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A GENERAL METHOD FOR CALCULATING THREE-DIMENSIONAL COMPRESSIBLE
LAMINAR AND TURBULENT BOUNDARY LAYERS ON ARBITRARY WINGS

by

Tuncer Cebeci, Kalle Kaups, and Judy A. Ramsey
McDonnell Douglas Corporation

SUMMARY

A very general method for calculating three-dimensional compressible
Taminar and turbulent boundary layers on arbitrary wings is described.
The method utilizes a nonorthogonal coordinate system for the boundary-
Tayer calculations and includes a geometry program that represents the
wing analytically,and a velocity program that computes the external velocity
components from a given experimental pressure distribution when the external
velocity distribution is not computed theoretically. The boundary-layer
method 1is general, however, and can also be used for an external velocity
distribution computed theoretically.

The boundary-layer method accounts for all the geometric parameters of
the coordinate system. The Reynolds shear-stress terms are modeled by an
eddy~viscosity formulation developed by Cebeci. The governing equations are
solved by a two-point finite-difference method used earlier by Keller
and Cebeci for two-dimensional flows and later by Cebeci for three-
dimensional flows.

Several test cases are computed by this method and the results are
checked with other numerical calculations and with experiment when available.
A typical computation time (CPU) on an IBM 370/165 computer for one surface
of a wing which roughly consist of 30 spanwise stations and 25 streamwise
stations, with 30 points across the boundary layer is less than 30 seconds
for an incompressible flow and is a little over this for a compressible
flow.
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SYMBOLS

Van Driest damping length
c(1 + e;) or a constant for scaling the spanwise coordinate y
pe/p or Tocal chord length

local skin-friction coefficient based on the Cartesian component
of wall shear stress vector in x-coordinate direction

Tocal skin-friction coefficient based on the Cartesian component
of wall shear stress vector normal to the x-y-plane.

on/ (pgug) -

pressure coefficient, 2(p ~‘Pm)/(me§)
total enthalpy ratio, H/He
transformed vector potential for y
u/ue
transformed vector potential for ¢
W/Upep

El

total enthalpy

unit vectors in X,y,z-directions of the Cartesian coordinate
system in which the wing is defined,

geodesic curvatures

geometric parameters

curvature vector of (3-D) coordinate Tine
modified mixing-length or a scaling constant
parameters in transformed differential equations
free~stream Mach number

unit outside normal vector to the surface

static pressure

vii




-ou'v',-pw'v’,
-pV

Prandtl number

total pressure

(X,¥,z) position vector for point on surface

ues]/ve, Reynolds number

arc length along x-coordinate Tine

time

unit tangent vector along (3-D) coordinate Tine
component of velocity vector in x~-coordinate direction
reference velocity .
resultant velocity at the edge of boundary layer

total or resultant velocity

derivative 3u/ax

friction velocity

free-stream velocity

component of velocity vector normal to the surface
component of velocity vector in z~coordinate direction

oW/ 3z

Reynolds stresses

independent variable in chordwise direction, x = ¢ = ¢,
(attachment Tine)

independent variable normal to the surface, is equal to the
normal distance.

jndependent variable in spanwise direction, z = y/b
Cartesian coordinate system used for wing definition

Tocal geometric angle of attack of wing section chord lines
with respect to x-axis (a(y) expresses wing twist)

constant in outer eddy viscosity equal to 0.0168
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Subscripts

e

9

flow deflectian angle

isentropic exponent, here vy = 1.4

displacement thickness based on the Cartesian ve10ci%y
components in the x-coordinate direction

displacement thickness based on the Cartesian velocity
components normal to the xy-plane

eddy viscosity and eddy conductivity, respectively

airfoil ordinate in the coordinate system defined in
figure B2,

transformed coordinate normal to surface
angle in tangent plane between x and 2z coordinate lines

momentum thickness based on the Cartesian velocity components
in the x=coordinate direction

momentum thickness based on the Cartesian velocity components
normal to the xy-plane

Tocal sweep angle, measured between normal plane to freestream
velocity vector and z-coordinate line

dynamic viscosity

parameters in transformed energy equation

kinematic viscosity

airfoil abscissa in the coordinate system defined in figure A2
density

shear stress

stretching variable defined by eq.(B5) (x-coordinate in
differential equation is x = ¢ — ¢, (attachment 1ine))

two~component vector potential, eq. (23)

outer edge, effective
geodesic

at chordwise input stations

ix




i,0 inner and outer regions for eddy viscosity

J at spanwise input stations

2 . leading edger

P ’ chordwise stations at which boundary layer is computed
r wing root

s spanwise stations at which boundary layer is computed
t wing tip or "total"

W wall

© » free~stream condition§

bars denote Cartesian coordinate system

primes denote differentiation with respect to n



INTRODUCTION

In recent years several methods have been developed to compute three-
dimensional laminar and turbulent boundary layers. For example, in [1],
Hunt, Bushnell and Beckwith developed a finite-~difference method for analyz-
ing compressible turbulent boundary Tayers on a blunt swept slab with leading
edge blowing. In that reference, the Reynolds shear stress terms were
modeled by using a mixing-~length expression which was based on a generaliza-
tion of the two-dimensional model used earlier by Bushnell and Beckwith [2].
This model has been adapted by Adams and was used to compdte several semi-
three-dimensional turbulent boundary layers (see, for example, [3]). 1In [4]
Bradshaw extended his two-dimensional method to compute three-dimensional flows
past infinite swept wings and obtained good agreement with experiment. His
method differs from the previously mentioned ones in that his modeling of the
Reynolds shear-stress terms does not use the mixing-Tength concepts; rather,
it uses the turbulence kinetic energy equation, a model that has been used
extensively by Nash and his associates (see, for example, [5], [6] ).
Recently Harris and Morris [7], Kendall et al. [8], and Wortman [91,
developed methods to compute full three-dimensional compressible laminar
and turbulent boundary layers. Their methods also use mixing-length,
eddy-viscosity concepts to model the Reynolds stresses. Except for the
methods of Kendall et al. and Wortman, none of the above-mentioned methods
have been applied to flow problems over real aerodynamic configurations
such as wings, and the problems of calculating three-dimensional laminar |
and turbulent boundary layers on such bodies have never been investigated.

In the present report, we discuss a general method applicable to
three-dimensional compressible laminar and turbulent boundary-layer flows
on arbitrary wings. The method uses an eddy-viscosity formulation devel-
oped by Cebeci [10] and uses a two-point finite-difference method developed
by Keller and Cebeci [11]. So far this method has been tested for most of
the available experimental data on various three-dimensional flows and has
been found to give accurate results (see, for example, [10], [12], [13]).
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boundary-layer calculations. This is a nonorthogonal system that eliminates
most of the computational difficulties associated with the orthogonal systems
used for wing problems. To illustrate this significant feature, let us con-
sider an orthogonal system in which the orthogonals are constructed at
constant percent-chord stations. With this system, as shown in figure 1,

the orthogonals started from the wing-root congregate at the nose, Teaving
Targe portions near the trailing edge uncovered. This is especially true
for a wing with a sharp trailing edge. A round trailing edge rectifies the
situation somewhat but there is still a large area of the wing where the
orthogonals are sparce.

The coordinate system in figure 1 was constructed with the polar angle
$ = x at the root section as the other surface coordinate (see figure B2).
As is seen from figure 1, there are computational difficulties at the trail-
ing edge. To show this, consider figure 2 in which the surface coordinate
network x and z 1is obtained by extending the surface coverage with the

A
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Figure 1. An orthogonal system for the wing.
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Figure 2. Wing in the x and z plane.

dashed lines. Here AA" s thestagnatfon line, AB the root section, and
D 1is a point on the trailing edge. Starting from the initial lines, the
boundary layer can be calculated along the Tine BC" including the root.
However, the point D cannot be obtained in a straightforward manner. This
is also true for the rest of the trailing edge points D', D" and D" .

Another possible coordinate system can be obtained by representing the
wing by one or more separate conical surfaces. Figure 3 shows such a
representation. Here the wing panels ABDC and CDFE form two conical
surfaces with apexes at P and Q, vrespectively. The shape of the panel
ABDC and the coordinate system in the developed plane are shown in figure 4.
The initial lines are AC and AB. AC 1is the stagnation 1ine and AB is
the wing fuselage junction. Calculations can be started at corner A. A lin-
ear coordinate transformation can be used to avoid marching into the negative
r direction. Such a coordinate system without taking the thickness into
account (this amounts to representing wing sections by flat plates) was
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Figure 3. Representation of the wing by conical sections.

AI

Figure 4. Notation for conical section ABDC and the coordinate system in the
developed plane.



used by Nash and Scruggs [6]. The disadvantage of this coordinate system
is the difficulty of doing calculations in the overlap region. This is a
major difficulty and with the assumption for zero thickness, it is a poor
and inaccurate coordinate system for boundary-layer computations.

A second major desirable feature of our method is the'geometry subprogram
which is employed to calculate the coordinate system and its geometrical param-
eters. By means of this program, since we are using a body-oriented coordinate
system, we représent the wing analytically and calculate the geodesic curva-
tures and the metric coefficients once and for all. In this way we eliminate
the need for calculating the coordinate system, say, with each angle of attack,
as in the case with a streamline coordinate system,

A third desirable feature of our method is its extremely short computa-
tion time. According to our calculations, we observe that a typical computa-
tion time (CPU) on an IBM 370/165 computer for one surface of a wing, which
roughly consists of 30 spanwise stations and 25 chordwise stations with 30

. . .
rid points across the layer, is Tess than 3

[{=]

flow and slightly more for a compressible flow. There are several reasons
for such a small computation time. First, we use transformed variables that
allow us to take a few spanwise and chordwise stations. Second, our coordi-
nate system is an "optimum” coordinate system for a wing, the flow on one
streamwise section differs 1ittle from the other neighboring streamwise
sections, making the numerical solutions converge very rapidly. A third,
and maybe the most important reason, is the numerical method we use. This
is a very efficient scheme that has been found to be very suitable for
parabolic partial differential equations (see, for example, [14]).

The method so far has been demonstrated for several test cases and its
accuracy has been checked with experimental data and with other numerical cal-
culations. The resulis look very encouraging. However, additional calcula-
tions are needed to further test the method for flow conditions other than
those studied here.



GOVERNING EQUATIONS

The governing boundary-layer equations for a nonorthogonal coordinate
system are given in references [15] and [16]. With a slight change of
notation for compressible laminar and turbulent flows (x and z denoting
the surface coordinates (see figure 5)), they are given by

Continuity equation

5x (puhy sine) + g (ewhy sine) + gy-(EVh]hz sing) =0 (1)

x~-Momentum equation

P %;—%§-+ p %E-gg-+ PV g%-—-p cots K]uz + pcSce K2w2 + pK]zuw
2
_csc B 9p cote csce 3p , 3 3u _ —T—T>
'F;—_'Bx * ho 52 3y @ 5y — PuV (2)

z-Momentum equation

u ow W ow , — 2 2
) ET.5_)2.+ P ﬁz.52-+ pv 3y — p cots K2w + pcsco K]u + pK21uw
2
coto csce dp _csce3p .3 [, M _ T
S By 3% * 5y (“ sy — ™Y (3)

Energy equation

Q)QJ
=

—93H _ 3 |u oH 1\Vs (Yt —
TeVay Ty WW”(“W)W(T)-“” (4)

Q)
I

+p-‘ﬁ-é—

©
:rl:
—

Hore pV = pv + o'v' and h] and h2 are metric coefficients. The latter
are functions of x and z, that is,

hy = h1(x,z) . hy = h2(x,z) (5)

Also, 6 represents the angle between the coordinate lines x and z. For
an orthogonal system © = w/2. The parameters K, and K, are known "as
the geodesic curvatures of the curves z = const. and x = const., respec-
tively. They are given by '
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K, = L [2—-(h cose) —-Eﬂl] K, = ] 2_ (h il
1~ hh, sTne Lox 2 5z I* "2 7 Rk, sine"[%i' 1 €oso) "52_]

. (6)
The parameters K]2 and K2] are defined by
R AT L 20 -
_ 1 1 ae + ] ae |

u; represents the total velocity within the boundary layer and is given by

2

+ 2uw cose)”2 (8)

_ 7.2
ug = (U + w

At the edge of the boundary layer, (2) and (3) reduce to

U. du. W, du
e %Y e ‘Ye 2 2
Pe <ﬁ] 5% T hy, 52 Cotd Kyug + cscb Kowg + K12uewe>
2
- _ Csce ap cote cscé 3p
Thy Y TR, Wz (9)
u, ow W, oW
e Ve e Ve 2 2
Pe <ﬁ_1 3X TR, 5z OO Ky +csco Kyug + K21”ewe>
cot§ csce 23p _.£§£EE.§R (10)
hy 3X h, 3z

The boundary conditions which we shall consider for (1) - (4) are:

- _ sHY _
y=0 u, v, w = 0, (ay) 0 (11a)
y=8 u = ue(x,z), W= we(x,z), H=H, . (11b)

The solution of the system given by (1) - (4) subject to (11) requires
closure assumptions for the Reynolds stresses, =-pu'v', -ow'v' and -py'H'.
They also require initial conditions on two intersecting planes. Here we
consider several options of starting initial conditions on these planes. When
the solutions start at the leading edge of the wing, we use the stagnation-
Tine equations. These equations are obtained in the present coordinate

- 8



system be examining the velocity components in the coordinate system shown
in figure 6 where we see that

u sine

u

W = w+ it-coso

At the stagnation line u = 0. Therefore, u=0 and w = W. Thus, equations
(1), (2), and (3) reduce to the stagnation-line equations if we set u = ap/sx = 0.
Then the x-momentum equation becomes singular on that line. However, differenti-
ation with respect to x will yield a nonsingular equation. After performing

the necessary differentiation for the x-momentum equation and taking advantage

of approximate symmetry conditions (w/o5x = 3v/ax = azu/ax2 = 0) and using (9)
and (10}, we can write the governing stagnation-line equations as:

=4 |

Figure 6. Sketch showing the coordinate velocity components in orthogonal
and nonorthogonal systems.

Continuity:

. 9 . P —_— .
phy sine u + 5;-(pwh1 sine) + 3?'(°Vh1h2 sing) = 0 (12)

X~Momentum:

2 2
u au au u W_ Ju
X w U — %Y _ xe . e %%e
P FT'* S Y tov gy ¥ eKyghuy = o <_h] * h, 3x * K]Z”e”xe)
3u
3
+'5Ty-|iu TX"D(U'V )x] (13)



z-Momentum:

Wy W,
o %’_2—"’+ oV ay —p cote szz = e<h£a——cote K2w2>
2 2
+ 9 ___ LTI
ay PW'Y ) (14)
Energy
u2
w 3H , ——oH _ 3 | uaH (_1)8_ t)_ e
e h, 3z T evay T oy [Pr 3y M 1 —pr YAV A H .(]5)
Here u, = U/ 99X, Ugg = aue/ax and total velocity Up = W. These equations
are subject to the following boundary conditions
y =0, Ugs Vo W = 0, (aH/ay)w =0 (16a)
y=3s u = U(xs2),  w=wy(x,2), H = H, (16b)

When the solutions start at the root or the tip of the wing, excluding
the leading edge, we use either the chordwise attachment-line equations
(plane of symmetry) or the infinite-swept-wing equations. Note that these
equatibns are just approximations to the governing equations in those two
regions. The attachment-Tine equations are obtained in a manner similar
to the stagnation-line equations, On this 1ine w and 20p/dz are zero
making the z-momentum equation singular. However, differentiation with
respect to z yields a nonsingular equation. After performing the necessary
differentiation for the z-momentum and taking advantage of the approximate
symmetry conditions (ou/%z = 3v/dz = azw/az2 = 0) and using (9) and (10),
we can write the governing chordwise attachment-line equations as:

Continuity:

X (puhz sine) + phy sine w, + gy-(57h1h2 sine) = 0 (17)

x-Momentum

u. au
u v, — 2 _ e “e 2
F;'S"+ 0 ay — p cote K1u = P <ﬁ;-5§—-—-cote K]ue>

+ gy (u ;’—;—pu'v') (18)
10
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z-Momentum

2 .
pﬁ]—é_::iJ'pF §+p_vi;;£+°'(21uwz= <:_<]eawze hwz_"'KZIeze)
g—[ a———pr'—r) } (19)
Energy
S R N R
Here w, = awW/az, Woo = awe/az and total velocity up =.u. These equations

are subject to the following boundary conditions:

y=0 u=v=20 w, =0 (aH/By)W =0 (21a)

8 u

W H=H (21b)

y z ze e

ue(x,z) W

The infinite swept wing equations are obtained by neglecting the spanwise
variation of u, v, w and H. They are given by:

Continuity
. 3 .
g—x (puh, sine) + 5 (oVhqh, sine) = 0 (22)
x-Momentum
u v, — 2 2 + oK
) Tl—'é—+ pvV — ay — p cot® K1u + p csce K2w pKypuw
u
(h_e'r— coto K]u2 + cscé K2w2 + K]Z“‘ewe> + g—y(u g—;j;— pu'v')
(23)
z-Momentum
u—!"-+_V — coteKw2+ csceKu2+ K, uw
e hy BX dy P 2 P 1 PR21
2 2 3 aw —r—r)
< — coto ‘sze + cscé Klue + K21”ewe> + 3y (u 3y pw'v
(24)



_ : o 2
u 3H, —3H _3 |u_ dH 1\s (Y =T
Phyox TPV ey T oy P‘F‘ay+“(l_W>W<T>_QVH] (28)

The boundary conditions are the same as those given by (11) except that Uq

and W, are independent of z.

12



CLOSURE ASSUMPTIONS FOR THE REYNOLDS STRESSES

For turbulent flows,.it is necessary to make closure assumptions for
the Reynolds stresses, -pu'v', -pw'v' and -pv'H'. In the study reported
here we satisfy the closure cond1t1ons by using the eddy-diffusivity concept
and relate the Reynolds stresses to the mean velocity and total entha]py

profiles by

5pu'_“'v' = ps:ﬁ'1 -g—; | , -ow'y! = L g—}v (26a)
-p_V-'_I-I—r = pey 5—3— ' (26b)

By means of "turbulent" Prandtl number, Prt (= Em/eH), we can also write
(26b) as

€
VT = _ﬂ‘__li
-pV'H = p Pr. oy (26c)
We use the eddy-viscosity formulation of reference [10], and define €m by

two separate formulas. In the so-called inner region of the boundary layer,
(em) is defined by the following formula

2 2 1/2
(e,); = Lz[(g—;) + ($4) + 2 cose (3—;)(2—;)] (27)
where
L = 0.4y[1 — exp(-y/A)] (28a)
1/2
) v [° 1/2 ) Ttw
A =26 D:('a) N u_. = W (28b)
u\2 w |2 12
- . u W 2 3
Tow = M <—y>w + <%y>w + 2 cose (sg)w <§¥>w (28¢c)

In the outer region ¢_ 1is defined by the following formula

m

@«

(¢) =0.0168 f(ute—ut)dy (29)
0
0

13



vwhere

2 2
Upe = (ue + Wy o+ 2uW, cose)”2 (30a)
ug = (u2 Wl + 2uw cose)V2 (30b)

The inner and outer regions are established by the continuity of the eddy-
viscosity formula,

According to a number of studies, the turbulent Prandtl number is

relatively constant across the boundary layer (see reference [14], for example).
In our study, we shall take it equal to 0.90.

14
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TRANSFORMATION OF THE GOVERNING EQUATIONS

The boundary-layer equations can be solved when they are expressed either
in physical coordinates or in transformed coordinates. Each coordinate has its
own advantages. In three-dimensional flows, where the computer storage and
time becomes quite important, the choice of using transformed coordinates
becomes necessary as well as convenient because the transformed coordinates
allow large steps to be taken in the streamwise and spanwise directions. In
addition, they remove the singularity the equations have in physical coordinates
at x =0 and z = 0.

Let us consider the transformation of the equations given by (1) to (4).

In this case we first define the transformed coordinates by

u, \1/2 Jz.
- = ho= = h d
X = X, z =2z, dn pe“esl> pdy, $1 J 19X (31)

and introduce a two-component vector potential such that

. _ 3y . T
puh2 sing = 3y ? pwh1 sing 3y
(32)
= (3,2
EVh1h2 sine (ax + 5%)
In addition, we define dimensionless 3 and ¢ by

y = (peueues1)1/zh2 sine f(x,z,n)

(33)

)1/2

¢ = (pgugUeST Upes/Ug Ny Sine g(x,z,n)

Using these transformations and the relations given by (9), (10) and (26a,c),
after some rearranging, we get

x=Momentum
(b.f:u)I + m. ff" — m (fl)z_mfl '+ m.-f'g — m ( 1)2.+m c
1 2 579 6’ 9 — Mglg 11

_ of! of of! : 9
‘Wo(“%r“‘“EY)*W(g'ET‘f'59““

15



Zz-Momentum

(bg") + m,fg" —m4f'g' —m3(g')2 + mggg" —mg(f')2 + my,C

- m10 ( : ax KYi 3z
:Eﬁergy'

. ' . N
(U-IE') + “2EI'+ ué. =mg (fl gE —F Bf) + ITI7 (g' _g_g__ E! g_g_)

Here primes dénote differentiatiun with respect to n and

f! = u/ue, g' = w/”ref’ E = H/He'
= + ] = 2 = —= =
b = c(1 Em) R C _p_pe“e R c P em | em/\)

The coefficients my to Mios My to ug are given by

(=172
S, du s (p 1)
m o=y (1 + e>+ _ee 2 (h, sine /ojuy)

1Y% X h-lh2 sing - ax
Sy 3ug
m2 =‘HE5‘)'(——'S-IK'I cote
m3 = 'S] COte K2 ref
Ue
= s.K - fl_ ref ° + K ref
My = S981 » My h2—2 1251
u . Ue
e
S-I -.l
me = FT (/peueues1 h2 sine) V h] sing

: Sy u u 2
my = ﬁ% G+ Mg = Sk esco <‘£’e£> > My = Syky csco
e e .
My = 1
10 hy

au W au ’ ’ w
1 e e e e
Sy [u - + 737 — cotoe K] + csce K2<
u h2 Ug
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(36)

(37a)

(37b)

(38)

u

ref



51 U, Wy Wy OW, 2 2 \
" = T \Fr 5% * 52 — coto KyWg + csco Kyug + Kz]weué/ (38)

o C Pr ~ ‘
“1‘W(”€_‘) wp = mf + mgg,

'U

t
2 . _
Ue 1\ ceen o o (Yref o fere s rem (89)
My = C o= h —-3?) f'f" + g'g ( 5 cose (f'g" + g'f")
- e L voe _ _ _ 3
To transform the governing stagnation-line equations, we define the
+wrancfnvmad ~anwvdinatac hvy o .
LI WIHo 1 VIHITU LUuVvVIdvliiavoeo IJJ
u 1/2
X = X, z=z, dn = : xﬁ pdy . (40)
Peke™
the two-component vector potential by
ouxh2 sing = g%-, pwh] sine = %%
(41)
— : g - adr‘\
pvhyh, sine = - w + 527
and the dimensionless ¢ and ¢ by
1/2 .
Y = (pe“e“xehl) / h2 sine f(z,n)
y (42)
o = ( u,.h )1/2h sins f (z4n)
- PeMexe'' 1 u o 9iz,n

With these new variables, for Taminar flows (b = C), the stagnation-Tine
equations can be written as

X-Momentum

1 . .
(bf*) + Ff" — ()% —mf'g" + mef'g + myqc = my (g' A ?ﬂ) (43)

z-Momentum

] 1
(bg") + fg" —my(g")? + meag" + my,c = m) (g' 2 g ia) (44)
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Energy

]

Here Mgs Mg Mgs My and M5 are:

u
ref
m, = =-h,K, cote ——
3 "2 Uyo
-1
u h, du
ref 2 xe)
m- = h Kyp + —— =
5 1 Uyo < 12 Uy, 92
_ 1/2 . 91 9 ] Upef
mg = [(pe”e”xehl) h, sine] EE'L/pe“e”xeﬁ1 hy sine » (46)
= hy Uref
/ HE Uxe
hy w_ 3u
_ 1 e xe e
My = 1+ TE;'TT"TE?' * h1 u__ K12
u xe
xe
2
I h] Wo awe _-h] cote sze
127y U U 92 Uyelref
The coefficients Hys Hps ug are:
_C i _ _C 1 2 i
M T PE e wp =+ mgg s ¥3 T (1 W) Uper 9'9" (47)

To transform the governing infinite-swept-wing equations, we use the
transformation given by (31) to (33) and write (23) to (25) as:

x-Momentum

(") + m PP —my(F1)2 = mgf'g’ —mglg")? + mype
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z-Momentum

1
(bg") + m; fg" —-m4f'g' —-m3(g')2 —-mg(f')2 + My 5C

31 (o 89", of
'hT( g 2 (49)

The energy equation is the same as the energy equation for the general case,
(36), except that the right-side of (36) is:

. s
2 3E of
- ﬁ] (f' X E' ax) (50)

The coefficients b and M3 remain unchanged. However, Hp NOW becomes
equal to myf. '

The definitions of the coefficients m; to my, in (48) and (49) are
the same as those in (38) except now

u
M = Kaoos ref
5 1271 Ug
me = 0
du w_\2 W
- 1.1 e e e

My, = 1 <ue awe — cots K w2 + csco K u2 + KyqwW_u )
12 UgUpaf ﬁ;’ax 2"e 17 217e"e

To transform the governing chordwise attachment-1ine equations we use
the transformed coordinates given by (31) and define the two-component vector
potential by

P uh2 sine = %%— R wzph] sine =

(o>} Ha¥)
<le

(52)
ovhih, sine = -(%%—+ ¢)

with v and ¢ still given by (33). With these varjables, and with the
relations given by (26a,c), the chordwise attachment-line equations can be
written as
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x-Momentum
(bf") + myff" —-mz(f_‘?)2 + mgf'g +-myqc

)
h: (fr 20— g Bf) (53)

z-Momentum

(bgll) + m]fg" —m4f'g' __m3(g|)2 + mﬁggu _mg(f.)Z + m]zc

I w of
e (F R ) (54)

The definitions of the coefficients my to my, in (53) and (54) are the
same as those in (38) except now

S
1 ref
m =
3 hy U
Mg = Mg.
m, =0
9 (55a)
_ ]'l Bue ;
m” _F-I—U_-ST_S] coto K-I
2
s ow w
1 1 zZe ze
My, = T + + K
12 Upof (h] X u h2 1% ze)

The energy equation is the same as the energy equation for the general case
(36), except that the right side of (36) is the same as (50); the coefficients
Hy and Ho remain the same but now

C”Eef 1
- ] n
My = Ao (1 —-ﬁF) f'f (55b)

The general boundary conditions for the governing three-dimensional
boundary-layer equations are:

n=0 T T80 - Ey =0 (56a)
n = ng, f'=1, g'-= Wo/Upos E =1 (56b)
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Those equations (56) apply to the general case, to the stagnation-Tine equa-
tions, to the infinite-swept-wing equations as well as to the chordwise
attachment-1line equations, except, however,. that the.- edge boundary cond1t1on
(g' at n=n,) ds different for the chordwise-attachment-1ine equations;
it is given-by g' = W, /ur‘ef"

Eddy Viscosity Equatwns

If we app1y the transformatmn g1ven by (31) to (33) to the eddy—v1scos1ty _
formulas given by (27) to (30), we get

A

oo . 2 1/2
¥ o (f" < f> (g") +2cose_ “ref frg"| |

e
Vv n 2
(em)0 = (;9) rRe'/2(0.0168) Ofc 1 ( > + 2< >cose

u 2 u '
— (f')2 + < EEf> (g')2 + 2 EEf cosd f'g'[(dn
e

(E;)i =(%e_> Re1‘/2 Jc_ <04 Ofn cdn\z [ — exp ( 'X')]

(57)

+

e
Here Re = “es1/“e and _ | o (58)
i “ 2 L 1/4°
2 “Ien 1 f e
x- ;‘f‘-v]%r /4 <f cdn> C‘]N/ c1/2 (fW)2 +( r:f) (g') + 2 cose :Z flg!
0
(59)
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NUMERICAL METHOD

We use the Box method to solve the governing equations. This is a two-
point finite-difference method that has successfully been applied to two-
dimensional flows by Keller and Cebeci and to three-dimensional flows by
Cebeci. A detailed description of the method is presented in References [117]
and [14]. For this reason only a brief description of it will be presented here.

One of the basic ideas of the Box method is to write the governing
system of equations in the form of a first-order system. Thus, in our case,
the first derivatives of f, g and E with respect to n are introduced
as new unknown functions. With the resulting first-order system and an
arbitrary rectangular net, we use simple centered difference quotients and
averages at the midpoints of net rectangles and net segments to get second-
order accurate finite-difference equations. Then nonlinear difference equa-
tions are linearized by using Newton's method and the resulting linear system
is solved. by the block-elimination method discussed by Isaacson and Keller (17].

Numerical Formulation of the Momentum Equations

In our present method we solve the two momentum equations simultaneously.
Essentially the stagnation-line equations, infinite-swept-wing equations and
the chordwise attachment~)ine equations are two-dimensional flow equations in
the sense that these equations have two independent variables, (x,n or
(z,n). On the other hand, the two momentum equations (34) and (35) are three-
dimensional flow eqﬁations for obvious reasons. The solution of the two-
dimensional flow equations is discussed in considerable length in references
[11.], [14], [18]; for this reason we shall only discuss the solution of three-
dimensional-flow equations, namely, (34), (35) and their boundary conditions,
(56).

With the introduction of new independent variables u(x,z,n), v(x,z,n),
w(x,z,n) and t(x,z,n), the equations given by (34) and (35) can be written
as

f' =u (6Da)
u' = v (60b)
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uu:xiﬁﬁ

g'=w (60c)
w' =t ~ (60d)

(bv)' + m]fv —-mzu2 — Mguw + mgvg —m7w2 + myiC = Mg (u a_:_ v %)

+m7( %—V%g‘ (60e)
(bt)" + myft — mpuw —mgw’ + mggt —mgu? + mypc = myg (" i %)
W _ 4 39
ey (w28 -1 29) (s0f)

We next consider the net cube shown in Figure 7 and introduce the net

points by
Xg = 0 Xp = X1 K, n=1,2, ..., N
z, =0 z; =259ty i=1,2, coy I (61)
ng = 0 ny = j..]"'hj J=1,2, «c0y d

n(3)  (3,n,i-1)

‘ (isn,i)

(j’19n,i)

oz(1)
(3-1,n-1,i-1)

fe—Ti —=

Figure 7. Net cube for the difference equations for three~dimensional flows.
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The difference equations which are to approximate (60a) to (60d) are
obtained by averaging about the midpoint (x Xns Zis Nj_ ]/2)

flaT ] .
LT R a)
n,i n,i
R ) i (62b)
ﬁj Jj-1/2 )
n,i ’
g:" —g :
P (62c)
J
n,i n,i - .
W — W .
J — J-1 _ tg:}/z . (62d)
J

where, for example,

The difference equations which are to approximate (60e,f) are rather
lengthy. To illustrate the difference equations to equations similar to
(60e,f), we consider the following model equation:

v' o+ m]fv = myoU 3 au + MW %g— (63)

The difference equations for this equat1on are

VJ- - VJ ~l

_ n- 172 & - U= Uy
—p ()il 1/2 (f");; 1/2 ("‘10)1 172 Y3-1/2 <—'_“>

J
U: — U
ot (“17)? }/SWJ 172 <“_—1 M> (64)

where, for example,

- _1 n,i n,i-1 n-1,i-1 n-1,1i
Vi =g (7 vy vy )
- _ 1 ,.n,i n,i-1 n,i ny,i=1

u, = I'(uj + 95 + u32y + Pj_] ')
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e

+u']-]’1+ug:ll+u

n-1,i
J J )

ﬁ = z_‘ (U
("‘])?:_MS R IGE (m )3 * (m3™ ¢ (m1)?:”

The boundary conditions for the system of equations given by (56) at  x = Xn_

and at z = z; are:

n,i
. . . . . . w
n,i _ n,i _ n,i _ n,i _ n,i _ n,i _["e
fo =0, gy> =0, up®’ = 0, wy' = 0, uy’ = 1, Wy = <u >

ref
1,i-1 =1,i-1 1 1 1 1 n-1,5-1 n-1 {65)
n-1,i- n-1,i- n-1,i- n-1,1 -1, ~1,i-
Ifnw? ?Ssu:e1 sfj n,i—1’ uﬂ,1 1 ,nvg-1 nZi-% ’ wj n-1,1 tg—1,i :
(f s uJ > V3 > 93 s wj’ s tj ), and (fj >, uj s
vg 1 1, gg -1, 1, wg -1, 1, £n-1s 1) to be known for 0 < j < J, then the differ-

ence equations (62) and the difference equations for (60e,f) along with (65)

yield an implicit nonlinear algebraic system of 6J + 6 equations in as many
unknowns (fg, Ug, vg, gg, wg, tg). We solve this nonlinear system by means

of Newton's method. The resulting linearized system is then solved by
using the block elimination method discussed by Isaacson and Keller [17].

Numerical Formulation of the Energy Equation

The numerical formulation of the energy equation 1s very similar to the
formuTation described for the momentum equations. To reduce (36) to a first-
order system, we introduce a new independent variable G{x,z,n) and write
(36) as

E' =G (66a)

(u16)" + 16 + ug = myg ( % g a‘°)+ m (w——G —q) (66b)

The difference equation for (66) is written again by averaging about the
midpoint (xn, i, nj_1/2), similar to those given by (62). The difference
equation for (66b) is written similar to (64). The boundary conditions in
(56) for the energy equation are:

25



The resulting algebraic system of 2J = 2 equations in as many unknowns
(Eg, Gg), which is Tinear, is directly solved by the block elimination

method.
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RESULTS AND DISCUSSION

The present method is a very general boundary-layer method for three-
dimensional flows. For a given pressure distribution, boundary-layer calcu-
Tations can be done for infinite-swept wings or finite wings. The pressure
distribution can be either experimental or theoretical. When it is experi-
mental, we use the approximate procedure described in Appendix A to get the
velocity components from the experimental pressure distribution.

The boundary-layer calculations can be started either at the stagnation
line or at some specified percent chord away from the stagnation 1ine. The
initial conditions on the root section can be started by using either the
infinite swept wing assumptions or the chordwise attachment-1ine equations..
Sometimes, as shall be described later, it is necessary to prescribe the
initial conditions at the tip section. In such a case, we use the infinite
swept wing equations, which, as previously discussed, are an approximation
to the flow in this region.

The present boundary-layer method uses a body-oriented nonorthogonal
coordinate system. A separate program'is used to calculate the coordinate
system and its geometric parameters such as the geodesic-curvature-
parameters K], KZ’ K12‘ K21 and the metric coefficients h], h2. This
is discussed in detail in Appendix B.

In the present program for a given spanwise station we march in the
streamwise direction. Since the linearized form of the equations are being
solved, we iterate at each x-station until some convergence criterion is
satisfied. For both laminar and turbulent flows we use the wall shear
parameter fu as the convergence criterion. Laminar flow calculations are
stopped when

|6f,] < &4
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where the value of 8y 1is prescribed. A typical value of 8§y s 1074,

For turbulent flows, the convergence criterion is stightly different; it
is given by _
Gfu

TFN 1 cEhi7o

! + afw/z

< 8
o =%

]

where a typical value of &, 1is 107°

Whether the initial calculations start at the root section or at the tip
section is determined by the sign of the external spanwise velocity component
We- To iTTustrate our marching procedure, Tet us assume that the wing has
three regions defined by the sign of We- In region 1, w_ 1is positive; in

region 2, Wo is negative; and in region 3, Wo is posit?ve (see figure 8).
Let us also assume that region 1 starts from the leading edge. In this case,
our calculations start at the root section. At the leading edge we use the
stagnation-line equations for one x-station and switch to either chordwise
attachment-Tine equations (if w = 0) or to the infinite swept-wing equa-

tions. With either one of these equations we march in the streamwise

u

. REGION 1
O REGION 2
O REGION 3

STAGNATION

ROOT

T

z

S
D

TIP

Figure 8. Definitions of various regions on the wing for marching procedure.
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direction to the net point before 'w

e . changes sign. Then we go back to the

stagnation 1ine and after solving the stagnation-line eqhations, we start solv-

ing the general three-dimensional flow equations at the second x-station.

This

procedure is repeated as before for all stations dp to and including the tip
section in region 1. The calculations are continued into reg1on 2 starting
at the t1p by so]v1ng the 1nf1n1te swept w1ng equat1ons a]ong the tip up to

the beg1nn1ng of reg1on 3. . At that time we go back to the next spanw1se

station of region 2 and start so1v1ng the genera] three d1mensiona1 f]ow equa-
tions for region 2. This procedure is aqa1n repeated for region 2 up to and
including the root section in region 2. The calculations at the root section
are extended to region-3 by solving either the infinite-swept-wing equations
or the chordwise attachment-line equations, and the procedure used for region 1

is repeated for this region.

It should be pointed out that our marching procedure utilizes the sign
of Wo- It may be argued that the marching proceddre should be based on
the local value of w. In the calculations presented here, no difficulties
were encountered when we used the above procedure including the cases where
local cross-flow velocity changed sign within the boundary Tayer. However,
this point needs further exploration.

The present method is developed in such a way that one can use non-
uniform net spacings in the streamwise and in the spanwise directions.
Across the layer one can either use a uniform grid or a variable grid
discussed in reference [14]. According to this grid, the net in the
n-direction is a geometric progression having the property that the
ratio of lengths of any two adjacent intervals is a constant; that is,
hy = Khy_;. The distance to the j-th line is given by the following
formula: '

= hy (kK = 1)/(K=1) K>1 . | | (68)

There .are two parameters: h1, the length of. the first An step,:and
K, the ratio of two successive steps. The total number‘of_points__d
can be calculated by the following formula:
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T[4 (K= 1) (n,/hy)]
J = Tn K (69)

For further details, see reference [14].

In the present method the pressure-gradient parameters m to Mo
are determined numerically from the given external velocity distributions
Ug and Woe For example, the derivative of due/dx is obtained by using
three-point Lagrange interpolation formulas given by (n < N)

e .l )+ 22 x4y = 2%, + ,y)
Hi_h A Xnt1 ~ *n A, Xnt1 ~ “Xn T Xpa1 . (70)
un+1
+ o (x, = %,_7)
3 n n-1

Here N refers to the last xn station and

Ay = (Xn _'xn-1)(xn+1 _'xn-l)
Ay = (Xn _'xn-l)(xn+1 _'Xn) (71)

3° (xn+1 —'Xn)(xn+1 _'xn-1)

The derivative of due/dx at the end point n =N is given by

dug ug'z ' ug—] ug
x oy N (xy = Xy_q) = A, (xy = xy_p) + Ay (2xy = xy_p = Xy_1)
(72)
where now
Ay = Oxyop = Xyp) By = xyp)
(73)

Ay = (xyoy = Xyo2) Oy = Xn2y)
3= (xy = Xy Oy = Xy2p)

Similar derivatives for due/dz, dwe/dz, dwe/dx can be written by slightly
modifying the above equations.
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Boundary-Layer Parameters

Once. the solutions are obtained, we calculate the usual boundary-layer
parameters, which in terms of physical variables and transformed variables

for the general case are:
Chordwise local-skin-friction coefficient

) 2-rc ) 2('rx tT,
Cfc = —2° J
PLU paouco

2

2C /o u u_u,
() e e
RS © o u

(>

c0s0)

Spanwise Tocal-skin-friction coefficient

2v, sine 2C . /p.\Ju_ u
Cfn = Zz 5 = W _p_e_ e r'Ef> S_ine gy,;
o U \fRs o0 u2

=]

Cross~-flow angle

8% = f 1 —P_L-J__ dy = .51_ I — (f°° * l‘lr‘e‘["/ue coso gm)
) u o (T +wJu, cose)
0

(74)

(75)

(76)

(77)

(78)
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Chordwise momentum thi‘ckness ec

0 =f ou_ (4 —g_dy _ 5 _(ﬁ,o * Upeg/Ug COSE-G ) -
“i “‘ﬁzg--_(] +.we/Ué cosp) -

~(f +uJu coso g')2 |
_f :r‘ef e - an| (79)
0 (1 + Wo/Ug €OS6)

Spanwise momentum thickness 6

n
P - s, fu u -
e U i | PR UL (20)
0 PeVe ! VRs \ e €0 *
Here
u_s ~0 -~
_ e’ N -]
ot A (81)
0.
and u/u, and W/Wy are the chordwise and spanwise velocity components given
by
- . : 1 !
U _ _ u+wcosg = e (“ref‘/ue)g cose (82)
ae u, + W, Cosg 1+ we/ue COSp
W__wsing _ Yref _w__ Yref g' (83)
We We sing Wo Upep Wo
On the plane of symmetry these boundary-layer parameters are defined by:
2
c =2TX =.2i &-.u_q g (84)
fC puz V-R—— [ um W .
- o S
cfn = 6; =6, =0 (85)
, s
¢ o< peue> we ° 7 (%)
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J |

Cf = 8% =0, =0 (88)
21 2C U, cu
Ceg = = W ref xe sine g" (89)
f 2 2 W
Moo le Uxe™/Ve U,

: hyv u .
f
< Pe w;> Ue P Wo 7%

p hav_u u Iy
_ W W _1"1% “ref _ reff 1\2
en—fpw <1 W->dy— = g <we>0(g)dn
0

(91)

Results for Laminar Flows

To test our code for laminar incompressible flows, we have considered a
test case computed earlier by Cebeci[12], by using another computer program.
This test case consists of a three-dimensional laminar flow past a flat plate

with attached cylinder (see figure 9). For this flow the inviscid velocity
distribution is given by

A A
- 2 2 _ 23
ug = “e;;(] + a —2-> s Wg = -2ua“ (92)
By o
where
Ay = (x —-xo)2 + 22, Ay = -(x —-xo)2 + 22, Aq = (x —-xo)z . (93)

Here u_ 1is a reference velocity, a 1is the cylinder radius, and Xy
denotes the distance of the cylinder axis from the leading edge x = O.
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Figure 9. FTow past a flat plate with attached cylinder.

The calculations were made for a Cartesian orthogonal system with
u, = 3050 cm/sec, a = 6.1 cm, Xy = 45.7 cm for several x and z-stations.
The present results with those of reference [12] are shown in Table 1. Note
that the pressure-gradient parameters in the present method are obtained
numerically, whereas in the method used in reference [12], they were obtained
analytically. As can be seen from the results, there is essentially no
difference between the earlier and the present results. All calculations
were made with 11 points across the boundary layer and with ax = 1.220 cm
and az = 0.610.cm.

In Table 1 the results under the present method represent the solutions
obtained by the present computer program in which the pressure-gradient param-
eters m to My, are obtained numerically from the given external velocity
distribution. The results under reference [12] represent solutions obtained
by another computer program to which my to Mo are calculated analytically.
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Table 1. Calculated Wall Shear Parameters for the Laminar
Post Problem. '

z=0 z = 0.610 cm
Present Present

X Method Ref. [12] Method Ref. [12]
(cm) o & o o

0 0.330854 0.330854 0.330854 0.330854
1.220 0.329498 0.329498 0.329461 0.329461
2.440 0.327973 0.327973 0.327711 0.327712
3.660 0.326233 0.326233 0.325852 0.325853
4,880 0.324252 0.324251 0.323584 0.323588
6.100 0.321987 0.321985 0.321103 0.321109
7.320 0.319416 0.319385 0.318078 0.318112

Results for Turbulent Flows

For turbulent flows, the accuracy of the method depends on the turbulence
model as well as on the accuracy of the numerical method. According to the
studies reported in references [10], [12] and [13], the present eddy-viscosity
formulation gives quite satisfactory predictions for three-dimensional flows.
In the studies reported here, we have considered three test cases to further
test the computer program.

Test Case 1

The first test case deals with the comparison of calculated and experi-
mental results on a swept wing for an incompressible flow. The experimental
data is due to Brebner and Wyatt [19]. However, most of this data is very
difficult to use for comparison purposes since the location of transition is
given at one spanwise station only. Furthermore, the relatively large probe
used in their experiments seems to interfere with measurements at higher angles
of attack. The "good" data is near mid-semispan of the 45-degree swept wing
which has a 50.8 cm constant chord and an RAE 101 section with a thickness to
chord ratio of 0.12. It has no twist and has an aspect ratio of 5. The tests
were conducted in RAE Bedford Low Speed Wind Tunnel at a nominal free-stream
velocity of 61meters per second, corresponding to a streamwise chord Reynolds
number of 2.1 x 106.
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For the data of Brebner and Wyatt we have made two different sets of
calculations by using the infinite swept wing approximations for the external
flow. With this assumption the external velocity components can be calculated
exactly from the experimental pressure distribution. The first set of calcula-
tions are for an orthogonal system. For the external Eé(x) distribution shown
in figure 10 with Wé = 43 m/sec, the solutions were started as laminar at
the stagnation point with the stagnation-line equations and were continued with
the infinite swept-wing equations up to the transition location, which according
to the experimental data, was specified at (x/c) = 0.35. At that location, the
turbulent flow calculations were started and were continued up to the trailing
edge. At the next spanwise station, the calculations were done for full
three-dimensional flows. Overall, 30 x-stations, 15 for laminar flow and 15 for
turbulent flows and 3 z-stations were used. The variable grid parameters were
h] = 0.01, K=1.26, n_ = 31 yielding 30 points across the boundary layer at

the trai]ihg edge.

Figures 11 and 12 show the results. Figure 11 compares the experimental
and calculated total velocity profiles at two measured x-stations, namely,
at (x/c) = 0.80 and 0.98. Figure 12 shows a comparison of calculated and
experimental cross-flow angle g, calculated from

g = tan™| (?)—(g— e) (94a)

u
At the wall g 1is calculated from

g = tan”! (%%)w(%%);] -—(%-—-e) (94b)

The second set of calculations were made for a nonorthogonal system with
h] = 0.05, K=1.3, n_ =69 yielding 24 points across the boundary layer at
the trailing edge. For the specified airfoil section, the geometric parameters
were determined by using the procedure described in Appendix B and the velocity
components u, and w, were determined (see figure 13) from the experimental

e
pressure distribution by using the procedure described in Appendix A.

We note that in this case we have two regions of positive Wo separated

by one region of negative w_ as shown schematically in figure 8. For this

e
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Figure 10. Experimental velocity distribution for the data of Brebner and
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reason, the calculations were started at the stagnation 1ine of the root
section and the marching procedure described earlier was used to compute the
flow fier for three spanwise stations consisting of thirty streamwise stations.
Region 1 is a very small region, whereas region 2 is a very large region.
Figure 14 shows the variation of the cross-flow velocity across the boundary
layer for various x-stations. It is interesting to note that during the march-
ing procedure the solutions converge very fast, show no numerical problems

and all the computed velocity profiles, when rotated to the orthogonal coord-
inate system, agree extremely well with those results obtained for an ortho-
gonal system. If we use bars to denote the velocity profiles in the orthogonal
coordinate system, then the velocity profiles in the orthogonal system can be
obtained from those in the nonorthogonal system by the following formulas

given previously (see figure 6), that is,

u = u sine ~ (95a)

= w+ u cose (95b)

|

If we denote the dimensionless stream function in the nonorthogonal system by
f and its derivatives with respect to n, then the dimensioniess stream-
function in the orthogonal system F and its derivatives are related to f
and its derivatives by

Fr = f!
(96)
. X
F l sine‘s]
Similarly,
u
g' = <ref>+ f! _:_e_ cote
u —
n n Y‘Ef ! e _J_ _X__.
G" = { <__ >4-f'<:;>cote} STne S
We We 1
Test Case 2

The second test case is an incompressible flow past an untapered,
untwisted, 30 degrees-swept-wing having NACA 0012 streamwise airfoil sections.
Its semispan is 2.78 meters and its chord is 1,15 meters. The inviscid velocity
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distribution was obtained by using Hess's potential flow method [20] for an
angle of attack of 8 degrees, giving a 1ift coefficient of 0.51. A total of
16 chordwise strips on the semispan were taken and each strip was subdivided
into 50 elements. Because the calculated inviscid surface velocities are
given in terms of their Cartesian components, additional calculations were

made to put these velocities into the nonorthogonal coordinate system. Calcu-

Tatinne wavra mada anlv for the lower curface of the wina for a chord Ravnnlds

TKAvIViig A1 iU \IIIlJ 1w wlils IR AL AN | ~SuUl A o\ v LA AYY " l_llu I~ ] A W IW T LA AL LB D
6

number of Rc = 5,88 x 107,

The external velocity distribution for this wing is quite interesting
in that, except for a very small region, all the external spanwise velocity
components w, are positive (see figure 15). Figure 16 shows the computed
chordwise local skin-friction coefficients and displacement thicknesses at
various spanwise stations. According to our marching procedure, the solu-
tions start at the root section by using the stagnation-Tine equations at
x/c = 0 and by using the infinite swept wing equations at x/c > 0. With
transition specified at (x/c) = 0.02, the calculations continue up to the
trailing edge since W is positive for all chordwise stations. The pro-
cedure is repeated for the next spanwise station, NZ = 2. The procedure
at NZ = 3, 4, 5 and 6 are different. 'Since, at some chordwise stations,

Wy becomes negative, the solutions that originate from the stagnation Tine

at a given spanwise station 3 < NZ < 6, continue up to the Tast chordwise
station where w, is positive, say (x/c)o, and then go back to the stag-
nation line. At NZ = 7, the procedure used for NZ = 3, 4, 5, 6 1is repeated
for the same chordwise stations. At (x/c) > (x/c)o, however, they continue
up to the trailing edge by using the infinite swept wing equations. At

8 < NZ < 22, the procedure used at NZ = 2 is repeated. In this way all

the chordwise stations for the spanwise stations NZ = 1,2,7 to 22 are com-
pleted. To complete the rest of the chordwise stations for NZ = 3, 4, 5

and 6 we go back to NZ = 6 and by using the infinite swept wing equations,
we start marching at (x/c) > (x/c)o up to the last (x/c) station, say (x/c)],
where W is negative. Then we go back to NZ = 5, 4, 3 and repeat the

same procedure, but this time using the general three-dimensional flow equa-

tions. At NZ = 3, we turn back. By using the infinite swept wing equations,
we start marching at (x/c) > (x/c)1. Then we go to the next spanwise stations
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Figure 16. Computed lower surface chordwise-local skin-friction coefficients and displacement thickness
: at various spanwise stations for test case 2. Note that the solutions start at the stagna-
tion line which is at x/c = 0.01, a = 1.0 (ft), a = 0.305 (meters)
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NZ = 3, 4;'§nd 5, and-nqpegt this procedure with the general three-dimensional
flow equatiQns, thus comp]éting the ca1cu1at1Qn over the entire wing surface.

H I
¥ F
N

Test Case 3§
The fiﬁst two test éa#es considered fok turbulent flows were for incompres-

sible f]owsé The third ‘test case is for compressible flows. The wing selected

for this case has a planform and dimensions similar to that given in figure 4

of [6], except that its trailin i

17. Also, in our system the wing root is at y = 0.76 meters corresponding to

the z = 0 degree plane in [6]. The wing has a 5.6-meter root-chord, 1.02 meter

tip chord; the tip is_at §'=\7.1 meters. Thickness is added by supercritical

airfoils of 12.38-percent tHickness at the root, and 9.24-percent thickness at
the tip with parabolic variation inbetween. Twist was generated by a linear

a + T+ 4¢g
wil llllu - & | e~

Figure 17. The planform for test case 3. Dashed Tines denote the modified
planform for our calculations.



variation of the trailing-edge height over the X,y-plane, with the leading edge
of the wing remaining on the X,y-plane over its entire length. Total twist var-
jation between the root and the tip is 6 degrees.

The calculations were made for the upper surface at Mach numbers of
M =0.5 and 0.99 by using the experimental pressure distributions given in
[21] as Table IIT-230 and Table III-28, respectively. The external velocity
components were obtained by using the procedure described in Appendix A and
by using the velocity program described in Appendix C. Since the experimental
pressure distribution does not extend over the entire chord-length, the
boundary-layer calculations were started at x/c = 0.025 and were continued
up to (x/c) = 0.975. The transition point was assumed at (x/c) = 0.10.
The unit Reynolds number in both cases was 4.9 x 106. The spanwise extent
of calculation is from y = 0.76 meters to y = 6.6 meters and was again 1limited
by the available pressure measurements. For this reason we have extrapolated
the experimental data to get the data on the root section. For both cases,
W, was negative on the entire wing; as a result calculations were started
at the tip section and were continued all the way to the root section. Note
that in terms of the spanwise boundary-Tayer coordinate z, y = 0.76 meters
corresponds to z = 0, and Yy = 6.6 meters corresponds to z = 0.92.

The computed chordwise and spanwise values of Ce and &* are shown
for both cases in figures 18 to 23. Note that for M_ = 0.50, the chordwise
local skin-friction distribution at z = 0.7b6 is quite different from those
cp-distributiens at z = 0.52 and 0.28. Simf]ar1y, the chordwise variation
of displacement thickness for the same Mach number at each spanwise station
are quite different from each other. The large variation in both skin-
friction and displacement thickness distributions in spanwise direction is
partially due to the experimental pressure distribution selected for this
sample calculation. That is, the flow was obviously separated on the out-
board panels of the wing, and it was the separated flow pressure distribu-
tion which was specified for boundary-layer calculations. For M, = 0.99,
the chordwise local skin-friction and the displacement thickness distribu-
tions for three different spanwise stations are qualitatively similar, as
one would expect them to be for properly designed wing with attached flow.
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Figure 18. Variation of the local skin-friction in the chordwise direction for M_ = 0.50. (a) 2z = 0.76.
The dashed lines denote the Taminar flow solutions and the solid lines denote the turbulent
flow solutions.
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Figure 20. \(a;iation of the Tocal skin-friction in the spanwise direction for M = 0.50.
a) x/c = 0.30. ®




Figure 20. (b) x/c = 0.60
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Figure 21. \éa;iation of the Tocal skin-friction in the chordwise direction fer M = 0.99.
“(a) z = 0.76.
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Figure 23. (b) x/c = 0.60.



CONCLUDING REMARKS

According to the studies presented in this report, the three-dimensional
boundary layers on swept wings can be computed very effectively by our
method. The geometry package represents the wing analytically and accounts
for its geometric parameters. However, the method should be tested further
and additional capabilities should be added in order to make the method
more versatile. In particular:

1. The marching procedure should be further tested. Although the sample
calculations are very encouraging, additional test cases must be made
for different pressure distributions on different wings to check the
numerical calculations for strong negative cross-flow velocity profiles.

2. The present procedure to calculate the attachment-Tine flow near the
wing leading edge should be modified to handle cases where the attach-
ment streamline deviates considerably from a constant chordwise loca-
tion along the span.

3. The boundary-layer method should be coupled to an inviscid code so
that inviscid flow and viscous flow calculations can be made at the
same time.
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APPENDIX A

~ CALCULATION OF THE EXTERNAL VELOCITY COMPONENTS
FROM A GIVEN PRESSURE DISTRIBUTION

Because the experimental pressure distribution is very seldom given with
sufficient accuracy or in sufficient detail to calculate the inviscid velocity
components from Euler's equaticns, we resort to the Tocal sweep theory. The
local sweep theory is known to give reasonable results when applied to regions
of high aspect ratio wings that are outside the influence of root and tip
effects. If the spanwise pressure gradient is weak,as on the midportion of
a swept wing, the accuracy of the approximate method is almost exact. In
regions of root and tip influence a correction to the local sweep theory is
applied in order to account for the effective reduction of the sweep angle.
Our procedure is explained below.

Consider the resultant velocity vector ﬁs in the tangent plane at a
point P on the wing surface (figure Al1). The basic assumption for the
local sweep theory is that projections of both the freestream velocity vector

Gw and the local velocity vector u upon the z-axis are equal, or

S

Uy = Ug sing = u_ sinA (A1)

Here A 1ds the local sweep angle obtained from

-1 ﬁm
A = 1 — COS %2 ‘T (A2)

From the parallelogram law for the addition of vector components we obtain

U
Us COSB

T U sine (A3)
W u : .
_e _ s (sing sine — cose cosp
u_,2oou_ ( sing ) (A4)

Elimination of B8 from (A3) and (A4) gives
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Figure Al. Velocity vector in the tangent plane at a point P on the wing.
A is the sweep angle.

Ug J(us/um)2 ~ s1’n2A

U sine (5)
W u

e . e
E = s1ina —um C0SH (A6)

The total velocity ratio (us/um) is calculated from

<u >2 1- [PT /Py (1 + Y/chmi)](Y'”/Y
_§. =7 + 1 2
! (v — 1)ME/2

(A7)

[=-]

with Pty and PT2 denoting the values of total pressure before and after
the shgck, respectively, and Cp is the pressure coefficient, Cp = (P — Pm)/
(1/2pu?). Equation (A7) is valid for an adiabatic flow through a shock wave,
but since the total pressure ratio across the shock is seldom known, it is
set equal to one. This approximation introduces only a few percent error into
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the velocity calculations because the. total pressure jump across a swept
shock 1s small. even for freestream Mach numbers approaching unity. The total
pressure ratio must a1so remain close to one for the first-order boundary-
Tayer theory to be valid in front and behind the shock wave.

Equations (A5) to (A6) are approximately valid for the:root and tip
regions if the local sweep angle is replaced by an effective sweep angle,

_ }\e = x— FY‘,t}\I",t . . (AB)

wm +ha atuan 7 coor inddnat;
r e givern 2=Cuir ainavc

w
factors for the root and tip, respectively. They are given in graphical form .
in [10]as a function of nondimensional spanwise distance in tewms of root or
tip chord. The curve fit for the above interpolation factors are:

_ 7 52 y
F o= _——e 0 <Z-<0.5 (A9)
r E<9O(y/cr) + 7 > _CY'—
Fy o= 0.7 [——0:28 1) 0 b=F g5 (A10)
t \28(b — 3)/c, + ] T N
Y)fey * 3

where b 1is the semispan, and ¢, and c, are the root chord and the tip
chord, respectively. Since no overlap of (A9) and (A10) is allowed, there is
a Tower 1imit of wing aspect ratio to which the local sweep theory with cor-
rection can be applied. For example, for a wing with no taper, the wing aspect
ratio must be greater than or equal to 2.5. As a consequence of the effective
reduction of sweep angle, the calculation of velocity components in a nonortho-
gonal coordinate system must reflect the fact that the angle between the
coordinate lines is effectively increased. Simple geometrical consideration
of a sheared wing shows that the effective coordinate angle should be expressed
as

sinx

cose, = $Tne _cose | (A11)

To use equations (A5) and (A6) near the w1ng root or tip A 1is replaced by

Aa and 5 is replaced by B



APPENDIX B
CALCULATION OF THE COORDINATE SYSTEM AND ITS GEOMETRIC PARAMETERS

Coordinate System

We assume the wing to be defined in the Cartesian coordinate system
Xs ¥» z. Here X is in the general direction of the airplane longitudinal
axis, y is in the spanwise direction and z is normal to the Xxy-plane.
We shall also assume that the wing definition is given by a number of air-
foil sections in planes y = const., which involves the specification of
sets of X, Ei
calculated at a fixed number of nondimensional chordwise locations (g/c)p
for a given number of spanwise stations Vs The coordinate system for
boundary-layer calculation is defined by the lines (g/c)p = const. and
is = const. on the wing surface and the surface normals. Figure B1 shows
the plan view of a wing with our notation, The choice of the coordinate

system for boundary-layer calculations is dictated by the fact that aero-

for constant values of 9j. The boundary layer is to be

dynamic data 1s usually given in terms of percent of chord and percent of semi-
span location, and by the almost uniform coverage of the wing with the chosen
coordinate net.

To find the geometrical properties of the chosen coordinate lines, we
need relationships between the wing defining system X, ¥, z and the surface
imbedded coordinate system (g/c)p, Y-

Considering y = const. planes, the following relationships hold (see
Figure B2)

£=1[(x~%,) cosa —(Z~2%,) sing (87)
-l ~-%) sina + (Z~-%,) cosd] (B2)
where
_ _ _ _ 1/2
¢ = [(%, —%)° + (Z, —£,)°] (83)
z, - 2
o = -tan"! & _t (B4)
X T %
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DEFINING AIRFOIL CROSS
SECTIONS z;, x; FOR A
GIVEN Yj

ROOT LEADING EDGE

TIP

Figure B1. Plan view of a wing with our notation.

Here the subscripts 2 and t refer to the points at the leading edge
and trailing edges, respectively,and ¢ 1is the local chord Tength (maximum
Tength 1ine).

Considering figure B2, it is obvious that (g/c) = const. are accept-
able coordinate Tines as long as we can treat the upper and Tower surfaces
separately. However, if the stagnation point s dis located in the lower
surface, calculations for what we now call the upper surface contain a portion
of the Tower surface and the meaning of coordinate £/c becomes ambiguous.

To remedy this situation and also to stretch the coordinate near the leading
edge where flow quantities vary rapidly, we employ the following transforma-

tion of the independent variable &/c:
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Figure B2. Notation for the airfoil section for a given y.

%—= 1 — cosé (B5)

Here ¢ = 0 corresponds to the leading edge, and ¢ = /2 to the trailing
edge. If the upper surface is being calculated, the points on the lower surface
correspond to negative values of ¢ and vice versa. On the coordinate Tine

¢ = const. we use as the independent variable the nondimensional form of y
given by y = y/b where b is a scaling constant for the convenience of the
user of the program., If b denotes the length of semispan, y will vary

from 0 to 1. The variables ¢, y constitute a nonorthogonal coordinate
system embedded in the wing surface. It should be noted that the boundary-
lTayer coordinates in the main text make use of a different notation, namely

Xz ¢ and z =y in the present notation.
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Geometric Parameters

Once the coordinate system is selected, it is necessary to calculate its
geometric parameters, such as the metric coefficients, and the geodesic
curvatures of the coordinate 1ines. In what follows we designate quantities .
associated with the chordwise variable with subscript one and those associ-
ated with the spanwise variahle with subscript two.

The metric coefficient along a curve in space is given by
=\2 =\2 =\2
= () + () - (%) (26

with P denoting a parameter. Taking P = ¢ along the curves y = const.,
we can write (B6) for hy:

=2 =2
- (55, + () (57)
Y y
Similarly, taking P =y along the curves ¢ = const., we can write
-2 =\2
2 _ .2 X 9z
hy = b= + (W>¢ ¥ (W>¢ (88)

The derivatives in (B7) and in (B8), namely (ai/a¢)y, (aE/a¢)y, (ai/ay)¢,
and (aE/ay)¢ are obtained as by-products of spline-fitting the points
along the chordwise and spanwise directions at the pivotal points.

The unit tangent vector t along a curve is given by

dr - dv 1 dr
t- F '('d_—s/dPT W dP (B9)
The unit tangent vector %1 along the curve y = const. is
t, =1 (3—-"-) i+ (?i) k] (810)
1 FT' 30 y 3¢ y

where i, j, k are unit vectors in the coordinate directions X, y, Z,
respectively.
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The unit tangent vector %é along the curve ¢ = const. is

t, - }}5 {(%’:‘7)‘# i+ b+ (%)J] (B11)

The angle between the coordinate lines is then

coso = £ - T, = [(y;)( )+ <%—%—><g~z):|/(h1h2) (B12)

The curvature of a curve in space is given by

¥ - d% %EGE}WT Ff— (B13)
The geodesic or tangential curvature Kg of a curve on the surface can be
obtained from
kg = (Ex /) - K (B14)
Here n is the vector normal to the surface which by definition is
sinen = t, x 3, (B15)

or

3X

7 = Wk, sThe {'b (7)1 B <5;75‘;——5T-'£)J " b<ﬁ)k} e)

2> > 2 2= 2
= _1 dr 1 drdh _ 1 [d% dy . , d°z >
K= — —5 =5 = i+ J+ k
W gp? 3PP ?<dp2 dp? * gp?
__1__<Q1+d5’j+d§ |<><d_2.>_192+d_2.292+d22£> (B17)
h4 P aP dP qp2 dP dP2 dP E;?'d
The geodesic curvature Kg1 for curve y = const. fis
- x ) - K {B18)

The minus sign on the right-hand side of (B18) is introduced to obtain

Kgy = -(1/h]h2)(ah1/ay) in the case of orthogonal coordinate system. With
>

¢ as the parameter, the expression for Ky is
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> 2= 2= - - 2= .= 2= =
-1 37X . , 3 1 3X ; , 9Z ) X , 9 Z
Ky ‘.;I‘Z‘[_z‘ +—zk] —;IKW‘ * 5% ><—¢73— a—ﬁzrﬂ (819)
1

Introducing the expressions (B10), (B16) 'and (B19) into (B18) gives, after
simplifications

T <a_§__u_> ¥%% 27 _ 2% 3 _> (820)
1 h]h2 sinsg 9¢ 3y 3y 9¢ ";2 20 —;E )

The geodesic curvature for a curve ¢ = const. is given by
> ->
Kgp, = (Fp x 1) + Ky (B21)

->
With y as the parameter, the expression for K2 is

2= 2= 2= 2= .=
- 1 |3 i+ 2 1 3X 32 3°X 83X , 9°Z 92
Ko = + ki — i+ bj+ =k + ——J (B22)
2 h2 L_Z 52' ] ;]7;' |:ay 2y :H:_yf 3y 5‘2 3y
The expression for the geodesic curvature ng is obtained by substitution
of (B11), (B16) and (B22) into (B21):

gy = —] 2 3E_o% 02)(o%k 97 0% k), 2 (2% 3%, 2% 2
2 h]hg siné 3¢ 0y oy o0¢ 3y2 3y . .23y 2 3¢ 2 3¢
(B23)
As discussed in the beginning of this section, the program reads in n
pairs (n can be variable along span) of ii’ Ei values at each spanwise
station ij. Then the use of equations (B1) and (B5) gives the corresponding
¢;- Since the desired chordwise outputs are read in as (g/c)p, we again
use equation (B5) to obtain b Next, the tables of X, and Zz. Vs 95

i i
at each yj are fitted with cubic splines to obtain interpolated values of

ip, Ep, and aEp/a¢ corresponding to ¢p. Here the cubic splines are not
used to obtain the second derivatives because of inherent inaccuracies.
Instead, we use a Fourier fit w1th s1gma smoothing. The end result is
smoothed aEb/a¢ values and 5°% /a¢ Because of relationships (B1)

and (B5), the derivatives of x can be calculated as follows:
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3X 3z ¢ siné
P _ P p
53 tanc 53 + co5a _ (B24)
azip azzp c cos¢P (
= tana + B25)
3¢? a¢2 cosa

To obtain the derivatives with respect toe y at desired output Tocations
is, we spline-fit the ip and Zp values at constant 5 VS ¥j- The
first derivatives are againnot used directly, instead they are put through
the Fourier smoothing procedure and simultaneously interpolated for values
at is together with the second derivatives. To obtain the ip and Ep
values and their derivatives with respect to ¢ at &s cubic spanwise

interpolation is used.

After the derivatives are determined the quantities h], h2, $s Kg1
and Kg, are calculated from the relationships given previously. To cal-
culate the remaining quantities K]z and K21 requires extra care at the
leading edge because the terms Ky and 1/h] 38/3¢ are large and of
opposite sign. In effect, the sum of these two terms is similar toa third-
order derivative. The best results were obtained by sigma-smoothing the
calculated K] and K2 values and applying the same technique to the cal-
culation of o-~derivatives. It is also helpful to extend the wing defini-
tion input data a long way around the leading edge on the opposite surface
if boundary-layer calculations involve the leading edge.
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