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PROBLEMS ASSOCIATED WITH ATTACHING STRAIN GAGES

TO TITANIUM ALLOY Ti-6Al-4V

Jerald M. Jenkins
Dryden Plight Research Center

and

- M. M. Lemcoe
Battelle Columbus Laboratories

INTRODUCTION

The measurement of loads with calibrated strain gages on supersonic aircraft
is complicated by aerodynamic heating. Strain sensors on these aircraft must
perform well at elevated temperatures if the strain gage data are to be valid.
Weldable strain gages perform well at elevated temperatures (ref. 1). However,
the fatigue life of the titanium alloys commonly used on supersonic aircraft is
reduced when spotwelding is used to attach the strain gages (refs. 2 "to 4) .
Because of this problem, unpublished laboratory studies (M, M. Lemcoe,
0. L. Deel, H. E. Pattee, T. J. Roseberry, and G. R. Schaer, "Development of
Methods for Attaching Weldable Strain Gages to Titanium and Rene 41," Battelle
Columbus Laboratories, Mar. 1974; and M. M. Lemcoe and II, E. Pattee, "Refine-
ment of Methods for Attaching Weldable Strain Gages to Titanium," Battelle
Cohimbus Laboratories, Dec. 1975) were made to gain an understanding of what
eauseu the fatigue life sensitivity and to determine whether another method of metal-
to-metal bonding coulu.be developed that did not cause such a severe fatigue prob-
lem. This paper presents selective information basic to strain gage and fatigue
technology,	 1

SPOTWELDING ATTACHMENT METHOD

IIi
U Strain Gage Description

A typical weldable strain gage (fig. 1) has a tube containing a strain element
I	 and flanges on both sides of the tube to transfer strain from the aircraft's structure

i , to the sensing element. The gage is attached to the aircraft structure by spot welds

ii	 1
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along the flanges. When attached, the strain gage becomes an integral part of the
structure and undergoes the same strain as the structure.

Fatigue Test Results

In the tests reported in references 2 to 4, spotwelding was used to attach strain
gages to fatigue specimens of titanium alloy Ti-6A1-4V (fig. 2) . The subsequent
fatigue tests showed the fatigue life of the titanium to be reduced so severely as to
preclude the use of this strain gage attachment method on aircraft.

It was observed during the Battelle Columbus Laboratories' fatigue tests that
the first fatigue cracks occurred near or at the ends of the strain gage flanges, as
depicted in figure 3. The consistency with which the first failure occurred near
the ends of the gage flange suggests that the flange causes a stress concentration
that contribute i to the premature failure of the specimens. An investigation was
initiated to determine the ways in which the flange might be modified to reduce this
stress concentration.

Another factor in the failure of the fatigue specimens that must be considered is
that a spot weld on the surface of a metallic matrix results in a discontinuity which
may be described as a stress raiser. Figure 4 shows that this type of discontinuity
is caused by the local melting of the material beneath and around the spot weld.
This change in the microstructure of the base material causes a stress concentration
that plays a role in the premature failure of the fatigue specimen.

Another factor that must be considered is the degree to which the spot welds
interact to concentrate stress at a discrete point. Since the interaction depends
partly on the spotweld configuration, and there are many spotweld arrangements,
the investigation of this factor is quite complex.

In order to address the total fatigue problem it is necessary to determine the
role of each of these factors in the failure of the specimen.

Tab Test Results

A set of tests was run to investigate the relative importance of these factors.
A single small tab was attached to each of several fatigue specimens, using a single
spot weld as the attachment mechanism. This provided a situation in which no gage
flange loads, constraints, or other spot welds were present on the specimen. The
resulting data therefore revealed the fatigue life degradation due to the changes in
the microstructure of the base material resulting from the spot weld. As shown in
figure 5, the spot weld alone caused a significant reduction in the fatigue life of the
titanium specimens. The figure also shows the fatigue life of titanium specimens to --
which strain gages were attached. The data show that, in combination, the spot-
weld interactions- and the other effects of the presence of the flange significantly	 }
reduced fatigue life.
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These data revealed that no single factor was responsible for most of the
fatigue life degradation. 'Therefore, any of the following approaches might be used
in an effort to improve fatigue life: using a flange of a different shape, rearranging
the pattern of the spot welds on the flange, and using a method other than spot-
welding to attach the strain gage to the titanium. Each of those approaches was
investigated.

Flange Configuration Test Results

In an effort to learn the effects of the flange shape and the arrangement of the
spot welds on the fatigue life of the titanium, strain gages with various flange
shapes and spotweld arrangements were constructed and attached to Ti-6A1-4v
fatigue specimens. The test configurations are shown in figure 6. Accelerated
(i.e. flexural) fatigue tests were used so the effects of the configuration changes
could be determined more quickly. All tests were conducted at the same stress
level to make the results comparable. The results of the tests are documented in
table 1. The effects of flange shape and spotweld arrangement were not obvious
from these data. however, when the number of spot welds was plotted against the
number of cycles to failure, a trend did appear. As shown in figure 7, configura-
tions with many spot welds tended to fail slightly earlier than configurations with
only a few spot welds -

This trend is not without explanation. Configurations with many spot welds
are more rigidly attached than those with fewer spot welds. The more rigid attach-
ment causes larger stress concentrations.

There is another factor to be considered. If there were no spot welds, the
fatigue problem would not exist, but no strain would be transferred to the strain
sensor. Therefore, in evaluating a strain gage attachment method, the amount of
strain transferred from the specimen to the strain tube must be considered in addi-
tion to the installation's fatigue characteristics. The effectiveness of strain transfer
can be measured by using a strain transfer factor defined as follows:

Strain transfer factor = Strain at middle of strain tube
Strain in the specimen

Strain transfer factors were determined for the configurations shown in figure 8. 	 i
The first configurations tested are shown on the left (an adhesive-bonded gage was
tested to provide a standard for comparison) . Modifications were made on the basis
of the test results, and several of the resulting strain gages (strain gages 1, 2, 5,
6, 9, 10, 21, and 25) were tested. Flange shapes like those for strain gages 2 and 5
resulted in generally lower strain transfer factors in both test groups. The highest
strain transfer factors resulted from rectangular flanges with many spot welds, but
these configurations also resulted in the poor fatigue performance of the base
material. Thus in this study no way was found to combine good fatigue life with
high strain transfer for the spotwelding attachment method.

3
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BRAZING, PLATING, AND PLASMA SPRAYING
ATTACHMENT METHODS

Attachment Method Description

Three alternative methods of attaching strain gages to titanium were explored:
brazing, plating, and plasma spraying. All three methods involve metal-to-metal
bonding. The evaluation of nonmetallic attachment methods such as glue was
beyond the scope of this effort.

Extensive efforts were made to develop and evaluate the integrity of the three
attachment methods. Many techniques for preparing the surface of the titanium for
strain gage attachment were investigated. These preparation methods involved
cleaning solutions, solutions for oxide removal, and abrasion.

The brazing attachment method includes such techniques as resistance brazing,
hot gas brazing, and furnace brazing. Numerous filler materials were tested, and
the overall performance of the bond was evaluated by pull (lap shear) tests, bend
tests, peel tests, and photomicrographs of the joint. The most promising approach
imrolved brazing a weldable gage with a Ti-6A1-4V foil flange 0.051 millimeter
(0.002 inch) thick to the Ti-6A1-4V parent structure (which was nominally 1. 57 mm
(1/16 in.) thick) with an Al-125i filler material that was 0.0254 millimeter
(0.001 inch) thick. The braze joints were produced at a temperature of 880.37 K
(1125 °P) , in a brazing time of 15 minutes, and in a vacuum.

In the plating approach, a nickel coating is brush plated on the Ti-6A1-4V
material. The flange is perforated by electrical discharge machining and placed
upon this nickel coating. -A bath of the plating solution is placed around the flange,
and anickel coating is then electrodeposited over the flange and in the perforations.
Figure 9 shows a gage to which this has been done.

Figure 9 also shows the results of a pull test made to evaluate the strength of
the bond. In the pull test, the strain tube and flange were cut with a saw, and the
extending piece of the gage was pulled. As a result the strain gage pulled apart in
the middle. This resulted from a shear failure of the flange in the area between the
perforations and the strain tube. This type-of-failure indicates that the static bond
is very strong; the gage itself failed before the bond.

Plasma spraying was selected instead of flame spraying because it produced a
somewhat stronger bond and because it resulted in fewer contaminants. It was
found that flanges were unnecessary with plasma spraying; it was possible to
attach only the strain tube itself. Several strain tube configuration changes were
investigated, including indentations, which produced strain tubes like those that
are embedded in concrete (fig. 10); electrodeposited annular projections, which
resulted in deformations like those on concrete reinforcing bars; and roughening,
which was produced by depositing a nickel aluminide coating on the grit-blasted
surface of the strain tube. The strain tubes were then plasma sprayed to the
Ti-6A1-4V _parent material. A commercially available powder was used to embed
the tube .

f
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More detailed descriptions of the installations and evaluations are given in the
Battelle Columbus Laboratory reports.

The only criteria used in the development of these bonding procedures were
static test results (the results of such tests as pull (lap shear) tests, peel tests,
and bend tests), it was revealed in the Battelle Columbus Laboratory study that
good performance in static strength tests did not necessarily imply good perform-
once in fatigue tests.

Fatigue Test Results

These brazing, plating, and plasma spraying attachment methods were used to
attach strain gages to Ti-6A1-4V specimens, and the specimens were subjected to
fatigue tests. The results are shown in figure 11. The plating approach offered
little improvement in fatigue life. Brazing the gages to the Ti-6A1-4V material
proved to be better than plating; it improved the specimens' fatigue life by as much
as a factor of 10 over the spotwelded installations. Clearly, however, the best
method of installation is plasma spraying. The fatigue life of specimenswith plasma
sprayed strain gages was as much as 100 times longer than specimens with spot-
welded strain gages.

A typical installation of a strain gage that was attached by using plasma
spraying is shown in figure 12. The best fatigue performance was achieved by
plasma spraying a strain tube without flanges to the base material. A cross sec-
tional view of the installation (fig. 13) shows that the material plasma sprayed
becomes built up beneath and around the strain tube.

CONCLUDING REMARKS

Spotwelding strain gages to titanium alloy Ti-6A1-4V results in a fatigue life
degradation of the titanium so severe that it rules out the use of this attachment
method for aircraft. The reduction in fatigue life of the titanium results from
changes in the microstructure of the titanium at the spot welds and from local stress
concentrations due to the presence of the strain gage and its flange. A third
possible factor is the interaction due to the close proximity of numerous spot welds.

A set of fatigue tests with various strain gage flange configurations revealed
that although fatigue life could be slightly improved by reducing the number of
spot welds, this also reduced the strain transfer factor. Altering either the strain
gage configuration or the spotweld arrangement failed to provide a solution to the
basic fatigue problem.

Therefore, three new methods of attaching the same type of strain gage without
spotwelding were studied —brazing, plating, and plasma spraying. Plating
improved fatigue life very little. Brazing improved fatigue life by as much as a
factor of 10. Plasma spraying improved fatigue life by as much as a factor of 100.
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It was discovered that even though the results of static tests such as pull tests,
pool tests, find bond tests were favorable, good fatigue life did not necessarily
correlate with good static strength.

I^

Dryden Flight Research Center	 N
National Aeronautics and Space Administration

Edwards, Calif. , November 1E, lJ%G
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TABLE 1.—ACCELERATED FATIGUE, TEST DATA OBTAINED
FO FLANGE, CONFIGURATION VARIATIONS

S Iwo inn•n Number of cycles to fa+ilur,

1 53,300
2 57, 6; ()0
3 76;,6(10
4 105.700

^i 67,700
6 50.1)(m)
7 97,900
R 126, •100
9 71, 400

10 72.800

1	 1 ►► 229,800:	 315,000

12 11109.900:	 106,200

13 w ,800

14 54.700

Iii 4,166,600
16 (; 9 .000
17 87,101)
IK 10,412, 100

19 11237,100;	 310,500

20 91,000

21 tnn,too

22
It 

962.900;	 298.200

23 "331.800;	 320,200

24 84,700

25 101,400

26 :12 4,000
27 196, 600

► Two specimens were tested,
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Figure 4. Photomicrograph of strain ,gage flange spot weld.	
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E-30569

Figure 9. Strain gage installation attached by flange plating
and subjected to pull test.
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Figure 12. Weldable strain flay(, plasma sprayed to Ti-IiAl-4V fatigue specimen.

F-:30572

Figure 13. Cross section of weldable strain gage plasma
spraved to titanium fatigue specimen.
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