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INTRODUCTION



This 	 is the final repot on a program for the analysis of selected data


-from 
 the Lockheed Energetic Ion Mass Spectrometer experiment on satellite



1971-89A, with emphasis on the morphology of the 0+ ions of ionospheric



origin with energies in the 0.7 E < 12 keY range that were discovered



with this experiment.



RESULTS



The principal result of this program has been the completion of a detailed



statistical study of the properties of precipitating 0+ and H+ ions during



two principal magnetic storms. The results of this study are described in



two papers which have been submitted to the Journal of Geophysical Research



-and are- included as Appendices A and B of this report. In addition to this­


work, three studies have been initiated into other aspects of the morphology



of the energetic'O+ ions, and substantial progress on these studies has been
 


made.



1. 	 Dr. E. G. Shelley has begun an investigation of the 0+ ions observed



precipitating into the dayside cusp. These ions are interpreted to



result from a quasi-trapped population of 0 ions on closed field



lines which convect poleward into the cusp a substantial distance



before they are emptied of their contents by precipitation or dis­


charge into interplanetary space. A quantitative study of the ob­


served latitudinal distribution of the 0+ ions in the cusp has in­


dicated that,they probably are trapped over a substantial range of



equatorial pitch angles including relatively large angles, thus im­


plying that they may form a significant portion of the ring-current
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ion population. These preliminary results were presented by Dr.



Shelley at the Advanced Study Institut6 on Magnetospheric Particles
 


and Fields at Graz, Austria, in August 1975.



2. 	 Dr. R. G. Johnson has initiated a study of the energetic O ion



morphology during magnetospheric substorms as distinguished from



magnetic storms. He finds that the 0+ ion peak intensities are



correlated with the AE index during two substorms'studied. Some



preliminary results of this work were discussed in an invited re­


view paper presented by Dr. Johnson at Kiruna, Sweden, and in a



contributed presentation at the San Francisco meeting of the



American Geophysical Union in December 1975. The text of the
 


review paper and the abstract of the contributed presentation
 


are included in the appendices.



3. 	 The Explorer 45 satellite was operating in the equatorial plane



during the period of the 1971-89A experiment at low altitudes and



simultaneous data were acquired on many occasions. We have ini­


tiated a joint study with Dr. Bodo Parady of the University of



California at Berkeley to investigate the relationship between low­


frequency electromagnetic emissions observed on Explorer 45 and



the 0+ ions observed on 1971-89A.



PUBLICATIONS



Written Papers



"The Morphology of Energetic 0+ Ions during Two Magnetic Storms: Temporal 

Variations," by R.'D. Sharp, R. G. Johnson, and E. G. Shelley, submitted 

to Journal of Geophysical Research, 1975. 

2 

LOCKHEED, PALO ALTO RESEARCH LABORATORY 

LOC HEIO MISSILES SPA CE COMPANY. INC.



A SUB iADIA Y OF OCKHEEO AIRCRA F- CORPORATION





LMSC/D501012



"The Morphology of Energetic 0+ Ions during Two Magnetic Storms: Lati­

tudinal Variations," by R. D. Sharp, R. G. Johnson, and E. G. Shelley, 

submitted to Journal of Geophysical Research, 1975. 

"Composition of the Hot Plasmas in the Magnetosphere," by R. G. Johnson,



R. D. Sharp, and E. G. Shelley, in Physics of the Hot Plasma in the Mag­


netosphere, edited by B. Hultqvist and L. Stenflo, Plenum Publ. Corp.,



New York, 1975, pp. 45-68.



Contributed Presentations
 


"Observations of Energetic 0+ Ions within the Low-Altitude Dayside Cusp,"



presented by E. G. Shelley at the Advanced Study Institute on Magnetospheric



Particles and Fields, Graz, Austria, 4-5 August 1975.



"The Morphology of Energetic d+ and H during Two Magnetic Storms (abstract),"



by R. D. Sharp, R. G. Johnson, and E. G. Shelley, EOS Trans. Am. Geophys.



Union, Vol. 56, 434, 1975.



"Satellite Observations of Energetic 0+ Ions during Two Magnetic Substorms



(abstract)," by R. G. Johnson, R. D. Sharp, and E. G. Shelley, EOS Trans.



Am Geophys. Union, Vol. 56, lO48, 1975.



Invited Presentations



"Composition of the Hot Plasmas in the Magnetosphere," presented by E. G.



Johnson at the Nobel Symposium on the Physics of the Hot Plasma in the Mag­


netosphere, Kiruna, Sweden, April 1975.



ACKNOWLEDGMENTS



Some of the work contained in the referenced publications has been funded



by the Air Force Office of Scientific Research under Contract F44620-73-C-0050
 


and by the Lockheed Independent Research program.



3 

LOCKHEED PALO ALTO RESEARCH LABORATORY



LOCKHEED MISSIES & SPACE COMPANY, INC 

.f. A LitHEEf A RCRAFT CORPORATION 



Submitted to Journal of 
Geophysical Research



APPENDIX A 

THE MORPHOLOGY OF ENERGETIC 0+ IONS 

DURING TWO MAGNETIC STORVS: TEMPORAL VARIATIONS 

R. D. Sharp, R. G. Johnson, and E. G. Shelley



August 1975



(Revised January 1976) 

Space Sciences Laboratory


Lockheed Palo Alto Research Laboratory


LOCKHEED MISSILES & SPACE COMPANY, IC. 

3251 Hanover Street (52-12/205)
 

Palo Alto, California 94304



A-1





-2-


THE MORPHOLOGY OF ENERGETIC 0+ IONS 

DURING,TWO MAGNETIC STORMS: TEMPORAL VARIATIONS 

R. D..Sharp, R. G. Johnson, and E. G. Shelley


Lockheed Palo Alto Research Laboratory



Palo Alto, California 94304



ABSTRACT



A study -has,been donducted of the morphology of precipitating 0+ and



H+ ions in the energ range 0.7 ! E) 12 keV during the storm-time period 

from December 16-18, 1971, which encompassed two principal magnetic storms.



This paper describes some of the results of this study with emphasis on



the temporal variations of parameters characterizing the intensity, average



energy, and spatial location of the zones of precipitation of the two ionic



species. One of theprincipal results was the finding that the intensity of



the precipitatingO + ions was well correlated with the geomagnetic indices



which measure the strength of magnetospheric substorm activity and the



strength of the storm-time ring current.. Since the 0+ ions are almost



certainly of ionospheric origin the correlations indicate that a previously



unknown'strong coupling mechanism existed between the magnetosphere and the



ionosphere during the storm period. Some other morphological-features appar­


-ent in the.data are: l)'the storm-associated initial increase of the 0



ions on the nightside (0300 rT) was found to lead that on the dayside '(1500



LT) and lag the initial nightside H increase by more than one hour in both
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storms; 2) a strong correlation was observed between the variations in loca­


tions of the 0+ and H+ precipitation regions on both the day and nightside



crossings; and 3) the average energies of the 0 and H+ precipitations were



significantly correlated on the dayside crossings. The implications of



these results with respect to some phenomenological models of the 0 morph­


ology are discussed.



The total worldwide precipitated ion energy flux has been estimated



during the period of the study and compared to the ring current energy



content as measured.by Dst. The comparison indicates that precipitation



was an important loss mechanism for ring current ions with energies less



than 12 keV during the December 17-18, 1971 magnetic storm.



INTRODUCTION



The discovery-of 0+ ions with energies of up to 12 keV in the magneto­


sphere was reported by Shelley et al. [1972]. Synoptic studies of several



aspects of the morphology of these ions were described by Sharp et al. [1974],,



Shelley et al. [19741, and Johnson et al. [1975]. The energetic 0ions were



inferred to be of ionospheric origin. They were observed in every storm



studied over a one-year period and at all local times. They were also ob­

- served at reduced intensities during non-storm times. This is the first of 

two papers which will present more detailed results from a statistical study



of the temporal and latitudinal variations of the 0 ions and the accompany­


ing protons in the same energy range (0.7 E < 12 keV) during two magnetic



storms. This paper will present integral parameters, each characterizing



http:measured.by
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a single traversal of the precipitation zone. Paper II will describe the



latitudinal variations averaged over each of the two storms. A similar



statistical analysis of a comparable body of data on auroral electrons



and the more energetic component of the auroral protons has been pub­


lished [Sharp and Johnson, 1968; Sharp et al., 19693.



The two storms studied here occurred in the period December 16-18,



1971. Both were initiated with sudden commencements which occurred at



1904 UT on December 16 and 1418 UT on December 17. The first storm had



only a small main phase with a peak Dst of 54Y. The second storm bad a



classic main phase with a peak Dst of 171Y and a recovery phase lasting



until about 2300 UT on the 18th. The relevant geomagnetic indices charac­


terizing this period are shown in Figure 1. Extensive data on the equa­


torial particle distributions during this same period were acquired by



the Explorer 45 satellite [Smith and Hoffman, 1973; Hoffman, 1973; Williams



and Lyons, 1974ab; Lyons and Williams, 1975; and Williams, 1975].



The data presented here were obtained from an energetic ion mass
 


spectrometer experiment on the low-altitude polar satellite 1971-089A.



The experiment contained three spectrometers. Each consisted of an elec­


trostatic analyzer in series with a crossed field velocity filter which



provided both mass-per-unit-charge and energy-per-unit-dharge information



on the measured particles. The satellite was in an approximately circular



orbit of 800 km altitude and 93 inclination. It was in the local time



plane 0300-1500 during the period described here. The satellite was sta­


bilized about three axes and the spectrometers were oriented at 550 to the local zenit



so that they primarily sampled precipitating particles near the edge of the loss cone.
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during their traversals of the auroral and sub-auroral-regions. The nine



energies per dnit'charge sampled by the experiment were 0.74, 1.01, 1.41,



2.14, 2.92, 4:07, 6-3, 8.6, and 12.1 keV. Mass-per-unit-charge scans at



each of these values were obtained in 6.14 seconds. Representative mass­


per-unit charge distributions are given in Shelley et a. [1972] which also 

contains a more detailed description of the experiment and preliminary



results from this same storm-time period.



ANALYSIS AND RESULTS 

In order to investigate the variations in the properties of the ion



fluxes on a time scale appropriate to the period of the storm, we have



formulated a grouj of parameters based on the average or integral fluxes



during a single-complete traversal of the northern precipitation zone. 

This gives us a measurement in each of the northern precipitation zones 

(day and night) about every 100 minutes which is comparable to the time 

resolution of the various geomagnetic indices characterizing the disturbed 

period. To formulate these parameters for both the 0+ and H+ ions we have 

summed the counts in the region of peak response in tHe mass-per-unit-charge



sweep for each ion species and subtracted the background from an equivalent



number of channels. Then for each six-second measurement cycle, we have 

computed the integral energy flux and average energy for each species in



the energy range 0.7 E 12 keV. For the intensity parameter, we have 

integrated the flux over the range in invariant latitude 440 A 800.


oL 

For the hardnesw parameter we have computed the average energy of each ion 
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species over the same interval. To characterize the location of the prer 

cipitation zone we have computed the invariant latitudes at which 10%, 50o, 

and 90% of the energy flux latitudinal integrals were reached. 

The results for the northern hemisphere observations during the period



1200 UT on December i6 to 2400 UT on December 18, 1971 axe presented in



Figures 2 through 5. Figure 2 shows the integral energy flux values. They



have been multiplied by the satellite velocity and corrected for the (gener­


ally small) deviations of the trajectory from meridians of magnetic longi­


tude so that they are an approximation to the instantaneous value of the



energy flux precipitating through a one-cm-wide slit aligned perpendicular



to the precipitation zone. The error bars represent counting statistics


only. There are additional experimental uncertainties',discussed by Shelley


et al. [1972, 1975. .which we estimate as approximately + 35%. 

One sees, in Ffgure 2 that there is a general correspondence between



the 0 zone integrals and the magnetic activity indices shown in Figure 1



with large flux increases being observed shortly after the sudden commence­


ments. The nightside (0300 LT) 0+ increase leads the dayside (1500 LT) in­


crease and lags the H increase by over an hour in each storm. On the night­


side, the 0+ and H intensity levels are generally comparable while on the



+
dayside the precipitation is considerably weaker than the H+ precipitation



in this energy range.



Figures 3 and k show the zone average energy values. For Figure 3, we



defined the average ion energy as the ratio of the zone integral energy



flux 'to the zone integral number flux. For those cases where the latter



was less than two standard deviations above zero the average energy values
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were not considered significant and were deleted. The error bars represent



counting statistics only. This definition for the average. ion energy tends



to give the most weight to the intense precipitation events in each zone



crossing. In order to evaluate the significance of the observed trends we



defined the alternative hardness parameter shown in Figure 4. For this
 


parameter we computed the average energy for each individual (six-second)



spectral measurement that was considered statistically significant and then



computed the grand average value of these quantities over the precipitation



zone, weighing each measurement equally. The significance criterion chosen



was that the integral number flux in the individual measurement had to be



greater than twice its standard deviation. The error bars in this figure



represent the standard deviations of the means of these individual average



energies and not counting statistics. For those cases where less than ten



individual measurements were included, the number of measurements, n, has been



-ndicated on the figure. In examining Figures 3 and 4 we see that the aver­


age energies do not-vary substantially between the two ion species or be­


tween the day and nightside measurements. There is a correspondence in the
 


temporal variations 'of the 0+ and H+ values on the dayside that can be seen



in the lower panels of both Figures 3 and 4 so that we feel it is not the



result of biasing-due to a specific weighing technique.



The degree of this correlation is indicated quantitatively by the
 


correlation coefficient between the two quantities. For example, the



value of this coefficient computed for the 26 pairs of average energies



with n > 4 in the lower two panels of Figure 4 is r = 0.54. The proba­


bility that such a sample of uncorrelated pairs would have a correlation





-3­


eoefif'.ent this large is 0.005. We will discuss the implications of this 

correlbtion in-the ,next section. 

Figure.5 shows the locations of the precipitation zones. The center of



the region, measured by the invariant latitude of the 50% point of the zone



integral energy fiux, is indicated with a circle for 0+ ions and a square



for H ions. The horizontal bars represent the extent of the region as



measured by the 10 and 90% points in the same parameter. In several in­


stances during this period the proton precipitation extended 
above 800 

invariant latitude. The satellite orbit on some passes did not extend 

higher than 80P so in order to form a uniform data base we truncated the 

zone integrals at that latitude. Thus for those points in Figure 5 in 

which the upper, bar is in the vicinity of 800, that point does not neces­

sarily mark the upper latitude of the precipitation region. Despite this 

distortion we see'a detailed tracking of the precipitation zones,of the two 

types of ions on both the day and nightsides. There is a latitudinal dis­

placement between the two species with the 0+ zone generly located equat­

orward of the zone by several degrees. There is a correlation between 

the results at 'the two local times as well as between the two ion species. 

DISCUSSION



As noted above in connection with Figure 2 the observed nightside 0



fluxes are more intense than those on the dayside and there is a time delay



in both storms between the initial 0 increases on the night and daysides.'



This is suggestive of a longitdinal drift model with the principal injec­


tion occurring on the nightside. In the energy range of these measurements
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longitudinal drift is strongly affected by the corotation and convection



electric fields. Shelley et al. [1974] showed from a study of the local



time dependence of'the 0
+ ions that the median peak precipitated flux is about



an order of magnitude higher in the LT interval 21-09 hours than it is in



the interval 09-21 hours. The asymmetric location of the region"of high



median intensities with respect to the midnight meridian is perhaps related



to longitudinal drift since, according to most magnetospheric electric field



models, there is a net eastward drift expected for trapped ions with energies



of a few keV or less in the dawn section in this L range FKavanagh et al.,



1968; Mcllwain,'1974]. If one looks at this hypothesis more quantitatively,



however, one finds that the observed delay times are probably too short to



be explained by a longitudinal drift of the 0+ ions from the local time



sector of high-medi'an peak intensities (21-09 hours). 'Consider first the



December 17 storm-for which the more definitive early-time dayside data



were obtained. The time delay between the initial increases observed on



the night and daysides is _ 1.4 hours. Depending upon the details of the



magnetospheric electric field model and the specific particle energy, ions



in the few-keV range injected in the midnight sector can longitudinally



drift either eastward or westward. The shortest delay time expected for



eastward drifting ions would be for those of 0 energy and this would be



about five to ten hours for drift from 0900 to the observation point at



1500 LT [Kavanagh et al., 1968; McIlwain, 1974]. The shortest delay ex­


pected for westward drifting ions would be for the most energetic particles.



Assuming E = 7.8 keV (the average energy of the initially observed dayside



group) and L = 3.8 (the position of the median integral energy flux for this



group) and neglecting convection for a lower limit we find that about nine





.hours would bd.required to drift from 2100 to 1.500 UT for ions mirroring



at low altitudes. For equatorially trapped ions, the corresponding time



is about 6.5 hours. For the December 16 storm, there are possible a.ibi­

guities because of the low flux intensities and data gaps, but the time



delay between the initial increase on the night and daysides is most prob­


ably 3.2 hours.. A similar drift calculation to that described above shows



that a delay time of greater than 6.3 hours would be required for ions mirror­


ing at,low altitudes and 4.4 hours for equatorially mirroring ions. We con­


clude that the initially observed 0+ ions in both storms are not likely to



be convected around from the nightside but more probably are accelerated



locally. The observed delay times can perhaps be understood in terms of the
 


time required for' the energetic ring-current protons (a proposed energy



source for the 0+, acceleration [Cladis, 1973ab]) to drift around westward



trom the nightside-sector. For example, equatorially-trapped 50-key protons­


would drift from,midnight to 1500 IT at L = 6 in about one hour.



If the initially observed 0+ ions on the dayside are indeed accelerated
 


locally, this provides a significant constraint on models of the acceleration



mechanism. It must be one that operates effectively under widely different



ionospheric conditions to accelerate particles from both the day and night­


side ionosphers.



Although the initially observed 0 ions have apparently not convected
 


from the nightside, those observed later inthe storm might have done so.



The observed softening in the average energy of the dayside 0+ ions about



five hours after-the' initially observed nightside increase in the December



17 storm is in about the right period for the expected time of arrival of



eastward convecting'soft ions.



ORIGINAL'PAGE IS 

OF POOR QUALITY 



--

We have remarked on the general correspondence between the 0+ intensity



parameters and the geomagnetic disturbance indices.' To examine this rela­


tionship in mone detail we have superimposed plots of the Dst and AE indices



and the nightsde 0 intensity parameter on the same logarithmic scale in



Figures 6 and 7. For the Dst plot (Figure 6) we have inverted the ordinate



so that increasing ring current intensity corresponds to increasing 0+ intens­


ity. One sees that there is indeed a significant correlation between the



various quantities throughout the period of the study indicating that the



energized 0 results from a strong coupling between the ionospheric source



and the magnetosphere. The correlation with Dst is suggestive of a ring­


current energy source as has been suggested by Cladis [1973a,b] and Brice



,andLucas 1l975.,. or alternatively that the 0+ ions contribute substantially



to the ring current. On the other hand the correlation with AE suggests the



possibility of a source associated with magnetospheric substorms, for example



through the acceleration of the ionospheric ions)by the field aligned elec­


tric fields expected to result from the anomalous resistivity caused by the



enhanced Birkeland currents associated with substorms [Thorne, 19753. 0 ions



have been reported during substorms by Johnson et al. [1975].



If the 0+ source mechanism were indeed proportional to the ring-current



intensity (Dst) or the strength of electrojet activity (AE) and the 0+ ions



were directly precipitated with negligible trapping lifetime, we would expect



a detailed correspondence between the precipitated 0 intensity and the appro­


priate geomagneticindex. We see in Figure 6 that the ring-current'hypothesis



fits reasonably well to the early-time data in both storms. The appaiently



shorter decay tide for the 0+ intensity than for Dst and the large increase in­


0+ 
 intensity near 1500 UT on December 18 which is not reflected in Dst argues



against thi; model for the later phases of the storm.



http:1l975.,.or
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The substorm hypothesis relevant to Figure 7 also gives a rough quali­


tative fit to the observations. In particular, we note the corresponding



peaks in the two 'parameters around midday on the 18th. 'We would,, however,



hesitate to conclude that the correlation with AE shown in Figure 7 is defin­


itely superior to that with Dst in Figure 6 on the basis of this limited.



amount of data.



A model utilizing a ring-current energy source that would allow for



different decay-times for the observed 0+intensity and the Dst index is



one in which the observed 0+ is precipitating from a trapped parent popula­


tion which is controlled by decay processes different from those for the



energetic protons which presumably are primarily responsible for the ring



current, at leapt at later times in the storm [Berko et al., 1975].



The best estimate of-the 0+ decay time to ,use for these considerations



,s probably obtained frbn the data in the 0000-0600 UT time period on December



18 when both AE and Dst are declining nearly monotonicilly and injection pro­


cesses are presumably weak. We find that in this period the nightside 0+



precipitation'is-falling off with about a 2-1/2 hour time constant. This is



substantially shorter than the estimated decay time resulting from strong



pitch-angle diffusion or charge exchange for a longitudinally uniform trapped



population of 0+ ions. For the nightside 0+ data, the invariant latitude of



the median integral energy flux varies from 640 to 700 during this period



and the average 0+-energy is about 4.5 keV. The minimum lifetime for strong
 


pitch-angle'diffusion corresponding to these values for 0+ ions varies over
 


the range from approximately 17 to 78 hours [Kennel, 1969].. The'appropriate



charge exchange lifetime for equatorially mirroring'O+ ions is greater than
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four days based on the lifetimes for proton charge exchange given by Swisher



and Frank [1968] .nodified by the ratio of the charge exchange cross sections



+
for e on H and 0+ on H summarized in Fite et al. [1962].



Let us consider two simple trapping models that attempt to xplain 

both the observe 0 decay time and the asymmetry in the local time distri­

bution of peak 0. intensities reported by Shelley et al. [1974], assuming 

a symmetric injection region around midnight. For the first model we assume 

-that the 0 ions are trapped but precipitating under strong pitch-angle diffu­

sion so that the time dependence of the 0 intensity parameter also repre­

sents the time dependence of the trapped flux intensity at 0300 LT. Consider 

the decay of a longitudinally limited cloud of ions injected into the 2100­

.0300 LT sector. The lifetime of the population at 0300 LT is determined by


4,' 

both precipitation and the depletion of the trapped population by lorgitudinal 

drift and convection-. A detailed convection calculation is beyond the scope 

of this work but we can get some idea of the time scales involved by consider­

ing the motion of zero energy ions using current magnetospheric electric field 

models [McIlwain, 1972, 1974J. A'cloud of such ions with the local time extent 

assumed above would take of the order of an hour to convect past the observa­

tion point at 0300 LT. More energetic ions would take longer because their



gradient and curvature drifts oppose the convection motion. Depending on



the details of theassumed electric fields, ion energies, and pitchwangle



distributions and: including the effect of precipitation, the model could prob­


ably be fit to the observed 0+ decay time.



The decrease in the local time distribution of peak flux intensities at



0900 LT reported by Shelley et al. [19741 might be interpreted in this





model as resulting from the decay of the trapped population through precip­

itation in the time it takes to convect from the injection region to 0900 LT. 

For this to occur the convection time would have to be comparable to the 

precipitation lifetimes and this seems somewhat long, but not clearly ex­

cluded. . Some local acceleration on the dayside would still be required in 

this modelto explain, for example, the small time delay observed between 

the rise of the aayside and nightside 0+ fluxes shown in Figure 2. 

For our second model, let us assume again that the observed 0+ ions



are precipitating from a parent trapped population but that the precipita­


tion is not necessarily proportional to the trapped flux intensity. We



can assume, for example, that during the recovery phase the strength of



pitch-angle diffusion declines and the observed 2-1/2 hour time constant is



not representative of the decay of the trapped flux intensity but of the



precipitation mechanism. The extent toward morning of the local time asym­


metry would then be determined by how far the 0 ions convect in the time



-period when-the precipitation mechanism is most effective. In the storms
 


described here, the-time from the initial 0+ increase until the flux begins
 


to fall off more rapidly than Dst is about 10 to 12 hours. Again, this
 


is getting into-the range where a fit to a convection calculation appears



possible depending .on the details of the model.



The correlations between the properties of the protons and the 0 ions ap­


parent in Figures 3to 5apply additional constraints to these phenomenological



models. The tracking of the location of the two precipitation zones could



arise from common motions of trapped populations of the two species; from



a process in which the 0 ions were energized by a mechanism involving the



ORIGINAL PAGH -W 
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trapped protons as an energy source; or from a process in which the protons



and 0+ ions were"accelerated together from the ionosphere by the same mech­


anism. In the latter two cases a substantial trapped 0+ population would not



necessarily be involved. The correlations in the variations in average



energies of the'two species on the dayside seem most directly interpret­


able in terms of storm-associated acceleration processes acting upon the



parenttrapped populations, or in terms of a common ionospheric source for the two



ion species and a common acceleration mechanism varying in efficiency during,the



storm-time period,. This latter interpretation would have far-reaching effects on the
 


present state of thinking about the origin of the energetic magnetospheric



proton populatioh [Hill, 1974].



We have briefly explored a few of the constraints which these morpholog­


ical results can exert on possible source and energization mechanisms for the



O ions. It is hoped that more quantitative models will be investigated by



others utilizing the experimental results presented here 'nd in Paper TI.



As discussed in the "Analysis and Results" section, the zone integral 

intensity values can be considered as an approximation to the energy flux 

precipitating into a one-cm-wide strip transverse to the precipitation zone. 

If we knew the local time distribution of the fluxes, we could estimate 

the instantaneous worldwide precipitated ion flux in this energy range dur­

ing the, course of,the storm. The local time distribution of precipitating 

protons can be estimated from the H observations of Eather and Mende [1971] 

and Mende (private communication). A rough estimate for the local time dis­

tribution of the 0+ ions can be obtained from the work of Shelley et al. 

[1974]. From these results we find that a reasonable approximation to the





local time average -of the flux intensity can be formulated from the average



of our measured values at 1500 and 0300 hours local time. By assuming con­


jugacy and isotropic pitch-angle distributions over the upper hemisphere,



we can approximate P, the total worldwide precipitated energy flux in the



range (0,7 E 12 keV) as



2
P 2-r R (FN cos AN + FD cog AD) ergs/seo 

where F the zone integral energy flux (Figure 2), A = the invariant lati­


tude of the 50% point of the zone integral (Figure 5), and the subscripts



D and N refer to day (1500 LT) and night (0300 IT), respectively. Plots of



P for both the H+ and 0+ ions are given in Figure 8.



If we assume that the precipitating ion fluxes originate from (or derive 

their energy from) the trapped population responsible for the stormtime ring 

current we can ask what fraction of the ring-current energy is lost through 

ion precipitation. The instantaneous value of Dst can be related to the 

total energy content of. the trapped ring-current particles (ER) by the expres­

sion Dst(y) = 2.6 x 10-2!, whereER is given in ergs [Sckopke, 1966; Frank, 

19671. 

In order to have directly comparable quantities we would like to make



the comparison between P and changes in Dst in a time period when ring-current



injection processes are negligible. Davis and Parthasarathy [1967] have shown


'I.



that during such periods AE is relatively low and Dst decays exponentially wit.



a time constant ofabout ten hours. The time period from 0000 to 0800 UT on



December 18 fulfiils these conditions. During this period A2= .x O ergs
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are lost from the ring current according to the above relationship. By



integrating the curves in Figure 8 over this interval, we find that the
 


worldwide energy loss from precipitating ions with energy between 0.7 and
 

= 020 0+ = 020 

12 keV is AEO 6 x ergs of0 ions and AEp 8 xl ergs of pro­

tons, together accounting for about 5% of the lost ring-current energy. 

The major portion of the ring current energy is carried by protons 

with energies above the range of our spectrometers. If we characterize the 

entire ring current by the proton spectrum measured by Explorer 45 during 

this same time period at the latitude of the maximum of the equatorial energy 

density (L = 3.6), we can roughly estimate C, the fraction of the ring­

current energy density carried by ions with E < 12 keV. Integrating the 

orbit 102 spectrum in Figure 3 of Smith and Hoffman [19731 we find that 

e Z 9% of the energy is in these low-energy ions. Thus f = (AE0 + dEPV 

eEB , 60% of the ring-currant energy loss in the energy range of these 

measurements can be accounted for by precipitation.



The Explorer -45 energy spectrum which we have utilized was constructed
 


with data from two types of instruments. The lower energy portion (E < 30



keV) was measured with an electrostatic analyzer which would have counted


± 

any 0 ions in the equatorial plane. The upper energy portion was measured



with solid-state detectors which are relatively insensitive to 0+ ions be­


cause of the increased losses of the heavier ions in the dead layer of the
 


detector. By utilizing the spectrum as published we have essentially



assumed that the equatorially trapped 0 fluxes are negligible during this



-period. An alternative assumption is that the 0+ fluxes have a similar



equatorial pitch-angle distribution to that of the protons. In this case





we would modifyeth published spectrum at the low energies by deleting the



0 contribution according to the H+/C ratio measured at low altitudes during



this period. Under this assumption only 6% of the trapped proton energy dens­

ity is carried by protons with energies below 12 keV and f 80% of the ring



current energy loss in this energy range is accounted for by precipitating ions.



In order to estimate the fraction of the total ring current (ions of



all energies) los-Sby precipitation we need a determination of the spectrum



of the precipitating ions. These are expected to be generally softer than



the trapped ions due to the energy loss experienced during pitch-angle diffu­


sion. There are no data for the 0+ ions above 12 keV, but for a first order



estimate, we assume an exponential spectrum with a characteristic energy 15 

.keVfor both ion species based on satellite measurements of auroral protons 

[Sharp et al., 1967]. The above expression for f is still applicable with C



now representing the fraction of the energy flux carried by ions with E < 12



keV. This yields an estmmate of f;25% of the total ring current energy lost



by precipitation during this period.



We conclude from these considerations that precipitation was a major



loss mechanism for ring-current ions with energy less than 12 keV during



this storm and may have been an important loss mechanism for the entire



ring current. Ifta large fraction of the precipitating ions derive their



energy from sources other than the ring current, these conclusions are of



course not valid. One obvious such source is the magnetosheath which is



known to contribute to the dayside proton precipitation at high latitudes



[Heikkila and Winningham, 1971]. We do not feel that the polar cusp part­


icles contribute substantially to the measured integrals however; since,



as will be seen in Paper II, the average proton energies even at high lati­
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tudes on the dayside remain in the few-keV range, well above the average



proton energy in the cusp. Tnany case, even deleting the dayside proton



data completely would only reduce the above estimates by about 25%.



Our conclusions about the importance of ion precipitation as a loss



mechanism in this storm are in disagreement with the conclusions of Mizera



[19741 for the higher energy particles during the March 19-20, 1969 magnetic



storm. The details of his calculation were not presented, but on the basis



of electrostatic analyzer data he concluded that less' than 1% of the ring­


.current energy lost during that storm could be attributed to precipitating



protons with Es 12 keV.



SUMMARY AND CONCLUSIONS



Some of the principal results of this study of the zone integral



parameters of the precipitating 0+ and H+ ions during the December 16-18,



1971 storm period are:



1) The intensity of the precipitating 0+ ions was found to be well



correlated with the geomagnetic indices which measure the strength of



magnetospheric substorm activity and the strength of the storm-time ring
 


current. Since theO + ions are almost certainly of ionospheric origin,



these correlations indicate that a previously unknown strong coupling
 


mechanism existed between the magnetosphere and the ionosphere during the



period of the study.
 


2) The storm-associated initial increase of the 0+ ions on the



nightside (0300 IT) was found to lead that on the dayside (1500 IT) and
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lag the initial nightside H+ increase by more than one hbur in both .storms.



A consideration of ionic transport processes leads to the conclusion that


+ 

the mechanism accelerating the 0 ions is probably operative in the dayside



as well as the nightside ionosphere. This is significant in that it implies



that this unknown mechanism can be operabive over a wide range of ionospheric



and magnetospheric conditions.



3)' Correlations have been found between the locations of the e and



HN precipitation zones and between the average energies of the two ionic



species. From these and other morphological features, it is inferred that



the 0+ ions are probably either accelerated together with the protons or



coexist with theni as a trapped population for an extended period. Either



of these hypotheses imply that the ionospheric contribution to the storm­


time ring current may be more significant than has previously been consid­


ered.



4) The total worldwide precipitated ion energy flux has been estimated



during the period of the study and compared to the ring-current energy con­


tent as measured by Dst. The comparison indicates that precipitation



was an importait loss mechanism for ring-current ions with energies less



than 12 keV during the December 17-18, 1971 magnetic storm.



ACKNOWLEDGMENTS



We would like-'to thank D. L. Carr for his assistance with the data



reduction and analysis. The satellite experiment was supported by the
 


Defense Nuclear Agency through the Office of Naval Resaarch. This anal-
 

ORIGINAL PAGE IS


OF POOR QUALM1T





-21­

ysis has been supported by the Air Force Office of Scientific Research under



Contract F4h620-73-C-0050, by HASA under tontraet NASw 277.7, and by the Lock­


heed Tndependent Research program.





-22-


REFEREUCES



Rkrko, W. W. 5 L. ;J. Cabill J,., and T. A. Fritz, Protons as the prime 

contributors to the storm time ring current, J. Geophys. Res., 1975 

(in press).. 

Brice, N., and C. .ucas, Interaction between-heavier ions and ring current



protons, J. Genphys. Res., 80, 936, 1975.



Cladis, J. B., Effect of magnetic field gradient on motion of ions reson­


ating with ion cyclotron waves, J. Geophys. Res., 78, 8129, 1973a.
 


-Cladis, J. B., Interpretation of energetic heavy ion fluxes observed during



the magnetic storm of December 17, 1971, Radio Science, 8, 1029,,1973b.



Davis, T. N., and R. Parthasarathy, The relationship between polar magnetic



activity PP and growth of the geomagnetic ring current, J. Geophys. Res



7(2, 5825, 1967:



Eather, R. F., and:R*. L. Carovillano, The ring current as the source region



for proton auroras., Cosmic Electrodynamics, 2, 105,.1971. 

Eather, R. H., and S.B. Mende, Airborne dbservatiorns oC auroral precipitatio 

-. patterns, J. Geophys. Res., 76, 1746, 1971. 

Fite, W. L., A. C. H. Smith, and R. F. Stebbings, Charge transfer in colli­

sions involving systematic and asymmetric resonance, Proc. Royal Sec.,



A268, 527, 1962.



Frank, L. A., On the extraterrestrial ring current during geomagnetic storms,



J..eophys. Res., 72, 3753, 1967.
 


Heikkila, W. J., and J. D. Winningham, Penetration of magnetosheath plasma



to low altitudes through the dayside magnetospheric cusps, J. Geophys.



Res., 76, 883, 1971.



OP POQ.RQPGV2J 



-23-


Hill, T. W., Origin of the plasma sheet, Revs. Geophys and Space Phys., 12,



379, -1974



Hultqvist, B.,The ring current and particle precipitation near the plasma­


pause, Ann. Geophys., 31, 111, 1975.



Hoffman, R. A., Particle and field observations from Explorer 45 during the



December 1971 magnetic storm period, J. Geophys. Res., 78, 4771, 1973.



Johnson, R: G., R. D. Sharp, and E. G.. Shelley, Composition of the hot



plasmas in the magnetosphere, Proceedings of the Nobel Symposium on



the Physics of the Hot Plasma in the Magnetosphere, Kiruna, Sweden,



April 2-4, 1975, Plenum Publ. Co., Ltd., 1975 (in press).



Kavanagh, L. DI, Jr., J. W.Freemen, Jr., and A. J. Chen, Plasma flow in



the magnetosphere, J. Geophys. Res., 73, 5511, 1968.
 


Kennel, C. F.- Consequences of a magnetospheric plasma, Revs. Geophys., 7



379,-19694



Lyons, L. R., and D. J. Williams, Storm associated variations of equatori­


ally mirroring ring current protons, 1-800 keV, at constant first adia­


batic invariant, Space Environment Laboratory, NOAA, Boulder, Colorado,



Preprint No. 187, 1975.



McIlwain, C. E., Plasma convection in the vicinity of the geosynchronous orbit,
 


in Earth's Magnetospheric Processes, B. M. McCormac, ed., D. Reidel Publ.



Co., Dordrecht, Holland, p. 268, 1972.



M~liwai~, C. E., Substorm injection boundaries, in Magnetospheric Physics,



B. M. McCormac, ed., D. Reidel Publ. Co., Dordrecht, Holland, p. 143,



1974.



Mizera, P. F., Observation of precipitating protons with ring current ener­


gies, J. Geophys. Res., 79, 581, 1974.
 




Sekopke, N., A general relationship between the energy Gf trapped particles



and the disturbance field near the earth,, J. Geophys. Res., 71, 3125,



1966.



R. G. Johnson, M. F. Shea, and G. B. Shook,,Satellite measure-
Sharp, R. D., 
 

ments of precipitation protons in the aurora, zone, J. Geophys. Res., 72,



227, 1967.



Sharp, R. D., and R. G. Johnson,'Some average properties of auroral electron 

precipitation,as determined by satellite observations, J. Geophys. Res., 

73, 969, 1968. 

Sharp', R. D., D. L..Carr, and R. G. Johnson, Satellite observations of the



average properties of auroral particle precipitation: latitudinal



variations, J.,Geophys. Res., 74, 4618, 1969.



Sharp, R. D., R. G. Johnson, and E. G. Shelley, Energetic 0+ ions in the



magnetosphere, J. Geophys. Res., 79, 1844, 1974.



Shelley, E. G., R. G. Johnson, and R. D. Sharp, Satellite observations of



energetic heavy ions during a geomagnetic storm, J. Geophys. Res., 77,



61o4, 1972,



Shelley, E. G., R. G. Johnson, and R. D. Sharp, Morphology of energetic 0



in the magnetosphere, in Magnetospheric Physics, B. M. McCormac,.ed.,



D. Reidel Publ. Co., Dordrecht, Holland, p. 135, 1974.



Shelley, E. G., R. D. Sharp, and R. G. Johnson, He+ + and H
+ flux measurements



in the dayside cusp: estimates of the convection electric field, J.



Geophys. Res., submitted 1975.



Smith, P. H., and R. A. Hoffman, Ring current particle distributions during th1



the magnetic storms of December 16-18, 1971, J. Geophys. Res., 788, 4731,



1973.



http:McCormac,.ed


-25-


Swisher, R. L.,and L. A. Frank, Lifetimes for low-energy protons in the outer



radiation zone, J. Geophys. Res., 73, 5665. 1968.



Thorne, R. M., Wave particle interactions in the magnetosphere and ionosphere,



Revs. Geophys. and Space Phys., 13, 291, 1975.



Williams, D. J.4 Hot plasma dynamics within geostationary altitudes, Proceed­


ings of the Nobel Symposium on the Physics of the Hot Plasma in the



Magnetosphere, Kiruna, Sweden, April 2-4, 1975, Plenum Publ. Co., Ltd.,



19:75 (in press).



Williams, D. J., and L. R. Lyons, The proton ring current and its interaction



with the plasmapause: storm recovery phase, J. Geophys. Res., 79, 4195,



1974a.



Williams, D. J., and L. R. Lyons, Further aspects of the proton ring current



interactions with the plasmapause: main and recovery phases, J. Geophys.



Res., 79, 4791, 1974b.





-26-

FIGURE CAPTIONS



Fig. 1. 	 Geomagnetic disturbance indices for the period under study.



Fig. 2. 	 Zone integral intensity parameters for precipitating ions with 

energies 0.7 ! E 12 keV. 

Fig. 3. 	 Average energies of the precipitating ions in the energy range 

of the experiment. 

Fig. 4. 	 Alterhative definition of average ion energy (see text for de­


tails).



Fig. 5. 	 Locations of the zones of precipitation for the 0+ and H ions.



+ 
Fig. 6. 	 Nightside 0 intensity parameter compared with lst.



Fig. 7. 	 Nigbtside 0intensity parameter compared with AE. 

Fig. 8. 	 Total worldwide precipitated energy flux of H+ and 0 ions in



the energy range of the experiment. The asterisks indicate



lower limits determined from the nightside observations alone



at times when the dayside measurements were not available.
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THE MORPHOLOGY OF ENERGETIC 0+ IONS DURING 
TWO MAGNETIC .STORMS.: LATITUDINAL YVABIATIONS 

R. D.' Sharp, R. G. Johnson and E. G. Shelley



ABSTRACT



This is the second of two papers describing the results of a study of



precipitating 0 and H+ ions with energies between 0.7 and 12 keV during



the magnetic storms of December 16 and 17, 1971. This paper emphasizes



the latitudinal'ariations of the properties of the precipitating ions



and discusses some characteristics of the 0 energy spectrums. Some of



the principal findings are: the 0+ energy spectrums were generally quite



structured with one or more peaks being frequently observed; 0+ energy



spectrums whic-were still rising at 12 keV were not uncommon, particu­


larly at high latitudes; several examples of a spectral peak moving sys­


tematically to higher energy with increasing latitude were found; a sig­


nificant hardening of the 0 spectrum with increasing latitude was ob­

-\



served during the December 17 storm as well as a significant hardening



with decreasing latitude at the low-latitude edge of the precipitation



region on the nightside; precipitating 0 ions at L _ 2 were found in



association with a large main phase decrease in Dst; a small but statis­


tically significant difference in average energies between protons and 0+



ions in the range 0.7 to 12 keV was observed with the protons being some­


what harder.





-3-


INTRODUCTION



The existence of a previously unknown mechanism responsible for the



acceleration of cold ionospheric plasma up to energies of 12 keV was esta­


blished by Shelley et al. [1972] with the discovery of large fluxes of



energetic 0 ions in the magnetosphere. In order to search for clues to



the nature of this mechanism, a detailed study was undertaken of the prop­


erties of the 0+ and the accompanying H ions during the December 16-18,



1971 period which included two principal magnetic storms. It is recog­


nized, of course,.that if the observed ions were being precipitated from



.trapped population, the observed characteristics might also reflect



ion transport and loss processes which have occurred.



This is the second of two papers describing the results of the
 


study. Paper I [Sharp et al., 1975] discussed the temporal variations



of parameters characterizing the intensity, spectral hardness, and loca­


tion.of the zones of precipitation of the ions. This paper will empha­


size the latitudinal variations in these parameters and will also des­


cribe some typical characteristics of the 0 energy spectrums and give



the results of an intercomparison of the 0+ and H+ average energies



during each storm;
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ANALYSIS AND RESULTS



As a first step in a search for systematic latitudinal effects in


+ 

the 0 data, plots of the spectrums and average ion energies as a unc­


tion of latitude were examined for selected individual passes on the
 


northern hemisphere day (s 1500 LT),and night (a 0300 LT) crossings of



the precipitation.region. Particular attention was given to the passes



showing the initial 0 flux increase in each storm '(the "initial in­


crease-passesY) with the hope that these passes might exhibit some sig­


nature of the source before drift effects in a possible trapped popula­


tion could obscure the systematics.



In both storms, the 0 data from the initial increase passes on 

the nightside (Re- olution 864 at 2246 UT on December 16 and Revolution 

875 at 1714 UT on'December 17--see Figure 2 of Paper I) consisted prin­

cipally of structured spectrums which contained one or more peaks. On 

Revolution 864-the nightside data at the highest latitude where there was 

significant flux intensity showed a spectrum which was .still rising at the 

highest energy channel of the spectrometer implying that the spectral 

peak was above 12 keV. This spectrum is shown in Figure 1. It is a 

61.4-second average of the data from ten instrument cycles taken over 

.
the invariant latitude range from about 700 to 730



OF PoR QU 



-5-

In the December 17 storm the initial increase pass showed peaked energy



spectrums over a wide latitudinal range with the peak systematically moving



to higher energies with increasing latitude. Spectrums formed from the.61.4­


second' (10-cycle) averages of the data on this pass are shown in Figure 2



for those times where the flux was sufficiently intense that the spectrums



were statistically significant.



Two-degree'latitudinal averages of the average 0+ energy in the range



0.7 E 12 keV for both these passes are shown in Figure 3. The average



energy was defined as the ratio of the integral energy flux averaged over



the two-degree interval to the integral number flux averaged over the same



interval. The average energy was considered significant only for those two­


degree intervals where the average integral number flux was greater than



twice its standard deviation as determined from the counting statistics.



The average energies for those intervals where the flux intensity was



weaker than this-significance threshold have been deleted. One sees in



Figure 3 that on-both these passes the 0 ions showed a significant harden­


ing at both the high and low latitude ends 6f the region of principal pre­


cipitation. On Revolution 875 where there was a more latitudinally extended



precipitation region, a spectral hardening with increasing latitude occurred



over most of that region, as was also indicated by the data shown in Figure 2.



An alternative definition of the average energy which will be discussed below



gave essentially the same results as those illustrated in Figure 3.



In both storms, the initial increase passes on the dayside (at 0159 UT



on December 17 and 1837 UT on December 17) also contained examples of spec­


trums which were still rising at 12 keV. There were no obvious systematic





latitudinal effects in these dayside passes, but the fluxes were too weak



or occurred over too narrow a latitudinal interval to be able to make a



definitive determination of the existence of such effects.
 


The examination of the 61.4-second spectral averages from other selected



passes in both storms showed that the spectrums were generally quite struc­


tured in the range of the measurements with one or more peaks typically being



observed. Spectrums with a peak at 12 keV or higher, similar to the one shown



in Figure 1 were not uncommon, particularly at high latitudes. On the night­


side, several examples were found similar to Figure 2 with the spectral peak



moving to higher energy with increasing latitude.



In the December 17 storm on both the day and night sides, plots of the


+ 

average 0 energy for the individual passes showed a systematic hardening at



high latitudes.which was readily apparent in most of the passes where the



flux was sufficiently intense over a wide enough interval that a trend could



beldiscerned. Some additional examples of nightside 0+ spectrums in this



period were presinted in Figure 7 of'Shelley et al. [1972]. On the basis of



the present more extensive analysis we can now state that the trend exhibited



by those spectrums was indeed typical of the December 17 storm.



In the December 16 storm there were no systematic latitudinal effects



obvious in the 0+ spectral data from the individual passes. The fluxes were



typically too weak, however, to be able to make a definitive determination of



the existence of such effects.
 


In order to search for systematic latitudinal effects with increased



statistical precisiont, all of the data were averaged in two-degree intervals



°

of invariant latitude over the range 44 A 800 for both storms. Aver­
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ages of the integral energy flux, the integral number flax, and the average



+
ion energy were computed for both protons and ions for all the day and



nightside passes over the northern hemisphere precipitation zone during



which data were acquired.



As discussed in Paper I, two alternative definitions of the average 

energy were used in order to insure that any observed trends were not the 

result of a specific weighting technique. The average energy as defined 

above in connection with Figure 3 is referred to as E*. This definition 

tends to weight most heavily the intens& precipitation regions within each 

2 interval. An alternative quantity E was formed from the average of all 

the significant individual six-second spectrums within the.two-degree inter­

val, with each spectrum being weighted equally. The significance criterion 

on the individual spectrum was that the integral number flux had to be great­

er than twice its standard deviation as determined from the counting statis­


tics. In' plots of E the error bars represent the standard deviations of the



means of the individual six-second average energies while in plots of.E* the



error bars represent the standard deviation determined from the counting



statistics.



Plots of the grand averages of the two-degree latitudinal averages of



the various quantities for the period of each of the two storms are shown



in Figures 4 through 6. The December 16 storm averages contain data from



1912 UT on December 16 to 1354 UT on December 17. The December 17 storm
 


averages contain data from 1521 UT on December 17 to 2326 UT on December 18



(see Figure 2 of Paper I).





The plots of the latitudinal dependence of the integral energy flux



presented in Figure )I show that the 0+ precipitation region is dis­


placed equatorward from the H+ region on the day and nightsides during



both storms. On the nightside the intensities of the two species are com­


parable while on.the dayside the H+ intensity is dominant.. It is of inter­


est to note that there were substantial latitudinal intervals during both



storms where the precipitating ion flux in the energy range of the meas­


uiements was almost entirely 0f.



The average energy results are shown in Figures 5 and 6. The numbers



above the E points indicate the number of individual six-second average



energies contained in the twb-degree interval. Examining first the results



for the '0+ 
 ions, .one sees that for the December 17 storm; there was a clear­


ly significant hardening with increasing latitude on both the day and night­


sides except for the significant hardening with decreasing latitude on the



nightside just at the low-latitude edge as was observed in the initial increase



pass. For the December .16 storm the same trends are indicated by the nightside



data but are not evident in the dayside results. The average energies of the



protons do not show-comparable systematic changes with invariant latitude. How­


ever, a general spectral softening of the protons is evident in the dayside data



0 0° .
above about 68 and in the nightside data above about 75 From satellite



measurements of the proton (total ion) fluxes at 1 keV and 6 keV, Hultqvist



119711] has reported a spectral softening of protons with increasing latitude



at all local times, except when the fluxes are field-aligned. A direct com­


parison with the present results is not possible since the latitudinal and



local time variations reported by Hultqvist have thus far been presented



only for selected satellite passes. No significant indication is seen of
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the softening of the proton spectrum at the low-latitude edge of the preci­


pitation region on the nightside as was observed by Burch [1973] during the



initial phase of'the May 7, 1968 storm. Also, there is no significant indi­


cation at these-lower energies of the dramatic hardening at low latitudes



reported for the higher energy component of the proton precipitation on the



nightside by Sharp and Johnson [1968], Burch [19733, and Mizera [1974].



In order to present a synoptic picture of the development of the two



storms, contour plots of the integral- energy flux intensity versus invariant
 


latitude and universal time were constructed from the 20 latitudinally aver­


aged values. These contour plots are shown in Figures 7 through 10. Data



gaps are indicated by hatched strips. In examining the 0+ contours, one



sees that for the December 17 storm the precipitation was initiated over a



wide latitudinal'front and tended to persist longest at the high latitudes.
 


In this storm, which had a large main phase Dst decrease (see Figure 1 in
 


Paper I) there were substantial 0+ fluxes deep within the magnetosphere ex­


tending below L = 2, while in the December 16 storm which had only a small 

main phase, the 0 fluxes were restricted to the high latitudes. A similar



but less pronounced characteristic was exhibited by the nightside H+ . The



H+ fluxes in general seemed less strongly modulated by the various phases



of the storm than did the 0+.. They extended to high latitudes (AL> 800).



with substantial intensities. This was perhaps an unusual feature of this



specRfic storm. Anger et al. [1974] reported abundant polar cap auroral



activity for an extended period during and after this storm.



On the dayside, there were occasional indications of two proton "zones"



as were reported by Sharp et al. [1967] and Frank and Ackerson [1972] during
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periods of low mignetib activity; however, during most of the period of this
 


study the dayside proton precipitation was contained within a single zone as



has been the case during other active periods [Sharp et al., 1969].



As discussed in Paper I, the initial 0+ increase on the nightside occurred



prior to that on 'thedayside and was delayed from the initial H increase in



both storms. The latitudinal dependences of these leads and lags are shown



explicitly on the contour plots.



We have seen in Figures 5 and 6 that the average energies of the two 

ion species in the range of these measurements were about equal. In order 

to determine if there was a statistically significant difference between 

them we averaged over latitude for each species to compute the overall aver­

age energy for each storm. These values are shown in Table I where the 

quantities and uncertainties and the time periods of the two storms have 

the same definitions as in Figure's 5 and 6. An examiiiation of Table I 

shows that there is indeed a significant difference between the two species 

with the 0+ having a lower -average energy. During the December 17 storm 

the nightside averages for both 0 and protons were significantly harder 

than those on the dayside. One should treat these results with caution 

since the averages were formed over only a limited portion of the distri­

bution function (0.7 g E 12 keV). As indicated by the data in Figure 1 

for 0+ and as is-'known from other work for H [Eather and Carovillano, 19713, 

6 substantial fraction of the energy distribution of the precipitating aur­

oral ions can be outside the range of this experiment. 



SUMMARY



The spectral characteristics and latitudinal variations of the prop­


erties of the precipitating ions in the energy.range 0.7 to 12 keV have



been investigated for two magnetic storms. Some of the principal findings



are:


+ 

1. The 0 energy spectrums were generally quite structured with one



or more peaks be.ing frequently observed.
 


2. 0 energy spectrums which were still .rising at 12 keV were not



uncommon, particularly at high latitudes.
 


3. Several examples of a spectral peak moving systematically to



higher energy with increasing latitude were found.



4. A significant hardening of the 0+ spectrum with increasing lati­


tude was observed at the higher latitudes during the December 17 storm



as well as a significant hardening with decreasing latitude at the low­


latitude edge of the precipitation region on the nightside.



5. Precipitating 0 ions at L s 2 were found in association with a



large main phase decrease in Dst.



6. A small but statistically significant difference in average



energies between protons and 0 ions in the range 0.7 to 12 keV was ob­


served with the protons being somewhat harder.
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Table I 

OVERALL AVERAGE ENERGIES IN THE RANGE 0.7 E < 12 keV 

Night Day 

E* (keyV) (key) E* (key) (lieV) 

Dec. 16 Storm 

H+ 5.40 + 0.05 5.18 + 0.08 3.35 + 0.05 4.98 + 0.15 

0 + 4.19 + 0.07 3.95 + o.11 6.72 + 1.4 4.41 + 0.19 

Dec. 17 Storm 

H+ 5.84 + o.o4 5.59 + o.o6 3.56 + 0.03 4.38 + 0.09 

0+ 4.31 + o.o4 4.82 + 0.08 3.23 + 0.08 3.66 + O.10 



FIGURE CAPTIONS 

Fig. 1. Energy spectrum of 0 ions averaged over a 61.4-second interval 

at 2245 UT on Dec. 16, 1971. The dotted line indicates a flux 

level corresponding to one standard deviation above zero. Points 

with values less than this level have been deleted. 

Fig. 2. 61.4-second averages of the 0+ energy spectrums during the 

1712 to 1718 UT on Dec. 17, 1971. 

period 

Fig. 3. Average 0+ energy in 20 latitudinal intervals during the satellite 

pass showing the initial 0+ flux increase in each storm. The upper 

figure shows data from 2244 to 2252 UT on Dec. 16, 1971. The lower 

figure shows data from 1713 to 1720 UT on Dec. 17, 1971. 

Fig, 4. Precipitating energy flux at 0300 local time (nightside) and at 

1500 local time (dayside) averaged in two-degree latitudinal 

intervals over each of the two storms. The plots onthe left con­

tain data from 1912 UT on Dec. 16 to 1354 UT on Dec. 17. The 

plots on the right contain data from 1521 UT on Dec. 17 to 2326 

UT on Dec. 18, 1971. 

Fig. 5. Average ion energy defined in two different ways (see text) at 

0300 local time. 



-17-

Fig. 6. Average ion energy defined in two different ways (see text) at



1500 local time.



Fig. 7. Contour-plot of precipitating 0 
 

Fig. 7. Contour plot of precipitating 0+ 
 

Fig. 9. Contour-plot of precipitating H+ 

Fig. 10. Contour plot of precipitating H+



intensity at P& 

intensity at 
 

intensity at 

intensity at 
 

0300 local time. 

1500 local time.



0300 local time. 

1500 local time.
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COMPOSITION OF THE HOT PLASMAS IN,TE MAGNETOSPHERE
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IfNRODUCTION



The investigation of the mass and charge composition of the


energetic (keV) plasmas in the earth's magnetosphere represents one


of the most important approaches to establishing the -origin of the
 

particles in the plasmas and to understanding the complex electro­

dynamic processes occurring within or at the boundaries-of the mag­
netosphere. -The processes responsible for the injection, energize­
tion, transport, and loss of the plasma components are still largely 
unidentified and-some of the processes are likely to be dependent 
on the mass and/or charge of the components. Thus, measurements 
of the differences in energy spectra, spatial distiibutions, and 
temporal behavior of the various ionic components may provide the 
key to ide'ntifying and characterizing the important processes. In 
this paper we shall limit our discussion of the composition of the 
energetic' particles in the magnetosphere primarily to particle ener­
gies less than 50 keV. The composition measurements at higher ener­

gies and their importance in understanding the magnetospheric pro­

cesses have recently been reviewed by West (1975) and Krimigis


(1973).



The most plausible candidates for the source of the ionic com­

ponents of the hot magnetospheric plasma are the solar wind (Meinel,


-1951; Axford, 1970) and the ionosphere (Van Allen, 1962; Axford,'


.1970). Axford (1969, 1970) has pointed out that the measurements of


the He/He':abundance ratio and the charge state of the energetic


helium ions within-the magnetosphere could be used to determine the



4
ori in of the ions. In the ionosphere the He3 /He ratio is about


10 (Axford', 1969), whereas in the solar wind the ratio is in the
 

-
-range 0 3 to iO 4 (Bane et al., 1968). Helium is primarily doubly
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ionized in'the solar wind and singly ionized in the ionosphere.


4
The He3 /He ratio has been measured in the auroral zone by Buhler



at al. (1972) by exposing foils to the auroral ions in two rocket


experiments and subsequently mass analyzing the collected ions in


the laboratory. They conclude that the ions were of solar wind


origin. Other abundance ratios within the magnetosphere,- such as


0+/H+ (Shelley et al., 1972) and He +/H+ (Whalen and McDiarmid, 1972)
 

at lower particl energies and He+IH+ (Krimigis, 1973), and e10+


(Mogro-Compero, 1972) at higher particle energies, have also been


used to infer the origin of the particles.



Processes responsible for the entry of particles into the upper
 

magnetosphere from the ionosphere or from the solar wind may also be


dependent on the mass or charge of the particles. Sblar wind access


to the magnetosphere through diffusive processes (Axford and Hines,


1961; Axford, 1970; Tverskoy, 1969) which depend on electric and


magnetic field turbulence in the region of the magnetopause, may be


dependent or'the mass and charge of the particles, whereas access


by merging of the geomagnetic and interplanetary fields on the day­

side would at least initially provide access for all the solar wind


,particles. Energetic ions in the magnetosphere resulting from field­

aligned flow of ionospheric ions into the magnetosphere as a result


of field-aligned electric fields (Whalen et al., 1974) would be ex­

pected to reflect the composition of the ionosphere at the altitude,


latitude, local time, etc., where the electric'field process was


operative, whereas population of the magnetospheric tail region by


polar wind ions and subsequent convection deeper into the magneto­

sphere (Axford,'1970) would reflect the composition of the polar


wind-which contains H4 and He+,ions (Hoffman et al., 1974). Shelley


et al. (1974b),have used satellite measurements of the H+' and He++
 


characteristics to-investigate the convection,electric field in the


dayside cusp region at low altitudes.



The processes responsible for the energization, transport, and


loss of energetic magnetospheric plasmas may often be concurrent and


strongly coupled. The ability to investigate these processes as a


function of the mass and charge of the plasma components whould be


helpful in'identifying the conditions, if any, inder which the pro­

cesses are weakly coupled and in investigating the processes separ­

ately or collectively. Cornwall (1972) has shown that a Qomparison


of the,radial diffusion rates of helium ions and protons in the mag­

netosphere would be a sensitive test of the diffusion process assumed.



In comparison to the extensive observations that are available


on the electron component of the hot magnetospheric plasmas and on


the total of the ionic component (usually assumed to be protons),


observations which can identify the ionic species are scarce and


are limited in scope. This situation has resulted,from the relative


complexity of the instrumentation required to make unambiguous meas­

urements of the separate ionic components, particularly those of
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low abundance. Until te recent observations of the relatively in­

tense 0+ component in the .hot plasma during magnetic storms (Shelley


-et al.,:1972; 1974a; Sharp et al., 1974a), the principal emphasis


at these lower energies has been on measurements of the helium ions


(Reasoner, 1973). To date the only ionic species in the hot (<.50


keV) magnetosphericplasmas which have been identified and reported


are 5', He+,.He", and 0+. The 0+ identification is made in part 
on an ionospheric abudnance argument since the mass-per-unit-charge


determination of 16 ± 2 AMU cannot rule out a contribution fromN +



ions (Sheliey et al., 1972).



In view of the evidence that some of the components of the hot


magnetospheric plasmas are of ionospheric origin (Shelley et al.,
 

1972, 1974c; Sharp et al., 1974a; Johnson et al., 1974).,,the recent


observations of Hoffman et al. (1974), on the cold plasma composi­

tion near 1400 km during the large magnetic storm on 4 August 1972,


should be noted. At magnetic latitudes above 550, they report un­

usually high abundances of 0+, N+, OV,a 1+, and NO+
. The N+ ion
 
became the dominant s ecies and the Oa 1, and No+ concentration


were near ICP ions/cm , which is comparable to the 0+ concentrations


during less disturbed times. Thus, a wide range of masses of iono­

spheric ions At relatively high altitudes are at times available for


injection into the upper magnetosphere, and the need for higher mass


resolution as well as higher detection sensitivities is indicated


for future energetic ion mass spectrometer measurements in the mag­

netosphere.



OBSERVATIONS



Protons



It is well established that-protons are a major component of


the hot magnetospheric plasma. This has been determined from ground­

based observations of the Doppler-shifted hydrogen line emissions in


auroral optical emission,spectra (Meinel, 1951), from quantitative


comparisons of ground-based measurements of the auroral hydrogen
 

emissions with satellite measurements of the precipitating ionic


component (without mass discrimination) (Romick and Sharp, 1967;


Reasoner et al., 1968), and from direct measurements of the protons


with energetic ion mass spectrometers on rockets (Whalen et al.,


1971) and on satellites (Shelley et al., 1972; Sharp et al., 1974a).


Whether protons are the dominant ionic component of the hot magneto­

spheric plasma at all times and all locations in the magnetosphere


is now subject to question as a result of the satellite observations


by Shelley et al. (1972) that the relatively large precipitating


fluxes of 0+ ions in the energy range 0.7 to 12 keV sometimes ex­

ceeded the precipitating fluxes of protons in the same energy range


during the 17 December 1971 magnetic storm. These observations are 
discussed in further detail in a later section of this paper.
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The polar wind is a flow of ionospheric ions into the tail re­


gion of the magnetosphere and satellite measurements of the polar


wind ions have been made using ion mass spectrometers (Hoffman at



al., 1974).' Protons, and frequently He+ ions, are observed stream­


ing outward in the high-latitude regions at velocities of several


kilometers per second as determined from phase shifts in the roll



modulation maximums of the sensor response between light and heavy


ion species. Axford (1970) has shown that the polar wind flux is


more than sufficient to provide the auroral proton flux if a mag­

netospheric process were operating to convect the polar wind ions


from the tail region deeper into the magnetosphere and to energize


them.



He Ions



Observations of precipitating He+ ions with energies up to 1.4


keV have been reported by Johnson et al. (1974) from measurements


with energetic ion mass spectrometers on two polar-orbiting satel­

lites at altitudes of about 500 and 800 km. The He+ ions, along


with protons and 0+ ions were observed on two occasions precipitat­

ing into the auroral regions in the morning sector. No He++ was


observed on these occasions. The spatial distributions and rela­

tive intensities for one of the cases are shown in Figure I (from


Johnson et al., 1974). The peak He+ ion intensity was 0.03 erg/


cn?-sec-sr and occurred at L = 7 in the same region as significant


fluxes of H+ and 0+, The energy distributions of the 0+ and He+



for this case are shown in Figure 2. It was shown from these data


that the 0+ and He+ ions had similar velocity distributions which


suggests that the injection and energization mechanism may impart


equal velocity to both ion species. This conclusion is highly tent­

ative since it is based on only one event. From limits on the He++



flux and considerations of the charge exchange processes for He
++



in the magnetosphere, the authors also conclude that the He+ ions


are most probably of ionospheric origin, As seen in Figure 1, the


observations of protons in the same region as the 0+ and He+ ions


suggests that they might also be of ionospheric origin.



He++ 
 Ions



Rocket measurements in the auroral zone of helium ions in the


keV range have recently been reviewed in detail by Reasoner (1973)


and will be discussed only briefly here. The most recent and most


comprehensive rocket experiment to measure ion composition was that
 

of Whalen and'McDiarmid (1972) in which an instrument capable of


detecting i+ , He+, and He++ with energies between 2 and 20 ReV was


flown to an altitude of about 800 km during an auroral breakup. On


the basis of the charge state of the observed helium ions and the


measured He++/H+ ratios, they concluded that the origin of the ions
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was the solar wind rather than the ionosphere. On the basis of He++
 


measurements at three energies, they also concluded that the He++


and H+ spectrums were peaked at the same energy per unit charge.


From this they inferred that the solar wind ions had undergone an


electrostatic acceleration of about 6 kV. 

+
Satellite observations of He4 have been used to investigate


the convection electric field in the low-altitude region of the day­

side cusp (Shelley et al., 1971b). The relative positions of the


low-latitude cutoffs of the precipitating ion fluxes were found to


be approximately inversely proportional to the ion velocity and in­

dependent of the ion species. The observations were consistent


with a dawn-to-dusk electric field of about 50 mV/meter.



Energetic He++ ions have been observed from satellite measure­

ments precipitating into the nightside auroral region during a mag­

netic storm (Sharp et al., 1974b). The precipitation was observed


over a wide latitudinal region from L = 3.8 to L = 7.5 and the aver­




51 COMPOSITION OF THE HOT PLASMAS 

aged He++/H+ ratio varied from 5.6 ± 0.7% at I = 7.3 to 2.9%:h 0.5% 
at L = 5.0. The velocity distributions of the H+ and He++ were sur­

prisingly similar as seen in Figure 3 (from Sharp et al., 1974b).


From considerations of the observed He ratio which is typical


of the solar wind and from the similarity of the velocity distribu­

tions, it was concluded that the He++ and H+ originated in the solar


wind and were acted upon within the magnetosphere by adiabatic pro­

cesses and that no substantial electrostatic acceleration occurred.


It should be noted that in this case the inferred acceleration pro­

cess is different from the electrostatic acceleration process in­

ferred from the rocket measurements of Whalen and McDiarmid (1972).


Of course, multiple acceleration processes within the magnetosphere


are not excluded.



0+ Ions



0+ Ions During Substorms. The precipitating energetic 0+ ions


during the substorms on 12 and 13 December 1971 have been investi­
gated using data acquired with the energetic ion mass spectrometer


aboard the polar-orbiting satellite 1971-089A at an altitude of


about 800 km.: The instrument was oriented at 550 to the zenith dur­

ing .all the measurements and thus sampled only the precipitating ion


fluxes at the high latitudes of the 0 data discussed here. It cov­

ered the energy range in nine steps from 0.7 to 12 keV and the mass­

per-unit-charge range from 1 to 32 AMU (Shelley et al., 1972).



The magnetic activity on 12 and 13 December 1971 is indicated


by the bottom two curves in Figure 4. Prior to 1500 hours on 12


December, Kp was less than 2 and AE'was less than 100 gammas. Two


fairly well isolated substorms are indicated by the AE index. The


second of these, beginning at about 2200 hours, has been investi­

gated by Williams et al. (1974) using Explorer 45 data acquired in


the pre-midnight local time sector. The second substorm was wide­

spread in local time and was observed at Dixon Island (0320 IT) in


the local time sector of the satellite measurements. Investigation


of the details of the first substorm are not yet complete.
 


The peak intensities of the 0+ ions are shown by the top curve


in Figure 4.- During the quiet magnetic period prior to 1500 on 12


December; the 0+ intensities were near or at the limit of the sensi­

tivity of the instrument. Beginning at 1600 hours, the 0+ ions are


observed in the local morning sector during each available satellite


pass for a period of 12 hours and the general correlation with the


substorm activity as indicated by the AE index is quite evident.


Larger intensities were observed in the second substorm, but the


peak fluxes of the first storm may have been missed because of the


limited time coverage provided by the satellite measurement. The


spread in local time of the 0+ observations was from 0200 to 0500


hours.
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The mean width of the regions of precipitation, defined by the 
10% and 90% points of the integral of the number flux as the satel­
lite traverses the region of 0+ precipitation, was found to be 2.5 
degrees in magnetic latitude. The location of the mean position of 
the 0+ region, defined by the 50% point of the above integral is 
compared in Figure 5 with the location of the lower-latitude edge 
of the proton flux measured with the same instrument over the same 
energy range, 0.7 to 12 keV. The low-latitude edge of the protons 
is generally a'distinctive feature of the data and is defined in 
this study as the lowest latitude at which 50% of the peak proton 
number flux in the plasma sheet particle region is observed. A 
strong correlation between these positions is seen in Figure 5, and 
the mean position of the 0+ fluxes is generally equatorwdrd of the 
proton edge. 'During these substorms, the mean position of the 0+ 
fluxes was also always inside the "cut-off" trapping boundary for 
energetic electrons as defined by Romick et al. (1974) for electrons 
with energies greater than 130 keV.



From this study and from'synoptic studies of other substorms


with less complete data coverage, it is concluded that precipitat­

ing 0+ ions are a common feature of magnetic substorms.
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The M6rphology of Precipitating O+ Ions in a Magnetic Storm.
 

In order to search for clues to the nature of the processes which


accelerate'the 0+ ions from the cold ionospheric plasma and to de­

fine as closely as possible the morphological parameters which the


theories will have to explain, a detailed study of the morphology


of the 0+ ions during the 17-18 December 1971 magnetic storm is


being conducted and some preliminary results of that study are pre­

sently available. This was a rather classic magnetic storm with an


sac at 1418 UT on 17 December and a large main phase. The peak DST


was 171y and" the storm lasted until about 2300 UT on the 18th. The


satellite was in the 0300/1500 LT plane during the period of inter­

est and -a rather high fraction of data coverage was-being obtained,


which provided about as good temporal resolution as can be achieved


for studies such as this with a polar-orbiting satellite. Figure 6


from Shelley et al. (1972) shows the data from 6 consecutive satel­

lite traversdls of the nightside (0300 hours LT) auroral and subaur­

oral regions during the main phase of the storm. Data for both le
 

ions (solid curve and closed circles) and 0+ ions (dashed curve and


open circles) are illustrated. The ordinate is the-total number of


counts in the mass-per-unit-charge peak for the appropriate species


summed over all nine of the energies sampled in a complete 6-second


cycle of the-experiment. It is approximately proportional to the
 

integral number flux in the 0.7 ! E 12 keV range.



The principal features of note in Figure 6 are: 1) the peak
 

0+ fluxes are comparable to or greater than those of the protons in


the energy range measured; 2) the 0+ ions are observed over a wide


latitude range implying either an extended source or precipitation 
from a trapped population undergoing substantial radial diffusion; 
3) the fluxes of both species are highly sttuctured with respect to 
"latitude and quite variable from one pass to the next with no obvi­
ous specific -conjugate structure; and 4) the O+ ions are spatially


displaced with respect to the protons, i.e., they generally extend


equatorward of the protons and the protons generally extend pole­

ward of the 0+ ions.



For thedetailed morphological study mentioned above, we have


formulated several different parameters from data such as is illus­

trated in Figure 6"and have intercompared these parameters with each


other as a function of magnetic latitude and time during the course


of the storm, and with various indices of geomagnetic activity. For


an intensity parameter characteristic of an entire satellite traver­

sal of the auroral and subauroral regions, we computed the integral


energy flux of the 0+ ions over the latitudinal range 449-< AL < 800.


This quantity is illustrated in Figure 7 for the northern hemisphere


data only. For comparison we have plotted the DST index on the same


logarithmic scale, but inverted so that increasing ring-current in­

tensity corresponds to an increasing value of the ordinate. One


sees that there is a remarkable quantitative correlation between


these quantities over the period illustrated. The initial rise
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after the sso 	 at 1418 is about the same in both the timing and rela­
tive amplitudes. The 0+ intensities appear to have a substantially


shorter decay 	 time than the ring current. This trend is also ex­

hibited by the earlier data from remnants of the 16 December storm


(ssc at 1904 UT) which was still in progress at the onset of the


17 December event. The close correspondence of the two illustrated
 

quantities can be interpreted in several ways. It can be considered


to support the hypothesis of Cladis (1973a,b) that the energy for


the acceleration of the 0+ ions is derived from the ring-current


particles. Alternatively, one could formulate a model in which a


significant fraction of the ring current itself is in the form of 0+
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ions and the time dependence of the observed precipitation reflects


the varying flux intensity of the parent trapped population.



Figure 8 from Shelley et al. (1972) shows some representative


energy spectrums from one of the passes illustrated in Figure 6


(Revolution 876 - South). The data are averaged over the time in­

tervals indicated. The error bars represent counting statistics


only. The spectrums vary from a monotonically steeply falling one


at low latitudes to a hard spectrum with a peak at about 4 keV at


high latitudes. Peaks in the few-keV range are a common feature of 
the 0+ spectrums which have been examined up to this time and, as 
will be seen below, the general trend of a spectral hardening with 
increasing latitude has been found to be typical for the storm in 
question. 

Data Crom another nightside pass at 1714 UT illustrating this


trend are shown in Figure 9. This pass marked the initial flux in­
crease after the ssc and thus might be expected to have a spectral 
signature most representative of the injection mechanism before 
distortions due to drift effects could obscure any discernible 
trends. For this pass the average energy of the 0+ ions in the 0.7 

E < 12 keY range has been computed in 2 latitudinal intervals. 
The error bars represent counting statistics only. The average en­
ergy was considered significant and formulated only in latitudinal 
intervals in which the average energy flux was ld0 keV/cm2 -sec-sr. 
It was computed by taking the ratio of the energy flux to the num­
ber flux, each of which had been averaged over the ;9 latitudinal 
interval, and thus tends to be weighted by the more intense events 
within the interval. An alternative computation was performed by 
computing the average energy from those individual (six-second) 
spectral measurements that were considered statistically signifi­
cant and then taking the average value of these quantities over the 
e interval, weighting each measurement equally. The significance 
criterion chosen was that the integral number flux in the individual 
spectrum had to be ; twice its standard deviation. The latitudinal 
dependence of this parameter computed from the northern nightside 
data throughout the time period 0532 UT on 17 December to 1146 UT 
on 18 December (cf Figure 7) is given in Figure 2O. The error bars 
in this figure represent the standard deviations of the means of


these individual average energies and not counting statistics. A


similar plot prepared from the average energy values computed accord­

ing to the definition utilized in Figure 9 give similar results, in­

dicating that the observed trend is not the result of biasing due to


a specific weighting technique. Thus, we see that the rather sur­

prising trend of a spectral hardening with increasing latitude is


characteristic of this entire period. Radial diffusion processes.


such as discussed by Nakada et al. (1965) would be expected to pro­

duce an opposite effect. Hopefully, this will be a useful morpho­

logical feature with which to test specific theoretical models.
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Figure9. 	 Latitudinal variation of the average energy of 0+ ions


on a single pass.



The latitudinal variations of the O + and H+ precipitation pat­
terns during 'this period also exhibit some interesting characteris-

QUU 
tics. In Figure 11, the center of the observed precipitation region, 

44, measured by the 50% point in the zone integral intensity parameter 
described in connection with Figure 7 is indicated with a circle 
for e+ ions and a square for 0+ ions. The horizontal bars represent 
the extent of the precipitation region measured by the 10% and 90%


points in this same parameter. In several instances during this


period, the,'proton precipitation extended well into the polar ca.
o


The satellite orbit on some passes did not extend higher than 80g
 

invariant latitude so in order to form a uniform data base, we trunc­

ated the zone integrals at that latitude. Thus, for those points in


Figure 4 irk w~ih the upper bar is in the vicinity of 7EP-80P , that 
point does not in general mark the extreme upper latitude of the 
precipitation region. Despite this distortion, we see a remarkable 
tracking of the precipitation zones of the two ions with a latitud­

inal displacement of about 50 as suggested by the data in Figure 6.


This detailed tracking illustrates the intimate relationship between
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the 0+ ions and the magnetospheric proton population in the energy


range measured.



The overall latitudinal dependence of the precipitation intens­

ity during this entire period (0532 UT on 17 December to 146 UT on


18 December)-is shown in Figure 12. We see most clearly in this


figure how the 0 ions provide the dominant part of the precipitat­

ing energy flux in this energy range over a substantial latitudinal


interval. The latitudinal displacement of the two zones is evident


and as indicated above one sees that the high-altitude extent of


the 1l' precipitation region extends into the polar cap (i.e., AL > 
800), while the 0+ is more nearly confined to the auroral zone and 
the subauroral regions of the trapped outer radiation belt particles. 

Synoptic Study of 0+ in Magnetic Storms. In order to investi­

gate the local time dependence of the 0+ precipitation, a synoptic


study was made of the data from one year's operation of the energetic


(0.7 to 12 keV) ion mass spectrometer aboard the 1971-089A satellite


(Shelley et al., 1974a). During this period the satellite precessed
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through the entire range of local times. Eleven of the principal



magnetic storms in the period from December 1971 to November 1972


were utilized. Data from three orbits were examined for each storm,


selected from the beginning, middle, and end of the storm being


studied. G+ ions were observed precipitating into the atmosphere


during every storm.
 


Figure 13 shows the latitudinal extent of the 0+ precipitation


regions. The dot indicates the position of the maximum flux intens­

ity on each pass and the lines indicate the portion of the pass dur­

ing which the flux was greater than the spectrometer sensitivity


threshold of 2 x l ions/cr2 -sec-sr.
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The peak flux intensities are shown in Figure 14. The solid
 

horizontal bars indicate the median values in each three-hour sec­

tor of magnetic local time. For comparison with typical auroral


proton intensities, we have indicated with a dashed line the flux


level which, for an isotropic angular distribution and a 4-keV aver­

age energy. would correspond to a precipitating 0+ energy flux of


0.1 erg/cm -sec



It should be noted that the 11 storms utilized for this work


had varying 	 magnitudes and no attempt has been made to normalize


the results to account for this. Each storm contributes to the


data in two 	restrieted local time intervals, so the detailed local


time variations evident in the figures should not be interpreted as 
being representative of the local time variations in a single storm. 
It is significant, however, that extended regions of precipitating 
0+ ions were seen in every storm and at all local times and that 
the median peak intensities on the nightside are roughly an order 
of magnitude more intense than those on the dayside. 

THEORETICAL AND RELATED EXPERIMENTAL RESULTS



The published theoretical work specifically directed toward


interpreting the properties of the heavy ion fluxes in the energy


range of these measurements is limited. Cladis (1973a,b) has pro­

posed a mechanism whereby ionospheric 0+ ions are accelerated by


resonant interactions with ion cyclotron waves generated by the


ring-current protons. Palmadesso et al. (1974) have considered


the ionospheric heating due to the electrostatic ion cyclotron tur­
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bulence which is.thought to be associated with the anomalous resis­
tivity leading to field-aligned potential drops in the auroral zone. 
They suggest that this effect might contribute to the 0+ energiza­
tion. Brice (1974) has shown how mixtures of heavy ions and pro­
tons ir:the ring current provide conditions where waves at frequen­
cies below the heavy'ion cyclotron frequency may be strongly ampli­
fied. 

Torr-et al. (1974) examine'the atmospheric effects to be ex­

pected from the-precipitation of the energetic 0+ ions. They con­

clude that>large upward-moving fluxes of fast neutral oxygen atoms


and atmospheric heating above 200 km altitude will result.



Berkc et al. (1975) use a,self-consistent calculational tech­

nique to compare the measured ion fluxes on Explorer 45 with the


geomagnetic field deformation caused by these fluxes under the as­

sumption that they are all protons. They set an upper limit of a
 

few percent to the heavy ion contribution to the storm-time ring


current at the time of the comparison. Simultaneous observations
 

with the Lockheed-energetic-ion mass spectrometer on satellite 1971­

089A are not .inconsistent with these results. The 0+ precipitation


had fallen below the sensitivity threshold of the spectrometer at


the time, late in the storm's recovery phase, when the comparison



was made.



SUWMARY AND CONCLUSIONS



'The resblts now available on the He+, He++ , and 0+ ions in the


hot magnetospheric plasmas provide increasing evidence of the im­

portance of mass and charge composition measurements for investigat­

ing the complex electrodynamic processes within and at the bqundar­

ies of the magnetosphere. The present measurements on these ions


are still greatly limited in energy range, in mass range and reso­

lution, and in detection sensitivities. The data have thus far been


acquired only at low altitudes so there are not data in the equator­

ial plane to assess their importance to .understanding processes in


that region. Although still limited, the results from the energetic



oxygen and helium measurements are beginning to provide sufficient


definition of the characteristics of these particles that current


theoretical models of the processes which act on them can be more


realistically evaluated, but clearly more detailed theoretical work


is needed.



Instrumentation is presently under construction for the GEOS


and ISEE spacecraft and these instruments will have greatly im­

proved mass resolution and sensitivity which will allow studies to


be made of even rarer ionic constituents in the plasmas. The need


for large-scale simultaneous observations of the energetic oxygen


ions is evident and techniques for this type of observation should
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be pursued. Perhaps observations of the Doppler-shifted emissions


from the precipitating ions could be used to differentiate them


from the emissions of the ambient atmospheric constituents. All


of the new techniques which can provide information on the compo­
sition of the hot magnetospheric plasma can be expected to be of


increasing importance in future magnetospheric/ionospheric research.
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APPENDfX D 

THE MORPHOLOGY OF ENERGETIC 0 ANDH 

DURING TWO MAGNETIC STORMS-

R. D. Sharp, R. G. Johnson, and E. G. Shelley


Lockheed Palo Alto Research Laboratory'



Palo Alto, California 94304



(Presented at Washington, D.C. AGU Meeting, June 1975)



ABSTRACT



A detailed study of the energetic O_ and H+ precipitation 

(0.7 keV ! E 12 keV) in two magnetic storms has been under­

taken utilizing the data from the Lockheed energetic ion 

mass spectrometer experiment on the satellite 1971-89A. The 

satellite was in an approximately circular and polarorbit at



an altitude of ,800 km in the local time plane 0300/1500 hours



at the time ofl-the measurements. An intensity parameter has



been formulated for each ion species characterizing the inte­


gral precipitated energy flux in a traversal of the magnetic



latitude range from 400 to 800. An intercomparison of these



parameters on the day and nightside crossings shows that for



both storms there is a large increase in the 0 flux follow­


ing the sudden commencement, with the flux intensity on the



nightside significantly correlated with Dst. The nightside



0+ increase leads the dayside increase and lags the H in­


crease by'over an hour in each case. Contour plots of the
 


precipitating ion intensity versus time and magnetic latitude



have been prepared and the overall average flux intensity and



average ion- energy have been computed in 20 latitudinal inter­


vals for each storm. These results will be intercompared and,



discussed.
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APPENDIX E 

OF ENERGETIC 0+
SATELLITE OBSERVATIONS 

IONS DURING TWO MAGNETIC SUBSTORMS 

R. G. Johnson, R. D,. Sharp, and E. G. Shelley


Lockheed Palo Alto Research Laboratory



Palo Alto, California 94304



(Presented'at San Francisco AGU Meeting, December 1975)



ABSTRACT



0+
Precipitatiig'energetic (0.7 - 12 ke) ions during two 

substorms on 12 and 13 December 1971 have 'been investigated 

using data acquired with an energetic ion mass spectrometer 

aboard the polar-orbiting satellite 1971-89A. The satellite 

orbit was nearly circular at about BOO km altitude and in



the local time plane 0300/1500 hours at the time-of the meas-­


urements. The two substorms beginning at about 1500 hours on



12 December were fairly well isolated as indicated by the AE



index and were wide spread in local time. The 0+ ions were



observed in'-the morning sector from about 0200 to 0500 hours



and the peak intensities were generally correlated with the


6 2 -
AE index. :The.peak,intensity observed was 2.5 x 10 /cm -sec



sr and the mean width of the region of precipitation was 2.5



degrees in magnetic latitude. The mean position of the 0
+



fluxes was always at a lower latitude than the "cutoff" trap­


ping boundary for electrons with energies greater than 130



keV as measured on the same satellite.
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