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SUMMARY



A theoretical model is developed to predict losses in radial



inflow turbine nozzles. The analysis is presented in two parts.



The first one evaluates the losses which occur across the vaned



region of the nozzle, while the second part deals with the losses
 


which take place in the vaneless field.



In the vaned region, equations are derived to relate the



losses to the boundary layer characteristic parameters on the



vane surfaces and over the two end walls. The effects of vanes



geometry, flow conditions and boundary layer characteristic



parameters, at exit from the nozzle channel, on the level of



losses are investigated. Results indicate that the portion of



the losses incurred due to the end walls boundary layer may be



significant especially when these boundary layers are characterized



by a strong cross flow component.



In the vaneless field, the governing equations for the flow



are formulated using the assumptions of the first order boundary



layer theory. The viscous losses are evaluated through the



introduction of a wall shear stress that takes into account the



effects of the three dimensional end walls boundary layer. The



resulting governing equations are solved numerically and the



effects of some operating conditions and the nozzle geometry are



studied.



It is concluded that the losses in the vaneless region may



be looked at as a secondary factor in the determination of the
 


overall efficiency of the turbine nozzle assembly.
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INTRODUCTION



In recent studies dealing with the flow patterns in radial



inflow turbines, the flow is assumed to be isentropic with



a viscous loss coefficient introduced to account for actual



flow effects. The studies of Ref. [, 2] were based on the
 


assumption that the viscous losses within the flow passages



are proportional to the average kinetic energy in the passage.



A proportionality constant was chosen such that the viscous



losses matched the values determined from the experimental



results. Other studies [3), estimate losses using approxi


mations based upon flat plate or pipe-flow analogies. Although



in the past, approximate and semi-empirical solutions for the



losses have been adequate for engineering purposes, the present



sophistication of fluid machinery demands a closer view of



the problem.



The real flow in the radial type machines is very complex



because it is viscous, unsteady and three dimensional. An



insight into the real flow processes can be achieved by breaking



the complex flow pattern into several regions. Existing flow



theories can then be used to obtain a solution to the flow



together with some reasonable simplifying assumptions in each



of these regions. Following this approach, and referring to



Figure 1, the flow field in a radial turbine nozzle can be



divided into the following subdomains:



a. The passage between the blades, in which the flow 

is partially guided. 

b. The throat region where the flow is directed from 

the closed channel conditions to the vane outlet 

free conditions. 

c. The region just at the exit of the channel, which 

will be referred to as the zone of rapid adjustment. 

In this region, a considerable portion of the 

overall stator losses take place. 

d. The vaneless space region. 

In the present work a theoretical model is developed to
 


predict the losses in the flow regions mentioned above. The
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investigation is presented in two parts. The first part deals



with the flow losses in the vaned regions and the second part



with the losses in vaneless field. In the first part, the



friction losses which result from the boundary layers develop


ment along the vane surfaces and over the end walls are



considered. Mixing losses, due to the nonuniform flow



conditions at exit from the vaned region, are also taken



into account. The analysis establishes relations that provide



the description of the flow properties at the entrance to the



vaneless field, in terms of the boundary layer characteristic



parameters over the flow surfaces. From these relations
 


the various factors influencing the losses in the vaned region



are determined, and their relative effects are evaluated.



In the second part of this study, the viscous flow in



the vaneless field is analyzed. The influence of the three



dimensional end wall boundary layers on the steady nozzle flow



is taken into consideration. The effect of the nozzle
 


geometry and the flow characteristics on the losses in the



vaneless region are determined.



Under the stipulation of the developed model, the overall



losses between the inlet of the radial nozzles and the impeller



periphery may be considered as the sum of friction and mixing



losses in the vaned region, plus the friction losses in the



vaneless field. For an actual expansion process, the mechanism



of all these losses are coupled. The model adopted however,



provides a simple guide for better understanding and estimating



radial nozzles loss data.
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PART I



FRICTION AND MIXING LOSSES IN THE VANED REGION
 


ANALYSIS



The purpose of the radial turbine nozzles is to convert the



pressure energy into flow kinetics energy. In the vaned region,



a torgue is imposed on the flow by means of the vanes following



the scroll and hence, the angular momentum of the fluid changes
 


more rapidly than in the vaneless field. The design objective



remains the same, however, to achieve the highest possible



efficiency. The thin untwisted vanes forming the nozzle channels,



are arranged around the circumferential direction, with equal



spacing and orientation (Fig. 1). In order to maintain a



sufficiently high vane chord Reynolds number, the length to
 


width ratio of the passages between the vanes ranges between



1 and 3, and the vanes aspect ratio is often less than 1.



As the flow passes through the vaned region, it suffers a



loss in total pressure and kinetic energy. This may be attributed



to the decrease in the flow momentum within the boundary layers,



which are developed over the flow surfaces, and to their mixing



with the main flow. It can be seen from Figure 2, which is taken



from Reference [4], that the magnitude and the direction of the



flow velocity, as well as the other flow properties are nonuniform



in both the axial and the tangential directions at nozzle inlet.
 


These nonuniform flow conditions which constitute an additional



source of the losses are caused by the three dimensional flow



behavior in the scroll.



Another possible mechanism that contributes to the losses



is the secondary flow, which tends to move the boundary layer



material across the channel from the pressure side of a vane to
 


the suction side of the adjacent vane, as shown in Figure 3.



To obtain an exact solution of the real flow in the vaned



region, with all the aforementioned effects included, would be
 


impractical. These factors can be examined separately to



determine how they affect the losses in the radial turbines.



The work presented here is a study of the losses, which result



from boundary layer development along the vanes surfaces and



over the end walls.
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Referring to Figure 1, the total pressure of the flow entering



the nozzle at radius ro, is Pto. As it leaves the nozzle at rl,



there is a variation in the flow properties in both the circumfer


ential and the axial directions due to the axial directions due



to the boundary layer development over the end walls and the vane



surfaces. It is assumed that due to the mixing effects, the



properties of the air stream are homogeneous at station 2, down


stream from the vanes exit. The loss coefficients, expressed



in terms of the total pressures at stations 0 and 2, will hence



represent the overall losses across the vaned region, resulting



from the friction and mixing mechanisms. The pressure and enthalpy



loss coefficients are given respectively by the following



relations:



-T-	 -,t2-t 	 (Pto/Pt 2 ) 1 / 1 
7_7D(Y-.)/Y


1-p2/Pto '(P to/P2) ( -1 / 
- -	 -11



In order to determine these coefficients in terms of the main



flow properties and the boundary layer parameters at station 1,



the equations governing the flow motion between stations I and 2



are derived in the following sections.



The 	 Governing Equations



Consider a control volume with an axial depth, 2b, equal to



the nozzle depth, that extends circumferentially between two



consecutive mid-channel stream surfaces as shown in Figure 4.



The equations of conservation of mass, energy, angular momentum



and linear momentum in the Y-Y direction are written under the



following assumptions:



a. 	 The total temperature is constant during the expansion



and the mixing processes.



b. 	 The static pressure is independent of z and S at
 


station 1.



c. 	 The flow pattern is similar in all the flow channels,



between two neighboring vanes of angular spacing



equal to 2r/Z.



The 	 Conservation of Mass



For steady flow conditions, the following continuity equa


tion applies for the control volume of Figure 4:
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+b +i/Z +b +r/Z 
I I (pVrcos) 1 dedz = f f P2V2r2cosa 2dedz (2) 
-b -r/Z -b -n/Z 

If the left hand side of the above equation is expressed in terms



of the boundary layer characteristic parameters at station 1



by using equation (A24) of Appendix A, the following relation



is obtained:



(pV)1 rlcosa 1 [l-6 -6te-Ae = P2V2r2cosa 2 (3)

1



In the above equation, the subscript -1 refers to the conditions



outside the boundary layer regions at exit from the nozzle



channels, a1 is the angle between the velocity vector and the



inward radial direction, & is the total nondimensional dis


placement thickness over the vane surfaces at station 1 and

** 

ate denotes the trailing edge blocking factor. 8 is the



streamwise total nondimensional momentum thickness over the two



end walls at station 1, and X is a parameter given by Equation



(A23) that depends on the end wall boundary layer profiles.



Conservation of Angular Momentum
 


If the equation of conservation of angular momentumn is



written for the same control volume, the following expression



is obtained:



+b +/Z 2 2 +b +/Z 2 2 
I I P2 r2V 2 cosa 2sina 2 dedz - I I (pr V cosasina)Idedz = 0 
-b -r/Z -b -i/Z (4) 

Using Equation (A23) of Appendix A, Equation (3) can be written
 


as follows:



2 2 2 2 * * ** P2V2cosa 2sina2 r2-(PV )ICosalsin 1 r1El-& _Stee -ne = 0 (5) 

In the above equation, 0 is the total nondimensional momentum



thickness over the vane surfaces and r is a pararcter to be



determined from the end wall boundary layer velocity profile



at station 1, using Eq. (A31).
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Conservation of Linear Momentum



Referring to Fig. 4 the momentum equation in the Y--Y



direction is expressed as follows:



+Ib -4-/Z 2


- f f [pV cosa r cos(a+O)] 1 dadz



-b -w/Z



+b +i/Z 2


+ 	 I I P2V2r2cosa2 cos(a 2-0+8)dedz



-b -ir/Z



+b +7/Z 	 +b +r/Z


- I I plrlcosededz - f f P2r2cos(a-e)dedz + Q + C


-b -/Z -b -r/Z (6)



The first and second terms in the right hand side of Equation (6)



represent the component of pressure forces acting on the



surfaces CD and FE of Fig. 4, in the Y-Y direction. The next



term Q, is the resultant of the pressure forces on the two



mid channel stream surface CE and DF in the same direction.



The contribution of the body forces is represented by C and the



flow turning angle is equal to a. When the first term on the left



hand side of Equation (6) is expressed in terms of boundary



layer characteristic parameters according to Equation (A41),



Equation (6) reduces to:



2 	 rCos sin1-(pV2)
Cs~a-	 Cos2 a 
 Z--r
202 V2 r20osa2 cos(ct2-$)sin
 - -(V) 	 22V2 2 	 coa
2 2w



sin !/z- r*)-(S* + te + e ) cos -} 

= 2plr1 sin 7 - 2P2r 2 cosa sin 1 + + + 	 (7)
-f 
 z 22Z 	 2b 2b 2b



where r is a parameter that depends on the end wall boundary


layer profiles as given by Eq. (A42).
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The Energy Equation



Assuming no heat or work exchange between the flow in the



control volume and the surroundings and using the equation of



state for a perfect gas we obtain:



(Pt). 1 't2
l t2


(Pt)_1 Pt2



1



Where the subscript, t, refers to the total conditions. Assuming



the viscosity effects to be negligible in the free stream



between stations 0 and 1, Ptl will be equal to Prto and the



energy equation can be written as follows:



(Pt Pto 
 (9)

T 2 Pt2



Equations (3), (5), (7) and (9) will be used to calculate



flow properties at station 2 in terms of the free stream and the


boundary layer characteristic parameters at station 1. In order



to carry out a solution the radius, r2 , at which complete mixing



has occurred is to be known. Moreover, the detailed flow



conditions within the control volume are also needed in order



to evaluate the quantities P, Q and the angle 8 in Equation (7).



SUDDEN MIXING ANALYSIS



The results obtained from the experimental investigation



of Ref. [4] indicate that the nozzle wakes almost disappear



near the zone of rapid adjustment, which is shown in Fig. 1.



Assuming complete mixing to occur at a radius r2 which is very



close to r1 is therefore an authentic model of reality.



For the limiting case of r2 approaching rl, the flow


deflection angle, the contributions of pressure forces acting



on the mid-channel stream surfaces CE; DF as well as the body



forces in the Y-Y direction will diminish. Consequently, the


terms Q, C and the angle 8 in Equation (7) will tend to zero,



and the governing equations are simplified to the following



form:
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Pt2 cosa1 1 M1 (1-6 -6te-A8 ( 

to cOSc 2 P2 N2 

M2 sinct2 [l-s 6te- X J = 1 sinal[l-6 -6e- -ne 1 () 

* *2 2 ,e ( +Ste) ] i -! 2 

M2 Cosa {M1 CosEl - - + + + - I- *2


tan 2y y+. 1



Z



M * ** rn* 2 2 y+l y- *2 
M1 cosll-6 -t- )M 2 cs2 + - y+2- 2 

(12)



where



* ,
V1 , V2
M1 (V-crl 1 P 1 M2( ' r Vc2 Ptr t= M = ' 2 
r 1 t or2 t 

(13)



Equations (11) and (12) can be solved simultaneously to determine



the axisymmetric flow properties M2 and a2, providing that the


flow conditions and the boundary layer characteristics are



defined at the nozzle exit. Once M2 is obtained the density



ratio P2 could be calculated from the following identity:



1


* 1 y-i M*2y-i



(14)+-l 2 

If a similar expression for p1 in terms of M1 is used together


with Equation (14) into Equation (10), the ratio between the



total pressures Pt2 and Pto is obtained. These pressure-ratios



are substituted into Equation (1) to determine the overall loss


coefficient , , across the nozzle vanes. These loss coefficients


-aill hence depend upon the nozzle geometry, the flow conditions


* * * .* 

MI , al. and the boundary layer characteristics 6 , , , 

X and n at the nozzle channel exit. 
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RESULTS AND DISCUSSION



The results of the present analysis show the effects of



variation in nozzle geometry, flow conditions M1 , a,, and the



boundary layer characteristics 6 , 8 , , r , X and n on the



level of losses across the vaned region. A series of figures



in which the variation of the loss coefficients Y, with only



two of the afore mentioned variables are presented at specified



values for the rest of the parameters.



Figures 5, 6 and 7 represent the overall loss coefficient



and E at flow discharge angle, a1 , of 450, 600 and 750. Each



figure demonstrates that the overall loss coefficients increase



with increased nondimensional vane surface boundary layer momentum



thickness, a , for different values of the streamwise nondimensional



momentum thickness of the end wall boundary layer, 8 It can



also be seen from these figures that the losses decrease with 

the decrease in the end wall momentum thickness 8 , with the 

minimum values corresponding to 8 = 0. This lower limit 

represents the losses in a nozzle channel of infinite aspect 

ratio. The nondimensional momentum thicknesses 8 and 0 are 

defined by Equations (A22) and (A27) and are both evaluated at 

exit from the nozzle channels. 

Equation (A27) shows that the nondimensional momentum



thickness, 8 is inversely proportional to the cosine of the



flow discharge angle aI For a specified value of the vane



surface boundary layer momentum thickness, a will increase



with increased aI* Figures 5, 6 and 7 can therefore be used to



show that the losses increase with increased flow discharge



angles. This effect becomes more significant at higher values



of a1 , An accurate estimation of the exit flow angles is hence



essential for loss evaluation.



Figure 8 shows the effect of the streamwise shape parameter, 

Hx, on Y for the case of small crQss flowas., t s olvibun 

the Y is a weak function of Hx , which is known not to exceod 2,. 

for unseparated turbulent boundary layers [62. For all values 

of a presented, the loss coefficients were found to increase 

not more than 5% for a corresponding increase in Hx from 1.2 to 2. 

10 -bpftDIBIL1TY OF THF 
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Since the vane trailing edge thickness, te, is increased



when cooling of the radial turbine is considered, it would be



desirable to examine the effect of te on the overall losses



in some detail. This effect is investigated through the use



of the parameter t + + p/- The results are presented

e s p/r21 

in Figure 9 as the ratio between the loss coefficient, Y, at 

a finite value of t to Y, calculated for zero trailing edge
e 
thickness. Figure 9 shows that the increase in the losses can



be considerable for larger values of the trailing edge thickness.

* 

Under normal operating conditions corresponding to 6 = 0.02 

and e = 0.015 in a conventional turbine with trailing edge 
thickness parameter, t +6 +6p/lvz , of about 0.03 the 

e s r 
trailing edge contributi6n to the losses is about 25 percent. 

If the parameter, t +S +6 /2 Z , is increased to 0.07, the


e s p r1



portion of the losses due to the finite trailing edge is



increased to 82 percent.



The effect of compressibility on the overall loss coef


ficients are shown in Figures 10 and 11. It can be seen



from Figure 10 that the enthalpy loss coefficient, , remains
 


practically constant with increased free stream Mach number,



for the different values of the boundary layer parameters



considered. On the-other hand, the overall total pressure



loss coefficient, Y, increases significantly with increased



Mach number, Figure 11. Due to the large sensitivity of the



pressure loss coefficient to Mach number variations, it is



recommended to use the overall enghalpy loss coefficient, C,
 


in describing the loss performance characteristics of the
 


radial turbine nozzles.



The effects of the end wall boundary layer cross fl& on



the losses are shown in Figures 12 and 13. Figure- 12 illutrate



the variation of Y with 0 , for the different end wall



velocity profiles A, B, C and D of Table A-i in Appendix A.



Since it was found previously that the loss coefficients



are weak functions of Hx it may be concluded, by examining
 


Figure 12, that the cross flow profile, parameters K and L



(see Equation A9 and A10) have a significant effect on the



losses. As an example, for a value of the nondimensional



1.





** 

streamwise momentum thickness, 8 , of 0.03 a variation in the 

magnitude of losses up to 25% can result by considering 

different profiles. 

Figure 13 shows the contribution of the cross flow to



the losses which were calculated using the end wall velocity



profile, B. It is clear from the figure that the minimum



losses are obtained for the case of collateral end wall boundary



layers e = 0. The losses increase appreciably for strong
 


cross flow cases corresponding to higher values of s.
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PART II



FRICTION LOSSES IN THE VANELESS FIELD



The vaneless nozzle in a radial turbi-ne consists of a smooth



walled axisymmetric passage with radial or conical surfaces. The



passage depth may change with radius, but a little influence on



both the pressure and velocity distribution is noticed, since the



angular component of the fluid momentum is predominant. Basically



the flow in the vaneless nozzle can be treated as a vortex motion,



except for the skin friction which acts upon the flow boundaries.



In overcoming the resistance along its path the flow loses part of



its total pressure. The pressure loss occurs at the expense of



both static and dynamic pressure (8].



Loss analysis for the turbine vaneless nozzle may be treated



using the same methods developed for the compressor vaneless



diffuser, provided that the area changes as well as the flow



direction are taken into consideration. Conventional flow



analyses for the vaneless diffuser [9, 10, 11] were based on the



assumption of one dimensional flow. Total pressure losses were



determined using a constant friction coefficient. In a recent
 


study, Jansen [12] arrived at a more accurate evaluation for the



friction coefficient and its variation along the flow path.



His analysis however, requires much more detailed knowledge of



the flow conditions than can actually be realized in practice.



In the following study, the governing equations for the flow



in the vaneless space are formulated using three dimensional end



wall boundary layer theory [6]. The resulting differential equations



are solved numerically to obtain the flow properties within the



vaneless field. The losses are evaluated taking into account both



the wall friction and the momentum flux changes due to velocity


profile variation along the flow path. The effects of some



parameters representing the operating conditions and nozzle
 


geometry on the losses incurred within the vaneless field are



also investigated.
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THE THREE DIMENSIONAL FLOW IN THE END WALLS BOUNDARY LAYER



Flow Pattern



As the flow in the vaneless field proceeds towards the


impeller tip, the main streamlines turn as shown in Fig. 14.



A balance is established in the main stream between the static



pressure gradients and the centrifugal forces caused by the flow



turning. The unbalance between the externally imposed pressure



gradients and the centrifugal forces of low momentum end wall


boundary layers, produces an acceleration component normal to



the main stream direction in the boundary layer fluid.



Consequently, the velocity in end wall boundary layers is



different from the mainstream velocity, V, not only in magnitude



but also in direction. The velocity profiles in this skewed



boundary layer is shown in Fig. 15. Taylor [13) noticed that



the polar plot of the velocity vector in a skewed boundary layer



follows a triangular form such as shown in Fig. 15. Thus,



any analysis of such boundary layer is usually carried out using



different formulation in the inner and outer sublayers.



The Inner Sublayer



Referring to Fig. 15, the following linear relation between



the cross flow velocity component, w, and the streamwise velocity



component, v, holds good:



w = v tan tmax (15)



The angle pmax in the last equation is invariant within the



collateral inner sublayer. Accordingly, it can be estimated



at the wall using the following relation



tan *max Limit S (16)
-- = 


Since the skin friction is in the same direction as the velocity



vector at the wall, therefore it will deviate by the angle,



*max, from the main flow direction. If the wall shear stress



and the friction coefficient are denoted by Tr0 and Cf respectively
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and if their components in the main flow direction by -cx and



Cfx, then:



Cf = Cfx(l + C2 )1/2 (17) 

where



T 

Cf 1 2 (18)



and



T 
2
C = 1V (19) 

Ludwieg and Tillman [14] deduced an accurate semi-empirical



expression for the wall friction of two dimensional flows in



the presence of favorable pressure gradients. Johnston [61



showed that in a skewed boundary layer, the relation of



Ref. [141 can be used to determine the component of the skin



friction coefficient in the main flow direction according to



the following relation:



-0.268 
Cfx = 0.246[ExpC-l.561 Atx)JRe (20) 

where Hx is the streamwise shape factor, and ROx is the



Reynolds number based on the streamwise momentum thickness.



Referring to Fig. 16; the components of shear stresses in



the tangential and the radial directions are



x6 = T0 sin( t-max) (21) 

t= T0 max)a
 (22)
Tr o cos(a -


When Equations (16), (17) and (18) are substituted in Equations



(21) and (22) ,the following relations are obtained:



e 1 PV2Cf[Sin - £ cosc] (23) 
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1 pv2CfxECOS + e sina] 
 (24)



In the above equations, the values of a and s will depend



on the main flow variables. The expressions which are used in



evaluating these parameters are given in the outer sublayer



analysis that follows.



The Outer Sublayer



The two velocity components in the non-collateral cuter



sublayer, namely the cross flow component, w, and the streamwise



component, v, are related by the following equation,
 


w = A(V - v) (25)



The parameter A depends on the main flow turning angle (0),



which is shown in Fig. 14, and is given by the followin' expression:



A =-2V 2 dS (25a)


0 V



where V is the main flow velocity.



The tangent, s, of the limiting angle, m' , can be expressed 

in terms of the parameter A and the streamwise friction coefficient, 

Cfx , according to the analysis of Ref. 16] as: 

+)1/4 


- 0.1 + - 1 (25b) 

fx



Equations (20), (25) and (25b) can be substituted into Equations



(23) and (24) to predict the variation of shear components t,, Tr



along the flow path in terms of main flow variables. The details



of the computation procedure used for this prediction is
 


presented in the section dealing with the Numerical Solution of



the Governing Equations.
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CALCULATION OF THE MAIN FLOW PROPERTIES IN THE VANELESS FIELD



Analysis



The vaneless space geometry, together with the velocity



triangles and the coordinate system are shown in Fig. 17. It is



assumed that the flow enters the vaneless field at the radius,



r2, in a steady uniform axisymmetric pattern, with specified



flow conditions. These inlet flow properties are determined



from the vanes friction and mixing loss analysis presented in



Part I of this study.



As the flow passes through the vaneless field, there will



be a variation in its properties in both radial and axial



directions. The variation in the axial direction, z, results



from the development of boundary layer over the two end walls.



The static pressure distribution and the radial and tangential



velocity components will be determined along the main flow path,



using the assumptions of the first order boundary layer theory.



An equivalent one dimensional flow will be considered in a



nozzle with an effective depth of 2be t which is equal to the



actual nozzle depth, 2b, minus the displacement thicknesses



of the two end wall boundary layers at any radius, r (see



Fig. 18). The components of the velocity, V, and the pressure,



p, of the flow passing through this equivalent nozzle, vary



only along the radial direction, and are independent of z and



e. The total pressure loss due to friction will be calculated



using the values of Tr and T developed in the previous section



and given by Equations (23) and (24).



Equations of Motion
 


The control volume of Fig. 19 will be used in the following



derivation. The magnitude of the velocity, V, is considered to



increase as the flow proceeds inward in the vaneless nozzle.
 


Furthermore, the flow will be assumed to be steady and adiabatic.
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Conservation of Angular Momentum:



Setting the net efflux of angular momentum through the



control volume, equal to the external torque due to the shear



force in the tangential direction, we obtain the following



relation:



PbeV cosa (r V sina) = Ter (26) 

Substituting for T from Equation (23) into Equation 

(24), we get: 
V cos__Vsin_ d Cf.XV2 

Cosa V sina + V cosa - (V sina) = r[sina - scosal 
r dr 2be 

(26a) 

Conservation of Linear Momentum in Radial Direction:



d PbeV2sin 2 a


-PbeV Cosa -( CVcosa) = bedr (P)- 27)



The left hand side of the above equation is equal to the net



radial momentum flux. The first two terms on the right hand



side are the radial components of the pressure forces and the



wall friction forces, while the third term represents the



centrifugal forces.



Substituting for Tr from Equation (24) into (27) and



rearranging we obtain:



! dp Cfx 2[s nsin2a 2
d oe p dr 2be r
-Vcsdr V r
-V coscoa - _ V [Cosai + esinal

(27a)



Conservation of Mass:
 


From continuity considerations, the following differential



equation is obtained:
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I dp + 1 d(V cos) +1 1+ dbe



pdr V cos dr r bdr

e



Equation of State:



The pressure density temperature relation for a perfect



gas is used in the following differential form:



l dp 1 dp 1 dT (29)


p dr p dr T Ur
 


Energy Equation:



Since the total temperature remains constant during the



expansion process in the vaneless field, the differential form



of the energy equation may be written as:



M2d
-y-l 
 2



1 dT _ M 1 dM2
 (30) 
M2
T dr 1 + yl 
 2 dr
 

M2 
Which, when combined with the definition of the Mach number



reduces to: 

1 dV2 1 2 
1 d v 1- I I (30a) 

M 
 IdrY-l2
V2 dr 

2



Formulation of Relations Describing the Variation of Flow
 

Properties Along the Flow Path



Equations (26) through (30) will be manipulated to obtain



the following relations which are used to calculate the pressure,



Mach Number and the main flow angle.
 


Pressure Distribution



Combining Equations (29) and (30a), the following relation



is obtained


p-i M2 2



1 dp 2 1 dMdp 
 
p dr p d-r 1+ X31M 2 d



2 M



Dividing Equation (27a) by V2cos2a and using the identity,



pV2 = yp M2 (32)



gpRUCIBL1TY OF THE19 
z POOR16gVOAL PLO 



one gets an expression describing the variation of the tangential



velocity component with radius as



1 d "1 1 dp Cfx (cosa + ssin) tan2 a 
Cosa dr (V cosa) 2o2P - - 2e 2 ryMCos a e Cos as



(33) 


Substituting for 1 do from Equation (31),' C1osa r (V cosa)p dr 

from Equation (33) into the continuity Equation (28), the 


variation of pressure with radius is deduced as:



1 dp M2 Cfx (cosa + Esina) sec2a 

p dr 2 2 [- 2 r 


M -sec eO aoc 


y- M2 2 db 
- 1 M 1 dM 1 e (34) 

-1 2d2r Fbdr-


Mach Number Distribution



In order to obtain the variation of Mach number along the



flow path, an additional equation relating the pressure in terms



of M and a is required. This relation is obtained by combining



the equation of angular momentum (26a) with the equation of



linear momentum (27a).



1 1 dp Cfx 1 1 dV2
 (35)

22p dr 2b Cosa)c 2 v dr 

Substituting Equations (30a) and (32), into the last equation,



it reduces to:



1 dp = yM2
 -1 1 d2 Cfx (36)


) M2 dr + 5ecoSaN,-+ 12
pd-r--2 


Now, eliminating dp between Equations (34) and (36), the



p dr
 


Mach number variation along the radius, r, is obtained from the



resultant expression.
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1 dM 1 ( 2 2 fx 2 	 be


2
1M 	 1sect + C sec(M - tan2 a + Etana)+ e 

M2 2 r 2beg d 

(37)


Flow Direction
 


The differential equation of flow direction may be developed



using the following relation:



tana = V sin (38)



V cosa



This last equation, can be written in the following differential



form:



I d(tana) _ 1 d(V sina) 1 d(V cosa) 
tan dr s dr V cosat r (38a) 

Substituting Eq. (26a) and (33) into'Equation (38a), the following



relation is obtained:



2 	 2

1 d(tana) _ sec a 1 dp sec 	 (39) 

tana dr yW-2 p dr r



1



Substituting for from Equation (34) and rearranging, the



equation describing the variation of flow direction with radius



takes the following form:



M2
d- -tana 	 Cfx sec [ 2 an++ db er {b 	 [i +Cy-l)M stan+2
dr 	 M sec a e e -d 


(40)



Nondimensional Form of the Governing Equations;



Before solving the equations of motion, they will first be



written in a nondimensional form. The nozzle dimensions will be



normalized with respect to the inlet radius, r2, and the pressures



with respect to the total inlet pressure, Pt2' as follows:



2b
R -rep
 

r , B e 	 P 
2 F2 	 Pt2
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Equations (34), (37) and (40) can therefore be written in



the following nondimensional form using the above expressions.



yM2 	 2
I dP _ s Cfx (cosa + Esin) sec a
P dy 2 s e 2 B 2 r



(~ 1 2 1d(42

1+ Y- M 2 ) M-'I Y- - N I


2



1 dM 	 1 +Y M2 [sec2 a Cfx 2_ 2 d-
R M2 _ seci (yM2tana3Ba T-


M _ sec aciB-


(43) 

and



M2
dM 	 -tan Cf. seca 2 lYB 


2 
dR M2_ sec2aRBd	 (1 +(yl)M+ etan)+ !-- (44) 

Furthermore, if the thicknesses of the boundary layers developed



over the two end walls are taken to be equal, then, B, the depth



ratio, and its derivative could be expressed as:



B 2b 	 26 (-) ( 5 =---
 - -2d r 

r2 
 dR 	 dR



where 	 S is the streamwise displacement thickness.

x 
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PROCEDURE FOR THE NUMERICAL SOLUTION OF THE GOVERNING EQUATIONS



In order to determine the flow properties within the vaneless



field, the system of nonlinear differential Equations (43), (44)



and the algebraic Equations (20), (Z5a) and (25b) will be solved.



A fourth order Runge-Kutta algorithm is used to solve the



simultaneous first order differential Equations (43) and (44).



The solution procedure consists of the following steps:



1. The values of M, a, at the vaneless nozzle inlet, are



assumed to be known from the analysis given in Part I.


dB



2. At any radius Ri f knowing Mi, ai Cfx' e, B and -B



the increments in M and a, over the radial distance (-AR) is



computed using the following recursion formula:



N -M.= _AR (K + 2K + 2K + K (46)i+1 -46 C= 2 23 
+ + +
ai+l -ai = - A-R (KK 2KK 2KK KK (47) 

1 1(12 213 1(4) 

where



K= f(Ri, M i, ai)



KK 1 = g(Ri, M i, ai )



1AR K K



K2 i , + --- ) (48) 

KK 2 = g(R i AR M + K1 KK1 

2- - ' L ' +-) 

K3 f(Ri AR M 2 a+K2


1 2' i 2 i 2



KK 3 g(Ri AR +K2 KK2

3 2 , i 2 , i 
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K(4 f(R - AR , Mi +K , i + KK 3 ) 

KK4 = g(R i - AR, M + K3 , ai + KK 3 ) 

Where f represents and g d ,and are evaluated according dR U-R



to Equations C431 and C441 respectively, using the known values of


Cfx, A, e, B and q- at the radius, Ri.



C f x ld R



3. At the end of the interval, at the new-radial location 

Ri - AR, the quantities Cfx, A, E, B and dB are evaluated using 

Equations (20), (72ay and (25B respectively, as will be explained. 

The streamwise friction coefficient, Cfx, is calculated according to 

Equation (20). The boundary layer characteristic parameters, ROx and 

Hx, in this equation, can be evaluated using any method of 

boundary layer solution. In the present analysis, the method of 

Reference 15 was used for this purpose. Integrating Equation (25b) 

numerically, starting from the vanalea: nozzle, fl-let, until an


desired radius, where the mean flow turning angle, $, is known,



gives the corresponding value of A at Ri.1 . These values of Cfx



and A are then substituted into Equation (25c), which is solved



for e using an iterative procedure.



4. Refined values for Mi+,'ci+l at (Ri - ARI are obtained1
 

by substituting the arithmetic average between Ri and Ri+1 of the



variables Cf , e, B and - in the recursion formula (46) and (47).

dR



5. The corresponding values for Cfx' A, e, B, - at R



are calculated as shown in Step 3, using the values of Mi+I ,
 


li+l obtained from Step 4.



6. Steps 4 and 5 are repeated until successive values of the



computed flow variables are within the required accuracy. in the



present study, an accuracy of 0.001 was maintained in the different



variables, which was achieved after 2 iterations.
 


7. The whole procedure (Steps 2 through 6) is repeated for



small values of (-AR) starting from the nozzle inlet up to the



impeller tip. The numerical results reported herein were



calculated using radial increments AR equal to 0.01.
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EVALUATION OF LOSS COEFFICIENTS ACROSS THE VANELESS FIELD



Standard definitions of total pressure and enthalpy loss



coefficients, in terms of the average pressures at inlet to and
 


exit from the vaneless region are adopted. The total pressure



loss coefficient is given by:
 


P t3 

- t2 (49) 

P 3 


Pt2



while the enthalpy loss coefficient may be written as:



Y-1
Pt2 
P t3t3 (50)

(Pt2 -

P3



It is clear from the above two equations that the flow conditions



at station 3, the vaneless space exit, have to be known in order to



calculate the loss coefficients.



In the previous chapter, it is explained how to determine,



numerically, the Mach number, the flow angle and the effective



nozzle depth variations along the flow path. Knowing the values



of these variables at the nozzle exit (-station 3), the static and



total pressures, P3 and Pt3' are computed using the equations



derived below.
 


The conservation of mass between the vaneless diffuser inlet
 


and exit, is expressed as:



P2V2cosa 2r2b2 = P3V3cosa 3r3be3 (51) 

where 2b is the effective depth of the nozzle at station.3.



If the definition of Mach number and the equation of state
 


are substituted into the above Equation (51) , the following



expression for p3/P2 is obtained:



25





P b2 r2 Cosa2 M2 I + 1-__' M2


p3 2 2
_ c 2 2


(52)
2 bre r3 cosa3 M3 1 + yiM2 


3 2 31 


The total pressure at the vaneless space exit, Pt3' is then



determined using the following relation:



Pt3 
 P3 1 2 3 T-
Pt2 =P 1 + y-- M2 (53)
Pt2 P22 
 2 

Equations (52) and (53) are sufficient to determine the loss



coefficients Y and , provided that the inlet flow conditions to



the vaneless space are specified.
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RESULTS AND DISCUSSION



The numerical examples worked out using the present method of



analysis are presented in two groups. In the first group, the



effects of inlet flow conditions on the flow behavior and losses



in the vaneless field are investigated. The second set of



results illustrate the influence of changing the end wall spacing



on the same flow parameters.



1. Effects of Inlet Flow Conditions



The effect of two inlet flow parameters, namely the Mach number



and the flow angle on the vaneless nozzle performance are considered



first. Computations were carried out with an inlet Mach number of



0.8 and different inlet flow angles a2, the corresponding results



are shown in Figures 20 to Z2. On the other hand, the data obtained



with different Mach numbers for a constant inlet flow angle of 70'



are presented in Figures 23 to 25. The geometrical end wall spacing,



2b, and the inlet radius to the vaneless field, r2, for this first



set of results were chosen to be 0.339 and 3.93 inches respectively.



The total temperature was held constant throughout the flow at 2000
0R.



The change in angular momentum ratio, r3V3sin 3/r2V2sina2,



with the normalized radius, R, is shown in Figure20 for different



values of inlet flow angles, a2. It can be seen that



increasing a2 causes a reduction in the angular momentum ratio



everywhere. This effect becomes particularly predominant at



high values of inlet flow angles. For example, at a normalized



radius of 0.9, the angular momentum ratio changes from 0.992 to



0.987 corresponding to an increase in a2 from 600 to 700.



Meanwhile, a further increase in a2 from 700 to 800 results in



a reduction of the same parameter from 0.987 to 0.973.
2 2


The radial variations of the ratio, M3/M2 , are shown in



Figure 21 for three different values of inlet flow angle. It can



be seen from the figure that increasing a2 reduces M3/M 2 at each



radius. This is a consequence of the larger reduction in the



tangential velocity component, due to viscosity, an influence



that dominates the augmentation in the smaller radial velocity



component. It can also be concluded that for all the values of a2

thrti M2 2



the ratio 3/M2 increases as the flow proceeds inwards Thich. is



anticipated.
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The variation in the pressure loss coefficient, Y, and



enthalpy loss coefficient, C, are shown in Figures 22a and 22b



respectively. It is clear that both coefficients increase with



increased inlet flow angle, a2, at every radial location. If



the results of Figure 22 are compared with those obtained in



Part 1 it can be concluded that, even for the largest values of



a2, the loss coefficients in the vaneless field are extremely



low as compared to the losses in the vaned region. For example,



the pressure loss coefficient of Figure 22b is as low as 0.0125



at R = 0.90 for values of a2 and M2 of 600 and 0.8, respectively.



On the other hand, the pressure loss coefficient of Figure 8



is as high as 0.107 under the same operating conditions.



Briefly, one can conclude that increasing the inlet flow



angle, a2 , results in a larger reduction in the total pressure,



Mach number and angular momentum at nozzle exit. This can be



attributed to the longer path that the flow has to take to reach



a certain radius if the inlet flow angle is increased.



The effect of changing the inlet Mach number, M2, on the
 


angular momentum ratio is illustrated in Figure 23. It is



evident that at any radius, the drop in angular momentum due to



viscous losses, is smaller for high values of M2. Accordingly,



high Mach numbers at inlet to the turbine vaneless field are



recommended. The variation in the ratio M2/M2 is shown in



Figure 24 for different values of inlet Mach number. It is



obvious that the acceleration rate in vaneless field is higher



for larger inlet Mach number.



The pressure and enthalpy loss coefficients Y and c are



shown in Figures 25a and 25b respectively. It is clear that



the pressure loss penalty paid due to viscous effects at any



radius ratio, is not strongly affected by the inlet Mach number.
 


Furthermore, the enthalpy loss coefficient at any radius remains



practically constant for all the inlet Mach numbers investigated.



2. Effects of Nozzle and End Wall Spacing



The object of the second group of numerical examples is to



study the effect of the geometrical passage depth, 2b, on some flow
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properties and on the loss characteristics in the vaneless



field. For this purpose, the following values of the passage



depth were considered: 0.262", 0.393" and 0.785" with an



inlet radius to the vaneless field of 3.93". The corresponding



values of the nondimensional parameter (r2/2b) thus ranges



between 15 and 5. The results were obtained at 0.8 inlet



Mach number and 700 inlet flow angle with an inlet total



temperature of 2000'R.



Figure 26 represents the radial variations of angular



momentum ratio, r3V3 sinc3/r2V2sina2 , for the three values



of the parameter (r2/2b). Although the angular momentum



ratio decreases at any radius, Rywith the decrease in end
 


wall spacing, 2b, the curves indicate that there is only minor



differences between smallest and largest values of the

2 2
 


parameter (r2/2b). The change in the ratio, M3/M2 , with R



is shown in Figure 27. Increasing the passage depth, 2b,

2 2
 


results in an increase in M3/M2 at any radius ratio, R.

2
2
The increase in M3/M2 results primarily from the reduction



in the friction surface area compared to the total flow area



as the wall spacing is increased. Figure 27 also indicates



that the variation of nozzle end wall spacing, 2b, has a



small influence on the Mach number distribution within the



vaneless space.



The influence of the end wall spacing on flow losses is



shown in Figures 28a and 28b. It is clear that larger losses



are incurred as the nozzle passage becomes narrower, corresponding



to high values of r2/2b. It is important to emphasize once



more that, even for the large values of (r2/2b), the losses



in the vaneless field remain relatively low as compared to



the vaned region losses.
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CONCLUSIONS



An analytical model which is based on the observations



obtained from an experimental study was developed to predict the



losses in a radial nozzle annulus. The contributions of the



end wall boundary layers to the losses was found to be several



times that of the vane surface boundary layers. This influence



is particularly significant when the end wall boundary layers



are characterized by large cross flow components. Under the



stipulation of the analytical model in which the mixing losses



are lumped with the friction losses in the vaned region, a small



portion of the overall losses were contributed by the viscous



effect in the vaneless field. Experimental findings in which



stator-rotor interaction effects are not considered show that



the losses are influenced by flow nonuniformities at inlet to



the nozzle channel and by secondary flow. These factors need



further investigation if a realistic estimate for the losses



is to be obtained analytically.
 


It is concluded that, generally the losses in a radial



nozzle assembly would not be greatly affected by the addition of



a large vaneless space. Also, if the nonuniformities of the



flow discharged from the vaned region can be reduced, the



efficiency of the assembly as a whole would be improved. Thus,



the loss penalty paid during an expansion process, resulting in



the required flow properties at rotor tip from a specified



outlet flow condition from the scroll, could be minimized.



Such minimization is achieved by a proper selection of vanes



configurations in conjunction with a suitable vaneless space



dimension. The application of the compositive method of analysis



presented allows one to differentiate between various suggested
 


radial nozzle designs in order to select the optimum configuration.'
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NOMENCLATURE 

Symbol 

A parameter (see Eq. 25b) 

B depth ratio defined as 2be/r2 

2b axial depth of the nozzle - distance between the 

two end walls, ft. 

2be effective depth of the nozzle 

Cf skin friction coefficient 

G streamwise profile function 

g cross-flow profile function (see Eq. A7) 

H streamwise shape factor for the end walls boundary 

layers (see Eq. A8) 

K,L profile parameter, for the end walls boundary 

layer (see Eq. A9, A10) 

M Mach number, dimensionless 

M* critical Mach number, dimensionless 

n coordinate normal to the vane surface, ft. 

P pressure ratio defined as P/Pt2 

p static pressure, lbf/ft
2 

Pt total pressure, lbf/ft
2 

r radial coordinate, ft. 

R radius ratio defined as r/r2 

Rex Reynolds number based on momentum thickness of 

the main flow, dimensionless 

T temperature, OR 

te vane trailing edge thickness, ft. 

v streamwise velocity component in the boundary 

layer over the end walls, ft/sec 
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V velocity, ft/sec



w cross-flow velocity component in the boundary



layer,over the end walls, ft/sec



Y overall total pressure loss coefficient



z axial coordinate, ft.



Z number of vanes, dimensionless



a angle between flow direction and inward radial



direction, radians



8 	 main flow turning angle, radians (see Fig. 14)



y 	 ratio of specific heats, dimensionless



r parameter (see Eq. 6A)



a boundary layer displacement thickness, ft.



ate trailing edge blocking factor defined as
 


te/ w rlcosal )


* 

a total nondimensional displacement thickness over the 

vane surfaces defined as (S +8 )/(2-w r Cosa 

a streamwise total nondimensional displacement thickness, 

over the two end walls, defined as ('ux + zx)/2b 

e boundary layer momentum thickness, ft.; or angular 

coordinate in plane normal to axis of rotation, radians 

a total nondimensional momentum thickness over the vane 

surfaces, defined as (6 +e )/(- rlcos a) 
s p Z 1



e streamwise total nondimensional momentum thickness



over the two end walls, defined as (eux+ezx)/2b



X 	 parameter (see Eq. A23)



density, lb/ft
3



p 
 

n 	 parameter (see Eq. A31)



w 	 angle of limiting wall streamline and T with



respect to Vfs
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T 0shear stress at the wall



overall enthalpy loss coefficient



etangent of the limiting streamline defined as tanw



Subscripts



0 inlet to radial nozzle, outlet from the scroll



1 nozzle exit



2 station at which uniform conditions are assumed to



take place



3 inlet to rotor



c cross flow direction



cr critical conditions



local conditions outside the boundary layer regions



9. end wall iower surface



p vane pressure surface



s vane suction surface
 


t total conditions



u end wall upper surface



r radial direction
 


x streamwise direction
 


35





STAT IONMID-CHANNEL STREAMLINE 

SUCTION SURFACE 

PRESSURE SURFCEI -

VANELESS SPACE rNOZZLE -0 

CANLIMPELLER TIPI l0 

-NOZZLE \ 


THROAT\ 


RAPID ADJUSTMENT 
FIG. 1:LOW RE N-S AN VTG Z 

FIG.1" FLOW REGIONS AND VELOCITY DIAGRAMS 
FIG. 8, 


II 



SUCTION SIDE PRESSURE SIDE 
IPr= 1.05 meter Hg Z -LEADING EDGE 

S0 ,o, 3 0 1o 20 3o 410 

PERCENT OF SPACING 

0.30------ 


- 0 0--- 0

a. - TOTAL PRESSURE = - Pto) I Pr PERCENT 

0.10205 

20.195 
0195 

b- MACH NUMBER 

6 67 68 69 70 

65
_____6 

c- ANGLE do (DEGREE)



FIG.2 FLOW PROPERTIES AT STATION 0


31



POSITION 

50 

Li205





SUCTION SIDE ail PRESSURE SIDE



Pr= 1.05 meter Hg TRAILING EDGE POSITIOt 

80 60 40 20 20 40 60 80 
]I I p 

PERCENT OF SPACING 

-038 

a - TOTAL PRESSURE = ( PtP2)/P r PERCENT 

b - MACH NUMBER 

76 79 
777 

76 75 
74 

s2 _



c -ANGLE c2 (DEGREE) RfPROJJUCIBIL OF THE
2 -afRkAN&?AGR 1BPOOR 

FIG. 3 FLOW PROPERTIES AT" STATION 1 

38 



'STATION 2-- ! . NOZZLE VANE 

F


MIDOHANNEL STREAM SURFACE 

DEVELOPED VIEW 

F-E 

(::kA -ION ST T 

MIOCHANNEL STREAM SURFACE 
(Ct 

FDEVELOPED-.VIE 

YA 

RIG. 4 CONTROL VOLUME 

39 



- ANGULAR SPACING =27.7 0 
,.p 0.20-

V) ( te*8s+8p ) 0.03w o -- - - -05
Z 2wv 

z 

"c- °0.02-	 0.16- =45. .		 0,03 

014 

, 0.10
00

< GOB ; 	 .
(9 

I-
z 
[i 0.06 

0 

It 0.040 
U 

0.2 

0 	 0.01 0.02 0.03 Q04 
NONDIMENSIONAL MOMENTUM FHICKNESS 0 

FIG. 5 LOSS COEFFICIENTS 

40 



I>t



14"p 0.20 ANGULAR SPACING 27.7'0.03 

z 0.18" Le+/s+op z 04 
cc 6O 
 0.02 

Nw 0.16 Hx. 2 .


N
 00 E =0.0 
0.01z 0-14-


Ji M=0.8 _02



0.01< 
0.0 

o 0.10 

0. 0. 
< 0.00Cl) 

< 0.04 

0 
u 

. .. Y
0 V0,02 

-0 0.01, aO2 0-03 0.04 

0;NONDIMENSIONAL MMNU T.HICK NESS 

FIG. 6 LOSS COEFFICIENTS 

4z :'Djw4Lm:. PA@t is POOR 

http:27.7'0.03


W ANGULAR SPACING 27.7 
Z2 

Li-
(teI+s+Sp)/;'- r =0.05



-J0.30-

N 
0 

Z HX2.0 003 
0.25 	 =-0.0



-- 0.0.02



= 0.8 	 0.030.20o 	 M 1 / // _o.oi 
0 /-0,0 2 

i 020 -0.0 
' 	 M E M HS 

z420:

 '-

U, 
015 0<r1 0.031 0 

u-I
FI.7 
 OSCOFICET



0 	 42





0-20 0: 0' 

ANGULAR SPACING = 27.7 r--

0-18 ( te"°3sa P ) O005. 0-03 

0.16 z ,. 0.02 

cri = 60 

I>- 0-14 ,
E =0.0 .. ./ "./"0.01 

0.12 M =0.5 

Wi 0.00 
9 0.10
LL 

i 

[Hx = 1.
0 0.04W~ .. j.
ur .2IL.f
U)
0 0.02
_jHG S EFETOF'H PAAEE H)O 

00 00 0=0 0230-4 00
0" 001 0.2 003 004 00 

0.043 
u43 



3.0 

0.01 

0.02
0. 

a =60 	 0.03 

2.8



H =2.0


x 
=0.0



o 	 ,0.01
(J 	 / 

24 	 0.02-,0,02 
/ /CCV

I>-	 , ,/ 0.03
I) 	 / / / /'J

/ / / / 
// / / 

C) / / / 0.01 

-//20 	 /02 0.03 
/ / / / 

,' ,/ / 00 
/, / / 

"/ ,/ /y , 

1.6 	 ,,0


,/ t?7t-/



12 

1.0


0 	 . 0.02 0-04 0.06 O.08 0.10 

(t + 2+7T1f e s p 

FIG.9 - EFFECT OF TRAILING EDGE THICKNESS 

44 



C 

ANGULAR
( te+CSs+3pD

0.18 ) 

SPACING 

= 0.05 

=27,7 

c = 600 
o.18 -z q 

0416 
0 0.04,0.03 

0.14
0-03,003
0-04 0-02 

012 .02 0-03 
-0-03 0.02 
-0.04,0.01 

w 0.01 , 0.03 
5 0.10 0.02 ,0-02 
L. 0.03,0.01 

0 
OB 

0.01 ,0.02 
0.02 10.01 

ul 006 
0

5j 0.01 50.01 

004 

a. Hx 2,0 
- 0.02-

I 0, 

0 0.2o 0.4 0.5 0.6 0.7 0.8 0.9 
MACH NO. 

PIG.1O VARIATION OF ENTHALPY LOSS 

COEFFICIENT WITH MACH NO. 

45 



04 &.03 

0"22-

ANGULAR SPACING 27,7 

0.20 (te+ s -) =. .05 .03&.03 

r01 
2 -IT.0 

.04&.02 

0-18 a.,=60 

-02 &3.0 

0.16 *04 & -01 

0-14 -1~ & .03 

Z 'X -02 & .02 
IL .03 & -01 
C) 0.12 

u. ,00 & -03 

.01 & .02 

0 

0-0-
Lo 

&.01 

bi 

W 00 0.020 &..00 
-_ H.00 &2.0 

. . .. .. . .I . I . ..I I0 0,2 0.4 06 0-8 1, 

MACH NO. 

FIG.11 :VARIATION OF PRESSURE LOSS 

COEFFICIENT WITH MACH NO. 

46 



I>-


ANGULAR SPACING = 27.7 
,,nw (t + +8 ) 
K e s p 0-O02 

z

ui 0 

-J cz=6 0 

o Si 
z' 00.03 
< 0.25 - E 0=O.3 

020

0 00 

I--°



PROFILE 
LUi 010 - ,A 

B 
0, 0,05- C
U 

D 
(')



0' 
0 001 002 0.03 0.04 0.05 

NONDiMENSIONAL MOMENTUM THICKNESS e 

FIG -12 EFFECT OF END WALLS PROFILE 

PARAMETERS ON LOSS COEFFICIENT 

47 



ii 

ANGULAR SPACING = 27.7 
u)zw
 (t + pXe 
 s P-00 

w2 0.3 0.0 

N60 0p ; 0 

Z.2 _; ... . . 

W 0.358z 

Nia6


z 0.10 
031 

0"' II1 


0,0 5-
1 

0.03 
X 

O0 K = 2.43 
0L 

K.1 = 0.966OW . 00 .3 00 =.043 

- 0.NOND!MEN SIONAL MOMENTUM THICKNESS 
4-

FIG. 13EFFECT OF END WALLS CROSS FLOW 

PARAMETER (E)- ON LOSS COEFFICIENT 

48 

0 



REFERENCE DIRECTION 

VANELESS SPACE INLET 

MAIN FLOW STREAMLINE 

. ..... - .- ROTOR TIP 

//"-BOUNDARY LAYER STREAMLINE 

FIG.14'FLOW PATH IN THE VANELESS FIELD





CROSS B.L. MAIN B.L. INNER OUTER 
zSUBLAYER SUBLAYER 

-V - 1 -- 2 

V V V 
w 

SxTx 
Tangent to mai.flow str line 1 

VV 

a VELOCITY PROFILES. b-VELOCTY POLAR PLOT. 

FIG. 15' END WALL BOUNDARY LAYER





TANGENT TO 
MAIN FLOW STREAMLINE 

SV sina TANGENTIAL DIRECTION 

ul, 

F d 

0 Co: VELOCITY VECTOR 
u AT THE WALL 

rY 
w 

J 

'.0 

FIG. 16 VELOCITY AND WALL SHEAR STRESS COMPONENTS 
IN THE SKEWED BOUNDARY LAYER 



station 

,a


Main stream line 

---- 2 -2Ii -----

U1 U 

-- R otor tip 

FIG 17 VANELESS SPACE GEOMETRY AND COORDINATE 

SYSTEM.




STAT ION 
2b 

7- Illlll 


2b L2 be



Vel oc ity Geometry Geometry Velocity 
d istri but ion distribution 

a -, Actual case b - Equivalent case 

FIG. 18 ACTUAL AND EO.UIVALENT VANELESS SPACE GEOMETRY.





-------------

do 
Developed view 

4 dPdr 

dr 

Vsinct NLbe/ 2 

FIG, 19 CONTROL VOLUME 

,;A 



Mz=0.8



1.0 
C 

d 

'O 0.99 

0 
0-98-

Z2 
d7Q

0J0-97 -

0.97 

0.85 	 0.90 0.95 1.0 
RADIUS RATIO R 

FIG. 20 'EFFECT OF INLET FLOW ANGLE 

55 



1.5 20



T cS1.4 -2

214

o 

a= 60 

< 

ryIti 
Ld 
In 

Z 

1.3 

1.2 
07-z 

a= 70 

0
2--80


110 

0.85 

FIG. 21 

0.90 0.95 
RADIUS RATIO R 

:EFFECT OF INLET FLOW ANGLE 

1.0 

56 




M2 0.8



I
z 0.05

0 
0 

LL.0 
IL . 

0t&0 
u 0.03

a 
2 
=70 

a = 600 

0 
-U 0.02 

U) 
U) 

0L 

0.01 -

0 

0.5 0.90 095 1.0 

LLI~ ,',pRADIUS- RATIO R 

FIG. 22fa- EFFECT OF INLET FLOW ANGLE 



0M05 0. 

z 

i 
-

0' 

0: a0'6 

LU 0.02-
S0101 

Il 
&I I 0,0 

0.85 0-90 0-.95 1.0 
RADIUS RATIO R 

FIG. 22 b; EFFECT OF INLET FLOW ANGLE 




° a,= 70 

110 

C 0.99

,-"M = 1.2ci 

0 

:D 

098

< Mz= 0,5 

0 8 

H 
z 
w 

0 

0.97 

2< 096

(9 
z 

0.95 
0.85 

I 
0.90 

RADIUS 

-

0.95 
RATIO R 

1.0 

FIG. 23 'EFFECT OF INLET MACH NUMBER. 




1 701.9 

r4- M222 
1.2 

"'-1.7 

0 
I

:D z 
'1.3. 
r'1.0 M =0f 

11. 

, 1. 0.95 1.0 
RADIUS RATIO R 

FI G. 24 EFFECT OF INLET MACH NUMBER. 

60 



LW 

0 

0 

0.024 - M -0.5 

M42=0.s 

M=1.2 

a=700 _ 

I

z 0.008 
w 

0.85 0,90 
RADIUS 

0.95 
RATIO R 

1.0 

FI G.25 a: EFFECT -OFINLET MACH NUMBER. 



0.03 


/-- M2 0.5 a
0

0 

I>
z ~ - v2 0.8 

z 
w 002 

L"Uc0 

0 

Lu 

:D 

U)c/) 

0,85 0.90 0.95 1.0 

RADIUS RATIO R 

FIG. 25b EFFECT OF INLET MACH NUMBER. 



013 

- 0.99
c~ 

r 
2b 

o 0-98 -

C

r2 -15 

H 

z 

0.90
(2b 

0 

0-96

.5 

0-80.96951. 

RADIUS RATIO R



FIG. 26 EFFOT OF END WALL SPACING. 

63 



1,5



M =0.8 

a= 70 

2 
1.4 

2b 

O 
I

r 1.3 

2b 

-'10 

z 
2.! 

1,2

1.0 
0.85 0.90 0.95 1.0 

RADIUS RATIO R 

FIG. 27 :EFFECT OF END WALL SPACING. 

64 



M2 =0.1 

I--a.2 70 
z 

w 2b 

_0 0.02 2 b 

w 0 

.5 0.90 .09b5 1.0 

~RADIUS RATIO 

FI G. 2'8 a: EFFECT OF END WALL SPACING. 



M =O.B 
a0 

a2 = 70 

w 0 =15 

0U 0.03
2b 

Oi 0,02 2 b 

LU[ 

0,01 - -

Lii 

0 --

0.85 0.90 0.95 1.0 
RADIUS RATIO R" 

FIG. 28 b:EFRECT OF END WALL SPACING.. 



APPENDIX A 

FORMULATION OF RELATIONS BETWEEN INTEGRAL QUANTITIES



AND BOUNDARY LAYER CHARACTERISTIC PARAMETERS



A.l Basic Relations and Definitions



In this Appendix, the integrals which appear in the left



hand side of Eqs. (2), (4) and (6) will be determined in terms



of the boundary layer characteristics at station 1. To



accomplish this, the domain of integral will be divided into



a main stream region and boundary region as shown in Figure Al.



This is a generalization of the approach used in the two



dimensional analysis of Reference [5].



At exit from the nozzle channels the profile boundary



layer developed along the vane surfaces is collateral, while



the end wall boundary layer is skewed. The velocity vectors



within the skewed boundary layer can hence be resolved into a



streamwise component v, and a cross flow component w. The



displacement and momentuim thicknesses are used to describe the



boundary layers at station 1. These two quantities for the



collateral boundary layer are defined as:



f pxr dn (Al)
(pv



f f


= pV dn-f- 2 dn (A2)



o (pV). o (pV)



Where n is the coordinate normal to the vane surface and 6f



is the boundary layer thickness. On the other hand, the streamwise
 


and cross flow end wall boundary layer displacement and the



momentum thickness are defined as follows:



6f 
ax =f - f pV dz (A3) 

0 (PV)7 

67





V (A4)
x f=f (PV dz - SfI (P2PV
 dz



af


6 = dz (AS)



af 
0 = f pw 2 dz (A6) 

o (pV 2 ). 

Where z is the coordinate normal to the end wall surface.



The relation between the parameters of equations (A3) through



(A6) can be determined for a given boundary layer profile.



It is assumed that in the end wall boundary layer the streamwise



and the cross flow velocity profiles are given by Reference [63.



v__ = Gw - sG g (A7) 
Vfs 
 ' fs



In the above equations G and g are functions of the coordinate



perpendicular to the end wall, z, normalized with respect to the



boundary layer thickness (Sf), 6Eis the tangent of the angle, .,



between the surface shear and the local main flow direction



as shown in Fig. A2.



The following streamwise and cross flow parameters are



used to describe the end wall boundary layers using the assumed



formes of the velocity profiles:



f



x 0 (-pG)dz
x o x x f(A8)



f .(I-G)G dz 
0
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f 
5 P(Gg)dz 

cec f (A9) 

I (v-iG)G dz


0



6f 
2 

If p(Gg) dz 

L 
e 
c 
ex f 

(Al0) 

I (p-pG) (G)dz 
0 

Where v is the nondimensional ratio p/p.



In Ref. [7] various families of functions G and g that are


most compatible with the experimental data were determined.



The corresponding profiles are plotted in Fig. A3, together



with the Band, "B", of the experimental data obtained by



Johnson [6]. The various parameters of Eqs. (A12), (A13) and



(A14) were calculated for the incompressible flow corresponding



to the profiles of Fig. A3, and are given in the following



table.



Profile H K L

x



A 1.286 0.457 0.0359



B 1.37 2.43 0.968



C 1.40 2.27 0.989



D 1.286 1.249 0.262



TABLE A-l: TYPICAL VALUES FOR THE END WALL BOUNDARY LAYER



CHARACTERISTIC PARAMETERS.
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A.2 	 Evaluation of the Different Integral Terms in the



Governing Equations



The integrals in the Governing Equations (2), (4) and (6)



will be expressed in terms of the boundary layer parameters of



Eqs. (Al) through (A10) based on the following assumptions:



1. 	 Different boundary layers do not interfere with



each other, hence corner effects are neglected.



2. 	 The flow is homogeneous outside the boundary



layer regions at exit from the nozzle channels.



In accordance with the foregoing assumption, the velocity



distribution of Figure A3 due to the profile boundary layers



on the vane surfaces will result in the variation of the total



pressure in the tangential direction shown in Figure A4. The



total pressure and velocity deficiencies in the axial direction



caused by the end wall boundary layers will be similar to those



indicated in Figures A5 and A6.



Referring to Figure A2, the following equations relate



the different skewed end wall boundary layer velocity components



and flow angles:



V cosa = v cosa 1 + w sina1 	 (A12)



V 2 2 	 2
cosa 	 sina = v cosa sina1 - w cosl sinam 	 (A13)



V2
and cos2 may be approximated by



V2 c~2 2 2 2.2


SCos = v cos aI + w sin2l (A14)



Where a is the angle between the flow direction and the radial



inward direction as before, while a1 is the same angle for



the local free stream at station 1, which is independent of z



and 	 a according to the assumptions.
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+b +7r/Z
A.2.1 	 Evaluation of the Integral I [ f (p Vr cosa) 1de]dz 

-b -i/Z 

Referring to Figure Al, it is more convenient to breakup



the above integration into three separate integrals as follows:



+b +r/Z +b-Suf +w/Z


f [ / (pVr cosa)ide]dz - cosair1 f f/ (PV) idedz



-b -n/Z 	 -b+6kz -n/Z



-b+6f +7F/Z 	 b +7r/Z 

+ rI {I [ f (pV cosa)1d8]dz + f [ f (pV cosa)ide]dz}


-b -w/Z b-uf -/Z
f 	 (A15)



where



6uf, 6Af 	 are the full boundary layer thicknesses over



the upper and lower end wall surfaces.



Referring to Figure A2, the coordinate used in the profile



boundary layer equations is related to the circumferential



coordinate 0 by:



da = r n 	 (Al6)
r1cosa
1



Substituting the above expression for de in the first term in



the right hand side of equation (Al5), and using the definition



of the displacement thickness of Equation (Al) we can arrive



at:



+b-6 u



[/ (PV)ld]dz = 
 [2b -(6u + 6%)]pV)l 2 -ta*-e e I 
~ ~f~ ~ 	 fP zt
zf 
 

(Al7)



where



S(6 s + 0p")/- r1 cOSu 1 	 (Al8) 

-
ste=te/2 rl cosal 	 (A19)
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and



as, 6p are the boundary layer displacement thickness



over suction and pressure surfaces of the vane.



te is the vane trailing edge thickness.



2_ is the angular spacing between two successive



vanes.



Using Eq. (A12), the last two terms on the right hand side of



Equation (A15) could be rewritten as:



-b++b


+b +7r/Z
f f +W/Z 

( f (pV cosc)ide]dz + I E f (pV Cosc) ldeldz 
-b -Ir/Z +b-6 -w/ZUf 

2'r b+Co p (v + w tan 1 )



! cosa[1 _fPV) pV) dz



+b p(v + w tanI1 )

+b- f (PV).1 dz]


+b-6 uf 1p)



When Equations (A3) and (A5) are used, the above equation



reduces to:



-b+6yf +/Z +b +w/Z



f I (pV cosa) 1d0]dz + I [ (pV Cosa)Ido]dz


-b -w/Z +b-6uf -a/Z



27r CV) 1 rlcosa (a+ a-(6 +6 )+(6 +6 )tan] (A20) 
k[a 6u Lx 
 tx £0 Cuf 	 J)
 

where



ax' 6ux 	 are the streamwise boundary layer displacement



thicknesses over the lower and upper end walls



respectively. 


a cI auc 	 are the cross flow boundary layer displacement



thicknesses over the lower and upper end walls



respectively.
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Finally substituting Equations (A17) and (A20) into (A15)



we get:



+b ir/Z 	 2r 
E f (pVr cosc)ide]dz = (pV). (Z-)rlCosa 1 

2b- (6u +6k)I 	 [
-b T/Z f f 

"[1-* -6te ]+[69f+uf -(Zx+ux)+(6c+ uc)tanail 	 (A21)



If we define the following nondimensional parameters



** 2bux+Zx 	 (A22) 

x Hx - K tana1 	 (A23)



where



aux a., 	 are the streamwise boundary layer momentum



thicknesses over the upper and lower end



walls respectively.



Equation (A21) can be simplified by neglecting the higher 

order terms (6uf + 66 (u -+-dkf)6te and introducing 

the parameters defined by equations (A), (A9), (A22) and (A23)



giving the following relation:
 


+b + /Z 2-u * * 
I [ I (pVr cosa) 1deldz = (pV)= r r1cosa I 2b[1-6 -6te- ]G0 
 
-b - /Z 1 (A24)



+b +r/Z 	 2 2


A.2.2 	 Evaluation of the Integral I [ I Cr pV cosasina)1 d8]dz



-b -ir/Z



The evaluation of the integral will be divided over the



three same regions discussed previously.
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+b +w/Z 	 2 2 2
f [ / (r pV coscsina)1jd]dz = {r1 cosalsinal} [2b 

-b -n/Z 

+r/Za 2 d+2 2-b+6f 2 
-6/]Yp (PI 2 r 2) (pV cosasinc) dzf f -ir/Z 	 -b 

b 2(A5 
asina) d z ]  + I 	 (pV cos (A25) 

b-6 
uf



Using Eqs. (Al), (A2) and (Al6) into the first term in



the right hand side of Eq. (A25), it reduces to:



{r2 cosaisina 11[2b - (6u + a )t I (pV 2 ) 1 de 
1 Uf Z -/Z 

cs]1[2b-[-OS-+e-
(pV2) sina cosa [2b-(6 )]2 r2 [1-6*6 * 3 (A26) 
u 	 .f z 1te



where



(s + 8p)/fZ-rl cosaI 	 (A27) 

and



es and 6p 	 are the boundary layer momentum thickness on


the vane suction and pressure surfaces



respectively.



When Eqs. (Al3), (A4) and (A6) are substituted into the second 

and third term of (A25), it can be deduced that: 

-b+S 

f (cosasina pV2 )dz = (pV2 cosa1 sinalljSf-6tx-8Px-ezc ]

-b 

(A28)
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and



f (coscsina pV2)idz = (pV2 cosisinl[6uf-6ux-6ux-8uc] 
uf 
 (A29)



where



8uc and 8Zc 	 are the cross flow boundary layer momentum



thickness over the upper and lower end walls,



respectively.



Finally, substituting Equations (A26), (A28) and (A29) into 

(A25) and making use of the parameters given by (AS) and (Al) 

the integral of equation (4) is expressed as follows: 

+b +i/Z 2 2 2 2n 2 
f [ f (r pV cosasin) 1 de]dz = (pV ).I sinacosa1 --riI 2b 

-b -r/Z 

[l- - te - e - ne*] 	 (A30) 

where



n=1 + H + 2 L (A31)



+b +r/Z 2



A.2.3 	 Evaluation of the Integral _f X (pV cosa rcos(a+8)1dedz


-b -w/Z



Using trigometric relations the above integral may be 


expanded as follows: 


+b 	+r/Z 2 +b +/Z 2 2 
f f (pV r cosacos(a+8) 1deldz = f[ / (pV r cos a) 1cos8d9]dz 
-b -n/Z -b -n/Z 

+b +r/Z 2 
- f E/ (pV r coscsina)1 sinedejdz (A32) 

-b -r/Z 

The first integral in the right hand side of Equation (A32) 

may be rewritten as: 
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+Ib +w/Z 2 2 2+b If(pV r cos a) cosa de]dz = {r1cos all - 

-b -w/z 1f 

+/Z +w/Z -b+6f 2 2 
-f -/Z (pv )lCOSede} + r{ I f E- (pV cos a)1cosedz]de 

f 7T/-ir/2 -b 

+wr/Z b 2 2(A3 
+ 	 f [I (pV cosa2) cosedzidel (A33) 

-w/Z b-S 1 

For unseparated flows, the angular coordinate, 0, does



not change appreciably inside the boundary layers formed over



the vane surfaces. Consequently, 8, can be considered equal



to the angular spacing, w/Z, within these boundary layer



regions. Using this value of 6 together with Equation (A2),



it can be easily deduced that:



-I-w/Z 2 2 c 8 + P + +7T/z 
I (pV2)icosede = -(pV2) Cos ! + V( - pV)cosd

1 Z r1Cosa I1
-w/Z 
 

(A34)



Using the definition of the displacement thickness given by Equation



(Al), the second term in the right hand side of Equation (A34)



reduces to:


+7w/z-27rpV 	
 1sin u/Z 
 _Cs7
f (PV)Icosede = 2w si rZ- 00s Y (* + te)] (A35) 

?ol /Z 	 t 

If Equation (A35) is substituted into (A34) the following relation



can be written:



_wrzV2 cosede = 2-(pV2 sin /Z - cos (&* + a + * 

f(pV zl £ T/Z Zte 
(A36) 

Using Equations (A14), (A4) and (A), the integrals in the right



hand side of (A33) reduce to:



76





+7r/Z -b+af 2 2 7r 2 2


f f (pV cos a)lCose dzdo = 2sin f cos a1 (pV



-1r/Z -b I f



- SX - ekx + k tan 2c I) (A37) 

+7r /Z +b 2 2 7sn 2 2
f f (pV cos 2 ) 1cosedzde 2sin C s2 l(pV2V (S 


-7i/Z +b-k f
uf



-a -Ou + a tan2a I) (A38)



Substituting Equations (A36), (A37) and (A38) into the right hand



side of (A33), we arrive at:



+b +/Z 2 22 2 2i 
I f I (pV r cos a) cosede]dz = 2b r)Cos a VI)z!1 
 
-b -n/Z 1



- 8 (1 + Hx - s2L tan2a!)] - cos 2 ( * + + *) (A39)
x z te



where Hx , £2L are given by the Equations (AS) and (AI0).


Following a procedure similar to the one used to obtain equation



(A39), it may be easily deduced that:



+b +w/2
+b I (pV 

2
r cosasina)1 sinede]dz = 0 (A40) 

-b -r/Z 

Finally, substituting Equations (A39), (A40) into (A33), the


required value of the integral in Equation (6) is obtained as:



+b [pV COSa rcos(ct+O)]ldodz = 2b(pV2) 
 cos2a 27r


-b -w/Z c- 1



sin '!* 

( -r )- T ( + ate + e )] (A4!) 
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where



= +H x L tan2l (A42)



Equations (A24), (A30) and (A41) will be used in equations



(2), (4) and (6) to express the continuity, the angular momentum



and the linear momentum equations in terms of the boundary



layer characteristic parameters at station 1.
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FIG A-i FLOW REGIONS AT EXIT FROM THE NOZZLE CHANNEL.
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FIG,A-2 NOMENCLATURE AND SYMBOLS AT VANES-TRAILING EDGE
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FIG A-3' NORMALISED CROSS FLOW PROFILES
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FIG-.A:-4: 	 TYPICAL VELOCITY DISTRIBUTION IN 
CIRCUMFERETIAL DIRECTION AT 
NOZZLE EXIT 
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FIG.,A-5": 	 TYPICAL PRESSURE DISTRIBUTION IN 
CIRCUMFERENTIAL DIRECTION AT 
NOZZLE EXIT. 
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FIG. A-7 	 TYP'ICAL VELOCITY DISTRIBUTION IN 
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