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Abstract. The objective of this note is to describe a technique for

calculating the stress intensity factors in a strip under bending by

treating the strip as a two-dimensional continuum rather than a simple

beam in evaluating the crack surface tractions used for the,solution

of the perturbation problem.

1.	 INTRODUCTION

A long strip or beam containing a through crack perpendicular to

the sides has been one of the most widely studied problems in linear

fracture mechanics (see, for example, references [1-9]). The import-

ance of the problem lies in the fact that its geometry approximates a

very common structural component and a standard test specimen. In the

case of three or four point bend tests the specimen has an edge crack.

Generally, in the existing solutions involving bending it is assumed

that the untracked beam is under a linear stress distribution, thus

ignoring the perturbations caused by the supports and the loading

fixtures.

The main objective of this note is in a "long" beam to examine

the deviation from linearity in the stress field for a given state of

* Thy is work was supported by NASA-Langley under the Grant NGR 39-007-
011 and by NSF under the Grant ENG 73-045053 AO1.
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external loads and to study the effect of this deviation on the stress,	 intensity factors for internal and edge cracks.
2. STRESSES IN UNCRACKED BEAM

Consider the infinite strip or the beam show in Figure 1. Let

the external forces be

-ayy(x,0) = P l ( x ) = pl (-x) , a , (x,0) = 0	 (1)
XY

-ayy(X,h) = P2( x ) = P2 (-x)	 -rtXy(x,h) = 0	 (2)

where h is the height of the beam p l and p2 are known functions

satisfying

J
op1 ( x ) dx '= 1oP2 ( x ) dx	(3)

Ignoring the crack and using the standard Fourier transform technique

(see, for example, [101), after some routine manipulations the stress

component of primary interest may be expressed as

01X (x,y) = -'ijmsx(a,y)cosax da	 (4)
0

where

1x(a ,y) = D a-ay {(1-2aZh2-2ah-e2ah)s^(a)

+ [(1+3ah)eah _ (l+ah)e-"h]S2(a)

+ ay(-1+2ah+e2ah)sl(a)
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- ay[(1+2ah)eoh - e-ah]S2(a))

i

-
ay

+ D a	
{(1+2ah-2a'h' - e-2ah)Sl(a)

+ C(-1+ah)eah + (1-3ah)e-ah]S2(a)

+ ay(1+2ah-e-2ah)S1(a)

+ ay[-e
ah + (1-2ah)e-ah ]S2

(a)l	
(5)

D(a) = e
2ah + e-2ah - 4a'hz - 2 ,	 (6)

Sl(a) = rpl (x)cosax dx	 (7)
0

S 2 (a) = 1,p2 (x)coxax dx	 (8)
0

i

i

i

3.	 THE CRACK PROBLEM

To obtain the solution of the crack problem shown in Figure 1

under the external loads given by (1) and (2) one has to superimpose

on the solution obtained in the previous section for the uncracked

a
striPAdisturbed stress state found from a cracked strip in which the

following self-equilibrating crack surface tractions are the only ex-

ternal loads:

a ( O ,Y) = -a^x(O,Y)	 a (O,Y) = 0 , a<y<b ,	 (g)
XY

-3-
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where a' is given by (4). The formulation of this problem .too is
xx

relatively straightforward. Following, for example, the technique

described in [6] or [7], the problem may be reduced to the.following

integral equation:

1a

b 

L	 + k(Y,t)]f(t)dt = -a 1
	

aXx( O ,Y) , a<y<b ,

subject to

b
J af(t)dt = 0 (11)

P

where the input function a' is obtained from (4), u is the shear
xx

modulus, K=3-4v for plane strain (e.g., cylindrical bending of a

plate with a long surface crack), K=(3-v)/(1+v) for plane stress

(e.g., a beam), v is the Poisson's ratio, crack extends along the y

axis from a to b, the unknown function f is defined by

f(Y) = 2 u(O,Y)	 (12)

u is the x-component of the displacement vector, and the kernel k(y,t)

is given by

k(Y.t) = (m [( eah_e-ah ) z_4a2h z ]-1 {L-1-2ah+e2ah
0

-2at(e
2ah

-1)]L4 + a(h-y)+ 2 e-2(h)
-y)]e-«(t+Y)

-2ah	 z 	 3 +	
1 2a(h-y) -a(t-y)

+ [2ah-1+e	 -4tha ]L- 7 «(h-Y) -f a	 ]e

+ {1+2ah-e
-2ah

+2a(h-t)(e
2ah

-1)] L! + ay
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ij

z
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1

e

+ 1 e-2ay ]e-a(2h-t-y) + [2ah-1+e-2ah

- 4(h-t)a
2
h][ 3 - ay + 1 e

2aY]e-a(Y-t) )d X	 (13)

b

For an internal crack 0<a<b<h, the kernel k(y,t) is bounded in

the closed domain a<(y,t)<b, and the integral equation may be solved

quite simply by using the technique described in [11]. The stress in-

tensity factors are then defined and calculated from

k(a) = lim ^ oxx(Y,0) = lam ^ 1+K f(Y) ,	 (14)
y+a

k(b) = limV2(y-b) axx(y ,0) = -fib 32^j l f(Y)	 (15)

However, in the case of an edge crack 0=a<b<h, the kernel k(x,t)

is no longer bounded in the closed-domain 0<(y,t)<b. The singular

part of k which becomes unbounded as y and t approach the end point

a=0 may be separated by considering the asymptotic behavior of the

integrand in (13). Expressing

k( y ,t) = ks ( y ,t) + kf (y ,t)
	

(16)

where kf is bounded in a<(y,t)<b, the singular part k s is found to be

k s (y,t) = jW(2-ay-3at+2ytaz)e-a(t+y)da
0

_ - t+y + t6Y - t+	y .
z	

(11)

Noting that the integral equation (10) is still valid for a=0, after
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separating ks it may be solved by following the procedure described

in [6].

4.	 AN EXAMPLE AND SOME RESULTS

As an example consider the beam supported at two points x=+d on

the side y=0 and subjected to uniform pressure on y =h, -c<x<c (see

Figure 1). In reality all loading problems involving solid grips and

fixtures are contact problems. For example, the supports at x=+d, y=0

are generally rollers often with different elastic properties. In the

three or four point bending problems the same is true for the loading

fixtures on y=h. In this case the contact areas and the distribution

of contact pressures as well as the crack surface displacement are un-

known and the problem is a coupled contact-crack problem which is some-

what more difficult to formulate. However, if the contact areas are

small and are sufficiently far from the crack region, one may replace

the unknown contact stresses with statically equivalent known trac-

tions gaining considerable simplicity in the formulation of the problem

without sacrificing too much in the accuracy of the results. Thus, in

the present example it will be assumed that the reactions at the sup-

ports y=0, x=+d are concentrated forces of magnitude P (per unit thick-

ness). In the three point bending problem the pressure under the loading

pin will be assumed to be constant with c=0.05 h. The external loads

and their Fourier transforms may then be expressed as follows (see

equations 1 to 4):

p l (x)	 P6(x-d)	 ,	 (18)

-6-



a	

(plc ^ QGx<C ,

P2 (x) = <	 (19)

l0
	 c<x<„

S 1 (a) = P cos(da)	 (20)

P sin ca 
S2 (a) - c	 a	 (21)

In evaluating the input function a' from (4)-(8) one runs into
xx

convergence difficulty for values of y around 0 and h. To avoid this

difficulty the damping of the integrand as a-+- is increased by separ-

ating the asymptotic value of S x (a,y) and integrating it in closed

form. Equation (4) may then be expressed as

aXx(x.Y) = 2-7r h[S x(a.Y) - S„( a .Y)]cosax da + sm(x.Y) .	 (22)
0

SM(a.Y) _ ( ay-1) e ays 1 ( a ) - (ay+l-ah)e-a(h-Y)S2(a)
	 (23)

s^(x,y) 
=-0

IS^(a,y)cosax da	 (24)

sm( 0 .Y) = P [ y`+dam 
+ y..+-d2 + c +

h -Y	
^ tan-1 (C

`	 25

b

t

jI

li

iF

The stress distribution a' (O,y) obtained from the elasticity
xx

theory as described by equations (20) to (25) and that obtained from

the simple beam theory for the loading condition shown in Figure l is

given in Table I. The normalization stress ao used in this and in the

subsequent tables is the surface stress given by the beam theory which

may be expressed as

-,



Ua = 
Fr (d -7Z)	 (26)

The table shows that in the elasticity results there is some

deviation from that of linear beam theory. The indication is that

the sign as well as the magnitude of the deviations depend on details

of the loading condition. However, at least for the particular load-

ing considered here, the relative magnitude of the deviation does not

appear to be very significant (approximately 6 percent at y=0).

Table 1. The stress profile a l (0,y)/ao for the uncracked beam
calculated from (22-^9) for various dimensions c and d.
The normalization factor: a o = 6P(d-c/2)h2.

y/h
c/h = 1

d/h = 1-

c/h = 0.05

d/h =2

c/h = 0.05

d/h = 4

Beam Theory
(h/2 -y)

0 110589 0.9435 0.9399 1
0.1 0.7949 0.7276 0.7384 0.8
0.2 0.5595 0.5363 0.5491 0.6
0.3 0.3486 0.3615 0.3680 0,4
0.4 0.1566 0.1971 0.1921 0.2
0.5 -0.0233 0.0386 -0.0192 0
0.6 -0.1993 -0.1179 -0.1528 -0.2
0.7 -0.3801 -0.2767 -0.3259 -0.4
0.8 -0.5750 -0.4452 -0.5039 -0.6
0.9 -0.7938 -0.6723 -0.7109 -0.8
0.95 -.09153 -0.9991 -0.9204 -0.9

Table 2 gives the stress intensity factors for the internal crack

shown in Figure 1. In this example the crack tip a was fixed at a=0.lh

and b was varied until the stress intensity factor at b, k(b) became

(approximately) zero or negative. Note that for a very small crack

(i.e., a=0.1 h, b =0.1001 h ) k(a) = k(b) B a l (0,0.lh)J which is the
xx

expected result for an infinite plane with line crack of length 2z=b-a

-8-
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pressurized by a' (see the rows y/h =0.1 in Table 1 and b/h =0.1001 in
xx

a	 Table 2). For fixed a/h the stress intensity ratio k(a)/aorZ remains

approximately constant, meaning that for increasing crack length, k(a)

itself increases as rR. Also note that k(b) is reduced r "P pidly as the

crack tip b moves towards and into the compression region. For the

beam theory extensive results are given in [7]. Table 2 shows the re- 	 w. ;

suits from [7] which coincides with the parameters a/h and b/h in the

table.

In the important case of the edge crack (i.e., a=0, b<h in Fig-

ure 1) the results for c=0.05h and d=qh are shown in Table 3. The

stress intensity factor obtained from the beam theory is reproduced

from [7]. For a very short crack one would expect to recover the

result of the semi-infinite plane with an edge crack of length b pres-

surized by a' (0,0) given in Table 1. Indeed for b/h=0.001 it is seen
xx

that

_ k(b)	 = 1.0537
al (0,0)^ 0.9399 	

1.1211

which is the half plane result.(*)

The results shown in Tables 2 and 3 indicate that, depending on

the loading condition, the elasticity solution may be different than

* Fob r higher values of b/h the convergence of the numerical analysis
giving the stress intensity factor is somewhat slow. The results
shown in the table are obtained by letting k(b)=A/n 2+B/n+C and
extrapolating the results to n=-, where n is the number of collo-
cation points in the solution of the related integral equation,

-10-
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Table 3. Stress intensity factor in a beam with an edge crack under
the loading condition shown in Figure 1 (c =0.05h, a=0, b<h,d , q h ),

a	 oo=6P(d-c/2)/hz.

b/h
k(b)/oo36

Elasticity Beam Th.

0.001 1.0537 1.12
0.1 0.9731 1.05
0.^ 0.9750 1.06
0.3 1.0375 1.12
0.4 1.1661 1.26
0.5 1.3907 1.50
0.6 1.7839
0.7 2.5127

the beam solution. As to how significant this difference is depends on

the degree of accuracy required in the particular application as well

as the details of the loading condition. It should only be pointed out

that the procedure outlined in this paper is very straightforward and

would give the results for any given state of loading to any desired

degree of accuracy.
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Figure 1. Geometry for a cracked strip under bending.
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