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dissection, an ordering which corresponds to the premature termination of dissec-

tion. Analyses of the arithmetic and storage requirements for incomplete nested
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are led to consider the equivalent problem,

(PAP T)Px = Pb,

A VARIANT OF NESTED DISSECTION

FOR SOLVING n BY n GRID PROBLEMS

1. INTRODUCTION

Recently there has been considerable effort ([11, [23) to demonstrate the

efficiency of an ordering strategy known as nested dissection for solving the sparse

symmetric positive definite systems of linear equations associated with an n by

n grid consisting of (n-1) 2 small squares, called elements. Any numbering of

the grid points from 1 to n2 yields the n2 by n2 matrix equation

(1.1)
	

Ax = b,

where AiJ = 0 unless grid points i and j belong to the same element.

Although the analysis in this paper is for a square region, that is not as

restrictive as it might seem. For example, a general region may be "subdivided" or

"substructured" into a union of smaller regions, many of which will be squares if

the subdivision is chosen properly.

The system (1.1) is solved by first factoring A into LL  where L is

lower triangular and then by solving the systems Ly = b and L 
T 
x = y. When the

factorization of A is carried out, it usually suffers from "fill"; that is, some

locations of A that were zero become nonzero in the triangular factors. Thus we

.'T



where P is a permutation matrix chosen so as to reduce arithmetic requirements,

to reduce the fill, or to achieve other objectives.

It is well-known ([1], [2]) that the nested dissection ordering reduces the

factorization stage operation count from 0(n 4) for the row by row or band-oriented

ordering to 0(n3), similarly the fft" occurring during the factorization is

reduced from 0(n3) to 0(n2 log,,n). Furthermore, nested dissection has been

shown to be optimal in the asymptotic sense ([1], [4]).

In essence, the nested dissection algorithm repeatedly applies a basic step

to square submeshes of the original mesh. The basic step consists of choosing a

separating 'Y' (see Figure 1.1) which, as nearly as possible, equally divides the

submesh into quadrants. The nodes in the quadrants are numbered before those on the

Figure 1.1. A basic step in nested dissection, indicating

the separating cross.

cross. This basic step is ap plied successively until it is no longer possible to

subdivide the mesh.

The purpose of this paper is to study the consequences of terminating the mesh

-1)-
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subdivision before completion. That is, at some stage, do not subdivide the quad-

rants further, but simply use a row by row, band-oriented ordering for the nodes

in each quadrant. This idea is not completely new; the related idea of substruc-

turing has been used for many years in structural engineering applications [5].

However, a careful analysis has never appeared in the literature.

There are at least three reasons for studying this ordering: the arithmetic

and storage requirements have never been analysed; the overhead for handling the

sparse matrix components is simpler than for nested dissection; and vector compu-

ters like the Control Data Corporation STAR-100 and the Texas Instruments, Inc.

ASC can be better utilized because the lengths of vector onerands can be greater

than for nested dissection [3].

In section 2 a detailed description of the variant of nested dissection is

given. The operation counts developed are for multiplicative operations. Section

3 contains information regarding the arithmetic and storage requirements of the

new algorithm. It is shown that this variant is quite competitive with nested

dissection.

-3-



2. INCOMPLETE NESTED DISSECTION ORDERINGS

Following [ 2], let V be the set of nodes of the n by n mesh and let C1

consist of the set of nodes on a vertical mesh line which as nearly as possible

divides the mesh into two equal parts R 1 and R1, where R1 u R1 = R 1 = V\C 1.

Numbering nodes in R1 , followed by those in R1 . followed finally by those in

Cl , induces the following block structure in the reordered matrix A.

(2.1)

A11	 0	 A13

A =	 0	 A22	
A23

T	 T
A13	 A23	 A33

Now choose vertex sets Si c Ri, £ = 1,2, consisting of nodes lying on a horizontal

mesh line which as nearly as possible divides Ri into two equal parts. If we

number the variables associated with the vertices in Ri\Si before those asso-

ciated with S2, 2 = 1,2, and then the remaining nodes as before, we induce the

7 by 7 partitioning in A shown in (2.2).

-4-
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A 36	 A37
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466	 A67
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to the i-th diagonal block are

we have not s pecified how to number the
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We could *repeat the dissection process just described, numbering the nodes in

mesh regions 1-4 in the same manner (but on a smaller scale) as for the original

n by n mesh. This would involve choosing three dissectors for each of the

four regions, and would create sixteen mesh regions of size about n/16 by n/16

whose numbering must still be specified. If we repeat this procedure until the

choice of dissectors finally leaves no nodes left to number, we obtain a nested

dissection ordering [1]. These orderings yield O(n3) arithmetic counts and

0(n2log2n) fill for the factorization. Of course when n # 2 j - 1, j a posi-

tive integer, this dissection process will not be completely uniform, and at

the k-th dissection stage the node sub-arrays whose numbering is yet to be pre-

scribed may not all be exactly the same size. We will refer to these sub-arrays

as 1-level node arrays.

Suppose we stop the dissection process sooner than necessary, say at the R-th

level, and simply number the n 2 /2
2Q, 

2-level node arrays grid row by grid row (or

grid column by grid column). We will refer to such an ordering of the n by n

grid as an incomplete nested dissection ordering. For example, if the nodes spe-

cified by regions 1-4 in Figure 2.1 were numbered column by column, this would be a

one-level incomplete nested dissection ordering. The standard band ordering is a

zero-level dissection ordering.

For a given 2-level incomplete nested dissection ordering, the dissectors

together with the 2-level mesh subarrays induce a partitioning of the nodes into u

subsets, where

2-1

u = 222+ 3J:: 22k = 2 29. + (222 - 1).

k=0
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The matrix Ahas 2 2^ leading diagonal submatrices whose sizes arc': :Tout

z
i (n/ ?- 	 whose bandwidths are about n/2	 these correspond to the last.-level

'I

mesh sub-arrays. :he remaining diagonal submatrices correspond to the dissectors.

Although they are initially sparse, it can be shown that by the time they are fac-

tored, they have become full [2].

In order to show how we arrived at our timing formulas, consider Figure 2.2

which displays the approximate structure of the one-level dissection ordering and

partitioning specified by (2.2). The manner in which the last-level mesh subarrays

were numpered is indicated by the arrows in Figure 2.1.

Figure 2.2 The aoproxi^^ate structure of A is sho,m in the
upper triangle, and the structure and the storage format of
the corres ponding factor L are indicated by the hashing in
the lower triangle.

-7-
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Observe that the "block columns" corresponding to the u diagonal blocks of

A have sets of adjacent non-null rows creating non-null rectangular subarrays. Fur-

thermore, these non-null subarrays are of two general types: those lying in block

columns corresponding to dissectors are full, but those lying In block columns

corresponding to last-level node arrays have some zeros and vary in structure as

seen in Figure 2.2.

Now consider the depiction of a three level dissection ordering contained in

Figure 2.3. Notice that there are three different kinds of last-level node subarrays,

which for obvious reasons we will refer to as corner, side, and interior node arrays.

These correspond to leading diagonal blocks of A, all with bandwidth about n/2Z

and size about (n/2 2 ) 2 . However, the number of non-null submatrices in their

respective block columns of L differ. Similarly, the "+" shaped dissector triples

with labels r, 1 <_ r <_ R are of three corresponding types, with corresponding

similarities and differences. The character of the block columns corresponding to

the last level blocks is displayed in Figure 2.4. The row dimension of the sub-

2
arrays in each such block column is about n/2 . Note that many of the components

of the off-diagonal subarrays in Figure 2.4 are zero. When these zeros are in

leading positions in their rows, the number of operations required for the factor-

ization is significantly reduced. For example, if 2 = 1 or 2, the total time for

the factorization can be reduced by as much as 50%. The locations of the zeros are

determined by the manner in which the nodes of the last level subarrays are ordered.

This observation was made by Noor; et al. in [5]. Assuming that a band

solver is to be used for factoring the diagonal blocks, the optimum row by row

ordering is attained by numbering toward the dissectors. For example, for a

corner array, this leads to the numbering indicated by the arrows in Figure 2.1

and the off-diagonal blocks shown in Figure 2.4 The block columns

a

is
i^
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corresponding to corner, side, and interior dissectors are similar but the matrix

suharrays in the block columns are full.
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Figure 2.3	 Depiction of a three level dissection ordering,
where nodes with number k are numbered before nodes numbered
k-1, and vertical node sets are numbered after horizontal node
sets with the same label.
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block column corresponding to a last-level corner subarrav of nodes

E------ block column corres p onding to a last-level side

i

subarray of nodes

I	 I

I	 I	
I	

block column corresponding to a last-level
interior subarrav of nodes

I	 !	 I

I ^ I

Fiszure 21 .4	 Diagram showing tie charaE-.er of the block columns
of L corresponding to last-level corner, side, and interior node
subarrays.

-10-

1



Our operation counts are obtained under the assumption that the banded charac-

ter of the leading 
22k 

diagonal blocks is exploited and the leading zeros of the

off-diagonal blocks are exploited. Our basic strategy in obtaining operation counts

is to determine the number of multiplications and divisions it takes to execute the

factorization steps corresponding to each individual diagonal block. In order to do

this for the leading diagonal blocks we need to establish the structure as well as

the size of the submatrices in the corresponding block columns. However, since the

submatrices in the block columns corresponding to dissectors are full, we need only

be concerned with the total number of non-null rows in these block columns. Let S

be a dissector which was chosen to subdivide the node subarray R. Then the number

of non-null rows in the block column of L corresponding to S is IDSI, where

2S is the set of nodes which are not in R but share at least one grid square with

some node in R (a full explanation of this recipe can be found in [2]). Thus, the

computation required to perform the I S I factorization steps corresponding to the

set S is equivalent to carrying out the first ISI steps of the factorization of

the ISI + IDSI by ISI + I3SI block two by two matrix shown below, which becomes

what is shown at the right if we compute the partial factorization "in place".

AS	B	 /LS	 W

BT	 A2S —^ 14T	 Atas

,i

i

-11-



Here LS LS = AS , W = L S 1B, and 
AaS	 ASS	

WT14. We denote the number of operations

required to carry out this computation by T F (ISI, IdSj,k) where k denotes the

number of dissectors connected to S. Similarly, the number of operations for the

lower solve attributable to the block column of L corresponding to S is denoted

by T L (ISI, IaSl,k),	 and for the upper solve, T L (IS!, I31,k).	 Details car. be

found in Appendix C of [3].

Now consider the computation involved in carrying our the factorization steps

corresponding to a last-level interior node array having p 2 factorization steps

of the p 2 + 4(p+l) by p 
2

+ 4(p+l) matrix below, where a ll is p	 by p2 with

bandwidth p+l, and the other diagonal blocks are either p by p or p+ 2 by p+2.

For convenience, we assume they are all p+ l by p+l, since this will not change

our estimates by very much.

all

T

	

A 1 ,,	 A

(2.3)	
I	 a13	 a23	 A33

T	 T	 T

	

A 14	 A24	 A34	 a44

	

T	 T	 T	 T	
a

	

a 15	 a25	 a	 a35	 45	 55

The partial factorization, with the parts of 1. left "in place" in the arrav



L11

Wit
A2, symmetric

(2.4)	 W13 A23 A33

T
W14

'T
A24

'T	 '
A34	 A44

T
W15

'T
A25

'T	 'T
A35	 A45	 A55

where L11L11 - A11'

W	 -1	 2 <
ii - L11 A11	

i < 5

	

Ai . - Ai'	 W1iW1 , 2 <_i 5 5, i <_j <- 5.
J	 J	 j

(2.5)

and

(2.6)

Now in carrying out the computation (2 .5), we exploit the fact that Aii has lead-

ing zeros as indicated in Figure 2.4, and we also ex p loit the structure in the

Wij 's when performing the matrix multiplication in (2 .6). In addition, we of

course exploit the banded character of A 11 when we factor it and in (2.5), and we

also exploit symmetry wherever possible. We denote the number of operations required

to carry out the above computation by TI(p), where the superscript implies that the

computation is associated with a last level interior p by p node subarray. In

a similar way, we can derive functions TF(p) and T S (p) for last level corner

and side node subarrays. The subscript F denotes factorization; similar functions

with subscripts L and U can be defined corresponding to the work attributable

to the block column during the lower and up per solve.

Having made these observations, using Figure 2.3 as a guide, it is now possible

to derive our operation counts. They are only estimatea because we assume

-13-
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n = 23 - 1 so that the dissection is uniform. However, some independent work has

`	 shown that estimates obtained using this strategy are extremely good for general n

(see [2], Table 3.2). The details of these formulas may be found in Appendix C of [3].

The formula TF (q,p,k) represents the n1%mber of operations required to eliminate

the nodes. corresponding to a particular dissector. The first variable, q, repre-

sents the number of nodes in the dissector; p denotes the number of other nodes

which are connected to the dissector; and k is the number of other dissectors

connected to the dissector (see C.6.13 of Appendix C in [3]). Obviously, the number

of operations required to execute the last 2n - 1 steps of the factorization is

(2.7)
	

TF(n,0,0) + 2TF(n21,n,1J ,

where the first term is due to the vertical line of nodes labelled 1, and `he

second is due to the two horizontal lines of nodes labelled 1. The number of opera-

tions required for the factorization steps corresponding to the nodes labelled 2

is given approximately by

(rn=11	 ^n_31 3n-1 )	 n=31 5n+1
(_.&}	 4TF 2 ,n,2 + 4T F 4 , 4,_ >2 + 4TF 4

	 4	
3 .

In general, the number of operations required to eliminate nodes labelled

r, 2 < r < 2 is given approximately by

(2.9)	 (2	 - 2)r-1	 2
	
(n-2 r_1+1 4(n+l) 1	 n-2r+1 3(n+l) )TF 2 r-1	 2r-1 4

J 
+ 2T F( 2r	 2r-1 4/

/ r-1	 ( 

2
n-2 r-1+1 3(n+l)	 r 2n-2 r+l 5(n+l)+ 412	 - 2^ TFI	 r-1	

2	 l	 `
r-1 - 1 ' gl + 2T F I	 r	

2 r - 1 g)

+ 4	 n-2r-1+1 2(n+l) 	 (n-2r+ 1_ 3(n+l)	 1, 2	 -2r+1 5(n+1)	 1^rF( 2 r-1	 2r-1 - 1' J +T FI 2r	 2r -	 1 + T nrr 2r ,	 2r

-14-



Here the first, second and third terms are due to interior, side, and corner dissec-

tor triples respectively.

The number of o perations required for the factorization steps corresponding to

the last--level blocks is given approximacely by the following, where	 _ (n- 2 Q 	 ^+1)/2.

(2.].0)	 (2Z - 2) ` -F(,) * 4(d" - 2)-F(0 + 4-F(^).

Using the symbolic computation system :1ACSYMA* [6] to sum (2.9) from r = 2 to

Q and adding in (2.7) and (2.10) yields the estimate (see Appendix B of [3] for

details):

:f e = 0,

(2.11)	 I!F(n,0)	 n4 + 63 n 3 + ^_n 2 - 31 n

if i > 0,

(2.12) `r(n,Z) N 
nv 64 

x -2R - 10 x 2 -3Z + 6 . 2-4Z)

+ i1 3(89 _ 1?3 x 2-Z + 138 x 2 -2z - 1084	 2 -3` + 24 x 2 -'+ i)` _

+ n`f-17 x Z +
 2003 - 9 ^ 3 x 2 -z + 86	 ` -2R - 664 x 2 -3: + 36 x 2-4)/

+ n^ 17 x 2Z + 6	 4 - 1657	 325	 ` -,Z + 128 Y 2 -2Z - 524	 ,-3Z
6	 84	 12	 3	 7	 `

+ 24 x 2
-4 Z)

2Z	 17	 2	 24 9	 9 JO	 4	 -2Z
+ 7 x 2- - 6	 2 + '3 x Z-	 l +	 x 2 - + 3 x 2

H 1z

- 454 x -3Z +^ ^-3Z1
211	 6	

1/

^MACSY`% is supported by the Defense advanced Research Projects Agency work
order 2095, under Office of Naval Research Contract -'fN0001',- 75-C -0561.
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Similarly, an estimate for the lower solve, M (n,2), is obtained by summing exactly

the same terms with 
T 	

replaced by TL. We obtain, for 2 = 0,

(2.13) ML (n,Q) N n3 + Z i n 2 - 3 n

For 2 > 0,

(2.14)	 1- L (n,k) N n
'(3 x 2-2 - 4 x 2-21 + 2 x 2-32.)

• n 2 l 41 x ,2 - z5 + 31 x 2 -2 - 18 x 2
-2k + 6 x 2-321

• n (\- 21 x 22 + 41x 	 2 - 13 + 39 x 2-2 - 24 x 2-22 + 6 x 2-311

+ ( 2 2\2 + 2 x 21 - 47 x 2 - 41 + 11 x 2-2 - 10 x 2-21 + 2 x 2-32)

The number of :multiplications for the upper solve, M U , as well as the storage

requirements (see section 3) are also given by (2.14).

3. OPERATION AND STORAGE REQUIREMENTS

It is not obvious which are the dominant terms of (2.12). For example,

(3.1)	 MF(n,l) ^!0.292n + 2.54n 3 + 0(n 2)

and the n4 term is dominant for n > 8. On the other hand,

(3.2)	 MF(n,3) C' 0.055n 4 + 6.87n 3 + 0(n2)

and n must be greater than 125 before the n 4 term is larger than the n 3 term.

Finall.7, for the largest value of 2,	 log2 (n+l) - 1,	 we get

In this section we assume that n = 2 i - 1, for j an integer, in order to

simplify the analysis. The general observations hold for an arbitrary value of n.

-16
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r

(3. 3)	 M F (n, log e (n+l) - 1) n^ 9. 87n 3 - 17n 
2 
log„ (n+l) + 22.1n + 4(n log e (n+l))

The estimate (3.3) for the multiplication count of nested di:ise •:ticn differs only

slightly in the third term from a similar formula given in [2]. The difference can

be attributed to a slight improvement in the estimate of the multiplication count.

Table 3.1 and Figure 3.1 display the multiplication counts for the factori-

zation stage of the incomplete nested dissection ordering. The number of operations

decreases quite rapidly for small Z as the level of dissection increases. How-

ever, as $ approaches its largest possible value. very little is gained. For all

of the cases listed in Table 3.1, the final step of dissection decreases the multi-

plication count by less than 5%. On the other hand, the last step increases the

complexity of data management, as will be described later.

2	
n 15 31 i 63 127 255

banded 31.1 (3) 512 (3) 8.30 (6) 133.0 (6) 2142 (6)

1 23.9 (3) 347 (3) 5.24 (6) 81.1 (6) 1280 (6)

2 23.9 (3) 290 (3) 3.71 (6)

I	

51.3 (6) 753 (6)

3 23.0 (3) 243 (3) 2.53 (6) 28.1 (6) 3+5 (6)

4 235 (3) 2.20 (6) 20.5 (6) 202 (6)

5 2.16 (6) 18.9 (6) 165 (6)

6 18.7 (6) 157 (6)

7 , I 156 (6)

Table 3.1	 Multiplication count for factorization stage of
incomplete nested dissection and banded orderings fer several
values of n and 1 = 1 (1)Llog 2 (n+1) - 1 ^.J

Now consider multiplication counts for the lower solve, as displayed in Table

3.2 and Figure 3.2 (the counts for the upper solve are the same). Since each com-

ponent of the matrix L is handled exactly once in the lower solve, it is obvious

that the storage requirements for the components of the matrix are identical to the

-17-
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multiplication count cf the lower solve. The remaining comments in this section

will be concerned with storage although analogous comments can be made about the

lower and upper solves.

R
	 n	

15
	

31
	

63
	

127
	

255

banded

1

2

3

4

5

6

7

3.58 (3) 30.7 (3) 254 (3)

2.92 (3) 24.1 (3) 195 (3)

2.63 (3) 19.9 (3) 151 (3)

2.54 (3) 17.1 (3) 113 (3)

16.5 (3) 97 (3)

I

95 ( 3)

2.064 (6) 16.65 (6)

1.568 (6) 12.56 (6)

1.162 (6) 9.11 (6)

.793 (6) 5.84 (6)

.586 ( 6) 3.83 ( 6)

.509 (6) 2.87 (6)

.499 (6) 2.53 (6)

2.49 (6)

Table 3.2	 aultiplicaticn counts for lower solve (same for
upper solve and storage) stage of incomplete nested dissection
and banded orderings for several values of n and
z = 1 (1) Llog 2 (n+l) 1

As was the case for the factorization stage, very little is gained by the

final step of dissection. The storage requirement drops less than 5% from the

penultimate step to the last step for all values of n shown in Table 3.2. More-

over, the following analysis of the storage requirements of an implementation of

incomp lete nested dissecticn shows no decrease at all.

Consider an implementation scheme for incomplete nested dissection analogous

to that described b7 George [21 for nested dissection. George's scheme requires

about 14b + 2n 
2 additional memory locations for information describing the blocks

of L, where b is the number of diagonal blocks. This "data management" infcr-

mation includes dimensions of blocks, location of the first element in each row,

L^ - -- -	 —	 -

-19-
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pointers, etc. For nested dissection b is approximately 
2 

and this additional

storage is

9n2 + 0(n).

Now consider incomplete dissection where the dissection is stopped 1 short

of completion -- R = log 2 (n+1) — 2. As mentioned in section 2, the number of dia-

gonal blocks is

2

(3.4)	 µ = 2 x 22A — 1 = 8 + 0(n).

It follows that George ' s scheme requires only

45 n
2 + 0(n)

locations. By stopping short 1 step, one may save as much as 
41 

n2 locations

for data management storage. Taking this into account in Table 3.2, one sees that,

assuming George's implementation scheme, the final step of dissection (i.e., nested

dissection) is considerably more costly in terms of total storage than stopping

short 1 step. Moreover, if one takes into account the storage overhead, it can be

shown that stopping short by 2 steps is competitive with nested dissection.

In summary, it follows that the penultimate level of the variant of nested

dissection may reduce storage requirements of nested dissection with very little

increase of computer time.
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