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SUMHARY

The nonlinear curvature expressions for a twisted rotor olade cr = Le=n
undergoing transverse bending in two planes, torsion, and extension are
developed. The curvaturé expressions are obtained using simple geometric
considerations, in contrast to other methods described in the literature, The
expressions are first developed in & general manner using the geometrica>
nonlinear theory of elasticity. These general nonlinear ::xpressions are tzen
systematically reduced to four levels of approximation by imposing various
simplifying assumptions , and in each of these levels the second-degree non-
linear expressions are given. The assumptions are carefully stated and
their implications with respect to the nonlinear theory of elasticity es
applied to beams are pointed out. The transformation matrices between *rne
deformed and undeformed blade-fixed coordinates, which are needed in the

develcpment of the curvature expressions, are also given for turee of %ie

¥

levels of gpproximation. The presea® curvatutre expressions and transiorzetic

s

metrices are compared with correspending expressions existing in the litersiure,
These comparisons indicate some discrepancies with the present results in zie



nonlinear terms., The reasons for these discrepancies are explalned, BSince
both the nonlinear curvature expressions and the nonlinear transformation
matrices are needed to develop the nonlinear aeroelastic equations of motion
of flexible rotor blades, the effect on stability of the discrepancies has
yet to be assessed. As a by-product of this study the controve;sy regarding
whether the uncoupled extensional frequency of a rotating beam increases or
decreases with increasing rotational speed is resolved.
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INTRODUCTION

Aercelastic stability associated with flap-lag-torsion-axial coupling
of flexibls helicopter rotor blades involves both linear and nonlinear
coupling among the degrees of freedom. If the second-degree nonlinearities
have to be considered, the governing equations of motion must include all the
second degree nonlinear terms. To develop these nunlinear equations a need
thus arises both for the second-degree nonlinear expressions for the bending
curvatures and torsional curvature (sometimes celled "torsion" or "total
twist") and the second-degree nonlinear transformation matrix between the
deformed and undeformed blade~fixed coordinates, The curvatures are also
needed in nonlinear static and dynamic analyses of tubes transporting fluids,
propellers, ete. Love (ref. 1), using Kirchhoff's kinetic analogy, in con=-
Junetion with direction cosinea, developed the linear curvature expressions
for an inextensible curved =nd twisted beam, Hunter (ref 2), using a vec-
torisl spproach, extended Love's work to the nonlinear case without invoking
the inextensibility assumption. Another vector extension of Love's work to
the nonlinear case was given by Toll and !ote (ref, 3). References 1 to ?
all treat the problem which includes initial bending curvetures and initial
twist, A speclal case of this problem which is receiving considerable atten-
tion in the literature is that of a flexible hingeless rotor blade having only
initinl twist (sometimes called "pretwist" or "built-in twist"). Hodges
(ref, &) developed the nonlinear curvature expressions for a blade with zero
pretwist following the approach given by Novozhilov (ref. 5). Nonlinear
curvature expressions for .n elastic blade were also given in references & and
7 where they were obtained vy solving a differential equetion for the trans-
formation matrix relating the blade-Tixed ccordinates of the deformed and
undeformed blade, The nonlinear curvatures were also given in reference £
where they were obtained from simple geometric considerations in combination
with Hirchhoff's kinetic analogy.

In thls paper the npproach erployed in raference & will e extendsd o
optaln tae <renersl noniinear curvature expressions using the ncnlinear theory

of eizgticity. In general, the nonlineariiy of the equations of the theory of



elasticity can have both geometrical and physical origin. Geometric non-
linearity is associated with the necessity to consider the deformed con-
figuration to write the equilibrium equations and the need to include non-
linear terms in the strain-displacement relations. Physical nonlinearity is
associated with the necessity to consider the relations between the components
of stress and strain as nonlinear, In the present development only geometri-
cal nonlinearity is considered. The general large deformation expressions
for the curvatures developed herein are systematically reduced to four lev:ls
of approximation by imposing various simplifying assumptions (figure 1). The
levels of approximation addressed are: (1) the particular case of large de-
formations in which the elongations and shears are less than unity with no
restrictions on the rotations; (2) the first case of small deformations in
which the elongations and shears are negligible compared to unity with no
restrictions on the rotations; (3) the second case of small deformations in
which the elongations, shears, and rotations are negligible compared to unity;
(4) the classical linear case of small deformations in which tne elongations,
shears, and rotations are negligible compared to unity and the squares arnd
products of the rotations are neglected compared to the sitrsins. Ilere, and
in tae subsequent discussions, the terms 'elongations”, “shears”, and 'rota-
tions" have the same meaning as in reference 5. The curvature expressions and
the transformation matrices will be compared with corresponding expressions
existing in the literature wherever possible.

It should be remarked that, for convenience, the case of small deformations
I is obtained as a special case of the general case of large deformations rather
than from the particular case of large deformations addressed herein. This con-
sideration is also reflected in the form of the block disgram given in figure 1.

In deriving curvature expressions for a deformed blade or beam the need
arises to employ Eulerian-type angles to effect a transformation between de-
foried and undeformed blade-fixed coordinates. If nonlinear curvatures are
being developed these angles must be treated as finite rotations. Zince
transformation matrices correeponding to finite angles »f rotatiorn are not
commutative, the order in which tlhie rotations are imposed is important., A

preliminary investigation of the nonlinear curvature expressions cs influenced



by the order in which the rotational transforiiations between the deformed and
undeformed blade~fixed coordinates are imposed was alsc given in reference 8.

Of the six rotational transformation sequences possible refercnce 8 con-
sidered two: flap-lag-pitch and lag-flap-pitch. It was shown there that the
torsional curvature expression for an assumed flap-lag-pitch rotational sequence
differed from the torsional curvature expression for a lag-flap-pitch rota~
tional sequence. The present paper also examines more completely the effect

of these two rotational transformation sequences on the curvature expressions.



Lgrmyemy

Uy, V, ¥

XYZ

SYMBOLS
direction cosines (1 = 1, 2, 3)

coordinate along deformed elastic axis

elastic deformations of arbitrary point on elastic
axis in radial, edgewise, and flapwise directions,
respectively

inertial axes in hut plane with origin at hub
center-line

blade-fixed axis system which translates with
respect to xoyozo

blade~fixed axis system, after deformation, which

translates with respect to X.¥02,

blade~fixed orthogonal axis system in deformed

configuration obtained by rotating xyz; x3~axis is

tangent to the deformed elastic axis
Eulerian~type rotationsal angles between xyz and
X3¥3%3

built-in twist angle (initial twist; pretwist)
extensional component of Green's strain tensor

twist about deformed elastic axis

torsional curvature (total rotation rate cu-ut %,

-

axis) and bending survatures , respective

«



Special notation:
¢ ) derivative vith respect to 85, al )ldl3

(¢ ) derivative vith respect to x, a( )/ax



ANALYTICAL DEVELOPMENT

In this sectiion the gensral nonlinear curvature expressions and the
associated transformution matrices between the deformed and undeformed blade
coordinates for & helicopter rotor blade v':lL first be derived for the case
in vhich there are no restrictions on the elongations, shears, and rotations.
Bimple geometric considerations will be used. The general expressions will
then be systematically reduced to four levels of approximation, In each
of these levels, the second-degree curvature expressions will be given., For
the three cases of small deformation considered, the transiormation mntrices
will also be given. PFinally, the geometric development will be supplemented
by a complementary derivation based on & direction cosine approach.

Georetric Approach

General case of large deformations, ~ A schematic representation of the un-
deformed and deformed blade geometries associsted with both a flap-lag=-pitch

and a lag-flap-piten rotaticnal transformation sequence is shown in figures

2 and 3, respectively. The transiational elastic deformations experienced oy
an arbltrary point on the elastic axis of the blade are denoted by u, v, w.

- The coordinate axes XYZ are inervial axes situated at the root end of the
(nunrotating) blaede; xbyozo .2 axes fixed to the blade at an arbitrary point
on the elastic axis of the undeformed blade. Before deformation XY %o are
parallel to ZYZ, Deformations u, vy w, and ¢ displace the x Y2, triad to xyz
and rotate xyz to x3y3z3 where the axis x3 is tangent to the deformed elas~-
tie axis. The rotation of tlLe triad xyz to its fi.al position x3y3z3 may be
expressed in terms of the Dulerian~%ype angles® 3, ¢, and 9 as shown in
figure 4 for a flap-lug-pitch rotationzl transformotion sequence and in
figure 5 for a lap-flap-piteh retastional transformation sequence., Thez: twe
figures reflect the use of a Lasrousian description to deseribe the deforued

. N - DI L I e -t : ad ande & e e Ve gy 2
peomabrr ¢f o Glade elecent.,  lonelsbent with tnis deqseription, Sreen’s slrsin

*ingles of this t:1e are further tiscussed in refervnces £ and 7.



tensor will be employed to define the strains in terms of the deformations.
References 2, 8, and 9 showed that the nonlinear curvature expressions are
depondent on the order in vhich the rotational transformations betveen the
deformed and undeformed blade-fixed coordinates are imposed; In the present
development the bending and torsional curvatures corresponding to the two
rotational transformation sequences, flup-lug-pitch'lnd lag~flap-pitch, are
derived for the gensral case of large deformations using simple geometric
considerations and then specialized to four levels of approximation,

Flap-lag-pitch transformation sequence: For this rotational transforna-
tion sequence (figure 4) the rotations are imposed as follows:

1. A positive rotation £ sbout the‘negativn y axis resulting in xlylzl.
2., A positive rotation 7 about the 2y axis resulting in xayéza

3. A positive rotation 6 about the X, axis resulting in x3y323

Figure 4 reflects the use of Kirchhoff's kinetic analogy. This analogy (see,
e.g., refs. 1, 8, and 9) states that if the origin of the x3y3z3 coordinates
moves along the deflected and twisted elastic axis with a wnit linear velocity
and the y3 and 23 axes cccupy, at each instant, rositions correspending to
"the normal and binormal directions of the deformed elastic axis*, then the
anguiar velocities of the X424 system with respect to the xyz system are
expressed in the same way as the corresponding bending and torsional curvatures.
One then merely has to replace the time derivative in the expressions for the
angular velocities by a space derivative with respect to the (curviiinesr)
along the elastic axis of the deformed blade. The space de-
B+, C+, and 6+, as shown

coordinate s

3
rivatives of the rotation angles with respect to 33,
in figure 4, assume the role of the angular velocities in application of the
ene’os7.  The bending curvatures wy3 end Wzq » and tae torsional curvature

) IE S ; :
Wyqr 21€ obtained by projecting [ , § , and % ulong the =%y 2, axes and

3’&(’ 3

‘ov -¢ general case cf lcorge deformations, the principal axec ot the deformed
ie 4r not coinelde with the normal and binormal -irections nf the deTormed
azelc anis (see refs 5 and 13).
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are zlven oy

w, =0 =gt aing

*3

“’y = ;" 8ind - 3’ cos cosd (1)
3

w, = ;+ cosb + B'.' cosl sinf
3

The rotationel transformation between the x3y333 and xyz trisds (figure 2) ecan
be written in terms of direction cosinss as

x3 21 lll nl X

Y33 | &= M) |V (2)
z3 13 m3 n3 %

For the flap-iag-pitch sequence being'considered the explicit form cof equation

2 is
\ M /)
Xq r;oc B cos ¢ sin ¢ cos [ sin B x
: =8in Z cos 8 cos 8 . cos B sin 6 ‘
\”3 '] -8in 8 sin @ cos § cos § sin § sin B cos 6| \¥( (3
2 8in % cos 8 sin 8 . sin [ sin B sin @
\ : | ~8in B cos 6 =cos { sin 8 +cos £ cos @ . %)

Ther. v remains the task of expressing the rotation angles B, 7, 8 and their
derivitivas with respect {o 33 in terms of y, Vs W, P, and 6p+. “he di-

rerTL L rasinoy Ql,ml,nl of x3 with respect to %% can we wrivten usin.-
SIaTIIoE LWL ey retarence 5 as
~-i/2
N TR (I4u"} = ooy 4o
"'2.1“:.
+ v! = ooty 4)
» ~1/2
= T40p) w' = coul sind
10 REPRODUCIBILITY OF THE

ORIGINAL PAGE IS PooR



From equations &

v —t M
o cos B =
.inB-J.o-ze-v'? YT
J (5)
V' + -v'

sin g = cos [ =
Jl-&-Ze *ee

where € 1s the extensional component of Green's strain tensor and is given
by

12

+ v'? + w'z)

e=u'+1/2 (u

(6)

From the def. .. 0on of Green's strain tensoi, the derivatives with respect to
53 are related to the derivatives with respect to x according to

-1/2 '

Y x (142¢) () (7)

()

The third rotation angle 8 specifies the orientation of the y3z3 axes with
respect to ygze. This additional rotation is due to torsion of the blade,
%, about thre X5 axis in the «bsence of pretwist. Common practice in the
rotor blade .iterature is to combine the pretwist with the elastic torsion.
Using this expedient, the third rotation angle 6 in the present development is

piven by

11



As a result of the deformations, the line element dx becomes an element of
are 613 of the deformed elastic axis. In view of this, the expressions given
in equations L are the direction cosines of the tangent (33 axis) to the de-
formed elastic axis., The x3.y3.53 coordinate sxes are aligned along the tan-
gent, normal, and binormal directions of the deformed elastic axis. These
coordinate axes and the trigonometric relations given by equations 5 are shovn

in figure 4,

Lag-flep~pitch transformation sequence:

For this rotational transforma-

tion sequence (figure 5) the rotations are imposed as follows:

1. A positive rotation § about the 2z axis resulting in xlylzl
2. A positive rotation £ about the negat.ve ¥y axis resulting in

X¥o%o
3, A positive rotation € sabout the

axis resulting in x3sz3

Using figure 5, the bending curvatures my3 and wz3, and the torsional
curvature Wyq » are obtained by projecting B+, C+, and Efb along <*he

<
x3y323 axes and are given by

w = o + ;"' sinf
%3

-

-

b, = z* cosp sind - 8% cose (9)

w o= .’;" cosf cosb + B+ 8ind

"3

For the lag-flap-pitch sequence, the explicit form of equation 2 is

'

%q cos B cos % gin ; cos B
wcos § sin B sin € 208 3 coa O
3 y3> *1-sin g cos 9 -2in L sin B sin 8

"
1

-cos I sin B cos © ~gin o sin B cos @
} _fain r sin © -ccs [ 8in 6

-1 [ A
sin B x
cos B 8in 8 | {¥} (o
cos B cos O kz

T . S L L. X ST Y



As before, the direction cosines z’_ .nl .nl of x3 with respect to xyz can be
written using refurence 5 as

=1/2

21 = (1+2¢) (l+u') = cosB cos
-1/2

m, = (1+2¢) v' = sinf cosB (11)
-1/2

n, = (1+2¢) w' = ginf

From equations 11

- !
sin = 4 coan“l"’as L
‘214—25 1+ 2
(12)
v! 1+ u

‘,1 +2 - w'” ‘,1 P

Again, the third rotation angle is taken to be given by equation 8. Similar
to the flap-lsg-pitch case discussed above, equations 11 give the direction
cosines of the tangent (x3 axis) to the deformed elastic axis. As vefore,
the x3y323 coordinate axes are aligned slong the tangent, normei, and ti-
normal of the deformed elastic axis. These coordinate axes anid the triso-

noretrie relations given by aquations 12 are shown in figure 5.
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The exact nonlinear curvature expressions and rotational transformation
matrices given above, which are highly nonlinear, msy be approximated to any
desired degree by applying the binomial theorem and substituting the trigo-
nometric expansions for 8, , and 6. 1In the following sections, the general
expressions will be reduced to four levels of approximation. In each of theae
levels only terms through second deg.ee in u, v, v, and ¢ will be retained.
The transformation matrices to second degree will be given for the three cases
of small deformation considered.

Large deformations. - For the particular case of large deformations con-
sidered herein the second-degree nonlinear expressions for the curvatures are
cbtained by substituting equations 5, 6, 7, and & into equation' 1 for a flap-
lag~-pitch transformation sequence and equations 6, 7, 8, and 12 into equations
9 for a lag-flap-pitch transformation sequence, expanéing the¢ resulting ex-
pressions in 2 binomiel series, and retaining terms up to second degree in u,
v, W, and ¢. The resulting curvature expressions assume the forn

;xs = (1-u'- %"v'z - %"W'Z) el;f-+ ¢'(1-u') - w" v'
;0:,3 = (ww" + 2u'v" + u'w!) coxs@pt + v sinept

+ (v =2u'v" - urt) sin@pt + v cos@pt 13
W, = (vi=zui " - u"v')cosePt - v sinept

{3

TSNS PRS RY RN gt e S by ptt
+ ‘:vf <WW w9 s‘u.,\-pt + \yd‘ CQSBpt

. N il RallPoy * e ‘ - v
for o Plap-lng-plicen sequence mad



w, = (1-u' - %‘-v'z - %V'z) B;t + ¢'(1-u') + v'v'

" tegt TR "
w = («v"+2u'w" + u'w') conept-i-t#wuinapt

+ ¢ v" cos 6 (1)

o Aty o ulg!
+ {v 2u'v u'w') sin -

ept

Moo gl oyt - "
wza = (v'-2u'v u"v!) cosem ov sinept

"_ (s ) - et ]
+ (w'=2u'vw" - u"w') sinept + ow cosept

for a lag-flap-pitch sequence.

Small deformations I. - The majority of engineering materials are elastic
only for small deformations characterized by elongations and shears which are
negligible compared to unity. This implies that the strains are also negligible
compared to unity. Since the rotations are arbitrary, the shears can be neg-
lected in couparison with the rotations in determining the direction cosines
of the fibers of the beam in the deformed state. This implies that plane
sections remain plene (ref. 5, page 47). With the assumptions of this level of
approximation the principal axes of tiie deformed blade differ little from the
directions of the normal and binormal to the deformed elastic axis. iore de-
tailed considerations on these aspects are given in references 5 and 10. In-
voking the assumptions of this level the trigonometric relations of equations
5 and 12, after expanding in a binomial series and retaining terms up to
second degree in u, v, and w, can be cast into the form

sinfz= w' cosBx 1 - -g- (u’2 + w'2)
1,2 s)
sing = v' cosg x 1 - > v
and
sinf=w' cosf = 1 - ;='w'2
1 5 » (16)
sinf= v' cosg x 1 -2 (ut® + v'%)



It should be cbserved that the second-degree expressions given in equation 15
do not satisfy the trigonometric identity

81028 + cos?B =1
and the expressions in equation 16 do not satisfy the identity
sinac + cosac = ]

unless u'2 is negligible compared to unity or, squivalently, u'2 is neg-
ligivle compared to both v'2 and w'a. This implies that, under the assump-
tion that the elongations and sliears are negligible compared to unity, the term
u'2 in the extensional component of Green's strain tensor given by equation 6
must be discarded in beam applications. This fact has not been pointed out in
the literature as far as the authors know. It is interesting to note that this
requirement 1s analogous to the inextensibility assumption invoked by Love
(ref. 1) while developing the linear (first degree) curvature expressions for

a bean. However, inextensibility has not been assumed in the presen%t develop-
ment as 2 conseguence of this requirement as far as the second-degree nonlinear
curvature expressions are concerned. Invoking the assumptions corresponding
to the case of small deformations I and imposing the additional requirement that

2 and w'z, substituting equations %,

u'2 iz negligible compared to both +v!'
6, T, and 8 into equations 1 and equations 6, 7, 8, and 12 into equations 9,
expending the trigonometric expressions in a binomial series, and retaining

terus up to second degree , the curvature expressions simplify to

wooo= R s . yliyt
X, pt
[P - . . g . . . w
w = ¥ {eosf  ~ & zinh + v'"(sin% | + & cosd ) (o7}
g VoSt T 8 pt) rt DT
Sy . . o ) .
i = v 200 - o ainb + W (3int + & ocoslv )
. YU ot v pt) pt ot

10



D

for a flap-lag-pitch rotational sequence and

1] [ ] Moot
u&a = ept + ¢+ v'w

1" "
an = -y (cosept- ¢ sinept) + v (sinapt + ¢ cosept) (18)

mya = v"(cosept

- sinept) + u" (sinept + ¢ cosﬁpt)

for a lag-flap-pitch rotational sequence. This is the levei »f approximation
usually employed for developing the nonlinear aercelastic equations of motion
of a flexible rotor blade.

Small deformations II. - This case is obtained from the case of smell
deformations I by imposing the additional assumptions that the rotations are
aegligible compared to unity and that the elongations and shears are much smaller
than the rotations. If the first additional assumption is imposed the second=-
degree terms in equations 17 and 1€ can be neglected compared to the first-
degree terms and each of the equations reduces to the first-degree (linear;

expression

. = O 1
mxs ept + ¢

1 =T -
w ; = oy cosept v sinﬁpt (13,

w = v'cosB ., + w'sinbd
Z, pt pt

It should be noted that the assumption that the elongations and shears are zuzh
smaller than the rotations has not been explicitly imposed. This assuxpticn iz
required, however, in order to insure that the principal axis directions

of a cross~section of the deformed blade still differ little from the

divections of the normal and binormal of the Jerormed elastic sxis. It shzoill
also be pointed out that this is the level of approximation usually employel in
elastic stability (buckling) problems.

17



Classical linear theory. - To arrive at this case from the case of small
deformations II the additional assumption is made that the temms of second
degree in the angles of rotation are negligible compared to the corresponding
strain terms. Herein, the terminology "classical linear theory" means that
the geometric relations between strains and displacements are linear., Since
there are no terms involving squares of rotations in equations 19 the curvatures
for the classical linear theory are again given by equations 19. It should be
emphasized, however, that although the curvature expressions corresponding to
the last two levels of approximation are the same, the strain components are
different (see ref, 5),

Direction Cosine Approach

For completeness it is appropriate to indicate how one would extend the
approach used by Love (ref., 1) for developing the linear curvature expressions
to the general case of large deformations. The rotational transformation

tetween the x and xyz triads has already been given in equation 2.

Y.z2
37373
Following the procedure in Love, the curvatures Wxq s Wyq s Wzg can be written
in terms of the directlon cosines of equation 2 as

-1/2

] ] ]
wxa = (142¢) (£3£2 * mamy + n3n2)

~-1/2 ' '
w, = (1+2e) (£12§ +mmg 4+ nlns) (20)
"1/2 ' ' v
w = (1+oe) (1221 + mom, + nznl)
/2
"he factor (1 + 2¢) in equations 20 accounts for the fact that the deriva-
tives are take' with respect to the undeformed coordinate x.
“ne direction cosines in equaticns 20 depend on the order in whici: the

rewntional transformation sequence between xyz wud x.y.z. 1s Lmposad. For the

.
533

- s R R T . o N H ; . P | o, P e T

vwo trepsfornation Cegquences considered obove, tae enrilicelt Dormg o0 squations

s ~ L R N - ST ST TR P . g . o | . * N e -

Zowre siven oy squallon 3 Dor o flsp-lazepiten sequence nnd equatlion iT for s

lag-flup=pites sequence. The angles [, 7, and & which appesr in equatiops 3

18



and 10 are defined in equations 5, 6, 8, and 12 and thus the direction cosines
are known in terms of u, v, v, ¢, and ept. The curvature expressions for

the general case of large deformations are obtained by substituting the di-
rection cosines appropriate to both the flap-lag-pitch and lag-flap~pitch
transformation sequences into equation 20. As remarked earlier these genersl
expressions are highly nonlinear and may be approximated to any desired degree
by applying the binomial theorem. In this section the general expressions will
again be reduced to four levels of appreximation and only second-degree terus
in u, v, ¥, and ¢ will be retained.

For the particular case of large deformations considered herein the
second-degree nonlinear expressions for the curvatures are obtained by using
equations 3, 5, 6, and 8 in equation 20 for the flap-lag-pitch sequence and using
equations 6, 8, 10 and 12 in equation 20 for the lag~flap-pitch sequence, ex-
panding the resulting expressions, and retaining terms up to second degree in
Uy Vv, W, and ¢, The expressions thus obtained are identical with the second-
degree curvature expressions glven previously in equations 13 and 14,

If the assumptions corresponding to the case of srall deformstions I ere
imposed, the second-degree expressions for the direction cosines asscecleted wizh
a flap=-lag-pitch rotational transformation sequence, from equations 2, 3, 3, 2,
and &, can be shown to be

2 'l_%(utz_’_v'z*woz)
' - v - !
L. = -y (cmsept ¢31u9pt) w (sinept + ¢cosept)

R, = v'(sin(%pt + cbcosept) -w' (cosept- ¢sind )

3 pt
m = v
2 2
- - Y—'_— - L =
m, = (1 5 5) cosept - ¢sinept (oo,
2 2
v! &y L.
ny ® ~-{1 - -3 ) ::m@pt - ¢cosept
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n, = w'

W2 02 2

ny = (¢ = v'w')cosd , + (1 = == - L) sine

pt 2
.2 '2 .
ny ® (v'w'- ¢)sin6p + (1 - %—- - 5—' - L) cose

and those associated with a lag-flap-pitch rotational transformation sequence,
from equations 2, 6, 8, 10, and 12, to be

o=l -%(0'24”1'2 +w'2)

)

L} ]
R, = v (c:v:.usep,c dasinﬁpt) -w (sinept + ¢ cosept

M ! +* N - ] -
o= (sinfipt ) cos,ept) v (c:maiept » sinept)
e
2 2 2
u' | P-4
w{y'w' 4 _..——._—....._.L NN
m, = (v'w' + ¢) slnﬁp + (1 5 5 3 ) cosept (z2)
2 2
u' w'
o m {mptent . - — ——— D) a3
my (=v'w' + ¢) cos@P1 + (1 5 5 : ) smnﬁpt
n, = w'
2 o
l
= (1 - W _ SL
n, (1 5 ) sine + ¢cosept
2 ”
oo 3= s
n, = {1 - > - %— ) cos@pt - 951n6pt

it should be oiserved that the direction ecosines siven in equations 21 o L 2o

do not satizfr the orthosonal ity LveLTervy

2 & ot
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unless “,2 is assumed negligible compared to unity o., equivalently, ut?

is assumed negligible compared to both v'2 and w'z. This is the same con-
clusion reached earlier on the basis of trigonometric identities. Again, these
results reaffirm that if one assumes that the elongations and chears are

negligible compared to unity the additionel requirement that u'2 is negligidle

compared to both v'2 and vw'2 must also be imposed. Substituting equations
21 and 22 into equations 20 and invoking the above additional assumption the

second-degree nonlinear curvature expressions given in equations 17 and 18 are
again obtained. The sorresponding rotational transformation metrices between

the deformed and undeformed blade-fixed coordinates are given by

"3\ 1« %(v’a . v'z) vt v -1 x
' in @ (* V'2 ﬁ) ty! ]

-y (oos GPT- -2 sin p‘.) 1 - S - gmjeos sz (0 -V v)chl ’ .

yap = |=v'(sin o v ouus by -6 sin €, ol - - g—-‘ssan B 1 A7 (23)
2

v! (sin ept + o 2c8 éF,J -(; - %3- %—,lin ayt (v'v' - ?);in g .
'3} -v‘(ca: ":;‘ - 5 o8in i-;,') ¢ S8 Ep‘ 0(1 - "T - g—;co: en *

L

for a flap-lag-pitch rotational transformation sequence and

“3\ Lo B2 e w?d) " o ] ,\
2 .2
“v! (cos Gp‘ - ¢ 1in Bp‘ -+ v"z') si; 5;: ( - 3'-2—- - g—)lin Opt ‘
¥q > w | ew' (sin ep‘ + § ans ‘Ft +{1 - *v-,‘:-— - %-)cos ‘gt +¢ cos ept < 4 > (26)
1 V' (sin ep,_ 4 ¢ cos E“> —(4, + v',vz’) c{,i ;"pt (J. - i;— - %E)cas ept s
23} L.’v' (cos :‘P,’ - ¢ sin th) - (1 - 1‘__ " ;'- Jezx . -4 sin 9, J\
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for a lag-flap-pitch rotational transformation sequence. The case of armall
deformations II is obtained by imposing the additional rastrictions that the
rotations are negligible compared to unity and that the elongations and shears
are much smaller than the rotations. In this case, the second-degree terrs in
equations 23 and 2% can be neglected compared to the first-degree terns and
reduce to the single relation

w!

cos © sin @ fagy
ya = Pt pt Pt y NS
~w' 3in 6 ~¢ 8in 8 +$ cos 6
pt ¢ pt ¢ pt
z v' sin 6 -sin 8 cos 9 2
F o3 , g‘c Bt pt
-w' cos - cos 8 -¢ sin @
\ L pt ? pt ¢ sin Op
e srensformation giver in wquetion 25 is linear -nd 'z thus indepengent oF

TiE

e d

in wiieh the wvonation:

. : ACTVRTST SR 10 SRR e b H PO ey -~
Lrder nre inposed,  Juuotituting vie direcnion oo-
~ 2 5 oe oY .1 v de L R4 . (R ~N LT, R e . . e .
sipes miven in equution 27 into egquaticus 20 the g Ulrot-dogree (Linesr

PR RIS -t . + 3N p - N AP e .. T
sartetuves civen by equations 10 mre conodoed. Povediy, Sofe SeCond G0

- . R LI S U H R e e e e JEE .

wer o lon arise whlie Gldrnit Lo gest frabion, Wever, Losne Gecdliu *

v ey eyl s ot one Coonr e N L Tooehiion senrivees
e L2 ey e ot 3, s oy i, " s ; . .
v linesnr transformatlion JAGEA S Y negntion 05 o nob b l‘,' tiwe direetlic
P e ey e ‘l'&w "’l tl gt S DT L P e vigskael 4 i:“ ard Liieoe
[ 2UNa0IONGLl Y ralationsg Ly o0 e ")I (X3 541 ralt Yie? IR LR IS BT RO ArY § i)



nonlinear terms is also dictated by the assumption that the rotations are
negligible compared to unity.

Again, the curvatures corresponding to classical linear theory are the
same as those corresponding to the case of small deformations II.

It was indicated earlier that the second-degree curvature expressions in
refersences 6 and 7 were obtained by solving a differential equation for the
transformation matrix vhich relates the blade-fixed coordinates of the deformed
and undeformed blade. If one employs that procedure using the transformation
matrices given in equaticas 23 and 24 and solves for the unknowns, Uxgs Uyqs end
wgy One will obtein the same curvature expressions given in equations 17 and
18.

The second-degree nonlinear curvature expressions for a twisted rotor
blade or beam have been established above in two ways for four levels of approxi-
mation. The same expressions can also be developed if foreshortening due to
bending (ref. 8) is explicitly included in the axial deformation. In the next
section the curvature expressions and transformation matrices developed herein
will be compared with corresponding results eristing in tae literature,

COMPARISONS AND DISCUSSION

The only general development in the literature for the curvature express-
ion., as far as the authors know, is that of Hunter (ref. 2). Since reference
2 considers initial (built-in) curvatures before imposing the elastic defor-
mations and the present development combines pretwist with elastic twist and
considers them as the last rotation, a direct comparison of the present re-
sults with those of reference 2 is not possible. A comparison can be made,
however, if the initi.i curvatures in reference 2 and the pretwist in the
present development are set to zero. Under these conditions the present
s ‘cond-degree nonlinear expressions given by equations 13 for a flap-lag-pitech
¢ 2quence and equations 1l for a lug-flap-pitch sequence agree with the corres-
ponding expressions obtnined from reference 2 after making the necezs:ry no-

tational changes.
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Several investigators have developed second-degree nonlinear curvature
expressions assuming small deformations. Hodges (ref. L) derived these ex-
pressions for gzero pretwist. Though not stated explicitly, the level of
approximation employed is equivalent to the case of small deformution I Lerein.
Howsver, reference 4 discarded u'z_mrouzh an a priori ordering acheme
rather than through a rigorous argument. In addition to these assumptions,
reference 4 used a partially nonlinear displacement field in u, v, v, and ¢.
The use of this dinpla.cémnt field meuns that the rotational transformation
matrix between the deformed and undeformed blade-fixed coordinates was partially
linearized. If one is developing a linear set of curvature expressions, a
linesr displacement field in u, v, w, and ¢ and a linear resultant rotational
transformation matrix are sufficient and the order in which the rotstions are
imposed is not important. However, if one is developing the second-degree non-
linear curvature expressions care must be taken to insure retention of all
second-degree terms Ila the Jisplacement {ield and in the resultant transfor-
mation matrix and the order in which tﬁe rotations are imposed is izporient.
Since reference 4 did not address the rotational transformation sequence ex-
plicitly end has employed an incomplete displacement field, a meaningfil ocom=-
perison with the present results can not be made, However, it is interesiing
0 note that the second-degree curvature expressions of reference L sgree with
those assocliated with the flap-lag-pitch sequence given herein after making
the necesgary notationsl changes. In view of the use of a partially norlinear
displacenent field, this agreement must be regarded as fortulitous.

References € and 7 have also aadressed the problem of deriving nenlinear
curvature expressions for « hingeless rotor bl§de. Ho indi~ation is given in
reference 6 28 to tne level of approximation'émﬁloye&. The assumptions rade

in reference 7 ars esquivelent to those here .a corresponding to the case o7

'2 -

small defornstions I. Tne term u'” was disearded in reference 7 <n the Tusie

of an ordering schere. Both these referetces used a leg~flap-piteh rototiondd

trenaloraation sequence vetween the deforyed and tie undeicrmed Tlade-IIxed
cuooriineeg,  heloersnee U8 uricrl foantifieda the torsional survaturs s L'y

v protwio. weldnz gerc. ceferemce T uwiso a priori identified the torslounal
A
¥

survernre an being eguel to (L’H + 23'. fThe definition of 4 Lherein is the
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same as that given in references € and 7. The results of the cited references
disagree with the corresponding torsional curvature for the lag-flap-pitch
sequence derived herein and given by N,B - Ql',t + ¢' + v'v', The bending
curvatures of reference 7 are, however, in agreement with the correspoading
ones herein. As a consequence of these a prior. identifications the lag-flap-
pitch rotational transformation matrix of references 6 and 7 do not agree with
the corresponding one given by squation 24 herein.

Second=degree nonlinear curvature expressions have been developed in
reference 3 for application to dynemic analyses of tubes conveying fluids.
The level of approximation employed in reference 3 is equivalent to the case of
small deformations I herein. Since the rotational transformation sequence vas
not spe-lled a comparison was made with both sets of the present results after
setting the initial curvatures and twist of reference 3 and the pretwist in
the present results to zero. This comparison showed that the torsional curva-
ture wyq and the bending curvature Wz o of reference 3 expressed in the
present notation agree with the corresponding results herein. The bending
curvature mYB is not in agreement with the present results. The detailed
development leading to the curvature expressions given in reference 3 were
presented in reference 1l1. An examination .f reference 1l reveals that the
disagreement with the present results is s consequence of the linearization of
the resultant transformation matrix between the deformed and undeformed blade-
fixed coordinates while developing the nonlinear curvature expressions. This
linearization is not consistent with the assumptions of small deformations I
although it is Justified under the assumptions of small deformations II. How=-
ever, as already stated the nonlinear terms in .ae curvature expressions under
the assumptions of small deformations II have no meaning and must be discarded.

Under the assumptions of classical linxar theory the curvatures are linear
and are again given by equations 19. The linear curvatures caen be obtained
from the nonlinear curvatures o!' the case of smnll deformations I by discarding

the squares and producta of the elastic verisbies u, v, w, and ¢ andé tucir

derivatives. The linear curv: fur: exprescions obinined in this manner in
references 2, 3, 4, 7, and & arc in ngreement with the correspcrding ones
herein.

2 REPRODUCIBILITY UF ‘1K
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During the present development en J.teresting observation has been made
regarding the u'2 term in the extensioull component of Green's strain tensor
(eq. 6). These observations have u direct bearing on an existing controversial
issue regarding whether the uncoupled extensional frequency of a rotating
beam increases or decresses with increasing rotational speed. Reference 12,
while studying only the extensional vibrations of a rotating beam, used the
extensional component of Green's strain tensor in the form

e= u' 4+ % u‘z (26)

but was able to discard the terms associated with u'2 in the development by

invoking the small strain assumption. This can be formally shown by rearrang-
ing equation 26 into the form

2
1+2c= (1+u") (27)

If the strain € in equation 27 is assumed negligible compared to unity then
u' must also be assumed negligible compared to unity. Based on this assump-
tion u'2 must be discarded in equation 26, With this assumption reference 12
conzluded that the extensional frequency of a rotating beanm decreases with in-
creas.ng rotational speed. It should be remarked that in the mcre general case
including flapwise and edgewise bending the conclusion that u'2 must be dis-
carded can not be established on the basis of the above reasoning. However,

in the present development this result was established in the general case on
the basis of cumsiderations related to satisfying ceriain trigonometric and
direction cosine identities. More recently, reference 13 contradicted the re-
sult of relference 12 and concluded that the extensional frequency of a rotéating
beam increases with increasing rctational speed. In this reference the coupled
flapwise and extensional equations of motion of a rotaetiag beam were derived

2
v hl i ] »; ] & - s
using dreen's straln tensor ineluding the ' tern undzr the small strain

€]

assumption. Jince the extensional equation of motion was obtaine.l a: & special

cnuse of tiie coupled equations, reference 13 was apparently unable to recognize
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that w? must be neglected compared to w’z » 88 identified herein by the

trigonometric and direction cosine identities. These considerations reveal
that the frequency increases with increasing rotational speed if u'2 is re-
tained and decreases with increasing rotational speed if u'2 is_ discarded.

On the basis of the observations made in the present development, under the
assunption of small strains, the term u'z must be discarded in the extensional
component of Green's strain temsor in beam spplications. Thus, the present
authors are in sgreement with the esult of reference 12 that, under the
assumption of small strains, the uncoupled extensional frequency of a rotating
team Jecreases with increasing rotational speed,

CONCLUDING REMARKS

A development was presented for the nonlinear expressions for the bending
and torsicnal curvatures of a twisted helicopter rotor blade or beam undergoing
combined flapwise bending, chordwise bending, torsion, and extension, The
general nonlinear expressions developed esre valid for large deformations.

These general expressions were systematically reduced to four levels of approxi-
mation and in each of these levels the second-degree nonlinear expressions were
given. In specializing to %he particular case of small deformations in which
the elongations and shears (and hence strsins) are assumed negligible compared
to unity with no restrictions on tne rotations, trigonometric and direction
cpsine anomalies were identified. To remove these anomalies, it was shown that
one must additionally impose the requirement that the square of the first
derivative of the extensional deformatiorn on the elastic axis be negligible
compared to unity and the squeres of the bending slopes on the elastic axis.
This fact has not been pointed out in the literature as far as the authors
know. Using this fact, a controversy existing in the literature regarding
whether the uncoupled extensionel frequency of a rotating beam increases or
decreases with increasing rotational sreed has been resolved. Furthernore,

the second-degree nonlinesr curvature evpressioms rnd the rotational treans-
formation matrices between tle ueformed snd dolormad tlade-fized coordinates

vere conpared with corresponding expressions in the literature wherever



possible. These comparisons indicated several discrepancies with the present
results in the nonlinear terms. The reasons for these discrepancies were ex-

plained.
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¥Figure l.- Levels of spproximation within the geometric nonlinear theory of
elasticity which are addressed.
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Figure 2.~ Schematic representation of undetiormed and deformed blade for flap-lag-pitch rotational

transformat ion sequence.
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Figure 3.- Schematic representation of undeformed and deformed blade for lag-flap-pitch rotational

transformation sequence.
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