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TECHNICAL MEMORANDUM X- 73361

NUMERICAL SOLUTIONS OF NAV1 ER-STOKES EQUATIONS

IA

FOR THE STRUCTURE OF A TRA I LI NG VORTEX

SUMMARY

This report describes the structure and decay of a trailing vortex through
the numerical solutions of the full, unsteady Navier-Stokes equations.	 The
governing equations are recast in terms of circulation, vorticity, and stream
function as dependent variables, and a second upwind finite difference, scheme
is used to integrate them with prescribed initial and boundary conditions using
Univac 1108 and IBM 360 computers.	 The time-dependent numerical solutions

,1	 rt

are carried out within a cylindrical volume that is coaxial with the vortex with
prescribed boundary conditions on the upstream face, on the axis of symmetry,
and on the cylindrical outer boundary.

Different models of the flow are postulated, and solutions are obtained
describing the development of the flow as integration proceeds in time. 	 A
ps- ametric study is undertaken with a view to understand the various phenomena
that relay possibly occur in the trailing vortex.

Using the Hoffman and Joubert law of circulation at the inflow section,
results obtained with the present method are compared with the experimental
data of Chigier and Corsiglia on a Convair 990 wing, model and a rectangular ,t	 t.
wing.	 The calculated results compare reasonably well with the experimental
results on axial and tangential velocity distributions and their decay, axial 4i

velocity variation along the axis, and core growth. 	 The flow with different -
values of the governing, parameters is computed.	 This parametric study

r greatly increases` our understanding of the manner in which the flow dissipates
downstream.

3 Particular difficulty is experienced in getting convergent ` solutions with
high values of the swirl parameter. 	 With an exponentially decaying circulation
distribution and uniform= axial flow at the inflow section and at the outer edge of ;R

. i the trailing vortex, we get convergent solutions, but the computer time increases'



ate,.

excessively as the swirl ratio ,increases. Also, it is found that the trailing k^
vortices persist to long distances downstream before decay. Due to the slow
development and decay of the vortex core in streamwise direction, vortex
bursting could not be obtained within the limits of available computer time when

j	 "uniform" boundary conditions were used.
r`

t
To force bursting within a reasonable computer time, an adverse pres-

sure gradient was imposed on the trailing vortex in the ambient fluid. A burst-
ing phenomenon was obtained under this condition. A sudden jump in the core r
radius occurred even before the reversal of the flow on the axis. 	 For a given
Reynolds number, slight changes in the swirl ratio exercised a large influence
on the bursting bubble.	 The flow downstream of the bursting rotated like a solid x

body. There is much need to carry out more numerical experiments to under-
stand better this bursting phenomenon as a function of the governing parameters
and interpret the sudden increase in the core growth in the light of available
theories.

I.	 INTRODUCTION`
a

P	 ?

A basic understanding of the various phenomena occurring in a trailing
x

vortex is essential to assess the hazards to an encountering aircraft and to
'	 ` '	 Such	 understanding s also requiredtransport and dissipation rates.. 	 uc	 an undepredict t	 p	 p	 g i_	 q A

for the safe operation of the aircraft in the terminal areas and for the develop-
ment of techniques for increasing the dissipation rates. 	 In this investigation, s
an attempt is made to develop an exact procedure of predicting the structure 4
of a trailing vortex under various ambient and prescribed conditions.

An early attempt to solve the problem was made by Newman [11,  who t
linearized the Navier-Stokes equations and neglected the pressure gradient ;	 .
term.	 He obtained analytical expressions for the circulation distribution and
for the radial and axial velocities. 	 The main contribution of Newmanf s work
is the analytical derivation of the expressions depicting the exponential decay of
circulation and axial and radial velocity distributions. 	 Several investigators
have succeeded in matching experimental data with the tangential velocity profile
of Newman, using different models of the eddy viscosity. 	 Hall [2, 3], Kopecky
and Torrance [4], and Bossel [5] used these analytical expressions to `provide

Ailinitial conditions for the computation of the flow further downstream.	 Later,

a
A

' J.
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Batchelor [6] obtained an analytical solution of the linearized equations with
the pressure gradient term. 	 He showed that far downstream, the contribution
from the logarithmic term becomes important. (r

j Hall [2] simplified the Navier-Stokes equations by quasi-cylindrical
approximation and integrated numerically the resulting parabolic nonlinear
equations. At a certain point in the downstream direction, he found large
gradients in the flow variables which prohibit the computations from proceeding
further.	 This indicates the failure of the quasi-cylindrical approximation.
Hall [ 3] interpreted this failure as an indication of the onset of a breakdown
similar to the failure of the boundary la^,Ter equations near the separation point.
This analogy may not be strictly valid because the failure of the quasi-
cylindrical approximation occurs when the axial velocity is much greater than
zero.

Bossel [ 5] and Mager [ 71 solved the governing equations with quasi- r
cylindrical approximations by the approximate methods of representing the
circulation and axial velocity profiles by polynomials. 	 Bossel [5] found, in x
his solution, an infinite number of discrete singularities whose corresponding
critical swirl values depend on velocity and circulation profile shapes. 	 Mager
[71 developed a momentum integral method for the core of the trailing vortex

` and used third and fourth degree polynomials to represent the axial and the
swirl velocity distributions, respectively. 	 He also found that for certain values
of the velocity ratio and swirl ratio, large gradients in he flow cause the ;.<
failure of the quasi-cylindrical approximation. 	 He indicated the onset of
bursting similar to the one predicted by Hall [ 3] . 	 He further obtained results
on either side of the singularity at breakdown. 	 Sarpkaya [ 81- obtained results r,
of vortex breakdown under adverse pressure gradients and correlated his t
experimental data with the theoretical predictions of Mager [ 71.	 It may be
pointed out here that Mager' s [ 71 results seem to depend critically on the
degree of the profiles chosen.	 There is a awed to investigate the flow with
other forms of profiles, particularly, the exponential ones.

Kuhn and Nielson [9] developed basic equations on considerations of
9

linear and angular momentum of the vortex and total pressure variation along i
the axis.- Using the Hoffman and Joubert [10] law of circulation distribution at
the inflow section, Kuhn and Nielson computed the flow downstream for gross
quantities such as the decay of the maximum tangential velocity, the core .'
growth, and the axial velocity d gtribution on the axis. 	 Comparison of their
theoretical predictions with the experimental data of Chigier and Corsiglia [11]
seems to be reasonably good. 9

ff	 '
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A number of experiments in actual flight, water tank, smoke chamber,
and wind tunnels have been conducted to understand the structure and decay of
trailing vortices [11-141.	 None of these, so far, gives reliable quantitative
or qualitative information concerning the structure, transport, and dissipation
of the trailing vortices.

So far, theoretical work to investigate the structure of the flow in the
trailing vortex has been done within the framework of a quasi-cylindrical
approximation of the Navier-Stokes equations. 	 This analysis is essentially
valid in the core region and ignores mutual interaction between viscous and
inviscid flow.	 As such, it can not predict breakdown phenomena with reason-
able accuracy.

In this investigation, numerical solutions of the full Navier-Stokes
-	 ` equations are used to describe the structure of the flow in a trailing vortex and

its decay or possible bursting. An unsteady form of the Navier-Stokes equations
is derived in terms of circulation, vorticity, and stream function as dependent
variables. With prescribed conditions at the inflow section on the axis and at the

. outer edge of a trailing vortex, the governing equations are integrated by the
second upwind finite difference numerical scheme on Univac 1108 and IBM 360
computers.	 The flow develops smoothly in time fromthe initial conditions to
an asymptotic steady state. The flow is essentially laminar.	 Turbulence is
introduced in a simplified way through the concept of eddy viscosity. 	 A fully
developed trailing vortex is simulated by a swirling flow coupled with an axial
flow.	 The problem essentially is to prescribe conditions at the inflow section,
-either from experimental data or from some other theoretical considerations,
and to compute the flow downstream. A parametric study of the structure of
the flow in the trailing vortex is made and the theoretical predictions are com-
pared with the available experimental data . 	 j

tk

11.	 GOVERNING EQUATIONS OF MOTION

A sketch of the coordinate system and the region of integration is shown
in figure 1.	 The Navier-Stokes equations for an unsteady axisymmetric flow
in nondimensional variables take the following forme

ar	 a	 1	 a	 1	 a 2r	 a	 1 ar
+	 (v	 ) +	 ( rvrl') -	 - Z - + r	 ^1^^rr' ar ar	 ar)at	 7z	 z Re

w$



µ	 r;

z
+	 (v,,n) +	 (vril) = 2	 U	 r' '8t	 8Z	 8raZ

CO

+ Re	 8Z z + 8r ILr 8r (+1)	 (2)

1	 820
+ —8	 1	 _ 	 (3)

(rr aZ	 8r	 8r)

where r, gyp, Z are the radial, azimuthal and axial coordinates, 	 and v , v
i
x

vZ are the components of velocity in the corresponding directions. 	 r

The variables are made dimensionless as follows:

U

CD
	 Z f	 r,

t = C t'	 ,	 Z = C ,	 r =C
f J'

VI	 vt	 v?Zr_yr = C ,	 v(p _ 
V,	

VZ = 
U

CO

f

-	 = C2 
 t

cvi	 U

Here, a prime indicates a dimensional variable.
x:	 -aa

Boundary and Initial Conditions
A

r = 0	 ,	 Z?Z 1	P	 0

E.

x

r> 0	 ,	 z= Z	 r	 , 	
71 

and 
0 

to be prescribed ( see Conditions
I and II)

{



t

T	
r _, co	 ,	 Z >_ Z 1 	:	 r --► ro	 .	 0	 .	 o -- oo (4) x

where ro and 00 are the asymptotic values of r and	 ( see Section IV) x
x ,

r ? 0	 ,	 Z = Z2	 Numerical boundary conditions discussed in
o

Section IV.
z

Here, Z = Z and Z = Z2 represent the inflow and outflow sections of the region
under consideration.

x

f"	 At Z = Z 1 , the following two sets of conditions are imposed:

Condition I

(1)	 Hoffman and Joubertt slaw [9,10] describes the circ .iation distribu-
tion.	 In our nondimensional variables, it can be written as ]

r _'

r = 1.47 r2'	 ,	 r	 r, (5) rri
i

where r i is the radius of the core xY.

r = r 1 + 0.928 In r ,	 r < r:5 r. (6) ti
1 r

1
i

K0 `	 -4.8 r

r = r1 g - 4.43 e	
0

,	 r > r. (7)

1

,a

Here

K1 = riVi

KO = roVof



where ro, Vo are the asymptotic values of the radius and the tangential velocity.

L	 = 0.76 - 0.928 In -1
(ro )

(8) i
Ki

'	 and

{

2 ^K - 1 U	 S
0	 4	 co G L R

where

S _ wing area
r-

R _ half of vortex pair separation distance at the inflow section

CL = lift coefficient.

From the continuity of vorticity and circulation considerations [9], k̂ I

r^

r. = 0.5625 r (9a) ! I

r. = 0.515 r0 (9b)

Here, we need to Imow r l from experimental data. u

(2)	 The axial velocity is represented by
ya

v	 =1;-0[1` -6 z +8 s - 3 ']	 .P	 P	 P (10)Z

r
v

7
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where

p _ r/ r2 , r2 being the distance from the axis at which the axiat.,velocity
is equal to the ambient velocity let r2 = ar l  where a is a constant).

Um - 
(vz1 r=o

o =	
U	

= 1 - V 
CD

The axial velocity satisfies the conditions

(a)	 atp = 0	,	 vZ=1-O
r a

x where 0 is positive for a deficit flow and is negative for an excess flow.
a

av 7tz
ap K'

av	 a2v
r

(b)	 atp=1	 ,	 _Z =	 Z
=p

ap	 ap
A

j Several numerical experiments were made with a third degree profile r

dropping the condition a 2vZ/ apt = 0 at p - 1.	 It was found that a fourth degree r

profile gave a smoother merging of the flow with the ambient fluid. 	 It is sur-
mised that higher degree profiles satisfying vanishing gradients of higher order

r
at p = 1 may give an even smoother and faster merging.

' av	 3v	 av
(3)	 vorticity q= -8 Z	 a r	 a r}

E
_ -12Aj?r(1 - 2Pr+ 02r2 )	 (11)

jiwhere

_ C
R

lr2

f̂ o

Oy.E



k

i

i

(4) Stream function

l7
22	 1 - 0 ( 1 - 3('r2 + 56 P

lr3 - ^r4^ (12)
r

t

Condition II

Here, we consider an exponentially varying circulation distribution as p
follows:

r ,,

r 2
r = A(1 - a-Br)	 (13)

k

where A and B are constants. 	 In this investigation, we take A = 0.554, B =
ff 8.0 so that the core radius is approximately (0.4C) . 	 For

Z=ZI	r>_ 0	 ,	 vZ_ p (1-(3Z)	 (14)
z^

1

r
= 0 (1 - aZ ) 2	 (15)

:.
t	 a

`t

'. 2
33a

k£ yr=AP 2	 (16)
u

d

x_0.0	 (17)
}.
r

^	 a

`.A
q

^	 '

Numerical experiments with various values of A and a are carried out.
We choose A = 0.75 and (3 = 0.25 so as to force bursting with reasonable com-
puter time.

a	 2



III.	 DESCRIPTION OF NUMERICAL METHOD
L. 	 is iQ

A second upwind finite difference scheme was used to integrate equations
(1) and (2) for r and 71, and the method of successive over-relaxation was used
for equation (3) for Vii.	 This method was used previously by a number of
investigators [151. Notable contributions have been made by Torrance [16], 

'	 Fromm [171,  and Donovan [ 18], who investigated the recirculating fluid motion
driven by the combined effects of a moving wall and natural convection in
rectangular cavities.	 Later,	 o ec•	 gul	 K_ p	 ky and Torrance [4], examined the formation
of eddies in a rotating stream. 	 Roache and Mueller [19] obtained numerical'
solutions for the back step flows with and without splitter plates and for flows
over square cavities.	 They discussed the transportive and conservative prop-
erties of this method and the importance of numerical boundaryry conditions to

10

give accurate and convergent solutions of the Navier-Stokes equations.	 The j
numerical method used here is essentially the same as that used by Torrance
together with other investigators in a number of publications.

The basic method used for equations ('1) and (2) at interior grid points `- a;

is as follows: the radial and axial velocity components are obtained by center
differencing	 the stream function,of

a
r

r i, j	 r	 8z)r	 2AZ
t

( i8) X

1 =-1.	 i, i+1 _	 i, j -1
(vZ )

i,j r	 8r	 i,j	 r	 2Ar
F

On the axis r = 0, using L ? Hospital' s rule, we get

2
(v	 )	 =

i,2	 (19)Z	 2

d

j
i ,1	 (Or)

10



'r

t

F.

Here, the subscripts denote the spatial location of a grid point. 	 Circulation
and vorticity are then advanced in time:

2
V r	 r

}

1fn+1	 to + (Ot) a	 a
(vZf)	 P 1	 a2	

UCO
8 i, J	 i, J aZ	 ar	 r r3

r

P+— a 2f 	 a	 1	 a+—	 (rf))
+ a2f	 a	 of+r(I. 

—2	 ar	 x	 ar)Re 2ar	 r 8raz Ite_
az i

where the variable f represents either the circulation or the vorticity -1. t

P= 0	 Q= 1	 if f is circulation r

P= 1	 Q= 0	 if f is vorticity -q

Diffusion and swirl ratio terms in equation (20) are represented by the centered
difference formula as follows: f

2f	 ff	 i+1,o	 j -	 j + 	
1_	 (21)

aZ2).  (AZ)2

4

and

I, n+1	 r n+1	 _ I, n+1
Rr	 ar __	 ij	 i+1,;	 i-11j	

(22)'

)iIj

3	 aZ	 3	 20Zr	 r`

It should be noticed that in equation (22) the latest value of circulation
is used.

, 	 11
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i

t

The advecton terms in the second upwind finite difference scheme are
treated in a different way. They are approximated by the three -point noncentered
finite differences as follows:

p r

Z8z	 Z	 Z	 i, j i, J	 Z i-1, j i-1, j e3

for (v ).	 > 0	 and (v )	 > 0	 (23a)
z 1, j	 z i-1 1 J {

or
Fv

1

(vZ )	 (vZ )dZ	 i, Jf i+1, j	 i-1, jf -1, j

< 0	 ,	 (23b)for (vZ ) 1	 < 0	 and (vZ^i -1' j	 .j;

where
t 3

(vZ)i + (vz-	 +1.j	 i1J
(	 )

r

vz i, j	 2 ti

F . k

and
e

z

(vz)i1j + (v
r'

{

(V	
)	 _	 j.- 	 (24)

z i-1,j	 2

{

Similar expressions are used for 3(v	 / 8 r.	 If (vZ)	 and (vL)	 are ofrrf) i ^ j	 i-1, j
opposite signs, a mixed expression consisting of the corresponding terms in
equation (23a, b) is used for the finite difference approximation. 	 At each
iteration, the computer checks the sign of (vZ)	 and (vr) ij 

at each interior.j

grid point and picks up the corresponding formula for the advection terms.

12
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iComputations proceed by advancing time-(At) . At each time step, new values of
circulation, I' , and vorticity, q, are obtained in that order according to equa-
tion (20) Then, the new stream function 0 is calculated from equation (3) by
the method of successive over-relaxation as follows;

I{

(s+1)	 (s)	 b
:ub) ij +	 2	 +	 r	 1 +	 r	 1

(OZ)2 r+Gtr (A r) 	 r - ^r (pr)2
2	 2

t	 1	 (s)	 (s+1)X r^i,j+(OZ)2'i+1,j+	 i-1,j
3

r	 1	 (s)	
r	

1	 (s+l)

+

a
i

r+ Ar
	 {Or}2	

i,j+1+Ar	 (dr)2	 191 
r -

2	 2

(25)

Here, (s) denotes the stream function at the grid point (i, j) after f sr iterations.
i, J !

The optimum relaxation factor wb =1.7 is found adequate for good convergence

for the given system of grid points. 	 We notice that the most recent values of Tj
and 0 are used in calculating the new 0 field. At each time step, equation (25)
for	 is iterated until the maximum difference at the grid points between suc- t
cessive values of 0 at each time step is X10-4 .	 Velocity components are then

3

calculated according to equation (18) , and the new values of F and q are cal-
culated at the next time step.

To avoid computational instability, the critical time step at each grid
point is given by

(vAt (
vr

Z ^ + 1 + ^r	
1' ^ +	 2	 +	 2	 1

(crit AZ	 2 r	 A r	 2 O r	 2Re(AZ)	 1 - 2r	 Re(Ar)

(26)

"s
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when the mean velocities ( vZ) i'j and (vr) i,j are positive.	 Similar expressions

for (At)	 are derived when (v)	 , and (v)	 are negative or they are ofcrit	 Z i, J	 r i,
opposite signs. 	 In actual computations, At= 0.95 x (Ot)crit is Used.	 For

static stability, no restraints are imposed on spatial mesh sizes. In Figure 2,
f

under the prescribed conditions, numerical experiments have been carried out
for Ar = 0.015, 0.025, and a = 2.0; and Ar = 0.035 and a = 2. 5, A Z being equal 3
to (2Ary in each case.	 Figure 2 shows that under the prescribed conditions as
the mesh size increases, gross quantities such as core growth, maximum
tangential velocity decay and axial velocity distribution remain almost the same. a
The slight increase in axial velocity and core growth for Ar = 0. 035 is primarily
due to increased value _ of a.	 Numerical experiments have also been carried out
with larger numbers of meshes in axial and radial directions. 	 Increasing the
mesh numbers in r and Z directions does not have appreciable effects on the ;4
flow structure so long as the prescribed conditions at the inflow section (i. e.,
a, A and core radius r) are mild and the value of the swirl ratio is low. i

By suitably changing the inflow conditions, the values of the governing `1
parameters, and by increasing the number of iterations, it is possible to remove r
kinks in the azimuthal ,components of the velocity, oscillations of the axial
velocity on the axis, and relatively large variations of the flow quantities a few
grid points inwards from the outflow section. X

As the computations proceed in time, the flow develops smoothly from
some initial state to the asymptotic steady state. 	 In general, the criterion
used to determine the steady state is as follows: ^.

Max` ^n+1 -fin
i1i

< 10 -4
	 (27)

t

1	
-,	 i,J

J a

is	
..

It is found that the equation for circulation converges faster than the vorticity a
equation.	 Also, the Poisson equation for 0 takes a lesser number of iterations 	 - c

at each time-step " as the solution converges.

With an exponentially varying circulation at the inflow section, the num-
ber of iterations increases excessively to get steady _state solutions satisfying
the previously mentioned criterion. 	 The number of required iterations increases
further as the swirl ratio is increased. However, the values of the flow quanti-
ties do not change appreciably after'

i
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Max n+1 _ n
0. 0005	 (28)

l,f

To save computer time without losing much accuracy, we adopt the pre-
t	 ^

viously mentioned criterion of convergence when the initial -circulation 'is
'	 described by the exponential law.

The basic equations were integrated on the Univac 1108 and IBM 360
computers of MSFC.	 Depending on the severity of the parameters and model
of the flow, typical run times varied from 15 to 125 minutes.

IV.	 DISCUSSION OF NUMERICAL BOUNDARY CONDITIONS
AT THE OUTFLOW SECTION AND AT THE OUTER EDGE

OF THE TRA I L  NG VORTEX r

Extensive numerical experiments were carried out with different condi-
tions at the outflow section and at the outer edge of the trailingvortex to under-

?('	 stand their effect on the detailed structure of the flow.

At the outflow section, Z = Z2 1 the following conditions were used:

4
(1)2	

_	
29

Ili	 I-1, j'I-2, j	 (	 )

a 
8 

('	 avr	1	 a
a)

aZ
I,j
	 r a Z'

a	 1
I,j	 ar ^r ar)	 (30)

f	 _ ^
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or

(b)	 - _ 130v	 _ 1_vr	 r 8	 '_	 Z	 rar

av	 av
Z

'`t

_	 r71
I,j	 a 	 3 	 (31)

each case at Z = Z	 derivatives were approximated b a first order back-In	 ^	 2 ^	 pP	 y •
ward finite difference scheme.

(2)	 0	 (32)IijaZ	 aZI,j

vr, vZ , and 71 are computed from	 .

In general, it is found that the numerical conditions at the outflow section
do not exercise any significant effect on the rate of convergence and the upstream

a

structure of the flow.	 In the present computations, boundary conditions set in
(1) (a) are employed.

s

Similar numerical experiments have been carried out with different 1
numerical conditions at the outer edge of the trailing vortex. 	 Particular atten-
tion is given to the following conditions on 0:

a) 	(^	 for	 i	 O	 the inflow
t

outer edge	 all	 outer edge at	 section
^l =0 0	 yr =0.0,	 vZ =1

•

(b) i, J _ 2 i, J-1 -	 i, J-2

a

Here, vr, vZ, and 71 are approximated from the updated value of 0 by a

first order backward finite difference scheme.

Condition (a) simulates the condition of a frictionless moving wall which {
forbids the development of a boundary layer on its surface.	 Most ofthe numer-
ical computations thuL far have been carried out with this condition based on
the belief that the wall is sufficiently far from the axis and that in a sizable
region of flow between the axis and the wall a uniform flow exists. 	 As such, the

f :^
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presence of the frictionless moving wall will not affect the development of the
n

flow in the trailing vortex. Conditions in (b) update the stream function in each
iteration, and thus permit the inflow and outflow of fluid at the boundary. This
simulates more realistically the condition in actual flows. 	 Numerical experi-
ments were carried out with logarithmic and exponential laws of circulation,
with boundary conditions at the outer edge prescribed in (a) or (b) . 	 It is
found that conditions (b) are highly destabilizing.	 In several cases, computa-
tions in successive iterations converged up to a certain extent and then diverged
or oscillated.	 Variation of mesh size or their number, ' changing the time inter-
val and modifying other conditions at the edge and at the outflow section, did not
improve the situation. We obtained results that satisfied our convergence
criterion given in equation (27) in only one case. 	 In figures 3 and 4, we com-
pare the results for axial velocity distribution on the axis and the maximum e^;
tangential velocity variation with distance downstream when conditions (a) or g

(b) are imposed. 	 We find significant differences, both quantitatively and
1

qualitatively, in the gross quantities as well as in the detailed structure of the }`
flow.	 If these results are reliable, they indicate that no matter how far the
outer edge is located from the axis, the prescribed conditions on it exercise -
significant effects on the structure of the trailing vortex.

With the conditions (a) at the outer edge, we obtain convergent solutions
with Hoffman and Joubert t s law of circulation for low values of swirl ratio, and
with the exponential law of circulation for all values of swirl ratio. 	 In the latter
case, computation time increased excessively as the swirl ratio was increased. f
Also, the deceleration of the fluid on the axis is slow indicating the need of much
larger range of integration if we are to obtain bursting through reversal of the
flow on the axis.	 Thus, to get more meaningful numerical results, we need a
larger computer and more computer time. 	 Since our interest is focused on
understanding the bursting phenomenon, we subsequently imposed an adverse .

i	 Y

pressure gradient in the ambient fluid to accentuate the deceleration of the
flow on the axis.

` N

V.	 DISCUSSION OF RESULTS
a

Numerical solutions of full Navier-Stokes equations are obtained for a
'	 wide range of governing parameters and prescribed conditions.	 At the inflow M1

section, Hoffman and Joubertt s law of circulation together with other condi-
Lions (as stated in Section H) are prescribed.	 These conditions at the inflow
section introduce the following parameters in the problem:

17
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1. Radius ri of the core where the azimuthal component of velocity
reaches its maximum. a

i
- 2. , Distance from the axis at which the axial velocity matches the ambient

velocity.

3.	 Deficit or excess 0 in axial velocity on the axis.	 Other parameters
appearing in the basic equations are the swirl ratio and the Reynolds number.

In the following discussion, we shall try to understand the manner in
which the flow pattern in the trailing vortex changes as we vary a parameter
while others remain fixed.

In Figures 5 and 1 we compute the flow with an excess or deficit in the
axial velocity on the axis at the inflow section when Re = 2000, swirl ratio =
0. 2, core radius = 0. 1, and a = 2.5. 	 vZ( Z 1 , 0) changes from 0.4 to 1. 576.

From Figure 5, we find that with an excess axial velocity, the flow on the axis
decelerates while with a deficit axial velocity the flow accelerates in the down-
stream direction. With an almost uniform flow at the inflow section, the flow
remains almost uniform in the downstream direction. 	 This feature of the flow
is in general_ agreement with the available experimental data [11-14]. From
Figure 6, we observe that as the magnitude of the axial velocity decreases, the
maximum tangential velocity also decreases.	 There is hardly any change in
the core growth as a result of the changes in the axial velocity on the axis at the

-inflow section.

In Figure 7, we compare the variations in the axial velocity on the axis,
maximum tangential velocity, and core growth as a result of the changes int core radius, r ip from 0.05 to 0.25 when Re = 2000, swirl ratio = 0. 2,
vZ(Z 1 , 0) = 1.176, and a = 2. 5.	 We find that as the inflow core radius increases

from 0.05 to 0.25 in steps of 0. 05, the flow accelerates, maximum tangential
velocity decays slower, and the rate of growth of the core decreases. 	 This
leads us to believe that a trailing vortex with a larger inflow core radius will
persist longer. 	 We further observe that the changes in vZ (Zi , 0) and

[ (v	 )	 /V ] are more pronounced for smaller values of the core radius.
c0 max	 1 l

Under the prescribed conditions, there is hardly any change in vZ (Z, 0) when
the core radius is greater than 0.15.

fa
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In Figure 8, profiles are drawn for the tangential velocity distribution
as the inflow core radius becomes 0. 1, 0. 2, and 0.25 with Re = 2000, swirl ;?
ratio = 0. 2, and a = 2.5.	 We find that there is no kink in the v

^O 
-profile for a

r
core radius of 0.1. A kink in vprofile appears when the core radius equals-	 pp	 q^

t
0.2.	 The magnitude of the kink increases as the core radius increases to 0.25.

In Figure 9, we compare vZ (Z, 0) and [(v
^O 

)max/V1] when a = 1.0,

2. 0, Re = 2000, swirl ratio = 0. 2, inflow core radius = 0.105, and v Z (Z 1, 0)

1.176.	 We find that as a increases, axial velocity increases and

[(vcp /V1)max^ decreases slightly. 	 An important feature is that the slight

overshoots in [ (v ) 	 / V ] in the entrance region with a = 1.0 smears away
' when a_ 2.0.	 ^O max	 1

In Figures 10 and 11, we compare axial velocity and maximum tangential
velocity distributions with changes in Reynolds number when swirl ratio = 0. 2,
core radius = 0.1, 	 a = 2. 5, and vZ (Z1, 0) = 0.75 or 1.25. 	 Figure 10 indi-

cates that with an excess-, inf16w axial velocity, v Z (Z, 0) increases with Reynolds
s

' number, while the opposite trend prevails with 'a deficit inflow axial velocity, y
Larger variations in the entrance region can be corrected by suitably changing
other parameters.	 No rational explanation can be obtained for this opposite
effect of Reynolds number on vZ (Z, 0) with an excess or deficit inflow axial

velocity.	 Figure 11 presents graphs for [(v^o)max^V1] with a deficit or an

:- excess inflow axial velocity. ` Reynolds number changes from 5000 to 15 000.
r We find that in all cases the maximum tangential velocity decays slower and '	 1	 a

the core becomes more slender as the Reynolds number increases. 	 The latter
results show that a trailing vortex with a greater Reynolds number may persist
longer before dissipation.

Figures 12 and 13 present graphs for the various flow quantities with an
excess and deficit inflow axial velocities when Re = 2000, core radius = 0. 1, and x
a = 2.5.	 In figure 12, vZ (Z1, 0) = 1.176 and the swirl ratio takes values of

0. 0, 0. 2, and 0.4.	 We find that the axial velocity decreases and[ (v )	 /V ]^max	 1
and the core growth remain unaffected as the swirl ratio increases. 	 Figure 13
indicates that with a deficit inflow axial velocity vZ (Z 1 , 0), = 0.75 and swirl

a

=,;.

r
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t t

f

ratio = 0. 4, vZ (Z, 0) decreases continuously except for a slight rise in its u

value at the entrance region.	 For swirl ratio = 0. 6, vZ (Z, 0) decreases

initially and then increases slightly as the outflow end is reached. 	 There is a
slight decrease in [ (v

(P
 ) mom/ V1 ] as the swirl ratio increases from 0`.4 to 0.6.

No appreciable change in core growth is noticed with the increase in swirl
a
r

ratio. As the swirl ratio was further increased to 0. 8, we could not obtain a {:
convergent solution even after a 70 minute run of the Univae 1108 computer.
.Successive values of

]

[ an ] max new	 old l i, j

n

oscillated, 'indicating either convergence was not possible or it would take too 5w	 ^long.

This discussion shows hs	 ws t at, in general, the swirl ratio has an effect
similar to the adverse pressure gradient. 	 It can be traced directly in the
vorticity equation when the swirl ratio is associated with the circulation gradient,
term which is negative so long as the core expands. 	 It plays a crucial role in
determining whether a breakdown is a possible phenomenon and the manner in
which a trailing vortex dissipates. 	 Our findings from past investigations are as
follows: i

1.	 With Hoffman and Joubertt s law of circulation, we could not get
bursting through the stagnation of the fluid on the axis and the consequent
reversal of the flow..	 More numerical experiments are probably needed to
reach this conclusion decisively.

2.	 Trailing vortices do not decay like the viscous vortex predicted by
Newman, viz. (v) m	 om (1/^) and (r	 C)	 Z.

ax

3.	 Trailing vortices persist too long or too far downstream.

It may also be noted that the flow downstream depends critically on the
conditions at the inflow section and the governing parameters. 	 It has a large
number of parameters 'which have opposite effects on the flow structure. 	 It
may be difficult to derive any ;general conclusions. 	 The previously mentioned

a

{
20C
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r
parametric study only gives us some idea of how the flow pattern should change	 t"
when one parameter changes and others are kept constant.

Let us now compare our theoretical predictions with the experimental
12aCorsianddata of Chi 'er	 li	 b 10 ft tunnel of NASA' s Ames Research

	

i	 ^	 g	 [ ] in 7 y
Center. These measurements were made with the Convair 990 wing model and
with a rectangular wing. These data have certain typical features generally
found in the measurements of other investigators. Distinguishing features of
the flow on the two wings are as follows:

1. In the Convair 990 wing model tests, we observe that a deficit axial

	

!	 flow at the inflow section (Z' / C = 6) accelerates to an almost uniform flow at
the outflow section (Z' / C = 12) Axial profile merges with the ambient flow
just outside the core.

!
2. In the rectangular wing tests, we see that an excess axial velocity on

the axis at Z t / C = 4 decelerates to an almost uniform flow at Z' / C = 9. Axial
velocity attains the ambient velocity at a distance approximately twice the radius
of the core.

	

j	 Chigier and Corsiglia [12] documented the data for transverse and span-
wise traverses. In certain cases, there are appreciable differences in the
measurements of the two traverses. These differences are probably due to the
presence of a secondary vortex besides the primary trailing vortex. The data
which are markedly affected by the presence of the secondary vortex are not
included in the comparison. However, some data which bear slight effect of the 	 'y
secondary vortex are included in the graphs. At the initial section, an average
value of the core radius rl, maximum tangential' velocity Vi, and the excess or 	 't
deficit axial velocity on the axis is taken from the experimental data for our
theoretical model of the flow. Kuhn and Nielson [9] found that Hoffman and
JoubertT s law of circulation reproduces the experimental data for both wings
with reasonable accuracy. Using the eddy viscosity concept, they found the
Reynolds numbers for the flows on the Convair 990 wing model and on the rec-
tangular wing as 3333 and 2143, respectively. In our theoretical calculations,
we used the same law of circulation and the Reynolds numbers. For the sake of
uniformity and to incorporate more points in the core` area, we have taken the
Mid-chord C = 1.0.

,

l
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In Figure 14, we compared the theoretical predictions of the core growth,

the maximum tangential velocity distribution, and the axial velocity on the axis x
with the corresponding experimental data on the Convair 990 wing model. We
found that the average value of the data is not;affected markedly by the secondary n

-	 vortex, and it approximates reasonably well the theoretical predictions. 	 Figure
15 presents the tangential velocity distributions at various sections in the down- n	 r
stream direction. We observe a clear tendency of smearing the tangential

r

velocity profile with the ambient fluid.	 Also, under the prescribed conditions
k

of the governing parameters, there is hardly any change in the tangential
velocity profile in tba outer portion of the flow at the various downstream w
sections. 1

In Figures 16, 17, and 18, we compare the present results for the
overall characteristics of the flow such as the axial velocity distribution on
the axis, the maximum tangential velocity distribution, and the core growth
with downstream direction with the corresponding experimental data. Also in
Figures 19 through 22, we compare the detailed structure of the flow represented
by the axial and the tangential velocity profiles with the corresponding data in the
spanwise and normal traverses. 	 In all cases, the agreement of the theoretical
predictions with the experimental data seem to be within the experimental error.

Attempts were made to obtain vortex bursting in the calculations. Within
Hoffman and Joubert t slaw of circulation, solutions diverged as the swirl ratio
was increased to 0.8 with Re = 2000 and an inflow core radius of 0, 4 C.	 We
subsequently changed the circulation distribution at the inflow section to an 	 -
exponentially varying law, given by equation (13) , while the other conditions
were kept the same.	 Convergent solutions resulted, but the number of iterations
increased excessively.	 Comparative study indicates that under similar condi-
tions convergence is faster with the logarithmic law than with the exponential -	 =
law of circulation. 	 With the exponential law, the number of iterations increases
rapidly as the swirl ratio is increased.

To save computer time and obtain bursting within the capability of the
9

available computers, it was necessary to impose an adverse pressure gradient,
'	 given by equation (14), at the outer edge of the trailing vortex so that the flow
`	 decelerates rapidly and bursting through the reversal of the flow may occur.

In Figure 23, we compare the results of axial velocity distribution on the
axis of the trailing vortex when the ambient axial velocity is given by vZ =

A (1 - (3Z) .	 Here, the computations are made with A = 1. 0, /3 = 0.0; A = 1. 0,
f
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3 = 0.2; A	 1. 0, (3 = 0.25; A	 0. 75, a = 0.25; and A 	 0. 5,	 0.25 when
Re = 10.0 and swirl ratio = 0.8. 	 It is quite evident that the greater deceleration
of the fluid at the outer edge of the vortex leads to larger retardation of the
fluid on the axis. 	 With a larger deficit axial flow at the inflow section, there
is larger deceleration of the fluid on the axis. 	 Comparatively larger changes 1
take place near the inflow section. 	 For A = 0.75,'(3 = 0. 25, and Z = 4. 0, the

x	 axial velocity at the outflow section is zero; therefore, we impose a strong
adverse pressure gradient on the trailing vortex.	 In the other computations,
A = 0.75 and (3 = 0.25 are taken.

In Figure 24, we compare the axial velocity variation on the axis when
the Reynolds number changes from 10 to 50 and the swirl ratio is kept constant
at 0.8. We find that with increasing Reynolds number, there is larger decelera-
tion of the fluid. Actually, bursting of the trailing vortex through the stagnation
of the fluid on the axis and consequent reversal of the flow have taken place.
Bursting may take place at lower values of the swirl ratio if the Reynolds number
is increased. " This result is similar to the one shown in Figure 10 with the
Hoffman and Joubert law of circulation.

Figure 25 presents curves for the axial velocity variation on the axis
with the distance downstream at swirl ratios of 0.6 	 0.65	 0.7 	 and 0.8 with
the Reynolds number equal to 50.	 At a swirl ratio = 0. 6, vZ(Z, 0) decreases r;	 11

continuously to zero at the outflow section. 	 For other values of swirl ratio, the a
axial velocity decreases faster in the entrance region and then increases to
attain zero value at the outflow section. 	 This deceleration is greater with larger
values of the swirl ratio. 	 It is clear that for Re = 50, bursting of the trailing
vortex has taken place for a value of the swirl ratio lying between 0.6 and 0.65.

Figure 26 shows the growth of the core for the swirl ratios of 0. 6, 0.65,
0. 70, and 0.8 ̀and Re =' 50.	 The striking feature of this graph is the nonlinear «
growth of the core up to a certain distance downstream, followed by a sudden
jump to the outer edge of the region of integration. 	 The core radius remains .`
constant thereafter. 	 As the swirl ratio is increased, the core grows faster and
the jump in the core growth takes place earlier. 	 It is interesting to observe that

Î 	 this jump in the core radius takes place even before the bursting of the trailing
vortex through the stagnation of the fluid on the axis has taken place. 	 This

I	 abrupt change in the core growth at a particular section downstream shows that
some sharp change in the flow characteristics is taping place, indicating some
sort of breakdown in the sense of the Benjamin [20] and Ludwieg [21] theories.
There is need to investigate the phenomenon of abrupt growth of the core through
more numerical solutions of the Navier-Stokes equations and comparing them

y	 with the results of the available theories.f
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Figure 2  ,shows the variation of the maximum tangential velocity with
the downstream distance for various values of the swirl ratio and Re = 50. We d

j observe that for each value of the swirl ratio the maximum tangential velocity
4 decreases with rapidity up to the point where the abrupt change; in the core

growth takes place, and then it remains constant. With the increase in swirl j
ratio, the ratio [ (v9 )max/ V1] decreases faster. 	 Figure 28 presents the pro-

files for the tangential velocity at different stations in the downstream direction,
with a swirl ratio of 0.8 and Re = 50. As we move downstream, the point of p

maximum tangential velocity moves towards the outer edge of the trailing vortex
and the profiles become almost linear. 	 This shows that the fluid in the down-
stream portion rotates like a solid body.

Figures 29 through 32 present streamlines for swirl ratios of 0. 6, 0. 65,
0. 7, and 0.. 8 and Re = 50.	 In Figure 30, we observe the formation of a bubble.
Figures 31 and 32 indicate that as the swirl ratio increases, the extent of the
bubble increases in the longitudinal and transverse directions. 	 In Reference 4,
the authors obtained solutions depicting formation of eddies in a rotating tube.
The present results differ from them in certain essential features. '	 r

i VI.	 CONCLUDING REMARKS s
3

}

bra

Numerical solutions of the full Navier-Stokes equations have been obtained
for the structure of a trailing vortex. 	 Various phenomena that may occur in the
trailing vortex are examined by varying the prescribed conditions and the

•+ governing parameters. Using the Hoffman and Joubert [10] law of circulation
at the inflow section, the present theory predicts reasonably well the experi-
mental data of Chigier and Corsiglia [ 121 on models of the Convair 990 wing and
a rectangular wing.	 Use of an exponential law of circulation at the inflow section
and an adverse pressure gradient at the outer edge of the trailing vortex lead to
solutions that depict a vortex bursting through the sudden expansion of the core

' and through stagnation and subsequent reversal of the flow on the axis.

A better understanding of the various bursting processes that lead to the
i f dissipation of the trailing vortex is needed.	 More numerical solutions of the full

Navier-Stokes equations with different models of the flow should be obtained and
the results be compared with available theories. u
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