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An axial crack in a cylindrical shell is investigated by use of

a 10th order shell theory, which accounts for transverse shear defor-

mations as well as a special kind of orthotropy. The symmetric prob-

lem is formulated in terms of two coupled singular integral equations,

which are solved numerically. The asymptotic membrane and bending

stress fields ahead of the crack are found to be self similar. Stress

intensity factors are given as a function of the shell parameter for

various values of the ratio crack length to shell thickness. Consider-

able differences from 8th order shell theory results are found for the

bending stresses, while the membrarie stresses of the 8th order theory

seems to be a lower limit reached for very thin shells.

Part of the present work was carried out during a visit to Lehigh
University supported by NSF under the Grant ENG 73-045053 A01 and
NASA-Langley under,the Grant NGR 309-007-011.
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1.	 INTRODUCTION

Plate and shell theories based on Kirchhoff',s assumption only en-
4

ables the satisfaction of two plate-type boundary conditions. Broadly

speaking the importance of this restriction depends on the variations

of the field quantities compared to the plate or shell thickness.

Thus serious shortcomings can be expected in problems where steep grad-

ients are encountered, e.g., crack problems. A number of investiga-

tions [1-4] concerned with a crack in an infinite plate in bending have

revealed considerable differences between the 4th order bending theory

solution and solutions obtained by use of 6th order Reissner-type

bending theory [5]. The differences concern both the magnitudes of

the stresses and their distribution around the crack. In the light

of these results it seems to be of considerable interest to supplement

existing results for cracks in shallow shells described by 8th order

shell theory with calculations, which explicitly incorporate the effect

of transverse shear.

t

ji

ii

In the present paper a brief derivation of shallow shell field

equations including transverse shear is given. The procedure follows

closely that of Naghdi'f6], but a certain type of orthotropy is in-

cluded here. It is demonstrated, how these orthotropic equations can

be obtained from the isotropic equations merely by use of suitable

variable transformations. This also holds for the 8th order shell

theory used in previous investigations [7-10], and these solutions

can therefore be given a more general interpretation.
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Although the shallow shell equations are fairly general, the rest

T"	

of the paper is confined to an axial crack in a cylindrical shell.

Q

	 The method of solution is that of singular integral equations obtained

by the complex Fourier transform. An investigation of the asymptotic

stress field around the crack tips is included, and extensive numer-

ical results are given.

2. FUNDAMENTAL EQUATIONS

In this section a brief derivation is given of the fundamental

equations for a shallow elastic shell. A special kind of orthotropy

is accounted for through the parameter 6. In the isotropic case the

equations are those given by Naghdi [6]. The middle surface of the

shell is described in the cartesian coordinate system of Fig. 1 as

Z=Z(Xa), a=1,2. The stress resultants are given in terms of their-

components in the {X ,Z) system. A different approach has been used

by Sih and Hagendorf [11] for an isotropic spherical shell.

When only a vertical load q(Xa) is included, the equilibrium equa-

tions are

Na6,s = 0	
(2.1)

Va'a + (Z 'aNad 	 + q = 0	 (2.2)

Ma6.0 - Va - 0
	 (2.3)

Na$ , Mao and V  are the membrane forces the moments and the transverse

shear forces.



r^

For a shallow shell the strains eaa are defined by

E«S	 (Ua6 + % ,a + Z ,aW , s + Z 1SW a )	 (2.4)

where Ua and W are the displacement components in the{X a,Z) system.

The normals to the shell in its original configuration change direc-

tions by the angles a
a• 

The slope of the middle surface changes by

W 	 thus the effect of the transverse shear is expressed by

ea = W,a + as 	(2.5)

From (2.4) a compatibility equation is extracted in the form

e Cry ead(Eaa>Y8 + Z>aaW>YS) 	 0
(2.6)

where 
eaY 

is the permutation symbol.

i
When elastic shells are considered, Hooke's law yields

heaa - aaaYbNYd
(2.7)

where h is the thickness of the shell. By use of the stress function

F(Xa) defined by

Nao = e
aYeas F ,Ya 	 (2.8)

the equilibrium equation (2.1) is satisfied, while (2.2) takes the

form

M	 + Z	 e e F	 +	 = 0	 (2.9)	 j-	 aa,aa	 vo.a aY ag ,,y 6	 q	 ^

The com atibilit a cation 1 2 61 becomesP	 Y q

-4- I
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eOKeS,eYUe6vaaSY6F ,Kauv + 
U '

aSeaye06W ,Y6 = 0
	 (2.10)

In general solutions of the system of differential equations (2.3),

(2.9) and (2.10) will be quite complicated. However, considerable simp-

lifications arise, if the differential operators can be factorized. Be-

low only orthotropic materials with {Xa} as principal axes are considered.

This implies the following form of (2.7),

v

Ell	 Y-1 	- I	
0	 Nil

	

_ 1 v2 	 1
e12 - F - 

2	
F2	

0	
N22	

(2.11)

2e12 	 0	 0	 >1	 N12

where v2E, = v1 E2 . In this case the factorization property amounts to

( E1	 121	 2

Now introduce the geometrical mean values

E = E	 V = v	 (2.13)

and the orthotropy parameter 6 defined by

6 - E^ - v^
	

(2.14)_ E
2 v2

:

In terms of these three parameters (2.11) takes the form

i,
5

.	 t



",	 1'	 1	 1	 1	 1

	ell	 6
-Z	

-v	 0	
Nil

	

e12	 =	 -v	 6 2	0	 N22	 (2.15)

	

2e12	0	 0	 20 +v)	 N12

Following from an assumption of linear variation of the stress compon-

ents 
°a8 

over the thickness the moments are then given by

	

M11	 62	 v	 0	 81,1

M22 - U T-V	
v	 6

-Z	
82,2	 (2.16)

1-v

	

M12	
0	 0	

81,2+82,1

A linear relation between the angles e a,and the shear forces % is

assumed. In order to make elimination of the moments from (2.9) possi-

ble this relation must be of the form

r

(2.17)

	

e l	 6'' 0	 V1

7

	

e2	 0 6	 V2

B is the effective transverse shear modulus, which in the isotropic case

may be taken as	 G [5].

The system of differential equations can now be simplified by elim-

inating the moments. When the notation

	

V6
	 6 e
	

+.6"
	 (2.18)
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is adopted, the result is

2	 2

V4  + hE 
( B

2

XaX^ 2 a aiT r-

and

h3 
E ° "W - (.1 -	 h2	 E 

°^ {'a2Z 92	
2

 32z	
a2

12 1-v^ d 	 a-X, a— ti Z ai 3^

+
a 2 Z aA F = (

1 -	h2̂rj g °2)4	 (2.24)

B a^ + a 7, 
a, n 0	 (2.19)

with the extra conditions

0 1 + ar'l
2

° TT(Tv j g °6S 1
a02

+ is az2 ( a-I ' az2)]	 (z.21)

aw+	
202 	 B

=	 h2	 E	 2+
'T2-0-v7T, B' IVP2

as
a t +v	 a	 t
--	 (^

as 2,]	 (2.22)-^'

3.	 DIMENSIONLESS PARAMETERS

The following curvature measures are introduced

1 _	 a2 Z	 _ a 2z	 t = _ 32Z
Rl - _ a- 1	 R2	 R2	 R12	 axtaz2

(2.23)

When dimensionless variables and parameters are defined as shown in

Table 1, the differential equations (2.19)-(2.22) reduce to

(3.2)
2	 2

p"^	 (a1 a - 2 12 ^ + a2 -x2)w - 0

°
"w + a2(1-K°2)(a2a

2
 - 2X2	

a2 
+ a2 a2-)0 = a"(1-K°2 ) a q

1 Tyr	 12 TXT 	 IF

(3.3)

-7-



f
and

as	 as
( 1 -KV2 )RX + X = K "̂F ay ( a - "^)	 (3.4)

(I-KVZ	 + aX ° K -r F. a - aax )	 (3.5)

The usual static and geometric boundary conditions can also be

formulated without explicit use of the orthotropy parameter d. As a

consequence the following presentation refers to an isotropic shell.

The corresponding specially orthotropic solutions are easily found

by use of Table 1. It should be pointed out that the shell parameter

Xz is 62 times the shell parameter used by Yuceoglu and Erdogan [123.

4. THE CYLINDER INTEGRAL REPRESENTATION

When considering the cylinder shown in fig. 2 1 X I =X, Z=O. The

homogeneous equations corresponding to (3.2) and (3.3) then take the

form

0
40 - ( 

)Z a^ = 0	
(4.1)

o"w + (aXz) z (1-Kvz) ,a20 = 0	 (4.2)

Elimination of either w or D from (4.1) and (4.2) leads to the same

8th order differential equation

P°w + X2(1-Kv
2 ) a4-4= 0	 (4.3)

Although the introduction of a finite transverse shear stiffness

-8-



represented by 11K does not increase the order of the differential

equations (4.1) and (4.2), the order of (3.4) and (3.5) is increased

thereby enabling the satisfaction of five boundary conditions as com-

pared to four, when K=0.

The procedure now is to give integral representations for O(x,y),

w(x,y), Sx(x,Y) and Sy(x,y).	 When a crack is present along part of
w.

the x-axis as shown in fig. 2, different expressions must be given for

the half-planes y>0 and y<0.	 Introduce the representations

O(x,Y) = IF	 i(E,Y)e-"xdE
	 (4.4)

w(x,Y) = '
1
	 w(E,Y)e

-1Ex
dE	 (4.5)

where i(E,Y) and w(E,Y) are given by

i(E,Y) _	 o(x,Y)e iExdx	 (4.6)

w(E,Y) = j^w(x,Y)e iExdx	 (4.7)
m i

Due to (4.3) and the corresponding equation for 4(x,y) both w(E,y)

and ( E,y) can be expressed as linear combinations of exp (m3y), where

mj =mj ( E) are the roots of the characteristic equation

i

+ (axE)" L1 - K(m2 -EZ )J = 0	 (4.8) i

The notation

p = mz 
_ ,E2	 (4.9)

t
-9-
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}

i
h

is now introduced leading to the quartic equation

p" + (X29) 4 (1-Kp ) = 0	 (4.10)

The solutions pj (g), 3 =1,..,4 to (4.10) are given in 4pendlx A. The

Solutions mi (g) to (4.8) are selected such that

Re[mj]<0 , mj+4 = -mi 	3=1,..94	 (4.11)

When the displacement transform function - ft,y) is given in the

form
w	 my

	Ri(t)e	 Y>0
=1	 (4.12)

w(Ely
) = 315 R3

( E)em3y , y<0

the transform function m(g,y) is found by substitution of (4.12) into

4

	

( a2 ) z E (p ) ZR^(9) em^y 	 Y>0

m(^,Y)	

J-1	 3	
(4.13)

	

1 (-L)
2

R f (9)emY 	Y<0
Ì 	 3-5	 j

Introduce the function W(x,y) as

ly (x,Y) = 11x
	

(4.14)x
By _ ax

The equations (3.4) and (3.5) give the equation

0- K92
)Y = 0	 (4.15)

from which the transform function i(t,y) is,found to be

-10-
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(A l (E)erly , y>0	
(4.16)

'	
I

^'(g,YI 
IA2( g)er2y , y<0

where

r 1 ^2 F± gz + K` n 	 (4.17)	
...

Now f(x,y) is assumed to be independent of Ox and 8y . The equa-

tions (3.4) and (3.5) are then solved, and the solution verified by

s+.ibstitution into the original equations. When a function X(x,y) with

the transform
4 gat w	 m y -
1 (p) Rj ( g )e	 , y>O

X(g.YI '< je1 9X2 4 	 m Y	
(4.18)

^
1
E S ( p) Rj ( g )e	 , y<0

is introduced, the solution is found to be

8x = x K	 By	 (4.19)

8 = a _ K 1'V 
By	 (4.20)

y	 -7— 2x

The solution to the field equations has now been represented in

terms of ten unknown functions A j (g), J=1,2 and R3 (g), 3=1,..8, which

must be determined from the boundary conditions of the problem.

5. BOUNDARY CONDITIONS - SYMMETRIC LOADING

For the axial crack shown in Fig. 2 the following five static

quantities are prescribed at the crack surface,

-11-



a 2 	a2m
MYy ' 8	 NxY ° _ axay

MYYaF-(ay+9 axx)

(5.1)

M = a 1 1-v 
( Box + asxy fi T^' ay ax

ay . !X + a2 w
ax ax my

The last expression is used in differentiated form in order to secure

dimensional consistency. By substitution of the integral representa-

tions of the ;,ie^i,°ious section the following expressior+s are found for

the half-plane y>0. The corresponding expressions for y<0 follow trivi-

ally from changes of the indice§,

m y -iEx

Nyy( x .Y) -	
L^{

g°( a2 )2 Pi-2Ri(9)e	 }e	 d9	 (5.2)
W	 3=1

1	
3 1

2 2 4	 2	 mjy - ' Ex
Nxy(x,Y) _{-i g (^ ) E

3—t 
mjP3 

Rj()e	 }e	 dg	 (5.3)
m 

Myy(x,Y) = - I	 X2)4 E [P3+(1-v)e 3P^ 4R^(C)em3Y
3=1

2	 r y -iEx
+ k 1-4 igrlAl Q)e l }e	 d9	 (5.4)

Mxy(x,y) = a ^

	

	 S(^ )" mjpj-4Rj(&)may
3=l

-i^x
+ 2a4 [1+k(1-v)21AI(^)e 

r 
1 
y 
}e	 dg	 (5.5)

-12-



4

w	 my

Tx Vy(x.Y) _	 { - iggKaz E m3p3'3R3(0e 
3

31

+ K VAi M erlY
)e-itx

de	 (5.6)

The problem of static boundary conditions on the % crack in Fig. 2

could in principle be formulated directly in terms of the unknown func-

tions A3 (g) and R3 (g). This would lead to a system of coupled dual

integral equations, which is not easily solved even by numerical meth-

ods. An alternative and numerically more suitable technique consists

in the following. The integral representations given in Section 4 are

used to express geometric quantities, which are in a sense complemen-

tary to the static quantities (5.1). The most direct choice is the

generalized displacements corresponding to the generalized forces (5.1).

For the sake of brevity we shall limit our attention to the case

of symmetric self'-equilibrating loading.

Nyy(x,Y) = Nyy(x,-Y) . Nxy(x.Y)	 Nxy(x.-Y)

Myy(x.Y) = Myy(x.-Y)	 Mxy(x.Y)	 -MxY(x

Vy(x.Y) _ -Vy(x.-Y)

In this case

R3
+4(E) - R3 (E) . A2(9) _ -A1Q)

-13-



whereby the number of unknown functions reduces to five.

Due to (5.7) the boundary conditions for Nxy. 
MxY 

and Yy are homo-

geneous. We therefore only need to introduce generalized displacements

corresponding to Nyy and Myy . 6y use of Hooke's taw (2.15) and the

equilibrium equations (2.1) we find

Y+ a
^ - -lim av	 (5.9)

It is convenient to use the following two functions as unknowns,

g (x) = lim x v(x+Y)	 (5.10)

f(x) = 1im2x BY(x,Y)	 ( 5.11)
y^►0+

Their integral representations are

-ixc

g (x) _	 {ig( 2̂ ) Z^E l m3pj -2Ri(E)) a	 dg	 (5.12)

w	 -ixg

f(x) ° T J{-i1 5 a2 2 mj p^"4R^ft) + K	 EZ A1 (^)}e `__d^	 (5.13)
=1

The five unknown functions A,(9) and RJ M , 3=1,..4 are now elim-

inated by use of the three homogeneous boundary conditions and inver-

sion of (5.12) and (5.13). It is noted that g(x)=f(x)=0 for x^[-1,1].

After a few reductions we find

A,Q)_ _ -2 rlf(t)eitEdt 	 (5.14)
^'	 1

ii

-14-
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and the four equations

J E1 WjRj (E) = -1 -1 f Wei tEdt	 (5.15)

P^ -l
Em3R^(E) _ -1 (^z)

2
9(t)e

itE
dt	 (5.16)

i EJ PJ -2EmiRi (E)
=-0	

(5.17)

Pi	 R^(E) 
i I Jl f(t)eitEdt	 (5.18)

j= 1	 2 -1

Due to the systematic nature of these equations the solution is

straightforward. When use is made of the characteristic equation (4.10),

we get

R (E) =	
i	

{-pi[P + ( l -v)E2 7 Ilf(t)eitEdt1	 EmJ Pl-P2 Pl -P3 P l -P4	 1	
l

1

+ (aa2 )ZE"(1-KP I ) jl g (t)e itEdt}	 (5.19)

A

9

The ettpressions for R 2 (E). R3(E) and R4 (E) are found by interchanging

the indices. a

It should be noted that A l (E) =0 does not follow from the limit s

process K-+O. Special care must therefore be taken, when relating re- 	 1

sults of the present theory to results from 8th order shallow shell

theory.

i

6

i
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6. SINGULAR INTEGRAL EQUATIONS

When A I M and Rj (g) from (5.14) and (5.19) are substituted into

(5.2) and (5.4). integral expressions for Nyy(x.y) and Myy(x.y) are

obtained in terms of the two unknown functions f(t) and g(t). For

yn0 the integrals are defined by the limit y+O+. Contributions to the

Integrals, which aep non-integrable for y=0 are extracted by use of

the equations (5.14)-(5.18).

The identity (5.17) is multiplied by ^IWa2 /a) 2exp(-IUI) and

added to the integrand in (5.2).

Nyy ( x .Y) _	 F("2) 2 1 E I4Im
j
(P )2Rj(^)

3 =1	 j

D + 1Eie(mi+IWIYI1);"Yle ixCdC	 (6.1)
Mi

Asmymptotic expansion for large values of 9 yields

1 
+ ILL e (m3+ I9I ) IYI . 1- (1_ ^ !j+ 33 IP2 + ...) e (mj+IEi)IYI	 (6.2)

J

Substitution of (6.2) into (6.1) and use of the identity (5.16) lead

to a non-integrable term of the form

3

2	 -	 -
Nyy(x'o) -zl^ zTT T(a2) {- 	I	 RJ(E))e 

I YI e ix 
dE

=1	 3

= lim -i ( g(t)I sgn(C)e	 a	 d&dt
Y0	 1

1 r1 g
-	 1 t-x dt

-16-
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The last integral must be evaluated as the Cauchy principal value.

By a similar, but slightly more complicated procedure, the follow-

ing non-integrable contribution to the moment Myy (x,0) is found

le (x,0) = F l	 'F ^l
 f(t) dt	 (6.4)

After extraction of the non-integrable parts of the integrals the

boundary conditions take the form of two singular integral equations.

I1[T x + K11 (t-x)]g (t)dt +	 K1 2(t-x)f(t)dt = 2irNyy(x90)

L	 -1<x<l	 (6.5)

r
I 1 K (t-x) g (t)dt +	 [1 w2 1 + K (t-x)]f(t)dt = 2n h M (x,0)
1 21	 _1	 tt=x	 22	 a yy

	

-1<x<l	 (6.6)

When the symmetry properties mj(E)=m3(-t) and p3 ($)-pj(-E) are

noted, the functions K3k(t-x) are easily brought in the following form

a	 P^

11	
- 11 sinV t-x)dE 	 (6.7)_	 IK (t-x)	

0{2 1 m1 Pl-P2 P-P3 Pl-P4

2

K (t-x) = K (t-x) = 
JW{2(-2)a	 pl + (1-v)E	 }

12	 21	 o	 a 1ml (P I -P2 )(PI-P3 P1-p4

sin$(t-x)dE	 (6.8)
'I	

m	 a2 a s E3	 [ pl + (1-V)E2]2

K22
(t-x) = /o{2( a ) m^ pl -P2 Pl -Pg Pl-P4

'	 -17-



I

I

+ 2K 
_V) 

Err , ) sing(t-x)dg	 (6.9)

The summations imply interchange of the indices.

Due to the presence of terms- of order g2 the expression (6.9) is

not suitable for numerical integration. The problem is solved by con-

structing the following identity from (5.15), (5.18) and (5.19).

aq 44 2	 LPl + 0-V)&2 1 2 	 2
2(^)Eg P P-P PP P-P +2K(g2+4.0

1 1 2	 1
- 

3	 1 4
(6.to}

K22(t-x) can then be evaluated by the more suitable expression

2
7
2

K22(t-x) _ (2( ^2) 
m z 

LP.1 + (1-v)g	
(gam )

ro	 1pl Pl-P2 P1-PS Pl-P4	 1

(1 -v) 2 1-v 3-v
+ 2K — — 9( g+rl ) + ^Z ) sing(t-x)dE (6.11)

a

l
In order to get continuity of the displacements outside the crack 	 j

the solution must also satisfy the two conditions

^

1	 1
t g(t)dt = 0	 jlf(t)dt = 0	 (6.12)-

The integral equations given above only apply when 00. In order

to obtain the corresponding equations for the 8th order theory, where

K=O, the function Al (g) must explicitly be set equal to zero. Only

Myy I s dependence on f(t) includes A1 (g), and the changes are therefore

restricted to the last integral in (6.6). The coefficient (1-v2)/a4

must be replaced by (1-v) ( 3+v)/a4, and the kernel K 22(t-x) is now

-18-
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2
3

2
K22(t-x){2( ^^) E m P [pl P2(lpl^p3 pl -p4 (4+ml)

+ l^v 2 } sinE(t-x)dE	 (6.13)

7. THE ASYMPTOTIC STRESS FIEL9

The solution to the two singular integral equations (6.5) and (6.6)

is of the form [133

g (t) = (1-t2)
-yG(t)

(7.1)

f(t) n (1-t2 )-"F(t)

In order to obtain the asymptotic stress field in a neighborhood of the

crack tip x=1 the following formula, which is derived in Appendix B, is

used

1

1 g(t)eigtdt -
	 {G(1)exp[i(E-sgn(9) T)7

-1

+ G(-1)exp[-i(C-sgn(^) T)3) 	 (7.2)

Substitution of (7.2) and the similar formula for f(t) into (5.14)-

(5.18) makes possible an asymptotic analysis similar to the one which

lead to the extraction of the Cauchy integrals. Now, however, (6.2)

must be expressed in the slightly different form

i+
	 e (mj+I g I)I y l 

-I pj(1+IEyI) jl2 [( )
1
](1+c31v1

j
)	 (7.3)

-19-
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I	 I	 I 	 I	 '	 1
cl , 3=1,2,... are constants, which do not influence the result.

The asymptotic expressions are obtained by application of the

following formula [14;.3.9441

sin	

(cos)

in
(0 u-1e 9 (COS) (SC)d

	(,2+,2)p/2 ` 	
(u arctg 0)	 (7.4)

It is seen that a factor (90) J under the integral sign does not change

the order of the result for 0,6+0. The order of the terms in (7.3) can

then be evaluated as if I^yI were a constant. It turns out that only

the first term of (7.2) contributes to the singular stress field around

x=l.

Substitution of (7.2) and (7.3) into (6.1) yields

Nyy(x ,Y) - 2( l) Jo	 ( 1
+^IYI)e-EIylsi n[W -x) - ^ldE	 (7.5)

v

In the same way we find

N (x.Y) - G
(
1) J^ 

1 
( 1 -g l y l ) e 

glyl sin[9(1-x) - ^ldE	
(7.6)

xx	 2' Tr o 7

Nxy(x.Y)s 
G(1)

- 
0)	

F9 ye-f y.I I Cos [9(1-x) - j'ldg	 (7.7)

The asymptotic expressions (7.5)-(7.7) are also valid for K =O. For

K>O the asymptotic expressions for the moments are

Nyy(x.Y) - 12a 2	 10 I (1 +
tIYl) e-tIY1sinR( 1 - x ) - ^ldt	 (7.8)



Mxx(x.y) -h-5 F 1 - f	 (1-Ejyj)e-tIy1sinR(1-x) -T']dt	 (7.9)
2>^ 1 o r

Mxy(x.y
) " 12a 2^rT

r fo rg ye_ g1y1 cos[E(1-x)- T]dg	 (7.10)

It follows from (7.5)-(7. 110) that the asymptotic membrane and

bending stress fields are self similar for K>0. This is in agreement 	 •w

with results reported in [ 1 -4] and [11]. For K=0 the asymptotic bend-

ing stress field is found to be different and depend on Poisson's

ratio v [7,10].

When the coordinates r and 6 are defined by

x-1 = r cose	 y = r sine	 (7.11)

application of (7.4) and use of trigonometric formulae lead to the

result

oxx	
3 cos(0/2) + 1 cos(50/2)

	

" — c	 +Z 11 .	 cos(e/2) -	 cos(50/2)	 (7.12)
ayy	 2^--

sin(0/2) + 4 sin(50/2)
cxy

For specially orthotropic materials r and 0 are not polar coordinates.

With the usual definition of the stress intensity factor

K1

	

	 1 i	 v22(Xi50)	 (7.13)
X1+a

we get

^i
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t i = cos (^ n)	 i=1,2,...,n

xk = cas 
(2n-2

-2 n) , k=1,2,...sm-1

W	 -n,l 	 Wn,n = 2 n-1

Wn,i	 57 . 
i=2,3,. ..,n-1

-22-

where

and

K1 - - ^ E r [G(1) + zF(1)l
	

(7.14)

By inspection of the integral equations (6.5) and (6.6) it is seen that

the stress intensity factor at the surfaces Z=Th/2 depends only on the

parameters v, az and K. Thus the thickness effect and the influence of

the effective transverse shear modulus are combined in the parameter

KnE/(Ba")•

S. NUMERICAL SOLUTION

The singular integral equations (6.5) and (6.6) are solved by use

of a quadrature formula of closed type developed in [15]. The integral

equations are replaced by the algebraic equations

illWn,i{ti' xk + K11(ti-xk)7G(ti) + K
12(t i -xk)F(ti )) - 2Nyy(xk,o)

i!iWn,k{K21(ti-xk)G(ti) + [1-vl 
tilxk 

+ K22(ti-xk)7F(ti))- eh Myy(xk o)

ra ^^



The extra conditions (6.12) are replaced by

n	 n

J1 W
n,i G(ti) = 0	 i 1 1 Wn ^ i F(ti ) ° 0	 (8.6)

The convergence of the method is estimated by evaluation of the

coefficients bj in the following expansion

G(t) = 1'+^t G(1) +^ G(-1) + (1-t2
) n-3
I b 

i 
U f (t)	 (8.7)

$=0

where Uj(t) is the Chebyshev polynomial of the second kind of degree J.

The coefficients bj can be expressed explicitly in terms of the solu-

tion to the algebraic equations [15].

bi 
= n=T 1I2 [G(t i ) - y- G(1) -= G(-1)]Uf('ti) 	 (8.8)

The necessary values of the bounded kernels K l (ti -xk ). K12(ti-xk)

and K22 (ti -x k ) were calculated by use of M on's integration formula.

9.	 RESULTS

Numerical results are given in the form of stress intensity factors

for two loading situations, constant nzmbrane load and constant bending

moment. For each loading situation two stress intensity factors are

given, one for the average stress and one for the surface stress from

bending. Introduce the following normalization of the stress intensity

factors. For compressive membrane load am

km = K1(0)(am A—)_
1
	(9.1)

-23-



kbm 
i [K1 (h/2) - K 1 (0)l(om T)

-1
	(9.2)

For a constant bending moment with maximum surface stress ob

kbb ° [K1 (h/2) - K1 (0)7(ob /a	 (9.3)

kmb = Kl (0)(ob vr
a	

(9.4)

The results are given as functions of the shell parameter a 2 for

various values of a/h in Tables 2-5 and Figs. 3-6. The effective

transverse shear modulus ^ 1+v has been used together with vn0.3.

The first column of the tables and the dashed curve in the figures

correspond to 8th order shell theory (K=0). As expected from the dif-

ference in the asymptotic moment fields the bending stresses show some

differences. The membrane stresses from the 8th order theory, however,

are found to be representative for very thin shells h/a<10. It is im-

portant to note that in general 8th order shell theory gives non-

conservative estimates of the membrane stresses.

The extrapolated values of k bb for a2=0 are in good agreement

with the results obtained in [2-4] for a plate.

-24-
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APPENDIX A

Solution of the equation p'' + (X24)"(1 -KP) n 0

_	 4

Following the method in [163 the solution of the quartic equation

P4 + (X 2 E) 4 (1-Kp) - 0 (A.1)

requires the real root of the cubic equation

x 3 - 4(X,E) 4 x - K2 (X29)' 	 0 (A.2)

Now introduce the parameter

KJ^ Ez
n = 34( 4 ) (A.3)

The real solution to (A.2) is determined as the sum of 01 and 52 given

t by

l
.

' 14
!i

z	 3	 ' r E)6[n + ^z^_ f]
51,2	 (^)	 z	 - (A.4)

This relation is rewritten 'fn the form

(exp (±Arccosn)„i 0<n<l

lexp (# Arccoshn) 1<n

The real root of (A.2) is then given by

cos (3 Arccosn) 0<n<l

x = 51+52 = ^ NO2 (A.6)

cosh (I-3
1<n

r

The roots p of (A.1) are found from
t
Y 5

J,

-27_
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(A.8)

^f

p	
2

2+rXp+fix+^^a2^)"°^

leading to

4	 p  
2t//Cos
	 It 1(±) i vrl T n osr^

o<n<l	 n = Cosa

For 1<n cos( is replaced by cosh O.

r

!	 -28-

(A.7)
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APPENDIX B

Asymptotic expansion of I(!) _ ( 1 J(t) ei^tdt
{1

Rewrite the integral in the form

I (E) - I	 eigtdt

-1

dt• Jo{[(t)+(-t)]cos(gt) +i[^(t)-m(-t)]sin(gt)}. (B.1)

Introduce the following series expansion of ^(t)

0(t) _J^DcjTj(t)

and use the results [14; 7.3551

J

1

T2n+
1 (t)sin(^t) r-. = (-1p J2n+1(191)sgn(C)

0

foT2n(t)cos "t) dia, = (-1) If J2n( W )

(B.2)

(B.3)

Tj (t) is the Chebyshev polynomial of the first kind of degree J and

Jn(g) is the Bessel function of the first kind of order n. The integral

then is

IM = Tr G (-1) j c2]J2^(191) +1 s9n(g)c2j+1J2j+1(191)7 	 (B.4)
J=0

From the asymptotic formula [14]

-29-
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in(W) - /Tlr ^ COSOCI -T - T	 (B.5)

we get

1(0 -	 J-0 lc2, cos( 191- ff) + i sgn(9)c23+lsin(jCj- TM 	 (B.6)
N FU

By use of T2n(tl)=1 and T2n4-1(t1)=+-' the leading term of the asymptotic

expansion of I(E) is found to be

P--
IM - /-2	 {$(l )exp[i (9 - sgn(E) j) I

+ ^(- exp[ - i (E - sgn ( 0 -,,r ) 3,	 (B.7)
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TABLE 1

Dimensionless variables.

Coordinates

X X2 4

Displacements

u =tea v= a2
W=a

O
x
 = 3d s l ay = 7E S2

Stresses and stress resultants

Q11 &022 °12_
°xx - cYY = 

E axy -.E-

Nil 6N22 N12

N	
__

xx	 6fi€ N	

_

YY	
_

NxY

,

MI1 6M22 M12_
Mxx - s1i 2̂ 6 NYY = hE Nxy

_
WT

vl
V =—

X	 ,qhB
v	

_ vWv2

y - -1"18—
m=

F

Parameters

A4 = 12(1-v2 ) h
2

2 R
4

2 a2 = 12(l _V2) gE 
4

2Rs	 a12
4

2

= 12(1-v2 ) h	 -

1

X4 = 12(l _V2) 

hx
K =	 E

j

i



i	
- -

Table 2. Stress intensity factors km

A

X2 K= 0 a/h=1 a/h=2 a/h=5 a/h=10

0.01 1.000 1.000 1.000 1.000 1.000

0.25 1.014 1.015 1.015 1.015 1.015

0.50 1.056 1.061 1.058 1.057 1.057

0.75 1.119 1.135 1.123 1.120 1.119

1.00 1.1.98 1.233 1.208 1.200 1.199

1.5 1.391 1.485 1.420 1.398 1.394

2.0 1.613 1.788 1.668 1.625 1.618

3.0 2.095 2.478 2.220 2.122 2.105

4.0 2.588 3.254 2.808 2.634 2.603

5.0 3.075 4.100 3.414 3.146 3.096

6.0 3.552 4.944 4.069 3.656 3.580

7.0 4.021 - 4.723 4.154 4.054

8.0 4.484 - - 4.649 4.515

10.0 5.376 - - - 5.422-_,

12.0 6.297

7

I

i

a
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d

X2 ,K =0 a/h=1 a/h=2 a/h=5 a/h=10

0.01 0.0001 0.0001 0.0001 0.0001 0.0001

0.25 0.0328 0.0235 0.0221 0.0212 0.0208

0.50 0.0866 0.0602 0.0571 0.0551 0.0544

0.75 0.142 0.0951 0.0912 0.0890 0.0891

1.00 0.194 0.1243 0.1206 0.1193 0.1200

1.5 0.279 0.1622 0.1604 0.1636 0.1674

2.0 0.336 0.1757 0.1748 0.1851 0.1942

3.0 0.371 0.1507 0.1397 0.1661 0.1887

4.0 0.313 0.0801 0.0395 0.0762 0.1156

5.0 0.176 -0.0266 -0.1089 -0.0698 -0.0140

6.0 -0.025 -0.1510 -0.2965 -0.2605 -0.1865

7.0 -0.279 - -0.4991 -0.4826 -0.3952

8.0 -0.579 - - -0.7369 -0.6343

10.0 -1.306 - - - -1.1829

12.0 -2.186 - - - -

Table 3. Stress intensity factors kbm

i

3

,w
1

i

a

`r _1^
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Table 4. Stress intensity factors kbb

X2 K = 0 a/h=1 a/h=2 a/h=5 a/h=10

0.01 1.000 0.747 0.699 0.662 0.644

0.25 0.998 0.745 0.698 0.660 0.643

0.50 0.992 0.738 0.692	 - 0.655 0.639

0.75 0.983 0.728 0.684 - 0.649 0.637

1.00 0.973 0.716 0.674 0.641 0.628

1.5 0.950 0.693 0.653 0.623 0.612

2.0 0.927 0.671 0.632 0.605 0.597

3.0 0.881 0.633 0.594 0.572 0.564

4.0 0.838 0.603 0.561 0.540 0.535

5.0 0.801 0.580 0.534 0.513 0.506

6.0 0.767 0.562 0.511 0.489 0.483

7.0 0.737 - 0.492 0.468 0.463

0.709 - - 0.450 0.446

.0

L12

.0

0.661 - - - 0.413

.0__I 0.621 - - - -



Table 5. Stress intensity factors kmb

aZ K= 0 a/h=1 a/h=2 a/h=5 a/h=10

0.01 0.0000 0.0000 0.0000 0.0000 0.0000

0.25 0.0043 0.0069 0,0060 0.0051 0.0047

0.50 0.0115 0.0184 0.0158 0.0136 0.0126

0.75 0.0191 0.0302 0.0261 0.0227 0.0212

1.00 0.0267 0.0414 0.0363 0.0315 0.0294

1.5 0.0407 0.0607 0.0544 0.0478 0.0447

2.0 0.0530 0.0761 0.0698 0.0619 0.0582

- 3.0 0.0731 0.0977 0.0933 0.0846 0.0799

4.0 0.0882 0.1121 0.1096 0.1012 0.0961

• 5.0 0.0998 0.1223 0.1209 0.1136 0.1081

6.0 0.1088 0.1282 0.1303 0.1231 0.1175

7.0 0.1161 - 0.1370 0.1303 0.1249

8.0 0.1221 - - 0.1359 0.1308

10.0 0.1309 - - - 0.1399

12.0 0.1388 - - - -

d

ii
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