General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



\

™\
U.S. DEPARTMENT OF COMMERCE
National Technical Information Service
AD-A028 709
A VARIANT OF NESTED DISSECTION FOR SOLVING
N BY ~n GRID PROBLEMS
COLLEGE OF WILLIAM AND MARY
AucusT 1976
_J/




~

AD /

239082

A Variaat of Nested Nissection

for Solving n by n Grid Problems

A. George, W. G. Poole, Jr., and R. 3. Voigt

Technical Report 12

August 1976

REPRODUCED BY

NATIONAL TECHNICAL
INFORMATION SERVICE

U.5. DEPARTMENT OF COMMERCH
PRINGFIELD, VA. 22161



4

Unclassified

Secunty Classihient an

DOCUMENT CONTROL DATA-R&D

(Security classilication of title, body of ab tract and indeving annatation must be entercd when the averail report Is classifiedy

L. OHIGING TiNG ACTIVITY (Corporate author)

College of William and Mary

8, REFPONT SECURITY CLASSIFICATION

Uncglassified

Department of Mathematics b, GROLP
Williamsburg, Virginia 23'85

e
3} REPORAY TITLE

A Variant of Nested Dissaction for Selving n by n Grid Proglems

4. DESCRIPTIVE NOTES (Type of report ard inclusive dates)

Technical Report 12, August 1976

% AUTHORIS) (First name, ouiddie initial last name)

A. George, W. G. Poole, Jr., and R. G. Voigt

—

IO‘ REPORTY DATC 78, TOTAL NO. OF PACELS 75, NO. OF REFS

August 1976 Y 6

8. CONTRACY OR GRANT NO. 98, ORIGINATOR'S REPORT NUMBE RIS)
NOOO014-75-C-0879 Technical Report 12

b. PROJEC T NO. .
NRO44-459

€. b, OTHER REPORT NOIS) fAny other numbers that may be aszigned

thie report)

d.

10. DISTRIBUTION STATEMENT
Approved for public release;
distribution unlimited

1. SUPPLEMENTAR' NOTES 12. SPONSORING MILITARY ACTIVITY

Mathematics Program
Office of Naval Research

79917

Arlington, Virginia 22217

13. ABSTRACT

Nested dissection orderings are known to be very effective for solving the
sparse positive definite linear systems which arise from n by n grid problems.
In this paper nested dissection is shown to be the final step of incomplete nested
dissection, an ordering which corresponds to the premature termination of dissec-
tion. Analyses of the arithmetic and storage requirements for incomplete nested
dissection are given and the ordering is shown to be competitive with nested dis-
section under certain conditions.

DD /v 1473 (PacE 1 PRICES SUBJECT 10 G

S/N 0101.807.6801 ' Security Classification

—~



Inclassified
Security Classification

KEY WORODS

LiINK A LiNk B

LiNw C

ROLE

wT ROLE wT

ROLE

NESTED DISSECTION
FINITE ELEMENT SYSTEMS

N v 1473 teack)

29

Security Clasailication




A Variant of Nested Dissection

for Solving n by n Grid Problems

* )
A. George,+ W. G. Poole, J’r.,?é and R. G, Voigt /

ABSTRACT

Nested dissection orderings are known to be very effective for solving the
sparse positive definite linear systems which arise from n by n grid problems.

In this paper nested dissection is shown to be the final step of incomplete nested

dissection, an ordering which corresponds to the premature termination of dissec-
tion. Analyses of the arithmetic and storage requirements for incomplete nested
dissection are given and the ordering is shown to be competitive with nested dis-

saction under certain conditions.

+ - . . - .
Department of Computer Science, University of Waterloo, Waterloo, Ontaric.

Department of Mathematics, College of William and Mary, Willlamsburg, Virginia
23185,

*
Institute for Computer Applications in Science and Engineering, NASA Langley
Research Center, Hampton, Virginia 23665.

This paper was prepared as a result of work performed under NASA Contract No.

NAS1-14101 at ICASE, NASA Langley Research Center, Hampton, VA 23665. The research

of the first author was also supported in part bv the National Research Council of
Canada under Grant A8111. The research of the sacond author was also supported in
part by the Office of Naval Research Contract NOOO14-75-C~-0879.



Y

A VARIANT OF NESTED PISSECTION
FOR SOLVING n BY n GRID PROBLEMS

1. INTRODUCTION

Recently there has been considerable effort ([1], [2]) to demonstrate the
efficiency of an ordering strategy known as nested dissection for solving the sparse
symmetric positive definite systems of linear equations associated with an n by
n grid consisting of (n—l)2 small squares, called elements. Any numbering of

the grid points from 1 to n2 yields the n2 by n2 matrix equation

{(1.1) Ax = b,

where Aij = 0 unless grid points 1 and j belong to the same element.

Although the analysis in this paper is for a square region, that is not as
restrictive as it might seem. For example, a general region may be "subdivided" or
"substructured” inte a union of smaller region§, many of which will be squares if
the subdivision is chosen properly,.

The system (1.1} is solved by first factoring A into LLT where L is
lower triangular and then by solving the systems Ly =b and LTx = y. When the
factorization of A 1is carried outr, it usually suffers from "£ill"; that is, some
locations of A that were zero become nonzero in the triangular factors. Thus we
are led to consider the equivalent problem, | _-*’Tﬂ

e

(PAPT)Px

I

-

Pb, V\{

\:,

‘7‘"-

. L
e

AN AT T A T A S 1)



Yy

where P is a permutation matrix chosen so as to reduce arithmetic requirements,
to reduce the £ill, or to achieve other objectives.

It is well-known ([1], [2]) that the nested dissection ordering reduces the
factorization stage operation count from O(na) for the row by row or band-oriented
ordering to 0(n3); similarly the £i ¢ occurring during the factorization is
reduced from 0(n3) to O(nzlogzn). Furthermore, nested dissection has been
shown to be optimal in the asymptotic sense ([1], [4]).

In essence, the nested dissection algorithm repeatedly applies a basic step
to square submeshes of the original mesh. The basic step consists of choosing a
separating '+" (see Figure 1.1) which, as nearly as possible, equally divides the

gubmesh into quadrants. The nodes in the quadrants are numbered before those on the

Figure 1.1. A basic step in nested dissection, indicating

the separating cross.

¢ross, This basiec step is applied successively until it 1s no longer possible to
subdivide the mesh.

The purpose of this paper is to study the consequences of terminating the mesh

T T

e e




o

subdivision before completion. That is, at some stage, do not subdivide the quad-
rants further, but simply use a row by row, band-oriented ordering for the nodes
in each quadrant. This idea is not completely new; the related idea of substruc-
turing has been used for many years in structural engineering applications [5].
However, a careful analysis has never appeared in the literature.

There are at least three reasons for studying this ordering: the arithmetic
and storage requirements have never been analysed; the overhead for handling the
sparse matrix components is simpler than for nested dissection; and vector compu-
ters like the Control Data Corporation STAR-100 and the Texas Instruments, Inc.
ASC can be better utilized because the lengths of vector operands can be greater
than for nested dissection [3].

In section 2 a detailed deseription of the variant of nested dissection 1is
given. The operation counts developed are for multiplicative operations. Section
3 contains information regarding the arithmetic and storége.requirements of the
new algorithm. It is shown that this wvariant is quite competitive with nested

dissection.

I

e

T



2. INCOMPLETE NESTED DISSECTION ORDERINGS

Following [ 2], let V be the set of nodes of the n by n mesh and let C

1
consist of the set of nodes on a vertical mesh line which as nearly as possible
0 .
divides the mesh into two equal parts Ri and Ri, where Ri u Ri = Rl = V\Cl.

Numbering nodes in Ri, followed by those in Ri, followed finally by those in

Cl’ induces the following block structure in the reordered matrix A.

A 0 A13
(2.1) A= 0 Ay Ayq
T T
A3 Ay Agg
S —
2

¢ . - , .
Now chooss vertex sets Sl c Rl’ 2= 1,2, consisting of nodes lying on a horizontal

mesh line which as nearly as possible divides Ri into two equal parts. If we

number the variables associated with the vertices in Rf\Si before those asso-

ciated with Sf, L= 1,2, and then the remalning nodes as before, we induce the

7 by 7 partitioning in A shown in (2.2).



A Ays Ay

oy Azs Az

A3 A Ay

Roeka . A Ahis M
Als  Ags As5 Asy

A Ay ket a7

A:7 Az7 A§7 Mg sy Mg Ary

The node sets of the mesh corresponding to the i-th diagonal block are

depicted schematically in Figure 2.l1. So far we have not specified how to number the

nodes indicated by 1-4 in Figure 2.1.

T
)

=

LTS

v
-

A

Figure 2.1 A cne-level dissection of the mesh.



We could ‘repeat the dissection process just described, numbering the nodes in
mesh reglons 1-4 in the same manner (but on a smaller scale) ag for the original
.n by n mesh. This would involve choosing three dissectors for each of the

four regions, and would create sixteen mesh regions of siée about n/16 by n/lé
whose numbering must still be specified. If we repeat this procedure until the
choice of dissecrors finally leaves no nodes left to number, we obtain a nested
dissection ordering [1l]}. These orderings yield 0(n3) arithmetic counts and
O(nzlogzn) £i11 for the factorization. Of course when n # 2:‘l -~ 1l, i a posi-
tive integer, this dissection process will not be completely uniform, and at

the #th dissection stage the node sub-arrays whose numbering is yet to be pre-
scribed may not all be exactly the same size. We will refer to these sub-arrays

as f—level node arrays.

Suppose we stop the dissection process sooner than necessary, say at the g&-th
level, and simply number the n2/222 2-level node arrays grid row by grid row (or
grid column by grid column). We will refer to such an ordering of the n by n

grid as an incomplete nested dissection ordering. For example, if the nodes spe-

.cified by regions 1-4 in Figure 2.1 were numbered column by coclumn, this would be a
one~level incomplete nested dissection ordering. The standard band ordering is a
zero-level dissection ordering.

For a given &-level incomplete nested dissection vrdering, the dissectors
together with the 2-level mesh subarrays induce a partitioning of the nodes into u
subsets, where |

-1

9 2 2
=224 3 22k 2 0%t g
x=0

2
22 1.



The matrix A has 22£ leading diagonal submatrices whose sizes arc -tout
(nIZE)2 and whose bandwidths are about n/22; these correspond to the last-level
mesh sub-arrays. The remaining diagonal submatrices correspond to the dissectors.
Although they are initially sparse, it can be shown that by the time they are fac-
tored, they have become full [2].

In order to show how we arrived at our timing formulas, consider Figure 2.2
which displays the approximate structure of the one-level dissection ordering and
partitioning specified by (2.2). The manner in which the last-level mesh subarrays

were numbered is indicated by the arrows in Figure 2.1.

l.—l—/ ——

e
| B
o

I\ |
AEE
=
| 18
N N | ] 4
| ‘\‘
N LN IN
— T ——— — i ;\: | - 5
e L N
= = Nt .
o w S] D e B i S e ] 7
‘E | —‘t-lilll
1 | ===l
1 2 3 4 5. % 7

Figure 2.2 The approximate structure of A is showm in the
upper triangle, and the structure aand the storage format of
the corresponding factor L are indicated by the hashing in
the lower triangle.



Observe that the '"block columns' corresponding to the yu diagonal blocks of
A have sets of adjacent non-null rows creating non-null rectangular subarrays. Fur=-
thermore, these non-null subarrays are of two general types: those lying in block
columns corresponding to dissectors are full, but those lying in block columns

correspending to last-level node arrays have some zeros and vary in structure as

seen in Figure 2.2,
Now consider the depiction of a three level dissection ordering contained in
Figure 2.3. Notice that there are three different kinds of last-level node subarrays,

which for obvious reasons we will refer to as corner, side, and interiocr node arrays.

These correspond to leading diagonal blocks of A, all with bandwidth about n/22
and size about (n/22)2. However, the number of non-null submatrices in their
respective block columns of L differ. Similarly, the "+'" shaped dissector triples
with labels r, 1 £ r < £ are of three corresponding types, with corresponding
similarities and differences. The character of the block columns corresponding to
the last level blocks is displayed in Figure 2.4. The row dimension of the sub-
arrays in each such block column is about n/2£. Note that many of the components
of the off-diagonal subartays in Figure 2.4 are zero. When these zeros are in
leading positions in their rows, the number of operations required for the factor-
ization is significantly reduced. For example, if 2 = 1 or 2, the total time for
the factorization can be reduced by as much as 30%. The locations of the zeros are
getermined by the manner in which the nodes of the last level subarrays are ordered.
This observation was made by Noor; et al. in [5]. Assuming that a band

solver is to be used for factoring the diagonal blocks, the optimum row by row
ordering is attained by numbering toward the dissectors. For example, for a

corner array, this leads to the numbering indicated by the arrows in Figure 2.1

and the off-diagonal blocks shown in Figure 2.4. The block columns

it et ot

s



subarrays in the block columns are full.

Figure 2.3
where nodes with number k

corresponding to corner, side, and interior dissectors are similar but the matrix

T h et

ta

/

Depiction of a three level dissection ordering,
are numbered before nodes numbered
and vertical node sets are numbered after horizontal node
sets with the same label. :




block column corresponding to a last-level corner subarrav of nodes
?/ p g b

&— block column corresponding to a last-level side
subarray of nodes

ér___-——block column corresponding to a last-level
interior subarray of nodes

|
I~

—~
\
|

Figure 2.4 Diagram showing the characier of the block columns
of L corresponding to last-level corner, side, and interior node
subarravs.

=10-



£ o B

Our operation counts are obtained under the assumption that the banded charae-
ter of the leading 221 diagonal blocks is exploited and the leading zeros of the
off-diagonal blocks are exploited. Our basiec strategy in obtaining operation counts
is to dgtgrmine the number of multiplications and divisions it'takes to execute the
factorization steps corresponding to each individual diagonal block. In order to do
this for the leading diagonal blocks we need to establish the structure as well as
the size of the submatrices in the corresponding block columns. However, since the
submatrices in the block columns corresponding to dissectors are full, we need only
be concerned withk the total number of non-null rows in these block columns. Let S
be a dissector which was chosen to subdivide the node subarray R. Then the number
of non-null rows in the block column of L corresponding to S is ]BS], where
38 is the set of nodes which are not in R but share at least one grid square with
some node in R (a full explanation of this recipe can be found in [2]). Thus, the
computation required to perform the IS] factorization steps corresponding to the
set S is equivalent to carrying out the first |[S| steps of the factorization of
the |s| + [35] by |s| + |85] block two by two matrix shown below, which becomes

what is shown at the right if we compute the partial factorization "in place".

1
B ABS W ABS

-11~

T P



—

Here L LT = AS, W= L-lB, and Al_. = A, - WTW. We denote the number of operations

S°S S as EH]

required to carry out this computation by t_([S], }35|,k) where k denotes the

F
number of dissectors connected to S. Similarly, the number of operations for the
lower solve attributable to the block column of L corresponding to S 1is denoted
by TL(|S|. [BS|,k), and for the upper solve, TU(IS!. |3],k). Details can be
found in Appendix C of [3].

Now consider the computation involved in carrying our the factorization steps
corresponding to a last-level interior node array having p2 factorization steps
of the p2 + 4(p+l) by p2 + 4(p+l) matrix below, where All is p2 by p2 with
bandwidth p+l, and the other diagonal blocks are either p by p or p+2 by p+2.

For convenience, we assume they are all p+l by p+l, since this will not change

our estimates by very much.

11

T

P A22 svmmetric
T T

2. . 3
{4.3) A3 A3 A3

T T T

Ay Aog Ay4 Al
T T T T

Ays Ars Ass Aus Ags

The partial factorization, with the parts of L left "in place" in the array

becomes



Lg._—..

L1

T ' .

w12 A22 symmetric

T p '
(2.4) Wig B3 Agg

T 'T ' !

Wie o P A Ay

T T T i '

Wis A5 hag M35 Ass
here L..LT. = A
where 11 11 11:
(2.5) W..=LtA. 2sis55

1i 11714 e
and
' T , o

(2.6) _ Aij—Aij‘—Wliwlj,ZSISS,lS_] £ 5.
Now in carrying out the computation {(2.5), we exploit the fact that A has lead-

1i

ing zeros as indicated in Figure 2.4, and we also exploit the structure in the
Wij's when performing the matrix multiplication in (.6). In addition, we of

course exploit the banded character of A

11 when we factor it and in 2 .5), and we

also expléit s&mﬁetry ﬁherever possible. We denote the number of operations required
to carry out the above computation py Ti(p), where the superscript implies that the
computation is associated with a last level interior p by p node subarray. In

a similar way, we can derive functiomns Tg(p) and j?(p) for last level corner

and side ncde subarrays. The subscript T denotes factorization; similar functions
with subscripts L and U can be defined corresponding to the work attributable

to the block column during the lower and upper solve.

Having made these observations, using Figure 2.3 as a guide, it is now possible

to derive our operation counts. They are only cstimates because we agsume

-13-



n=2 - 1 so that the dissection is uniform. However, sSome independent work has

shown that estimates obtained using this strategy are extremely good for general =n

(see [2], Table 3.2). The details of these formulas may be found in Appendix C of [3].

The formula TF(q,p,k) represents the number of operations required to eliminate

the nodes corresponding to a particular dissector. The first variable, q, repre-
sents the number of nodes in the dissector; p denctes the number of other nodes
which are connected to the dissector; and k is the .number of other dissectors
connected to the dissector (see C.6.13 of Appendix C in [3]). Obviously, the number

of operations required to execute the last 2n - 1 steps of the factorization is

(2.7) 1, (,0,0) + 2TF(E;—1',H,]>,

where the first term ig due to the vertical l1ine of nodes labelled 1, and ‘he
second is due to the two horizomtal lines of nodes labelled 1. The number of opera-
tions required for the factorization steps corrésponding to the nodes labelled 2

is given approximately by

R
n-1 - ({n=3) 3a=1,i n-3) Swkl
.8 4TF<<2),H,2> + !hF (4 )s A :2) + ATF@A ): A :3>'

In general, the number of operations required to eliminate nodes labelled

~
ha

r, 2 <r <% is given approximately by

(2.9) (21:-1_2)?- S S R YC S DN Y O LS R TCS N A
= F\ ,r-1 ? ,t-1 ? Fi ’ oT-1 i

2r-l qr—l 2r 2r

Y _ot-1 oL
L 4(?r~l _ %> T n-2 +l’ 3(mtl) _ 1, %) " ZTF n~2 +l’ 5(ntl) 1, 3 :}

0-2""h1 2(mi1)
— » —
F 5T 1 ot 1

+ 44t 1, 2]+ 1

r r r °? r

F 2 2 ’\ 2 2

-14-

r . S
n=2 +1 3l) L) __rf(n 241 5atl) %

J



.—-—'“

Here the first, second and third terms are due to interior, side, and corner dissec-
tor triples respectively.
The number of operations required for the factorization steps corresponding to

x L L
the last-level blocks is given approximately by the following, where & = (n=2"41)/2".

(2.10) 2" - 9o + 02t - D3 + brg(ﬂ)-

Using the symbolic computation system MACSYMA* [6] to sum (2.9) from r =2 to

t and adding in (2.7) and (2.10) yields the estimate (see Appendix B of [3] for

details):
if =0,
O S - gk SR TN Y
(2.11) xF(n,O) o 3 n + 5 n~ + 2n° - 3 n
it L >0,
(2.12) H.F(n.z)r_v.n4(£x2-2;'-10v2'31+6n-z'“)
3
3(829 _ 353 -2, 148 ,-20 _ 1084 -3 _ ,, -a;)
+n(8& 233 « 27t 4 A28 7 1088 L 07y 2u w2
+n2(_17x1+2003_ﬁ"2-1+86'2-2?._66&!2-31_‘_36‘2-“)
& =77 7
2 %, . ., 1657 325 -t 128 ,-20 _ 524 _ -3t
+“(’e e s i b e
+ 2 2“)
2017 .2 _ 2459 935 -t 4 =22
+<2x2 -t e xR R 4302
LTS DRSS T

*MACSYMA is supported Ly the Defense Advanced Research Projects Agency work
order 2095, under Office of Naval Research Contract #N00014-75-C-0561.

-15-



Similarly, an estimate for the lower solve, Mt(n,z), is obtained by summing exactly

the same terms with Tp replaced by Ty We obtain, for & =0,

{2.13) ML(n,.Q.) ~ n3 + -32-112 - %n

For & > 0,

(2.16) @0 2 (3 x 2t 4w 2P i« 2'3"')

+ 52 %ix;,_gi+31x2'£—18x2'2£+6x2“3")
+n<-—§-]—*x2£+§—lxa-13+39x2"“—24x2_2y‘+6xz“u)

+(22“+-§’-x29‘-ilxz-ali+11xz'“—1ox2'29'+2><2'3£)

The number of multiplications for the upper solve, MU, as well as the storage

requirements (see section 3) are also given by (2.14).

3. OPERATION AND STORAGE REQUIREMENTS

It is not obvious which are the dominant terms of (2.12). Tor example,

4 3

(3.1) M (n,1) &2 0.292a" + 2.54n + 0(n2)

4 , .
and the n term is dominant for n » 8. On the other hand,

= 4 3

(3.2) M (n,3) & 0.055n° + 6.87n° + 0(n?)

and n mnust be greater than 125 before the na term is larger than the n3 term.

*
Finally, for the largest value of 2, logQ(n+l) -1, we get

= .
In this section we assume that n = 27 - 1, for j an integer, in order to

simplify the analysis. The general cbservations hold for an arbitrary value of n.

16—

it



.

3 2 2
(3.3)  Mc(a, log,(n+l) - 1) & 9.87° - 17a’log, (n+1) + 22.1n° + 0(n log,(n+1))

The estimate (3.3) for the multiplication count of nested disse<tion differs only
slightly in the third term from a similar formula given in [2]. The difference can
be attributed to a slight improvement in the estimate of the multiplication count.
Table 3.1 and Figure 3.1 display the multiplication counts for the factori-
zation stage of the incomplete nested dissection ordering. The number of operations
decreases quite rapidly for small 2 as the level of dissection increases. How-
ever, as 1 approaches its largest possible value, very little is gained. For all
of the cases listed in Table 3.1, the final step of dissection decreases the multi-
plication count by less than 5%Z. On the other hand, the last step increases the

complexity of data management, as will be described later.

. - 15 31 63 127 255

banded 31.1 (3) 512 (3) 8.30 (6) 133.0 (6) 2142 (6)
1 23.9 (3) 347 (3) 5.24 (6) 81.1 (6) 1280 (6)
2 23.9 (3) 290 (3) 3.71 (6) 51.3 (6) 753 (6)
3 23.0 (3) 243 (3) 2.53 (6) 28.1 (6) 345 (6)
4 235 (3) 2.20 (6) 20.5 (6) 202 (6)
5 2.16 (6) 18.9 (6) 165 (6)
6 18.7 (6) 157 (6)
7 156 (6)

Table 3.1 Multiplication count for factorization stage of
incomplete nested dissection and banded orderings for several
values of n and £ =1 (1) L}ogz(n+1) - IJ.
Now consider multiplication counts for the lower solve, as displayed in Table
3.2 and Figure 3.2 (the counts for the upper solve are the same). Since each com-

ponent of the matrix L is handled exactly once in the lower solve, it is obvious

that the storage requirements for the components of the matrix are identical to the

e



T

U5 O FHMDO D kM e

X 106

150

100

50

s}
a

0 -
s
= i
n=31
3
|

" | { | I 1

2 4 6

Figure 3.1 Multiplication counts for factorization stage of
incomplete nested dissection ordering for n = 31 and n = 127.



multiplication count cf the lower solve.

The remaining comments in this section

will be concerned with storage although analogous comments can be made about the

lower and upper solves.

¢ - 15 31 63 127 255

banded 3.58 (3) 30.7 (3) 254 (3) 2.064 (6) 16.65 (6)
1 2.92 (3) 24.1 (3) 195 (3) 1.568 (6) 12.56 (6)
2 2.63 (3) 19.9 (3) 151 (3) 1.162 (6) 9.11 (6)
3 2.54 (3) 17.1 (3 113 (3) .793 (6) 5.84 (6)
4 16.5 (3) 97 (3) .586 (6) 3.83 (6)
5 95 (3) .509 (6) 2.87 (6)
6 .499 (6) 2.53 (6)
7 ! 2.49 (6)

Table 3.2 Multiplication counts for lower solve (same for
upper solve and storage) stage of incomplete nested dissection
and banded orderings for several values of n and

=1 (1) L}ogz(n+l) -1l

As was the case for the factorization stage, very little is gained by the
final step of dissection. The storage requirement drops less than 5% from the
penultimate step to the last step for all values of n shown in Table 3.2. More~-

over, the following analysis of the storage requirements of an implementation of

incomplaete nested dissecticn shows no decrease at all.

Consider an implementation scheme for incomplete nested dissection analogous
to that described by George [2] for nested dissection. George's scheme requires
about 14b + an additional memory locations for information describing the blocks
of L, where b is the number of diagonal blocks. This 'data management" infor-

mation includes Jimensions of blocks, location of the first element in eacn row,

=

—



""k

03 0O PR 0O ") = X

10

2.5'—’

.04 [
.03
JE b ‘ n=31
\‘\‘
01 —
| 1 | | { |
— R
" 2 4 6

Figure 3.2 Multiplication counts for lower solve (same for upper
solve and storage requirements) of incomplete nested dissection

for n=31 and n = 127.



Y

pointers, etc. For nested dissection b 1is approximately and this additional

nﬂn

storage is
9% + 0(n).
Now consider incomplete dissection where the dissection is stopped 1 short
of completion -- & = logz(n+1) - 2. As mentioned in section 2, the number af dia-

gonal blocks is

2

g2t _ l-= %—-+ 0(n) .

(3.4) ' p=2xz

It follows that George's scheme requires only

%i n2 + 0{n)

locations. By stopping short 1 step, one may save as much as %;-ng locations
for data management storage. Taking this into account in Table 3.2, one sees that,
assuming George's implementation scheme, the final step of dissection (i.e., nested
dissection) is considerably more costly in terms of total storage than stopping
short 1 step. Moreover, if one takes into account the storage overhead, it can be
shown that stoppinrg short by 2 steps is competitive with nested dissection.

In summary, it folleows that the penultimate level of the variant of.nested
dissection may reduce storage requirements of nested dissection with very little

increase of computer tima.

-21-

P ——



1]

(2]

(4]

[5]

[6]

REFERENCES

George, A., '"Nested Dissection of a Regular Finite Element Mesh," SIAM J.
Numer. Anal., 10 (1973), pp. 345-3613.

George, A., '"Numerical Experiments Using Dissection Methods to Solve n by n
Grid Problems," SIAM J. Numer. Anal., to appear.

George, A., W. G. Poole, Jr., and R. G. Voigt, "Analysis of Dissection Algo-
rithms for Vector Computers," ICASE Report No. 76-17, June 1976.

Hoffman, Alan J., Michael S§. Martin, and Donald J. Rose, "Complexity Bounds for
Regular Finite Difference and Finite Elemert Grids," SIAM J. Numer. Anal.,

10 (1973) pp. 364-365.

Noor, A. K., H. A, Kamal, and R. E. Fulton, "Substructuring Techniques - Status

and Projections," Journal of Computers and Structures, to appear.

Project MAC-M.I.T., '"MACSYMA Reference Manual," Massachusetts Institute of

Technolegy, Cambridge, Massachusetts, 1975.

~224

i 2

B a: —parmig Mt 1



	GeneralDisclaimer.pdf
	0002A02.pdf
	0002A03.pdf
	0002A04.pdf
	0002A05.pdf
	0002A06.pdf
	0002A06_.pdf
	0002A07.pdf
	0002A08.pdf
	0002A08_.pdf
	0002A09.pdf
	0002A10.pdf
	0002A11.pdf
	0002A12.pdf
	0002A13.pdf
	0002B01.pdf
	0002B02.pdf
	0002B03.pdf
	0002B04.pdf
	0002B05.pdf
	0002B06.pdf
	0002B07.pdf
	0002B08.pdf
	0002B09.pdf
	0002B10.pdf
	0002B11.pdf
	0002B12.pdf
	0002B13.pdf
	0002B14.pdf
	0002C01.pdf

