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Sm,j11ARY 

The nonlinear curvature expressions for a twisted. rotor 'olade C~: '", :'e":!.:. 

undergo'-ng transverse bending in two planes, torsion, and extension are 

developed. The curvature expressions are obtained using simple geometr:c 

considerations, in contrast to other methods described in the literat~e. 7:.e 

expressions are first developed in a general manner using the geometrica: 

nonlinear theory of elasticity. These general nonlinear iJxpressions are t:'en 

systematically reduced to four levels of approximation by imposing various 

simplifying assumptions, and in each of these le.vels the second-degree non­

linear expressions are given. The. assumptions are carefully stated and 

their implications with respect to the nonlinear theory of elasticity as 

applied to beams are pointed out. The transformation matrices between t(.e 

deformed and undeformed blade-fixed coordinates, which are needed in the 

development of the curvature expres3ions, are ~lso eiven for three of t~e 

levels of approximation. ':Jll.! pl'eSeil'7, curvature expressions and. trar..sf':·:::..:fo.:':"_:. 

matrices are compared with corresponding expresgions exiating in the l~~e:~~~e. 

These comparisons indicate some discrepancies with the present results in ,,;!~e 
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nonlinear terms. The reasons for these discrepancies are explained. Sinee 

both the nonlinear curvature expressions and the nonlinear transformation 

matrices are needed to develop the nonlinear aeroelut1c equations ot motion 

of flexible rotor blades, the etfect on stability of the discrepancies haa 

yet to be assessed. As a by-product of this study the oontroversy regarding 

whether the uncoupled extensional frequency of a rotating beam increases or 

decreases with increasing rotational speed is resolved. 
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IN'rRODUcmON 

Aeroelutic s,tability usociated nth tlap-las-tonion-ax:I.al couplin, 

ot tlexibla helicopter :rotor blades involves both linear 8I1d nonlinear 

coupling 8ll'l.Ong the deg"e. ot treedom. It the second-degree nonlinea:ri ties 

have to be considered, the governing equations ot motion must include all the 

second degree nonlinear terms. To develop these n~nlinear equation. a need 

thus arises both tor the second-degree nonlinear expreSSions tor the bending 

curva.tures and torsional curvature (sometimes ce.J.led "torSion" or "total 

twist") and the second-degree nonlinea.r transtormatiun matrix between the 

deformed and undeformed blade-fixed coordinate.. The curvatur .. a~ also 
needed in nonlinear static and dynamic analyses ot tubes transporting tluids t 

propellers, etc. Love (ret. 1), using Kirchhoft's kinetic analogy, in con­

junction with direction cosines, develapp-d the linear curvatare expressions 

for an inextensible curved and twisted beam, Hunter (ref 2), using a vec­

torial approacn, extended Love's work to the nonlinear case without invoking 

the inextensibility assumption. Another vector extension of Love's work to 

the nonlinear case 'Jas given by ::011 and !!ote (ref. 3). References 1 to ~ 

ali treat the problem which includes initial bending curvatures and initial 

twist. A specia.l case of ~his problem which is receiving considerable att~n­

tion in the li tern.ture is that of a nexible hingeless rotor blade having only 

ini ti 1.1 t'.Yist (sofJetimes ca,lled "pretwist If or "built-in twidt 'f). Hodges 

(ref. 4) developed the nonlinear curvature expressions for a blade with zero 

pretwist following the approach given by Novozhilo'T (ref. 5). ~ionlinear 

curvature ~xyressions for ,.::1 elastic blade were also given in references 6 and 

7 where they were obtained oy solving a differential equation for the trans­

f0I"I4ation iJ~atrix relating the blade-fixed coordinates of the deformed ar.d 

undeful'me.i blade. 'l'!le nonlinear curvatures were also given in reference E 

where they were obtained 1'rom sirr,ple geometric considerations in comLina.tion 

with Kirchh0ff';J k5.netic analogy. 

In t:lis pC1pe:' t.he :!pproach err'ploj'el ill 1'3ference F: • ... ill 'oe exten'l:::<.i '~'::: 

obtain t.:ie·:~ene!'s.l nC'nlinear curvature eX,p"'essions using the ncnline~r t:!~or'j 

of' e.last':'cit::. ::'n sener'll, the nonlinearity of the equations of t:.c theor,';- .:!:' 
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eJ.&:It.icity can have both pometrical and physical origin. Geometric non­

linearity il ... ociated with the necellity to conlidar the detormed con­

tilUl'&t1on to write the equilibrium equation. ad the need to include non­

linear terms in the Itrain-di.placement relations. Pbrlical nonlinearity i • 
... ociated with the nece •• ity to con.ider the relations between the component. 

ot Itrell and strain .. nonlinear. In the present development on11 ,eometri­

cal nonlinearity i. considered. The general large detor.mation expressions 

tor the curvature. developed herein are systematicalq reduced to tour le'·,l. 

ot approximation by impoling various limplit,ying "Iumptions (tigure 1). The 

levels ot approximation addressed are: (1) the particular case ot large de­

tormations in which the elongations and shears are less than unity with no 

restrictions on the rotations; (2) the tirst case ot small deror~tion8 in 

which the elongations and shears are negligible compared to unity with no 

restrictions on the rotations; (3) the second case ot small de to rm at ions in 
which the elongations, shears, and rotations are negligible co~pared to unity, 

(4) the classical linear case of small detormations in which tne elon~ationst 

shears t and rotations SJ.'e negligible compared to unity and the squares ar.d 

products of the rotations are neglected compared to the strains. 
:1.n t;le subsequent discussions, the terms ilelongations:!, fI she ars ", and 'rota­

tiona II have the same meaning as in reterence 5. The curvature expressions and 

the transformation matrices will be comvared with corresponding expressions 

existing in the literature wherever possible. 

!t should be remarked that, for convenience, the case of small deformations 

I is obtained as a special case of the gene raJ. case ot large deformations rather 

than from the particular case of large detormations addressed herein. This con­

sideration is also reflected in the form ot the block diagram given in figure 1. 

In deriving curvature expressions for a deforn~d blade or beam the need 

arises to employ Eulerian-type angles to effect a transi'orIrAcion between de­

forilled ana undeformed blade-fixed coordinates. If nonlinear curvatures are 

b.aing developed these angles must be treated. as 1'ini te rotations. Since 
trrmsformution matrices corretpondine to finl tc smgle:::; ')1' rot[~tior. !1re not 

cOl'll1lutd.ti ve, the order in which tI.e rotations are lr.'lposed is im!1or":;ant. .\ 

preli~inar'J investigation of the nonlinear curvature eXpressions as influenced 
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br the order in vhich the rotational traD8toftl&tlt)11. between the detol'Md ud 
un4etol'Md blade-fixed coordinate. are iapo.e4 va al.c Ci".11 ill NteNnC. 8. 
Of the .iz rotational trllD.tol'll&tion .equellce, poI.ible referonce 8 COD-
aldered tvo: tlap-laa-pitch IIld laa-tlap-pitch. It va .hCMl there that. ii. 
toraiOllal curvature expre •• iOll tor III a.~d nap-lac-pitch rotational .equence 

dittered troll the toniOilal curvature expre •• ion tor a lac-nap-pitch rot .. 

tiOhal .equence. 1'be pre.ent paper al.o examine. IIOre cOlIPlete17 the ettect 
ot the.e tvo rotational trlD.formation .equence. on the curvature expre •• ion •• 
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u, v, w 

xyz 

13, 1;, e 

e + p, 

direction co.in •• (i • 1. 2. 3) 

coordinate along detormed elastic axil 

elastic detormations or arb1trar,y point on elastic 

axis in radial, edgewise. and tlapwiae directions. 
respectively 

inertial axes in hut, plane with origin at hub 

center-line 

blade-fixed axis system which translates with 

respect to xoYozo 

blade-fixed axis system, after deformation, which 

transl~tes with respect to xoYozo 

blade-fixed orthogonal axis system in defol~ed 

configuration obtained by rotating xyz; x
3
,-axis is 

tangent to the deformed elastic axis 

Eulerian-type rotational angles bet'ween xyz and 

x3Y3z3 

built-in twist angle (initial twist; pretwist) 

extensional component of Greents strain tensor 

twist aLout defol'mea. elastic rudo 

torsional curvature {total rotation rate r.;::;':.~.;t. x" 
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Special notation.: 

( )+ 

( )' anYatift nth r •• pect to x. 4( )/u 
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tn thil lecr~101l the ,,'1"&1 l10Dlinear cunature ex:pn1110nl and the 

~. ...0011..4 tranltol"JK.tion _trice. bet .... n the deformed and undetol'Md blade 

coord1nate. tor .. helicopter rotor blade v~ J.1. firlt be derived tor the cue 

ia which there are no restrictions OIl the elongations, lhearl. and rotfl.tiOllI. 

Simple 1I0metric con.iderationl w111 be Wled. The general expre.sione will 

then be .y.tematically reduced to four !evel. of approximation. In .ach 

ot the .. levell, the .econd-degree curvature expressions vill be i1 vent l'or 

the three cales ot .mall detormation conl1dered. the transformation ml\trioea 

will alao be given. rinally. the geometric d,evelopm9nt will be supplemented 

by a complementary derivation bRaed on a direction cosine approach. 

Geometric Approach 

gener~ case of large deformations. - A schematic representation of the un­

deformed and deformed blade geomet~ies associated with both a flap-lag-pitch 

and a lag-flap-pitcn rotational transformation sequence is shown in figures 

2 and 3, respectively. The tr&llslat1ona1 elastic deformations experienced by 

an a.rbitrary point on the elastic axis ot the blade are denoted by u, v, w. 

The coordinate axes XYZ are inertial 

(nunrotat1ng) blaue; x y z ~.e axes 
000 

axes situated at the root end of the 

t'ixed to the blade at an arbitrary point 

on the elaatic axis of the undet'omed blade. Before deformation x y z are 
000 

parallel to XYZ. Deformations u, v, w, and ¢ displa.ce the x y z triad to XlZ 
000 

and ;"ota.te J..:yz to xi' 3z3 wl-}ere the axis x3 is tangent to the deformed elas-

tic axis. The rotation ot' tl.e triad xyz to its fi.!al position x
3
y

3
z

3 
may be 

expre3Seu. in terms of the Sulerian-";ype angles * i3 ~ 1;, and e as 3hown in 

!'igllre 4 for a flap-lai~-pitch rotation:;,.l tr'll'lsf'ormution seque:"lce and in 

fieure 5 for n lug-nap-pitch rotFJ.tionRl transformation sequence. ':'hes~ t-.rc 

• 

.. 

i , 
\ 

j 
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teDlor will be employed to define tbe Itrun. ill t,~l"r.lI of the detormationl. 

Reterencel :2, 8, and 9 lboved that the nODlinear curvatUN expreaalonl ..... 

dependent on the 01'_1' in which the rotational truato1'll&tiou betW'.D the 

detomed and undetoned blade-fixed coor4iDat .. ar& lIIpo.... tat the ,r..-t 

development the 'bendins and tOHioDal curYaturea coneapoadiq to tb.e two 

rotational tranatol"MtioD aequencel, tlap-lac-pitch '_4 1 .... fla'-pitch •• ft 

derive4 for the ,.aar.l c.ae of 1.1''' de'or.&,laa. ualD, Il.,la .-o-etrlc 

coa.l4erationl _4 theft Ip.ci.l1 •• 4 to four lav.l1 of .pproxt.atlon, 
Flap-lac-pitch tranatormation leqUlDce, For thil rotational traDatoraa-

tion ,equence (tlaure 4) the rotationa are impoaed u toUon: 

1. A pOlltlve rotation a about the nesative '1 &XiI relultins in ~'1lzl' 

2. A pOlitive rotatiOft ~ about the zl axil relultins in x2'12
Z2 

3. A positive rotation e about the x2 axil re.ultlns 1n x3Y3z3 

Figure 4 renect. the use of Kirchhot'f' $ jtlnet1c analo&y. This analogy (lee, 

e.g., refs. 1,8, end 9) states that '.f tbe origin of the x3Y3z3 coordinate. 

moves along the def:ected and twisted elastic axis with ~ unit linear velocity 

an~ the Y3 and Z3 axes occupy, at each instant, positions corresponding to 

'the normal and. binom&! directions of the deformed elastic axis·, then the 

angular velocities ot' the x~3z3 systemvith respeet to the ~z system are 

expressed in the same way as the corresponding bending and tOl'sional cu.rvatures. 

One then merely has to replace the time derivative in the expressions t'or the 

angular velocities by a space derivative with respect to the (curvilinear) 

coordinate s 3 along the elastic axis of the defor.!:1ed blade. The space de-
+ + i' rivatives of the rotation angles with respect to 8 39 a • ~ , and e , as shown 

in fi~~e 4, assur~ the role of tne angular velocities in application of the 

e.na.:~";~'. The bending curvatures ~3 and WZ3 ' u.n-: 'i;~1e torsional curva.ture 
bt i d' J i ,,+ + r+ • WX3 ' s':l'e.) a 11e oy pro ect ng ,. , l; ,and OJ ulong the Z.3~·:.z'3 axes a..'1':' 

*:\:'!' ~:~c seneral case of ::'z.rg~ J.t.:!i'ormations, the lid nclpal !1.X~C Qf the deformed 
..:'::'de it not. coincide wi~h ":.:1e no1'r.la1 :lnti 1.>1no1'r:1:1.1 'U I"~ctions ';;f' '::11; u~i'o1'l:led 
e:~;,.;:::',; "'.:.is (see refs 5 a!:.i ::). 
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(1) 

The rotational transformation between the xi¥ 3z3 and x;rz triadl (figure 2) can 
be written in terms ot direction oOlin •• as 

X3 "1 III nl 

~3 • '2 ~ n2 

x 

z 
(2) 

For the f1ap-lag-pitch sequence being considered the explicit form of oquation 
2 is 

, Xl 00. a co. C .in I; co. I; dn e x 

-s1n I; C08 a 00. & 
co. l; 00. e 001 a lin e 

(3) t 
• -lin B ain e -.in I; .in a co. e 

lin r. cos S .in e 
-co. I; .in e 11n ~ .in e s1n e -;: 

z -ain J! co. e +co, a cal e 

~C':" :::~ rereains the task of expressing the rota.tion aneles t3, ~,O a.tHl their 
'ie!"!.-:.,,:;.,·t!.:l with l'espect to 8

3 
in terMS of u, 

:-e.::.:. :: . .:"$i::t:!:$ ~l ,!til ,fi
l 

of x3 with respect 

~: ' •• ,'. -. -. ,'~' :',' !'<:ll'f'llCe 5 as 

-:'/2 . 
~ '" ... ' . , (l+u') 

-:/2 
: ~. v' 

-112 
:: , : +. ,~ \ '1.'" -. Lj 

~ (:<.,..'·1, 

= ; ;'1. 

:: co:.:[, 

10 

~ -.... ;. . 

oin;'; 

v, W, $, BJ'lJ Ei .... p", 

(4) 
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ORlCiINAL PAGF.~ IS }loon 

I 
! 



• 

• 

From equationl ~ 

v' 
lin B • 11 ~ , + 2, - v' 

v' lin ~ ._~ 
,1 + 2& 

COl ~ 

where t is the extensional component ot Green's strain tensor and is given 

by 

(6 ) 

From th" det~.,. ,l . .:m of Green's strain tensol', the deri vati ves with respect to 

8 3 are re~ated to the derivatives with respect to x according to 

-1/2 
)+ • (1+2&) ) 

, 

The third rotation angle e specifies the orientation of the Y3z3 axes with 

respect to y2z2" This additional rotation is due to torsion of the blade, 

.~, about tte x.., axis in the t~bsence of pretwist. Common practice in the 
"-

rotor blA.de ~.iterature is to combine the pretwist with the elastic torsion. 

Using th1R expedient, the third rotation angle e in the present development is 

r,iven by 

e = e + rp pt 

11 
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M a result ot the detormations. the line element dx becomes lID elemant ot 
arc "-3 at the cletormed elutic axis. In view ot this, the exprel'.,.ons given 

in equatioJlll 4 are the direction cosines ot the tlUlPnt (k3 axis) to ~.be 4e­

tOrMa. e1utic axis. 'l'be %3,1
3

'''3 coorcl1nate .... aN &'1.1ped alOD, the tan­
pnt. normal. and binoraal dirf,.:tion. ot the detor.d elastic ax1.. The.e 

coordinate .... ud the tl'iiODOMtl'1C re1atioJlll gi Yen by equation. , are .~ 

in tiSUH 4. 
Lag-tb..p-pitch tru.tormatiOO sequence: For this rot:s.tional trllD.tonu.-

tion sequence (tigure 5) the rotations are impo.ed u toUow. t 

1. A positive rotation ~ about the z a.x:i.s resulting in X111z1 

2. A positive rotation e about the negat.7e 11 axis resulting in . 

x2Y2z2 
3. A positive rotation e ~bout the x2 axis resulting in xjY3z3 

Using tigure 5, the bending curvatures t4iy3 
Ci..!'Vature Wx3' a.re obta.ined by projecting 

xi' 3z 3 axes and are &i ven by 

and W
Z3

' and the torsional 
t. r;+ t and e+ along ~he 

+ + 
W • e + r; aina 

x3 

+ + case (9) w • r; case sine - e 
"1-,:; 

+ + 
t.: • r 

case case + e sine 
z3 

... 

For the lag-flap-pitch sequence, the explicit form of equation 2 is 

X3 C08 S C08 1; sin l; co. e lin S xl 
-cos ~ sin e sin e ;:O! :; cos e cos e sin e 

I.., ,'\ 

if3 • 

:~ 
I. .J. '- ~ 

-sin r.: COB e -!~r. r.: sin 6 sin e 

%3 -cos r.: sin e cos e -sin; sin S cos e cos e cos e 
+sin r; sin e -ccs 1; 5i:! e 

12 
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M betore. the direction coslnes 11'~ ,n1 ot x3 v1.th respect to lO'Z can be 
wrltten ualnc retf)renCe 5 u 

-1/2 
11 • (1+2£) (l+u') • cosS cos~ 

-1/2 
~ • (1+2£) v' • sin~ cosS 

-1/2 
n1 • (1+2£) w· • sina 

From equations 11 

ain a ._~ 
11 + 2e: 

ain ~ • ~ v' 
1 + 2£ - w' 

2 
1 + u' 

co. ~ .~/1 ., + 2£ _ w,2 

(11) 

(12) 

Again, the third rotation angle is taken to be given by equation 8. Similar 

to the flap-lag-pitch case discussed above, equations 11 give the direction 

cosines of the tangent (x
3 

ana) to the deformed elastic a..us. k3 before, 

the xi' 3z3 coorJinate axes are aligned along the tangent, no mal , ar.:i ci­
normal of the deformed elastj c axis. These coordinate axes ar.:i t::e triio-

nor:.etric rel?tions gi yen b:r equat:i.nm~ :!.2 are ShOW1:1 in figure 5. 

l3 
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The exact nonlinear curvature expre •• ions and rotational tran.tormatlon 

matrioe. liven above. which are hilhly ncnlinear, IIeI¥ be approximated to ~ 

de.ired decree br applyinl the binom1al theorem and substituting the trilO­

no_tric expanl1on. tor B. ~. and e. In the tollowin, .eotion.. the ,ener81 

expre.sion. will be reduced to tour level. 01' approxtmation. In each 01' thea* 

levels only tel'llll throush second deg:..'ee in u, v. w, and • will be retained. 

The transtormation ~trices to .econd decree will be liven tor the three case • 
01' small detormation con.idered. 

Large detormations. - For the particular case 01' larle d~tormations con­

sidered herein the aecond-del~ee nonlinear expres.ion. tor the curvatures are 

obtained by subst:!tutinl equations 5. 6. 7. and 3 into equation' 1 tor a nap­

lag-pitch transtormation sequence and equations 6, 7 t 8, GllQ l2 into equations 

9 tor a lag-nap-pitch transtormation sequence t exp&nG:.::ng th6i resulting ex­

pressions in a binomial series t and retaining terms up to second degree in u, 

v, W t and ¢. 'l"ne resulting curvature expresdons assume the torm 

• (1 - u' - ~2 v' 
2 

- -2
1 

w' 
2

) ap' t+ .' (l- u') - w" v' "":':3 

.... = (-wI! + 2u,;;!1 + u"w') cose
pt 

+ ¢W~' sin6
pt "J-= 

.,; 

+ (.," - 2u'v" - u'·· ... ') sin8pt + 9V'1 cosE)pt 

.. 

j 

__ .• ~~ __ .~_~ __ ~,,:.;:;,;;;-.. ;; .... ~~-;;:c,=::;:;;::='-_~ 
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(.II • (-v"+2u'v" + u"v') co.e + 4> vlt.ine 
13 pt pt 

+ (vlt 
_ 2u'v" - u"v t ) ainapt + • v" co. apt (14) 

w • (v"-2u'v" - u"v') cose - 4l v" sine z3 pt pt 

+ (v"-2u'w" - u"w') &inept + 4> v" cosapt 

for alai-flap-pitch .equence. 

Small detorma.tions I. - '!'he majorit1 ot engineering materials are elastic 

onl1 tor small detormations characterized b1 elongations and shears which are 

negligible compared to unity. This implies that the strains are also negligible 

compared to unity. Since the rotations are arbitrary, the shears can be neg­

lected in co~parison with the rotations in determining the direction cosines 

ot the tibers ot the beam in the deformed state. This implies that plane 

sections remain plane (ref. 5, page 47). '-lith the assumptions ot this level of 

approximation the principaJ. a.xes of the deformed blade dif'!','r little from the 

directions ot the norn:.al and binormal to the deformed elastic axis. N:ore de­

tailed considerations on these aspects are given in reterences 5 and 10. In­

voking the assumptions of this level the trigonometric relations of equations 

5 and 12, after expanding in a binomial series and retaining terms up to 

second degree in u, v, and w, can be cast into the form 

sinJ3a w' 

sinl; 2'. v' 

and 

si.ne ~ w, 

sinz:-:t. v' 

cosS ~ ~ 1 ( ,2 + w,2) ... - 2' u 

cosl; ~ 1 
1 ,2 --v 2 

1 2 
cosS ~ 1 - 2' w' 

1 2 2 
cosl; ~ 1 - 2' (u' + v' ) 

15 

(15) 

(16) 
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It should be observed that the second-degree expres.ions liven in equatiCll 15 

do not satistY the trigonometric ic1entit7 

and the expressions in equation 16 do not satistY the ic1entit7 

unles su' 2 is negligible compared to unity or, '!qui valent17 , u' 2 is neg-
2 2 ligiele compared to both v' and w' • This implies that, under the assUIIJI-

tion that the elongations and shears are negligible compared to unity, the term 

U
l2 in the extensional component of Green's strain tensor given b7 equation 6 

must be discarded in beam applications. This fact has not been pOinted out 1n 

the literature as far as the authors know. It is interesting to note that this 

requirement is analogous to the inextensibility assumption invoked by Love 

(ref. 1) while developing the ~near (first degree) curvature expressions for 

a beam. However, inextensibility has not been assumed in the present develop­

ment as a consequence of this requirement as far as the second-degree nonlinear 

curvature expressions are concerned. Invoking the assumptions corresponding 

to the case of small defoI'Itlations I and imposing the additional requirement that 
2 2 2 u ' iiJ negligible compared to both v' and w' , substituting equations 5, 

6, 7, and 8 into equations 1 and equations 6, 7, 8, and 12 into equations 9, 
expenJing the trigonometric expressions in a binomial series, and retaining 

terI;,i3 up to second degree, the curvature expressions simplify to 

,,' = ", + c~, - WIlV' ""x?'pt ., 

\cos6 , - ;t sin!: ) ... v"(sinl? t +" cos8 ) 
p~ pt r 1''' 

I .......... 
\ '-u~ pt 
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tor a tlap-lq-pi tch rotat:l.onal sequence and 

CAl • et + " + v"wt 
x3 pt 

w • -v"(co.e t- , sine t) + v" (sinept + ~ cosept ) (18) 
Y3 p p 

wY3 • vU(cosept - , sinept ) + v" (sinept + ~ co.ept ) 

for a. lag-flap-pi tell rotational sequence. This is the leve.i.. ."It approximation 

usually employed tor developing the nonlinear aeroe1astic equations of motion 

of a tlexible rotor blade. 

Small detormAtions II. - This case is obtained trom the case of small 

detormations I by imposing the additional assumptions that the rotations are 

:'leg1igible compared to unity and that the elongations and sl!ears are much s!:a.:.ler 

than the rotations. !t the first additional assumption is imposed the se~on:i­

degree terms in equations 17 and 18 can be neglected compared to the firs~­

degree terms and each of the equations reduces ~o tne first-degree (linear; 

expression 

w = S' + ¢' 
x3 pt 

w • -yIlCOSe .' v"s-ine 
Y3 pt pt 

w • v"cose + wl'sinG 
z~ pt llt .., 

It should be noted that the assumption that the elongations and shears are ~~~~ 

smaller than the rotations has not been explicitly imposed. This assu=ptiQr. __ 

required, hoyever, in order to insure that the principal axis directions 
of a cross.section of the deformed blade still differ little from the 

J.tl .. ections ()f the nomal and binorn:al of tho JeI'orr.:.ed elastic axis. :t s::.:-.:..._ 

also be poitlted out that this is the level of approximation usually employe.:;. :':. 

elastic stability (buckling) problems. 

17 

1 

1 



Classical linear ~heoEY' - To arrive at this case trom the case at small 

detormations II the additional assumption is made that the terms ot second 

degree in the angles ot rotation are negligible compared to the corresponding 

strain terms. Herein, the terminolosy "classical lin .. ar theorr" means that 

the geometric relations between strains and diGplacements are linear. Since 

there are no terms involving squares ot rotations in equations 19 the curvatures 

tor the classical linear theory are again given by eql1&tions 19. It should be 

emphasized, however, that although the curvature expressions corresponding to 

the last two levels of appl'oximation are the same t the strain components are 

ditterent (see ref. 5), 

Direotion Cosine Approach 

For completeness it is appropriate to indicate how one would extend the 

approach used. by Love (ret. 1) for developing the linear curvature expressions 

to the general case of large deformations. The rotational trans to rmat i on 

between the x3Y3z3 and xyz triads has already been given in equation 2. 

Following the procedure in Love, the curvatures Wx3' Wy3 t wZ3 can be written 

in terms of the direction cosines of equation 2 as 

-1/2 
w = (1+2d (t

3
t2 + m

3
m2 + n

3
n2) x3 

-1/2 , , 
w • (1+2e:) (t1R.3 + ~m3 + n1n3) (20) 

Y3 
-1/2 , , , 

w = (,+",~~) (t
2
t
1 + !!12I1). + n2n1 ) ..l. t.._ 

z3 

-1/2 
r~."ne .::.'actor (1 + 2;;) in equll.tions 20 accounts for tl!e fact tha.t the deriv,J.-

t:i.ves are take'l with respect t") the undeformed coordinate x. 

'Zne direl!tion cosines in eq.ur'l.'ticnfl 20 <lepend on the order in whicil the 

,:;·o"'~Ati0no.l transformation sequence betweer: ;qz WiU x .... y.~z.; is ij'.fOS:~I.i. f:\:'r ti:e 
.) - .) 

'..I \'f' i:'; 'I't O
\ n;~ fcr:::ation 

::1~-fb.p-pi tc~~ sequence. 

18 



&lAd 10 are det:1ned :1n equa-tiona 5. 6. 8, and 12 and thus the 4:1rection col1nea 

are known :1n terma ot u, 'V. V. •• md apt. 'l'he curvature expreaalona tor 
the aener&1. cue ot large detOl'll1l.t:1ons are obta:1ned by subst:1 tut:1nl the 41-

Nct:1011 cos:1nes appropriate to both the tlap-l&l-pl tch ud las-tlap-pi tch 

trmstoraat:1on seqUinces :1nto equa-tion 20. AA reJDlU"ked earlier these seneral 

express:1ons ue h:1chl¥ nonl:1near ud mq be apprenmated to ~ a.es:1red degree 

by appl¥izas the binolll:1al theorem. In this section the seneral expressions vill 

acaln be reduced to tour levels ot approximation and only second-degree terma 

in u. 'V, v. and cp vill be retained. 

For the part:1cular case ot large detormations considered herein the 

second-desree nonl:1near expressions for the curvatures are obtained by using 

equations 3. 5. 6, and 8 in equation 20 tor the flap-leg-pi tch sequence Md uaing 

equat:1ons 6, 8. 10 and 12 in equation 20 for the lag-flap-pi tch sequence t ex­

panding the resulting express:1ons t and retaining terms up to second degree in 

u, v, w, and cp. The expressions thus obtained are identica.l with the second­

degree curva.ture expressions given previously in. equations 13 ani 14. 

It the assumptions corresponding to the case of 8m~1 deformations : are 

imposed, the second-degree expreSSions tor the direction cosines associate~ ·.:~n 

a flap-las-pitch rotational transtormation sequence, trom equations 2 t 3, 5, 6, 
and e, can be shown to be 

(.?:. . 

19 
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" 

nl • w' 

n2 • (~ - v'w' )col9 + pt 
",2 w,2 £.. 

(1- -- -. ) 222 dn9pt 

n3 • (v'w'. ~).inept + 
",2 .,2 L 

(1- -. -. ) 222 cos9pt 

and those associated with a lag-tlap-pitch rotational transtormation sequence. 
trom equations 2, 6, 8, 10, and 12, to be 

~~ == v'(sin6 + Q oo~e ) - w'(cose - ~ 
~ ~ ~ ~ 

~ == v' 

u,2 w,2 £ 
IT!2 :. -(v'w' + $) sinept + (1 - 2 - 2"" - 2 ) cose

pt 

u,2 w,22 
1" = (·v'W' + <p) cose i. + (1 - - - - - .L) sinO

pt .. · .. 3 p 2 2 2 

n1 = w' 

,2 0 

(1 w L sinept 
n,? = --. 2 ) c. 2 

= 11 w,2 i. 
n"3 \ .... - 2 - 2 cO::J0pt 

+ £/lcosOpt 

, • f-1 
(?S'UL t 

P 
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unle.. U,2 is .. sumed neslisible cOlipared to unity 0 .. ', equivalentlY'. u,2 
1s "sUMd nesJ,ig1ble compared to both v,2 aDd v,2. This 11 the s_ eon­

elusion reached earlier on the bu1s of trisonOlllOtric identities. Alain, the.e 

results reatfirm that it one al.umes that the elonsations ad Ehean are 

nelliaible compared to unity the addition&! requirement that u·
2 

is nesJ,igible 
compared to both v· 2 ad w· 2 must also be impoled. SUbltitutin, equations 

21 and 22 into equat .Lon. 20 ad invoking the above add! tional .. Iumption the 

lecond-degree nonJ.inear curvature expressions ai Yen in equations 17 ad 18 are 

again obtained. 'I:~~'! ~orresponding rotationaJ. transtormation me.tr1cea between 

the deformed and undetormed blade-tixed coordinates are given by 

1 - ~y.2 • 11"1 v' 11" IC 

.V'(oOI III': - ~ sir. apt) 
I v,2 l) I •. v.w·) COl e t :. - T· 2 COl flpt 

( v,2 t!) 
l'] .V'(sin e +; ··s e ) .~ lir. eft + 1 • T· 2 sin Spt l' (23) 

p~ •• pt 

v, (sin 6,;t + ~ :CI eptl I v· 2 l) (v',,' • ~) ain II t - : • T· 2 sin apt 

113 _Vt(COI ~~~ • : I:~ ~~~) -~ ;CI ep• 
( v·2 ~ I 

+ 1. - T -;;; COl e "t 

for a flap-lag-pitch rotational transformation sequence and 

1 _ t(v. 2 + v,2) y' v, x 

-v' (COl apt • ~ , in ept~ -~~ . V'",, sir. e. 
(1 _ ,,;2 _ f)lin apt 

2 < .. t (24) 
-w' (dn apt + ~ c~s \:t + 1 - ~ - £.)CO$ . +~ COl apt 

l' 
<:;: ~t 

v, (sin Opt + Q cos e~t: ~~ • "'v.) Cl..l \~ ( w·t! !!.) l - T - 2 c.:>& apt 

-v' (cos \~ - Q sin Opt) 
( v. l 42) 

- 1 • -, -,;.. "!or. "d -¢ ~ln dr,t 
",' .'-
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for a lag-flap-pitch rotationa.l transforma.tion sequence. The case of D::'~ 

deformations II is obtained by imposing the additional r3strictiona that the 

rota.tions are negligible compared to unity and that the elongations and shears 

are much smaller than the rotations. In this case t the second-degree ten::.a in 

equations 23 and 24 can be neglected compared to the first-degree terns and 

J~educe to the single relation 

X3 1 v' w' x 

-v' cos apt cos apt sin apt '1"\-' 
Y3 

.'" 
• Y \-, 

-w' sin apt -¢, sin apt +¢t cos apt 

Z3 v' sin apt -sin apt cos apt z 

\ -WI cos apt -4> cos e pt -¢t sin ept 

. . 
~_ ~t}' .. _ !L'" ... .!~: I . - . ~ .. ..., 

~ '.,,/,..... . 

• 

I 

I 
I' 
I 
I 

.. ~ 



.. 
nonlinear telW i. 11.0 dictated b)' the "I\IIlpt.ion tbat tbe rotatioa. 1ft 

ne,liaible compared to unity-

Apin. the CNl'Vature. corNlpondina to cl ... ioal. linear tbeo17 are the 

I.. al thOle corre'pondiq to the cue ot .mall detol"llatioa. 11. 
It va. indioated earlier that the .econd-4esree OUl"ftture expre •• ion. in 

reterenoe. 6 aDd 7 were obtained by .olvin. a differential. equation tor the 

traD.tormation matrix Which relate. the blade-tixed coordinate. ot the 4etoNed 

and un4etormed blade. It one emplo)" that procedure usin, tbe tran.tol"ll&tion 

matrices liven in equatic·a. 23 aDd 24 aDd .olves tor the Wlknovn.. Wx3' cu,3' and 

wZ3 one will obtain the same curvature expreslions given in equationl 17 and 
18. 

The second-degree nonlinear curvature expressions tor a twisted rotor 

blade or beam have been established above in two ways tor tour levels ot approxi­

mation. The same expressions can also be developed it tore.hortening due to 

bending (ref. 8) is explicitly included in the axial deformati')n. In the next 

section the curvature expressions and transtormation matrices developed herein 

will be compared with corresponding results eristing in til~ literature. 

COMPARISONS AND DISCUSSION 

The only general development in the literature tor the curvature express­

ion.. , as tar A~ the authors know t is that 01' Hunter (ret. 2). Since reterence 

2 considQrs initial (built-in) curvatures betore imposing the elastic detor­

mations and the present development combines pretwist with elastic twist and 

considers them as the last rotation, a direct comparison 01' the present re­

sults with those 01' reCerence 2 is not possible. A comparison can be made, 

however, if the init:~l curvatures in reterence 2 and the pretwist in the 

present development are set to zero. Under these conditions the present 

s 'cond-degree nonlinear expressions given by equations l3 1'or a flap-lag-pitch 

e~quence and equations lh for a lag-flap-pitch sequence agree with the corre3-

pondin.; expressions obt !tined from reference 2 after r.1E'J!.int; th~ nece.:;:~ "1':; nQ­

tnthmal changes. 
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Se.,.t-al uve.tiptot-. have cSewlopecl .eooD4-4e1l"H Ilonlinear cW'vat un 

expre,.ion. u.-ne .JI&ll. detol'lUtiODI. Iodpl (ret. 4) deri .... cl tbe .. ex-

pre •• ion. tor zerro pretvil-t. 'llhoqh not .tate4 expUdtl¥. the level ot 
approx1Mtion employed il equi v&1ent to the cue ot IMll detol'll'!&tion : herein. 
ltow.,.~, reterean 4 cltacardM v,2 th~ovlb ... priori o~"riDi .cbne 

rather than threUlh a rilOl'OUI arcument. In adclitiOD to the •• ul1&pticml, 

reterenoe 4 u.ect a p&l'~i&l.ly nonl~ear c11lplaoement field in u, v. w, and t. 
The vae 01' tbll dilplacement field m4lW that thft rotational tl'anstortUltion 

matrix between the detormed and undetormad blade-tixed coordinatel was partially 

linearized. It one 11 developing a linear let ot" ourvature expressions. a 

linear displaoement 1'ield in v. v. w. and ¢ and a. linear resultant rotl.t10n&1 

tranltorma.tion matrix are sutficient and the order in which the rot~tio~1 are 
impoled il not important. However t it one 11 developing the second-degree non­

linear curvature expression. care must be taken to insure retention ot all 

second-degree terms i~ the displacement field and in the resultant tr&r.s!or­

mation matrix and the order in which the rotations are imposed is itr.por~ant. 

Sincl: reference 4 did not address t~'le rotational transformation sequence ex­

plicitly end has employed an incomplete displacemnnt 1'ield, a meaningfU: co~­

parison with the present results can not be luade. However, it is interes~ing 

~o note that the second-degree curvature expreSSions of reference 4 agree vith 

th os 1..' Ilssociated -,yi th the flap-lag-pi tch sequence given herein after :::.e.k~r.t!' 

the necessary notational changes. In view of the use of a ,artially nor.linear 

displace!:1ent field, this agreement must be regarded as fortuitous. 

~efp.~ences 6 wld 7 have also auaressed the problem of deriving ncr.!:n~~r 

cur ... ·'l.ture expressions for L. hingeless rotor blade. Ho ind'l'!ation il' gi v'en in 

referel~ce 6 'lS to the level of apprOXltHltion' employe,l. The assmnptit)l:s ~.a.ae 

iu referenc'7 7 a.r~ equiv~lent to those here.fl corrf>l3pondillt; to tLc ("a"e .. 

s::.~Jll de:t'orr.:ations - '.ZZle tert:1 u,2 was disca.rded in l"eference 7~r.. "t;;t::- ~':!.si'" 

. 
Iv:,Zt::l"":;:';'~t~ t, n. :}l-!\: r·i .~ :f:ntific(l +-ilC td:r31(\~;..tll ~u~· .. .':~t'...!r':A .~~ I '. , 

• 
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• .... that liven tn reterence. 6 _d 7. The "Illlt. ot the clted retereDC.' 

41.acree vi th tM COI'N.pondiq tOl'l101l&l cunatun tor tile la&-tlap-pl tch 

.equnce 4ert .. 4 heNln _d pven 'bJ' C&lz3. 8Pt + •• + v"v'. '!'be beDdin, 

curvature. ot reterence , are. bonver I In AlrH_nt vl th the correlpo:ldinl 

one. hereln. As a COIlIequen" ot the.e a prlor.\. 14entlt1cat101ll the lac-flap­

pltch rotational. trautoraatlO1l atrlx ot retereDce. 6 Uld 7 dO not acne vith 

the corr •• ponclina one c1 ven b, equatlon 24 hereln. 

S.concl-decree nonlinear curvature ex..,re •• ion. have been developed iD 

reterence 3 tor appUcatloD to dlnuaic -alJ.e. ot tube. conveying nuldl. 

'l'he level at a.pproximation eaq.lo,ed in reterence 3 il equivalent to the cale 01' 

.~tl deformations I herein. Since the rotational trauto~tion .equence Val 

not 'P~"!l'led a comparison vas made with both set. at the pre.ent results atter 

.ettin, the initial curvature. IDd tw1lt 01' reterence 3 and the pretw1lt in 

the present relults to zero. Thil comparison showed that the torsional curva­

ture wX3 and the bending curvature wZ3 at reterence 3 expressed in the 

present notation aene with the corresponding results herein. The bending 

curvature ~3 is not in agreement with the present results. The detailed 

development leading to the curvature expressionA given in reterence 3 were 

presented in reference 11. An examination ~If reference II reveals that the 

disagreement with the present results is a consequence of the linearization of 

the resultant transformation matrix between the deformed and undeformed blade­

tixed coordinates while developing the nonlinear curvature expressions. This 

linearization is not consistent with the assumptions of small deformations I 

although it ia justified under the assumptions of small deformations II. How­

ever, as already stated the nonlinear terms in ,,4e curvature expressions under 

the assumptions of small deformations II have no meaning and must be discarded. 

Under the assumpt.1ons of classical li:.>.fl.l' theory the curvatures are linear 

and. are again given by equation:.» l~. t;:.:he linear curvatures can be obtained 

from the nonlinear curvaturPs I.,l' the caGe of nmo.ll de:t'or:r.ations I by discarding 

the squares and product:! t.)f l.l;.~ (";H.Gt.ic varinbl'~n u, v, w, and ¢ 3.t~d t;.dl' 

derivatives. The linear C'UT"V"!lW' o:!xy,rescir>t::; (,I;t.:dned in this mar.ner in 

references 2, 3, 4, 7, and J m'( ~ In I1greer.len 1.. wi th the correspor.ding ones 

herein. 
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During the present development ,on ~.,}t.relting obsel"'V'ation hu been made 
2 

regarding the u' tem in the extenai\l'\lc..:' component ot Green t s strain tensor 

(eq. 6). These oblervations have .. direct bearing on an existinl controversial 

issue regarding whether the uncoupled extensional trequency ot a rotatinl 

beam increases or decreases with increuinl rotational speed. Reterence 12. 

while study-ing only the extensional vibrations ot a rotating beam. used the 

extensional component ot Green's strain tensor in the torm 

1 2 
£ • u' + - u' 

2 
(26) 

but was able to discard the terms associated with in the development by 

invoking the small strain assumption. This can be tormally shown by rearrang­

ing equation 26 into the torm 

2 
1 + 2£. (1 + u') 

If the strain E in equation 27 is assumed negligible compared to unity then 

u' must Rlso be assumed negligible compared to unity. Based on this ass~~­

tion u,2 must be discarded in equation 26. With this assumption referer.ce 12 

con::luded tha.t the extensional frequency of a rotating beam decreases with in­

creas~ng rotational speed. It should be remarked that in the more general case 

including flapwise and edgewise bending the conclusion that u,2 must be dia­

carded can not be established on the basis of the above reasoning. However t 

in t~e prpsent development this result was established in the general case on 

the basiD of cu~sid~rations related to satisfying certain trigonometric and 

~irection cosine identities. More recently, referenc~ 13 contradicted the re­

sult of re.t'erence J,2 and concluded that the extens:i.oltal frequency of a. ro'te.ting 

beal'll increases ·,Yith increasing rcta~ions.l speed. In t:-tis reference the coupled. 

flapwise and extenJ:!.::-nal equations of motion of a rotati.lg beam. werE" Jeri Vt!-l 

usinG ·}reen 't" 8tl'l':'!: tensor includinG the 2 u' te !'r.: unj,':r the srr.aJ.l s'trait; 

aSB1.u::ptioll. ~~~n('e t;:e extensional equation of motion ws.s obtaine,l ad a. sr-e(:ial 

ell-sa of til'?' C0up::c.'i equa.tions, referer.ce 13 wa.s a:pparently unal:le to recogr.i~e 
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that u,2 JllUSt be neglected cOllp&l'ed to v,2 ••• lel_tllled benl" 'by the 

.. trisonoa.tric II1d dinctlon co.l .. identitie.. '!'hele cOillidentiOllI l'eftal 

that the trequenC11ncreue. with in~reuiDi rotational. .peed it u,2 i. re­

tained aDd decre .. e. wit'" increulna rotational. .peed lt u,2 il_ dbcarded. 

On the bull ot the ob.el'Vation. made in the pn •• t development. under the 

u.umption ot .ull .traiu. the tel'Jll u,2 JllUSt be cU..carded in the ext.donal. 

component ot Green'. strain tenlor in beam application.. 1'hua. the pre.ent 

author. are in 8Il'eement with the l' •• ult ot reterence 12 that. under the 

assumption ot small strains. the uncoupled extensional trequency' ot a rotatins 

beam ~.ecrease. with increasing rotational speed. 

CONCLUDING ~~ 

A development was presented tor the nonlinear expressions tor the bending 

and torsicual curvatures ot a twisted helicopter rotor blade or beam undergOing 

combined. flapwise bending t chordwise bending t torsion, and extension. '2he 

general nonlinear expressions developed are valid for large deformations. 

These general expressions were systematically reduced to tour levels of approxi­

mation and in each of these levels the second-degree nonlinear expressions were 

given. In specializing to ~he particular case of small deformations in which 

the elongations and shears (and hence strains) are assumed negligible compared 

to unity with no restrictions on the rotations, tr~gonometr~c and direction 

eli'sine anomalies were identified. To remove these anoma]J. .. , it was shown that 

one must additionally impose the requirement that the square 01' the tirst 

derivative 01' the extensional detormation on the elastic axis be negligible 

compared to tmity and the squares of the bending slopes on the elastic axis. 

This tact has not been pointed out in the literature as far as the authors 

know. Using this fact, a controversy exis~ing in the literature regarding 

whether the uncoupled extensional f'requer.cy of l'l. rotating beam increases:)!' 

decrea~es with increasing rotational speed tas been resolved. Ft~thernore, 

the second-degree nonlinear c::.r'Tatur,:: e:-::pressifms ~'nd the rota.tionc..l tr",ns-

format.ion matrices between -<:;:;e ':l.e:r'or:;.A:'i e.n'.! : . .::'10.::: f'Gl'r.l·:;,l clade-fixed coor.i::'nates 

were compared with corresponding expres::dor.s in the literature wherever 
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po •• ible. Th ••• compari.ons iDdicated several discrepancies with the present 
re.ults in the noaliDe&l' terms. 'l.'he "uona tor the.e discrepancies were ex-

plaU1e4. 
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CLASSICAL LINEAR THEORY 

Figllr~ 1.- L~v~ls ,'t ~??r0ximation within the geometric nonlinear theory of 
elasticity \.;hicn are addressed. 
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