity and shear stress, and enthalpy and heat flux, and the resulting unknowns, wall shear stress and wall heat flux, are thus determined.

In dealing with flow in the near-wall region, the program has two options. The first option is to "use the Wall Function." Here the Couette flow equations are numerically integrated over the region of high velocity gradient. A major advantage of this option is that it greatly reduces the required number of finite-difference nodes. Using the Wall Function is especially advantageous when computing high Reynolds number flows.

The second option in computing flow near a wall is to "bypass the Wall Function." Here the finite-difference mesh is carried down to the wall with a progressively finer spacing. Bypassing the Wall Function is recommended for large pressure gradients when the Couette flow approximation begins to lose its validity.

3.2 The Couette Flow Equations

In the near-wall region both velocity and stagnation enthalpy profiles can have large gradients in the cross-stream direction, but their streamwise gradients are usually small. By neglecting these streamwise gradients, the convective
transport equations are simplified to ordinary differential equations, and the integrated form of these equations is the Couette flow equations.

To develop the Couette flow equations, the boundary layer equations will be recast in terms of shear stress and heat flux using

\[\tau = (\mu + \mu_t) \frac{\partial u}{\partial y} = \mu_{\text{eff}} \frac{\partial u}{\partial y}, \quad (3.1) \]

and

\[q'' = -\left[\frac{k}{c} + \left(\frac{k}{c} \right) \right] \frac{\partial I}{\partial y} = -\frac{\mu_{\text{eff}}}{F_r_{\text{eff}}} \frac{\partial}{\partial y} \left[I^* - \frac{U^2}{2g_c J} \right]. \quad (3.2) \]

These definitions are substituted into the momentum equation (2.7) and stagnation enthalpy equation (2.15), and they are re-written, along with the continuity equation (2.1), for plane flow (no-radius effect included).

\[\frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} = 0, \quad (3.3a) \]

\[\rho U \frac{\partial U}{\partial x} + \rho V \frac{\partial V}{\partial y} = g_c \left(-\frac{\partial P}{\partial x} + \frac{\partial \tau}{\partial y} + X \right), \quad (3.3b) \]

\[\rho U \frac{\partial I^*}{\partial x} + \rho V \frac{\partial I^*}{\partial y} = -\frac{\partial}{\partial y} [q'' - U \tau] + \frac{U}{J} + s. \quad (3.3c) \]

These equations are non-dimensionalized using "wall coordinates". In the definitions which follow, the small zero subscript denotes a wall value.

\[U_\tau = \sqrt{\frac{g_c}{c}} \frac{\tau}{\rho_0}, \quad (3.4a) \]

\[u^* = U/U_\tau, \quad (3.4b) \]

\[v_\circ^* = v_\circ/U_\tau, \quad (3.4c) \]

\[x^* = xU_\tau/v_\circ, \quad (3.4d) \]

\[y^* = yU_\tau/v_\circ, \quad (3.4e) \]

\[\tau^* = \tau/\tau_\circ, \quad (3.4f) \]
\[p^+ = \frac{g_c v_o}{\rho_o U_i^3} \frac{dP}{dx}, \quad (3.4g) \]

\[x^+ = \frac{g_c v_o}{\rho_o U_i^3} \frac{dx}{U_i}, \quad (3.4h) \]

for the momentum equation, and, in addition,

\[I^+ = \frac{(I_o - I^*) U_i}{q''/\rho_o}, \quad (3.4i) \]

\[q^+ = \frac{q''}{q_o}, \quad (3.4j) \]

\[s^+ = \frac{v_o}{q_o U_i} \frac{S}{U_i}, \quad (3.4k) \]

\[w = \frac{\rho_o U_i^3}{g_c J q_o}, \quad (3.4l) \]

for the stagnation enthalpy equation.

Integration of equations (3.3a) and (3.3b) with respect to \(y \), combining, and transforming to "wall coordinates" yields

\[\tau^+ = 1 + V_o^+ U_i + (F^+ - X^+) \frac{y^+}{y} + \frac{1}{1 - \frac{1}{y} \int_0^y \frac{p}{\rho_o (U_i)} dy \left[U_i^2 \right] \int_0^y \right] \left[\frac{d}{dy} \right] \]

\[+ f_x^+ \quad (3.5) \]

where

\[f_x = \frac{\rho_o U_i}{\tau_o} \frac{dU_i}{dx} \int_0^y \left(\frac{\rho U}{\rho_i U_i} \right) dy - \int_0^y \left(\frac{\rho_i}{\rho_o U_i} \right) \left(\frac{U_i}{U_i} \right)^2 dy \]

\[+ \frac{\rho_o U_i^2}{\tau_o} \left[\frac{d}{dx} \int_0^y \left(\frac{\rho}{\rho_i} \right) \left(\frac{U_i}{U_i} \right)^2 dy \right] - \frac{\rho U_i}{\rho_o U_i} \int_0^y \left(\frac{\rho U}{\rho_i U_i} \right) dy \]

The Couette flow form of the momentum equation used in the program is equation (3.5) with \(f_x \) neglected. This form was developed by Julien et al. [5] ar
retains an integral term to better approximate a departure from Couette flow when P^+ is large. The additional term is exact for asymptotic accelerating flows.

Integration of equations (3.3a) and (3.3c) with respect to y, combining, and transforming to "wall coordinates", yields

$$q^+ = 1 + \nu' \tilde{I}^* + U^+ \tilde{W} + U^+ y \tilde{W} + S^+ y^+ + g_x ,$$ \hspace{1cm} (3.6)$$

where

$$g_x = \frac{(I^* - I_\infty)}{q_0'} \left[\frac{d}{dx} \left(\frac{\rho \omega U}{\rho \omega U_\infty} \right) \cdot \int_0^y \left(\frac{\rho \omega U}{\rho \omega U_\infty} \right) dy \right]$$

$$+ \frac{\rho \omega U_\infty}{dx} \int_0^y \left(\frac{\rho \omega U}{\rho \omega U_\infty} \right) dy$$

$$- \frac{1}{q_0'} \frac{d}{dx} \left[\rho_\omega U_\infty \left(I^* - I_\infty \right) \right] \int_0^y \frac{\rho \omega U}{\rho \omega U_\infty} \left(I^* - I_\infty \right) dy$$

$$- \frac{\rho_\omega U_\infty \left(I^* - I_\infty \right)}{q_0'} \frac{d}{dx} \int_0^y \frac{\rho \omega U}{\rho \omega U_\infty} \left(I^* - I_\infty \right) dy .$$

The Couette flow form of the stagnation enthalpy equation used in the program is equation (3.6) with g_x neglected.

3.3 Using the Wall Function

In the previous section it was seen that the Couette flow equations are merely first integrals of the Couette flow form of the boundary layer equations, and they relate wall shear stress and wall heat flux to shear stress and heat flux at some point away from the wall. By replacing the shear stress and heat flux with their constitutive equations, the Couette flow equations become first-order ordinary differential equations describing the variation in velocity and stagnation enthalpy across the Couette layer adjacent to the wall. These equations are then numerically integrated across the layer and matched to the finite-difference solutions for velocity and stagnation enthalpy, resulting in explicit expressions for the wall shear stress and heat flux. The match-up point
is located midway between the second and third finite-difference nodes from the wall and is referred to as the join point, or 2.5 point.

3.3.1 Momentum Equation

The constitutive equation (3.1) for shear stress is rewritten in terms of "wall coordinates" as

\[\tau^+ = \mu^+ \frac{\partial U^+}{\partial y^+}, \]

(3.7)

where \(\mu^+ = (\mu + \mu_t)/\mu_o \).

From Section 3.2, the Couette flow equation for momentum is

\[\tau^+ = 1 + V_o^+ U^+ + (P^+ - X^+) \frac{y^+}{2} \left[1 - \frac{1}{o} \int_0^y \frac{\rho}{\rho_o} \left(\frac{U}{U_o} \right)^2 \, dy \right]. \]

(3.8)

An ordinary differential equation describing momentum transport across the Couette layer is obtained by equating (3.7) and (3.8), along with using the mixing-length hypothesis to model \(\mu^+ \).

\[\frac{dU}{dy^+} = \frac{2\tau^+ (\frac{U_o}{\mu})}{1 + \left[1 + 4\kappa y^+ \frac{\partial^2 T^+}{\partial y^+} \left(\frac{\rho}{\rho_o} \right) \left(\frac{U_o}{\mu} \right)^2 \right]^{1/2}}. \]

(3.9)

In the program the above equation is numerically integrated, using equation (3.8) for \(\tau^+ \), and equation (2.22 or 2.23) for \(D \), from the wall outward to the join point.

The join point, or match-up point, is located at \(y_{2.5}^+ \), which is the arithmetic average of \(y_2^+ \) and \(y_3^+ \), locating nodal points 2 and 3. The required value of \(U \) at the join point is \(U_{2.5} \), the arithmetic average of \(U_2 \) and \(U_3 \), as computed from the finite-difference solution.

Since the integration of equation (3.9) is in "wall coordinates", the upper limit to the integral needs to be in "wall coordinates". It is not yet possible to convert \(U_{2.5}^+ \) and \(y_{2.5}^+ \) to \(U_{2.5}^+ \) and \(y_{2.5}^+ \) because \(\tau_0 \) is still an unknown. However, a join-point Reynolds number can be formed which relates the "physical coordinates" to the "wall coordinates",
\[\text{Re}_{2.5} = \frac{U_{2.5} y_{2.5}}{v_o} = (U^+ y^+)_{2.5} \]

(3.10)

As \(U^+ = U^+(y^+) \) is evaluated from integration of equation (3.9), the \(U^+ y^+ \) product is computed and compared to \(\text{Re}_{2.5} \). Integration is terminated when the \(U^+ y^+ \) product equals \(\text{Re}_{2.5} \). With the join-point values of \(U^+ \) and \(y^+ \) now known, the wall shear stress and friction factor are computed from \(U_{2.5} \) and the definition of \(U^+ \),

\[
\tau_0 = \frac{\rho_o U^2}{g_c (U^+_{2.5})^2} \tag{3.11a}
\]

and

\[
f/2 = \frac{g_c \tau_0}{\rho_\infty U^2_{\infty}} \tag{3.11b}
\]

3.3.2 Stagnation Enthalpy Equation

The constitutive equation (3.2) for heat flux is rewritten in terms of wall coordinates as

\[
q^+ = \frac{\mu^+}{Pr_{\text{eff}}} \frac{\partial I^*^-}{\partial y^+} + W \frac{\mu^+}{Pr_{\text{eff}}} \frac{\partial}{\partial y} \left(\frac{U^+}{2} \right) \tag{3.12}
\]

From Section 3.2, the Couette flow equation for stagnation enthalpy is

\[
q^+ = 1 + \nu_o I^*^- + U^+ W
\]

\[
+ U^+ y^+ W + S^+ y^+ \tag{3.13}
\]

An ordinary differential equation describing enthalpy transport across the Couette layer is obtained by equating (3.12) with (3.13),

\[
\frac{dI^*^-}{dy^+} = \frac{Pr_{\text{eff}}}{\mu^+} (1 + \nu_o I^*^-) + (Pr_{\text{eff}} - 1) W \frac{d}{dy^+} \left(\frac{U^+}{2} \right) + \frac{Pr_{\text{eff}}}{\mu^+} (U^+ y^+ W + S^+ y^+) \tag{3.14}
\]
In the program equation 3.14 is numerically integrated in the same loop as equation (3.9) for U^+.

If the stagnation enthalpy boundary condition is a level type, i.e., $I^*(x,0) = I^*_0(x)$, then wall heat flux and Stanton number are computed from $I^*_{2.5}$, the arithmetic average of I^*_2 and I^*_3, and the definition of $I^*_{2.5}$,

$$
\dot{q}^o'' = \frac{\rho_o U^*_{2.5}}{U^*_{2.5}} \left(I^*_o - I^*_2.5 \right) \quad (3.15a)
$$

and

$$
St = \frac{\dot{q}^o''}{\rho_o U^*_{2.5} (I^*_o - I^*_\infty)} \quad (3.15b)
$$

If the stagnation enthalpy boundary condition is a flux type, then the wall enthalpy and heat flux are linked through the total energy flux boundary condition (see Figure 2.2).

$$
E_{total}(x) = \dot{m}^o'' I^*_o + \dot{q}^o'' \quad (3.16)
$$

For flux-type boundary conditions, equations (3.15a) and (3.16) are solved algebraically for I^*_o and \dot{q}^o''. The Stanton number is then formulated from equation (3.15b). Note that the Stanton number evaluated in the program, equation (3.15b), is based on stagnation enthalpy difference, and not recovery enthalpy difference. The latter would require knowledge of a "recover factor" which has no real significance or usefulness in the general problem, i.e., for other than constant free-stream velocity flows.

3.4 Bypassing the Wall Function

The second user option is to "bypass the Wall Function", implying the join point is in close proximity to the wall where laminar-like flow exists. For turbulent flows, this implies a join-point value y^+ of less than, say, 2.0. In this region the viscosity ratio $(\mu + \mu_T)/\mu_o$ is unity, and the Couette flow equations can be integrated in closed form. Match-up with the finite-difference solutions for velocity and stagnation enthalpy is similar to the procedure involved in "using the Wall Function".
3.4.1 Momentum Equation

To obtain an expression for \(U^+ \) at the edge of the Couette layer, the constitutive equation (3.7) for the shear stress is equated to the Couette flow equation for momentum (3.8) and integrated (with \(\mu^+ = 1 \)).

\[
U^+ = y^+ + (V_o^+ + P^+ - X^+) \frac{\exp(V_o^+ y^+) - 1 - V_o^+ y^+}{(V_o^+)^2}
\]
(3.17)

Recall that while \(U^+ \) and \(y^+ \) are unknown, their product is the join-point Reynolds number (see Section 3.3.1).

\[
\text{Re}_{2.5} = \frac{U_{2.5} y_{2.5}}{V_o} = (U^+ y^+).2.5
\]
(3.10)

In the program, the solution to equation (3.17) is obtained by linearizing and solving in three successive steps:

\[
y_{2.5}^+ = (\text{Re}_{2.5})^{1/2}
\]
(3.18a)

\[
y_{2.5}^+ = \left[1 + \frac{\text{Re}_{2.5}}{2} \frac{(P^+ - X^+)y_{2.5}^+}{2} + \frac{V_o^+ y_{2.5}^+}{2} \right]^{1/2}
\]
(3.18b)

\[
y_{2.5}^+ = \left[\frac{\text{Re}_{2.5}}{2} \frac{(P^+ - X^+)y_{2.5}^+}{2} + \frac{V_o^+ y_{2.5}^+}{2} \right]^{1/2}
\]
(3.18c)

After solving for \(y_{2.5}^+ \), the value of \(U_{2.5}^+ \) is obtained from equation (3.10). The shear stress and friction factor are obtained from equations (3.11a-b).
3.4.2 Stagnation Enthalpy Equation

An expression for I^{*+} at the edge of the Couette layer is obtained by integrating equation (3.14), which relates the constitutive equation for heat flux to the Couette flow equation for stagnation enthalpy. In the integration, the viscous dissipation, work against body forces, and energy source terms are neglected. The resulting expression for I^{*+}, with u^+ equal to unity and Pr_{eff} equal to Pr, is

$$I^{*+} = \frac{\exp[PrV_o^+y^+] - 1}{v_o^+}$$

In the program, equation (3.19) is approximated by

$$I_{2.5}^{*+} = Pr\left(\frac{v_o^+y_{2.5}^2}{2} + y_{2.5}^+\right)$$

After solving for $I_{2.5}^{*+}$, the wall heat flux and Stanton number are obtained as described at the end of Section 3.3.2.

3.5 Routine LAMSUB

As indicated in the previous sections, the Couette flow equations are solved from the wall out to the join point where $y^+ = y_{2.5}^+$. The main function of the LAMSUB routine is to assure the condition

$$Y_{\text{MIN}} \leq y_{2.5}^+ \leq Y_{\text{MAX}}$$

where Y_{MIN} and Y_{MAX} are program input variables.

When "bypassing the Wall Function", Y_{MIN} must be zero, and Y_{MAX} should be less than two (unity is recommended). This will give a join-point Reynolds number of less than four, thus assuring the assumption that turbulent viscosity can be neglected in the Couette flow equations.

When "using the Wall Function" typical values for Y_{MIN} and Y_{MAX} are 20 and 40, respectively. These values bracket the upper limits of the integrals, and assure that the Couette flow equations are not applied outside their region of applicability. For a flat plate boundary layer, the
upper limit might be 50 to 100, and for high Reynolds number flows, the upper limit might extend out to between 100 and 200. For boundary layer flows with strong pressure gradient, the limit of applicability can drop to near 15 -- thus the reason for the Wall Function bypass option.

Routine LAMSUB controls the join point value as follows: if $y_2.5^+$ drops below YPMIN, the routine removes the stream tube located at y_3, and if $y_2.5^+$ becomes larger than YPMAX, the routine inserts a new stream tube midway between $y_2.5$ and y_3. In both cases, after the grid has been readjusted, the wall function is again solved and the new $y_2.5^+$ is compared using equation (3.21).

3.6 Integral Parameters

At each integration step, when one surface is a wall, the velocity profile displacement and momentum thicknesses, δ_1 and δ_2, are calculated along with the enthalpy thickness, Δ_2, for the stagnation enthalpy profile. These thicknesses are defined as follows:

$$\delta_1 = \int_0^\delta \left(1 - \frac{\partial U}{\rho_\infty U_\infty} \right) \frac{r}{r_0} \, dy,$$ \hfill (3.22a)

$$\delta_2 = \int_0^\delta \frac{\partial U}{\rho_\infty U_\infty} \left(1 - \frac{U}{U_\infty} \right) \frac{r}{r_0} \, dy,$$ \hfill (3.22b)

$$\Delta_2 = \int_0^\delta \frac{\partial U}{\rho_\infty U_\infty} \left(1 - \frac{1}{1 - \frac{1}{1 - \frac{r}{r_0}}} \right) \frac{r}{r_0} \, dy,$$ \hfill (3.22c)

where r_0 is the wall radius. Integration is carried out in the program using a trapezoidal rule.

In the program the boundary layer equations can be solved with or without consideration of transverse radius of curvature. Generally, transverse curvature effects are important for thick axisymmetric boundary layers. If these curvature effects are considered, then δ_1 and δ_2 are modified by solving the equations

$$\delta_{1,axi} \left(1 + \frac{\delta_{1,axi} \cos \alpha}{2r_0} \right) = \delta_1,$$ \hfill (3.23a)
\[
\delta_{2,axi} \left(1 \pm \frac{\delta_{2,axi}}{2r_o} \cos \alpha \right) = \delta_2
\]
(3.23b)

for \(\delta_{1,axi} \) and \(\delta_{2,axi} \) after calculating \(\delta_1 \) and \(\delta_2 \) using equation (3.22). Figure 2.1 shows \(\alpha \) and its relation to the wall radius. The proper sign choice is \(+\) for external flow over a body of revolution and \(-\) for flow inside a body of revolution (due to the coordinate system used in the program).

3.7 Pipe and Channel Flows

If the flow is a confined flow, a friction factor, Stanton number, and Nusselt number are computed using the following definitions.

\[
\frac{C_f}{2} = \frac{g_c r_o}{\rho U^2},
\]
(3.24)

\[
St = \frac{q''}{\rho \overline{U}(I_o^* - I^*)},
\]
(3.25)

\[
Nu = St \cdot Pr \cdot Re,
\]
(3.26)

where the bar quantities are mean quantities.

The mean stagnation enthalpy is defined by

\[
\overline{I^*} = \frac{\int_0^{r_w} \rho U I^* r dy}{\int_0^{r_w} \rho U r dy}.
\]
(3.27)

The mean velocity is defined by

\[
\overline{U} = \frac{2\pi \int_0^{r_w} \rho U r dy}{\rho \pi r_w^2} = \frac{2}{\frac{\partial r_w^2}{\partial r_w}} \frac{\text{mass flow rate/radian}}{\text{mass flow rate/radian}},
\]
(3.28)

and the Reynolds number is defined as

32
\[\text{Re} = \frac{\overline{DUD}}{\overline{\mu}} = \frac{4 \text{(mass flow rate/radian)}}{\overline{\mu r_w}} \] (3.29)

The mean values for density, viscosity and Prandtl number are those values at the y location where \(I^* = \overline{I^*} \).
Chapter 4

METHOD OF SOLUTION

4.1 Transformation of the Equations

The continuity, momentum, and stagnation enthalpy equations were developed in Chapter 2. The first step in transformation is to recast the convective transport equations into stream function coordinates using the von Mises transformation. In essence, the y-coordinate is replaced by a coordinate that is constant along streamlines, namely, the stream function ψ. The new independent variables become x and ψ, and the U velocity component is defined by

$$U = \frac{1}{r_p} \frac{\partial \psi}{\partial y} .$$ \hspace{1cm} (4.1)

In stream function coordinates the momentum equation (2.7) and the stagnation enthalpy equation (2.15) become

$$\rho U \frac{\partial U}{\partial x} + \rho U \frac{\partial}{\partial \psi} \left[r^2 \rho U_{eff} \frac{\partial U}{\partial \psi} \right] = -g_c \frac{dP}{dx} + g_c \frac{X}{\rho} ,$$ \hspace{1cm} (4.2)

$$\rho U \frac{\partial \psi}{\partial x} + \rho U \frac{\partial}{\partial \psi} \left[r^2 \rho \frac{U_{eff}}{P_{eff}} \frac{\partial \psi}{\partial \psi} \right] =$$

$$\frac{\partial}{\partial \psi} \left[\frac{U_{eff}}{g_c \rho} \left(1 - \frac{1}{P_{eff}} \right) r^2 \rho U \frac{\partial}{\partial \psi} \left(\frac{U^2}{2} \right) \right] + S .$$ \hspace{1cm} (4.3)

Note that in the transformation the V component of velocity disappears and the continuity equation is no longer used explicitly, due to the definition of the stream function.

In the stream function coordinate system, the boundary layer fluid flows between two surfaces, I and E. The I-surface originates at $y = 0$, and the E-surface forms the second bounding surface. Sign convention for a positive y displacement is always from the I to E surface. Fluid crossing the I surface is m_I; this flow might be due to wall transpiration. Fluid crossing the E surface is m_E; this flow might be due to entrainment. The bounding solid surface is described by α, related to the rate of change of surface curvature in the x-direction, and r_I, which describes the transverse
curvature of the I-surface. Location of the E-surface, \(r_E \), is related to \(r_I \) and \(\alpha \). Figure 4.1 shows the coordinate system.

![Figure 4.1. The stream-function coordinate system.](image)

The sketch in Figure 4.1 depicts an external boundary layer over either a flat or conical surface, with \(I \) being a wall and \(E \) being a free stream. In the program, there is a limited freedom in defining these bounding surfaces. This will be discussed more thoroughly in Chapter 5.

The second and final step in the transformation is to recast equations (4.2) and (4.3) into the Patankar-Spalding coordinate system using the transformation

\[
\omega = \frac{\Psi - \Psi_I}{\psi_E - \psi_I},
\]

where \(\psi_E \) and \(\psi_I \) are the stream function values on the bounding surfaces.

In this non-dimensional stream function coordinate system, the momentum and stagnation enthalpy equations become

\[
\frac{\partial U}{\partial x} + \left[\frac{r^2 \mu_{eff} U}{(\psi_E - \psi_I)^2} \right] \frac{\partial U}{\partial \omega} - \frac{\partial}{\partial \omega} \left[\frac{r^2 \mu_{eff} U}{(\psi_E - \psi_I)^2} \right] = \frac{g}{\rho U} \left[\frac{\partial P}{\partial x} + X \right].
\]
The transformed equations have the general form of a diffusion equation:

\[
\frac{\partial \phi}{\partial x} + (a+b\omega) \frac{\partial \phi}{\partial \omega} - \frac{3}{\partial \omega} \left(\frac{\mu_{\text{eff}}}{\text{Pr}_{\text{eff}}} \frac{\partial \phi}{\partial \omega} \right) = d
\]

where \(a, b, c, d\) are constants.

In the program, equation (4.7) becomes the velocity equation when \(\text{Pr}_{\text{eff}}\) is set equal to unity.

4.2 Finite-Difference Equations

As indicated in Chapter I, the original basic program from which STAN5 has evolved is the Patankar/Spalding program, described in their 1967 book [1]. Only the numerics of the finite-difference equations and the concept of a wall function have been carried over into STAN5. It is our intent in this section to point out several facts regarding the finite-differencing scheme. These equations are well documented in Patankar and Spalding [1,2], and, for a revised version of the program, by Spalding [6].

The central theme in obtaining the finite-difference equations, hereafter referred to as FDE's, is twofold: (1) to form a miniature integral equation over a finite-control volume; and (2) to presume a linear variation of the dependent variable over the control volume to effect the integration. Figure 4.2 shows node locations and a control volume for three adjacent nodes at an upstream and a downstream station.

The first term in equation (4.7) is transformed into an FDE term, as follows:

\[
\frac{3\phi}{\partial x} = \frac{1}{\delta x \delta \omega} \int_{x_{U}}^{x_{d}} \left(\phi \frac{\partial \phi}{\partial x} \right) dx d\omega = \frac{1}{\delta x \delta \omega} \int_{1}^{i+\frac{1}{2}} \left(\phi_{x_{d}} - \phi_{x_{U}} \right) d\omega + \int_{1}^{i+\frac{1}{2}} \left(\phi_{x_{d}} - \phi_{x_{U}} \right) d\omega
\]

\[
= \frac{1}{\delta x \delta \omega} \left[\left(\frac{1}{4} \phi_{i-1} + \frac{3}{4} \phi_{i} \right) \frac{1}{2} (\omega_{i}-\omega_{i-1}) + \left(\frac{3}{4} \phi_{i} + \frac{1}{4} \phi_{i+1} \right) \frac{1}{2} (\omega_{i+1}-\omega_{i}) \right] x_{d}
\]

(4.8)
Figure 4.2. Typical nodal locations and control volume for finite-difference equations.

The second term in equation (4.7) is transformed into an FDE term using integration by parts:

\[
(a+b\omega) \frac{\partial \Phi}{\partial \omega} = \frac{1}{\delta x} \int_{x_u}^{x_d} \int_{i-\frac{1}{2}}^{i+\frac{1}{2}} \frac{\partial \Phi}{\partial \omega} \, dx \, dw
\]

\[
= \frac{1}{\delta \omega} \left[(a+b\omega) \Phi_{x_d,i+\frac{1}{2}} - (a+b\omega) \Phi_{x_u,i-\frac{1}{2}} - b \int_{i-\frac{1}{2}}^{i+\frac{1}{2}} \Phi_{x_d} \, dw \right]
\]

In the above equation, the integral is evaluated in a like manner to equation (4.8). Several assumptions are built into equation (4.9): (1) the integrand of the integral is evaluated only at \(x_d \); (2) the equation is "linearized" in that \(a+b\omega \) is evaluated at \(x_u \); and (3) the integrand is presumed to vary linearly with \(\omega \) over the control volume. Assumption (3) implies small cross-stream convection; this was later changed by Patankar and Spalding [2] using a "high lateral flux modification", or "upwind-differencing" to more properly account for high lateral convection. The modification is not used in STANS.

37
The third term in equation (4.7) is transformed into an FDE as follows:

\[
\frac{\partial}{\partial \omega} \left(c \frac{\partial \phi}{\partial \omega} \right) = \frac{1}{\delta x \delta \omega} \int_{x_u}^{x_{d}} \int_{i-\frac{1}{2}}^{i+\frac{1}{2}} \frac{\partial}{\partial \omega} \left(c \frac{\partial \phi}{\partial \omega} \right) dx d\omega
\]

\[
\approx \frac{1}{\delta \omega} \left[\left(\phi_{i+1} \frac{\partial \phi}{\partial x} \right) x_d - \left(\phi_i \frac{\partial \phi}{\partial x} \right) x_u \right] - \frac{1}{\delta \omega} \left(\omega_{i+1} - \omega_i \right) \left(\phi_i - \phi_{i-1} \right) x_d
\]

(4.10)

The above equation is "linearized" in that \(c \) is evaluated at \(x_u \).

The fourth and final term in equation (4.7) is the source term. It is transformed into an FDE term as follows:

\[
d = \frac{1}{\delta x \delta \omega} \int_{x_u}^{x_{d}} \int_{i-\frac{1}{2}}^{i+\frac{1}{2}} \left(\frac{\partial d}{\partial \omega} \right) dx d\omega
\]

\[
\approx \frac{1}{\delta \omega} \int_{x_u}^{x_{d}} \int_{i-\frac{1}{2}}^{i+\frac{1}{2}} \left[\left(\frac{\partial d}{\partial \omega} \right)_x + \frac{\partial d}{\partial \phi} \frac{\partial \phi}{\partial x} \right] dx d\omega .
\]

(4.11)

In STAN5, the velocity source term is handled precisely as described by Patankar and Spalding [1]. Sources for stagnation enthalpy and turbulent kinetic energy are evaluated at \(x_u \); the downstream contribution is neglected.

The FDE terms described by equations (4.8) to (4.11) are assembled into a form:

\[
\phi_{x_{d}, i} = A \phi_{x_{d}, i+1} + B \phi_{x_{d}, i-1} + C ,
\]

(4.12)

where \(A, B, \) and \(C \) are coefficients evaluated at the upstream station, \(x_u \).

A set of \(\phi \) equations is written for each dependent variable. In the text which follows, the velocity dependent variable is designated as \(U \), and all other dependent variables are designated as \(\phi \)-equation variables.

4.3 Grid and Slip Scheme

A sketch of the finite-difference grid and nodal locations was previously given in Figure 4.2. Cross-stream grid lines in that sketch divide the region between the I-surface and the E-surface into non-dimensional stream tubes, or flow tubes (from consideration of the definition of \(\omega \)). The number of flow tubes that comprise the cross-stream grid is denoted by \(N \). Two additional stream tubes (to define slip points) are inserted by the program near the I
and E surfaces, making a total of \(N + 2 \) tubes, and thus \(N + 3 \) nodal points. A cross-stream grid is shown in Figure 4.3.

![Cross-stream grid between the I and E surfaces.](image)

Figure 4.3. Cross-stream grid between the I and E surfaces.

In the above sketch, the 2.5 point on the grid is the join point, discussed in Section 3.3.1; the (2) point and the \((N + 2)\) point are the slip points. Finite-difference equations of the form of equation (4.12) are solved for all nodes (2) through \((N + 2)\). Boundary conditions for these equations are obtained through wall-function calculations, described in Chapter 3, if one surface is a wall.

The grid is established from the initial velocity profile, \(U = U(y) \). The profile is integrated using equation (4.1) to obtain \(U = U(\psi) \), where flow between consecutive \(y \) locations is \(\Delta \psi \), or non-dimensionally \(\Delta \omega \). The \(\Delta \omega \) values, which represent the fractional amount of the initial flow, remain constant throughout the calculations, unless altered by routine LAMESUB, discussed in Section 3.5. The amount of boundary layer fluid can change, but the fractional percentages in each stream tube are fixed.

The slip points, along with "using the Wall Function", were developed by Patankar and Spalding [1] to allow use of a linear profile assumption (Section 4.1) in the near-wall region, thus eliminating the need to compute across a region of high velocity gradient. The scheme is an excellent "engineering tool" in terms of computational speed while preserving accuracy.
The idea behind the slip scheme is to presume power-law profiles for velocity and other \(\phi \)-equations in the near-wall region.

\[
U = C_1 \gamma^B, \quad (4.13a)
\]

\[
(\phi - \phi_1) = C_2 \gamma^\gamma. \quad (4.13b)
\]

Each of the above equations contains two unknowns, which are obtained by matching the function and its first derivative (e.g., shear stress or heat flux) at the join point. From these two criteria come defining FDE's for the slip points.

\[
U_2 = U_2(U_3, B), \quad (4.14a)
\]

\[
\phi_2 = \phi_2(\phi_1, \phi_3, \gamma). \quad (4.14b)
\]

The above equations are linearized in that the upstream values of \(B \) and \(\gamma \) are used. Similar types of equations can be developed for slip values near a free stream and near a symmetry line (see Patankar and Spalding [1 or 2] for a complete description).

The procedure described above to obtain slip values near a wall was later changed by Patankar and Spalding [2] to more accurately account for convection between the wall and the join point. In STAN5, this correction was accomplished by a modification to the join-point velocity and essentially accomplishes the same goal. The correction is needed for low values of \(B \); for \(B > 0.9 \), i.e., a linear profile in the near-wall region due to laminar flow or "bypassing the Wall Function", the power-law slip scheme is adequate.

4.4 **Entrainment and Grid Control**

Entrainment is applicable to flows in which there are free surfaces. For example, the free surface for a wall boundary layer is the location where \(U \) approaches \(U_\infty \), i.e., its cross-stream gradient approaches zero. The function of entrainment is to introduce new fluid into the region between the \(I \) and \(E \) surfaces, thus expanding the grid outward into "fresh" fluid and thus preserving the near zero gradient at the outer edge of the computation.
region. The expansion can be easily seen by recalling that to increment $(\psi_E - \psi_I)$ with a constant $\Delta \omega$ spacing causes $\Delta \psi$ to increase and thus Δy. The entrained fluid is distributed to all flow tubes.

To determine if fluid should be entrained, the dependent variable difference near the free surface is compared with its free-stream value, e.g., $(U_{N+3} - U_{N+1})/U_{N+3}$ is computed and compared to ENFRA, a program input variable. This idea is depicted in Figure 4.4. The entrainment calculation for velocity in STAN5 is

$$\dot{m}_E^{\text{new}} = \dot{m}_E^{\text{old}} + \left[\frac{\text{b.l.} \text{ mass flux}}{\text{ENFRA}} \right] \left[\frac{U_{N+3} - U_{N+1}}{U_{N+3}} \right]. \quad (4.15)$$

![Figure 4.4. Entrainment at the free stream.](image)

When there are ϕ-equations being solved in addition to the momentum equation, each of these gradients near the free stream is checked to assure no defects in profiles develop. This is especially important in accelerating flows or low Prandtl number flows, where the thermal boundary layer grows outside of the momentum boundary layer. There is a flag in STAN5 that can be set to base entrainment on either the momentum equation or on the behavior of all equations. Note that in STAN5, fluid is never allowed to be detrained, due to stability considerations.
Integration stepsize, \(\Delta x \), is partly determined by entrainment. The control is via an input variable FRA, say 5%, which requires that the mass flow rate into the boundary layer through the I and E surfaces be no more than \(\text{FRA} \cdot (\psi_E - \psi_I) \) over the distance \(\Delta x \). This control, in effect, cuts back the stepsize if the boundary layer entrainment is large.

4.5 The Calculating Procedure

Equation (4.12) in Section 4.2 is the general form for the finite-difference equations. The equations couple all grid points in the cross-stream direction, and they are solved by a tri-diagonal matrix algorithm for \(i = 2 \) to \(N + 2 \). They have been linearized in the sense that the coefficients are calculated at the upstream stations. Thus, the program is "one step behind" in fluid properties, eddy viscosity, etc.

Because of linearization, the equations are only partially implicit, and this requires the use of a smaller \(\Delta x \) stepsize than could be used by a fully implicit scheme. For heat transfer calculations this does not present much of a problem, though, because the stepsize must be small enough to follow variable boundary conditions.
5.1 **Introduction**

To facilitate use of the program, a rather flexible input format has been developed which makes it possible to compile and link edit, and still accommodate a large number of input options merely by reading in numerical DATA. Other changes can be readily made in the core of the program, but the objective of this chapter will be to describe in detail how to access the program through DATA that are read directly by the computer.

All of the data input to the program are concentrated in the final subroutine which is labeled SUBROUTINE INPUT (KERROR). This subroutine contains a very large number of comments which in themselves constitute a set of instructions for its use. In reading this chapter it will be useful to refer to the input subroutine, and the present discussion will be based on the assumption that the reader has the input subroutine before him (her).

First it should be noted that each "read" statement is preceded by the symbols ******* extending across the page. Preceding these symbols the instructions for the "read" statement are given.

All of the "read" statements (except the title) are in the form of either a series of integer numbers or a series of decimal numbers. All of the integer numbers are in fields of five spaces. It is important to note that integers must be justified to the right side of these fields.

All decimal numbers are arranged in fields of 10 digits, and of course may be placed anywhere within that field.

5.2 **Flow Descriptors and Controls**

On the card following a title, eight integers are read, all of which convey rather fundamental information about the type of problem to be solved. Some of the program nomenclature will be introduced as these, and other variables and constants appearing below, are discussed.

GEOM is an integer, from 1 to 9, which signals in a general way the type of system geometry to be solved. GEOM = 1 is the simple boundary layer on a flat plate, but this case also applies for an axi-symmetric body so long as the boundary layer thickness is small relative to the body radius. Thus it
can be used for flow in a nozzle (subsonic or supersonic), or for flow over an axi-symmetric body such as a missile, even including a stagnation region.

GEOM = 2 & 3 differ from 1 only in that radius is included in the boundary layer equations so that boundary layer thickness need not be small relative to body radius.

GEOM = 4 & 5 refer to flow in circular and flat ducts, respectively. Strictly speaking, the "boundary layer" is treated as if it filled the entire duct; however, a judicious choice of grid spacing makes it possible to handle entry-length problems with accuracy. It is also possible to solve pipes or ducts which have slightly convergent or slightly divergent walls.

GEOM = 6, 7, 8, 9 cover the cases of circular and flat jets, and free shear flows.

MODE refers to whether the flow is to be laminar or turbulent. MODE = 1 is a laminar flow, while MODE = 2 is turbulent. As will be seen below, it is possible to start with MODE = 1 and then shift to a turbulent flow on the basis of an input transition criterion.

FLUID refers to the type of fluid. FLUID = 1 is any constant-property fluid, such properties to be supplied in a later read statement. FLUID = 2 refers to air, the properties of which (based on the Keenan and Kaye Gas Tables) are provided as a separate subroutine in the program. The air properties cover temperatures from 180°R to 4620°R, but do not take into consideration dissociation at high temperatures. The program is not provided with the properties of any variable-property fluids other than air, but it is only necessary to designate some other fluid with a number (3 or higher) and then construct a subroutine similar to SUBROUTINE PROP2. The appropriate call for any other property subroutine must be inserted as indicated in the MAIN program.

NEQ refers to the total number of boundary layer equations to be solved. Thus, if the momentum equation alone is to be solved, NEQ = 1, but if momentum and energy are to be solved, NEQ = 2. Actually, the program dimensioning allows NEQ to be as high as 6, if, for example, a number of mass diffusion equations must be solved. Another related variable, NPH, will be found throughout the program. NPH = NEQ - 1, and is the number of diffusion equations (energy, mass, etc.) that must be solved. It is assumed that the momentum equation is always solved.
N defines the grid structure in the y-direction; it is the number of flow tubes. Thus the number of grid points in the y-direction is \(N + 1 \). Because of the "slip" scheme described earlier, the program inserts two more grid points, one near the I surface, and one near the E surface. Thus the total number of grid points with which the program works is \(N + 3 \). Within the program the grid points are numbered starting with 1 at the I (for internal) surface and extending to \(N + 3 \) at the E (for external) surface. The character I is used to index the grid points, and I then varies from 1 to \(N + 3 \). For convenience, the last three points are designated \(NP_1 = N + 1 \), \(NP_2 = N + 2 \), \(NP_3 = N + 3 \). The two "slip" points, which have no real physical significance, are \(I = 2 \) and \(I = NP_2 \).

The choice of \(N \) determines how fine or how coarse a grid structure is to be used, and only experience can tell what is necessary to achieve desired precision for a particular problem. For a turbulent boundary layer when "using the wall function" (this will be discussed further below), \(N \) in the range 15-20 is generally satisfactory. If "bypassing the wall function" is used, or if the flow is laminar, \(N \) should generally be greater than 30. If \(N \) is less than 12 the program will not operate, and \(N \) is limited to 50 by the dimensioning of the program. However, this limitation can be readily changed, if desired. Finally, it should be noted that the program will change \(N \) internally under special circumstances to be discussed later in connection with the input values of \(Y_{P\text{MIN}} \) and \(Y_{P\text{MAX}} \).

\(K_{\text{IN}} \) and \(K_{\text{EX}} \) are indicators which determine the character of the I and E boundaries, respectively. If either is set equal to 1, that boundary is a wall; if set equal to 2, the boundary is a free stream; 3 indicates a line of symmetry, such as the centerline of a pipe or a free jet. As presently assembled, the program will handle only one wall surface, so, for example, it is not possible for both \(K_{\text{IN}} \) and \(K_{\text{EX}} \) to be equal to 1. Note that the I and E boundaries are literally "inner" and "outer" with respect to the axi-symmetric coordinate system, so, for example, for flow in a pipe the I boundary must be the centerline of the pipe and the E boundary must be the pipe wall; they are not interchangeable. On the other hand, for \(\text{GEOM} = 1 \) the I and E boundaries are interchangeable and either could be the wall.

\(K_{\text{ENT}} \) is an indicator for the entrainment calculation at a free boundary. If there is no free boundary, \(K_{\text{ENT}} \) can be left blank. If \(K_{\text{ENT}} = 0 \) entrainment
is calculated based on the behavior of the momentum equation alone; if \(\text{KENT} = 1 \)
all diffusion equations are tested. Since it is quite possible for the thermal
boundary layer, for example, to extend outside the momentum boundary layer, and
one generally wants to adjust entrainment so that the region of interest (the
region enclosed by the I and E boundaries) encloses the thickest boundary
layer, it is generally wise to set \(\text{KENT} = 1 \). On occasion this can lead to
some instability, and this is the reason why the option to set \(\text{KENT} = 0 \) is
provided.

The next card to be read contains more general information, all in the form
of decimal numbers. \(\text{XU} \) is the present location of the calculations in the x-
direction, and is one of the primary independent variables. Here \(\text{XU} \) is ini-
tialized, so this is where calculations start. Most often \(\text{XU} \) is 0.0, but it
can be any positive number where it is desired to commence calculations.
(Actually \(\text{XU} \) refers to the "upstream" side of the finite-difference step in
the x-direction, as opposed to \(\text{XD} \) on the "downstream" side. The difference
between \(\text{XU} \) and \(\text{XD} \) is \(\text{DX} \), the step length.) \(\text{XL} \) is the x-distance where
it is desired to stop calculations. Thus \(\text{XU} \) and \(\text{XL} \), as read here, define
the distance over which calculations are to take place. These are dimensional
quantities and may be in feet, inches, meters, or whatever is desired. The
actual dimensioning system to be used is designated later. Recall, as shown in
Figure 4.1, that \(\text{x} \) is intrinsic, measured along the I-surface, and is not the
projection onto the axis of symmetry.

\(\text{DELTAX} \) is a number (non-dimensional) from which \(\text{DX} \), the step-length, is
derived. It is the ratio of \(\text{DX} \) to boundary layer thickness, so \(\text{DX} \) grows as
the boundary layer thickens. For a pipe-flow it is the ratio of \(\text{DX} \) to pipe
radius. Actually, \(\text{DELTAX} \) determines a maximum value of \(\text{DX} \) and can be over-
ridden by another number, \(\text{FRA} \), which will be discussed shortly. \(\text{DELTAX} = 1.0 \)
is a reasonable value when dealing with a gas for which properties are varying
rapidly. If properties are nearly constant considerably larger values may be used
and this is particularly true for laminar flows. For fully developed flow in a
pipe \(\text{DELTAX} \) can sometimes be made equal to 10 or greater. If \(\text{DELTAX} \) is too
large, a slight instability will be noted, with oscillation of the output data.
It is often advantageous to use large values of \(\text{DELTAX} \) to reduce computation
time. A further option is available using the constant \(\text{K1} \) and the auxiliary
boundary condition, AUX1(M) (see below), whereby DELTAX can be changed arbitrarily in the course of a calculation.

RETRAN provides a way to effect internally a transition from a laminar to a turbulent boundary layer. For a simple boundary layer, the momentum thickness Reynolds number is employed as a transition criterion, and RETRAN is the Reynolds number at which MODE will automatically shift from 1 to 2. Actually, the transition is made smoothly, rather than abruptly, over a range of momentum thickness Reynolds number from RETRAN to twice RETRAN by smoothly bringing the sublayer damping constant down from a large number to its equilibrium value (see SUBROUTINE WALL). Typically, a transition Reynolds number of 200-300 provides realistic results. If it is desired to make laminar boundary layer calculations only, care must be taken to make sure RETRAN is a number larger than any momentum thickness Reynolds numbers anticipated. For flow in a pipe or duct, RETRAN is interpreted as a diameter Reynolds number, but of course diameter Reynolds number does not vary in the x-direction in this case. For totally turbulent boundary layers and flows, RETRAN can be 0.0, or left blank, if desired. For free-convection boundary layers, or for flows for which there is no wall surface, Reynolds number has no useful significance, so RETRAN must be set to unity.

FRA, when multiplied times the total amount of flow between the I and E boundaries, specifies the maximum amount of new fluid that will be permitted to enter the region of interest between XU and XD either by entrainment or by mass transfer through a porous wall. If this amount is exceeded by the specified value of DELTAX, then DX is appropriately reduced in value. FRA = 0.05 is a reasonable value for most applications.

ENFRA is the entrainment fraction. It has significance only when there is a free-stream boundary, in which case it is the desired difference (expressed as a fraction of the total difference through the boundary layer) between the free-stream velocity, or the corresponding dependent variable in a diffusion equation, and the next closest grid point (excluding the slip point). This difference is maintained by automatically adjusting the rate of entrainment of free-stream fluid. The appropriate value of ENFRA differs somewhat for different kinds of problems, and is also related to the chosen grid spacing near the outer edge of the boundary layer. Calculated results are not necessarily highly sensitive to the value chosen for ENFRA, but a very inappropriate value can lead to
either instability (wild oscillations in entrainment rate and in boundary layer thickness) or inaccurate overall results. For typical boundary layer calculations, turbulent or laminar, a value of 0.005 frequently works well, but a fine grid near the outer edge may suggest a value as low as 0.001. On the other hand, for a free-convection boundary layer or any case where free-stream velocity is at or near zero (for example, a jet) ENFRA should be very much larger, 0.01 to 0.05. One way to get a handle on ENFRA, in any case, is to plot the initial velocity profile, perhaps based on an appropriate analytic solution, and then superimpose the desired grid on the plot. The difference in velocity between the free-stream and the next adjacent grid line, divided by the maximum velocity difference for the whole boundary layer, is then usually a good value for ENFRA.

If there is no free-stream, as would be the case for pipe-flow, then ENFRA can be left blank.

GV is a gravity constant which should be either set at zero or left blank if gravity is not a relevant parameter. The only gravity effects that can be considered are those in the direction of flow (x-direction). Note that a positive value of GV represents a gravity force in the positive or flow direction; if simple free-convection on a vertical flat plate is being considered, remember that GV must be negative. Note also that gravity has no effect unless there are density gradients across the boundary layer; the free-convection boundary layer is a compressible flow boundary layer, and nothing will happen if FLUID = 1.

5.3 Body Forces and Sources

The next card read concerns some integer indicators having to do with body forces in the momentum equation, and energy and other types of sources in the diffusion equations. BODFOR can be 0, 1, or 2. If 0, there is no body force present other than pressure. If BODFOR = 1, the body force is the result of a gravity force acting upon density, and of course a value for GV must also be specified.

If BODFOR = 2, an external body force is present, and this force is introduced through a specified set of auxiliary boundary conditions AUX1(M), which will be discussed later. Provision is made only for a body force that is a function of x, and independent of y. BODFOR = 2 also includes BODFOR = 1. A body force has the dimensions force per unit of volume.
The source indicators, SOURCE(J), are not read unless there are one or more diffusion equations in addition to the momentum equation, i.e., unless NEQ is greater than 1, and NPH is greater than 0. The index J varies from 1 to NPH so that one value for SOURCE is read for each diffusion equation, reading across the card in integer fields of 5, after BDFOR.

If there is more than one diffusion equation it must be decided ahead of time which is which, and the designation of a source for each equation establishes what kind of a diffusion equation it is to be. Of course, the initial dependent variable profiles and the boundary conditions, both of which are discussed later, must be consistent with this choice.

If there is to be no source for a particular diffusion equation, set SOURCE = 0, or at least leave it blank. If SOURCE = 0, the equation could be the energy equation with viscous dissipation neglected, or it could be a mass diffusion equation with no chemical reaction. Only the initial and boundary conditions serve to make a distinction (together also with the Prandtl or Schmidt number), since the differential equations are identical.

SOURCE = 1 activates viscous dissipation as an energy source, as well as body-force work, and the equation is then definitely the energy equation.

Setting SOURCE = 2 for a particular diffusion equation has more extensive effects. It activates the source function for the turbulence energy equation (Production-Dissipation), but additionally it changes the method of calculation of eddy viscosity (and thus eddy conductivity) from the mixing-length method to the turbulent kinetic energy method, wherein eddy viscosity is proportional to the square root of the turbulent kinetic energy. However, the program still uses mixing-length in the Wall Function, and it still uses mixing-length out to the edge of the viscous sublayer if the Wall Function does not extend that far. If there is no wall, turbulent kinetic energy is used throughout.

SOURCE = 3 is the same as SOURCE = 1, except that an external energy source, as a function of x alone, may be introduced through AUX2(M). Such a source must have the dimensions (energy)/(volume * time).

SOURCE = 4 also implies that an external volume source is being introduced through AUX2(M), but viscous dissipation and body-force work are omitted, so this could be a source different from energy.

Note that all of these external body forces and sources which are introduced through the auxiliary functions AUX1(M) and AUX2(M) are functions of x only. This is obviously somewhat limiting, but the only practical way to
introduce sources that vary in the y-direction is by modifications in the core of the program. However, this can be easily done in SUBROUTINE AUX, where some comments are given.

5.4 Fluid Properties

The next card is the one in which fluid properties are introduced. The amount of information actually read depends upon whether constant properties are to be used or whether the variable properties contained in a separate property subroutine are to be used. In any case the initial static pressure PO is always read, and for the variable property case this is all that is needed. For constant properties, density, RHOC, and viscosity, VISCOC, are next to be read; if only the momentum equation is to be solved this is all that is necessary. If one or more diffusion equations are to be solved, the only additional property is the Prandtl number for the energy equation, PRC(J), or a Schmidt number for each and every mass diffusion equation, making sure that they are read in the same order as has been established for designating each equation, i.e., J = 1 refers to a particular diffusion equation, and J = 2 to another, and this order must be maintained throughout the entire input routine. Note that although the symbol PRC(J) is used, this can be either a Prandtl or a Schmidt number. Finally, all units must comprise a consistent set. Note that the read statements are so arranged that it doesn't matter if there is a redundancy of information. Thus the program might be set up to solve both momentum and energy equations with constant properties; but if in the second card FLUID is changed to 2 the program will run with variable air properties and simply will not read the constant properties (except PO). Similarly, if NEQ is changed to 1, the program will not read Prandtl number or anything else having to do with a diffusion equation; it is not necessary to remove this input information if an abbreviated problem is to be run. As a word of caution, do not try to solve the momentum equation alone without setting FLUID = 1 and supplying the appropriate constant properties. There is no way to introduce variable properties without temperature or mass concentration distributions upon which to base them.
5.5 Boundary Conditions

The next card supplies some information about types of boundary conditions, and the number of entries read depends upon the number of differential equations to be solved. NXBC, an integer number, refers to the number of points along the boundaries at which boundary condition information is to be supplied. The cards following will contain that information. Internally, the program will determine boundary values at each XU position by linear interpolation between the x-positions of the input boundary data as specified here. Thus NXBC must have as a minimum a value of 2 so that there is something to interpolate between. If boundary values are varying with respect to x in other than a linear manner, many more than two boundary values may be required for an accurate representation. The program is dimensioned such that NXBC may be as large as 100. Free-stream velocity is evaluated from a cubic spline fit scheme rather than linear interpolation, except that when NXBC = 2 linear interpolation is used.

The other items read on this card refer to the type of boundary condition at a wall that is going to be supplied for any and all diffusion equations. If there is no wall nothing is read, and the same is true if only the momentum equation is to be solved. TYPBC(J) can be either 1 or 2, depending upon whether the boundary condition read is to be, respectively, a specification of the value of the dependent variable at the wall, or the flux of the dependent variable at the wall. In the case of the energy equation, the question is whether it is the enthalpy at the wall or the heat flux that is to be specified. For the turbulent kinetic energy equation set TYPBC(J) = 1. Of course a specification for every diffusion equation must be supplied, and in the proper order.

The following card continues boundary specifications. These items, all decimal numbers, are read in the form of a table. The number of lines in the table must be equal to NXBC. X(M) is the x location of the points where boundary information is to be supplied. The first entry, X(1), must be equal to or less than XU read earlier; the last entry, X(NXBC), must be equal to or greater than XL. For a variable velocity boundary condition, the value of XU must coincide with an X(M) in the table. Between the first and last point, the spacing of any other boundary condition points can be completely arbitrary. Discontinuities, for example, can be simulated by placing two points very close together. When free-stream velocity is changing rapidly, it is important to use a large number of points and not produce situations that a spline...
fit will have difficulty accommodating; abrupt changes of velocity are troublesome and can lead to unwanted velocities between the specified points.

RW(M) is a geometry specification for an axi-symmetric body. It is the transverse radius of the body at each specified x-location. Note that RW is a function of x, distance measured along the surface, and not the projection onto the axis of symmetry. The boundary layer can be either on the inside or the outside of the body for GEOM = 1. GEOM = 2 and 3 are restricted in this regard. For a pipe, GEOM = 4, RW(M) is the pipe radius. For a boundary layer on a non-axisymmetric body, for example a flat plate or an airfoil, use GEOM = 1 and set all values of RW(M) equal to any constant number, such as 1.0. For an axi-symmetric stagnation point use GEOM = 1 or 2 and set RW(M) = X(M). For a flat duct, GEOM = 5; RW(M) is the duct half-width.

Two additional pieces of boundary condition information can, if desired, be read on this card, AUX1(M) and AUX2(M). It has already been noted that these auxiliary items can be used for specified body forces or specified internal heat sources, if proper indicators are activated. AUX1(M) can also be used to provide a control on DELTAX. These functions, however, are provided in general so that the user can conveniently introduce any kind of information that is a function of x, and then appropriately modify the core of the program to make use of the information. If there is a wall present, the program additionally calculates two more functions, AUXM1 and AUXM2, which are linearly interpolated values of AUX1(M) and AUX2(M), and are always available in the COMMON.

The primary boundary condition data are read on the next cards, again in the form of a table in which the number of lines must equal NXBC. UG(M) is the free-stream velocity which must always be supplied if there is indeed a free stream. (In the case of a pipe or duct flow this column can be left blank.) A particular feature of this version of the program is the fact that free-stream velocity is treated as an independent boundary condition rather than pressure or pressure gradient. A minor modification of the basic program is necessary if pressure is to be the independent boundary condition. Note that UG is zero for simple free convection, or for a jet in a stagnant environment.

The second column (second field of 10 spaces) is the mass flux at the wall, AM(M). If there is no wall this column is simply not read. AM is positive in the positive direction of the coordinate system. Thus, if the I boundary is a wall, positive AM is mass transfer into the boundary layer, but if the E
boundary is a wall (as in pipe-flow), negative AM is mass transfer into the boundary layer.

The next five columns are read only if there is a wall and if one or more diffusion equations are to be solved. FJ(J,M) is either the wall value of the dependent variable in a diffusion equation or it is the wall value of the dependent variable flux. Whether it is a wall value or a flux is determined by TYPBC(J), discussed above. Thus for the energy equation FJ is either a wall value of enthalpy or a wall value of heat flux. The sign of the flux is again positive in the positive direction of the coordinate system which goes in the direction from I to E. Thus, for flow in a pipe, a heat flux into the fluid results when FJ is negative. Care must be taken when FJ is a flux and there is mass transfer at the wall. FJ is then the product of the mass flux and the value of the property in question in a reservoir outside the wall. For example, for the energy equation with FJ as a flux, FJ is the product of AM and the enthalpy of the transferred fluid in an external reservoir. For the turbulent kinetic energy equation, FJ should be 0.0.

5.6 Initial Profiles

The next series of cards contains the initial or starting profiles for velocity and the dependent variables for each of the diffusion equations. These are read in the form of a table, as in the previous case. The number of entries in the vertical columns must be equal to N + 1. Each column again occupies 10 spaces.

The first column contains Y(I), the distance measured from the I-boundary for each of the grid points at which the other information is to be supplied. In Y(I), I is an integer which varies from 1 to NP3, but 2 and NP2 are omitted, since these are the slip positions which are evaluated within the program. Thus the table will contain N + 1 entries. Y(1) is always 0.0, since y is measured from the I-boundary.

The spacing of the various Y(I) is very important, since it establishes the cross-stream grid for the entire boundary layer calculation. First, the obvious fact should be noted that it is not possible to start finite-difference calculations with this program from a singularity; starting profiles are mandatory, but the boundary layer can be as thin as desired, although a very thin starting boundary layer may require a large number of calculations to progress
very far in the x-direction. Generally, the starting profiles are where analytic boundary layer solutions can be used to great advantage. Typically, one knows something like momentum thickness Reynolds number at the start, and simple analytic solutions can then be used to establish initial total thickness and initial profile shapes. Actually, since boundary layers, and especially turbulent boundary layers, come to equilibrium relatively quickly, the initial profile shapes are often not at all critical; it is important that the initial integral parameters (such as momentum and enthalpy thickness) be close to correct. For example, a laminar boundary layer calculation could be started with a simple linear velocity profile, and within a few downstream steps the correct profile will be closely approximated. An exception to this discussion is flow in a pipe or duct where the "boundary layer thickness" is always the distance from the wall to the centerline. It is possible to start such calculations with a uniform velocity profile and thus calculate the velocity entry length, but for accuracy this does require using a relatively fine grid spacing near the wall.

Now, to get back to the Y(I) spacing, the reason it is so important is that the program reads the initial data, calculates the fluid flow in each flow tube, totals this for the entire region from I to E, and then calculates the fraction of the flow in each flow tube. As the boundary layer grows, the total flow in the region I to E may grow due to entrainment and/or mass transfer, and the distance from I to E may grow, but the fraction of the total flow in each flow tube is maintained constant. The fraction of the flow from the I-boundary to some Y(I) is given the symbol OM(I) (omega). Thus the flow between the I and the I + 1 grid point is OM(I+1) - OM(I). It is these initial values of OM(I) that remain the same throughout the calculation (with an exception to be discussed below). Now there is no requirement that the OM spacings be uniform; on the contrary, it is generally more efficient if they are not. But it is important that the OM spacing differences between adjacent flow tubes not be too large. As a rule of thumb, differences greater than a factor of about 3 should be avoided. A good way to set up the initial velocity profile is to lay it out on a piece of graph paper and then superimpose lines for grid points, crowding them closer together in the regions where velocity is changing rapidly. A mental estimate of the relative flow rate between each pair of grid lines will usually suffice to make sure that large steps in

54
flow rates are avoided. This graphical procedure was also recommended as a guide for specifying entrainment fraction.

If there is a wall and the boundary layer is turbulent, a decision must be made whether to use a small number of grid points, along with "using the Wall Function", or to "bypass the Wall Function" and use a fine grid down to the wall. For a great many calculations the results will not differ much, and "using the Wall Function" is a little simpler and cheaper in computation time. For very high Reynolds numbers there is really no choice; a grid fine enough to allow "bypassing the Wall Function" may require an excessive number of grid points. "Bypassing the Wall Function" does become useful where pressure gradients are large, or boundary conditions are changing rapidly along the wall, or it is simply desirable to have a print-out of the variables near the wall. The accuracy question comes down to the adequacy of the Couette flow approximation, which is used in the Wall Function. For large adverse pressure gradients, for example, the Couette flow approximation begins to yield a substantial error in local shear stress in a typical case when y^+ becomes larger than about 15 or 20.

When "bypassing the Wall Function", it is necessary that U and y at the first grid point ($I = 3$ if $N^N = 1$, or $I = N^P$ if $KEX = 1$) be so chosen that y^+ is about 1.00, or less. This can be checked by multiplying U by y and dividing by kinematic viscosity, which gives the product U^+y^+. In this region $U^+ = y^+$, approximately. The spacing of the grid points farther from the wall can then be gradually increased by steps of perhaps 20 percent out to about $y^+ = 20$, and 25-30 percent thereafter, i.e., $y^+ = 1.2, 1.4, 1.7, 2.1$, etc.

When "using the Wall Function" it is important that the first grid point be at a value of y^+ not less than about 20.0. The subsequent points can then be spaced at intervals that increase by 25 to 30 percent, i.e., 25.0, 31.0, 39.0, 49.0, etc.

For both cases, after y^+ becomes greater than about 200, quite large, equally spaced steps generally can be used because velocity is no longer changing rapidly. The important thing is to concentrate the grid where rapid changes are taking place.

55
It is important that the velocity at the free-stream edge of the boundary layer be precisely the same as the value of free-stream velocity introduced as a boundary condition earlier.

Having once established the initial velocity profile, the other columns are filled in with the corresponding initial dependent variable profiles for the diffusion equations, all in the same order as discussed earlier. Any of these can be totally zeros if desired, or all equal to the free-stream value, as would be the case for a heat transfer problem with an unheated starting length. For turbulent kinetic energy it is possible to start with all zeros and the program will generate its own kinetic energy. In any case, the wall value of turbulent kinetic energy should be 0.0. In the case of the energy equation the dependent variable is always stagnation enthalpy, not temperature.

The value of the dependent variable in the diffusion equations at the outer edge of the boundary layer is always constant, and is established by the value specified in the initial profiles.

5.7 Turbulence Constants

Some of the turbulence constants are read in the next cards. If the flow is laminar, dummy turbulent values can be used, or these entries can be left blank. If there is no wall, some of the constants are also redundant.

AK is the wall region mixing-length constant, kappa. There is not total agreement on the value of kappa, but 0.41 is extensively used. ALMGG is lambda, the outer region mixing-length constant (or outer region length-scale constant when turbulent kinetic energy is used). There is also a constant eddy diffusivity option available (see below) in which case ALMGG becomes a dummy. For boundary layers a value of 0.085 appears reasonable; for flow in a pipe 0.07 is suggested, but the constant diffusivity option is recommended for pipe-flow. For a boundary layer the value for ALMGG is overridden at momentum thickness Reynolds numbers below about 5500 by an internal correlation that yields a higher value. This override can be suppressed by setting K2 = 3 (see below).

ALMGG is a non-dimensional constant which yields a mixing-length when multiplied by boundary layer thickness. But "boundary layer thickness" must be defined, and FR provides this definition. If FR is set equal to 0.01, the boundary layer thickness upon which ALMGG is based is the distance from the wall to the point where the velocity is within 1 percent of free-stream velocity. The suggested values for ALMGG given above are based on FR = 0.01.
AQ and BQ are turbulence constants which are used for the turbulence energy equation, but also for the constant eddy diffusivity option. In the former case AQ is the eddy diffusivity constant while BQ is the dissipation constant. Of the three constants, AK, AQ, BQ, only two are independent. The three are related by the equation:

\[AK = \frac{(AQ)^{0.75}}{(BQ)^{0.25}} \]

If \(AK = 0.41 \), some reasonable values for AQ and BQ are 0.22 and 0.38.

When the constant eddy diffusivity option is used (set \(K2 = 2 \), see below), eddy diffusivity in the outer region is evaluated from the equation:

\[\frac{e}{\nu} = AQ \times (\text{Reynolds number})^{BQ} \]

For an external boundary layer, momentum thickness Reynolds number is used; for flow in a pipe or duct, diameter Reynolds number is used. Reasonable values for the pipe case are \(AQ = 0.005 \), \(BQ = 0.9 \).

YPMAX and YPMIN are controls on the values of \(y^+ \) at the outer edge of the Wall Function. They are operable whether the flow is laminar or turbulent, but are meaningless if there is no wall. Routine LAMSUB provides a scheme whereby extra grid points can be automatically inserted between the wall and the next point out, or grid points can be removed from the same region. In other words, the grid number \(N \) is changed. YPMAX sets a maximum limit on the value of \(y^+ \) at the outer edge of the Wall Function. If this limit is exceeded an extra grid point will be inserted. YPMIN sets a minimum limit on the value of \(y^+ \) at the outer edge of the Wall Function. If \(y^+ \) at the outer edge is less than this limit, the grid point nearest the wall will be removed.

When using the Wall Function, a typical procedure is to set \(YPMIN = 20.0 \) and \(YPMAX = 50.0 \) to 100.0. When bypassing the Wall Function, set \(YPMIN = 0.0 \) and \(YPMAX = 1.0 \). This scheme is also useful in setting up the initial profiles when it is desired to bypass the Wall Function. For example, a rather coarse grid can be introduced in which \(y^+ \) at the innermost point is, say, 50.0. Then if \(YPMIN = 0.0 \) and \(YPMAX = 1.0 \), the program will insert a series of points down to near \(y^+ = 1.0 \), with optimal spacing.
The damping function constant for the viscous sublayer is read in the next card. Two options are available, together with some variations. APL refers to A^+ in the Van Driest exponential damping function scheme; BPL refers to B^+ in the Evans linear damping function scheme. The program will use the scheme for which the larger number is indicated, i.e., if APL is larger than BPL, the Van Driest scheme will be used, and vice versa. In either case an empirical internal correlation is used to modify the value of APL or BPL to account for the effects of pressure gradient and transpiration. For the Van Driest scheme, $A^+ = 25.0$ is suggested for external boundary layers, and $A^+ = 26.0$ for flow in a circular pipe. $B^+ = 35.0$ appears to be about correct for the Evans scheme. In any event, the user is urged to experiment with the constants and compare results against proven experimental data. If it is desired to not use the internal correlation for transpiration and pressure gradient, SIGNAL should be set to 1.0; otherwise SIGNAL may simply be left blank. For example, the internal equation for the effects of pressure gradient is probably not valid for a free-convection boundary layer, or for any boundary layer involving body forces in the flow direction, so in such a case set SIGNAL = 1.0.

The next card contains a lag constant, PPLAG, to account for the time required for the sublayer to adjust to different externally imposed conditions, such as pressure gradient or transpiration. PPLAG = 4000.0 has been found to be reasonably satisfactory.

Also in this card is read the turbulent Prandtl number, PRT(J), for each of the diffusion equations. PRT(J) is not read if the flow is laminar, nor is it read if only the momentum equation is being solved. The program contains an internal calculation for turbulent Prandtl number near a wall, based on a conduction model. The value of turbulent Prandtl number read here is the value for a region far removed from the wall. However, this value is used in the near-wall analysis and does affect it directly and importantly. Right at the wall, turbulent Prandtl number is computed to be twice the value far removed from the wall. For the energy equation it has been found that $PRT(J) = 0.86$ gives reasonable results for air, and is also quite satisfactory for liquid metals. In the latter case the internal analysis yields a turbulent Prandtl number over the entire region of interest considerably greater than the value of PRT(J) read in the input.
For the turbulent kinetic energy equation, the internal correlation is not used, and a value of \(\text{PRT}(J) = 1.7 \) may be about right, although there is great uncertainty about this figure.

If it is desired to suppress the internal calculation for turbulent Prandtl number and thus use a constant turbulent Prandtl number (or turbulent Schmidt number) throughout, set \(K3 = 3 \), as described later.

5.8 Other Constants and Output

The dimensioning system used is established in the next card. \(GC \) is the constant in Newton's Second Law \((g_c) \). If SI units are being used, \(GC = 1.0 \). If English Engineering units are used, \(GC = 32.2 \frac{(lb_m \ ft)}{(lb_f \ sec^2)} \), etc. \(CJ \) is the proportionality factor in the First Law of Thermodynamics \((J) \). Again, if SI units are used, \(CJ = 1.0 \); but with English Engineering units, \(J = 778 \) ft-lbf/Btu. The other quantities read on this card, \(AXX \), etc., are merely auxiliary constants which may be employed by the user for special purposes, after making appropriate adjustments inside the program.

The final card reads some integer numbers concerned with a number of different things. The first, \(\text{NUMRUN} \), is the number of sets of DATA that are to be read. Ordinarily this would be 1, but DATA sets may be stacked if desired. \(\text{SPACE} \) designates the number of integrations between output prints, i.e., if \(\text{SPACE} = 10 \), the program will print out a complete set of results every 10 integrations in the \(x \)-direction. There are two special cases. If \(\text{SPACE} = -11 \), a one-line set of abbreviated results will be printed out for every integration; if \(\text{SPACE} = 21 \), a complete set of results will be printed every 20 integrations, and a one-line abbreviated set will be printed for every integration.

\(\text{OUTPUT} \) is a number designating the particular output format to be used. Three are presently available, designated by the integer numbers 2, 4, 6.

\(\text{OUTPUT} 6 \) is a general-purpose routine usable for any kind of problem. Complete profiles of all dependent variables are printed, together with numerous other pieces of information such as shear stress at a wall, heat flux, entrainment rates, eddy viscosity, etc. This routine is the only one which is usable for \(KEX = 1 \), as well as \(\text{KIN} = 1 \), and it is the only one which should be used when free-stream velocity is at or near zero.

\(\text{OUTPUT} 2 \) is especially designed for external boundary layers when the I-boundary is a wall. \(U^+ \) and \(y^+ \) are printed, as well as the dimensional
profiles; and the non-dimensional parameters $C_f/2$, S_t, momentum thickness Reynolds number, enthalpy thickness Reynolds number, are all printed.

OUTPUT 4 is a routine for flow in a pipe or duct. Parameters peculiar to this type of problem, such as mean velocity, mixed-mean enthalpy, and diameter Reynolds number, are printed along with the pertinent profiles.

The options SPACE = 11 and 21 are available only for output routines 2 and 4.

Some additional data may be printed with any of the output routines by setting the indicator K_1 (see below) to any number greater than 10. Five specially designated pieces of information, $SP(1),...SP(5)$, will be printed, but they must first be assigned at some point in the body of the program. This option simply provides the user with a simple method of capturing additional information of his own choosing.

The integer indicators K_1, K_2, K_3, have been mentioned several times in this chapter. These indicators provide the user with a convenient scheme for causing particular things to happen within the program. They have already been used for a number of purposes, but the user still has the option for other uses. The uses already programmed are as follows:

K_1 greater than 10: Five specially defined pieces of information will be printed in all of the output routines.

K_1 equal to 9 or 20: DELTAX becomes equal to AUX1(M), and the input value of DELTAX is overridden.

K_2 equal to 2: Program will use the constant eddy diffusivity option in the outer region, rather than mixing-length.

K_2 equal to 3: An internal empirical equation for $ALMG$ will be suppressed, and the input value of $ALMG$ will be used throughout.

K_3 equal to 3: An internal calculation for turbulent Prandtl number will be suppressed, and the input values of turbulent Prandtl number will be used as a constant throughout.

60
6.1 **Structure of the Program**

Program STAN5 consists of a driver program and six subroutines.

The driver program, MAIN, sets all boundary conditions and conducts the integration. In addition, fluid properties, entrainment, DX stepsize, and integral parameters are calculated in this routine.

SUBROUTINE STEP is a package containing five subsections. In STEP(1), the initial slip points and β and γ near the I and E surfaces are computed. STEP(2) computes the initial radii and converts the initial y's to ψ's and then to ω's. These two routines are required only at the start of integration or if LAMSUB readjusts the profiles. STEP(3) computes y's from the velocity profile, and the ψ distribution and the radii associated with these y locations. Also, the velocity profile is searched for its maximum and minimum values, and the boundary layer thickness is determined. In STEP(4), all finite-difference coefficients are formed and the resulting FDE's are solved. STEP(5) is used to initialize variables at the start of integration.

If one of the bounding surfaces is a wall, SUBROUTINE WALL computes wall shear stress and heat flux, along with $C_f/2$ and St. The internal correlation for A^+ or B^+ as a function of V_o^+, P^+, and BF^+, and LAMSUB, are contained in this subroutine.

Effective viscosities and effective Prandtl numbers for turbulent flow calculations are computed in SUBROUTINE AUX, and, in addition, all source terms for the ϕ-equations, e.g., viscous dissipation or TKE production and dissipation.

Printing during integration is via SUBROUTINE OUT, which contains three subsections, with the first designed primarily for external boundary layers, the second for pipe flows, and the third for a general output.

SUBROUTINE PROP2 is a variable-properties table for air at moderate temperatures, to be used with compressible flow calculations.

SUBROUTINE INPUT reads and prints all input variables. In addition, it performs diagnostics on these variables to look for "pitfalls" associated with setting up a problem or incompatibilities among the variables.
6.2 MAIN

The driver of any program is generally the most complex routine, and the one contained in STAN5 is no exception. Therefore, it has been diagrammed and is given in Figure 6.1. Since the flow chart presents the sequence of events straightforwardly, no further discussion is felt necessary.

6.3 STEP

Five sections comprise STEP(K), with STEP1, STEP3, and STEP4 very similar in content to that found in Patankar and Spalding [1,2].

STEP1 computes slip-point quantities near the I and E surfaces and β and γ (see Section 4.3). This routine is used only for the initial profiles and for profiles readjusted by LAMSUB (see Section 3.5).

STEP2 has two functions, and is used only for the initial profiles and for profiles readjusted by LAMSUB. It computes the radii that correspond to initial values of γ in the velocity profile. It also converts the initial γ table to ψ, using equation (4.1), and finally to ω, OM(I), using equation (4.4), with ψI arbitrarily set to zero. Note that integration of equation (4.1) between the I and E surfaces gives mass flow rate per radian (or unit depth for two-dimensional flows). The variable PEI is this quantity. For internal flows, PEI remains constant (unless there is mass transfer at the wall), and for external flows PEI is increased at each integration step due to entrainment or wall mass transfer.

STEP3 has three functions; it is called at each integration step. This routine computes γ locations of the nodes by integrating the velocity profile using equations (4.1) and (4.4) and the mass flow rate per unit radian, PEI. The radii are then calculated from the γ's. Finally, the velocity profile is searched to obtain maximum and minimum velocities, UMAX and UMIN, and the input variable FR is multiplied times (UMAX - UMIN). The γ table is then interpolated to obtain the location for this product, YL; this variable is the boundary layer thickness, defined as delta sub (1.000 - FR). For pipe flows YL is the wall radius.

STEP 4 has two functions; it is called at each integration step. It computes the velocity finite-difference coefficients AU(I), BU(I), and CU(I), and those for the φ equations, A(J,I), B(J,I), and C(J,I). The PDE's are then assembled and solved to obtain profiles for velocity, U(I), and φ-dependent variables, F(J,I).
CALL INPUT to read input and check for errors

CALL STEP(5) to initialize variables

set initial wall mass flux
locate $X_U, X(1) < X_U < X(NXBC)$

CALL STEP(1) to set initial slip pts. β, γ

set fluid properties

CALL PROP2 c, η, Pr

set wall transverse curvature radius

CALL STEP(2) Θ's, P's

CALL STEP(3) to calculate y's, r's, $UMAX$, $UMIN$, δ.99

set entrainment

set DX stepsize
$XD = X_U + DX$

set body forces

Fig. 6.1. Flow chart of the driver routine in STANS.

CALL WALL $A^+, B^+, P^+, V_o^+, BF^+$, $T_o, C_f/2, q_o^-, St$

LAMSUB

LSUB > 0

CALL WALL $A^+, B^+, P^+, V_o^+, BF^+$, $T_o, C_f/2, q_o^-, St$

LAMSUB

58

500 calculate integral parameters

65 CALL AUX to calculate EMU, PREF, SU sources

CALL WALL $A^+, B^+, P^+, V_o^+, BF^+$, $T_o, C_f/2, q_o^-, St$

LAMSUB

LSUB > 0

10

500 calculate integral parameters

65 CALL AUX to calculate EMU, PREF, SU sources

CALL WALL $A^+, B^+, P^+, V_o^+, BF^+$, $T_o, C_f/2, q_o^-, St$

LAMSUB

LSUB > 0

10

set pressure gradient

set wall mass flux

set wall $\frac{\partial}{\partial}$ boundary conditions

CALL STEP(4) to calc. f-d coeffs.
integrate eqns. at $X = XD$

set $X_U = XD$

15

1000 another data set

STOP
STEP5 is called at the beginning of the program to zero the arrays and initialize parameters.

6.4 WALL

SUBROUTINE WALL performs the functions described in Sections 3.1 through 3.5 to determine friction factor and Stanton number. It is called one or more times per integration (depending on whether LAMSUB is invoked) providing one surface is a wall.

The first part of the routine sets up the join point conditions for velocity and stagnation enthalpy: \(y_{2.5} \) is \(YI \); \(U_{2.5} \) is \(UI \); \(I_{2.5}^* \) is \(FI(J) \); and \(\text{Re}_{2.5} \) is \(\text{REW} \). The shear velocity \(U_T \), \(UTAUW \), is also computed using the wall shear stress from the previous integration step.

The second part of the routine sets up various source terms for the stagnation enthalpy Wall Function equation (3.14). The variable \(C_3 \) is \(W \), \(C_4 \) is \(W \cdot X^+/2 \), and \(C_5 \) is the term in equation (3.4k) to convert \(s \) to \(S^+ \). Since the non-dimensionalizations contain \(q_0^w \) in the denominator; an adiabatic wall should be simulated with a very small but non-zero heat flux.

In the third section Couette flow quantities are formed: \(PPL \) is \(P^+ \); \(GPL^+ \) is \(V_o^+ \); and \(BFPLUS \) is \(X^+ \). These quantities are then converted into effective values by solving a lag equation (2.25) for \(V_o^+, \text{effective} \); \(GPL^+, \text{effective} \); and for \((P^+-X^+)^+, \text{effective} \); \(PPL^+, \text{effective} \). The constant in equation (2.25) is the input variable \(B^+PPLAG \). Finally, the \(A^+ \) or \(B^+ \) equation (2.24) is evaluated using these effective values. If transition from laminar to turbulent flow is in progress, \(A^+ \) or \(B^+ \) is modified according to equation (2.38).

The fourth section examines the join-point Reynolds number. If it is less than 4 (which is synonymous with setting the input variable \(YPMAX < 2 \)), the Wall Function is bypassed (section six below); otherwise section five is used.

The fifth section of SUBROUTINE WALL is "using the Wall Function". Here equation (3.9) is solved for \(U^+ \) and equation (3.14) is solved for \(I^+ \). Both equations are numerically integrated by a trapezoidal rule using progressively larger \(\Delta y^+ \) steps, \(DYPL \). In the output from this section \(y_{2.5}^+ \) is \(YPL \); \(U_{2.5}^+ \) is \(UPL \); and \(I_{2.5}^* \) is \(HPS(J) \). When the \(U^+y^+ \) product equals \(\text{Re}_{2.5} \), control is transferred to section seven, described below. During integration \(\tau^+ \) and \(y^+ \) are continuously monitored, and if \(\tau^+ \) becomes less than 0.1 or
y^+ becomes greater than YPMAX, control is transferred to LAMSUB to insert a new point near the wall.

The Wall Function bypass option is contained in the sixth subsection of WALL. Here equations (4.18a-c) are solved for y^+_2.5, with U^+_2.5 computed from the definition of Re_2.5.

Outputs from either section five or six are used in section seven to compute wall shear stress, TAU_W, using equation (3.11a). The friction factor, CF_2, is then formed following equation (3.11b). If there are no φ equations being solved, control is passed to section ten of WALL.

If φ equations are being considered, section eight is used, providing the Wall Function is being bypassed, and equation (3.20) is solved for I^+_2.5.

Section nine uses I^+_2.5 from either section five or eight to compute wall heat flux, QW(J), and Stanton number, ST(J). If there is a total flux boundary condition, the wall value of φ is computed (see Section 3.3.2).

Routine LAMSUB is contained in the tenth section. It is invoked in accordance with equation (3.21), which is fully described in Section 3.5.

6.5 AUX

In the first part of subroutine AUX, the turbulent viscosity and conductivity for each node is computed and added to its laminar counterpart to obtain an effective viscosity and conductivity.

Computation of the turbulent viscosity at each node begins with evaluating the damping function, DV(I), as described by equation (2.22) or (2.23). Then the λ^99 mixing-length, AL, is evaluated according to equation (2.26), with λ, ALMG, obtained from equation (2.27). If the flow is in the near-wall region, the mixing-length is switched to kyD, equation (2.21).

Once a mixing-length for the node is established, the turbulent viscosity \(\nu_T \), EMUT, is evaluated using either the Prandtl mixing-length model, equation (2.19), or the constant eddy viscosity model, equation (2.36), or the turbulent kinetic energy model, equation (2.28). The turbulent viscosity is added to the laminar viscosity to form an effective viscosity, EMU(I), as defined by equation (2.6).

If the stagnation enthalpy equation is being solved, the turbulent Prandtl number, PRT_J, is set either to its input value, PRT(J), or to a value calculated using the variable turbulent Prandtl number model, equation (2.37).
For TKE the input variable is the turbulent Schmidt number. An effective Prandtl/Schmidt number, \(\text{PREF}(J,I) \), is formed according to equation (2.14).

In the second part of subroutine AUX all source terms for the \(\phi \)-equations are formulated. The sources are defined as all terms to the right of the equal sign after a \(\phi \)-equation is transformed using equation (4.7), and finite-differenced according to equation (4.11).
References

Appendix I

PROGRAM NOMENCLATURE

A(J,I) Finite-difference coefficient for \(\phi \)-equations.

A2 Integral term in Couette flow form of momentum equation.

AJE(J) Linear-interpolated value of \(F(J,M) \) if flux type boundary condition
 and \(E \)-surface is a wall.

AJI(J) Linear-interpolated value of \(F(J,M) \) if flux type boundary condition
 and \(I \)-surface is a wall.

AK Kappa in Prandtl mixing-length model.

ALMG Outer layer constant in Prandtl mixing-length constant, modified if
 low Reynolds number \((K2 \neq 3)\).

ALMGG Input value of outer layer constant in Prandtl mixing-length model.

AM(M) Wall mass flux boundary condition, positive in direction of increasing \(y \).

AME Linear-interpolated value of \(AM(J) \) if wall mass flux and \(E \)-surface
 is a wall.

AMI Linear-interpolated value of \(AM(J) \) if wall mass flux and \(I \)-surface
 is a wall.

APL Van Driest damping coefficient in mixing-length model, input value
 \(SIGNAL=1 \) or computed from internal correlation \(SIGNAL=0 \).

AQ Production constant in TKE model or constant in eddy diffusivity
 model.

AU(I) Finite-difference coefficient for velocity equation.

AUX1(M) Generalized \(x \)-direction body force for momentum equation \((BODFOR=2)\)
 in units of force/unit volume, specified at each \(X(M) \).

AUX2(M) Generalized energy equation source \([SOURCE(J)=2,3]\) in units of energy rate/unit volume, specified at each \(X(M) \).

AUXM1 Linear-interpolated value of \(AUX1(M) \).

AUXM2 Linear-interpolated value of \(AUX2(M) \).

AXX Not used by program.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B(J,I)</td>
<td>Finite-difference coefficient for ϕ-equation.</td>
</tr>
<tr>
<td>BETA</td>
<td>Power of y in slip scheme, near-wall region.</td>
</tr>
<tr>
<td>BF(I)</td>
<td>Body force term for momentum equation (gravity, AUXM1 for BODFOR#0).</td>
</tr>
<tr>
<td>BFPLUS</td>
<td>Body force in "wall coordinates" (X^+).</td>
</tr>
<tr>
<td>BODFOR</td>
<td>Type of body force for momentum equation.</td>
</tr>
<tr>
<td>BPL</td>
<td>Evans damping coefficient in mixing-length model, input value (SIGMA=1.) or computed from internal correlation (SIGMA=0.).</td>
</tr>
<tr>
<td>BQ</td>
<td>Dissipation constant in TKE model or constant in eddy diffusivity model.</td>
</tr>
<tr>
<td>BU(I)</td>
<td>Finite-difference coefficient for velocity equation.</td>
</tr>
<tr>
<td>BXX</td>
<td>Not used by program.</td>
</tr>
<tr>
<td>C(J,I)</td>
<td>Finite-difference coefficient for ϕ-equation.</td>
</tr>
<tr>
<td>CAY</td>
<td>Acceleration parameter, $(\nu/u_\infty^2)\partial u_\infty/\partial x$.</td>
</tr>
<tr>
<td>CF2</td>
<td>Wall friction coefficient, $C_f/2$.</td>
</tr>
<tr>
<td>CJ</td>
<td>Conversion factor, mechanical to thermal energy.</td>
</tr>
<tr>
<td>CSALFA</td>
<td>Cosine α, to relate y and r.</td>
</tr>
<tr>
<td>CU(I)</td>
<td>Finite-difference coefficient for velocity equation.</td>
</tr>
<tr>
<td>CXX</td>
<td>Not used by program.</td>
</tr>
<tr>
<td>DEL1</td>
<td>Boundary layer displacement thickness.</td>
</tr>
<tr>
<td>DEL2</td>
<td>Boundary layer momentum thickness.</td>
</tr>
<tr>
<td>DEL3</td>
<td>Boundary layer enthalpy thickness.</td>
</tr>
<tr>
<td>DELTAX</td>
<td>Maximum integration stepsize ($\text{DELTAX} \times YL$).</td>
</tr>
<tr>
<td>DPDX</td>
<td>Pressure gradient due to free-stream velocity variation and free-stream body force (pressure gradient to conserve continuity and momentum if pipe/channel flow).</td>
</tr>
<tr>
<td>DX</td>
<td>Integration stepsize (computed by program).</td>
</tr>
<tr>
<td>DXX</td>
<td>Not used by program.</td>
</tr>
</tbody>
</table>
Effective dynamic viscosity, sum of laminar and turbulent contributions.

Entrainment fraction to control boundary layer entrainment.

Not used by program.

\(F(J,I) \)
\(\phi \)-dependent variable in \(\phi \)-equations (e.g., stagnation enthalpy or TKE equations) at \(Y(I) \).

Join-point value of \(F(J,I) \).

Boundary value of \(F(J,I) \), specified at each \(X(M) \) [level if \(TYPBC(J)=1 \) and flux if \(TYPBC(J)=2 \)].

Type of free-stream fluid.

Bulk-mean stagnation enthalpy for pipe flow, to adjust Stanton number

Defines boundary layer thickness.

Fraction to determine \(DX \) stepsize.

Power of \(y \) in slip scheme, near-wall region.

Proportionality constant, Newton's 2nd Law.

Geometry descriptor.

Blowing parameter in "wall coordinates" \((V_0^+) \).

Gravity constant for momentum body force.

Boundary layer shape factor.

Cross-stream index for dependent variable \((I = 1 \) at \(y = 0 \)).

Type of boundary condition at E-surface \((TYPBC(J)) \).

Type of boundary condition at I-surface \((TYPBC(J)) \).

Integration step counter.

I index value at edge of mixing-length model/TKE model boundary.

Index for \(\phi \)-equations (all \(J \) loops bypassed if only solving velocity equation).
KASE Flag to identify if one surface is a wall.
KD Flag to determine how damping coefficient will be determined for Prandtl mixing-length model.
K1 Flag to control print of SP(I) and changes in DELTAX.
K2 Flag to suppress corrections to ALMGG or to use eddy diffusivity model.
K3 Flag to suppress use of internal correlation of turbulent part of PREF(J,I).
KENT Flag to control the entrainment calculation.
KERROR Flag to terminate program if input data error detected.
KEX Type of E-surface.
KIN Type of I-surface.
KRAD Flag to identify if transverse radius effects are to be included in equations.
LSUB Flag to activate the LAMSUB routine in subroutine WALL.
LVAR Flag to prematurely terminate program (e.g., if dimensioning exceeded, negative pressure, etc.).
M Index for boundary condition location.
MODE Flag to signal laminar or turbulent flow.
N Number of initial stream tubes (which requires specification N + 1 initial profile points).
NEQ Number of equations to be solved.
NIND Counter for number of data sets executed.
NPH Number of φ-equations to be solved (NEQ-1).
NP1 N + 1.
NP2 N + 2.
NP3 N + 3.
NUMRUN Number of consecutive data sets to be processed.
NXBC Number of boundary condition locations (X(1) < X(M) < X(NXBC)).
OM(I) Non-dimensional stream function.
OMD(I) OM(I+1) - OM(I).
OUTPUT Flag to signal type of print format, related to GEOM.

PEI Boundary layer mass flow rate per unit radian (or per unit depth if transverse radius not considered).
PO Initial free-stream static pressure.
PPLAG Lag constant for changing p^+, x^+, v_o^+.
PPL Pressure gradient parameter in wall coordinates (p^+).
PR(I,J) Laminar Prandtl number.
PRC(J) Constant property laminar Prandtl/Schmidt number.
PRE Pressure at $X = XD$.
PREF(J,I) Effective Prandtl number, combining the laminar and turbulent Prandtl numbers.
PRO Pressure at $X = XU$.
PRT(J) Initial value of turbulent Prandtl number for ϕ-equation (asymptote if variable turbulent Prandtl number model used).
QW(J) Flux of ϕ-equation at a wall (positive in positive y-direction).
QWF(J) Flux of ϕ-equation at a wall/ $[F(J,wall) - FI(J)]$.

R(I) Transverse radius of finite-difference node at $Y(I)$.
RBOM(I) $1./[OM(I+1) - OM(I-1)]$.
REH Enthalpy thickness Reynolds number.
REM Momentum thickness Reynolds number (diameter Reynolds number for pipe flow).
RETRAN Reynolds number for laminar-to-turbulent transition.
RHO(I) Fluid density.
RHOC Constant property fluid density.
RHOM Fluid density at location of FMEAN for pipe flow.
ROMD(I) $1./[OM(I+1) - OM(I)]$.

72
RW(M) Distance from axis of symmetry to body surface, specified at each X(M).

RWO Wall radius for pipe flows.

SC(I) Diffusion term for velocity equation (small c).

SD Source term at X = XD, not used by program.

SOURCE(J) Type of source function for ϕ-equation.

SP(I) Special print array, user supplied.

SPACE Print spacing.

ST(J) Wall Stanton number (based on FMEAN if pipe flow).

SU(J,I) Source term for ϕ-equation.

T(I) Static temperature if stagnation enthalpy equation (FLUID = 2); shear stress if no ϕ-equations.

TAU Shear stress at join-point location.

TAUW Wall shear stress.

TYPBC(J) Type of boundary condition for ϕ-equations (level or flux).

U(I) Velocity-dependent variable in momentum equation at Y(I).

UG(M) Free-stream velocity, specified at each X(M), except for pipe/channel flows.

UGD Free-stream velocity at XD, obtained using 3rd order spline fit to UG(M).

UGU Free-stream velocity at XU, obtained using 3rd order spline fit to UG(M).

UI Join-point velocity.

UMAX Maximum U(I) in velocity profile.

UMIN Minimum U(I) in velocity profile.

VISCO(I) Laminar dynamic viscosity.

VISCCOC Constant property laminar dynamic viscosity.
X(M) Location along wall (centerline if no wall) where boundary values are given.

XD Downstream value of x where differential equations are solved.

XL Value of x where integration terminated.

XU Value of x where integration begins; during integration the upstream value of x.

Y(I) Independent variable, perpendicular to x, measured from I-surface.

YEM Location for (1 - FR) • UMAX.

YIP Location for (1 - FR) • UMIN.

YPMAX Maximum y^+ at outer edge of Wall Function.

YPMIN Minimum y^+ at outer edge of Wall Function.
Appendix II

OUTPUT NOMENCLATURE

AME $^{m}_{E}$, wall mass flux, Figure 4.1, or entrainment, equation (4.15).

AMI $^{m}_{I}$, wall mass flux, Figure 4.1.

APL A^+, Van Driest damping constant, equation (2.22).

BETA β, slip constant, equation (4.13a); or $-H * Re_{M} * K/C_{f}/2$, acceleration parameter, OUTPUT = 2.

BPL B^+, Evans damping constant, equation (2.23).

CF2 $C_{f}/2$, friction factor, equations (3.11b) or (3.24).

EDR μ_{eff}/μ, effective/laminar viscosity, equation (2.6).

EMU(I) μ_{eff}, effective viscosity at y location, equation (2.6).

F $^{m}_{(wall)}/\rho U_{(free \ stream)}$, blowing fraction.

F(1,I) dependent variable at y location for first ϕ-equation.

F(2,I) dependent variable at y location for second ϕ-equation.

F(1,wall) dependent variable, wall value.

FM \overline{I}^*, mean stagnation enthalpy, equation (3.27).

FW I^* at wall, stagnation enthalpy.

G Clauser parameter, $(H-1.)/(H\sqrt{C_{f}/2})$, OUTPUT = 2.

GAMA(J) γ, slip constant, equation (4.13b).

H δ_1/δ_2, shape parameter, equations (3.22a-b).

HPLUS(I) I^{*+} at y location, equation (3.41).

I y location.

INTG integration number.

K acceleration parameter, $(\nu/\overline{u}_{\infty}^2)du_{\infty}/dx$.

NU Nu, Nusselt number, equation (3.26).

OM(I) ω, equation (4.4).
PEI \((\psi_{-\psi}) \), boundary layer mass flow rate/radian (on unit depth), equation (4.4).

PPLUS \(P^+ \), pressure gradient parameter, equation (3.4g).

PRESS \{ PRESSURE \} fluid thermodynamic pressure.

QWALL \(q''_o \), wall heat flux, equation (3.15a).

R(I) \(r \), radius at \(y \) location.

RE Reynolds number, equation (3.29), OUTPUT = 4.

REM \(Re_M \), momentum thickness Reynolds number, \(\delta U_\infty / \nu \), equation (3.22b)

REH \(Re_H \), enthalpy thickness Reynolds number, \(\Delta U_\infty / \nu \), equation (3.22c)

RHO(I) \(\rho \), fluid density at I-surface.

RHO(NP3) \(\rho \), fluid density at E-surface.

SP(I) special output array, user supplied.

SQRT(K)/UG \(\sqrt{q''^2 / 2 U_\infty} \), turbulent kinetic energy equation.

ST(J) \(St \), Stanton number, equation (3.15b).

T(I) \(T \), static temperature, degrees Rankine; or \(T^+ \), equation (3.4f), if NEQ = 1 and OUTPUT = 2.

TAUPLUS \(\tau^+ \), equation (3.4f).

TAUWALL \(\tau \), wall shear stress, equation (3.11a).

U(I) \(U \), velocity at \(y \) location.

UGU \(U_\infty \) at print location.

UM \(\bar{U} \), mean velocity equation (3.28).

UPL, \{ UPLUS(I) \} \(U^+ \) at \(y \) location, equation (3.4b).

VWPLUS \(V''_o \), equation (3.4c).

XU \(x \) at print location.

Y(I) \(y \), dependent variable location.

YPL, \{ YPLUS(I) \} \(y^+ \) at \(y \) location, equation (3.4e).
Appendix III
STAN5 PROGRAM

C TURBULENT BOUNDARY LAYER PREDICTION—PATANKAR/SPALDING METHOD, MAIN0000
C KAYS/STANFORD VERSION, DESIGNATION STANS, DECEMBER, 1975 MAIN0010
C IN THIS VERSION EDDY VISCOSITY AND THE EDDY CONDUCTIVITIES ARE MAIN0020
C CALCULATED EITHER BY THE MIXING-LENGTH METHOD OR FROM SOLUTION MAIN0030
C OF THE TURBULENT KINETIC ENERGY EQUATION. IF THE LATTER METHOD IS MAIN0040
C TO BE USED IT IS MERELY NECESSARY TO ACTIVATE ONE ADDITIONAL DIFF— MAIN0050
C EQUATION IN THE INPUT ROUTINE, AND TO SET SOURCE = 2 FOR MAIN0060
C THAT EQUATION. THE SHIFT OF METHOD IS THEN AUTOMATIC. NOTE THAT MAIN0070
C THE PROGRAM IS SET UP ONLY FOR A ZERO-OR A ONE-EQUATION MODEL OF MAIN0080
C TURBULENCE. ADDITIONAL THOUGH MINOR MODIFICATION IS NECESSARY FOR MAIN0090
C MULTI-EQUATION MODELS. MAIN0100
C THERE IS ALSO AN OPTION FOR WHICH EDDY DIFFUSIVITY IN THE OUTER MAIN0110
C REGION OF THE BOUNDARY LAYER IS EVALUATED DIRECTLY FROM A REYNOLDS MAIN0120
C NUMBER CORRELATION. MAIN0130
C PROGRAM DIMENSIONED FOR 50 FLUID TUBES MAIN0140
C IF DIMENSIONING CHANGED, SEE *** CARDS IN SBJS WALL AND OUT MAIN0150
C NUMBER CORRELATION. MAIN0160
C INTEGER GEOM,FLUID, SOURCE (5), SPACE, BODFOR, OUTPUT, TYPBC MAIN0170
C COMMON/GEN/PEI, AMI, AME, DPX, XU, XD, XL, INTG, CSALFA, TYPBC (5), MAIN0180
C IMODE, PRT (5), PRE, NXC, X (101), R (100), FI (5, 100), GC, CJ, AM (100), PRO, MAIN0190
C 2UG (100), PG, SOURC, RETRAN, NUMRN, SPACE, RU, PLAG, OUTPUT, DELTAX, GV MAIN0200
C 3/E/N, NPL, NP2, NP3, NEQ, NPH, KEX, KIN, KASE, KRAD, GEOM, FLUID, BODFOR, YPMAIN0210
C 4/G/G/BETA, GAM (15), AJ (5), AKE (15), INO (5), INE (15), INEX (15), TAU, OW (15) MAIN0220
C 5/V/V/U (5), F (15, 54), R (15, 54), OM (15), Y (15), JU (5), JU (5), UT, FI (5), MF (15), TAUW MAIN0230
C 6/N/SC (15), AU (15), BU (15), C (15, 54), A (15, 54), B (15, 54), C (15, 54), SU (15, 54), SD (5) MAIN0240
C 7/L/AK, ALMG, ALMG, FRA, APL, BPL, AG, BQ, EMU (54), PRE (5, 54), AUXW1 MAIN0250
C 8/L/YL, UMX, UNIN, FR, YIP, YE, ENFRA, KENT, AUXM2 MAIN0260
C 9/P/RHO (54), VISCO (54), PR (5, 54), RHOOC, VISCOG, PRC (5), T (54), RHOM, BF (54) MAIN0270
C 1/D/H, REM, CF (2, ST (5), LSUB, LVAR, CAY, REH, PPL, GPL, OM (54), K0 MAIN0280
C 2/C/AXX, BXX, CXX, CXX, EXX, K1, K2, K3, SP (54), AUX1 (1001), AUX2 (1001), SPMAX MAIN0290
C 3/A/D/RBOM (54), OMC (54), ROM (54), ITKE MAIN0300
C DIMENSION AMEF (5), AMIF (5) MAIN0310
C DIMENSION FPP (100), APFP (100), BPFP (100), CFPP (100) MAIN0311
C PROGRAM DIMENSIONED FOR 50 FLOW TUBES MAIN0312
C IF DIMENSIONING CHANGED, SEE *** CARDS IN SBJS WALL AND OUT MAIN0313
C NUMBER CORRELATION. MAIN0314
C NNUMRN=1 MAIN0315
C NINDO=0 MAIN0316
C 5 KERROR=0 MAIN0317
C NIND=NIND+1 MAIN0318
C CALL INPUT(KERROR) MAIN0319
C INPUT MAIN0320
C IF(KERROR.GT.0)GO TO 1000 MAIN0321
C CALL STEP(5) MAIN0322
C STEPS MAIN0323
C M=1 MAIN0324
C 6 M=M+1 MAIN0325
C IF(XU.GT.X(M)) GO TO 6 MAIN0326
C AMIE=AMIE+1+(AMIE-AMIE)*[(XU-X(M-1))*(XU-X(M-1))]/(XU-X(M-1)) MAIN0327
C AUXM1=AUXM1+(AUXM1-AUXM1)*(XU-X(M-1))/(XU-X(M-1)) MAIN0328
C AUXM2=AUXM2+(AUXM2-AUXM2)*(XU-X(M-1))/(XU-X(M-1)) MAIN0329
C IF(KEX.EQ.1) AMIE=AMIE MAIN0330
C IF(KIN.EQ.1) AMIE=AMIE MAIN0331
C STEP1 MAIN0332
C 10 CALL STEP(1) MAIN0333
C 15 CONTINUE MAIN0334
C FLUID PROPERTIES EITHER SET EQUAL TO INPUT DATA MAIN0335
C OR COMPUTED BY CALLING A VARIABLE PROPERTIES MAIN0336

ORIGINAL PAGE IS OF POOR QUALITY
C...... SUBROUTINE SUPPLIED BY USER.
105 IF (FLUID.NE.1) GO TO 115
105 IF (INTG.GT.0) GO TO 205
DO 110 I=1,NP3
VISCO(I)=VISCOC
RHOD(I)=RHO
c
T(I)=1.
105 IF (NPH.EQ.0) GO TO 110
DO 105 J=1,NPH
PRI(J,I)=PRC(J)
110 CONTINUE
110 CONTINUE
DO 120 I=NPH
VISCO(I)=VISCOC
RHOD(I)=RHO(I)
120 CONTINUE
IF (SOURCE(JI).EQ.2) J=2
CALL PROPI, F(J), I, T(I), VISCO(I), PRI(I, J), RHOD(I)
IF (LVAR.EQ.0) GO TO 1000
DO 130 I=2,NPH
130 CONTINUE
C...... CALLS FOR OTHER PROPERTY SUBROUTINES CAN BE INSERTED HERE. IT IS
C...... ALSO NECESSARY TO CHANGE PROPERTY CALLS IN SUBROUTINE WALL.
C...... WALL RADIUS AT EACH X LOCATION EVALUATED BY
C...... LINEAR INTERPOLATION OF INPUT DATA
205 IF (LSUB.GT.0) GO TO 35
205 R12=RW(M)
205 R11=RW(M-1)
205 X2=X(M)
205 X1=X(M-1)
205 RUU=R11+(R12-R11)*(XU-XL)/(X2-X1)
205 IF (GEOM.EQ.7) GO TO 225
205 IF (GEOM.EQ.9) GO TO 230
205 RUU=RUU
205 CSALFA=ISRT(ABS((X2-X1)*(X2-X1)-(R12-R11)*(R12-R11)))/(X2-X1)
205 IF (KIN.EQ.2) RUU=RUU-Y(NP3)*CSALFA
205 IF (GEOM.EQ.4) RUU=RUU
205 GO TO 30
220 CSALFA=1.00
220 GO TO 30
220 RUU=0.0
220 GO TO 30
225 CSALFA=1.00
225 IF (INTG.EQ.0) PI=0.5*RUU*RJU*UI(I)*RHO(I)
225 IF (INTG.EQ.0) PI=0.5*PI*AM*RUU
225 IF (INTG.EQ.0) PI=0.01RUU
225 IF (INTG.EQ.0) PI=0.01GEOM
225 IF (INTG.EQ.6) KIN=3
225 IF (INTG.EQ.6) WRITE(6,228)
225 IF (INTG.EQ.6) PI=0.01GO TO 30
225 RUU=SQRT(PI*2./(UI(I)*RHO(I))
225 GO TO 30
230 CSALFA=1.00
230 IF (INTG.EQ.0) PI=0.0
230 IF (INTG.EQ.0) PI=0.01
230 IF (INTG.EQ.0) PI=0.01GO TO 30

78
EN=EN+AMI*RUU*CX
RWD=EN/(RUU*L1*RHO1)
30 R11=RUU

C-- STEP2 -- C
35 IF (INTG.EQ.0.OR.LSUB.GT.0) CALL STEP(2)
 IF (LSUB.GT.0) GC TO 58

C-- STEP3 -- C
CALL STEP(3)

C-- ENTRAINMENT CONTROL -- C
IF (GEOM.EQ.4.OR.GEOM.EQ.5) GO TO 340
IF (INTG.EQ.0) GC TO 345
UMM=UMAX=UMIN
PEIE=PEI/R(NP3)*Y(NP3)
PEII=PEI*R(NP3)/R(1)
LDIFF=ENFRA*UMP
UACT=ABS(U(31)-U(11))/UMM
UACTE=ABS(U(NP3)-U(NP1))/JMM
AMEN=AME + (ENFRA-UACT)*PEIE
IF (ENFRA.GT.2.*UACT)*AMEN=AME/2.
IF (ABS(U(NP1)-U(N1)).LE.UDIFF/2.)*AMEN=AME/2.
AMIN=0.
IF (KIN.EQ.2) AMIN=AMI - (ENFRA-UACT)*PEII
IF (ENFRA.GT.2.*UACT)*AMIN=AMI/2.
IF (ABS(U(31)-U(11)).LE.UDIFF/2.) AMIN=AMI/2.
IF (NPH.EQ.0) GO TO 350
IF (KENT.EQ.0) GC TO 330
DO 312 J=1,NPH
 FMAX=F(J,1)
 FMIN=F(J,1)
 DO 305 I=3,NPH
 IF(I.EQ.NP2) GC TO 305
 IF (F(J,1).GT.FMAX) FMAX=F(J,1)
 IF (F(J,1).LT.FMIN) FMIN=F(J,1)
 IF (SOURCE(J).EQ.2) FMAX=1.
 CONTINUE
 305 CONTINUE
 FMM=FMAX-FMIN
 FDIFF=ENFRA/FMM
 IF (FMM.LT.0.1) GO TO 310
 FACT=ABS(F(J,1)-F(J,3))/FMM
 FACTE=ABS(F(J,1)-F(J,NP3))/FMM
 AMEF(J)=AME + (ENFRA-FACT)*PEIE
 AMIF(J)=0.
 IF (KIN.EQ.2) AMIF(J)=AMI - (ENFRA-FACT)*PEII
 310 CONTINUE
 IF (MIND(J).EQ.2.AND.ABS(AJ1(J)).LT.0.0001) AMEF(J)=0.0
 IF (INDE(J).EQ.2.AND.ABS(AJE(J)).LT.0.0001) AMIF(J)=0.0
 IF (FMM.LT.0.1) AMEF(J)=0.0
 IF (FMM.LT.0.1) AMIF(J)=0.0
 312 CONTINUE
 DO 325 J=1,NPH
 IF(J.GT.1) GO TO 315
 AMEMAX=AMEN
 IF (KIN.EQ.2) AMIMAX=AMIN
 315 IF (SOURCE(J).EQ.2) GO TO 320
 IF (AMEF(J).GT.-AMEN) AMEMAX=AMEF(J)
 IF (KIN.EQ.2.AND.AMIF(J).GT.AMEN) AMEMAX=AMIF(J)
 320 CONTINUE
 AME=AMEMAX
 325 CONTINUE
 GO TO 335

MAIN1160
MAIN1170
MAIN1180
MAIN1190
MAIN1200
MAIN1210
MAIN1220
MAIN1230
MAIN1240
MAIN1250
MAIN1260
MAIN1270
MAIN1280
MAIN1290
MAIN1300
MAIN1310
MAIN1320
MAIN1330
MAIN1340
MAIN1350
MAIN1360
MAIN1370
MAIN1380
MAIN1390
MAIN1400
MAIN1410
MAIN1420
MAIN1430
MAIN1440
MAIN1450
MAIN1460
MAIN1470
MAIN1480
MAIN1490
MAIN1500
MAIN1510
MAIN1520
MAIN1530
MAIN1540
MAIN1550
MAIN1560
MAIN1570
MAIN1580
MAIN1590
MAIN1600
MAIN1610
MAIN1620
MAIN1630
MAIN1640
MAIN1650
MAIN1660
MAIN1670
MAIN1680
MAIN1690
MAIN1700
MAIN1710
MAIN1720
MAIN1730
MAIN1740
MAIN1750

ORIGINAL PAGE IS
OF POOR QUALITY
330 IF(KEX.EQ.2) ANE=ANEI MAIN1760
IF(KIN.EQ.2) API=API MAIN1770
335 IF(KEX.EQ.2.AND.AME .GT.0.) ANE=0. MAIN1790
IF(KIN.EQ.2.AND.API.LT.0.) AMI=0. MAIN1790
AMAX=PEI*0.1 MAIN1800
IF(KEX.EQ.2.AND.AME.LT.-AMAX) ANE=-AMAX MAIN1810
IF(KIN.EQ.2.AND.AME.GT.0.) AMI=AMAX MAIN1820
340 IF(KIN.EQ.3) AMI=0. MAIN1830
IF(KEX.EQ.3) AME=0. MAIN1840
C -- DX STEPSIZE ---- MAIN1850
 IF(K1.EQ.20.CR.K1.EQ.9) DELTAX=AUXM1 MAIN1860
 345 IF(AMI = 0.0) I42,40,42 MAIN1870
 40 IF(AMIE = 0.0) I42,44,42 MAIN1880
 42 DX=FX*PEI/(ABS(R(1)*AMI-R(NP3)*AME)) MAIN1890
 IF(DX.GT.DELTAX*Y0) DX=DELTA+y0 MAIN1900
 GO TO 46 MAIN1910
 44 DX = DELTAX*Y0 MAIN1920
 46 IF(INTG.EQ.0) GO TO 49 MAIN1930
 IF(DX.GT.20.*DXOLD) WRITE(6,48) MAIN1940
 49 IF(INTG.LT.10) DX=0.2*DX MAIN1950
 INTG=INTG+1 MAIN1960
 XD = XU + DX MAIN1970
 DXOLD=DX MAIN1980
 IF(REM.GT.RETRAN) PODE=2 MAIN1990
 IF(XD.GE.(X(NXBC)-1.5*DX)) XL=X(NXBC)-1.5*DX MAIN2000
 IF(XD.GT.X(NXBC)) PRE=PRE MAIN2010
 IF(XD.GT.X(NXBC)) GO TO 55 MAIN2020
C-- BODY FORCE ---- MAIN2030
C...... BODY FORCE (OTHER THAN PRESSURE GRADIENT), SUCH AS ...
C...... BUOYANCY OR A BODY FORCE PER UNIT VOLUME, FOR THE ...
C...... MOMENTUM EQUATION, POSITIVE IN THE POSITIVE X-DIR.
 IF(BODYFOR.EQ.0) GO TO 410 MAIN2040
 DO 405 I=1,NP3 MAIN2050
 BF(I)=GVRH0(I)/GC MAIN2060
 IF(BODYFOR.EQ.2) BF(I)=BF(I)+AUXM1 MAIN2070
 CONTINUE MAIN2080
 BF=BF(I) MAIN2090
 405 CONTINUE MAIN2100
 BF=BF(I) MAIN2110
 405 CONTINUE MAIN2120
 BF=BF(I) MAIN2130
C-- PRESSURE GRADIENT - EXTERNAL FLOW ---- MAIN2140
C...... PRESSURE GRADIENT FOR EXTERNAL FLOW COMPUTED BY ...
C...... FITTING A 3RD ORDER SPLINE-FIT TO FREE-STREAM VELOCITY ...
C...... INTRODUCED IN THE INPUT DATA.
 410 IF (INTG.EQ.1) OPSUM=0.0 MAIN2150
 IF (GEOM.EQ.1) GO TO 435 MAIN2160
 IF(GEOM.EQ.5) GO TO 440 MAIN2170
 IF (INTG.NE.1) GO TO 415 MAIN2180
 M=1 MAIN2190
 IF(KEX.EQ.2) UGUIDE=U(NP3) MAIN2200
 IF(KIN.EQ.2.AND.KEX.NE.2) UGUIDE=U(1) MAIN2210
 RH0=RH0(I) MAIN2220
 IF(KEX.EQ.2) RHCLD=RHO(NP3) MAIN2230
 RHO2=RHO MAIN2240
 BFG=BF(I) MAIN2250
 IF (KEX.EQ.2) BFG=BF(NP3) MAIN2260
 FPP(I)=0. MAIN2270
 FPP(NXBC)=0. MAIN2280
 NXBCM=NXBC-1 MAIN2290
 IF (NXBC.EQ.2) GO TO 425 MAIN2300
 DELT=X(I(20)-X(I)) MAIN2310
 DO 411 I=2,NXBCM MAIN2320
 411 CONTINUE MAIN2330

DEL1*DELI
DEL1=DEL1-X(I)
DELSUM=DELI+DEL1
AFPP(I)=DEL1/DELSUM
BFPP(I)=DELI/DELSUM
411 CPF(I)=3.*[(UG(I-1)*DELI-UG(I))*DELSUM+UG(I+1)*DELI]/(DELI*DEL1
1*DELSUM)
BFPP(2)=BFPP(1)+CPF(I)*CFPP(2)
IF (NXBC.EQ.3) GO TO 414
DO 412 I=3,NXBC+1
TRATIO=1./X(I)-BFPP(I)*AFPP(I-1)
AFPP(I)=AFPP(I)*TRATIO
BFPP(I)=BFPP(I-1)*BFPP(I-1)+CPF(I)*TRATIO
412 DO 413 I=2,NXBC+1
J=NXBC+1-I+2
413 CPF(J)=AFPP(J)*CPF(J)+BFPP(J)
GO TO 425
C.....ADJUSTMENT OF PRESSURE FOR CORRECT DENSITY
415 IF (FLUIC.EQ.11) GO TO 425
RH02=RHO1(1)
IF (KEX.EQ.2) RH02=RHO1(NP3)
DPDIX=DPDIX/RH02/RH02
PRE=PRE+(DPDIX-DPDIX)*0.5/DXGC
RH02=RH02
GO TO 425
418 M=M+1
DXM=X(M)-X(M-1)
AA=0.1666666*CPF(I-1)/DXM
BB=0.1666666*CPF(I)/DXM
CC=UG(M-1)/DXM+0.1666666*X(M)*CPF(M-1)
D=UG(M)/DXM-0.1666666*X(M)*CPF(M)
425 CONTINUE
PR0=PRE
IF (XD.GT.BXX.AEO.K.EQ.LSUGD:AXX_I(XO-CX_IIABXX-CXXI)_OXX
OPOX - (UGU+UGDIeIUGU-UGDt_O.5_RHO21IXD-XU)_GC_FG
C.....NOTE THAT THIS PRESSURE
PR0=DPSU=OPCX_DX_CPSL_
PRE =PO+OPSU_/GC
C.....THIS PRESSURE IS
PR0=DPSU*OPCX_DX_CPSL_
435 CONTINUE
C.....PRESSURE GRADIENT - INTERNAL FLOW ----
PR0=PRE
IF (INTG.EQ.1) RH02=RHO1(1)
UGU2=UGU1*(R(NP3)*R(NP3)+RHO1)
DPDIX2=-UGU2*(R(NP3)+RHO1)/RHO2+RWO*DXX-2.*CF2*RHO1*
UGU*UGU/R(NP3)*GC*BF(1)
DPSUM=DPDX*D*DPXSM
PRE =PD*DPXSM/GC
G0 TO 445
440 CONTINUE
PRE =PRE
IF(INTG.EQ.1)RHO=RHO1
UGU=PEI/(R(NP3)**2*(NP3)**2*RHO)
DPDX=-PEI*UGU*(Y(NP3)-RHO(X1)/2.*RHO*RHO*INVX)-CF2*PHOM*UGU*UGU/
Y(NP3)*GC*BF(1)
DPSUM=DPDX*D*DPXSM
PRE =PD*DPXSM/GC
GO TO 445
445 IF(XD.LE.X(X1))GC TO 451
M=M+1
GO TO 445
451 CONTINUE
IF(LVAR.EQ.5)GO TO 1020
IF(PRE.LT.0.)LVAR=4
IF(LVAR.EQ.4)GC TO 1010
55 IF(KASE.EQ.2)GO TO 65
58 CALL WALL
59 IF(LVAR.EQ.6)GC TO 1000
IF(INL.LT.12)GO TO 1030
IF(LSUX.GT.0)GO TO 10
550 IF(UGU.EQ.0.000)GO TO 520
510 SUM=SUM+(Y(I+1)-Y(I-1))*(R(I+1)+R(I-1))/2.
DELI=SUM/RW*PEI/(RWO*RHG*UGU)
SUM=0.
DO 515 I=3,NP2
515 SUM=SUM+(U(I+1)+U(I-1))/(2.*UGU)*OND(I-1)
DELI=PEI*SUM/(RWO*RHG*UGU)
C.. .. CORRECTION OF INTEGRAL PARAMETERS FOR TRANSVERSE CURVATURE
IF(KIN.EQ.1)GC TO 519
519 CONTINUE
HI=DELI/DEL2
REM=DEL2*UGU*RHG/UGG
520 CONTINUE
IF(NPH.EQ.0)GO TO 560
560 CONTINUE

IF(SOURCE(I).EQ.1) GO TO 525
FW=F(J,1)
FG=F(J,NP3)
IF(KIN.EQ.1)GO TO 525
FW=F(J,NP3)
FG=F(J,1)

525 SUM=0.
DO 530 I=3,NP2
DEL=OM(D(I-1))*.5*(F(J,1)+F(J,1-1)-2*FG)
530 SUM=SUM+DEL
IF(ABS(UFG*(FW-FG))L.T.0.00001)GO TO 535
DEL3=PE1(SUM/(RHOG*RHOG*UGU*(FW-FG))
IF (KRA.EQ.1) GO TO 534
IF (KIN.EQ.2) GO TO 532
DEL3=RHO((-1+SQRT(1+2.*CSALFA*DEL3/RHOG))/CSALFA)
GO TO 534
532 DEL3=RHO*(+1.-SQRT(1.-2.*CSALFA*DEL3/RHOG))/CSALFA
534 REH=DEL3*UGU*RHOG/VISG
535 CONTINUE

GO TO 560

C--- INTEGRAL PARAMETERS - INTERNAL FLOW ---- MAIN3600
538 FMEAN=0.0
VISCOM=VISCO(I)
RHOM=RHO(I)
IF(NCHG.EQ.1)GO TO 555
IF(SOURCE(I).EQ.2.AND.NPH.EQ.1)GO TO 555
J=1
IF(SOURCE(I).EQ.2)J=2
IF(ABS(F(J,1)-F(J,NP3))L.T.0.0001)ST(J)=0.0
IF(ABS(F(J,1)-F(J,NP3))L.T.0.0001)GO TO 555
DO 540 I=3,NP2
DEL=(OM(I)-OM(I-1))*((F(J,1)+F(J,1-1))/2.
540 FMEAN=FMEAN+DEL
MM=0
545 MM=MM+1
RATIO=RHO(I)
IF(INTG.EQ.1)GO TO 555
IF(NCHG.EQ.1)GO TO 555
IF(JM.EQ.NP2)GO TO 555
IF(ABS(F(J,MM)-FMEAN).GT.ABS(F(J,MM)-F(J,MM+1))GO TO 545
RATIO=(F(J,MM)-FMEAN)/(F(J,MM)-F(J,MM+1))
550 RHOM=RHO(MM)-(RHO(MM)-RHO(MM+1))*RATIO
VISCOM=VISCO(MM)-(VISCO(MM)-VISCO(MM+1))*RATIO
C...... STANTON NUMBER AND CF2 ARE CALCULATED HERE BY SIMPLY
C...... MODIFYING THE VALUES CALCULATED IN THE WALL FUNCTION
C...... WHERE FREE-STREAM U AND F ARE USED.
ST(J)=ST(J)*(RHO(I)/RHO(I)*(F(J,1)-F(J,NP3))/(FMEAN-F(J,NP3))
555 CF2=CF2*(RHO(I)/RHO(I))
560 CONTINUE
65 CONTINUE

C--- AUX ---- MAIN4090
CALL AUX

C--- OUT ---- MAIN4110
CALL OUT
IF(LVAR.GT.1)GO TO 1000
C...... THE TERMINATION CONDITION
IF(XD.GT.XL)GO TO 1000
IF(KASE.EQ.2)GO TO 70
C--- WALL MASS TRANSFER ---- MAIN4170
C...... LINEAR INTERPOLATION OF WALL MASS TRANSFER DATA.

C......
C......BODY FORCE SOURCE DATA, AND ENERGY SOURCE DATA
C......FROM INPUT DATA.
 AMIE=AM(M-1)+AM(M)+AM(M+1)*(XD-X(M-1))/(X(M)-X(M+1))
 IF (KEX.EQ.1) AME=AMIE
 IF (KIN.EQ.1) AMI=AMIE
 AUX1=M1(AUX1(M-1)+AUX1(M)+AUX1(M+1))*(XD-X(M-1))/(X(M)-X(M+1))
 AUX2=M1(AUX2(M-1)+AUX2(M)+AUX2(M+1))*(XD-X(M-1))/(X(M)-X(M+1))
C......IF IT IS DESIRED TO INTRODUCE THE WALL BOUNDARY CONDITION AS
C......AN ANALYTIC FUNCTION, RATHER THAN A TABULATION, THIS IS THE
C......PLACE TO PUT IT IN. IT THEN OVER-RIDES THE PRECEDING STATEMENT.
C......LINEAR INTERPOLATION OF WALL BOUNDARY DATA
C......FROM INPUT DATA
C......
 IF (NEG.EQ.1) GO TO 70
 DO 710 J=1,NPH
 FQ = FJ(J,N)-FJ(J,M-1)*(XD-X(M-1))/(X(M)-X(M-1))
 C......NOTE THAT FQ IS EITHER A SURFACE PROPERTY, SUCH AS ENTHALPY,
C......OR IT IS A SURFACE FLUX, SUCH AS HEAT FLUX.
C......IF IT IS DESIRED TO INTRODUCE THE WALL BOUNDARY CONDITION AS
C......AN ANALYTIC FUNCTION, RATHER THAN A TABULATION, THIS IS THE
C......PLACE TO PUT IT IN. IT THEN OVER-RIDES THE PRECEDING STATEMENT.
 GO TO (701,704,704), KEX
 701 NINDJ=INDJ(J)
 GO TO (702,703), NINDJ
 702 F(J,1)=FQ
 GO TO 704
 703 AJ(J)=FQ
 704 GO TO (705,708,708), KEX
 705 NINDJ=INDE(J)
 GO TO (706,707,707), NINDJ
 706 F(J,NP3)=FQ
 GO TO 708
 707 AJE(J)=FQ
 708 CONTINUE
 710 CONTINUE
C
C---**STEP4**-----
 70 CALL STEP4(4)
 XL=XD
 XU=PEI=PEI*X(R(1)*AMI-R(NP3)*AME)
GO TO 15
 1000 IF(NIND.LT.NUPRUN)GO TO 5
 RETURN
 1010 WRITE (6,455)
 GO TO 1000
 1020 WRITE (6,450)
 GO TO 1000
 1030 WRITE (6,64)
 GO TO 1000
 228 FORMAT(/' PROGRAM HAS SHIFTED TO GEOM=6 **/')
 64 FORMAT(/' PROGRAM TERMINATED BECAUSE THE NUMBER OF SPACES*/
 1* IN THE GRID (N) GOT BELOW 12. ADD MORE GRID POINTS TO*/
 2* THE OUTER PART OF THE BOUNDARY LAYER**/
 450 FORMAT(/' PROGRAM MAY HAVE TERMINATED BECAUSE INITIAL VELOCITY*/
 1* PROFILES INCOMPATIBLE AT EITHER Y(NP3) OR Y(1) WITH*/
 2* THE INPUT FREE-STREAM VELOCITY PROFILE**/)
 455 FORMAT(/' THE PRESSURE HAS GONE NEGATIVE, PROGRAM TERMINATED')
 48 FORMAT(/' DX HAS TAKEN A LARGE STEP FORWARD WHICH LOOKS*/
 1* LIKE NOTHING BUT TROUBLE. PERHAPS Y(NP3) HAS BLOWN UP.**/
END
SUBROUTINE STEP(KSTEP)

 INTEGER, DIMENSION(5), SOURCE(5), SPACE, BODYFOR, OUTPUT, TYPBC
 COMMON/GEN/PEI, API, AME, OPOX, XU, XD, XL, DXX, INTG, CSLALFA, TYPBC(5),
 $MODE, PRT(5), PRE, XBC, X(10), JFJ(15,100), GC, CJ, AMI(100), PRO,
 $UG(100), PO, SOURCE, RETRAN, NUMRUN, SPACE, RDD, PLAG, OUTPUT, DELTAX, GV
 3/E/N, NP1, NP2, N3, NEQ, NPH, KEX, IN, KASE, KRAH, GEOM, FLUID, BODYFOR, YMIN, YMAX
 5/V/U(54), F(54), R(54), O(54), Y(54), UG, UD, UI, FI(5), FMEAN, TAUW
 6/W/SC(54), AU(54), BU(54), CU(54), AI(54), BI(54), CI(54), SU1(54), SU3(54), SD
 7/L/TK, ALMG, ALMGC, FRA, APL, BPL, AQ, BQ, ENU(54), VEF(54), AUXM1
 8/L1/Y1, UMAX, UMIN, FR, Y1, ENFRA, KENT, AUXM2
 9/P/RHQH(54), VISCO(54), PR(5,54), RHOC, VISCOC, PRC(5,5), T(54), RHOM, BF(54)
 10/H/REM, CF(2,5), ST(5), LSUB, LVAR, CVAY, REH, PPL, GPL, QM(5), KD
 2/CN/AXX, BXX, CXX, DXX, EXX, KX, K3, SNP(54), AUX1(100), AUX2(100), YMPAX
 3/ADD/RODE(54), CMC(54), RMOD(54), ITKE

C......
GO TO (100,200,300,400,500), KSTEP

C......
C------------------------------- STEP 1 ----------------------------
C......
C......
C......
C......
C......

100 GO TO (22, 24, 26), KIN
22 IF(LSUB.GT.0)GO TO 23
23 U(2)*=U(3)/1.*2.*BETA)
 Y(2)*=Y(3)*BETA/(2.*BETA)
 GO TO 30

C......
FREE BOUNDARY
24 U11=U(1)*U(1)
 L13=U(1)*U(3)
 L33=U(3)*U(3)
 SQ=SQ+U11-12.*U13+9.*U33
 U(2)=U(1)*U(1)*U(3)+U(3)*U(3)
 Y(2)=Y(3)2(U(2)*U(3)-2.*U(1)*U(3)+U(3)*U(1))
 GO TO 30

26 IF(KRAD.ATN.0)GO TO 28

C......
SYMMETRY LINE, PLANE FLOW
 U(2)*=(U(1)-U(3))/3.
 Y(2)=0.
 GO TO 30

C......
SYMMETRY LINE, AXIALLY SYMMETRICAL FLOW
28 U(2)=U(1)
 Y(2)=Y(3)/3.

C......
SAME AS ABOVE BUT FOR KEX
30 GO TO (32, 34, 36), KEX

C......
WALL
32 IF(LSUB.GT.0)GO TO 33
33 UNP2=U(NP1)/(1.+2.*BETA)
 Y(NP2)=Y(NP3)-Y(NP3)*BETA/(1.+BETA)
 GO TO 38

34 U11=U(NP1)*U(NP1)
 U13=U(NP1)*U(NP3)
 U33=U(NP3)*U(NP3)
 SQ=SQ+U13-12.*U13+9.*U11

C......
FREE BOUNDARY
 U(NP2)=(16.*U33+4.*U13+U11)/2.+(U(NP1)+U(NP3))*SQRT(SQ))
Y(NP2)=Y(NP3)-(Y(AP3)-Y(NP1))*U(NP2)+U(NP11-2)*U(NP3)*.5/
1(U(NP2)+U(NP1)+U(NP3))
GO TO 38
C.... SYMMETRY LINE
36 U(NP2)=(4.*U(NP3)-U(NP1))/3.
Y(NP2)=Y(NP3)
38 CONTINUE
IF(NEG.EQ.1) GC TC 58
C.... CALCULATION OF SLIP VALUES FOR OTHER DEPENDENT VARIABLES
DO 56 J=1,NPH
IF(LSUB.EQ.0)GAMA(J)=0.0
GO TO (42,44,46),KIN
42 IF(SOURCE(J).EQ.2.OR.ABS(F(J,3)-F(J,1)).LE..001)GO TO 43
IF(LSUB.GT.0)GO TO 43
GAMA(J)=((F(J,4)-F(J,1))/F(J,3)-F(J,1)-1.)/(Y(4)/Y(3)-1.1)
43 F(J,2)=F(J,1)*(F(J,3)-F(J,1))*.BETA-GAMA(J))/1.+.BETA+GAMA(J))
GO TO 48
44 G=(U(2)+U(3)-8.*U(1))/((5.*U(2)+U(3)))+8.*U(1))
GF=(1.-PRT(J))/1.+.PRT(J))
GF = (G*GF)/(1.*G+GF)
F(J,2)=F(J,3)*GF+(1.-GF)*F(J,1)
GO TO 48
46 F(J,2)=F(J,1)
IF(KRAD.EQ.0)GO TO 46
48 GC TO (50,52,54),KEX
50 IF(SOURCE(J).EQ.2.OR.ABS(F(J,NP1)-F(J,NP3)).LE..001)GO TO 51
IF(LSUB.GT.0)GO TO 51
GAMA(J)=((F(J,N)-F(J,NP3))/F(J,NP1)-F(J,NP3)-1.)/(Y(NP3)-Y(N))/1.0
1(Y(NP3)-Y(NP1))-1.1
51 F(J,NP2)=F(J,NP3)+(F(J,NP1)-F(J,NP3))*.BETA-GAMA(J))/1.+.BETA+GAMA(J))
GO TO 56
52 G=(U(NP2)+U(NP3)-8.*U(NP3))/((5.*U(NP2)+U(NP1)))+8.*U(NP3))
GF=(1.-PRT(J))/1.+.PRT(J))
GF = (G*GF)/(1.*G+GF)
F(J,NP2)=F(J,NP1)*GF+(1.-GF)*F(J,NP3)
GO TO 56
54 F(J,NP2)=(4.*F(J,NP3)-F(J,NP1))/3.
56 CONTINUE
58 CONTINUE
RETURN
C----------------------------- STEP 2 -----------------------------
C.... STEP 2 COMPUTES O*(II) ARRAYS AND PEI
C.... AT BEGINNING OF INTEGRATION OR AFTER LAMSUB HAS
C.... BEEN ACTIVATED.
C....
C.... CALCULATION OF RACII
200 IF(KRAD.EQ.0) GO TO 220
210 R(I)=R(I)+Y(I)*CS_LATFA
GO TO 240
220 DO 230 I=2,NP3
230 R(I)=R(I)
240 CONTINUE
C.... CALCULATION OF O*EG(A VALUES. THESE VALUES ARE ESTABLISHED BY THE
C.... INITIAL VELOCITY PROFILE AND REMAIN UNCHANGED THEREAFTER.
CM(1)=0.0
CM(2)=0.0
DO 250 I=3,NP2

ORIGINAL PAGE IS OF POOR QUALITY
C.... FOLLOWING EQUATION RESULTS FROM CONTINUITY
250 CM(I)=OM(I-1)+.5*(RHO(I)*J(I)+R(I)+RHO(I-1)*U(I-1)+R(I-1))
1(I(I)+Y(I-1))
PE=CM(NP2)
C.... OMEGA IS NCRPALIZED AT THIS POINT
260 CM(I)=OM(I)/PEI
CM(NP2)=1.0
CM(NP3)=1.0
CO 270 I=2,NP1
RD0M(I)=1./(CM(I+1)-OM(I-1))
CP0(I)=OM(I+1)-OM(I)
QMD(I)=1./QMD(I)
270 CONTINUE
IF(ISUB.GT.0)RETURN
DO 280 I = 5,NP1
KKERR = 0
OMRAT = (OM(I) - CM(I-I))/OM(I-I) - OM(I-2)
IF(OMRAT.GT.4.0,CR,OMRAT.LT.0.25)KKERR = 7
IF(KKERR.EQ.7)RITE(6,2751)
IF(KKERR.EQ.7)IVAR=8
IF (IVAR.EQ.8) DLPTN=6
280 CONTINUE
275 FORMAT(/37H PROGRAM TERMINATED BECAUSE THE OMEGA,/121H SPACING BETWEEN I = 1,2,4,17 AND THE PRECEDING,/249H NODE IS EITHER MORE THAN FOUR TIMES OR LESS THAN,/334H ONE QUARTER THE PRECEDING SPACING)
RETURN
C---------------------------STEP 3 ----------------------------
C.....STEP3 COMPUTES Y'S,R'S
C.....AND COMPUTES UMAX,UMIN,AND YL
C.....
300 IF (INTG.EQ.0) GO TO 360
C.....Y NEAR THE I BCUNCARY
GO TO (312,314,316),KIN
312 Y(1)=Y(I-1)+2.*OMD(I-1)/(RHO(I-1)*U(I-1)*RHO(I-1)*U(I-1))
GO TO 320
314 Y(1)=12.*OMD(1)/(3.*RHO(1)*RHO(1)+(U(1)+U(1)+U(1)+U(1)))
GO TO 320
316 Y(I)=5*OMD(1)/(RHO(1)*U(1))
320 Y(I)=Y(I)+.25*CM(1)*(1./(RHO(3)*U(3))+2./(RHO(3)*U(3)+RHO(2)*U(2)))
IF (BETA.GE.0.9,ANC,KIN.EQ.1)Y(I)=3.0*OMD(1)/(RHO(3)*U(3)+RHO(2)*U(2))
340 IF (INTG.EQ.1) GO TO 360
C.....Y'S FOR INTERMEDIATE GRID POINTS
DO 330 I=1,NP1
330 Y(I)=Y(I-1)+2.*OMD(I-1)/(RHO(I)*U(I)*RHO(I-1)*U(I-1))
C.....Y NEAR THE E BCUNCARY
Y(NP2)=Y(NP1)+25*OMD(NP1)*(1./(RHO(NP1)*U(NP1))+2./RHO(NP1)*U(NP1)+RHO(NP2)*U(NP2))
GO TO (332,334,336),KEX
332 Y(NP3)=Y(NP2)+(1.+BETA)*OMD(NP1)*6.*(RHO(NP1)*U(NP1)+RHO(NP2)*U(NP2))
GO TO 330
334 Y(NP3)=Y(NP2)+12.*OMD(NP1)*(1./(RHO(NP1)*U(NP1)+3.*RHO(NP2)*U(NP2))
1*(U(NP1)+U(NP2))+U(NP3))
GO TO 340
336 Y(NP3)=Y(NP2)+5.*OMD(NP1)*(1./(RHO(NP1)*U(NP1)+RHO(NP2)*U(NP2))
1*(U(NP1)+U(NP2)+U(NP3))
GO TO 340
87
340 IF(KRAD.EQ.0) GO TO 344
342 Y(I)=2.*Y(1)/R(I)+SQR(T(R(I))*R(I)+2.*Y(I)*CEI*CSALFA))
GO TO 350
344 DO 346 I=2,MP3
346 Y(I)=PEI*Y(I)/R(I)
350 Y(2)=2.*Y(2)-Y(3)
IF(BETA.GE.0.9.AND.KIN.EQ.1)Y(2)=Y(3)/3.
IF(BETA.GT.0.9.AND.KEX.EQ.1)GO TO 351
Y(NP2)=2.*Y(NP2)-Y(NP1)
GO TO 352
351 Y(NP2)=(2.*Y(NP3)*Y(NP1))/3.
C....CALCULATION OF RADIUS
352 DO 355 I=2,MP3
IF(KRAD.EQ.0)R(I)=R(I)
IF(KRAD.NE.0)R(I)=R(I)+Y(I)*CSALFA
355 CONTINUE
C....CALCULATION OF THE BOUNDARY LAYER THICKNESS
C....BASED ON THE FR CRITERION USED IN 'INPUT'. I.E., IF FR
C.....IS 0.01, THIS ROUTINE CALCULATES YL WHICH IS THE 99 PER-
C.....CENT THICKNESS OF THE BOUNDARY LAYER. YL IS THEN A DISTANCE UPON
C.....WHICH A TURBULENCE LENGTH SCALE IS BASED.
C SEARCH FOR THE MAXIMUM AND MINIMUM VELOCITIES
360 UMAX=U(1)
UMIN=U(1)
DO 375 J=3,MP3
IF(J.EQ.NP2)GO TO 375
IF(U(J).GT.UMAX)UMAX=U(J)
IF(U(J).LT.UMIN)UMIN=U(J)
375 CONTINUE
DIF=ABS(UMAX-UMIN)*FR
C....SEARCH NEAR THE I BOUNDARY
IF(KIN.NE.2)GO TO 386
U21=ABS(1.5*(U(2)+U(3))-U(1))
IF(U21.LT.DIF)GO TO 380
YIP=SQR(T(DIF/U21)*(Y(2)+Y(3))/5.
GO TO 388
380 J=2
382 J=J+1
UJ1=U(J)-U(1)
IF(ABS(UJ1).GE.DIF)GO TO 384
GO TO 382
384 AI=1.
IF(UJ1.LT.0.1AI=-1.
YIP=Y(J-1)+(Y(J)-Y(J-1))/U(1)+AI*DIF-J(J-1))/U(J-J-1))
GO TO 388
386 YIP=0.
C....SEARCH NEAR THE E BOUNDARY
388 IF(KEX.NE.2)GO TO 396
U21=ABS(1.5*(U(NP1)+UNP21)-UNP3))
IF(U21.LT.DIF)GO TO 390
YEM=SQR(T(DIF/U21)*(1.5*(Y(NP1)+Y(NP21)-Y(NP3)))*Y(NP3)
GO TO 398
390 J=NP2
392 J=J+1
UJ1=U(J)-UNP3)
IF(ABS(UJ1).GE.DIF)GO TO 394
GO TO 392
394 AI=1.
IF(UJ1.LT.0.1AI=-1.
STEP 1800
STEP 1810
STEP 1820
STEP 1830
STEP 1840
STEP 1850
STEP 1860
STEP 1870
STEP 1880
STEP 1890
STEP 1900
STEP 1910
STEP 1920
STEP 1930
STEP 1940
STEP 1950
STEP 1960
STEP 1970
STEP 1980
STEP 1990
STEP 2000
STEP 2010
STEP 2020
STEP 2030
STEP 2040
STEP 2050
STEP 2060
STEP 2070
STEP 2080
STEP 2090
STEP 2100
STEP 2110
STEP 2120
STEP 2130
STEP 2140
STEP 2150
STEP 2160
STEP 2170
STEP 2180
STEP 2190
STEP 2200
STEP 2210
STEP 2220
STEP 2230
STEP 2240
STEP 2250
STEP 2260
STEP 2270
STEP 2280
STEP 2290
STEP 2300
STEP 2310
STEP 2320
STEP 2330
STEP 2340
STEP 2350
STEP 2360
STEP 2370
STEP 2380
STEP 2390
88
C. STEP 4 CALCULATES ALL OF THE COEFFICIENTS FOR THE
C. FINITE DIFFERENCE EQUATIONS.
C. THE FDE'S ARE THEN INTEGRATED.
C. SOURCE TERMS, SU(J,I), AND SMALL C'S ARE COMPUTED IN
C. SUBROUTINE AUX.
C. THE CONVECTION TERM
400 KXX=0
4001 RFDX=1./D/X
SA=R(I)*AM(I)/PE(I)
SBDF=(R(NP3)+AM(I))/PE(I)/4.
P2=3.*RFDX
DO 420 I=3,NP3
P1=QMD(I)*RFDX*RBOM(I)
P3=QMD(I)*RFDX*RBOM(I)
G1=P1*(SA*SBDF*(OM(I)+3.*OM(I)))*RBOM(I)
G2=P2*SBDF
G3=P3*(SA*SBDF*(OM(I)+3.*OM(I)))*RBOM(I)
AU(I)=SC(I)*RCMD(I)*2.*RBOM(I)
BU(I)=SC(I)*RBMD(I)*2.*RBOM(I)
CU(I)=--P1*U(I)+P2*U(I)-P3*U(I-1)
420 CONTINUE
C...... SOURCE TERM FOR VELOCITY EQUATION
405 CONTINUE
410 CONTINUE
C. COEFFICIENTS IN THE FINAL FORM
C. SLIP COEFFICIENTS NEAR THE I BOUNDARY FOR VELOCITY EQUATION
CU(2)=0.
CU(NP2)=0.
GO TO (422, 424, 426, KIN)

422 BU(2) = 0.
AU(2) = 1. / (1 + 2 * BETA)
GO TO 430

424 SQ = 0.4 * U(1) * U(1) - 12. * U(1) * U(3) + 9. * U(3) * U(3)
BU(2) = 8. * (2. * U(1) + U(3)) / (2. * U(1) + 7. * U(3) + SQRT(SQ))
IF(U(5) + LE.U(1)) * BU(2) = 1.
AU(2) = 1. - BU(2)
GO TO 430

426 BU(2) = 0.
AK1 = 1. / DX - (DPDX - GC*BF(2)) / (RHO(1) * U(1) * U(1))
AK2 = U(1) + AK1 * (DPDX - GC*BF(2)) / (RHO(1) * U(1))
AJ = RHO(1) * U(1) * .25 * Y(2) * Y(3) * EMU(2)
IF(KRAD.EQ.0) GO TO 428
AU(2) = 2. / (A(2) + AK1)
CU(2) = -.5 * AK2 * AU(2)
GO TO 430

428 CU(2) = 1. / (2 + 3 * A(2) * AK1)
AU(2) = CU(2) * 2. - A(2) * AK1
CU(2) = - CU(2) * 2. * A(2) * AK1
GO TO 430

430 SLIP COEFFICIENTS NEAR THE E BOUNDARY FOR VELOCITY EQUATION
GO TO (432, 434, 436), KEX

432 AU(NP2) = 0.
BU(NP2) = 1. / (1 + 2 * BETA)
GO TO 440

434 SQ = 0.4 * U(NP3) * U(NP1) - 12. * U(NP3) * U(NP1) + 9. * U(NP1) * U(NP1)
AU(NP2) = 8. * (2. * U(NP3) + U(NP1)) / (2. * U(NP3) + 7. * U(NP1) + SQRT(SQ))
BU(NP2) = 1. - AL(NP2)
GO TO 440

436 AU(NP2) = 0.
BK1 = 1. / DX - (DPDX - GC*BF(NP2)) / (RHO(NP3) * U(NP3) * U(NP3))
BK2 = U(NP3) * BK1 * (DPDX - GC*BF(NP2)) / (RHO(NP3) * U(NP3))
BJ = RHO(NP3) * U(NP3) * .25 * Y(NP3) * Y(NP1) - Y(NP2) * EMU(NP3)
CU(NP2) = 1. / (2 + 3 * BJ * BK1)
BU(NP2) = CU(NP2) * (2 - BJ * BK1)
CU(NP2) = - CU(NP2) * 2 * BJ * BK2
GO TO 440

440 IF(NEQ.EQ.1) GO TO 471

C SLIP COEFFICIENTS NEAR THE I BOUNDARY FOR OTHER EQUATIONS
DO 470 J = 1, NPH
C(J,2) = 0.
C(J, NP2) = 0.
GO TO (452, 454, 456), KIN

452 IF (IND(J), EQ.1) GO TO 453
VA = GAM(J) / (1 + BETA) * QWF(J) * AMI)
AJ(J,2) = (1 - VA*AMI) / (1 + VA*AMI)
BJ(J,2) = 0.
C(J,2) = 2. * AJ(J) * VA / (1 + VA*AMI)
GO TO 460

453 AJ(J,2) = (1 + BETA - GAM(J)) / (1 + BETA + GAM(J))
BJ(J,2) = - AJ(J,2)
IF(SOURCE(J), NE.2) GO TO 460
AJ(J,2) = 1.
BJ(J,2) = 0.
C(J,2) = 2 * FI(J)
GO TO 460

454 AJ(J,2) = (U(12) + U(3)) / (5 * U(12) + U(3)) + 8 * U(1))
GF = (1 - PREF(J,2)) / (1 + PREF(J,2))
AJ(J,2) = A(J,2) * GF / (1 + A(J,2) * GF)
BJ(J,2) = 1. - AJ(J,2)
GO TO 460

90
456 B(J,2)=0.
457 DS=0.
458 AK1=1./DX-DS
459 CS=0.
460 AK2=AK1*F(J,1)-CS
461 AJF=AJF*PREF(J,2)
462 IF(KRAD.EQ.0) GO TO 457
463 A(J,2)=2./(2.+AJF*AK1)
464 C(J,2)=-5*AJF*AK2*A(J,2)
465 GO TO 460
467 C(J,2)=1./(2.+3.*AJF*AK1)
468 A(J,2)=C(J,2)*(2.-AJF*AK1)
469 C(J,2)=-C(J,2)*F(J,2)
470 CONTINUE
C....SLIP COEFFICIENTS NEAR THE E BOUNDARY FOR OTHER EQUATIONS
460 GO TO (462,464,466),KEK
462 IF (INDE(J).EQ.1) GO TO 463
463 V=VONAM(J)/(1.+BETA)+QWE(J)-AME)
464 B(J,NP2)=6.*VAMAE/J/(1.-VAMAE)
465 A(J,NP2)=0.
466 C(J,NP2)=-2.4AJE(J)*V/(1.-VAMAE)
467 GO TO 470
464 B(J,NP2)=[U(NP2)-U(NP3)]/5./[U(NP2)+U(NP3)]
465 GF(1.-PREF(J,NP1)])/(1.+PREF(J,NP1))
466 B(J,NP2)=[B(J,NP2)+GF]/(1.+B(J,NP2)#GF)
467 A(J,NP2)=1.-B(J,NP2)
468 GO TO 470
466 A(J,NP2)=0.
467 BK1=1./DX-DS
468 CS=0.
469 BK2=BK1*F(J,NP3)-CS
470 EJF=BJ*PREF(J,NP1)
471 CI(J,NP2)=1./(2.+3.*BJF*BK1)
472 BJ,NP2=C(J,NP2)*(2.-BJF*BK1)
473 B(J,NP2)=C(J,NP2)+C(J,F2)
474 CONTINUE
C....SETTING UP VELOCITIES AT A FREE BOUNDARY
471 IF(KEX.EQ.2)U(NP3)=SQRT(U(NP3)*U(NP3)-2.*DX*(DPD-X-GC*BF(NP3))
472 IF(KIN.EQ.2)U(NP3)=SQRT(U(NP3)*U(NP3)-2.*DX*(DPD-X-GC*BF(NP3))
473 RHO(NP3))
C....THIS IS THE TRI-DIAGONAL ROUTINE WHERE THE FINITE
C....DIFFERENCE EQUATIONS ARE ACTUALLY SOLVED.
C....INTEGRATE VELOCITY
472 BU(2)=BU(2)+U(1)+CU(2)
473 DO 472 I=3,NP2
474 TT = 1.*U(I)*AU(I)-1)
475 AU(I)=AU(I)*TT
476 BU(I)=BU(1)+CU(I)*TT
477 DO 476 I=2,NP2
478 JNP2-1+2
479 DO 479 I=3,NP2
480 IF(U(I).GT.0.01) GO TO 476

91
UI(I)-U(I)
KXX=1
476 CONTINUE
KXXX=KXXX+1
IF(KXX.EQ.0) GO TO 478
IF(KXXX.GT.2) GO TO 478
C......ATTEMPT TO RE-SOLVE IF NEGATIVE VELOCITY APPEARS
IF(KEX.EQ.2)AMN=AMN/1.3
IF(KIN.EQ.2)AMI=AMI/1.3
DO 4777 I=2,NP1
RAVG=0.5*(R(I+1)+R(I))
RHOAV=0.5*(RHO(I+1)+RHO(I))
C......ADJUSTMENT OF EMU AT 2.5 AND N+1.5
IF (1.GT.2) GO TO 4777
IF (KIN.NE.1) GO TO 4778
IF (BETA.LT.0.02.OR.BETA.GT.0.9) GO TO 4777
EMU(2)=TAU*Y(2)*Y(3)*/BETA/(U(2)+U(3))
4778 IF (KEX.NE.1) GO TO 4777
IF (BETA.LT.0.02.OR.BETA.GT.0.9) GO TO 4777
EMU(NP1)=TAU*Y(NP3)*BETA/(Y(NP1)+Y(NP2))
I(0)=0.5*(U(NP1)+U(NP2))
C......COMPUTE SMALL C'S
4777 SC(I)=RATG*RATG*RHOAV*0.5*(U(I+1)+U(I))*EMU(I)/(PEI*PEI)
WRITE (6,4777) INTG
477 FORMAT (/10X,VELOCITY NEGATIVE, RE-SOLVE, INTG=',I4/I
GO TO 401
478 CONTINUE
C......SETTING UP VELOCITIES AT A SYMMETRY LINE
IF(KIN.NE.3) GO TO 480
U(I)=U(2)
IF(KKAD.EQ.0)U(I)=0.75*U(2)+.25*U(3)
480 IF(KEX.EQ.3)U(NP3)=.75*U(NP2)+.25*U(NP1)
IF(NEQ.EQ.1) GO TO 494
C......INTEGRATE F EQUATIONS
DO 482 J=1,NPH
DO 482 I=2,NP2
AU(I)=AI(I)
BU(I)=BI(I)
482 CU(I)=CI(I)
IF (SOURCE(J).NE.2) GO TO 4886
IF (ITKE.EQ.1) GC TO 4886
IF (KEX.EQ.1) GO TO 4884
DO 4882 I=1,ITKE
AU(I)=0.
BU(I)=0.
4882 CU(I)=F(J,ITKE)
GO TO 4886
4884 DO 4885 I=ITKE,NP3
AU(I)=0.
BU(I)=0.
4885 CU(I)=F(J,ITKE)
4886 CONTINUE
BU(2) = BU(2)*F(J,1) + CU(2)
DO 484 I=3,NP2
TT = 1./((1.-BU(I))*AU(I-1))
AU(I) = AU(I)*TT
484 BU(I) = (BU(I)*BU(I-1) + CU(I))*TT
DO 486 I=2,NP2
JJ=NP2-I+2
486 F(J,JJ)=AU(JJ)*F(J,JJ+1)*BU(JJ)
C### SETTING UP SYMMETRY-LINE VALUES OF F
IF(KIN.EQ.3) GO TO 490
 F(J,1)=F(J,2)
 IF(KRAD.EQ.0) F(J,1)=.75*F(J,2)+.25*F(J,3)
490 IF(KEX.EQ.3) F(J,NP3)=.75*F(J,NP2)+.25*F(J,NP1)
492 CONTINUE
494 RETURN
C--- STEP 5
C### STEP 5 INITIALIZES PARAMETERS AND SETS UP INITIAL CONDITIONS.
C###
500 XD=XU
 PRE=PO
 AME=0.
 AMI=0.
 INTG=0.
 BETA=0.
 CAY=0.0
 PPL=0.0
 YL=0.0
 REM=1.
 REH=1.
 M=1.
 CF2=0.002
 TAUW=0.02
 IF(NPH.EQ.0) SOURCE(I,1)=0
 DO 540 J=1,NPH
 EMU(J)=0.0
 BF(J)=0.0
 SPI(J)=0.0
 IF (NPH.EQ.0) GO TO 540
 DO 530 J=1,NPH
 ST(J)=0.002
 QW(J)=0.0
 IF (SOURCE(J).EQ.0) PRI(J,1)=1.0
 530 CONTINUE
 540 CONTINUE
 FMEAN=0.0
 LSUB=0
 LVAR=0
 ALMG=ALMG
 KRAD = 1
 IF(GEOM.EQ.1) KRAC=0
 IF(GEOM.EQ.5) KRAD=0
 IF(GEOM.EQ.8) KRAD=0
 IF(GEOM.EQ.9) KRAC=0
 IF(NPH.EQ.1) GC TC 560
 DO 550 J=1,NPH
 AJ(J)=0.0
 AJE(J)=0.0
 INDJ(J)=0
 INDE(J)=0
 IF(KIN.EQ.1) INDI(J)=TYPBC(J)
 IF(KEX.EQ.1) INDE(J)=TYPBC(J)
 550 CONTINUE
 560 CONTINUE
RETURN
END
SUBROUTINE WALL

ORIGINAL PAGE IS
OF POOR QUALITY
C******
C******
INTEGER GEOM,FLUID,SOURCE,SPACE,BOUNDARY,OUTPUT,TYPNRC
DIMENSION HM(5),K(5),PN(5),PL(5),HPS(5),DHY(5)
COMMON/GEN/P1,A,AM,DPD,X,J,XLD,DL,DY,INC3,CNLMFA,TYPBC(5),
1MODE,PRT(5),PRE,NBC,X(100),RM(100),FJ(100),GC,J,AM(100),PRC,
2UG(100),PD,SOURCE,RETRAN,NUMRJN,SPACE,RWJ,PLLAG,OUTPUT,DELTAX,GV
3/E/N,PN1,PN2,PN3,KEQ,NPH,KEX,KIN,KASE,KKAD,GEOM,FLUID,BOUNDARY,YPMIN
5/V/U(54),F(5,54),R(54),O1(54),O2(54),O3(54),O4(54),UW,JG0,UI,FI(5),FMEAN,TAUW
7/L/F,A,ALMG,ALMGG,FRA,APL,BPL,AQ,8Q,EMU(54),PREF(5,54),AUX(5)
8/L/I/YL,UMIN,FR,YIP,YEM,ENFRA,KENT,AJX2
9/P/RH(54),VISCO(54),PR(5,54),RHOC,VISCOC,PBC(5),T(54),RHOM,BF(54)
10/H,RH(54),FPP(5),SP(5),SPS(5),SP(5)
2/CN/AXX,BXX,CXX,CXX,EXX,K1,K2,K3,SP(5),AXX(100),AXX(100),YPMAX
C******
C******
IF(INTG.GT.I.CR.LSUB.GT.0)GO TO 8
KSTART=1
MARKER=0
C3=0.0
C4=0.0
C5=0.0
BFOLD=0.0
C5=0.0
AJ=0.0
AJ=0.0
K=0
TPLUS=1.
CLDDPX=0.0
DUDY=1.
APLO=APL
BPLO=BPLO
EE=0.04
IF(NPH.LT.1)GO TO 8
DO 6 J=1,NPH
6 QMJJ=100.
8 LSUB=0
LTPL=0
C------------------------------- SECTION ONE -----
C******
C******
THE JOIN POINT CONDITIONS ARE SET UP HERE
C******
IF(NPH.LE.1)GO TO 20
RH=RH(54)
VISCO=VISCO(54)
VISCO=VISCO(54)
VISCO=VISCO(54)
VISCO=VISCO(54)
BFOR=(BFNP2)+BFNP2
UGU = UGU
YI=Y(NP3)-5*(Y(NP1)+Y(NP2))
UE=UE(N)-UE(N)-UE(54)+Y(NP3)+Y(NP2))
IF(MODE.EQ.1)UE=U1
IF(BETA.EQ.0.9)UE=UE
UI=UE
REW=ABS(UE*RH/VISCO)
AMN = AMN
IF(NEQ.EQ.1)GO TO 40
C******
C******
DD 10 J=1,NPH
HW(J)=F(J,NP3)
HG(J)=F(J,1)

PRW(J)=PR(J,NP3)
PRI(J)=0.5*(PR(J,NP1)+PR(J,NP2))
F(I,J)=-0.5*(F(I,J,NP2)+F(I,J,NP1))
FE=F(I,N)-(F(I,N)+F(I,NP1))/Y(N)-(Y(NP1))+(Y(N)-0.5*(Y(NP1)+Y(NP2)))

1

IF(MODE.EQ.1)FE=F(I,J)
IF(GAMA(J).GE.0.9.AND.GAMIL(J).LE.1.1)FE=F(I,J)
IF(SOURCE(J).EQ.2)FE=F(I,J)
10 F(I,J)=(F(I,J)+FE)/2.
GO TO 40
20 IF(KIN.NE.1)RETURN

RHI=RHO(1)
VISW=VISC0(1)
VISG=VISC0(NP3)
RHG=RHO(NP3)

RHI=0.5*(RHO(2)+RHO(3))
VISG=0.5*(VISC0(2)+VISC0(3))

BFOR=8F2+BF(F3))/2.
UGU = UGU

Y1=-5*(Y(2)+Y(3))
Y2=-(U(2)+U(3))

UE=U(3)+0.5*(Y(2)-Y(3))*(U(4)-U(3))/Y(4)-Y(3))

IF(MODE.EQ.1)UE=UI
IF(BETA_GE.0.9)UE=UI

UI = (UI + UE)/2.

REW=ABS(U(YI+RH/WVISW))

AMW = AMI

IF(NEG.EQ.1)GO TO 40
DO 30 J=1,NPH
HW(J)=F(J,1)
HG(J)=F(J,NP3)

PRW(J)=PR(J,1)
PRI(J)=0.5*(PR(J,2)+PR(J,3))
F(I,J)=-0.5*(F(I,J,2)+F(I,J,3))
FE=F(I,J)+0.5*(Y(2)-Y(3))*(F(J,4)-F(J,3))/Y(4)-Y(3))

IF(MODE.EQ.1)FE=F(I,J)

100 F(I,J)=(F(I,J)+FE)/2.

GO TO 30
40 UTAUW=SORT(GC+TAUW/RHW)
UTAUW=SORT(GC+TAUW/RHGW)
IF(REW.LE.4*GC TC 160)

------------------------------- SECTION TWO -------------------------------

C......SOURCE TERMS FOR COUETTE FLOW STAG ENTHALPY EQUATION

S=0.0

IF(NEG.EQ.1)GO TC 160
DO 150 J=1,NPH

IF(SOURCE(J).EQ.3.OR.SOURCE(J).EQ.4)S=AUX92
IF(SOURCE(J).EQ.1.OR.SOURCE(J).EQ.3)GO TO 130

GO TO 150

130 IF(UWG_LE.0.01)GC TO 140

DENOM=QM(J)*CJ

IF(ABS(DENOM).LT.0.00001)GO TO 140

C......NOTE: IF WALL HEAT FLUX IS NEAR ZERO, VISCOS DISSIPATION

C...... IS NOT PROPERLY HANDLED. ALWAYS USE AT LEAST A SMALL

C...... HEAT FLUX. SAME TRUE OF HEAT SOURCE, S.

C3N=TAUW*UTAUW/DENOM

95
C....COUETTE FLOW EQUATION TERMS ARE COMPUTED HERE

160 IF (INTG.LT.2) ODDDPX=0.
 IF(UGG.LE.0.01GC TO 165
 CAY=.5*(DPDX*OLDDPX-2.*GC*BFOR)/(UGG*UGG*UGG)*VISW/(RHG*RHG)
165 PPL=.5*(DPDX*OLDDPX*VISW/TAUW/RHG*GC*UTAUW)
 GPL=AMW/(RHG*UTAUW)
 BPPLUS=BFOR*VISW/(TAUW*RHG*UTAUW)
 BPPLUS=(BPPLUS+BFOLD)/2.
 BFOLD=BPPLUS
 IF(KSTART.EQ.1)PPL=0.
 IF(KSTART.EQ.1)PPLUS=0.
 IF(KSTART.EQ.1)GPL=0.
 AKK=AK
 IF(MODE.EQ.1)AKK=0.0
C....TURBULENT FLOW DAMPING TERMS ARE COMPUTED HERE

170 CONTINUE
C....THE FOLLOWING ARE EMPirical Correlations For The damping term C....IN THE MIXING-LENGTH EXPRESSION.

AC=7.1
BC=4.25
CC=10.0
IF(PPL.EQ.0.)BC=2.9
IF(PPL.EQ.0.)CC=0.
IF(GPL.EQ.0.)AC=9.0
APL=APLO/(AC+(GPL*BC+PPL/CC*GPL))
BPL=APLO/(AC+(GPL*BC+PPL/CC*GPL))
IF(APL.LT.-0.01)APL=1000.
IF(BPL.LT.-0.01)BPL=1000.
IF(INTG.EQ.1)APL=APL+(300.-APL)*(1.-SIN(1.57
1*(REM-RETRAN)/RETRAN))))

96
IF(KD.GE.2.AND.MODE.EQ.2)BPL=BPL+(400.-BPL)#11.-SIN(1.57)
1*REH.RETRAN/RETRAN)=2
C --- SECTION FOUR ----
180 IF(REH.LT.4.AND.INTG.EQ.2)WRITE(6,900)
181 IF(REH.LT.4.AND.INTG.EQ.92)WRITE(6,901)
180 FORMAT(1"THE PROGRAM IS BYPASSING THE WALL FUNCTION, AT LEAST AT")
181 THIS INTEGRATION.")/
180 IF(REH.LT.1)GO TO 290
C --- SECTION FIVE ----
C THIS IS THE BEGINNING OF A LOOP IN WHICH THE MOMENTUM
C AND ANY NUMBER OF DIFFUSION COUETTE FLOW ORDINARY DIFFERENTIAL
C EQUATIONS ARE SOLVED.
C IF(INTG.EQ.22.OR.INTG.EQ.92)WRITE(6,910)
910 FORMAT(1"THE PROGRAM IS EMPLYING THE WALL FUNCTION, AT LEAST AT")
181 THIS INTEGRATION.")/

YP=(0.0
DVY=0.1#SORT(REH)
IF (DVY.GT.0.25) DVY=0.25
UP=0.0
DUDY=1.
A2=0.0
IF(NPH.LT.1)GO TO 200
200 DO 190 J=1,NPH
HP(I,J)=0.0
190 DMY(J)=PRW(J)
200 KCHEQ=0
210 IF(YPL.GT.2.5)DVY=YP/10.)
220 TPLUS=1.0+GPL*(UPL+DUDY*DVY/2.1+(PPL-BFPLUS)*YPL+DVY/2.1-
1*(PPL-BFPLUS))*CF2*A2/RHG
IF(TPLUS.LT.0.01)TPLUS=0.0
IF(TPLUS.LT.0.1)LPLUS=1
IF(TPLUS.LT.0.1)LSUB=2
RR=1.*(RR/RH)-1.)*UPL*UTAUW/UTI
IF(RR.LE.0.1)RR=1.
VR=1.*(VR/VI)-1.)*UPL*UTAUW/UTI
IF(VR.LE.0.1)VR=1.
IF(KD.GT.116)GO TO 230
YLOAP=(YPL+DVY/2.1/APL/INV/SQRT(3RR))
IF(YLOAP.GT.10.)EE=1.
IF(YLOAP.GT.10.)GC TO 240
EE=1.-1./EXP(YLOAP)
GO TO 240
230 EE=(YPL+DVY/2.1)/BPL/INV/SQRT(3RR)
IF(EE.GT.1.)EE=1.
240 DD=1.+4.*(TPLSS*KK*AKK*EE*EE*(YPL+DVY/2.1)*(YPL+DVY/2.1)*
1/(VR/VR)*VR)
DUDY=1.2*(TPLSS/(1.-SQRT(3)))K/VR
UPL=UPL+DUDY*DVY
DI2=RR*RH-5.*(UPL-DUDY*DVY)*UPL*UPL) UPL*UPL
A2=DI2*A2
IF(NEQ.EQ.116)EE TO 260
EOR=(RR/VR)*KK*AKK*(YPL)*YPL/2.1*(YPL+DVY/2.1)*EE*EE*DD
EOR=EOR+1.0
DO 250 J=1,NPH
220 PRW=1.+(PRW/J)/PRW(J)-1.)*UPL*UTAUW/UTI
C THE FOLLOWING IS THE FREE CONSTANT IN THE TURBULENT TRANSITL

C NUMBER EQUATION. EXPERIENCE MAY SUGGEST A DIFFERENT VALUE.

CT = 0.2
PRW=PRW/J
PRT=EDR/CT=PRW/J

C

ORIGINAL PAGE IS OF POOR QUALITY
IF (PETC.GT.0.01) PETC=0.01
IF (PETC.GT.1000.0) PETC=0.1G0 TO 245
ALPHA=SQRT(1./PRTJ)
AOP=ALPHA/PETC
IF (AOP.GT.10.) AOP=10.
PATJ=1./1. (2.*PRTJ)+ALP+A*PETC-PETC*PETC*(1.-EXP(-AOP))
IF (K3.EQ.3.0 OR .SOURCE(J).EQ.2) PRTJ=PATJ
245 PREFW=EORT/(1./FRR*PRAW(J)) +EDR/PATJ
DHY(J)=(PREFW/(ECRT*VR))*1.+GPL*HPS(J)+DHY(J)*DYPL/2.)*S*C5*
1YPL=UPL*YPL+YPL+C3*
2I(PREFW-1.)*UPL-DUDY*DYPL/2.)*DUDY
HPS(J)=HPS(J)+DHY(J)*DYPL
250 CONTINUE
260 YPL=UPL*DYPL
REL=UPL/YPL
IF (INTG.EQ.11) GO TO 270
IF (YPL.GT.YPMAX)LSUB=2
IF (LSUB.EQ.2) GO TO 340
270 IF (KCHECK.EQ.1) GO TO 280
C...... AT THIS POINT THE PRODUCT UP*L IS COMPARLED TO U*Y*ROH/MU AT THE WALL 2640
C...... JOIN-POINT IN THE MAIN PROGRAM GRID.
IF (REL.LT.REW)GO TO 210
280 ERR=REL-REN
AERR=ABS(ERR)
ER2=AERR/REW
IF (ER2.LT.0.01)GO TO 300
KCHECK=1
IF (ERR.LT.0.0) DYFL=ABS(DYPL/2.0)
IF (ERR.GT.0.0) DYFL=-ABS(DYPL/2.0)
GO TO 220
C---- SECTION SIX ----
C...... THIS SECTION IS USED IF THE NUMERICAL INTEGRATION
C...... OF THE COUETTE FLOW EQUATIONS IS BYPASSED
290 YPL=SORT(REW)
YPL=SORT(ABS(REW/1.+((PPL-BPLUS)*YPL/2.+GPL*YPL/2.)))
YPL=SORT(ABS(REW/1.+(PPL-BPLUS)*YPL/2.+GPL*YPL/2.)))
UPL=REW/YPL
TPLUS=1.*GPL*UPL+(PPL-BPLUS)*YPL
IF (TPLUS.LT.0.0) TPLUS=0.0
IF (TPLUS.LT.0.0) TPLUS=0.0
IF (TPLUS.LT.0.0) SUB=2
IF (TPLUS.LT.0.0) TPLUS
DUDY=TPLUS
C---- SECTION SEVEN ----
C...... WALL SHEAR STRESS AND FRICTION FACTOR ARE COMPUTED HERE
300 IF (YPL.LT.YPMIN.ANL.MODE.EQ.2) LSUB=1
IF (YPL.GT.YPMAX) LSUB=2
IF (LSUB.NE.2) CLOD.GFX=DPDX
BETA=DUDY*YPL/UPL
C...... THE FOLLOWING IS AN APPROXIMATE CORRECTION FOR USE
C...... OF PLANE WALL FUNCTION EQUATIONS FOR AXI-SYMMETRIC PROBLEMS
RADAT=(R(NP2)+R(NP1))/2.*R(NP3)
IF (KIN.EQ.1) RADAT=(R(12)+R(13))/2.*R(11)
TAUW=ABS(RADAT)*RPM*UE*U/(UPL*UPL*GC)
TAU-ΤΑΥ=ΤΡΛΥΤΛΥ*ΤΖ
IF (UGG.LT.0.001) GO TO 310
CF2=GC/TAUW/UGG/UGG
310 CONTINUE
IF (NEQ.EQ.1) GO TO 340
C...... DO 330 J=1,NPH

98
IF (REW,GE,4.) GO TO 320

C --------------- SECTION EIGHT ---------------

C THIS SECTION IS USED IF THE NUMERICAL INTEGRATION
C OF THE COUETTE FLOW EQUATIONS IS BYPASSED
HPS(J)=PRW(J)*(YPL+GPL*YPL*YPL/2.)
DHV(J)=PRW(J)*(1.+GPL*HPS(J))
PREF=PRW(J)

C --------------- SECTION NINE ---------------

C WALL HEAT TRANSFER AND STANTON NUMBER ARE COMPUTED HERE
320 GAMAJ(J)=DHY(J)*YL/HPS(J)
QWF(J)=RADRT*RHW*UI/(LPL*HPS(J))
IF(SOURCE(J).EQ.2)GAMA(J)=0.0
IF(SOURCE(J).EQ.2)AND.MODE.EQ.2)FI(J)=(AKK*AKK*EE*BETA*UI/AQ)**2
IF(SOURCE(J).EQ.2)GO TO 328
IF(INDI(J).EQ.1)AND.NDEN(J).GE.11)GO TO 325
IF(KEX.EQ.1)GO TO 322
F(J,1)=IF(J(J)/AJ(J)/QWF(J)/I.AMI/QWF(J))
HWJ=F(J,1)
QWF(J)=AJ(J)/AMI*H(WJ)
IF(FLORD.EQ.2)CALL PROP2(F(J,1),T(I),VISCO(I),PRI(I),RHO(I))
C IF VARIABLE PROPERTY ROUTINE OTHER THAN 2 IS USED, CHANGE THIS
C CALL AS APPROPRIATE. ALSO AFTER STATEMENT 325
GO TO 326
322 FIJ,NP3)=IF(J(J)/AJ(J)/QWF(J)/I.AMI/QWF(J))
HWJ=F(J,NP3)
QWFJ)=AJ(J)/AMI*H(J)
IF(FLORD.EQ.2)CALL PROP2(FJ,NP3),T(NP3),VISCO(NP3),PRI(NP3),RHO(NP3)
GO TO 326
325 CONTINUE
QW(J)=QWF(J)*H(W(J)-F(J))
326 IF((ABS(HG(J)-H(J)))/LT.OO.OOO01.OR.UGG.LT.OO1)ST(J)=0.0
IF(ABS(HG(J)-H(J)))/LT.OO.OOO01.OR.UGG.LT.OO1)GO TO 328
ST(J)=QW(J)/(RHO*UGG*H(J)-H(J))
IF(KEX.EQ.1)AND.NDEN(J).GE.11QW(J)=QW(J)
328 IF(KIN.EQ.1)PREF(J,2)=PREF
IF(KIN.EQ.1)PREF(J,NP3)=PREF
330 CONTINUE

C --------------- SECTION TEN ---------------

340 KSTART=KSTART+1
IF(INTE.EQ.1).AND.KSTART.LT.41GO TO 40
MARKER=0
IF(LSUB.GT.0)MARKER=1
IF(LSUB,EO)RETURN

C LAMSUB ROUTINE
C IF LSUB EQUALS 1, (SEE CONDITIONS IN MAIN PROGRAM).
C THIS ROUTINE HAS AS ITS FUNCTION THE DELETION OF THE FIRST
C GRID LINE NEAREST THE WALL. IN EFFECT IT COMBINES THE
C FIRST TWO SPACES AND REDUCES THE NUMBER OF SPACES, N, BY ONE.
C ALTERNATIVELY, IF LSUB EQUALS 2, IT INSERTS ANOTHER GRID
C POINT BETWEEN I AND 3.
INTGE=INTGE+1
WRITE(6,930)
390 FORMAT(*) ROUTINE LAMSUB HAS BEEN CALLED!
IF(LSUB.GT.1)GO TO 390
N=N-1
WRITE(6,920)N,INTGE
NP3=NP3+1
NP3=N+3
IF(KIN.EQ.1)GO TO 360
U(NP3)=U(N+4)
U(NP2)=U(N+3)
Y(NP3)=Y(N+4)
Y(NP2)=Y(N+3)
IF(NEQ.EQ.1)GO TO 460
DO 350 J=1,NPH
F(J,NP3)=F(J,N+4)
350 F(J,NP2)=F(J,N+3)
GO TO 460
360 CONTINUE
DO 380 I=3,NP3
U(I)=U(I+1)
Y(I)=Y(I+1)
IF(NEQ.EQ.1)GO TO 380
DO 370 J=1,NPH
370 F(J,I)=F(J,I+1)
380 CONTINUE
GO TO 460
390 N=N+1
WRITE(6,9201,N,I,T)GE
C........CHANGE IF PRCGRAP DIMENSIONING IS CHANGED. *********************
IF(N.GT.50)GO TO 470
NPI=N+1
NP2=N+2
NP3=N+3
IF(KIN.EQ.1)GO TO 420
Y(NP3)=Y(NP2)
Y(NP2)=Y(NP1)
U(NP3)=U(NP2)
U(NP2)=U(NP1)
Y(I)=0.5*(Y(NP2)+Y(I))
Y(NP1)=0.5*(Y(I)+Y(I))
U(NP1)=0.5*(U(I)+U(I))
IF(NEQ.EQ.1)GO TO 410
DO 400 J=1,NPH
F(J,NP3)=F(J,NP2)
F(J,NP2)=F(J,NP1)
400 F(J,NP1)=0.5*(F(J,N)+F(J))
410 CONTINUE
GO TO 455
420 DO 440 K=1,N
I=NP3+I-K
U(I)=U(I-1)
Y(I)=Y(I-1)
IF(NEQ.EQ.1)GO TO 440
DO 430 J=1,NPH
430 F(J,I)=F(J,I-1)
440 CONTINUE
Y(I)=0.5*(Y(I)+Y(I))
Y(I)=0.5*(Y(I)+Y(I))
U(I)=0.5*(U(I)+U(I))
IF(NEQ.EQ.1)GO TO 455
DO 450 J=1,NPH
450 F(J,3)=0.5*(F(J,J)+F(J,3))
455 EMU(NP1)=EMU(N)
BF(NP3)=BF(NP2)
VISCO(NP3)=VISCO(NP2)
RHO(NP3)=RHO(NP2)
T(NP3) = 1.
IF (NPH.EQ.0) GO TO 460
DO 458 J = 1, NPH
458 PRINT NP3
460 CONTINUE
IF (LTLPL.EQ.1) WRITE(6,62)
RETURN
470 WRITE(6,940)
LVAR = 6
62 FORMAT(* LSUE-2 UAS INVOKED BECAUSE SHEAR STRESS RATIO*/

1° IN WALL FUNCTION GOT LESS THAN 0.1, DUE PROBABLY*/
2° TO EXCESSIVE PRESSURE GRADIENT OR SUCTION*/
940 FORMAT(*/ PROGRAM TERMINATED BECAUSE N HAS EXCEEDED THE*/
1° NUMBER OF FLOW TUBES FOR WHICH THE PROGRAM IS DIMENSIONED*/
920 FORMAT(1X,17HN HAS SHIFTED TO ,12,1X,9MAT INTG = ,14/)
RETURN
WALL4210
WALL4220
WALL4230
WALL4240
WALL4250
WALL4260
WALL4270
WALL4280
WALL4290
WALL4300
WALL4310
WALL4320
WALL4330
WALL4340
WALL4350
WALL4360
WALL4370

SUBROUTINE AUX
C.....
INTEGER GEOM, FLUID, SOURCE(51), SPACE, BOFFOR, OUTPUT, TYPBC
COMMON/GEN/PEI, AMI, AME, DDPX, XJ, KD, XL, DX, INTG, CSLFA, TYPBC(5),
1PLOT(51), PRE, XBC, X(101), RML(100), FJ(101), GCJ, AM(100), PRO,
2FG(100), PO, SOURCE, RETRAN, NUMRUN, SPACE, RWD, PLLAG, OUTPUT, DELTAX, CV
3/E/N, NP1, NP2, NP3, NEQ, NPH, KEX, KIN, KASE, KRAD, GEOM, FLUID, BOFFOR, YPMIN, AUXO0000
4/GG, BETA, GAMMA(5), AJI(5), AJS(5), INO(151), INDE(5), TAUGWVTF(5),
5/V/ULS(5), F(5,54), R(5), DN(54), Y(54), JUMG, UG, UI, FI(5,1), FMEAN, TAUN
6/W/SCI(5), AT(54), BU(54), CI(54), AL(5,54), B(5,54), C(5,54), S(5,54), S(5,54), 5D AUXO0090
7/L/ALMG, ALMGG, FRA, APL, BPL, AQ, BO, EMU(54), PREF(5,54), AUXM1
8/I/AUX, UAVXX, UMIN, FR, YIP, YEM, ENFRA, KENT, AUXM2
9/P/RHO(54), VISCO(54), PR(5,54), RHC, VISCOG, PRC(5), T(54), RHOM, BF(54), AUXO1000
1/D/H, REM, CF2, ST(51), LSUB, LVAR, CAY, REM, PLL, GPL, OW(51), KD
2/C/AXX, BXX, CXX, EKX, K1, K2, K3, SP(54), AUX1(100), AUX2(100), YPMAX
3/ADD/RDOM(54), CMC(54), RDOM(54), ITKE
DIMENSION DV(54)

C.....
ITKE = 1
UGG = UU(1)+FLOAT(KEX-1)*(U(NP3)-UU(1))
RHG = RHO(1)+FLOAT(KEX-1)*(RHO(NP3)-RHO(1))
AMW = AME+FLOAT(KEX-1)*(AME+AMH)
RHW = RHO(NP3)+FLOAT(KEX-1)*(RHO(NP3)+RHO(1))
VIS = VISCO(NP3)+FLOAT(KEX-1)*(VISCO(NP3)+VISCO(1))
UTAU = SORTIGC/TAUH/RHW
YPUT = RHW*UTAU/VISH
IF (INTG.GT.1) GO TO 10
KOUNT = 0
IF (MODE.EQ.2) KCLNT = 1
1 RAVG = R(1)
RHOAV = RHO(1)
VISAV = VISCO(1)
KTURB = 0
IF (NPH.EQ.0.AND.MODE.EQ.2.AND.K2.NE.0) WRITE(6,6)
IF (K2.EQ.2.AND.MODE.EQ.2) WRITE(6,9)
IF (NPH.EQ.0.AND.MODE.EQ.2.AND.KD.GE.2) WRITE(6,7)
IF (NPH.EQ.0.AND.MODE.EQ.2.AND.KD.GE.2) WRITE(6,8)
IF (NPH.EQ.0) GO TO 10
J TKE = 0
DO 5 J = 1, NPH
IF (SOURCE(J).EQ.2) JTKE = J
5 CONTINUE
ORIGINAL PAGE 77 OF POOL 101
IF (J.EQ.I*EQ.1) WRITE (6,4)
IF (J.EQ.I*EQ.2 AND K.EQ.2) WRITE (6,3)
3 FORMAT(//'K2 SHOULD NOT BE SET EQUAL TO 2')
4 FORMAT('FLOW IS TURBULENT AND PROGRAM IS USING TURBULENT')
1' KINETIC-ENERGY TO EVALUATE EDDY VISCOSITY. EXCEPT IN THE'
1' WALL FUNCTION WHERE MIXING-LENGTH IS USED. NOTE THAT THE'
1' PRINTED-OUT VALUES OF TKE HAVE NO MEANING IN THE NEAR-WALL'
1' REGION, I.e., FOR Y* LESS THAN 3+, OR 2*+ .')
5 IF (SOURCE(J).EQ.2) KTURB=1
IF (MODE.EQ.1) GC TO 10
IF (KTURB.EQ.0 AND K2.NE.2) WRITE (6,6)
IF (KD.LT.2) WRITE (6,8)
6 FORMAT('FLOW IS TURBULENT AND PROGRAM IS USING THE PRANDTL MIX-')
1' ING-LENGTH HYPOTHESIS TO EVALUATE EDDY VISCOSITY.')
7 FORMAT('THE VAN DRIEST SCHEME IS BEING USED TO EVALUATE')
1' THE MIXING-LENGTH OR LENGTH-SCALE DAMPING NEAR THE WALL.')
8 FORMAT('THE EVANS SCHEME IS BEING USED TO EVALUATE THE')
1' MIXING-LENGTH OR LENGTH-SCALE DAMPING NEAR THE WALL.')
9 FORMAT('FLOW IS TURBULENT AND PROGRAM IS USING THE CONSTANT')
1' EDDY DIFFUSIVITY OPTION IN THE OUTER REGION')
C.....
10 DO 100 I=2,NPI
Y=0.5*(Y(I+1)+Y(I))
IF (KIN.EQ.1) YM=Y(NPI)-Y
IF (FLUID.EQ.1) GC TO 12
RAVG=0.5*(R(I)+R(I+1))
RHOAV=0.5*(RHO(I)+RHO(I+1))
VISAV=0.5*(VISC0(I)+VISC0(I+1))
12 EMUT=0.
DVII=1.
IF (MODE.EQ.1) GC TO 50
KOUNT=KOUNT+1
IF (KOUNT.EQ.1) GC TO 1
IF (KASE.EQ.2) GO TO 25
C-------------- EDDY VISCOSITY DAMPING TERM ---------- AUXO0750
C.....VAN DRIEST DAMPING FUNCTION
C.....APL, BPL COMPUTED IN WALL
IF (FLUID.NE.1) YPUT=SQR(TAUW*Y/RHO)/VISAV
YLOC=YM*YPUT
IF (K0.GT.1) GO TO 15
IF (YLOC/APL.GT.15) GO TO 25
DVII=1.-1.*EXP(-YLOC/APL)
GO TO 22
C.....EVANS DAMPING FUNCTION
15 DVII=YLOC/BPL
20 IF(DVII.GT.1.) DVII=1.
C.....LOWER LIMIT VALUE DAMPING TERM
22 IF (DVII.LT.0.0001) DVII=0.0001
25 CONTINUE
C-------------- PRANDTL MIXING LENGTH -------------- AUXO0900
C.....EMPIRICAL CORRELATION FOR ALMG FOR WALL FLOWS
C.....THIS CORRELATION THEN OVERRIDES THE INPUT ALMG
AMOR=AME/RHO11
IF (KIN.EQ.1) AMOR=AM1/RHO(NP3)
ALMG=ALMG+(1.675*AMOR/UGU)
IF (ALMG.LT.2.942/REM**0.125) ALMG=ALMG
C....COMPUTE MIXING LENGTH
30 AL=ALMC*L
IF (KASE.EQ.1.AND.YM.LT.AL/AK) AL=AK*YM
IF (KASE.EQ.1.AND.K2.EQ.2) AL=AK*YM
IF (KTURB.EQ.1.AND.KASE.EQ.2) GO TO 40
IF (KASE.EQ.2) GO TO 35
YTKE=Y(I+1)*YPUT
IF (KEX.EQ.1) YTKE=(Y(NP3)-Y(I+1))*YPUT
IF (KTURB.EQ.1.AND.KD.LE.1.AND.YTKE.GE.2.*APL) GO TO 40
IF (YTKE.GE.Z.*APL) GO TO 35
EMUT=RHOAV*AL*ABS(U(I+1)-U(I+1)-Y(I))#DV(I)*DV(I)
IF (K2.NE.2.OR.KASE.EQ.2) GO TO 36
EMUTC=(APR**BG)*VSAV
IF (EMUT.GT.EUMUT) EMUT=EMUTC
IF (YH.GT.0.4*YI) EMUT=EMUTC
35 IF (KASE.EQ.2) GO TO 50
C....ADJUSTMENT OF TKE IN NEAR-WALL REGION
FJVAVE=((AK*EMLT)/(AQ*RHOAV*AL*DV(I)))*2
FJITKE,I=FJVAVE
ITKE=I
IF (KEX.EQ.1.AND.ITKE.EQ.1) ITKE=I
GO TO 50
C....COMPUTE EDDY VISCOITY USING TURBULENT KINETIC ENERGY EQN
40 FJVAVE=ABS*0.5*(FJITKE,I+1)+FJITKE,I)
EMUT=RHOAV*AL*ABS(U(I+1)-U(I))#DV(I)/AK
C....TURBULENT EFFECTIVE VISCOSITY ----AUX1210
50 EMUIU(I)=EMUT*VSAV
IF (NPH.EQ.0.AND.KASE.EQ.1) T(I)=ABS(EMU(I)*(U(I+1)-U(I)))/
1(Y(I+1)-Y(I)))/(CC*TAUW)
IF (NPH.EQ.0) GO TO 100
C....TURBULENT PRANDTL/SCHMIDT NUMBER ----AUX1260
DO 90 J=1,NPH
IF (MODE.EQ.1) GC TO 80
JPHI=1
IF (SOURCE(J).EQ.0) JPHI=SOURCE(J)
GO TO 62,66,62,621, JPHI
C....STAGNATION ENERGY EQN, TURBULENT PRANDTL NUMBER
62 PRTJ=PR(J)
IF (KASE.EQ.2.OR.K3.EQ.3) GO TO 70
C....THE FOLLOWING IS THE FREE CONSTANT IN THE TURBULENT PRANDTL
C....NUMBER EQUATION. EXPERIENCE MAY SUGGEST A DIFFERENT VALUE.
CT = 0.2
PETC=EDR*CT*(PR(J)+1.0+PR(J))/2.
IF (PETC.GT.0.01) PETC=0.01
IF (PETC.GT.100.0) GO TO 69
ALPHA=SQRT(1./PRTJ)
AOP=ALPHA/PETC
IF (AOP.GT.10.) AOP=10.
PRJ=1.0/12.*PRTJ+ALPHA*PETC*PETC*EXP(-AOP)
GO TO 69
C....TURBULENT KINETIC ENERGY EQN, TURB PRANDTL NUMBER
68 PRTJ=PRT(J)
C....EFFECTIVE PRANDTL/SCHMIDT NUMBER ----AUX1500
69 IF (KIN.EQ.1.AND.1.EQ.2) GO TO 90
IF (KEX.EQ.1.AND.1.EQ.NP) GO TO 90
70 PRTJ=1.0*ECR/(EDR/PRTJ+1.0/10.0*(PR(J)+1.0))
GO TO 90
C....LAMINAR EFFECTIVE PRANDTL NUMBER

AUX1000
AUX1010
AUX1020
AUX1030
AUX1040
AUX1050
AUX1052
AUX1054
AUX1060
AUX1070
AUX1080
AUX1090
AUX1100
AUX1110
AUX1120
AUX1130
AUX1140
AUX1150
AUX1160
AUX1161
AUX1162
AUX1170
AUX1180
AUX1190
AUX1200
AUX1210
AUX1220
AUX1230
AUX1240
AUX1250
AUX1260
AUX1270
AUX1280
AUX1290
AUX1300
AUX1310
AUX1320
AUX1330
AUX1340
AUX1350
AUX1360
AUX1370
AUX1380
AUX1390
AUX1400
AUX1410
AUX1420
AUX1430
AUX1440
AUX1450
AUX1460
AUX1470
AUX1480
AUX1490
AUX1500
AUX1510
AUX1520
AUX1530
AUX1540
AUX1550
80 PEF(J,1)=0.5*(P(R(J,1)+P(R,J.))
90 CONTINUE
100 CONTINUE
 DO 110 I=2,NE
 RHOAV=(RHO(I)+RHO(I+1))/2.
 RAVG=(R(I)+R(I+1))/2.
 C---- ADJUSTMENT OF EMU AT 2.5 AND N+1.5
 IF (I.GT.2) GO TO 110
 IF (KIN.NE.1) GO TO 105
 IF (BETA.LT.0.02.OR.BETA.GT.0.9) GO TO 110
 EMU(I)-TAU*(Y(I)+Y(I+1))/(BETAL*(U(I)+U(I+1)))
105 IF (KEX.NE.1) GO TO 110
 IF (BETA.LT.0.02.OR.BETA.GT.0.9) GO TO 110
 EMU(NP1)+TAU*(Y(NP3)-0.5*(Y(NP1)+Y(NP2)))/
 (BETAL*(0.5*(U(NP1)+U(NP2)))
 C---- COMPUTE SMALL C'S
110 CS(I)=RAVG*RHOAV*0.5*[U(I)+U(I+1)]*EMU(I)/(PEI*PEI)
 IF (NEQ.EQ.1) GO TO 300
 DO 200 J=1,NPH
 S(U,J,1)=0.
 SD=0.
 IF (SOURCE(J,1).NE.0) GO TO 150
 NSOR=SOURCE(J)
 GO TO (115,130,115,120), NSOR
 C--------------- SOURCE TERMS -------------------
115 IF (I.EQ.2) PEF(J,1)=PEF(J,2)
 PEF=PEF(J,1)+PEF(J,1-1))/0.5
 CS=CS(I)*[(U(I+1)+U(I+1)-U(I)+U(I))]
 CS=CS-SC(I)*[(U(I)+U(I)-U(I)-I)+U(I+1)-U(I)-I]
 CS=CS-1.0*PEF+CS*RHOM(I)
 SU(J,1)=CS/SC(J)+BFI/I/(CJ+RHO1)
120 IF (U(I).LT.0.0001) GO TO 125
 IF (SOURCE(J,1).NE.3) SU(J,1)=SU(J,1)+AUXM2/(RHO(I)+U(I))
 IF (SOURCE(J,1).NE.4) SU(J,1)=AUXM2/(RHO(I)+U(I))
125 SD=0.
 GO TO 150
 C--------------- STAGNATION ENERGY EQN SOURCE -----------
130 AL=ALMX*YL
 IF (KASE.EQ.2) GO TO 140
 YMQ=Y(11)
 IF (KEX.EQ.1) YMQ=Y(NP3)-Y(I)
 IF (YMQ.LT.AK/AL) AL=AK*YMQ
 140 QU2DOM=.5*[(U(I+1)+U(I+1)-U(I)+U(I))]*RHO(I)+
 1 (U(I+1)-U(I)-I)+U(I-I)+RHO(I-1))
 DVO=.5*(DV(I)+CV(I-1))
 FJ2=ABS(F(J,1))
 PROD=AQ*AL=DVO*SCRT(FJ2)*(RHO(I)+RHI)/PEI**2/(U(I)+AK*4.1)*
 1**2DVO**2
 DISS=BO*AK*FJ2**1.5/(AL*DVO*U(I))
 IF(DISS*CX.GT.FJ2)DISS=FJ2/DX
 SU(J,1)=PROD-CISS
 FGT=F(J,1)
 IF(KIN.EQ.2)FGT=F(J,1)
 IF(KIN.EQ.3)FGT=0.0
 IF(F(J,1).LT.FGT)SU(J,1)=PROD
 SD=0.0
 GO TO 150
 C--------------- ADD OTHER SOURCE FUNCTIONS HERE

104
SUBROUTINE OLT

C.....DIMENTION UPLUS(54),YPLUS(54),HP(54),QRAT(54)
INTEGER FLAG,FLAG2
INTEGER GEOM,FLUID,SOURCE(54),BORDER,OUTPUT,TYPBC
COMMON/GEN/PEL,AM,AME,DPDX,XJ,XD,XY,DX,INTG,CSALFA,TYPBC(5),
1MODE,PRT(5),PREAMBC,X(1001),Y(1001),FJ(1501),GC,CJ,AM(1001),PRO,
2UG(1001),PD,SOURCE,RETRAN,NUMRUN,SPACE,RM,PLAG,OUTPUT,DELTAX,GM
3/E/N,P1,P2,P3,NPH,KEX,KIN,KASE,KRAD,GEOM,FLUID,BOFDFOR,YMIN,CUT010040
5/V/U(54),F(5,54),R(54),DM(54),Y(54),UGU,UGD,UI,FI(5),FMEAN,TAUW
7/L/ALM,ALMG,FRG,APL,BLQ,BO,ENH(5),PREF(5,54),AUXM1
9/P/RHO(54),VISCO(54),PR(5,54),RHOC,VISCOC,PRC(5),T(54),RHOM,8F(54)
10/PH,REH,CF2,ST(5),SUB6,VAR,CAY,REH,PPL,GPL,OM(5),K3
2/CN/AXX,BXX,CXX,DXX,EXX,K1,K2,K3,SP(54),AJX1(1001),AUX2(1001),YMAX

C.....GO TO (100,200,300,600,500,603), OUTPUT
100 CONTINUE
GO TO 1000
200 CONTINUE
C.....THESE ROUTINE WORKS PROPERLY ONLY FOR KIN=1.
C.....IT IS DESIGNED
C.....PRIMARILY FOR EXTERNAL NONENETUH
C.....WITH OR WITHOUT THE TURBULENT KINETIC ENERGY EQUATION.
C.....PROPERLY. IT MUST BE THE LAST EQU_CA '_'SOLVED.
IF(KIN.NE.1)GC TC 600
IF(INTG.EQ.11)GC TC 205
IF(KSPACE.EQ.11)KSACE=SPACE
IF(NPH.EQ.0)ST(1)=0
IF(NPH.EQ.0)ST(2)=0
IF(NPH.EQ.1.AND.SOURCE(1).EQ.2)ST(1)=0
IF(NPH.EQ.1.AND.SOURCE(1).EQ.2)ST(1)=0
IF(NPH.EQ.0)REH=0
IF(NPH.EQ.0)FLAG=1
IF(INTG.EQ.1)FLAG2=1
205
FAM=AM/2(RHO(NP31/2)
STA=ST(1)
RCA=(H+1)/(H+2)SORT(CF2)
IF(SOURCE(12.AND.NPH.GT.1)STA=ST(2)
IF(XD.EQ.XLJGG TC 210
IF(INTG.EQ.FLAG)GC TC 278
210 CONTINUE
NINT=INTG-1
IF(INTG.EQ.1.AND.KSPACE.NE.11)GO TO 115
IF(INTG.EQ.11)WRITE(6,282)
IF(INTG.EQ.2.AND.KSPACE.EQ.11)WRITE(6,282)

105
IF(INTAG.EQ.2.AND.KSPACE.EQ.21)WRITE(6,282)
BEGIN}(1)WRITE(6,280)
END}(1)WRITE(6,280)
CPL=APL
IF(KD.GT.1)CPL=BL
WRITE(6,284)INTG,XU,UGU,CAY,FAM,REM,CF2,H,REH,STA,F(1,1),CPL,AME
IF(KSPACE.EQ.11.AND.XD.LT.XL)GO TO 279
IF(INTAG.EQ.FLAG2)GO TO 215
IF(KSPACE.EQ.21.AND.XD.LT.XL)GO TO 279
IF(XD.GE.XL)UGU=UGO
215 CONTINUE
WRITE(6,280)
WRITE(6,280)
CPL=APL
IF(KD.GT.1)CPL=BL
WRITE(6,284)INTG,XU,UGU,CAY,FAM,REM,CF2,H,REH,STA,F(1,1),CPL,AME
IF(K1.GT.10)WRITE(6,286)SP(I),I=1,51,G,BTA
266 FORMAT(1X,23H SPECIAL OUTPUT - SP(I)=E9.3,1X,HSP(2)=E9.3,1X,6HSP(4)=E9.3,1X,2HG=M,
2FS2.1X,5HBETA=F5.2)
288 FORMAT(/,5X,64H I Y(I) U(I) YPLUS(I) UPLUS(I)
1 HPLUS(I),5X,10HSRTK/I/UG/)//
IF(NEQ.EQ.11)WRITE(6,288)
IF(NEQ.EQ.11)WRITE(6,290)
290 FORMAT(/,5X,66H I Y(I) U(I) YPLUS(I) UPLUS(I)
1 TAUPLUS(I)///)
292 FORMAT(6,X,12X,F8.6,X,F7.2,3X,F8.2,9X,F5.2,9X,F9.4,5X,F7.4,
15X,F6.3,2X,F7.3)
YPUT=U(NP3)*SQRT(CF2*RHO(NP3)/RHO(1))/VISCO(I)
LPUT=U(NP3)*SQRT(CF2*RHO(NP3)/RHO(1))
IF(NPH.EQ.0)GO TO 293
IF((ABS((F(I,1)-F(I,NP3)))*ST(I)).LT.0.001)GO TO 293
IF(NEQ.GT.1.AND.SOURCE(I).EQ.2)YPUT=SQRT(CF2*RHO(1)/RHO(NP3))/
1 (F(I,1)-F(I,NP3))*ST(I))
C...CHANGE MU IF DIMENSIONING CHANGED *************
C293 MU=54
C......
DO 274 I=1,NP3
YPLUS(I) Y(I)*YPUT
UPLUS(I) U(I)*UPLUS(I)
IF(I.NE.2)GO TO 245
GO TO (240,225,220,225,225),NEQ
220 IF(SOURCE(I).EQ.2)GO TO 235
IF(SOURCE(2).NE.2)GO TO 225
QRAT(MU)=SQRT(ABS(F(I,2)))/U(NP3)
225 IF(SOURCE(1).EQ.2)GO TO 235
HP(MU)=0.0
IF((ABS((F(I,1)-F(I,NP3)))*ST(I)).LT.0.001)GO TO 230
HP(MU)=F(I,1)-F(I,NP3)
230 F(I,MU)=F(I)
GO TO 240
235 QRAT(MU)=SQRT(ABS(F(I,1)))/U(NP3)
240 Y(MU)=0.5*(Y(I)+Y(3))
U(MU)=U(I)
YPLUS(MU)=0.5*(Y(2)+Y(3))*YPUT
UPLUS(MU)=U(I)*UPLUS(I)
M=MU
245 IF(I.EQ.NP2)GO TO 274
GO TO (250, 255, 265, 255, 255), NEQ
250 TAUPL=1.0
 IF(IoNE. = AN+6*NE. = MUITAUPL = 0.5*(T(H) + T(M-1))
 IF(M.EQ.MUITAUPL = TAU/ (G(C+TAU))
 IF(I.EQ.NP3)TAUPL = 0.0
 WRITE(6, 292) M, Y(M), U(M), YPLUS(M), UPLUS(M), TAUPL
 GO TO 274
255 IF(I SOURCE(1). EQ. 2)GO TO 272
 HP(I) = 0.0
 IF(ABS([F(I, I) - F(1, NP3)]) .Lt. 0.001)GO TO 260
 HP(I) = [F(I, I) - F(1, I)]#HPUT
 GO TO 274
260 WRITE(6, 292) M, Y(M), U(M), YPLUS(M), UPLUS(M), 1, HP(M)
 GO TO 274
265 IF(I SOURCE(1). EQ. 2)GO TO 272
 IF(I SOURCE(2). ANE. = MUITAUPL = 255
 QRA(T(I) = SQRT(ABS(F(2, I))/U(NP3))
 HP(I) = 0.0
 IF(ABS([F(I, I) - F(1, NP3)]) .Lt. 0.001)GO TO 270
 HP(I) = [F(I, I) - F(1, I)]#HPUT
 GO TO 274
270 WRITE(6, 292) M, Y(M), U(M), YPLUS(M), UPLUS(M), HP(M), QRA(T(M)
 GO TO 274
272 QRA(T(I) = SQRT(ABS(F(1, I))/U(NP3))
 DUMMY = 0.0
 WRITE(6, 292) M, Y(M), U(M), YPLUS(M), UPLUS(M), DUMMY, QRA(T(M)
274 CONTINUE
 WRITE(6, 280)
 IF(XD.GT.XL)GO TO 276
 IF(INTG.EQ.11)GO TO 276
 IF(KSPACE.EQ.11 OR KSPACE.EQ.21)WRITE(6, 282)
276 CONTINUE
280 FORMAT(/)
 FLAG2 = FLAG2 + KSPACE - 1
279 FLAG = FLAG + SPACE
278 CONTINUE
282 FORMAT(115H INTG XJ UGU K F REM
1 CF2 M REM ST F1(WALL) APL OR BPL AME)
284 FORMAT(3X, I3, 2X, F7.4, 2X, F7.2, 1X, E10.3, 2X, F6.4, 1X, F7.1, 2X, F8.6, 2X,
 1F9.3, 3X, F7.1, 2X, F8.6, 2X, F8.2, 2X, F6.2, 2X, F8.4)
 RETURN
C........
300 CONTINUE
 GO TO 1000
400 CONTINUE
C........THIS OUTPUT ROUTINE IS DESIGNED PRIMARILY FOR FLOW IN A TUBE.
403 FLAG = 1
 FLAG2 = 1
404 IF(KSPACE.EQ.11 OR KSPACE.EQ.21)SPACE = 1
 IF(XD.GE.XL)GO TO 403
 IF(INTG.NE.FLAG2 GO TO 425
405 CONTINUE
480 FORMAT(2X, 5H INTG =, I3, 1X, 3HXU =, F6.3, 1X, 3HRE =, F9.1)
RETURN
11x,4mCF2,=,F7.5,1X,3HST=,F7.5,1X,3HNU=,F7.2,1X,3HUM=,F7.2,1X, OUT01660
13HFm=,F9.2,1X,6HPress=,F10.3,1X,3HFm=,F8.2) OUT01670
NINTG=INTG-1 OUT01680
J=1 OUT01690
IF(ISource(J)EQ.2.AND.NPH.EQ.2)J=2 OUT01700
IF(ISource(J)EQ.2.AND.NPH.EQ.1)ST(1)=-0.0 OUT01710
ANU=ST(J)*PR(J)*7*REM OUT01720
C...NOTE THAT NUSSELT HERE IS CALCULATED FROM I=7 PR, WHEREAS THE C...OTHER PARAMETERS ARE BASED ON MIXED MEAN TEMPERATURE.
WRITE(6,4801)INTG,xU,REM,CF2,ST(J),ANU,UGJ,FMEAN,PRO,F(J,NP3) OUT01730
482 FORMAT(12X,2)SPECIAL OUTPUT - SP11=,U10.3,1X,6HSP12=,E10.3,1X,6OUT01740
1HSP(3)=,E10.3,1X,6HSP(4)=,E10.3,1X,6HSP(5)=,E10.3) OUT01750
484 FORMAT(5X,48H IY(|I U(|I F(|I U(|I F(2,1) OUT01760
1,5X,YPL+,5X,*UPL+,7X,*EDR+,6X,*T(||+)) OUT01770
14X,F6.2,4X,F7.2) OUT01780
401 WRITE(6,484) OUT01790
486 FORMAT(16X,12X,3X,F9.6,2X,F7.2,F10.2,F10.2,3X,F8.2,2X,F6.2,2,16X,F6.2,4X,F7.2) OUT01800
DUM=0.0 OUT01810
YPUT=UGU+SQRT(CF2) OUT01820
DI=15 1=1,NP3 OUT01830
IF(KEX.EQ.11)YPL=(Y(INP3)-Y(I))#RH01NP3)YPUT/VIso1(NP3) OUT01840
IF(KIN.EQ.11)YPL=(Y(I)-Y(1))#RH01)YPUT/VIso11) OUT01850
YPL(U(I)/YPUT OUT01860
IF(NPH.EQ.1)F12(I)=0.0 OUT01870
IF(I,I.GT.2.AND.I.LT.NP2)EDR=(EMU(I)+EMU(I-1))/2.*VIso11) OUT01880
IF(I,I.LT.3.OR.I.GT.NP1)EDR=0.0 OUT01890
IF(NPH.EQ.0)WRITE(6,486),Y(I),U(I),DUM,JM,YPL,UPL,EDR,T(I) OUT01900
IF(NPH.EQ.0)WRITE(6,486),Y(I),U(I),F(I),F(I),F(2,1),YPL,UPL,EDR,T(I) OUT01910
415 CONTINUE OUT01920
WRITE(6,488) OUT01930
488 FORMAT(/) OUT01940
FLAG2=FLAG2*KSPACE-1 OUT01950
420 CONTINUE OUT01960
FLAG=FLAG*KSPACE OUT01970
425 CONTINUE RETURN OUT01980
C... THIS IS A GENERAL PURPOSE OUTPUT ROUTINE OUT01990
C.......
IF(INTG.EQ.11)FLAG=1 OUT02000
FAM=0.0 OUT02010
IF(KEX.GE.XL)GO TO 605 OUT02020
IF(INTG.NE.FLAG16G TO 620 OUT02030
605 CONTINUE OUT02040
NINTG=INTG-1 OUT02050
680 FORMAT(12X,5HINTG=,I3,2X,3HNU=,F8.5,2X,4HPEI=,F8.5,2X,4HAMI=, OUT02100
1F8.4,2X,4HAME=,F8.4,2X,9HPressure=,F9.3,2X,5HBeta=,F7.4,2X, OUT02110
2HMK=,E10.3) OUT02120
682 FORMAT(12X,6HREM=,F9.1,2X,4HREM=,F9.1,1X,4HCF2=,F8.6,2X,9HA OR RPL OUT02130
1,F6.2,2X,2HMF,F6.3,2X,7HRO11=,F7.4,2X,9HREM(3)=,F7.4) OUT02220
684 FORMAT(12X,28HPLACEMENT OF I-SURFACE = ,F7.5) OUT02230
686 FORMAT(12X,9HST(J) = ,5F9.6) OUT02240
CUTO2250
SUBROUTINE PROP2(K,FX,TI,VISCOI,PRA,RHOA)
C..... THIS PROGRAM CALCULATES THE PROPERTIES OF AIR AT ABSOLUTE STATIC
C..... ENTHALPY DETERMINED FROM F(I,J) AND U(I). IT IS ESSENTIALLY A
C..... TABULATION OF THE EckERT AND Drake TABLES. IT IS ASSUMED
C..... IN USING THIS SUBROUTINE THAT THE DEPENDENT VARIABLE IN THE
C..... THERMAL ENERGY EQUATION IS STAGNATION ENTHALPY.
C..... HERE:
C..... K=1 IMPLIES START WITH LOWEST TABULATED STATIC ENTHALPY
C..... =2 IMPLIES START WITH PREVIOUSLY USED TABULATED STATIC
C..... ENTHALPY
C..... M=ABSOLUTE STATIC ENTHALPY (B/LBM)
C..... P=P=STATIC PRESSURE (LBF/SQ.FT.)
C..... RHOA=CALCULATED DENSITY (LBM/FT.3)
C..... VISCOI=CALCULATED DYNAMIC VISCOSITY (LBM/(SEC.*FT.))
C..... PRA=CALCULATED PRANDTL NUMBER
C..... KT=CALCULATED TEMPERATURE (DEG. RANKINE)

C..... 688 FORMAT(* I Y(I) R(I) OM(I) U(I) EMU(I) OUTO2260
C..... 1 T(I) F(I,I) F(I,2) F(I,3) F(I,4) F(I,5) OUTO2270
C..... 690 FORMAT(4X,I2,1X,F8,6,2X,F7,4,3X,F7,5,1X,F7,4,2X,F10.7,2X,F6,1,2X,
C..... 15F9.3)
C..... 692 FORMAT(4X,I2,1X,F8,6,2X,F7,4,3X,F7,5,1X,F7,4,2X,F10.7,2X,F6,1,2X,
C..... 15F9.3)
C..... WRITE(16,680)INTG,XU,PEI,AMI,AME,PRA,BETA,GAY
C..... CPL=APL
C..... IF(KASE.EQ.2) GO TO 610
C..... IF(KD,GT,1)CPL=4PL
C..... IF(KASE.EQ.1)WRITE(6,682)REM,REH,CF2,CLP,H,RHO(I),RHO(NP3)
C..... 694 FORMAT(12X,2F9.6)
C..... ILL,=F9.6)
C..... IF(KASE.NE.1)GO TO 610
C..... IF(KIN.EQ.1.AND.UM(NP3),GT,0.001)FAM=AMI/I(NP3)*RHO(NP3))
C..... IF(KEX.EQ.1.AND.U(I),GT,0.001)FAM=AME/I(U(I))*RHO(I))
C..... WRITE(6,694)FAM,CPL,PPL,TAUW
C..... 610 IF(GEOM.EQ.9)WRITE(6,684)RWD
C..... EMU(I)=0.0
C..... IF(KCASE.EQ.1.AND.NPH.NE.0)WRITE(6,686)(ST(I),J=1,NPH)
C..... IF(KCASE.EQ.1.AND.NPH.NE.0)WRITE(6,696)(QW(I),J=1,NPH)
C..... 696 FORMAT(12X,2F10.5)
C..... WRITE(16,689)XU,EMI(I)=10.3
C..... IF(KCASE.EQ.1.AND.TI.EQ.1)WRITE(6,698)GAMA(I),J=1,NPH)
C..... IF(X,GT,1)WRITE(6,699)(SPI(I),I=1,5)
C..... 699 FORMAT(12X,2F10.5)
C..... 1HSPI(3)=E10,3,1X,6HSPI(2)=E10,3,1X,6HSPI(5)=E10,3
C..... WRITE(16,688)
C..... EMU(NP2)=0.0
C..... EMU(NP3)=0.0
C..... DO 615 I=1,NP3
C..... IF(NPH.EQ.0)WRITE(6,692)I,Y(I),R(I),OM(I),U(I),EMU(I),T(I)
C..... IF(NPH.GT.0)WRITE(6,690)I,Y(I),R(I),OM(I),U(I),EMU(I),T(I)
C..... 615 CONTINUE
C..... FLAG=FLAG+SPACE
C..... 620 CONTINUE
C..... RETURN
C..... 1000 CONTINUE
C..... RETURN
C..... END

ORIGINAL PAGE IS OF POOR QUALITY
SUBROUTINE INPUT(KErrOR)

INTEGER GEOM,FLUID,SOURCEl5),SPACE,BODFOR,OUTPUT,TYPBC,TITLE(18)
COMMON/GEN/PET,A/1,AME,DOPX,XJ,DK,XL,DX,INTG,CSALFA,TYPBC(15),
1MODE,PRl(5),FRE,NEC,R(120),P(100),GC,C,J,AM(100),PR,
2UG(100),PS,SOURCE,NUMRUN,SPACE,ROD,PLAG,OUTPUT,DELTAX,GV
3/E/N,NP1,NP2,NP3,NEQ,NPH,KEX,KIN,KASE,KAAD,GEOM,FLUID,BOOdOR,YPMM
4/GE/BETA,GAMA(15),AJT(5),AJE(5),INDI(5),INDE(5),TAU,OM(1)
5/V/U(54),F(5,54),M(54),Y(54),U(15),U0(15),F(15),FMEAN,TAUW
6/W/SC(54),AU(54),BU(54),Cu(15),A(15,54),B(15,54),C(15,54),D(15,54),
7/L/AK,ALMG,AlMG,FA,APL,PLAG,BU,EMU(54),PREF(15,54),AXM
8/LI/YL,UMAX,UMIN,FX,YS,ENERA,KENT,AJXM
9/P/RHOC(54),VISCO(54),PREN,PH,ROH,VISGOC,PAC(54),T(54),RHCW,8F(54)
1/0/H/REM,CF2,ST(5),LSUB,LR,RACT,C,RJ,REM,PLG,OM(54),KX
2/CN/AXX,BOX,CXX,EXX,X2,K2,K3,SP(54),AXJ(1001),AXU(1001),YPMAX
C......
C......EACH 'READ' STATEMENT IS INDICATED BY
C......ALL INTEGERS ARE IN FIELDS OF 5 SPACES. BE SURE TO
C......READ IN A TITLE OF UP TO 72 CHARACTERS
C......
C......WRITE(6,506)TITLE
C......THE QUANTITIES READ AT THIS POINT ARE DEFINED:
C......GEOM= GENERAL STATEMENT OF THE SYSTEM GEOMETRY
C......MODE = AXI-SYMMETRIC BODY--RADIUS NOT INCLUDED IN
C......BOUNDARY LAYER EQUATIONS, APPLICABLE TO EITHER
C......INTERNAL OR EXTERNAL BOUNDARY LAYERS WHERE
C......BOUNDARY LAYER THICKNESS IS SMALL RELATIVE TO
C......BODY RADIUS, ALSO APPLICABLE TO FLAT-PLATE
C......GEOMETRY (SIMPLY SET W(KIN) CONSTANT).
C......
C......=1 IMPLIES AXI-SYMMETRIC BODY--RADIUS INCLUDED IN
C......BOUNDARY LAYER EQUATIONS, APPLICABLE ONLY TO
C......EXTERNAL BOUNDARY LAYERS (KIN=1,KEX=2)
C......
C......=2 IMPLIES AXI-SYMMETRIC BOUNDARY LAYER, APPLICABLE ONLY TO
C......EXTERNAL BOUNDARY LAYERS (KIN=2,KEX=1)
C......
C......=3 IMPLIES AXI-SYMMETRIC TUBE-FLOW PROBLEM (KIN=3,KEX=1)
C......
C......=4 IMPLIES CIRCULAR TUBE--FLOW PROBLEM (KIN=4,KEX=1)
C......
C......=5 IMPLIES FLOW BETWEEN PARALLEL PLANES, SYMMETRICAL
C......BOUNDARY CONDITIONS (KIN=3,KEX=1)
C......
C......=6 IMPLIES AXIALLY-SYMMETRIC JETS
C......
C......=7 IMPLIES AXIALLY-SYMMETRIC FREE SHEAR FLOW
C......
C......=8 IMPLIES TWO-DIMENSIONAL SYMMETRIC JET
C......
C......=9 IMPLIES TWO-DIMENSIONAL FREE SHEAR FLOW
C......MODE = TYPE OF FLOW SYSTEM CONSIDERED INITIALLY
C......
C......=1 IMPLIES LAMINAR FLOW
C......=2 IMPLIES TURBULENT FLOW
C......
C......NOTE: IF MODE = 1 THE PROGRAM AUTOMATICALLY CHANGES
C......TO TURBULENT FLOW WHEN THE MOMENTUM THICKNESS RE
C......NUMBER EXCEEDS VALUES INSERTED AS 'RETRAN' BELOW.
C......
C......FLUID= TYPE OF MAINSTREAM FLUID/SELECTS APPROPRIATE SUBROU-
C......TINES
C......
C......=1 IMPLIES CONSTANT PROPERTY FLUID
C......=2 IMPLIES AIR AT MODERATE TEMPERATURES
C......... =3/OR HIGHER) IMPLIES OTHER FLUIDS NOT YET SPECIFIED. IMPU0540
C......... NEQ= NUMBER OF CONSERVATION EQUATIONS CONSIDERED IMPU0550
C......... INCLUDING MOMENTUM EQUATION IMPU0560
C......... N= NUMBER OF STRIPS ACROSS LAYER (LIMITED TO 50, THIS VERSION) IMPU0570
C......... KEX= DEFINES TYPE OF BOUNDARY AT ARBITRARILY NOMINATED IMPU0580
C......... EXTERNAL BOUNDARY IMPU0590
C......... KIN= DEFINES TYPE OF BOUNDARY AT ARBITRARILY NOMINATED IMPU0600
C......... INTERNAL BOUNDARY IMPU0610
C......... KIN,KEX= 1 IMPLIES WALL BOUNDARY IMPU0620
C......... = 2 IMPLIES FREE BOUNDARY IMPU0630
C......... = 3 IMPLIES LINE OF SYMMETRY IMPU0640
C......... KENT= 0 IF ENTRAINMENT IS BASED ON MOMENTUM EQUATION ONLY. IMPU0650
C......... = 1 IF ENTRAINMENT IS BASED ON ALL EQUATIONS IMPU0660
C (INTEGERS) IMPU0670
C (DECIMAL NUMBERS) IMPU0680
READ(5,585) GEOM,MODE,FLUID,NEQ,N,KEX,KIN,KENT IMPU0690
C..... WRITE(6,510) IMPU0700
C IF(IN.GT.40)WRITE(6,980) IMPU0710
C WRITE(6,520) GEOM,MODE,FLUID,NEQ,N,KEX,KIN IMPU0720
C IF(GEOM.EQ.4.OR.GEOM.EQ.5)GO TO 20 IMPU0730
C IF(KENT.EQ.0)WRITE(6,525) IMPU0740
C IF(KENT.GT.0)WRITE(6,526) IMPU0750
C.... THE QUANITIES READ AT THIS POINT ARE DEFINED: IMPU0760
C.... XU= INITIAL VALUE OF X CHOSEN TO DEFINE POSITION OF INITIAL IMPU0770
C.... PROFILES. TYPICALLY XU=0.0, BUT NEED NOT BE. IMPU0780
C.... XL= VALUE OF X WHERE COMPUTATIONS ARE TERMINATED IMPU0790
C.... DELTAX= MAXIMUM STEP IN X-DIRECTION, EXPRESSED AS FRACTION OF IMPU0800
C.... BOUNDARY LAYER THICKNESS (SUGGEST 0.5, BUT CAN BE MADE IMPU0810
C.... MUCH LARGER FOR CONSTANT PROPERTY FLOWS AND LAM FLOWS). IMPU0820
C.... RETAN= MOMENTUM THICKNESS REYNOLDS NUMBER (OR DIAMETER IMPU0830
C.... REYNOLDS NUMBER IN TUBE-FLOW PROBLEM) AT WHICH IMPU0840
C.... TRANSITION FROM LAMINAR TO TURBULENT BOUND-
C.... ARY LAYER IS DESIRED (USE DUMMY NUMBER IF IMPU0850
C.... PROBLEM IS ALL TURBULENT.) (SUGGEST 200.0) IMPU0860
C.... FRA= FRACTION FOR DETERMINATION OF DX TO NEXT POSITION (SUG-
C.... GESTED VALUE=0.05). IMPU0870
C.... ENFRA= DESIRED FRACTIONAL DIFFERENCE BETWEEN FREE-STREAM AND IMPU0880
C.... NEXT-TO-LAST GRID POINT. CONTROLS ENTRAINMENT RATE. IMPU0890
C.... (SUGGESTED VALUE=0.005). THIS VALUE IS RELATED TO THE IMPU0900
C.... CHOSEN GRID SPACING. IN SOME CASES 0.01 WORKS BETTER. IMPU0910
C.... BUT WITH A FINE GRID IT MAY BE NECESSARY TO GO AS LOW IMPU0920
C.... AS 0.001. IF THERE IS NO FREE-STREAM IMPU0930
C.... LEAVE ENFRA BLANK, OR USE ANY DUMMY NUMBER. IMPU0940
C.... GV= GRAVITY CONSTANT, POSITIVE IN POSITIVE X DIRECTION. IMPU0950
C.... LEAVE 0.0 OR BLANK IF GRAVITY IS NOT CONSIDERED. IMPU0960
C (DECIMAL NUMBERS) IMPU0970
20 READ(5,580)XU,XL,DELTAX,RETRAN,FRA,ENFRA,GV IMPU0980
C..... WRITE(6,540) IMPU1000
C WRITE(6,550) XU,XL,DELTAX,RETRAN,FRA,ENFRA,GV IMPU1010
C NPH=NEQ-1 IMPU1020
C KASE=1 IMPU1030
C IF(KIN.NE.1.AND.KEX.NE.1)KASE=2 IMPU1040
C.... THE QUANITIES READ AT THIS POINT ARE DEFINED: IMPU1050
C.... BCDFOR= TYPE OF BC CY-FORCE (OTHER THAN PRESSURE GRADIENT) IMPU1060
C.... =0 IMPLIES NO EXTRA BODY FORCES IMPU1070
C.... =1 IMPLIES FREE-CONVECTION BODY-FORCE IMPU1080
C.... =2 IMPLIES AN EXTERNAL BODY-FORCE IN ADDITION TO FREE IMPU1090

112
C******* CONVECTION: INTRODUCED THRU AUX1(M).
C
C******* SOURCE(J) = TYPE OF SOURCE FUNCTION IN THE DIFFUSION EQUATIONS.
C
C******* = 0 IMPLIES NO SOURCE FUNCTION.
C
C******* = 1 IMPLIES VISCOS Dissipation, PLUS WORK OF ANY BODY
C
C******* FORCES, IN THE ENERGY EQUATION.
C
C******* = 2 IMPLIES THE SOURCE FUNCTION FOR THE TURBULENT ENERGY
C
C******* EQUATION. SETTING SOURCE EQUAL TO 2 FOR ANY DIFFUS-
C
C******* ION EQUATION AUTOMATICALLY MAKES THAT EQUATION BE THE
C
C******* TURBULENT KINETIC ENERGY EQUATION, AND AT THE SAME
C
C******* TIME THE EDDY VISCOSITY AND EDDY CONDUCTIVITIES WILL
C
C******* BE CALCULATED BY THE TURBULENT KINETIC ENERGY METHOD.
C
C******* = 3 IMPLIES VISCOS DISSIPATION PLUS AN EXTERNAL VOLUME
C
C******* SOURCE, INTRODUCED THROUGH AUX2(M), PLUS BODY FORCE
C
C******* WORK, IN THE ENERGY EQUATION. AUX2(M) HAS DIMENSIONS
C
C******* (ENERGY)/(VOLUME*TIME).
C
C******* = 4 IMPLIES AN EXTERNAL VOLUME SOURCE, INTRODUCED THROUGH
C
C******* AUX2(M). DIMENSIONS, (QUANTITY)/(VOLUME*TIME).
C
C******* SOURCE WILL NOT BE READ UNLESS NEQ IS GREATER THAN 1.
C
C (INTEGERS)
C
C IF(NEQ.GT.1)READ(5,585) BDFOR, (SOURCE(J), J=1,NPH)
C IF(NEQ.EQ.1)READ(5,585) BDFOR
C
C WRITE(6, 820)
C IF(NEQ.GT.1)WRITE(6, 830) BDFOR, (SOURCE(J), J=1,NPH)
C IF(NEQ.EQ.1)WRITE(6,830) BDFOR
C
C THE QUANTITIES READ AT THIS POINT ARE DEFINED:
C
C PD = INITIAL FReESTream STATIC PRESSURE
C
C RHOC = DENSITY OF CONSTANT PROPERTY FLUID
C
C VISCOC = VISCOSITY OF CONSTANT PROPERTY FLUID (IF ENGLISH
C
C UNITS, (LBM/SEC-FT)).
C
C USE DYNAMIC VISCOSITY, LBM/(SEC-FT).
C
C PRC = PRANDTL NUMBER OF CONSTANT PROPERTY FLUID (FOR TURBULENT
C
C KINETIC ENERGY EQUATION USE PRC=1.00)
C
C (THE CONSTANT PROPERTIES MAY BE OMITTED IF FLUID NOT EQUAL 1)
C
C IF(FLUID.EQ.2)WRITE(6,800)
C IF(FLUID.EQ.1)WRITE(6,750)
C
C READ ONLY ONE OF THE FOLLOWING THREE
C
C (DECIMAL NUMBERS)
C
C IF(FLUID.NE.1)READ(5,580) PD
C IF(FLUID.EQ.1.AND.NEQ.GT.1)READ(5,580) PD, RHOC, VISCOC, (PRC(J), J=1,NPH)
C IF(FLUID.EQ.1)AND.NEQ.GT.1)READ(5,580) PD, RHOC, VISCOC
C
C WRITE(6,700)
C WRITE(6,900) PD
C IF(FLUID.NE.1)GO TO 50
C WRITE(6,680)
C IF(NPH.EQ.0) GO TO 40
C WRITE(6,690) RHOC, VISCOC, (PRC(J), J=1,NPH)
C GO TO 50
C
C 40 WRITE(6, 870) RHOC, VISCOC
C 50 CONTINUE
C
C WRITE(6, 770)
C
C BOUNDARY CONDITIONS ALONG I AND E BOUNDARIES (ONLY ONE MAY BE
C
C A WALL)
C
C THE QUANTITIES READ AT THIS POINT ARE DEFINED:
C
C NXBC = NUMBER OF POINTS USED TO SPECIFY BOUNDARY CONDITIONS AT
C
C EITHER INTERNAL OR EXTERNAL BOUNDARY
C
C TYPBC(J) = IMPLIES TYPE OF BOUNDARY CONDITION GIVEN FOR THE
C**** J-TH CONSERVED QUANTITY AT A WALL SURFACE
C***** =1 IMPLIES LEVEL SPECIFICATION
C***** =2 IMPLIES FLUX SPECIFICATION
C***** NOTE: FOR THE TURBULENT KINETIC ENERGY EQUATION
C***** USE TYPB(j)=1
C**** (TYPB WILL NOT BE READ UNLESS NEQ IS GREATER THAN 1)
C*************** READ ONLY ONE OF THE FOLLOWING THREE
C***** NOTE: KASE=1 MEANS A WALL; KASE=2 MEANS THERE ARE NO WALLS.
C (INTEGERS)
 IF(KASE.EQ.1.AND.NEQ.GT.1)READ(5,585)NXBC,(TYPB(j),J=1,NPH)
 IF(KASE.EQ.1.AND.NEQ.EQ.1)READ(5,585)NXBC
 IF(KASE.EQ.2)READ(5,585)NXBC
C*****
 IF(KASE.EQ.2.OR.NEQ.EQ.1)GO TO 70
 WRITE(6,5701)
 WRITE(6,590)NXBC,(TYPB(j),J=1,NPH)
 GO TO 80
70 WRITE(6,890)
 WRITE(6,585)NXBC
C***** THE QUANTITIES READ AT THIS POINT ARE DEFINED:
C***** X(M)= POSITION AT WHICH THE BOUNDARY VALUES ARE GIVEN. NOTE
C***** THAT X(J) MUST BE LESS THAN (OR EQUAL TO) XU, AND THE
C***** LARGEST VALUE OF X(M) MUST BE GREATER THAN
C***** (OR EQUAL TO) XL.
C***** RW(M)= DISTANCE FROM AXIS OF SYMMETRY TO BODY SURFACE.
C***** SET= CONSTANT IF PLANE BOUNDARY LAYER. (SUGGEST 1.0)
C***** FOR GEOM=4, RW(M) IS THE PIPE RADIUS, MAY VARY WITH X.
C***** FOR GEOM=5, RW(M) IS THE HALF-LENGTH OF THE DUCT, WHICH
C***** MAY BE A FUNCTION OF X.
C***** FOR GEOM=6, 8, OR 9, RW(M) IS TOTALLY A DUMMY.
C***** FOR GEOM=7, RW(M) IS THE INITIAL RADIUS OF THE I-
C***** BOUNDARY, BUT IS A DUMMY THEREAFTER.
C***** AUX1(M), AUX2(M)= AUXILIARY FUNCTIONS, FOR SPECIAL PURPOSES:
C***** INTERPOLATED VALUES WILL APPEAR IN THE COMMON AS AUX1,
C***** & AUX2 IF THERE IS A WALL, LEAVE COLUMN BLANK IF
C***** NOT USED.
C*****
80 CONTINUE
 IF(NXBC.LT.2)WRITE(6,920)
 DO 90 M=1,NXBC
C**
C (DECIMAL NUMBERS, IN THE FORM OF A TABLE.)
 90 READ(5,580)XIM,RWIM,AUX1M,AUX2M
C*****
 C***** THE QUANTITIES READ AT THIS POINT ARE DEFINED:
C***** UG(M)= FREESTREAM VELOCITY AT POSITION X(M). IF BOTH THE
C***** I AND E SURFACES ARE FREE-STREAM BOUNDARIES, UG(M) IS
C***** THE FREE-STREAM VELOCITY ON THE E-SIDE AND MUST START
C***** OUT THE SAME AS UINP3.
C***** IF THERE IS NO FREE-STREAM READ IN A DUMMY
C***** NUMBER FOR UG, OR ELSE LEAVE A BLANK)
C***** AN = MASS FLUX AT WALL, POSITIVE IN THE POSITIVE DIRECTION OF Y
C***** (AN WILL NOT BE READ UNLESS THERE IS A WALL.)
C***** FJ(J,M)= VALUE OF PROPERTY OR FLUX OF PROPERTY AT BOUNDARY
C***** NOTE THAT IF FJ IS A PROPERTY AT THE
C***** WALL (SUCH AS ENTHALPY), TYPB(j) , ABOVE, MUST BE EQUAL
C***** TO 1. IF FJ IS A FLUX AT THE WALL (SUCH AS HEAT FLUX),
C***** TYPB(j) MUST BE SET EQUAL TO 2. IN THE LATTER CASE, FJ
C***** IS THE TOTAL FLUX OF THE PROPERTY IN QUESTION, I.E., THAT
C***** EVALUATED AT THE 'T-STATE' CONTROL SURFACE. THIS BECOMES OF
C***** PARTICULAR SIGNIFICANCE WHEN THERE IS MASS TRANSFER AT THE
C*****
114
C..... SURFACE. IF FJ IS A WALL FLUX, IT SHOULD BE POSITIVE INPU2340
C..... IN THE POSITIVE DIRECTION OF THE COORDINATE SYSTEM INPU2350
C..... FOR THE TURBULENT KINETIC ENERGY EQUATION SET FJ=0.0 INPU22360
C..... (FJ WILL NOT BE READ UNLESS THERE IS A WALL, AND WILL NOT INPU22370
C..... BE READ IF NEC IS 1) INPU2380
C..... NOTE: IF FJ IS A WALL FLUX, AND IS ZERO (ADIABATIC WALL), SOME INPU22390
C..... ERROR MAY BE INTRODUCED BECAUSE THE DEPENDENT VARIABLE IN THE INPU22400
C..... WALL FUNCTION IS NORMALIZED WITH RESPECT TO THE WALL FLUX. INPU22410
C..... IT IS BETTER TO INTRODUCE A SMALL WALL FLUX. (SUGGEST 0.0001) INPU22420
C..... (NOTE THAT M IS AN INTEGER VARYING FROM 1 TO NXBC.) INPU22430
WRITE(6,600)
DO 110 M=1,NXBC
C ** READ ONLY ONE OF THE FOLLOWING THREE. INPU22460
C (DEcimal NUmbers, IN THE FORM OF A Table)
IF(KASE.EQ.1.AND.NEQ.GT.1)READ(5,580)UG(M),AM(M),(FJ(J,M),J=1,NPH) INPU22480
IF(KASE.EQ.1.AND.NEQ.EQ.1)READ(5,580)UG(M),AM(M) INPU22490
IF(KASE.EQ.2)READ(5,580)UG(M) INPU22500
C..... IF(KASE.EQ.1.AND.NEQ.GT.1)WRITE(6,610) M,X(M),R,M,UG(M),AM(M), INPU22520
1AUXX(M),AUX2(M), (FJ(J,M),J=1,NPH)
IF(KASE.EQ.1.AND.NEQ.EQ.1)WRITE(6,610) M,X(M),R,M,UG(M),AM(M), INPU22540
1AUXX(M),AUX2(M)
110 IF(KASE.EQ.2)WRITE(6,610) M,X(M),R,M,UG(M),AUXX(M),AUX2(M) INPU22560
NP1=M+1
NP2=M+2
NP3=M+3
C..... INITIAL PROFILE SPECIFICATION INPU22600
C..... THE INITIAL VELOCITY PROFILE ESTABLISHES THE GRID SPACING INPU22610
C..... AND THUS SOME CARE SHOULD BE EXERCISED IN LAYING IT OUT. INPU22620
C..... THE PROGRAM IS NOT PARTICULARLY SENSITIVE TO UNEVENNESS INPU22630
C..... IN THE Y-INCREMENTS, BUT BIG CHANGES IN DELTA-Y SHOULD INPU22640
C..... BE AVOIDED. INPU22650
C..... FOR TURBULENT FLOW NEAR A WALL THE VALUE OF INPU22660
C..... U*Y/DENSITY/VISCOSITY AT THE FIRST POINT NEXT TO THE INPU22670
C..... WALL SHOULD BE NOT LESS THAN ABOUT 20, UNLESS IT IS DESIRED INPU22680
C..... TO BY-PASS THE WALL FUNCTION. IN THAT CASE THIS VALUE INPU22690
C..... SHOULD BE LESS THAN 1.0, AND ABOUT 20 POINTS RATHER EVENLY INPU22700
C..... SPACED SHOULD BE USED OUT TO YPLUS EQUAL ABOUT 20.0. INPU22710
C..... Y(i)= DISTANCE ALONG NORMAL TO BOUNDARY INPU22720
C..... NOTE THAT Y IS MEASURED FROM THE I-BOUNDARY, INPU22730
C..... I.E., Y(i)= 0.0. INPU22740
C..... U(i)= VELOCITY IN X-DIRECTION AT Y(i) INPU22750
C..... F(J,I)= VALUE OF CONSERVED QUANTITY AT Y(i) INPU22760
C..... NOTE: FOR THE TURBULENT KINETIC ENERGY EQUATION USE INPU22770
C..... F(J,I)=0.0 AT THE WALL (IF ANY). THE REMAINDER OF INPU22780
C..... THE INITIAL TURBULENT KINETIC PROFILE DEPENDS ON THE INPU22790
C..... PROBLEM SPECIFICATIONS. IT CAN BE ALL ZERO. INPU22800
WRITE(6,760)
WRITE(6,630)
C ** READ IN A TABLE OF Y AND U, OR Y, U, AND F'S. INPU22830
C (DEcimal NUmbers)
IF(NEO.EQ.1)GO TO 240
READ(5,580) Y(I),U(I),(F(J,I),J=1,NPH)
DO 220 I=3,NP1
220 READ(5,580) Y(I),U(I),(F(J,I),J=1,NPH)
READ(5,580) Y(NP3),U(NP3),(F(J,NP3),J=1,NPH)
GO TO 255
240 READ(5,580) Y(I),U(I)
DO 250 I=3,NP1
250 READ(5,580) Y(I),U(I)
C..... TURBULENT TRANSPORT CONSTANTS
C..... IF LAMINAR B.L. C_LYv READ IN DUMMY DATA.
C..... IF THERE IS NO WALL, READ IN DUMMY VALUES FOR AK, APL, BFL
C..... THE QUANTITIES READ AT THIS POINT ARE DEFINED:
C..... AK = MIXING LENGTH CONSTANT KAPPA (SUGGESTED VALUE=0.41)
C..... ALMG = VALUE OF LAMBDA = YL/YG (TRY 0.085) FOR A
C..... DIFFUSIVITY OPTION IS USED THIS NUMBER IS A DUMMY)
C..... FR = DEFINES BOUNDARY LAYER THICKNESS (99% POINT=0.01) USED IN
C..... THE DEFINITION OF ALMG (SUGGESTED VALUE=0.01).
C..... AQ, BQ= CONSTANTS IN THE TURBULENT KINETIC ENERGY EQUATION, OR
C..... CONSTANTS IN THE EDDY DIFFUSIVITY EQUATION. WHEN THE AQ=0.005, BQ=0.9)
C..... SET K2=2. (FOR PIPE-FLOW TRY K2=2, AQ=0.005, BQ=0.9)
C..... NOTE: TO BE CONSISTENT FOR TURBULENT K.E., AK MUST BE
C..... EQUAL TO (AQ**2,751/BQ**0.25)
C..... (SUGGEST 0.22 AND 0.377 FOR THE TURBULENT KINETIC ENERGY EQUATION.)
C..... YPAX= MAXIMUM VALUE OF YPLUS TO BE ALLOWED AT OUTER EDGE OF
C..... WALL FUNCTION (SAY 50.0 FOR TURBULENT BL; USE 1.0 IF
C..... DESIRED TO BYPASS WALL FUNCTION; BUT THEN SET
C..... YPMIN = 0.0. FOR STRONG PRESSURE GRADIENTS IT IS MORE
C..... ACCURATE TO SET YPAX NO GREATER THAN 15 SINCE THE DE-
C..... PARTURE FROM COUETTE FLOW OCCURS AT VERY LOW Y+. BEST INPU3650
C..... YPMIN= MINIMUM VALUE OF YPLUS TO BE ALLOWED AT OUTER EDGE
C..... OF WALL FUNCTION FOR A TURBULENT BL (CAN BE 0.0)
C==
C (DECIMAL NUMBERS)
C******
C READ(5,580) Y(NP3),U(NP3)
C********
C 255 NDUMB=1
C IF (NEQ.EQ.1) GO TO 265
WRITE(6, 850)NDUMB,Y(I),U(I),(F(I,J)=1,NPH)
DO 230 I=3,NP1
230 WRITE(6, 850)NDUMB,Y(I),U(I),(F(I,J)=1,NPH)
WRITE(6, 850)NDUMB,Y(I),U(I),(F(I,J)=1,NPH)
DO 270 I=3,NP1
270 CONTINUE
C*******
C READING IN A* OR B*.
C IF A* IS GREATER THAN B*, PROGRAM WILL USE VAN
C OSTER SCHEME FOR SUBLAYER, AND B* IS READ AS Merely A DUMMY NUM-
C BER. IF B* IS GREATER THAN A*, PROGRAM WILL USE THE EVANS SCHEME.
C THE PROGRAM WILL USE AN INTERNAL EMPIRICAL CORRELATION FOR EFFECTS
C OF PRESSURE GRADIENT, TRANSPIRATION, ETC., BUT THIS ADDITIONAL COR-
C RECTION CAN BE SUPPRESSED IF DESIRED BY SETTING 'SIGNAL' AT ANY NUM-
C BER EQUAL TO 1.0. SUGGEST A*<25 FOR FLAT SURFACE; 26 FOR FLOW
C INSIDE A CIRCULAR TUBE.
C*******
C (DECIMAL NUMBERS)
C READ(5,580) A*,ALMG,FR,A*,B*,YPAX,YPMIN
C******
C READ IN A* OR B*.
C IF A* IS GREATER THAN B*, PROGRAM WILL USE VAN
C OSTER SCHEME FOR SUBLAYER, AND B* IS READ AS Merely A DUMMY NUM-
C BER. IF B* IS GREATER THAN A*, PROGRAM WILL USE THE EVANS SCHEME.
C THE PROGRAM WILL USE AN INTERNAL EMPIRICAL CORRELATION FOR EFFECTS
C OF PRESSURE GRADIENT, TRANSPIRATION, ETC., BUT THIS ADDITIONAL COR-
C RECTION CAN BE SUPPRESSED IF DESIRED BY SETTING 'SIGNAL' AT ANY NUM-
C BER EQUAL TO 1.0. SUGGEST A*<25 FOR FLAT SURFACE; 26 FOR FLOW
C INSIDE A CIRCULAR TUBE.
C******************
KD=0

IF (APL.GE.BPL.AND.SIGNAL.GE.1.0) KD=1
IF (BPL.GE.APL) KD=2
IF (BPL.GE.APL.AND.SIGNAL.GE.1.0) KD=3

C******** THE QUANTITIES READ AT THIS POINT ARE DEFINED:

C******** PPLAG = A LAG CONSTANT IN THE EFFECTIVE VALUE OF PPLUS, GPPLUS,
C******** USED IN THE EVALUATION OF APL, OR 9PL.
C******** (SUGGESTED VALUE = 4000.)
C******** PRT(J) = TURBULENT TRANSFER RATIO FOR F(J) (TRY .86)
C******** NEAR A WALL THIS VALUE IS UVRIDDEN INSIDE THE
C******** PROGRAM UNLESS K3 IS SET EQUAL TO 3,
C******** SEE INFORMATION ON K3 BELOW.

C ** READ ONE OF THE FOLLOWING TWO
C (DECIMAL NUMBERS)
IF(NEQ.GT.1) READ(5,580) PPLAG, (PRT(J), J=1,NPH)
IF(NEQ.EQ.1) READ(5,580) PPLAG

C
WRITE(6,780)
WRITE(6,640)
WRITE(6,650) AK,ALMGG,FR,PPLAG,AQ,BQ,YPMAX,ZPMIN
IF(PPLAG.LT.400.) WRITE(6,990)
IF(BQ.LE.0.160) TC 275
IF(NPH.LT.1) GC 275
AKCHEC=(AQ**.75)/(BQ**.25)
AKERR=ABS(AK-AKCHEC)
K20=0
DO 274 J=1,NPH
274 IF(SOURCE(J).EQ.2) K20=1
IF(AKERR/AK.GT.0.01 AND K20.EQ.1) WRITE(6,710)
WRITE(6,930)
WRITE(6,940) APL,BPL,SIGNAL
IF(KD.EQ.0) WRITE(6,950)
IF(KD.EQ.2) WRITE(6,955)
IF(NEQ.GT.1) WRITE(6,660)
IF(NEQ.GT.1) WRITE(6,650) (PRT(J), J=1,NPH)

C******** READ IN CONVERSION CONSTANTS, AND ANY OTHER ARBITRARY DECIMAL CON-
C******** STANTS THAT ARE DESIRED.
C******** GC = 32.2 IN BRITISH SYSTEM
C******** CJ = 778.0 IN BRITISH SYSTEM
C******** IF YOU USE A SYSTEM SUCH AS MKS, GC=1.0 AND CJ=1.0. JUST USE
C******** A CONSISTENT SYSTEM. THE PROGRAM WORKS IN REAL WORLD DIMEN-
C****** SIONS, NOT NCDIMENSIONAL VARIABLES. BE CAREFUL ABOUT THE
C****** DIMENSIONS OF VISCOSITY -- IN ENGLISH UNITS USE LBM/(SEC-FT).
C****** THE CONSTANTS AX, BXX, ETC., MAY BE LEFT BLANK IF THEY ARE NOT
C****** BEING EMPLOYED FOR SOME SPECIAL PURPOSE INSIDE THE PROGRAM.
C****** (THESE OPTIONS LIMITED
C**

C (DECIMAL NUMBERS)
READ(5,580) GC,CJ,AXX,BXX,CXX,DXX,EXX

C
WRITE(6,790)
WRITE(6,720)
WRITE(6,910) GC,CJ,AXX,BXX,CXX,DXX,EXX

C******** READ IN THE NUMBER OF RUNS OF DATA THAT YOU WANT USED (NUMRUN).
C******** AND THE SPACING (NUMBER OF INTEGRATIONS) IF THE OUTPUT DATA THAT
C******** YOU WANT PRINTED (SPACE). IF YOU SET SPACE=11, AN ABBREVIATED
C******** DATA SET WILL BE PRINTED OUT, OMITTING ALL PROFILES, BUT INCLUDING
C******** ALL OTHER DATA AT EACH INTEGRATION. SETTING SPACE=21 WILL CAUSE
C******** A COMPLETE DATA SET TO BE PRINTED EVERY 20 INTEGRATIONS, AS WELL
C******** AS AN ABBREVIATED SET EVERY INTEGRATION. (THESE OPTIONS LIMITED
C******** TO OUT2, OUT4).

117
C...
READ IN DESIRED OUTPUT SUBROUTINE (2, 4, 5, ETC.)

C...
SOME ADDITIONAL ARBITRARY INTEGERS, K1, K2, K3, MAY BE READ IN HERE

C...
IF DESIRED - OTHERWISE LEAVE BLANK. IF K1 IS SET GREATER THAN 10, INPU4160

C...
ALL OUTPUTS WILL PRINT OUT ONE TO FIVE SPECIALYZ DESIGNATED PIECES
C...
OF INFORMATION, DESIGNATED AS SP(i). IF K3 IS SET EQUAL TO

C...
3 A VARIATION OF TURBULENT PR NEAR A WALL WILL BE SUPPRESSED, SEE
C...
PR(i) ABOVE. SETTING K2 EQUAL TO 3 WILL DO THE SAME THING FOR
C...
ALMG.

C...
IF K2 IS SET EQUAL TO 2, PROGRAM WILL USE A CONSTANT EDDY DIF-
C...
FUSIVITY IN THE OUTER REGION, INSTEAD OF A CONSTANT MIXING-
C...
LENGTH. IT WILL BE EVALUATED FROM THE EQUATION, EDR = AQ*REM*BQ, INPU4240
C...
WHERE REM IS MOMENTUM THICKNESS REYNOLDS NUMBER, OR PIPE DIAMETER
C...
REYNOLDS NUMBER. DONT USE THIS OPTION IF FREE-STREAM VELOCITY
C...
IS ZERO (SEE COMMENT ON AQ,BQ).

C...
IF K1 IS SET EQUAL TO 9 OR 20, DELTAX BECOMES EQUAL TO AUX(I),
C...
AND THE ORIGINAL INPUT VALUE OF DELTAX IS OVERRIDDEN. THIS ALLOWS
C...
DELTAX TO VARY WITH X.

C...
(SEE PRESSURE GRADIENT CALCULATION IN MAIN FOR K1=15)

C...
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

C (INTEGERS) INPU4320

C...
READ(5,585) NUMRUN,SPACE,OUTPUT,K1,K2,K3 INPU4330

C...
WRITE(6,730) INPU4340
WRITE(6,740) NUMRUN,SPACE,OUTPUT,K1,K2,K3 INPU4350
IF(KEQ.EQ.4.OR.GEOM.EQ.5)GO TO 11 INPU4360
IF(K2.NE.3.AND.KASE.EQ.1.AND.K1.EQ.2)WRITE(6,960) INPU4370
11 CONTINUE

K10=0 INPU4380
IF(K2.NE.3.AND.KASE.EQ.1.AND.K1.EQ.10)K10=1 INPU4390
IF(K10.EQ.1.AND.KEQ.EQ.1.AND.MODE.EQ.2)WRITE(6,970) INPU4400
IF(K1.EQ.20.CR.K1.EQ.9)WRITE(6,992) INPU4410

C...
INPUT DATA ERROR CHECK INPU4420

C...
IF(XU.LT.X(1).OR.XL.GT.X(NXBC))WRITE(6,503) INPU4430
IF(XU.LT.X(1).OR.XL.GT.X(NXBC))KERROR=3 INPU4440
IF(XU.GE.XL)WRITE(6,500) INPU4450
IF(XU.GE.XL)KERROR=3 INPU4460
IF(Y(NP3).LT.Y(NP3))KERROR=3 INPU4470
IF(Y(NP3).LT.Y(NP3))KERROR=3 INPU4480
IF(Y(3).LT.Y(3))KERROR=3 INPU4490
IF(Y(NP3).LT.Y(NP3))KERROR=3 INPU4500
IF(Y(NP3).LT.Y(NP3))KERROR=3 INPU4510
IF(Y(NP3).LT.Y(NP3))KERROR=3 INPU4520
IF(Y(NP3).LT.Y(NP3))KERROR=3 INPU4530
IF(Y(NP3).LT.Y(NP3))KERROR=3 INPU4540
IF(Y(NP3).LT.Y(NP3))KERROR=3 INPU4550
IF(Y(NP3).LT.Y(NP3))KERROR=3 INPU4560
IF(Y(NP3).LT.Y(NP3))KERROR=3 INPU4570
IF(Y(NP3).LT.Y(NP3))KERROR=3 INPU4580
IF(Y(NP3).LT.Y(NP3))KERROR=3 INPU4590
IF(Y(NP3).LT.Y(NP3))KERROR=3 INPU4600
13 IF(KEQ.EQ.1.AND.U(1).GT.0.0)KERROR=5 INPU4610
IF(KEQ.EQ.1.AND.U(1).GT.0.0)KERROR=5 INPU4620
IF(KEQ.EQ.1.AND.U(1).GT.0.0)KERROR=5 INPU4630
IF(KEQ.EQ.1.AND.U(1).GT.0.0)KERROR=5 INPU4640
IF(KEQ.EQ.1.AND.U(1).GT.0.0)KERROR=5 INPU4650
IF(KEQ.EQ.1.AND.U(1).GT.0.0)KERROR=5 INPU4660
IF(KEQ.EQ.1.AND.U(1).GT.0.0)KERROR=5 INPU4670
15 DO 16 M=2,NXBC INPU4680
16 IF(X(M).LT.X(M-1))KERROR=1 INPU4690
IF(X(M).LT.X(M-1))KERROR=1 INPU4700
DO 18 I=4,NP3 INPU4710
18 IF(Y(I).LE.Y(I-1))KERROR=1 INPU4720
IF(Y(I).LE.Y(I-1))KERROR=1 INPU4730
IF(Y(I).LE.Y(I-1))KERROR=1 INPU4740
PROGRAM TERMINATED BECAUSE EITHER XU OR XL WERE
1° OUTSIDE OF THE RANGE OF THE INPUT DATA, OR ELSE XU
2° WAS INPUT AS GREATER THAN XL

PROGRAM TERMINATED BECAUSE OF INSUFFICIENT OR TOO
1° MANY DATA CARDS, OR SOME OTHER INPUT ERROR
2° FORMING OF SOME OF THE INPUT DATA

PROGRAM TERMINATED BECAUSE IT IS EITHER NOT
1° COMPLETELY SET UP TO HANDLE THIS PARTICULAR
2° GEOMETRY, OR ELSE THE COMBINATION OF KEX AND KIN
3° IS NOT POSSIBLE IN THIS VERSION OF THE PROGRAM

THE INITIAL BOUNDARY LAYER IS RATHER THICK RELATIVE
1° TO THE SPACING OF THE BOUNDARY CONDITION POINTS. THIS MAY
2° LEAD TO TROUBLES, ESPECIALLY WITH PRESSURE GRADIENT

ENTRAINMENT BASED ON MOMENTUM EQUATION ONLY

ENRAINTMENT BASED ON BEHAVIOR OF ALL EQUATIONS

PROGRAM TERMINATED BECAUSE YMAX IS TOO SMALL, 
1° OR THERE IS SOME OTHER RELATED INPUT ERROR

FRA ENTRAINMENT FRACTION GRAVITY CONSTANT

18X,F7,1

FORMAT(60H NXBC TYPBC1 TYPBC2 TYPBC3 TYPBC4 TYPBC5)
1C5 )

FORMAT(7F10.0)

FORMAT(E15)

FORMAT(I4,10X,12,8X,12,8X,12,8X,12,8X,12)

FORMAT(120H M 23 X(M) LU(M) KW(M) UG(M) AM(M) A

1U2X(M) AUX2X(M) FJ(1,M) FJ(2,M) FJ(3,M) FJ(4,M) FJ(5,M)

2)

FORMAT(3X,12,6X,F7.3,1X,F9.3,1X,F10.3,F10.3,F10.3,F10.3)

FORMAT(80H I Y11) U(I) F1(I) F2(I) F3(I)

1I) F4(I) F5(I) 

FORMAT(11X,F7.4,3X,F7.4,3X,F7.4,3X,F7.4,3X,F7.4,3X,F7.4,3X)

FORMAT(50H PRT(1) PRT(2) PRT(3) PRT(4) PRT(5) )

FORMAT(68H DENSITY VISCOSITY PAC(1) PRC(2) PAC(3) PRC(3) PRC(5))

1C(4) PRC(5))
FORMAT(1X,F8.4,3X,F8.3,3X,F8.3,3X,F9.7/1) INPU5350
700 FORMAT(// INITIAL STATIC PRESSURE //) INPU5360
710 FORMAT(// WARNING: THE INPUT VALUES OF AK, AQ, AND BK ARE // INPU5370
 1 INC ONSISTENT //) INPU5380
720 FORMAT(10F10.6) J AX INPU5390
730 FORMAT(81H NC. OF RUNS OF DATA PRINTOUT SPACING OUTPUT) INPU5400
1 OPTION 1 K1 K2 K3 INPU5410
740 FORMAT(13X,12,22X,12,12X,15,15X,15/) INPU5420
750 FORMAT(// CONSTANT FLUID PROPERTIES ARE BEING USED //) INPU5430
760 FORMAT(// INITIAL PROFILES //) INPU5440
770 FORMAT(// BOUNDARY CONDITIONS ALONG I- AND C-SURFACES //) INPU5450
780 FORMAT(// TURBULENCE CONSTANTS //) INPU5460
790 FORMAT(// DIMENSIONING SYSTEM CONSTANTS ARBITRARY //) INPU5470
800 FORMAT(// THE FLUID IS AIR (KEENAN AND KAYE GAS TABLES) //) INPU5480
820 FORMAT(63H BODY-FORCE SOURCE(1) SOURCE(2) SOURCE(3) SOURCE(4) SOURCE(5) ) INPU5490
830 FORMAT(5X,1,9X,11,9X,11,9X,11,9X,11,9X,11/) INPU5500
850 FORMAT(3X,12,7X,F7.2,2X,F7.2,18X,5F15.4) INPU5510
870 FORMAT(1X,F8.4,3X,F9.7/) INPU5520
890 FORMAT(3H NBBC (NUMBER OF SPECIFIED BC POINTS)) INPU5530
900 FORMAT(10X,F10.2) INPU5540
910 FORMAT(12X,F6.1,7X,F5.1,18X,5F15.4) INPU5550
920 FORMAT(// PROGRAM TERMINATED BECAUSE NXBC WAS READ AS A // INPU5560
 1 NUMBER LESS THAN 2 WHICH IS NOT ALLOWED //) INPU5570
530 FORMAT(// APLUS BPLUS SIGNAL //) INPU5580
940 FORMAT(4X,F6.2,4X,F6.2,4X,F6.2) INPU5590
950 FORMAT(// THE PROGRAM IS USING AN INTERNAL CORRELATION TO // INPU5600
 1 ACCOUNT FOR THE INFLUENCE OF PRESSURE GRADIENT AND TRANSPIR // INPU5610
 2 tion ON APLUS //) INPU5620
955 FORMAT(// THE PROGRAM IS USING AN INTERNAL CORRELATION TO // INPU5630
 1 ACCOUNT FOR THE INFLUENCE OF PRESSURE GRADIENT AND TRANSPIR // INPU5640
 2 ON BPLUS //) INPU5650
960 FORMAT(// IF REP IS LESS THAN ABOUT 600, // INPU5660
 1 LAMBOA IS BEING COMPUTED BY AN INTERNAL EQUATION //) INPU5670
970 FORMAT(// PRT NEAR THE WALL IS BEING // INPU5680
 1 EVALUATED BY AN INTERNAL EQUATION, EXCEPT WHEN PRT IS FOR // INPU5690
 2 TURBULENT KE EQUATION //) INPU5700
980 FORMAT(// PROGRAM WILL BOMB OUT BECAUSE PRT IS GREATER THAN 40 // INPU5710
990 FORMAT(// IF THE LAG CONSTANT IS LESS THAN 400, IT IS TREATED // INPU5720
 1 AS IF IT WERE ZERO //) INPU5730
592 FORMAT(// DELTA X IS BEING OVERRIDDEN BY AXI(M) //) INPU5740
RETURN END
### Appendix IV

#### SAMPLE DATA SETS

| 1. | EXTERNAL LAMINAR BOUNDARY LAYER, NO PRESSURE GRADIENT OR TRANSPIRATION |
| 2. | 1 1 1 1 24 2 1 |
| 3. | 0.023 0.320 1.300 0.05 0.003 |
| 4. | 0 |
| 5. | 2117. 0.075 0.000012 |
| 6. | 2 |
| 7. | 0.023 1. |
| 8. | 0.320 1. |
| 9. | 50. |
| 10. | 50. |
| 11. | 0.0 |
| 12. | 0.000062 3.1 |
| 13. | 0.000123 6.2 |
| 14. | 0.000185 9.3 |
| 15. | 0.000247 12.3 |
| 16. | 0.000308 15.3 |
| 17. | 0.000370 18.3 |
| 18. | 0.000432 21.1 |
| 19. | 0.000493 23.9 |
| 20. | 0.000555 26.7 |
| 21. | 0.000617 29.2 |
| 22. | 0.000678 31.7 |
| 23. | 0.000740 34.3 |
| 24. | 0.000802 36.4 |
| 25. | 0.000863 38.5 |
| 26. | 0.000925 40.7 |
| 27. | 0.000987 42.3 |
| 28. | 0.001050 43.9 |
| 29. | 0.001110 45.6 |
| 30. | 0.001170 46.7 |
| 31. | 0.001230 47.8 |
| 32. | 0.001300 48.9 |
| 33. | 0.001360 49.3 |
| 34. | 0.001420 49.7 |
| 35. | 0.001480 50.0 |
| 36. | 0.41 0.085 0.01 0.01 1.0 |
| 37. | 25. |
| 38. | 4000. 0.0 |
| 39. | 32.2 778. |
| 40. | 1 21 2 |

**NOTE:** MOMENTUM EQUATION ONLY IS BEING SOLVED. A TRANSITION TO A TURBULENT BOUNDARY LAYER WILL OCCUR WHEN $RE$ REACHES 300. AN ENTRAINMENT FRACTION OF 0.003 IS RECOMMENDED FOR LAMINAR BOUNDARY LAYER FLOWS.
1. EXTERNAL TURBULENT BOUNDARY LAYER, NO PRESSURE GRADIENT OR TRANSPERSION
2. 1 2 1 2 15 2 1 1
3. 0.0 4.0 1.0 0.0 0.05 0.05
4. 0 0
5. 2117 0.075 0.00012 0.7
6. 2 1
7. 0.0 1.0
8. 4.0 1.0
9. 110. 100.
10. 110. 100.
11. 0.0 1.0 100.
12. 0.0024 73. 173.
13. 0.0034 81. 181.
14. 0.0044 85. 185.
15. 0.0056 88. 188.
16. 0.0066 91. 191.
17. 0.0078 93. 193.
18. 0.0088 96. 196.
19. 0.01 98. 198.
20. 0.0112 99. 199.
21. 0.0122 101. 201.
23. 0.0144 104. 204.
24. 0.0166 106. 206.
25. 0.0188 108. 208.
27. 0.41 0.085 0.0 0.0 1.0 0.0
28. 0.41 0.085 0.0 0.0 1.0 0.0
29. 0.01 98. 198.
30. 4000. 0.86
31. 32.2 778.0
32. 1 21 2
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.

NOTE: THIS DATA IS SET UP FOR CONSTANT PROPERTIES; IF FLUID IS CHANGED TO 2, VARIABLE PROPERTIES OF AIR WILL BE USED, CONSISTANT WITH THE SPECIFIED PRESSURE AND ENTHALPIES.

WITH YPMax SET TO 1.0, THE WALL FUNCTION IS BEING BYPASSED AND THE PROGRAM WILL INSERT A NUMBER OF ADDITIONAL GRID POINTS. IF IT IS DESIRED TO USE THE WALL FUNCTION OPTION, CHANGE YPMax.

THE MIXING-LENGTH SCHEME, WITH VAN DIEST DAMPING IS USED THROUGHOUT THE BOUNDARY LAYER.
1. **EXTERNAL TURBULENT BOUNDARY LAYER, USING TURBULENT KINETIC ENERGY**

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>2</th>
<th>15</th>
<th>2</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>4.0</td>
<td>1.0</td>
<td>300.</td>
<td>0.05</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.075</td>
<td>0.000012</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>110</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.024</td>
<td>73.</td>
<td>73.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.034</td>
<td>81.</td>
<td>71.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.044</td>
<td>85.</td>
<td>67.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.056</td>
<td>88.</td>
<td>62.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.066</td>
<td>91.</td>
<td>57.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.078</td>
<td>93.</td>
<td>52.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.088</td>
<td>96.</td>
<td>47.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.122</td>
<td>99.</td>
<td>36.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.122</td>
<td>101.</td>
<td>31.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.134</td>
<td>102.</td>
<td>26.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.144</td>
<td>104.</td>
<td>21.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.166</td>
<td>106.</td>
<td>13.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.188</td>
<td>108.</td>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.232</td>
<td>110.</td>
<td>0.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.41</td>
<td>0.085</td>
<td>0.01</td>
<td>0.022</td>
<td>0.377</td>
<td>1.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>25.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4000.</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>32.2</td>
<td>778.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**NOTE:** MOMENTUM AND TURBULENT KINETIC ENERGY EQUATION ARE BEING SOLVED. THE THERMAL ENERGY EQUATION CAN BE ADDED AS A THIRD EQUATION AS DESIRED. SEE PREVIOUS NOTE ON YPHMAX.
LAMINAR FLOW IN A CIRCULAR PIPE, ENTRY LENGTH PROBLEM

<table>
<thead>
<tr>
<th>Step</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>D6</th>
<th>D7</th>
<th>D8</th>
<th>D9</th>
<th>D10</th>
<th>D11</th>
<th>D12</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>20.0</td>
<td>1.0</td>
<td>2000.0</td>
<td>.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.17</td>
<td>0.0075</td>
<td>0.000012</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>0.1</td>
<td>0.1</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>0.1</td>
<td>0.1</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>0.1</td>
<td>0.1</td>
<td>5.0</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.0</td>
<td>0.1</td>
<td>0.1</td>
<td>5.0</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>8.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.022</td>
<td>8.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.034</td>
<td>8.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.039</td>
<td>8.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.043</td>
<td>8.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.047</td>
<td>8.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.051</td>
<td>8.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.055</td>
<td>8.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.058</td>
<td>8.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.061</td>
<td>8.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.064</td>
<td>8.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.067</td>
<td>8.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.070</td>
<td>8.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.076</td>
<td>8.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.078</td>
<td>8.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.080</td>
<td>8.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.082</td>
<td>8.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.084</td>
<td>8.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.086</td>
<td>8.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.088</td>
<td>8.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.090</td>
<td>8.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.092</td>
<td>8.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.094</td>
<td>6.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.096</td>
<td>8.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.098</td>
<td>8.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0985</td>
<td>8.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0988</td>
<td>8.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0991</td>
<td>8.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0994</td>
<td>7.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0997</td>
<td>4.0</td>
<td>180.0</td>
<td>180.0</td>
<td>180.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.100</td>
<td>0.0</td>
<td>240.0</td>
<td>240.0</td>
<td>240.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.01</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.2</td>
<td>778.0</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: THE FORWARD STEP SIZE IS HERE BEING VARIED USING K1 = 9 AND A TABLE OF AUX1(3).
1. TURBULENT FLOW IN A CIRCULAR PIPE

2. 4 2 1 2 17 1 3

3. 0.0 4.0 1.0 2000. .05

4. 0 0

5. 2117. 0.075 0.000012 0.7

6. 2 2

7. 0.0 0.1

8. 9. 0.1


10. -2.

11. 0.0 113. 137.

12. 0.010 112. 139.

13. 0.020 109. 143.

14. 0.030 106. 148.

15. 0.035 105. 149.

16. 0.040 103. 151.

17. 0.045 102. 153.

18. 0.050 100. 155.

19. 0.055 99. 158.

20. 0.060 95. 162.

21. 0.065 94. 164.

22. 0.070 91. 168.

23. 0.075 89. 172.

24. 0.080 87. 175.

25. 0.085 84. 179.

26. 0.090 80. 185.

27. 0.095 73. 193.

28. 0.10 0. 200.

29. 0.41 0.075 0.01 0.005 0.9 40. 0.0


31. 4000. 0.86

32. 32.2 778.0

33. 1 21 4 2

34. 35.

36. 37.

38.

39.

40. NOTE: HERE EDDY VISCOSITY IN THE OUTER REGION IS BEING COMPUTED AS A CONSTANT BASED ON REYNOLDS NUMBER RATHER THAN USING A MIXING-LENGTH. HEAT FLUX IS SPECIFIED AT THE WALL (AS A CONSTANT VALUE) RATHER THAN WALL ENTHALPY AS IN THE PREVIOUS EXAMPLES. WALL FUNCTION IS BEING USED IN NEAR-WALL REGION.
```plaintext
<table>
<thead>
<tr>
<th></th>
<th>LAMINAR FREE CONVECTION FROM A VERTICAL FLAT PLATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 1 2 2 3 2 1 0</td>
</tr>
<tr>
<td>2</td>
<td>0.0 3.0 0.5 1.0 0.01 0.01 -32.2</td>
</tr>
<tr>
<td>3</td>
<td>1 0</td>
</tr>
<tr>
<td>4</td>
<td>2117</td>
</tr>
<tr>
<td>5</td>
<td>2 1</td>
</tr>
<tr>
<td>6</td>
<td>7 0.0 4.0</td>
</tr>
<tr>
<td>7</td>
<td>3.0 4.0</td>
</tr>
<tr>
<td>8</td>
<td>.0001 0.0 138.66</td>
</tr>
<tr>
<td>9</td>
<td>.0001 0.0 138.66</td>
</tr>
<tr>
<td>10</td>
<td>138.66</td>
</tr>
<tr>
<td>11</td>
<td>.2525E-03 0.0165 138.47</td>
</tr>
<tr>
<td>12</td>
<td>.4208E-03 0.0276 138.34</td>
</tr>
<tr>
<td>13</td>
<td>.5049E-03 0.0331 138.26</td>
</tr>
<tr>
<td>14</td>
<td>.6350E-03 0.041 138.16</td>
</tr>
<tr>
<td>15</td>
<td>.7651E-03 0.0507 136.06</td>
</tr>
<tr>
<td>16</td>
<td>1.017E-03 0.0672 137.87</td>
</tr>
<tr>
<td>17</td>
<td>1.270E-03 0.0838 137.66</td>
</tr>
<tr>
<td>18</td>
<td>1.530E-03 0.1014 137.46</td>
</tr>
<tr>
<td>19</td>
<td>1.783E-03 0.1179 137.27</td>
</tr>
<tr>
<td>20</td>
<td>2.035E-03 0.1344 137.06</td>
</tr>
<tr>
<td>21</td>
<td>2.295E-03 0.1521 136.74</td>
</tr>
<tr>
<td>22</td>
<td>2.548E-03 0.1686 136.47</td>
</tr>
<tr>
<td>23</td>
<td>2.800E-03 0.1851 136.14</td>
</tr>
<tr>
<td>24</td>
<td>3.060E-03 0.2028 135.86</td>
</tr>
<tr>
<td>25</td>
<td>3.313E-03 0.2193 135.66</td>
</tr>
<tr>
<td>26</td>
<td>3.565E-03 0.2358 135.46</td>
</tr>
<tr>
<td>27</td>
<td>3.826E-03 0.2424 135.26</td>
</tr>
<tr>
<td>28</td>
<td>4.208E-03 0.2645 135.06</td>
</tr>
<tr>
<td>29</td>
<td>4.591E-03 0.2755 134.96</td>
</tr>
<tr>
<td>30</td>
<td>5.356E-03 0.2865 134.86</td>
</tr>
<tr>
<td>31</td>
<td>6.121E-03 0.2975 133.98</td>
</tr>
<tr>
<td>32</td>
<td>7.651E-03 0.3053 132.30</td>
</tr>
<tr>
<td>33</td>
<td>9.181E-03 0.2975 132.06</td>
</tr>
<tr>
<td>34</td>
<td>1.24E-03 0.2535 130.38</td>
</tr>
<tr>
<td>35</td>
<td>1.67E-03 0.1708 128.62</td>
</tr>
<tr>
<td>36</td>
<td>1.98E-03 0.1102 127.74</td>
</tr>
<tr>
<td>37</td>
<td>2.37E-03 0.0628 127.26</td>
</tr>
<tr>
<td>38</td>
<td>2.75E-03 0.0331 127.02</td>
</tr>
<tr>
<td>39</td>
<td>3.15E-03 0.0198 126.88</td>
</tr>
<tr>
<td>40</td>
<td>3.59E-03 0.0088 126.72</td>
</tr>
<tr>
<td>41</td>
<td>3.826E-03 0.0001 126.66</td>
</tr>
<tr>
<td>42</td>
<td>0.0 0.0 0.01 0.0 0.0 1.0 0.0</td>
</tr>
<tr>
<td>43</td>
<td>0.0</td>
</tr>
<tr>
<td>44</td>
<td>0.0</td>
</tr>
<tr>
<td>45</td>
<td>32.2 778.0</td>
</tr>
<tr>
<td>46</td>
<td>1 20 6</td>
</tr>
</tbody>
</table>

NOTE: A LARGE ENTRAINMENT FRACTION IS USED, AS DISCUSSED IN THE TEXT. A FINITE FREE-STREAM VELOCITY IS USED, BUT THE PROGRAM WILL GENERALLY OPERATE SATISFACTOIRILY WITH A ZERO VALUE IF THE ENTRAINMENT FRACTION IS NOT TOO SMALL. AN E-FORMAT IS HERE USED FOR THE Y-DISTANCES, FOR CONVENIENCE (IT OVERIDES THE F-FORMAT SPECIFICATION, BUT THE NUMBERS MUST BE JUSTIFIED TO THE RIGHT OF THE 10 SPACE FIELD). SET RETRAN=1.0 FOR LAMINAR FREE CONVECTION FLOWS.```

---

102
<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>u</th>
<th>v</th>
<th>w</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.1783</td>
<td>1.6358</td>
<td>0.25</td>
<td>200.0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2980.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>40</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flow in a supersonic nozzle, prescribed core velocity distribution.
VARIABLE PROPERTIES OF AIR ARE BEING COMPUTED USING SUBROUTINE PROP2. THE FLOW IS AN AXI-SYMMETRIC BOUNDARY LAYER AND THE WALL RADIUS IS BEING CONSIDERED (GEOM=3). NOTE CHANGE IN FRA ENFRA.