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1. INTRODUCTION

The object of geodesy is usually defined to be "the determination of °
the shape and gravity field of the earth.! Not being happy with the idea of
devoting curselves to a hopeless task, we take the liberty of revising the
definition to-read: ""the estimation of the shape and gravity field of the
earth.' TFaithful to this definition, this work is about estimation, the
process of extracting information about parameters and/or functions
from observational data. To extract any information about the physical
world from observations, it is first necessary to construct a simplified
and idealized image of the real world, i.e., a model.

The comi:olexity of model building is very much dependent on the
accuracy of the observational techniques. In the presence of large obser-
vational errors, the adoption of a simplified model is warranted since an
elaborate model would not compensate for the loss of information associ-
ated with observational errors.

Indeed, simple geometric models of axiomatic validity have been of
great use in geodetic work, although observables could not be directly
identified with their simple counterparts in the model. This prohlem was
bypassed by the appropriate a priori reduction of the ocbservations,
Although uncertainties were present in these reductions, their order of
magnitude was insignificant compared to the level of observational noise,
On the other hand, recent advances in observational techniques related to
geodetic work (VLBI, laser ranging) make it imperative that more consider-
ation should be given to modeling problems. Uncertainties in the effect of

atmospheric refraction, polar motion and precession-nutation parameters,



etc. cannot be dispensed with in the context of "centimeter level geodesy.”
Even physical processes that have generally been previously alfogether
neglected (station motions) must now be taken into consideration,

The problem,. in essence, is.one. of modeling functions.of time or
space, or at least their values at observation points (epochs). Modeling
each function value as an independent unknown parameter may be possible
in some cases (geometric methods in satellite geodesy), though it may
generally result in overparameterization; and therefore the interdependence
of function values must obviously be taken into consideration. When the
nature of the funetion to be modeled is unknown, one may resort to
representing the function in terms of a finite number of parameters using
polynomials, trigonometric series, step functions, efc (polynomial fits in
short are satellite geodetic techniques, truncafed spherical harmonic
expansions of the gravity field of the earth). The need to include a limited
number of terms and to a priori decide upon a specific form may result in
a representation which fails to sufficiently approximate the unknown function.

An alternative approach of increasing application in several scientific
disciplines n_owadays is the use of stochastic models, i.e., the modeling of
unknown functions as stochastic processes., Although the functions under
consideration are not known, they are, in generzl, not completely unknown
either. For example, in spite of the fact that the position of the earth-~
rotation-pole at some current epoch is not exactly known, some places on
the earth can be congsidered much more likely candidates than others. This
situation of relative uncertainty suggests the use of probability as a measure
of this uncertainty. Thus, stochastic models are means of deseribing the
"ikely' behavior of the unknown function.

Relative uncertainty is hardly the usual framework for introducing
_probability concepts. On the contrary, one is usually made aware of these
concepts through the relative frequency definition [Papoulis, 1965, p. 8].
According to this approach, probability theory describes the statistical or

average behavior of random entities over an infinite ensemble of possible
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realizations, This poses some disturbing questions about the relevance of
probabilistic techniques to geodetic problems. Indeed, in geodesy we deal with
unique functions rather than ensembles of likely-behaving functions whose
average hehavior would call for statistical-probabilistic descriptions.

Such difficulties are not particular to geodesy and can be circum-
vented with the introduction of the concept of ergodicity. A function is
assumed to hehave likely over different parts of its domain of definition so’
that ensemble averages can be replaced by "time'" averages.

However, the limiting frequency interpretation of probability is not
the only one. The meaning of probability has been a matter of much con-
troversy over thelast twohundred years [Fine, 1973]. Related arguments
have acqguired more practical importance as the use of probabilistic ideas
has spread into so may scientific activities. We need only mention the
distinetly different interpretation given by subjectivists who even come to
the explicit aphorism that "probability does not exist™ [Finetti, 1974, p. x].
According to this school of thought, the uncertainty that probability is
meant to describe is our own "'subjective' uncertainty about reality and not
inherent to the physical phenomena themselves. This point of view is indeed
very comforting to the geodesist eager to use probabilistic techniques; for
even though it does not answer the question of relevance of probabilistic
concepts to geodetic work, it nevertheless dispenses with the problem
altogether. The classification of physical processes into random and
deterministic ones becomes irrelevant; and since stochastic models are
meant to describe our own indisputably limited knowledge about physical
processes, their relevance is obviocus,

In essence, the interpretation of probability, although of relevance
to geodetic work, is more -of a problem in philosophy of science. However,
the justification for the use of probabilistic tools in applied science relies
on such an interpretation; and one should feel obligated to be at least aware

of the questions, if not of giving an answer.



" Beyond such philosophical considerations, there are some problems
of practical importance associated with estimation in geodesy that have to
be addressed.

Within a "second-order theory'framework, existing estimation
techniques call for the a priori specification of the first- and second-order
statistics (means and covariances) of random parameters and functions
involved.

It has been found that the gravity field of the earth cannot be modeled
as a random field which is both ergodic and Gaussian [Lauritzen, 1973].
This would disqualify the use of statistical sampling techniques for obtaining
an estimate of the relevant covariance function,

Even in the case of ergodicity, where stochastic models might be
appropriate, we encounter situations where the functions to be modeled
camnot be directly observed, thus prohibiting the use of sampling techniques
for covariance estimation.

With respect to the first problem, the probabilistic justification of
estimate optimality is dispensed with by exposing the deterministic aspects
of the probabilistically devived estimation algorithm, and strictly determin~
igtic criteria for estimate optimality are established.

In regard fo the second problem, the possibility of parameterization
of the required statistics of sfochastic processes and the simultaneous
recovery of the relevant parameters along with other unknown parameters
is investigated. This leads to "adaptive estimation” schemes where the .
stochastic model is adapted to the observational evidence.

In order to secure the proper use of existing estimation techniques,
it is considered necessary to bring into light the interrelations (similarities
and dissimilarities) of such techniques through the use of a unified approach.
_In the hope of contributing to the understanding of estimation techniques, the
_separation between the deterministic aspects of estimation algorithms as

related to linear best approximation theory and the probabilistic justification
of estimate optimality criteria are especially emphasized.

4



2. FUNDAMENTAL CONCEPTS

2.1 Introductory Remarks

The purpose of this chapier is to present a short exposition of cexrtain
fundamental concepts, definitions and results which can be found in a number
of textbooks of mathematics and probability theory and which are necessary
for reference in the following chapters. Such an expogition will help to
avoid a large number of references in the main text, and especially through
the introduction of a unified notation will hopefully make the following
chapters easier to read.

Without trying to conceal or entertain the_a definite need for more
mathematical rigor, an honest attempt has been made to bring the discussion
to a level consistent with the usual mathematical foundation of most geodetic
work. Whenever a more rigorous treatment is though to be necessary,

proper references to appropriate works are given.

2.2 Random Variables—Concept and Mathematical Model

The concept of 2 random variable is the cornerstone of this entire
discussion. As already explained in the introduction, our concept of a (real)
random variable is that of a real valued quantity, where uncertainty exists
about its true value. This uncertainty reflects limitations of one's subjective
knowledge about the quantity in question and is completely irrelevant to the
Mtrue nature' of the quantity. This means that an a priori classification of
physical quantities and processes into deterministic and random ones is
meaningless, Starting from the fundamental assumption that a "true value"
exists, such a value is axiomatically deterministic. On the confrary, our
image of reality, based upon our imperfect mental and observational

capabilities, is always governed by uncertainty and is therefore random,
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These images, or "mathematicalmodels' to use a more familiar term, are
always governed by uncertainty, even when this is purposely ignored and a
deterministic mathematical model is used.

The mere-assertion -of the-presence -of uncertainty falls short from
justifying the introduction of a mathematical theory of uncertainty. What is
further needed is a measure of uncertainty, i.e., something that helps to
distinguish between "much' and "little" uncertainty, including the limiting
cases of absolute ignorance (total uncertainty) and complete knowledge (zero
uncertainty).

This naturally leads to the use of measure theory. Measure is a
function m(A), which maps sets A into nonnegative reals, and furthermore
m(ﬂ) =0, where # is the empty set, i.e., a set with no elements.

In its nonmathematical context, measure is one of the first
""mathematical' concepts that man conceived. It is directly related to notions
such as long-short, large-small, i.e., to comparison of lengths, volumes,
time intervals, etc. Unfortunately, in contemporary mathematical educa-
ficn measure theory is a_rather advanced topic and therefore a somewhat
lengthy discussion appears to be in order at this point.

Returning to the concept of a random variable, let us think of the
uncertain set of values that the random variable may obtain, This will be
a (not necessarily proper) subset S of the set of reals R, The concept of
measure can now be used to answer questions of the form: "How likely is
it that the value of the random variable belongs to a certain subset of 8?"

This corresponds to assigning a nonnegative real number to the
subset in question, or more generally to defining a measure on a collection
of subsets of 8. Following a universal convention, the range of this measure
will be restricted to the finite interval [0, 1]. This leads to the concept of
probability measure. The fwo critical questions about probability measure
;chat have to be answered next are the following:

{(a) Should this probability measure be defined for all possible subsets of
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S (the so-called power set W(S) of S), or for some other collection of
subsets ?

(b} What are the properties that probability measure should have?

Starting with the second question, some obviously desirable properties

are:

0
1

Px(f)
Px(5)
Px(AUB) = Px(A) + Pg(B), for A,BCSandANB=§

where X denotes the random variable, and Py the corresponding probability
measure on S,

Another not so obvious property, but nevertheless necessary in
connection with the concept of 1imit and convergence of a sequence of random

variables, is the following:

Py (H A,) = ;PX(AQ

where

[e+]

U AiCSand AstNAy = 8 fori#j.
4=1

We have now arrived at the concept of a countably additive measure.
This final property makes the definition of such a measure impossible for
ﬁ? {S) [Royden‘, 1968, p. 531. Another collection of subsets of S must be"
found as the domain of Py. Such an appropriate collection is a o-algebra
of subsets of 8.

An algebra (or Boolean algebra) of sets is a collection Aof subsets
of S, such that ’

(i) AUB is in /£ whenever A and B are,

di) A° = {t: teS, t& Alis in A whenever A is.

An algebra/? of sets is called a o-algebra or a Borel field if every union of

a countable collection of sets in /€ is again in #£[Royden, 1968, pp. 16-17].



If for simplicity S is identified with R, we are then primarily concerned with
sets of the form {x; a Sx<bl}, {x; a<x<b}, {x; asx}, {x x<bl, etec.
Such sets can be constructed from complements and countable intersections
.and unions. of closed. intervals.of R, The smallest-o~algebra that-contains.the
closed intervals of R is called the Borel sets Bof R. We have now constructed
a triplet {R, 13, Px}, called a (probability) measure space, and consisting of
the set of possible values R that the random variable X may obtain, and a
collection 13 of subsets of R, on which a probability measure PX is defined.
However, the mathematical context of the random variable itself has not |
been defined yet. The idea of a set of values R "obtained" by the random
variable leads to the identification of R with the range of a function which is
consequently identified with the random variable. But a function further needs
a domain, and such a domain is constructed through the introduction of an
abstract space § of elements W, together with a o-algebra A of subsets of 2
and a measure P defined onf, i.e., a probability space {Q,-’f, P},

Now the random variable X can be defined as a functionX: & < R, and
furthermore a measureable function, i.e., a function satisfying

X*@®) = {t:X(t)eBIE A for every BE 13

This means that the inverse image under X of every Borel subset of R
belongs to the ¢~algebra 7€ of subsets of § measureable under P. Up to now
we have a mapping
x: {Q,7% P} > (BB}
but the measure P induces a measure Py, on 73 (the measure we have been
‘ originally interested in) through the relation:

Px(B) = PX*(B)) for every BER

The probability measure Py is called the distribution of the random variable X,



2.3 Infegration, Expectation and Moments of a Random Variable

_ A concept related to measure is that of integration. As a matter of
fact, it was questions in integration theory that historically gave rise to
the study of measure theory. An exposition of integration theory is beyond
the scope of this work, and we shall therefore take for granted knowledge

of the definition of integrals of the form

fgo(w) aP(w) , AegL and ff,o(w) dP(w)
A Q

where © (W) is a measurable function ©: Q ~ R,

Definitions of these integrals and related discussions on integration
and measure can be found in several texts [Pitt, 1963; Royden, 1968;
Kolmogorov and Fomin, 1960; Burril, 1972]. For the random variable
X: {Q,7, P}~ {R,13, PX}’ we have

[X(w) dP(w) = [x dP (%) (2.1)

Q R
the latter being a Lebesgue integral, To transform this integral into a
Riemann-Stieltjes one, we need a description of the measure Pg. Such a
description becomes possible through the introduction of the distribution

function FX(?L) of the random variable X, defined as
Fe) = Plw; X(w) <A} = Py (-, A]

;Nhen FX(K) is properly defined, then Py is defined for all sets of the form
(-, Al, and consequently for every set B&E 43, This follows from the fact
that B being a Borel set can be written as a union and/or intersection of as
many as countable sets or complements of sets of the form (-, A}, and

from Px beir{g countably additive.



Now the expectation of a random variable X is defined as

+ o

E{x} = [X(w) dP(w) = [x dPy(x) = [A dF(\)

Q R - 2.2)

the latter being a Riemann-Stieltjes integral. The definition can be
extended to any function @ (X), such that the composite mapping @oX: Q2R

is a measurable function

+ oo

E{e(X)} = f P(X(w)) dP(w) = fw(k)idpx(k)
Q o (2.3)

In the particular case that fx(?t) = g—x FX(A) exists and is continuous,

expectation can be defined by means of a simple Riemann integral
+ o
E{o(x)} = /w(k) fX()L) dx (2.4)
—00

fx(l) is called the (probability) density function of the random variable.

Among the admissible functions ¢ (X), the following are of most
interest:
(a) The identity function ¢ (X) =X, giving rise to the mean Ky of the
random variable X
py = EX]

(b) Functions of the form ¢(X) = (X - ""’X)n’ n=1, 2, ..., giving rise to
the nth central moment of X
CYI o, B
M, E{x _ He) }
For n = 1 we have trivially Mx(l) = 0, while for n = 2 we obtain the

variance 0'% of X:

0_2

= EAX - pye?) = BX*) - p}

10



" Not any arbitrary funetion FX(M’ (or fX(A)), corresponds to some random
variable X. FX(?&) must have the properties

Fp(=2) =0, Fylt=) =1, Fy(a)s Fy(b) fora<hb

(i.e., Fy(A) is nondecreasing), andifa < a2 < .., < an < .,, isa

sequence of reals with lim an= a, then
R R—>

lim Fy(a) = Fy(a)

n—>w

ie., FX is continuous in the left.

Up to now only a single random variable has been considered. For a
number of random variables Xi, Xz, ..., X5, we can construct a vector
X = Xy, Xo, ..., Xn]T and the mapping X: Q = Rﬁ is calléd a random
vector.

We have taken here all the random variables X; to be defined on the
same underlying p;robability space {§¢,78, pl,

For a real valued function ¢ (X), (¢: R" = R), the corresponding
composite fnction @ X W), (@X: & R), is a random variable (provided

©o X is measurable), and its expectation is simply defined as:

E{qﬂ(g’)} = f@(f(w)) dP(w) (2. 5)

[§]

If we define the distribution function

(M) = Fpa,de,.d) = Pw; Xa(@) SXy,.., X(@) A}
(2. 6)

F

and if the density function

an Fi(kl,kg,...,kn)
f—(N) = fi(kl,}tg,..,hn) = (2.7
DAy 9Az ... 0 A,

exists, then

11



400 -0 + o0
Elp(X)l = ff O(N) fE(X) dXy dXz... dX,

~—00—50 — 0 (2.8)

2.4 Stochastic Processes

The concept of a random variable is the probabilistic counterpart of
the deterministic concept of a real valued constant. A similar counterpart
to the deterministic concept of a function is provided by the concept of a
stochastic process (or random process, or random function).

We now introduce the following notational convention: For a given
function y(t, s) (y: T X 8§ Y) of two variables t & T and s €8, we denote
by yt and ys the mappings yt: S2Y and yS: T Y resulting by fixing t or
s respectively in y to a constant value.

A stochastic process £ (t, w), tET, W& is a mapping & TX Q> R,
where T is an index set and {Q ,Jic, Pla probability space. TFor every fixed
tET, the corresponding mapping Et: 2 2 R is a random variable; while for
fixed & the mapping Ew: T~ R is an ordinary function with domain T and range
in R, For the various fixed w values the corresponding deferministic functions
. Ew(t) are called the sample functions of the stochastic process.

If @ denotes the set of functions ©: T 2 R, then a stochastic process
£ (t, W) can be alternatively viewed as a mapping &: Q@ > @, i.e., asa
"function valued" random variable. In our discussion we shall take T to be
the set of reals R or some interval in R. If T is the set of positive integers
N', the term random (or stochastic) sequence will be used. If TER’, then
the corresponding mapping £(t, w) will be called a random field.

In a description of a stochastic process, the probability measure P
corresponding to the.probability space {Q,7, Plis usually not given.
Instead the joint distribution function of the random variables Etl(w), gtz(w),

s gt“(w) is given for any finite sel of values ta, tz, ..., th in T:

12



Fg’tl,tz’__,tn(Al,AE,-..’A_n) —

=P { w: gtl(w) < Al, gtz(w) < Aa, e, gn(w) < An}
(2.9)

Such a given family of distribution functions corresponds to some stochastic
process, provided the two following properties are satisfied [Kolmogorov,

1950]:

(a) If p1, pa, ..., Pnis a permutation of the indices 1, 2, ..., n, then

(lp ’lpi°-o ,A.p) =
1 2

n

F
g’ tp :rtp [ ..,tp
1 2

n

F«S,tl,tz,---,tn( A1,X2, cou yAq) (2. 10)

(o) If we let the variables A y+1, A y+2, ..., Ap approach infinity (1 < j <n),
then

F A.,A_ ’__.,k moo__'m =
g’tl’tz""t.”tj‘i'l’-o-,tn( : 2 327 ’ )

Fggtlstzg---,tj(kl’ka"°"x3) (2.11)

The above finite dimensional distribution functions of the process determine
a good deal of the structure of the probability measure P but by no means
all of it. For a discussion on this interesting problem we refer to [Lauritzen,
19781, where further references to the literature are also given,

With the help of the distribution functions or the colrrespondmg finite
dimensional density fu,nction (provided it exists),

f'—gstl,tz,...,tn(kl’ka’°"skn) =

n
° ngtl,tg,,_.,tn(Alsla,-..,kn)

2.12)
ak’l akz ¢ » e akn

13



we can now define a few more nseful concepts.

The mean value function K €(’c) of a stochastic process § (t, W) is

defined as o
.Ug(t) = E{&(t,w)} = [ A ng’t(A) = fk fg’t(k)d)t
R - @.13)

Strictly speaking, for a fixed t value, the (constant valued) mean y.z of the
random variable Et(w) is defined in the usual way, and then the function
i} E(1:) is constructed by letting t vary over the whole set T. ‘
The (auto) covariance function Cg (t, s) is a mapping C: T X.T> R,
defined as
Cettrs) = E {18 @ - mgtt) ] [E3@)- nyo) 1}
(2.14)

The (auto)correlation function is a similar mapping defined as

Rg(t,s) = E { £ (w) _«Es(w)} (2.15)

A stochastic process with finite (auto)covariance is called a second-

order stochastic process, (jbviously,

Cgltys) = Rg(t,S) " Bg(t) Bels) (2.16)

Given any stochastic process £(t, w), a new stochastic process E(t, w) =
E(t, W) - 4 E(t) can be constructed with the properties

,U.'g(t) = 0 and C'E(t,s) = R'E(t,s)

Given two stochastic processes x({, w) and y(t, W), their cross-correlation

and cross-covariance functions are simply defined as

R (ts) = E {x(o) y(w) (2.17)

- t
and G (t8) * B {Ix(@) - B)] [ y(w) - Bo(s) 1]
(2.18)

14



The autocovariance function has the following two properties:

(a) Symmetry: Cg(t, 8) = Cg(s, t)

(b) The covariance function is positive in the sense that
E Z a1 a; Cyltnt) = 0
i

for every set ty, 15, ..., tn € T, and any set of constants a3, az, ...,
An E‘Rn.
In a more familiar form, if we consider a matrix C with elements

Cy = Cg {(t:, t;) and any constant vector aER”, then
¢’ = ¢ and a'Ca z 0,

i.e., the matrix C is symmetric and nonnegative definite,

2.5 Stationarity and Ergodicity

If the index set T of a stochastic process £ (t, w), t €T is taken to be
the real line R, and its physical interpretation that of time, then questions
aboﬁt the time invariance of the probabilistic structure of the process lead
to the concept of stationarity.

A stochastic process & (t, w) is called strictly stationary if the finite
dimensional distributions of the process have the property
(A1, .., hy) = (Aiyeenyhn)

(2.19)

F F
gstls-'-stn §,t1+T,...,tn+1'

forevery TE T = R and every finite set ty, tz, ..., ta.

A second-order stochastic process £ (t, w) is called weakly stationary
(or wide sense statiopary, or second-order stationary) if the mean value
function U g“(t) and the (auto)correlation function of the process RE (t, 8) have

the following properties:

ug(t) = p.g(t+1') and Rg(t,s) = RE(t+'r,s‘+T)~ for every tET.
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This directly implies that g(t) = .ug = const., and that
Rg(t, s) = Rg(t—s, 0 = Rg(t—s)

The same property follows directly for the (auto)covariance function

2
C.(t,s) = R(t-s) - Be = Cg(t-—s) (2.20)

£
Every strictly stationary stochastic process is also a2 weakly stationary
process, but the converse is not generally true. A class of stochastic
processes, such that weak stationarity implies also strict stationarity, is
that of Gaussian stochastic processes.
A stochastic process £ (t, w) is said to be Gaussian if for any set
t1s toy ..., tn ET, the corresponding random variables
te
£

@), 2w, ..., £2 W)

have a multivariate Gaussian joint distribution.

Another important concept associated with the physical interpretation
of the index set T as time is that of ergodicity, Probabilities, according to
the limiting frequency approach at least, are associated with infinite ensem-
bles of events. However, we frequentlyhave to deal with a unique process and
not an ensemble of such processes. For stationary processes whose
probabilistic behavior is invariant with respect to time transformations, an
infinite ensemble may be conceptually construcied from time shifts of the
original process, Ensemble averages can thus be replaced by averages over
the time domain.

A stochastic process £ (t, w) is ergodic if its probabilistic structure
can be determined from a single realization !;'w(t). We need concern our-
selves here only with the correlation function of the process. An estimate of
the correlation function of a stationary process can be obtained by averaging
a single realization over a time interval [-T, T]
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+T

1
Rp(7) = ?’f f E+T) E(t) dt (2.21)
_T ’
Obviously,
E {RT(T)} = R{T) (2. 22)
and if
lim RT(T) = R(T) . (2.23)
T—)m

the process is said to be ergodic in (auto)correlation,

2.6 Linear Spaces —-A Geometric Qverview

A great deal of mathematical entities of a diverse nature (real
numbers, vectors, functions, random variables, etc.) have a lot of structure
and properties which only appear to be different. Their similarities can be
brought to light if we deprive them of their particular characteristics and
study them in a unified way based on their common c,)nes. To identify such
common characteristics a great deal of abstraction is necessary. Qualify-
ing mathematical entities may be viewed as "points" in a "space' which is
an abstraction of our familiar three-dimensional Euclidean space. The
abstract counterparts of common geomeiric r}otions such ag distance, length,
angle, orthogonality, projection, etc. become then powerful tools of analysis.

We shall present here only a short account of some basic "geometric
results from linear algebra and functional analysis, culminating with the con-

cept of a Hilbert space,
17



A linear space X is 2 collection of mathematical entities which we
shall call elements, x, ¥y, z, ..., together with two operations called
addition and multiplication by a scalar, satisfying in connection with the
field -of reals R-the following axioms:

@)x+y=y+x
by x+(y+2) = (x+y)+z
(¢) there exists an element § € X, called the null element such that
X+ @ = xforevery x inX
(d) for every x€X, there exists a unique element (-x) such that
X+ (x) =46
(e) abx) = (ab)x forall x€X and 2a,bER
@ a(x+y) ‘
@) (a+bx
(h) i1x = x, 1ER

ax t+ay

ax + bx

The fundamental property of a linear space is that linear combina-
tions of any finite number of its elements are also elements of the space
(linearity properiy).

A set of elements x3, i = 1,' 2, ..., nofa linear space is said to he

linearly independent if the relation

2a1x1=0

i=1

holds only if as = 0 forall i,

A set of elements x; of a linear space X is said to spanX (ortobe a
spanning set of X) if every element in X can be expressed as a linear combi-
nation of the elements xy.

A set of linearly indepéndent elements which also spans a space X ig

said to be a basis for X,
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The number of elements in a basis of a linear space X is called the
dimension of the space. Alternatively, the dimension of a space is the
maximum number of linearly independent elemenis in the space.

A linear space X is called a normed linear space if to each xE X
corresponds a real number || x || having the following properties:

@ |x|| = o

) lix| = 0ifand onlyif x=§

) lax| = la| [|x|| for every a€ER

@ Jx+yll < |zl + [y] (triangle inequality)
x| is called the norm of x.

A metric space is a set of elemenis sucﬂ that for every pair of
elements a real valued function d(x, y) is defined, F:alled the mefric of the
space, and having the following properties:

@ dx, y) = 0

(by dx, y) = Oifandonlyifx=y
(©) dx, 3) = d(y, %)

@ dx, y) + dy, 2) = d(x, 2)

The metric is an abstraction of the usual concept of distance while the rorm
is an abstraction of length., Every normed linear space is also a metric

space with the following definition of the metric

ax, y) = [x -yl

A linear space X is called an inmer pi‘oduct space if for every pair of
its elements a function < x, y>, called the inner product of X, is defined with

the following properties:

(a} <x+y, z> = <X, .z> +%y,Z> Xy, ¥ z&X
b)) <x,y> = <y, x>
(c) <ax, y> = a<x, y> acER

@ <x, %> 2 0and <x, x>=0ifandonly if x=§
Every inner product space is also a normed linear space with norm defined
as |x|| = <x, x> and, consequently, also a metric space.
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It is essential to realize that the definition of a certain inner product
(or norm, or meiric) is by no means unique for a certain linear space. On
the contrary, it may be possible to define a number (not necessarily finite) or
inner products (or norms, or metrics) over one and the same linear space,
thus giving rise to a number of different inner product spaces (or normed
linear spaces, or metric spaces).

The angle & between two nonzero elements X, y of an inner product

space X is defined by means of
cos 6 = <x, y>/|x| |yl 0< @ <7

For 6 = 7/2 we have <x, y> = 0, and we say that x and y are mutually
orthogonal (x L y).

A set of elements x; of an inner produect space X is called an
orthogonal set if < x4, xy> = 0 for i ¥ jand < Xy, X3> # 0. A similar set
x1* is called orthonormal if it is an orthogonal set and, in addition,
<xp*, X1*> = 1, A basis with orthogonal (orthonormal) elements is called
an orthogonal (orthonormal) basis.

Given a set of orthonormal elements x:1* of an inner product space X

and an arbitrary element y € X, we call the series
2: * *
<y,X N > X,.
1

the Fourier series of y with respect to the set x;*. For an orthogonal set

X1, the Fourier series of y is

<y,x1>

>
' =0

Given two elements X%, vy of an inner product space X, we call the element

Ix||™® <y, x> x, the projection of y on x, The Fourier series of an
element v with respect to an orthogonal set xi, is therefore the sum of the
projections of y on the elements x;.
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A subset M of a linear space X is called a linear subspace <;f X, ifM
is itself a linear space,

Given a seguence X, of elements of a metric space X, we say that the
sequence 'converges fo an element x of X if }lgg d(xa, X} = 0. This is con-
vergence in metric, and since normed linear spaces are also meiric spaces,
we can also define convergence in norm by nll,.lﬂ, || x-x| = 0.

A sequence of elements x; of a metric space X is called a Cauchy
sequence, if for every € > 0 there exists an integer N such that )
d(Xa, Xn) < € for all m, n = N

A metric space X is called complete if every Cauchy seguence in X
has a limit also in X, i.e., if it coniains the limits of all its Cauchy sequences.
Since inner product and normed linear spaces are also meiric spaces, we can
define two new types of spaces:

A complete normed linear space is called a Banach space.

A complete inner product space is called a Hilbert space.

Let X be a metric space and S a subspace of X. The clogsure of 8 '
denoted by S is the set of all limits of convergent sequences of S. A subset
S of the metric space X is called closed if § = §, i.e., if it contains the
limits of all its convergent sequences. A subset S of the metric space X is
called dense inX if §=X. A metric space X is separable if there exists a
countable dense set in it. A separable Hilbert space contains a countable
number of elements such that the subspace they span is identical to the
Hilbert space, )

Let H be a (separable) Hilbert space and M a closed linear subspace
of H. An elementx € H is said to be orthogonal to M (x + M), if it is
orthogonal to every element y of M. The set M* of all elements of H
orthogonal to M is a closed subspace of H, called the orthogonal comploment -
of M with respect to H. One can show that for every closed M, H is the
direct sium of the orthogonal subspaces M and M, and we denote this by

H=M® M, This means that any element x of H can be docomposed In a
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unique way X = X + x*, sothat X EM and x* € M, X is called the projec-

tion of x on M, andwe denote this by X =)%{x). We alsohave x*=x ~X =Pyt (x).
Let X, be a fixed element of a linear space X, and let x4, i =1, 2,

.. «» 1 be a_set of linearly independent.elements- of X, The set of-all linear

combinations of the form

Xo + Z ay Xi, a; € R (2.24)

i

is called a linear variety of dimensionn. A linear variety is the spa:ce of
elements x =%, + x’, where x’ belongs to M, the subspace of X spanned by
the set x;. A linear variety V may be viewed as a translation of a linear
subspace M by a fixed element x,, and we write symbolically V =x,+ M.
Let x4 be a set of n linearly independent elements of an inner product
space X and c: a set of n real constants, The set of all elements y of X

satisfying
<y, Xt> = ¢4 for all i (2-25)

is called a hyperplane P of co-dimension n.

Let v, be a fixed element of P. TFor every element v of P we have
<Xy ¥-Yo> = <Xg, Y2 ~ <Xyy Yo > = €y - ¢4 = 0. It follows that
Y - Vo L M, where M is the subspace spanned by the set x;. Every element
y €EP can be written intheform y =y, + y wherey' = y - Yo eM*, and
thehyper:plane P can be viewed as a ii;lear variety P = y, + M"*. -

A functional is a mapping with domain a linear space X and range the
set of reals R. A linear functional is a functional I, with the property
L(ax + by) = al{x) + bL(y) where x, yeX anda, b €R. X isa normed
linear space, a linear functional I, on X is said to be bounded if there exists
a constant M € R, such that L(x) < M| x || for all x €X. A linear functional
L over a normed linear space X is said to be continuous if for every sequence
xp of X converging in norm to x €X, L(x,) L(X) in the usual sense. A

linear functional over a normed linear space is bounded if and only if it is
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continuous. Given a normed linear space X, the set of all bounded linear
functionals over X is itself a normed linear space X*, called the normed

conjugate or dual space of X, with norm defined as

| L(x) |
() = sup — (2.26)
xex x| “
X#

For any linear bounded functional L over a Hilbert space H there exists a
unique element XL of H, called the representer of L, such that L(x) =
<Xy, X> for every x € H. We usually denote the dual space of H by H* and
write x*, y*, z*, .., for elements of '* with representers x, y, 2 in H,

Let H be a Hilbert space with inner product <+, * >, H* its dual,
and (Q,Jé, P) a probability measure space. A mapping x: £ H is said to
be a Hilbert space-valued random variable if

y*E) = <x, y> (2-27)

is an crdinary random variable for every y* € u* {or equivalently for every

y €H, where y is, of course, the representer of y*).

2.7 Best Linear Approximation and the Normal Equations

The problem of best linear approximation may be defined as follows:
Given a normed linear space X and a closed linear subspace M of X, find
the element ¥ of M which best approximates a given element x of X, inthe
sense that
I =-%8 = min [x-y]| (2.28)
yEM
To solve the problem in a Hilbert space, consider the unique decomposition

of x into itg projections on M and M+:

x = %+ %, x = P, X' =t ()
For any arbitrary element y € M, we have, takinginto account thet X L X',

x Ly,
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= -yl® = lIx

1”2

+lE-v]

2

(2-29)

The first term is fixed and the second, nonnegative; and therefore |[x - y [|2

is minimized by setting y = y = %X = BOM(X). The projection of x on M is-

the closest element to X among all elements of M in the sense of the norm

of X. Furthermore, the best approximation always exists and it is unique.

If X is an inner product space and M the span of a finite set of n

elements x4, the best approximation X to an element x of X from M can

be written as

where the n coefficients a; are to be determined. Since X €M and

Xx -x€EMY, wehavex - X L x,foralli; and <x - X, 4> = 0, or

E a; < Xi,Xx3>

J

A
X =

i

E ay xi

< Xy, X >

(2.30)

These are the "normal equations, ' and can be written in matrix form as

follows:

—

< X1,X1

< X3,xy

> <X1’x2>

> <X2,X2>

> <Xn’}{2>

or in compact notation

Ga =1

LR

<X1’Xn>

<X2,Xn>

CXy3Xy

a1

az

aq

<x1,x>

<X2,X>

<xn’x>

(2-31)

where G is called the Gram matrix. If M has dimension n then the elements

x; forming a basis for M are linearly independent, and the Gram matrix G is

nonsingular. A unique set of coefficients can be obtained by

1
a =Gu
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The distance of x from its best approximation x (interpreted as the '""error

of approximation") is provided by the induced metric
dx, x) = [[x-x|

It can easily shown that

b =2 §*

b= 0°- 727

i

17 - DX a1 ay <xxo

1

l|x||2 -aT G a

if
it

I [~ o &* (2.33)

Tf M is of dimension less than n, then the Gram matrix is simgular; and the
set of coefficients a; cannot be uniquely defined. However, the best approxi-
mation exists and is unique; and the normal equations have inﬁnite number of
solution a;, each of them giving rise to the same best approximation % =
Zoayx.
: A related problem is that of finding the element of minimal norm
among the elements of a linear variety or a hyperplane, This can be viewed
as a problem of best approximating the null element @ from a linear variety
or hyperplane. T

Given an inner product space X and g linear variety V = x, + M in X,
we can decompose each element y of Vas

y=3+y, §=Py» ¥ =P

Since y i-.y',

bl = g +51% = I50® + 1517 (2-34)

We can further show that ¥ is the same for every y €V, as follows:
Consider two elements v, =% + Vi, y2= X +Vz0f V, whereVh, o E M. It

follows that yx -~ y2 = T2 - ¥2 € M. Decomposing as usual,
n = §1+ yi! Ja = S}B + Yé, §1| §Y2 eEM, .V{, Y:; EML’
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we have that

§1"§’BEM1 n-v2€M

Vi-Vs = (12-¥) - (h-F) EM
But since y1, y2 EM*, we also have yi - y2 €M™*, This is only possible if
yi-y2 = §, and yi = y5.
To minimize
Iyl = g01? +I¥'1? (2-35)

where || y'||? is fixed and || ¥ |? is nonnegative, we must sety = #. It follows

that the element of V Gvith minimal norm is the unigue element
"=
y =0yt {v) foreveryy € V.
In the case of a hyperplane P described by
<YV, X1 T ¢ i=1,2, ..., n vyEP

we can write P as a linear variety P = yo+ Mt , where y, is a fixed element of
P and M is the span of the set X,. The element y' of P with minimal norm is

then given by the unique projection of any element y € P on (M'L )L =M
Y’ = aDM (Y)

To determine y’, consider any elementy of P. Theny = DQM(.Y) =

Z as x1 can be found with the help of the normal equations
i

Lay <X, X§> = <Xy ¥ (2-36)
d

Since y € P we have <Xi;, ¥y > = c4, so that the normal equations become

Zoa <%y, X3> = ¢t : (2~37)
J

or, in matrix notation, Ga = c¢. The elements x; are linearly independent so

that 2 = G* ¢ uniquely determines y' = T aiXy.
i
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The importance of the normal equations in solving estimation problems
can hardly be overemphasized. In the next chapter we shall apply them in

deriving a number of apparently different algorithms.
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3. ESTIMATION TECHNIQUES.

3.1 Introductory Remarks

The objective of any analysis of geodetic data is to obtain optimal
values for observables differing from actual observations because of
measurement errors, for parameters functionally related to the above
observables, and, in the most general case, functions related to observables
and/or parameters. The essential question, of course, is what are the
optimality criteria to be satisfied by such optimal values.

Before establishing specific optimality criteria, we must notice that,
in general, the optimal values sought are associated with some corresponding
"true values." Although such true values are difficult to define and even
impossible to materialize in practice, we can nevertheless draw the following
general outline for any reasonable optimality criterion: Optimal values should
be as close as possible fo true values. .

Both optimal and true values may therefore be modeled as elements in
an abstract mathematical space (i.e., a set of such elements), where, in
addition, the concept of distance is defined enabling us to determine how "close"
any two elements of the space are. But such a mathematical model is pro-
vided by the concept of a metric space where a metric or distance is defined
for every pair of elements. The choice of a specific metric corresponds to
the choice of a specific optimality criterion.

We shall mostly confine ourselves here to a specific (but nevertheless
of wide applicability) kind of metric spaces, namely, linear complete'inner
product spaces (Hilbert spaces), where the metric p {x, y) follows from the

definition of the corresponding inner product through the relation
%
p(xy) = fx-y | = {<x-yx-y>}
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In such a mathematical setup, we shall find our problem of obtaining optimal
estimates to correspond to the problem of best approximating an element of
the space from the elements of some linear subspace. The solution to this
problem ig given by the celebrated normal equations, and computational
algorithms will always result from applications of th{s solution, The result-
ing algorithms may well be drastically different, but our common approach
of solution will provide us with a unified view, where similarities and dis-
similarities between what is usually considered to be different estimation
technigues can be sharply identified.

Such an analysis can, of course, take place at the algorithm level,
where by proper algebraic manipulations one can show how different
algorithms can be derived from a common starting point. Such approaches
can be found, e.g., in [Liebelt, 196‘%, Chapter 5] and in the recent work by
Krakiwsky [1975]. It is our belief, however, that little is to be gained from
approaches where the connection between different algorithms is explored
without reference to a unique underlying problem formulation and solution,

It is hoped that the approach taken here will contribute to the understanding
of varying estimation techniques, especially since the geometric character

of Hilbert space techniques is more appealing intuitively, affer familiariza-
tion with these mathematical tools is attained. .

We have used the term estimation techniques repeatedly here, although
estimation is usually connected with statistical and probability concepts com-
pletely absent from our discussion, Indeed all the probabilistic notions one
needs can be condensed in the definition of the imner product involved, and
they are only involved _iﬁ justifying the optimality of the corresponding metric
as an appropriate measure of "closeness . "

A more appropriate termlmight have been "adjustment techniques,"
but unfortunately this term is already connected to some gpecific algorithms,

The solutions to our problems are quite independent of the specific
inner product definition. However, the corresponding computational
algorithms result by replacing the specific inner product into the general
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normal equations solution, and are, therefore, related to both probabilistic

concepts and deterministic mathematical tools from approximation theory.

3.2 Least Squares. Adjustment

Among various estimation techniques, least squares adjustment is the
one most widely used in geodesy since the time of its development by Gauss.
There is, therefore, very little to be said about algorithms associated with
least squares. Usually these algorithms are derived from.variational
principles, as solutions to the problem of minimizing a quadratic form. Such
an approach solves the problem but has little to offer to the understanding of its
mathematical context and its relation to other techniques,

Instead, we shall approach here the problem from a Hilbert space
point of view, and we will show how particular algorithms ean be directly
derived from solutiong to problems already considered in Chapter 2.

The notation will generally follow that of Uotila [1967], with some
minor changes of signs, so that our results can be easily compared to the

variationally derived algorithms in that work,

3.2.1 Method of Observation Equations (Adjustment by Elemenis)

The problem to be solved here can be described as follows: A finite
set of unknown observables represented by a vector L*E R", is a priori

known to be in a linear functional relation
L* = AX (3.1)

with a vector X &€ R" representing a finite set of unknown parameters, where
A is aknown n X u matrix with n > u.
A vector L of available (known) observations L differs from L*

because of the presence of unknown observational errors V, according to
L =1*x+V or L =AX+V (3.2)
This linear matrix equation (observation equations) is satisfied by an infinite
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number of pairs of values of the unknown vectors X, V, since to every element
X in R" corresponds some element V =L - AX in R". Among all such possible
pairs of solutions X,V, we seek to find one }?I, V=L- Af{, which minimizes
the quadratic form

VPV = (L - AX)'P (L - AX) (3.3)

where P'is a given positive definite n X n matrix.
Setting v = AX, §.= AX, we can reformulate our problem as follows:
Let £ be the n-dimensional complete inner product space (Hilbert space) with

elements n X 1 real vectors and inner product
<t g>=g'Pf ,g€L (8.4)

Let A, denote the ith ¢olumn of the matrix A . Obviously Lel, MEL

fori=1, 2, ..., uand since

n
y = AX = in A, (3.5)
i=1

it follows that ye‘;{, where J= span (A1, Ag, ..., Ay). The least squares

criterion V' PV = min can now be written as

VPV s <V, v> = | Vv|EP= JL-y|[® = min
. (3.6)

We seek to find y& o such that

-5 = min | L-y]| (3.7
yEof

But this is a problem of best approximating LE £ from the elements of the -
linear subspace £C L.

The solution is well known to be provided by the normal equations
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r
<Ai1,A1> <Ai1,Ax>,
<Az,Ar> <Ap,Ap>.
<AusA1> <A1-lsA2>

bd>
~

14

4]

‘?<> e v

<L, A, >

|<L, Ag>

<L, Ay >

(3.8)

To derive a computational algorithm from this solution, we make use of the

inner product definition; and after replacing < Ay, Ay> = Al PA g = AI PA,

and < I, A:> = A;PL, we obtain

AL PA, ALPAs ... ATP A
AL PAy ALP Az ... AP A
AL P Ay AYP Az ... ALPA,
or
A}
AL X
P [ ArAz ... A,] X
Al
or simply
A'PAYX = A'PL

32

Al PL
AL P L

: (3.9)

AL P L

(3.10)
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If the columns of A are linearly independed, then A’ PA is a nonsingular

matrix so that we may obtain

X = (AP AY ATPL (3.11)

7 = AX= a(ATPAY ATPL (3.12)

¥ = L-y = L - A(ATPAY ATPL
(3.13)

a set of well-known results' Compare, e.g., with [Uotila, 1967, Section
3.1].

The soiution ig illustrated in Figure 3,1. The 5{1‘3 are the coordi-
nates of the best approximation §7to L, from the subspace /f, with respect
to the basis {A; } in thi%; subspace. We also have ¥ L £as it can easily be

verified

Vipa

i
i

[ {rTPAl, {ITPAZ,-.-,‘QTPA“ ]

(L"T- LTPA(ATPAY ATy P A

0 (3.14)

1]
1}

fe., VVPAy = 0 = <Ay, V> or VLA i=1, 2 ..., u and
V LA,

3.2.2 Condition Equations

In this problem a set of unknown observables L* € R® is a priori
Imown o satisfy a linear relation

L3

BL* =0 : : (8.15)

where B is a known m X n with m < n and rank {B) =m. A corresponding
set of known available observations I, € R differs from I.* because of the

presence of unknown observational errors V € R*, according to the relation

L=1+vV (8.16)
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Figure 3.1 The Geometry of Least Squares Adjustment
(Observation Equations)
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Since B and L are known, the vector W= B L is also known and in view of

BL* =0, it satisfieé the relation (condition eguations)

It can be shown that since rank (B) = m<n, the matrix equation BV = W has a
solution and, furthermore, an infinite numbgar of solutions. Among all
vectors V satisfying BV = W, we seek to find one ¥ which minimizes the
quadratic form V' P V where P is a given positive definite n X n matrix.

To reveal the geometry of the problem in a Hilbert space context,

we use the transformation

B = p'B
(ﬁ is nown X'm), so that

W =BV = BP*PV = B’ PV - (3.18)
hij %1 denotes the ith co.lumn of%, we have

BIPV = W, : (3.19)
Introducing the Hilbert space £ of nX 1 real vectors with inner product

<f, g> = g Pf g te€L | (3.20)
we can write the above relation in the form

<B, V> = Wi (3.21)

Since rank (B) = m, we also have rank (ﬁ) = m and the columns ﬁi are
linearly independent. It follows that V satsifies BV = W if it belongs to
the set ‘

H = {V;<By, V>=Wifori=1, 2, ...., m} (3.22)

The set H can be directly identified as a hyperplane of co-dimensionm inZ .
If N =span {B;, Bas, ..., Bal, then the hyperplane H can be identified with
a linear variety, with the help of the unique fixed element Vo = WN (V) for
every Vv € H (see Section 2.7),
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H={V, V="yV+V, VEN']

(3.23)

For any V in H we have the orthogonal decomposition V = Vo + V', where

Vo E N is fixed, V' € N, and, therefore, Vo L V.
Using the Pythagorean theorem, we may write

VIPY = <V, v> = [|[V]|* = [[vo||* +[v'|?

(3.24)

Since Vo is fixed, the above norm is minimized for V' = 0, and our solution

to VPV = min is {f = Veo. To find explicitly this value, we consgider any

element V € H, and we have

o~

VvV = Vo =3DN(V)
Since N = span (ﬁl, Ba ..., ﬁm), this projection is provided by the
equations
<§1,§1> <§1,§2> N <§1,ﬁu> a:
<’]§2”‘]§1> <§23§2> e <§2’§l> az
<B,,B1> <By,B2> ... <B,, B,> an
and

Using the definition of inner product in £ and the fact that <B,, V >
BIPV = W, for any V € H, we obtain
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hormal

<§1,V>

<§29V>

<Ba., V>

(3.26)

Y

(38.27)



BY
~T
P [ By, Bay«e.yBa] a = W, or (BPB)a= W
BL
- . ' (3.28)

Since B = P*B', and introducing M = BP* B', we get
BP'PP' B'a = BP'B'a = Ma = W (3.29)

and
v = E By a;, = Ba= P'B a (3.3

Since the rows of B are linearly independent, M is invertible so that

a = M'W (3.31)

and
v =r's"Mw (3.32)
a well known result! Comparve, e.g., with [Uotila, 1967, Section 3.2].

The solution is illustrated in Figures 3.2a and 3. 2b,

3.2.3 Generalized Model

A more general least squares model is a combination of observation

and condition equaiions of the form

: W = AX + BV ) © (3.33)
where W is 2 known n X 1 vector, A and B are known nXu and n X m matrices,
respectively (rank (B} =n, rank (A) =u, u<n <m), and X and V are unknown
u X1 and m X 1 vectors, respectively.

Among all possible pairs X, V satisfying AX + BV =W, we want to

find one X V such that V minimizes the quadratic form V'PV, where P is
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Figure 3.2 a The Geometry of Least Squares Adjustment
(Condition Equations)
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Figure 3.2 b The Geométiry of Least Squares Adjustment
(Condition Equations)
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a given positive definite n X n matrix,

We shall solve this problem through the following device: For every
fixed X we shall find the unique Vy minimizing V' PV among all V satisfying
BV = Wx where Wx =W - AX is a fixed vector. Then by letting X vary over
R", we shall find the unigue vector v n:lninimizing Vi PV among all the
previously obtained vectors Vx. In this way {7 will also minimize VPV
among all vectors V belonging to pairs X, V satisfying AX + BV = W. The
only objection to such an approach is that there might exist two pairs }2’1, v
and X5, V, both satisfying AX + BV = W and with X, # Xo. This possibility
can be ruled out by subtracting A}A{g + BV = W from Af{:;_ + BV = W to obtain
A(f(l - f(g) = 0 and noting that Ay = 0 implies y = 0. Indeed, since rank (A)
=u, the columns A, of A are linearly independent and 0 = Ay = :‘—{; yi Ay
implies y; =0 for all i, sothat y =0, i

To proceed with the solution we fix X to obtain
BV = Wy where Wx = W~ AX (3-34)

This is simply a condition equations model, and V' PV is minimized by

Vi = PPBM Wx = PPB M*(W-AX) (3.35)
where

M = BP'B'
Introducing

T = p'B MW and A =P'BM A
we obtain ‘

Vi =T -AX or T =KX + Vx (8.36)

This is an observation equations model and the answer to the minimization

of Vi PVx (and consequently of V' PV) is givenby V = T - XX where
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X = (AMPA)APT =
= (AMBPPPBEMAAMBPPPB MW -
= (ATM* Ay ATM'w , (3.37)
and
¥ = T-AX = P8 wMw-pPB MAZR =
4 T 1 $
= P*B M (W - AX) (3.38)

These are exactly the results we obtain through variational approaches as it
can be seen by a comparison with equations (123), (120) and (122) in

[Uotila, 1967, p. 5T7].

3.2.4 Probabilisitic Justification of Least Squares

"The philosophy of least squares techniques can be summarized as
follows: A w‘rector of n observables is a priori kmown to belong to a set of
vectors satisfying a certain mathematical model. The linearity of the model
leads to a linear subspace or hyperplane of R” as the set of vectors satisfy-
ing the model equations. We shall eall this set the "model space." When a
vector of n observations corresponding to the vector of n observables in
question is realized, it is in general found to be outside the model space
because of observational errors. It is only natural then to suggest as an
estimate of the observables an element of the model space which is as close
as possible to the observations vector. This approach incorporates the
anticipation of observational errors being small or at least not arbitrarily
large. What is more arbitrary is the introduction of a certain metric, which
depends on an arbitrary symmetric positive definite weight matrix P, through
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o(xy) = Ix-yl = y<xz-y,x-y> = {(x=y) B (x-3) IF

The above P-dependent inner product introduces a certain geometry and
turns R" into a Hilbert space Ls.

The selection of the estimate of the observables depends on the
metric, i.e., on the matrix P, and is therefore arbitrary to the extent
that P is arbitrary.

The question of metric optimality, i.e., of the selection of an
optimal weight matrix P, finds an answer when the observational errors
are modeled as random quantities with zero expectation and finite variance-
covariance matrix. We shall examine each particular least squares method

separately in this respect.

Observation equations, The model now becomes probabilistic. The

unknown observables L* € R" relate to the unknown parameters X € R" by
L* = AX where A is a known n X u matrix with rank (A) = u.

The actually-obtained (known) cbservations 1 relate to the unknown
observation errors V* by L’ =L*+ Vw, where V* is considered to be an
outcome (i.e., a value for some fixed W) of a random vector V(w) with zero
mean E {V} =0, and known covariance matrix E {vv'} =3, Accordingly,
1” is the outcome of a random vector L{w) =AX + V{w), with unknown

mean E {L} = AX + E{V} = AX, but known covariance matrix
E{@L - AX)L -A%)"} = E{vww'} = 8 (3.39)

The deterministic model related to outcomes of the relevant random

variables is
L® = AX +V® (3.40)

where Lm, A are known, and X, v® are unknown. This is the usual obser-
vation equation model, and minimization of (V®)' PV leads to an estimate
}A{p of X

X, = (ATPA) Atj I’ (3.41)



where the subscript P of X » denotes the dependence of the estimate on the

weight matrix P used. By letting w vary we obtain
Xp(@) = (ATPA) AT PL(w) (3.42)

so that X, = f("@ is the outcome of the corresponding random vector f{,,(w ).

fip (@) has umknown mean

1

E{Xe(w)} = (ATPAY*A"P E{L(0w)]} =

(ATPAY ATP AX = X (3.48)

but known covariance matrix

Qe = [(ATPA)'lATP] S [(ATPA)'lATP]T

= (ATPA)Y ATPSPA(ATPA) (3.44)
We say thatf(‘g is an unbiased estimate of X to denote that §;‘;’ is the outcome
of a random variable }Ai'p(w) whose expected value equals the true value of X,
A particular choice of weight matrix P = §* leads to an estimate
f(s of X, which is the ouicome (}A(s = }A(csu) of a-corresponding random vector
X (@) with
EfX @)} = X (3 .45)

and covariance matrix

Qs = (AT8'A)" ATs s 87 A (ATS*A) = (ATS'A)? (8.46)
it can be shown that
Qs = Qp for any qualifying P

in the sense that for two square matrices A and B, A 2 B if the matrix A~ B

is nonnegative definite, See, for example, [Deutsch, 1965, p. 62],
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If now q is a scalar parameter linearly related to X

q = Z d: X, = d' X (3.47)
i

we have the following estimates of g and their corresponding variances:

gr = a4 X»p of = d Qpd
(3.48)
&s = d j"fe. of = d’ Qs d
Since Qp - @ is nonnegative definite, we have that:
d"(Qe-Qs) d = 0
so that
d'Q,d 2 d'Qsd and o2 =2 o? (3.49)

This means that the choice of weight matrix P'=8 =E{VV'}leads to a
minimum variance estimate for any scalar linear fﬁnction of the parameter
vector X,

Another statistical property shared by any least squares estimate of

a linear function of X is unbiasedness

E{Xe(w)} = X (3.50)
E{ de(w)} = E{d Xe(w)} = dE{Ke(w)} = a% =
_8.51)
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Condition equations. The deterministic model

BV® = w® (3.52)

(B, w® known, V® unknown) refers to outcomes of corresponding random
vectors V(w), W{w). V(w) has zero mean E{V} = 0 and known covariance
matrix E{VV'} = 8. It follows that W(w) has zero mean E{w} = BE{V} =0
and known covariance matrix E{ww'} = BSB". For any choice of weight

matrix P = D%, the least squares estimate of v° ig

¥ = %2 = pB (BDBH) wW® (3.53)
Letting w vary, we obtain the related randomw vector

Viw) = DB" (B D B") W(w) (3.54)
with E { V(w) } = 0 and covariance matrix

E{ V) V(1= DB (BDB)BSB (BDB)'BD (3.55)

The vector W* is related to observations L” through w® =8BL? ana 1*
corresponds to unknown observables L by means of 1° = L* +V® where
BL* = 0. An estimate I.* of L* can be obtained by means of

P A ¥

£ = 1.9= Y- 9 (3.56)

The error of the estimate L~ is defined to be

A% * .
e = 5L - L = (L -v?)- (LY - {9 = §@ - y@ . @

(3.57)
The corresponding random variable e(w) = f](w) ~ V{w) has zero mean, and

its covariance maitrix Q, is easily found to be
Q. = DB (BDB')" BSB' (BDB")*'BD - DB"(BDB")*BS

- SB"(BDB")'BD + 8 (3.58)
"4 :



Using the matrix identity from [Liebelt, 1967, p. 30, equation (1-53})],

ACAT - BAT - ABT = (A-BCY Cc (aA-BcH' -BC'H
(3.59)

with A— DB' (BDB")}, C~ BSB'and B~ SB', we cbtain
Qs = [DBT(BDBT y* - 8B" (BSB' )‘1] (BsB")?
T T.,1
[DBT(BDBr - SBT(BSBT)'I} - SB"(BSB")*'BS + 8
(3.60)

Following the reasoning of [T.iehelt, 1967, Section 5-3, p. 139], Q. canbe
minimized in the sense that VQey 2 ¥ (minQ,)y forany y € R®, by a choice
of P guch that

DB (BDB')* - SB (BSB")* = 0 (3.61)
i.e., by choosing P = S'or D = P* =S. TFor this choice we have an estimate
of V:

P P ; w
¥ = ¥ = sB(BSB')' W (3.62)

and the minimum covariance matrix of the prediction error e(w) becomes

Q. = S-8SB (BSB)'BS ' (3.63)

Again the choice P = S™ related to the probabilistic structure of V justi-
fies the least squares solution as a minimum variance of prediction error

solution,
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Generalized least squares model. In this particular case the

introduction of probdbilistic reasoning oversimplifies the derivation of

the corresponding solution. The deterministic model is
w® = AX + BV® (3.64)

with the corresponding random vector V(W) having zero mean E fvli=o0
and known covariance matrix E {VV' }=8. By setting ¢ = BV, we obtain
a model identical fo the case of observation eguations

W = AX + &° (3.65)

where the corresponding random vector e(w ) has zero mean Efel} =
BE{V} = 0 and known covariance matrix E {ee'} = BSB' = M. The
minimum variance solution corresponds to the choice of weight matrix

P=M

~ s : : K w
£ = %% (ATMaA) ATM W =
E 3 3 w
= [A(BsSBNHY AP AT (BSB")* W (3.66)

This is exactly the solution of the original model

(3}
w¥ . A X + B YV

corresponding to the weight matrix choice P = 8%,

3.2,5 Weighted Parameters and Stochastic Processes

One particular case of least squares is when some or all of the
parameters are considered to be random quantities with known expectation

and covariance matrix, Inthe case of the generalized model we have

X

=2 % +BY-140G61| | +BV=2ax+05+8
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~~

with ' E{V} 0, EB{V V1) = oy

fl

E{'E } g, E{(S—g) (S"E)T} = Css

Il

seitings = § + s (E{s} = 0), we obtain

W - Gs = A X + [G B] (3.68)

W = A X + B YV (3.69)
with o
E{s}
E{V} = ~ = 0,
E{v]}
E{SST} E{S%T} Css Csy
E{vvii= =

E{Vs'} E{VV"} Cys Cuyv

This is exactly a simple generalized least squai'es model with minimum

variance solution

X = (AT M* Ay AT MPw, where M = B S B'
(3.70)

and correéponding covariance matrix
Cxx = (AT M“A)* (3.71)

Usually the additional assumption C,y = 0 holds, so that
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_ Css O G ~ ~
M =G B ] ;| = ac,,G"+ B Cvw B'
0 Cvv B'

(3.72)

and

A ~ ~ 1 ~ ~r

X = [A‘(Gc,, G'+ B Ccw BT)* A] AT (GCsa G+ BCywwB') W
(3.73)

In the particular case that B = G =1, and with some changes of notation

s~ S,s W=2X, V2n, Cu?Cyoo = C, Cw™ Cm = D,-C-: =C+D, we obtain

X = (ATCT'A)* ATC'x (3.74)
one of the results of Moritz {1972, p. 15, equation (2-35)], under an approach

which he calls "least squares collocation, ! in connection with the model

X = AX + 8 +n (3.75)

Equation (2-36) in Moritz [1872] can be similarly derived applying results
from classical least squares (minimum variance) methods, As fo the third

of the results (his equation (2-38)), we will have more to say in Section

3.3.
The case where all parameters are random reduces to the method

of condition equations

~ ~

W -A% +B8Y, E{s}=5s, E{V}= 0, =s=75-58,

E{s}=0, E{ss'}=Csm, E{VV'} = Cw
(3.76)
We rewrite the model as

W - A5 = A s+ BV = [ AB] (3.77)

or after some obvious change of notation
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E{s}

B V = W, with Eiv} = N = 0,
E{Vv}
(3.78)
) E{ss’"}] Ef{s V'} CGe: Cu
E{vv'] = ~ e = =
E{vs'} E{VYV'] Cv, Cv,

The solution is

V= | _|] = sB (BSB )W (3.79)
\

In the particular case that Czy = 0, we obtain

s Cow A" (AC,. AT+ BCow BTV W (3.80)

H

v Cw B (AC,, A"+ Bcoyw B! w (3.81)
Of particular interest is the simple case when A = B =1 (obgerving a set of

random quantities s under additive white noise n (V2 n)),

W=8+n
with solution

S = Cea(Coa + Cru)* W (3.82)

We shall return to this equation in Section 3,3, in a somewhat different
context.

‘ Up to now we have discussed random parameters without reference
to how they might arise in an actual real life situation. As we have seen,
unknown random parameters ’g with known expectation § and covariance
matrix can be reduced fo random parameters 8 with zero expectation and

known covariance matrix,

49



In a least squares context (with minimum variance justification of
the metric used), the distinction between zero mean random parameters s

and zero mean random observational errors V is strictly verbal!

The solution algorithms we .derived .are exactly based in this lack
of differentiation between the two. However, the distinction is very real
in the process of modeling a real life situation, i,e., in the process of
arriving through scientific reasoning to a least squares probabilistic model,
The reasoning behind modeling observational errors as random variables
with zero mean is too familiar to be repeated here, but the case of random
parameters needs some discussion., A linear least sguares model arises
when a set of observations corresponds to a set of observables known
(modeled) to be in a linear (ox properly linearized) functional relation to a
set of unknown parameters. Some (or even all) of these parameters may be
connected to some unknown underlying function (or a number of such functions)
with a certain domain T.

H the unknown function is modeled as a second-order stochastic
process (usually called signaly with known mean value function and (auto)-
covariance function,' we may reason as follows: The underlying stochastic
process is viewed as a mapping £: Q = &, where {2, 7§ P} is a probability
space and @ is the space of the sample functions of the process £ (t, ®w). The
connection of an unknown parameter s; to the underlying function is mathe-
matically provided by the concept of a functional with domain &, i.e., by a
mapping 15:®> R. If the composite mapping 1 o £: £~ R is measurable
with respect to the probability space {,7€, P}, then 3 = 1I{(€ (t, w)) is a
random variable. The whole set of such random variables forms a vector
'8; and if the mean and covariance matrix of § can be induced from the known
mean value function and covariance function of the stochastic process
£ (t, w), we have arrived at the models we considered at the beginning of
the section.

Of particular interest is the case when the space of sample functions
disa Hilbert space and the functionals 11 bolong to the dual space %, i.e.,
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the set of linear bounded (continuous) functional on ¢, We will have a chance

to return to this case later on for a more rigorous treaiment of the problem,

3.3 Linear Least Squares Prediction

In linear least squares adjustment (observation equations), ths
original estimation problem is mathematically modeled as linear best °
approximation problem. A known element of a space is best approximated
from the elements of 2 known subspace. However, _the known element to be
approximated does not appear explicitly in the solution (normal eguations).
Instead, only its inner product with the elements spanning the subspace of
approximation need to be known,

We have already exploited this fact in the case of condition equations:
where we have obtained the solution by best approximating an unknown
element V. from the elements of a subspace N. The additional condition
that V should belong to a certain hyperplane H provided us with the knowledge
of the values of the inner product between V and any of the spanning elements
in N,

Based upon this key observation, we shall now examine an estimation
techilique where an unknowq element is best approximated from the elements
of a known subspace, and the necessary information for the solution is con-
tained in the a priori knowledge of the inner product values between the
unknown element and the spanning elements of the subspace,

In the case of least squares adjustment techniques we started with a
deterministic solution based upon an arbitrary inner product (arbitrary
weight matrix), and finally the particular choice of a statistically meaningful
metric (choice of P* = E {VV'}) led to statistically meaningful results
(minimum variance solution). Here we shall follow an exactly reversed
path. We shall start with a statistically meaningful metric (inner product)
and a minimum variance solution to finally obtain a determinigtic gelution

with a corresponding weight matrix,
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Because of this duality (deterministic-probabilistic prediction), we
have chosen the title-"linear least squares prediction, " instead of the usual
""minimum variance or minimum mean square error prediction, " also follow-
ing the terminology in [Doob, 1953, Chapter 12] and in [Cramer and Lead-
better, 1967, Section 5, 7].

3.3.1 Probabilistic Approach (Minimum Variance or Minimum

Mean Square Error Prediction)

We shall first present the method in a somewhat abstract context,
and then proceed to show its connection to real life estimation problems.
The proper environment for our method is a space with elements
square integrable real valued random variables (i.e., random variables
€ (w) with E {l&;(w)lz} < @), If the random variables are defined on an
abstract probability space {Q,s€, P}, we shall denote this space of square
integrable random variables by L2 (§2, 4, P). This space canbe turned into

a Hilbert space by introducing the inner product
<x(W), yw)> = BE{x ) yw)} (3.83)

;ﬂz (82, #, P) can be shown to be a linear space and the correlation of two
elements can be easily shown to satisfy the defining prope rties of innex
product. It can also be shown that £2 (, ./, P) is a complete space (see
[McGarty, 1974, p. 136]) and consequently a Hilbert space.

_ Given a set of random variables xy(w)e Z% (0,4, P), i=1, 2, ...,
n, we denote their span by M C £2 (2,4, P). For any other random variable
oy(w) e L2 (§,s€, P), we want to find the best approximation fr(w) toy(w)

from M. The answer is well known to be
Jw) = Pyy@))

Since ¥ (@) € M, and if we further assume that the random variables x; ()

are linearly independent, there exists a unique set of constants a4, such that
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1]

¥ (@)

n

Z 2y x1 (W)

i=1

The constants a, are determined from the normal equations

<X3,X%X1 > < X1,X%Xg5 >

< Xps X1 > < Xz, Xz >

C Xpy X1 > < Xp,yX2 ”

In matrix notation

Cxx a = ny
where [Cuxlyy =
and [ Cyl:y =

Introducing the matrix notation

-

.

< X1y Xp >

<X2’X]1>

<Xp, Xp >

(Cyy is nzn,

(3.84)

am

(3.85)

C.y 18 nx1 ) (3.86)

E{ x,(w) x4(w) }

E{ x,(w) y(w) }

X = [X:L,XQ,...,Xn ]T

. we have
Cxx = E{i—T },
§ = Z a; Xy
. ~ T a
and y = €, Cyx
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(3.87)

(3. 88)

<xlay>

<Xz2,¥% >

*
.
.

< Xny ¥V >

-



Let us now examine how such a problem may arise in practice.
Suppose we cbserve the values of a function s(t) at certain points t;, I=1, 2,
..» 0, and we want to predict its value at some other point t,. The observa-
tions .and-the value :to be predicted. correspond to-functionals- on some function

space containing s(t) called evaluation functionals and of the form

17 (s) = s(ty) i=1,2,...,n
and (3.89)
s (8) = s(ts)

If the unknown function s(t) is modeled as a second-order stochastic process
s(t, w) (signal), then the evaluation functionals on the sample function space
define random variables ‘

¥ ) = s w) ' (3.90)

The observations x; are outcomes of the random variables stl (w). The
t
oufcome corresponding to s P(o.:) remains unknown and is approximated
. t
by the outcome corresponding to the projection of s ¥ (W) on M = span

{st:(w)}

¢ = E a, x, = a' x (3.91)

where a = C,, C, and §, = ¢l, c,, X

The elements of the matrices involved are

[Cuelss = E{ e (w) sM(w)l = =zttt
(3.92)
oty tp
[ Cup 14 = Ef s(w) 8F(w)}l = r(ty,t)



where r(t, s) is the correlation function of the stochastic process s(t, w). If
s(t, W) has zero mean, then r(t, s) is its covariance function. From a given
process with known mean value function, we can always construct one with
zero mean (see Section 2.4), and we will, therefore, assume that the
stochastic processes involved are zero mean, without loss of generality.

In the more general case, our model might involve not one hut a
number of second-order stochastic processes of known autocovariances and
cross-covariances (when correlated). The observations and prediction(s)
need not necessarily correspond to values of these processes at certain
points ty, t,. The only conditions on their nature is that the corresponding
fanctionals 1% on thé sample function space ® of the process induce mapping.s
log@: &> R (p: = @), which are measurable with respect to the probability
space {,s¢, P} (i.e., random variables) and also belong to Z> (¢, /€. P)
(L.e., they have finite variances).

The Hilbert space where the approximation of stP (W) from the sub-
space M takes place need not necessarily be £2 (Q,€, P). It can be replaced
by a Hilbert space £2 (s (t, w), t = T) with the same inner product and
defined as the completion of the space f(s (t, W), £t € T)ofall random
variables u(w) which may ‘be written in the form

k

u(w) = Z e, sti(w), ;€ R (3.74)

1=1

£? (s (t, W), t €T) contains all elements in Z(s (t, W), t ET) and the limits
of sequences of such elements, For more details, see [Parzen, 1959, p.
259].

Of particular interest is the case where one of the processes involved
x(t, w) has sample functions in some Hilbert space H, and any other process
y (t, W) has sample functions also in H, related to those of x(t, W) through

a bounded linear operator L:H~> H
vy o= L{x*} "  (3.95)
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Any bounded linear functional f"onHhas a represenfer f € H

e = <2, > ' (3.96)
i g* is a functional acting on ym (t), with representer g, then

g*0") = <y°, g> = <1, g> (3.97)

If we introduce an operator 1. called the adjoint of L. (see [Taylor, 1958,
Section 4.9, p. 249]) and satisfying

<Lx,y>=<x, L¥y> (3.98)
we obtain

g¥(y) = <Lx, g> = <x, L¥g> = <x, h> = h¥*(» (3.99)
where

n=1L* {g}

We need, therefore, deal only with the process x(t, w) and linear bounded
functionals £* € H*, the dual space of H.

3.3.2 Deterministic Approach (Collocation)

In this section we shall examine a deterministic prediction technique
introduced by Krarup [1969], in relation to the prediction of qpantities
related to the gravity field of the earth, and usually referred to as (exact)
collocation, We shall follow Tscherning [1973] with a little more emphasis
on ""geometry." ‘

Strictly speaking, collocation is a technique for finding a solution to
a differential equation with insufficient boundary data, The differential
equation admits an infinity of solutions and sufficient boundary data determine
a ﬁnique solution among all possible ones. Insufficient boundary data restrict:
the candidate solutions to fhose satisfying the boundary conditions. Colloca-
tion is then a technique for determining a solution whic}{ is the smoothest,

in some certain sense, among all solutions satisfying the boundai‘y conditions,
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Here we shall approach the problem without reference to any
differential equations. We shall simply assume that we observe the values
of bounded linear functionals on some unknown function f belonging to a

Hilbert space H, and we want to find an estimate f of f, such that

uut=?égwn (3.100)

where P is the set of functions in H satisfying the conditions imposed by
the observations.
Let the observations dy, i=1, 2, ..., n correspond to bounded

linear functionals 1y on H (lf< e H*) with representers i€ H
dy = ¥ (H = <f L > i=1,2 ...,n (3.101)

This set of equations can be directly identified as a restriction that f should
belong to a hyperplane P in H, which can alternatively be described as a
linear variety, with the help of the unique element go = 39M(f), for every

I EP (see Section 2,7, p. 25):

P={g g=g+g, g'eM} ' (3.102)
where

M = span{ly, i=1,2, ..., n}

The situation is now similar to the case of condition equations in linear least
squares adjustment, and the element fp € P with minimum norm is provided
by

Jo =Py () : (3.103)

where g is any element in P (see Figure 3.3). Since f, & M, we have

£, = E: a, 1, (3.104)

i=1

and the coefficients a; are provided by the normal equations:
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Figure 3.3 The Geometry of Collocation
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— - - _ - S
<11,11> <11312> ‘.- <1111n> ay <11’g> dl
<12,11> <}.2,12> vee <]'B’1n> ag ‘ <12,g‘> dg
<lu, 11> <1,,1lz> ... <l,,1,> a, <l.,g> dp

(3.105)
or, in matrix notation,
C a = 4, with C,, = <l,,1;> (3.106)

If the representers 1 are linearly independent, then C is nonsingular

and

a = ¢* g

(3.107)

We have, therefore, estimated the unknown function f by its projection on

‘the "data sp'ace, " i.e., the space generated by the representers of the

functionals corresponding to the available data,

We are next interested in estimating the value of some other

possibly different bounded linear functional lf on f. Hs true value is

d = 15 (0) = <f, 1, >
We can obtain an estimate usingthe estimate foof f

dp = 15 (fo) = <fo, Ip >

The error of prediction is

dp“ap = <f, 1> - <f, > =<{-1h >

Since fEP and fo €EP, we have thatf - fp € M. ¥ we decompose
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lp = ].p M + ].p M+ (3 . 111)
where '
IPM = BDM (]-P) an.d IPM.L = MJ-

wg obtain, taking intoaccountthat also fc € M,

dp = dp

<f-fo, lenw +lpyr > =

<f-fo,lpn > + <f1lppe > - <fo,1pp.> =

*
<f,1pma > = ].pM-l.(f)

i.e., only the part of 1, in M* contributes to the error. If e =0, i.e.,
1, &€ M, then dy -~ dp = 0, Especially when 1, =1, then obviously 1, € M,

and

di - di = < f-’fo,ll > = 0 (3,113)

We have, therefore, recovered the original observations, i.e., the approxi-
mation fo obtains the values chserved. This justifies the name collocation
as in the case of a differential equation solution.

An alternative way to look upon the estimate is the following

dp = <fg,1p> = <fy,lpyt dlpye > = <fg,lpn > + <f5,lpya> =
= <f0’1PM > = <f0"f+f, ]‘-PM > =
= -<f-f5, > + <L, lpy> = <f,lpy >
Hence
- *
de = < f,1lpy > = Ipy(f) (3.114)
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This means that the prediction corresponds to the true value of a functional

I:M with representer (see Figure 3.4)
= .11
Iy = 77, (1) (8.115)

o
Since fo = £ aili, we have for. the prediction
1=1

dp = <f5,1, > = <Z 3111s19>=2 ay <ly,1lp> =
' 1
B n
<l;,1; >
= [ a1 a2 ... a,] : = a'' C, = Cla=¢C, c'd
<l.,,1, >
- S (3.116)
where
[ Ce s = <1y, 1p>

To apply the method one must obviously know how to compute inner

products between elements of the Hilbert space. Furthermore, the function
f to be approximated is usually known to belong to a linear space which
becomes a Hilbert space only after the introduction of an inner product,
The choice of inmmer product is generally not unique and the same original
linear space may give rise to different Hilbert space, different geometries,
and, congequently, different choices of approximations fo to the original
function f,

The problem of inner product choice remains open in a similar way

as with the problem of choosing a weight matrix in the case of deterministic
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Figure 3.4 The Geometry of Collocation from an Alternative
Point of View
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linear least squares adjustment. Again the answer will be found by intro-
ducing probabilistic reasoning to justify metric (inner product) optimality.
We shall consider this problem in the next section where a link between the
probabilis:tic approach (minimum variance prediction) and the deterministic
approach (collocation) will be established. Before we do this we need fo
introduce the concept of a reproducing kernel in a Hilbert- space,
Let # be a Hilbert space of functions f: 'T 2 R. A function

k: T X T R is said fo be a reproducing kernel k(t, s) for H if
(a) kt(s) EHiforeveryte T (kt(s) = k(t, 8) denoteé the mapping kt: T R

for fixed t) .
b)) f(s) = <i, k° > for every s € T and every f € H (reproducing property).

It can easily be shown that k(t, s) is symmetric, i.e., k(t, 8) = k(s, 1).
TFor a Hilbert space H to have a reproducing kernel, it is necessary and

sufficient that the linear functionals (evaluation functionals)
1 = £ for every f EH andt €T

are bounded, i.e., 1:‘ e H". (See [Aronszajn, 1950] and also [Lauritzen,
1973, Chapter 4]).

Ifest), n=1, 2, ... is an orthonormal basis for H, then

k(t,s) = Z en(t) en(s) (8.117)
n=1

We shall next apply the concept of a reproducing kernel to two particular
cases of colIs:Jcation.

Case A: All functionals 1;", 1?‘ involved are evaluation funcpionals
* *
1,(£) = £(ty), 1, (£) = £(tp) (3.118)

The representer 1(s) of any functional 1€ H" is related to the reproducing

kernel by means of
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* 5
1(s) = 1 (k") (3.119)

For a proof, see [Shapiro, 1971, theorem 6.2.4.1, p. 85]. In particular,

for evaluation functionals we have

. .
Ii(s) = 1,(k°) = k°(ty) = kti(s) (3.120)

1t follows that, in view of the reproducing property and the symmetry

of k(t, s)

t t t
<1ly,1;> = <k k?P> = kN(ty) = k(iy,ty) (3.121)

and, similarly,
<ly,1,> = k{t;,t,) (3.122)

i.e., the elements of the matrices C, C; are obtaincd by evaluating the

reproducing kernel at the corresponding points

Cyy = k(tistj)s [Crly = k(ty,tp) (3.123)

Case B: The functionals lf, 1:‘ involved are of the form

* * .
1,(f) = (Lf) o (£) = (L)

(ty)° (tp)

for some bounded linear operator 1.: H~> H,
Let_ff, T,’f denote the evaluation functionals of the previous case.
Then ‘

gLt
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® -
1y(f) = <Lf 1, > = <fiL 1,> (3.124)

where we have made use of the definition of the adjoint operator L” of L.

It follows that 1:' has representer

*

. ~% *
I, = L I, = 1. T,0k%) = 1 x*

(3.125)

Malking use of the definition of the adjoint and the reproduciﬁg propertiy,

we obtain :

*® * ‘ *
<1,1,> = <L kLM s = < kM RN > -

(LL k') - (1L x)

- (ty) (£y.ty)
(3.126)
In a similar way ; '
*

<1l,,1, > = (LL k) (3.127)

(ty, 1)

(L L* k is a shorthand notation for L [L:k k(t, s)], where subscripts of

operators denote the variable on which the operators act.)

The elements of the matrices C and C; are obtained by applying the
operator on the reproducing kernel, according to a "law of propagation of
the reproducing kernel, The similarity to the law of propagation of
covariance functions of stochastic processes under linear transformations

provides a "hint" fo a stronger connection to be revealed in the next section.

oy

P
FEAP

3.3.3 Relation Between Probabilistic Approach and Collocation

In the two previous sections, we examined two ways of modeling and
golving the problem of prediction of quantities related to an unknown function
from cbservations related to the same function. At a first glance the two

66



approaches seem radically different. In the probabilistic approach, the
unknown function is modeled as a second-order stochastic process s(t, w)
and tﬁe predictioﬁ problem becomes an approximation problem in the Hilbert
space ;(f‘ (s (t, w3y, t €T C;f;z '(Q,d@-, P). In the deterministic approach,
the unknown function is modeled as an unknown element f(t) of a Hilbert
space H of functions x: T R, and the prediction is dominated by the metric
Induced by the inner product in H. Knowledge of the structure of the
unknown function (e.g., continuity, differentiability) usually gives rise to a
number of different inmer product choices and, consequently, different
Hilbert spaces H where the prediction takes place.

The problemh of inner product choice is equivalent to the problem of
covariance function choice in the probabilistic approach. It will be shown
here how a connection between a certain covariance function and a corres-
ponding inner product may reveal the equivalence of the two approaches,
Our main tools for this purpose are going to be the Moore~Aronszajn~Loeve
theorem and the Karhunen-Loeve expansion of stochastiec processes,

The Karhunen-Loeve expansion is usually given for intervals of the
real line, i.e., for stochastic processes £ (t, w), t € T with T =[a, b] C R.
A formal exposition can be found in [Papoulis, 1965, p. 457], and a more
rigorous treatment with an exposition of the conditions £(t, @) must satisty
for the expansion fo hold can be found in [Gikhman and Skorokhod, 1969,

p. 188]. We éhall give here a more general exposition of the Karhunen-Ioeve
expansion, without restrictions on the speeific nature of T, for the casc
where £ (t, W) has sample functions in a Hilbert space and can be viewed as

a Hilbert-valued random variable. We sha_tll follow [Lauritzen, 1978,

Chapter 6] and [Rozanov, 1968, Chapter I, Section 3] with a minor shift of
emphasis from the dual space H™ to the Hilbert space H itself, and without
introducing the reétrﬁction of § (t, w) being Gaussian,

A second-order stochastic process €(t, w) (£: T X 2 R) with
sample functions £°(t) in a Hilbert space Il of functions x; T = R can be
alternatively viewed as a Hilbert space-valued random variable £: Q- 11,
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Assuming without loss of generality that E {& (t, w) } =0, the covariance
function of £ (t, w) is a mapping r: TXT > R, defined as r(t, s) = E {gt ¢° 1.

Now, if we view g(t, w) as a Hilbert-valued random variable, we have

* W * W
c(t,s) = E{1,(E ) 1,(& )} (3.128)
where 17, 1¥ € H* are evaluation functionals

1:( (x) = x(t) foreveryx & H

% - i '
Let Hy C H™ denote the set of all evaluation functionals in H* and define a

mapping Rr*: H:‘ X H-’,""’ R as

%k * *
R (1,,1,) = r(ts) (3:129)

This mapping can be extended to the whole H” (R*: H* x H*- R) by
setting )
% ok % * X . * ok *
R (1,1, ) = E{ 1,(E£7) 1,(&7) } for every 1,,1; € H
(3.130)
Since each 1* € H* has a unique representer 1 € H, we can define a mapping

B:HXH= R as

~ . E I
R (ly,1,;) = R (1,,1,) foreveryly, , €H
(8.131)

R’ can be represented by an operator A:u->H by means of

R(l,,1;) = <R, 15> (3.132)
H

Such a bounded linear operator has the following properties:

(a) & is symmetric (self adjoint):

*
<Axy> = E{x (£%) €9 = E{y (&Y x (¥} -

<Ry, x

il

> = < X, ﬁy b (3.133)
H H
(See [Taylor, 1958, p. 324].}



(b) R: is positive (or positive semidefinite, or nonnegative), since it is
symmetric and

=2
[x*(gw)] ! > 0  for every x €H.
: (3.134)

<WX,X> = E
H

{See [Dunford and Schwartz, 1963, p. 906].)

{c) 32 is a Hilbert-Schmidt cperator. TFor a definition of the term, see
[Dunford and Schwartz, 1963, p. 1010]. A proof that@ is Hilbert-
Schmidt is given in [Grenander, 1963, p. 129'], based upon corollary 3,
p. 1011 of [Dunford and Schwartz, 1963].

(d) 32, is compact (completely continuous). For a definition of the term,
see [Taylor, 1958, p. 274} or [Kolmogorov and Fomin, 1970, p. 239].
This property follows directly from the fact that% is Hilberi-Schmidt
(see [Dunford and Schwartz, 1963, p. 1012, theorem 6]).

(e) ﬁ, has finite trace, i.e., if {e, } is a complete orthonormal sequence in

- H [Grenander,- 1963, p. 129]:

Y <Res,0.> = 3 Ell<en¥>171 = BLIETIY <-
n n (3.135)

where £ is restricted to the class of second-order Hilbert space-valued

random variables satisfying the last inequality.

Such linear bounded operators which are symmetric, positive, and
have finite frace are called S-operators in the relevant literature [Prokhorov,
1956, p. 172; Bharucha-Reid, 1972, p. 48; Grenander, 1963, p., 129;
Parthasarathy, 1967, p. 154],

Since ﬁ is symmetric and compact, we have the followihg theorem
based on corollary on p. 251 of [Kolmogorov and Fomin, 1970] (see also

[Taylor, 1958, p. 336, theorem 6.4~B; and Bharucha-Reid, 1972, p. 48]):

Theorem: %has a sequence of cigenfunctions [en} with corresponding eigen-
values {X, ], suchthat {e } is a complete orthonormal sequence
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in H, and

Rx = Ap <X,e, > e, for every x € H
n n H

2 : ' (3.136)

It follows from property (e) above that

3 <Re,, en> = Y < A €ys ey > = ¥ A (3.137)
a n n

and
A, 0

Since 32 is positive, we also have

<Re,,ep> = <A, €,,8,> = A, =2 0 (3.138)
H H

We shall refer to 32 from now on as the “covariance operator" of £,
Strictly speaking, @ as defined here is "'correlation operator,! and becomes a

covariance operator under the assumption that m =E {£ } = 4§, where the mean

element m € H of éj'is defined by means of

*
x(m) = E{ x*(g“’) } for every X*E H*(3-139)

If m ##, we can introduce a covariance operator & by means of

*
<f‘3x,Y>H = E{x (£Y-m) y*(éw—m) , xy€EH
(3.140)

The representer 1; of the evaluation functional

i (x) = x(t), x €H,

has a Fourier expansion in H

69



| Z e, (t) e, (3.141)

n

since for every x &€ H we have

*
1,(x)

<X51t> = < X, Een(t) £, > =
H R

(3.142)

]
A
™
(2]
=}
v
(o]
=
=
]
>
=

Applying the above theorem (equation (3-136)), we obtain

ﬁlt = Z An <1tsen>H €n = Z An €a(t) ey

(3.1483)

K follows that

br(t,s)

n

<3’°Z1t,1,>H = < Z Aneg(t) e, 3 ea(s) e >

H

T A oea(t) ea(s) < e,,ex>

20 20 haoen(t) ea(s) 8ua = 3 A, e,(t) e.(s)
o » (3.144)

Since ﬂis positive we have A, 2 0, and setting A, = 0> we obtain

r(t,s) = ) 0n e,(t) e,(s) (8.145)

n
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For any fixed w, Em € H and has a Fourier expansion

is called the Karhunen-Loeve expansion of & (£, w).
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w w
E = Z < g s €y >H €a = Z gn(w) e, (3-146)
n n
The functional d (f-,'m) = £, (w) has representerd, = e, since
~ *
<€,en>H = £, = du(&) . (8.147)
and, therefore,
E{ gn(w) gu(w) } = < ﬁ:)fen, €a >}-| (3.148)
Since e, is an eigenfunction of ﬁ, we have
Hew = Ay &g ‘ (3.149)
and consequently
E{‘Ei 53} = <)L181,65>H= )"‘1 <ei,e_d> = 0'? 613
H
(3.150)
The expansion
E(t, @) = D Eu(w) en(t) (3.151)
n
"with mutually orthogonal coefficients
E{&, &) = 0 for i7] (8.152)
and
E{EL Y = X = of (3.153)



We can now restrict ourselves to the study of positive definite

covariance operators 2?, such that
<Z’?x,x>u > 0 for everyx e Handx # 8

Indeed, if % is simply nonnegative, the Hilbert space-valued random

variable £ can be written in the form

£ = & + & (8.154)
where
s = Z En en (3.155)
n, Ay>0
and
s = Z €. en (3.156)
n, A =0

It can eagily be shown that
) .
E{ x(£¥) y (9} = E{x(£%) y(£9) ) (3.157)

This means that £ and £, are indistinguishable with respect to their second
moments, relevant to prediction problems and that £ can be replaced by £, .
We can also replace the original Hilbert space H with a new Hilbert space
H', being the span of the cigenfunctions e, of ZQ corresponding to.gtrictly
positive eigenvalues X, > 0, The new covariance operator #’ of &, is the
restriction of # in H and is positive definite. With this in mind, we shall
assume from now on that % is positive definite and A, = O'ﬁ > 0.

From the Moore-Aronszajn-Loeve theorem [Parzen, 1961, p. 965],
we know that the covariance function r(t, s) generates a unique Hilbert
spaé:e H(k) of which k(t, s) = r{t, s} is the reproducing kernel,

We shall next determine the structure (inner product) of H(k) and
its relation to the Hilbert space H.
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If €, is an orthonormal system in H(k) and since k(t, s) is the

reproducing kernel, we must have

k(t,s) = > 0% e,(t) ea(s) = D c,(t) €u(s) (3.158)

n

We can therefore obtain an orthonormal system in H({k) by setting

€y = Upep n=1, 2, ... (3.159)

~Let {, g € H have Fourier expansions

£ = z:<f,e,,>[.l en=Z'-fnen, ‘_g=Zgnen
T oon n

50 that
<f,g > = Z f, g, (3.160)
n
If, in addition, f, g € H(k), we have

<f,g > = < i, e 8y > =
’ H{k) ? n ns % Bx Oy H (k)

1

4
, EZ fn gk < On €ps Ox Gk > =
1k H({¥)

= YT olod fuomk b = 3 030 £, g, (3.161)
o k

n

We have thus established a definition of inner product for elements of

H(k) that also belong to H
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< = -2 < > 3.162
fg 2, 0 <fhes> <pe,>  (3.162)

n
We will next show that minimum variance (probabilistic) prediction in the
sense-of-Section 3. 3.1 is -equivalentto deterministic prediction in a Hilbert
space in the sense of Section 3.3.2. In both cases the prediction is given

as a linear combination of the vector of observations d, of the form
d, = Cclc*d (3.163)

The difference is that in the probabilistic approach

X o K W ‘ X w- ¥ ow
Cyy = E{1,(E)1,(E )3, [Cely = E{Li(& ) 1e(E) 3
{3.164)
where lf, 13k are observation functionals and 1: the prediction functional,
while in the deterministic approach
Cyy = <ly, 1y > [ Crly = <f1:TP >; (3.165)
H
where_li, _13, ip are the representers of the lf s 1;", 1:‘ functlionals in some
Hilbert space H.
If H is taken to be the Hilbert space H(k) with reproducing kernel
the covariance function r(t, s) of the stochastic process £(t, w) involved
in the probabilistic approach, it will be shown that
* % w - -
R{15(e%) 1) 1 - <1, 1, (3.160
and consequently the results of both prediction approaches are identical!
To establish the above equality, let x, y e H* be two arbitrary

functionals in H' with representers x, y in H and X, ¥ in H(k), defined

as
X*(f) = < f,x > = <f,x* > (3.167)
H H (k)
*
y(f) = <{f,y » = < f, y* > (3.168)
H



for every f € H and also for f € H(k).
Let the Fourier expansions of f, x, vy, X' , ¥ inH (assuming xk,
yk € H also) be

f=‘anen, X=ZXn'en, y = ZYn €n s
n n n
x"=Zx‘,§en, y< = Zyﬁen
n n

Then, using the definition of inner product in H¢k), we have

— L - k
D o D f, x, = <f,x =y 2. 9% L x1 (3.169)
n

and similarly
D faya = D 07 fayi (3.170)
n a

It follows that
% = 0% Xa, i = Ay _ (8.171)

and, consequently,

<xz,y" > = 3o xiyi = D 0 (olxa)(oRya) =
R{x)
n

n

> 0% x V. . (3.172)
a

On the other hand,



E{x(t¥) y(£9)} - E{ <¢

E{ ( S%néa) ( Ty ) ¥
n k .

22 X2 Ve E{E, &} = 3, %n Y oF Onp =

D 0 x, v, _ (3.173)
" \

The desired equalif':y follows directly:

*® *k " " g
E{x (&) y(&)} = < x",y >0 > 0% x, Y.
k
n (3.174)
Let I* denote the space of square summable sequences f, fz, ...,
with l
Z £2 < o : (3.175)
n=1

Then P is isometric to the original Hilbert space II, by the Riesz- Fischer

theorem [Kolmogorov and Fomin, 1970, p. 153].

The space Izk of sequences fy, fz, ... with
Z g2 fﬁ < ® (3.176)
n= 1

is isometric to the Hilbert space H(K).
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Let us formally consider sequences as infinite vectors

Pt M faeee 1T, g = [ E1Ba e 1T (3.270)

" and also the infinite dimensional matrix P with p, = 05

= . (3.178)

We can now formally write the inner products in H and H(k) as

<f,g> = g' f , <f,g> = g' P f
H . : H{k)
(3.179)

This establishes a sort of analogy with inner products in finite dimensional
_spaces appearing m linear least squares adjustment techniques. An
arbitrary choice of P gives a "weighted least squares" deterministic
solution, An optimal choice can be made whén probai)ilistic reasoning is
used and P is taken to he the inverse of an infinite dimensional matrix §
with elements Siy = 0% 0. § can be identified as the covariance matrix

of the infinite vector

£ = [&, &, ... T

of the Fourier coefficients of the corresponding stochastic process

E(t, w)

S = g{¢ &) (3.180)
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3.4 Minimum Error Bound Prediction

As shown in the prev‘ious section, collocation solutions become
probabilistically meaningful when the inner produect is linked to the known
covariance function of the stochastic process serving as a model of the
underlying unknown function. In case such a probabilistic reasoning is not
justified, or even when we just have no knowledge of the covariance function,
a prediction can still be carried out with a more or less arbitrary choice of

‘inner product, cgrresponding to a "model éovariance function,'" The resuli-
ing variance of the prediction error is only a "model variance' and should
not be used in drawing statistical inferences on the prediction, When
probabilistic reasoning does apply and the true covariance function is
known, then the pfediétion error variance answers the question: "How
good is the prediction? In a strictly deterministic context, a similar
answer must be found if the prediction is 1o be of any use at all. We ghall
try to answer this question here. .

" In a deterministic solution we cannot use variances (even though
""model variances" can be computed), but a coﬂcept believed to be more
legitimate is that of a bound of the prediction error. The error certainly
remains unknown. in general, but we mﬁ be able to ascertain that it does
not exceed a certain bOl.i):’ld in absolute value,

. I:et us first see what a "model variance' of the prediction error
corresponds to. Probabilistic prediction using a model covariance function
k{t, s) corresponds to deterministic prediction (collocation) in a Hilbert
space H(k) with k(t, s) as its reproducing kernel. The model variance of

the prediction error ¢, = 1y (g"’ y - i;k (Em) is given by

~ %
02 = E{ [1,(£) -1, (1 ] (3.181)

where 1: is the functional corresponding to the prediction and 1p* ig its
projection on the data space M~ (the span of the functiondls corresponding
to the observations),
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As we have already established in the previous section

& = E{[Ls(E®)-1,(E°) P } = <1p-'ip,1p-ip>m= 1, -1, 2
(3.182)

where 1p, 1, are the representers of I;f , 1Fin H(k).

1

Suppose that in general we are given a set of observations corres-
ponding to functionals 17 .on an unknown deterministic element & € H(k), with
representers 1y in H(k); and we want to predict the value of a functional 1: with

representer 1; in H{k). Knowledge of the values of the observations

d = 1@ = <6l - (3.183)
H(x) .

allows us to find the projection &g ofg on the data space M = span s i=1,
2, ..., 1), i xtis an arbltrary functlonal with representer X, we cannot

in general compute x* (&) except when XEM. In this case, using the

decomp031t10n
E = & * &, EcEM, £ eEeMT  (3.18)
we obtain '
X' = <&, x> = 0 (3.185)
H(k)
since &' L x, and i ) :
() = ¥ G+ &) = x¥ (o) (3.186)

We can compute x* (£o0), since £ois known.
This leads us to seek a functional x™ with representer x in M, so that

we can compute
Cod = xME) - {8.187)

as an approximation 'to the true but unknown value
*
d = 1p (£) (3.188)

TFor any x € M, the predicilion error is
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ES *
€ = dodp = 1(E) - x(8) = <Ly,E> - <x €3 0=
C <loxE s (3.189)
Hik}

Using the Schwarz inequality [Davis, 1963, p. 159], we obtain
L6 7= I <t Foe fL-x i Lol @00

and

el < ro-xh el @.19)

We have thus found a bound for the absolute value of the error of prediction.
An obvious criterion of prediction optimality is to try to make this bound as
small as possible. £ is unknown but fixed and consequently || £ ||« is fixed. It

remains to minimize || I, - x [, i.e., to find an element ¥ €M, which satisfies

[1o-x 0 = min J1,-x |, (3.192)
XEM ——

The solution is well known to be

£ =1, = BDM(l,,) (3.193)

This choice differs only in motivation from the collocation approach where £
is approximated by o = &, (€), and then the value of any functional 12‘(;‘ ) is
approximated by I:f (5c). This follows from the fact already established in

Section 3.3.2, i.e.,
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*
Le(£0) = <1y Py8)> = < Pylle), & > =

<E 1, > = L(E) (3.194)
H{x) .-

This approach explains why and in what sense the approximation £pto £
provides optimal estimates If {§0) of quantities 1: ©). ‘The optimality‘

criterion is minimization of the error bound

1o - Tl NET

If in some way it is possible to obtain a bound for the norm of £

J€lx s My | (3.195)
and computing

0% = |1, - ipf|% : (3.196)
we have a bound )

[ep] < my = 0p Mk S . (3.197)

When, therefore, a "model covariance function is used, the computed "model
variances' of prediction errors must be multiplied By the number Mf to obtain ‘
the square of the bound for the absolute value of the pfediction error,

Obviously My depends on the inner product in H(k) and consequently on
the used model covariance k(t, s). .

! We shall call‘Mk the "covariance model error bound number " We

shall later return to the problem of finding M, in the case of predlctions
' related to the gravity field of the éarth.,
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3.5 Kalman-Bucy Filiering

A linear filter is a transformation I, of functions x, y: T R, T CR,

with two properties: linearity,
Liox+8y} = evn{x}+8L{y} (3.198)
and "time" invariance, if

yty = (Lx), and

® (3.199)
() =x(t+7T) = (UTx)(t)
then

y = Lx¥ = LU x = Uy = U_Lx (3.200)

and LU T = UTL, i.e., the filter commutes with the "shift" transformation
U_.
T

We shall consider here linear filters having a time domain repre-

sentation in the form of a convolution integral

4+ co

y(t) = (LX)(t) = f h(u) x(t-u) du (3.201)

-0

The filter is completely determined by the kernel h(u), called the impulse
respons e function of the filier,

Linear filters m-ay also be formally considered to transform stochastic
processes x(t, @), y(t, W). A more rigorous discussion of some particular
filters will be undertaken in Chapter 5. In the following discussion, we
consider only stochastic processes; and we can therefore suppress the
variable w without danger of confusion,

Given an observed outcome of a stochastic px:ocess y(t) related to an
unknown stochastic process x(t) to be estimated, the filtering problem is to
Llind an impulse response function h(u), such that the output of the related

filter with inpul y(t)
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+

X(t) = (Ly)(t) = f h(u) y(t~u) du - (3.202)

-

best approximates the signal x(t), in-the sense of minimizing

E {[x(t) - 2(t)FF } for every tE€T., (3.203)

Since the observed function y(t) cannot be known for future values, we must
restrict the admissible impulse response functions to those with h(u) = 0 for
u < 0, for the related filter to be physically realiza:ble.

For weakly stationary processes x(t), y(t), with

E{ y(t) y(t+7) } hyy (T)
(3.204)

E{ %(t) y(t+7) 1 = Py (7)
the answer to the minimization of E { [x(f) - % (t)]°} is given by the Wiener-

Hopf equation
o

bey(T) = f h(s) YPyy{(T-8) ds . (3.205)
; )

The concept of a process y(t) continuously observed over all its past history
is glearly a mathematical idealization. Consider instead a vector yof a

finite number of observations
yi = y(ti) .i=1,2; ...,n - : (3.206)

and the estimation of the value of x(t) at a certain epoch tp, Xp = R(ts). The

filter equation
Xp f h(u) y(tp-u) du ' © o (8.207)
0

»
o
i
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should be replaced by a summation

Rp = z}h(tpw,)y(m = % h,y, = h'y  (3.209)
1 . 1

In a similar fashion, the Wiener-Hopf équation shoufd be replaced by

Day(tp —ty) = 7_1: hite =ty)  Pyy(ty-ty) (3.209)
or in matrix notation

Cyy h = C,, , (3.210)

where
[Cyylyy = yy (ty-ty) = E__{ y(ty) y(ty) }
_ (3.211)
[Cyxls = day(te-ty) = E{y(ty) x(tp) }
and finally
£, = Cf Ch ¥ | (3.212)

This is exactly the formula for linear least squares (minimum variance)
prediction., We can consider the filtering problem and the Wiener-Hopf
equation as a generalization of minimum variance prediction for continuous
observations.

) Wiener [1949] and Kolmogorov solved in the early 1940's the problem
of filter“ing a signal additively corrupted by noise, under the agsumptions of
staﬁonarity, ergodicity, and knowledge of the entire past of the obs‘erved
process . Wiener's results were expressed in the frequency domain and
could not be direcily extended to the nonstationary case. The work of
Kalman and Bucy extended Wiener's results to the nonstationary case and
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a process observed over a finite time interval only [Kalman, 1960; Kalman
and Bucy, 1961].
Kalman and Bucy considered the vector procéss to be estimated to be

the state x(t) of a dynamical system described by a iinear differential equation

dx(t)

= F(t) x(t) + G(t) u(t), . x{t,)= %,

dt, (3.213)

and an observed process

L(t) = H(E) x(t) + v(b) (3.214)

where u(t) and v{t) are white noise zero mean stochasﬁic processes with

covariance mairices

E{u(t) u(s)} = Q(t) 68(t-s)
E{v(t) vI(s)} = R(t) 6(t-s) (3.215)
= 0

E{ u(t) vi(s)}

whére 0 (t ~ s) is the Dirac delta function, X, is a random vector with

E{x,}=m,, E{(x,-m,)(x,~m,) }=Q,, E{x,vi(s)}=0.
(3.216)

The solution of the filtering problem X(t) is the minimum variance estimate
of x(t) based upon the observed process z(t) over the interval [t,, {] and is
given by the solution of the following differential eqitation. (The most
_compact notation %, F¢, etc. is introduced in place of x(t), F{t), ... .}
LT = By Xe + Ky (24 - H, ?Eg.) ‘ X(t,)) = m,

(3.217)
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where

Ky = Py HI Ry , Py = E{(x,-%,) (Xe-%4)7] (3.218)

~and the error covariance matrix P is the-solution of

dp,
a T
—~ = F,P,+P,F - P,Hy Ry H, P, + G, Q¢ Gy, P, = Q,.

dt (3.219)

The continuous observations case is hardly of any interest in geodetic
problems where observations are discrete and finite in number. With further
reference to [Bucy and Joseph, 1968; and Sage and Melsa, 1871] for more

details, we turn our attention to the case of discrete observations,

y(ty) = H(ty) x(t4) + vy, =,2,..,n5 Ef{viv,"} = R, 6y .
(3.220)

A solution for minimum variance estimates X (1) of x(t:) can be obtained with
the use of least squares adjustment techniques, if the means and covariances
of the random variables x(t;) were known. Estimates ﬁ(t) for epochs other
than the observation epochs t; can be obtained from X(t;) by least squares
prediction techniques if the mean and the covariance function of the signal
x(t) were known. The required first~ and second-order statistics of x(t)
can be obtained from those of u(t) and x,. The solut-ion to the state differ-

ential equation

dXt
— = F. Xy + Gy uy (3.221)
dt
is of the form
t
Xy = Q(tsto) X, *+ f @(t’g) Gg ug dE .
o t, h (3.222)
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The definition of the above integral raises some problems that we shall
examine in Section 5.2, @ (t, s) is the state transition matrix obtained

by sclving the differential equation

a

3 B(bt) = F(t) &(t,t) , B(tgy,t,) = 1 (3.223)

and using the transition property

&(t,t,) = &(t,s) B(s,to) (3.224)

The reguired mean and covariance functions are

‘my = E{x¢} = @(tt,) m, ' (3. 225)

Cix(tys) = E{(xe-my) (X,-m,)'} =
min{t, s)
= ®(t,to) Q, BT(S,t0) + f@(t,a) G, Q, GTg &' (s,£) d&
to (3.226)

Suhe a global approach (in the; sense of processing all observations together)
shows the relation to least squares techniques but has great computational
disadvantages due to the necessity of inverting large matrices, The alterna-
tive is a sequential solution where X (t;| ti), the minimum variance estimate
of x(t;) based upon past observations y(t;) ( =1, 2, ..., i), is obtained from
the similarly defined estimate X (ts-1 | ti—1). It is possible to obtain a global
solution for X (t; | ;-:1) using observations up to epoch iy only, and a similar
global solution for X (t1-y | ti-1), and then show the relation between the two.
However, this involves an enormous algebraic effort, aﬁd it is much easier
to derive directly the one-step solution for obtaining X (t; | t1) from X (fy-1 |

ty-1).
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First a discrete state model can be obtained

X.1+1 = @(itl,i) xy *+ Wi (3.227)
by setting
X = x(t) (8.228)
@@, j) = ®(t, t;), and (3.229)
ty
wy = / ®(ty, £) G(§) u(f) dE . (3.230)
tiaa

wy is a white sequence withE {w,} = 0 and E {w, w} } = @ 615 where

ti
Q = [ D(t,, £) G(£) Q(E) G'(&) @T(ty,8) dE .

LFEH (3.231)

A somewhat more general discrete state model is of the form

Xypy = D(i+1,1) x;, + Ty Wy ) (3.232)

£(@+1| i+1) = X (twe1| tiss) canbe obtained from X (i| i), the covari-

ance matrix P(i] i) of the error in X (i i), and the observation
Virr = Hyn XtV (3.233)

with the help of the following algorithm (Jazwinski, 1970, p. 270]:
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R(i+1]i) = ®(i+1,1) x(ili)

P(i+1]i) = &(i+1,1) P(ili) @ (i+1,1) + Ty Quur Ty

. . T 1 T 2
Ky = P(i+1[1) Hypy [ Hysy P(1]1) Hygy + Ryyy ]

B(i+1]i+1) = R(+1]4) + Ky [ Yoaa - Hewn ®(1+1]10) ]
P(i+1|i+1) = [ I - K4y Hye ] P(+1]1) =

- N T
= [I-Ky4 Hyg] P(l"‘lli) [I-Ky1 Hi-ﬂ.]T + K1 Ry Kys

(3.234)

We shall next derive this algorithm with the use of the least squares
adjustment' (condition equations) technique, ’

‘ Consider that an a priori unbiased estimate X, of x3 is available,
and C; is the a priori known covariance matrix of the error }é; - X;. An
a priori unbiased estimate Xi+1 of X431 and the a priori covariance matrix

Cis1 Of the error 80Xy = Xy+1 - X4 Can be obtained by simple propagation,

X = ®(1+1,1) x, _
_ (3.235)
Cr1 = ®(itli) C, O (+L,) + Ty @ Ty ..

The observation equations can be rewritten in the form

- 0X g4y
Lisr @ Vs " Hysa Xyg1 = Hypqg X9y +vygy = [Hyyy 1]

Vitl

(3.236)
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where 1141 is known and 0 xi,.4 has zero mean and covariance Cy1. Our model
is of the condition equationtype BV = W (see Section 3.2, 2) and the

weight matrix of the zero mean vector

0X 44 Cis1 0

V= is P = . (3.237)

Ve 0 Ryss

The solution is of the form

"~

v = P'B "MW (3.238)

with M = BP'B'. Applying this to our case, we obtain

T
M= [Hg I = Hyyy Coeg Higy + Ry

L (3.239)

o (3.240) -

Setting Kyv1 = Ci+1 His1 M*, we obtain

5§1+1 = Kypy lyta = Ky ((Vger - Hyyg ;‘1+1 )
' (3.241)

A e . - ~ - —
X(i+1,itl) = X4 + 0Xysq1 T Xyp1 + Ky (Va1 - Hagy Xysy) =

H

Kisi ¥Yysqg + (I - K4y Hypq ) i1+1 (3.242)
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The covariance of yi+1 if Ry 1, and by simple propagation the covariance of

the error inx (i +1 | i+ 1) becomes
ol 1
P(i+1li+1) = Kyu1 Rysq Kig +

.
+ [ I~ Kpa Hig ] Cuyr [ - Kyyqg Hyn
(3.243)

Tdentifying %;, Xis, Ci, Cesz with X(i] 1), X(i +1] 1), P(i] i) and P + 11 i),
respectively, the algorithm follows directly.

This solves the filtering problem of finding an estimate % (i [1) of x4
based upon past observations only. After X (n|n) is obtained, the estimates
X (il i) must be updated for the effect of future observations yi+1, Yi+o .. .»
¥a to obtain X (ijn). This is the smoothing problem, and finding i(t] n) for
any other epoch t is the prediction problem. Refer to [Liebelt, 1967,
Section 6-8] for smoothing glgorithmé .

Our main point here has been to show that for the case of discrete

observations Kalman-Bucy filtering techniqués are equivalent to the familiar

least squares (minimum variance) adjustment methods.
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4. DETERMINISTIC AND STOCHASTIC MODELS OF
: ‘GEODETIC PROCESSES

4.1 Iniroductory Remarks

Physical processes related to geodetic work can be loosely divided
into three categories. The first two correspond fo the traditional objectives
of geodetic research: Determination of the gravitational field -and the shape

of the earth.

1

" The first category thus includes the gravity field of the earth and
processes that result from transformations of the gravity field such as
gravity anomalies, geoid undulations, etc. '

The second category includes processes related to changes of the -
earth's gec;metric shape with time (station drifts, earth tides, etc.)as
well as to changes of the earth's position in inertial space (precession-
nutation, polar motion, variations in rotational velocity, etc.). We shall
coliectively call such processes "earth motion processés. " By similarity
one might include in.this category processes related to the motion of other
celestial bodies (lunar theory and librations, planetary motions, etc.)
which might be involved in geodetic work.

The third category includes 'noise processes, ' i.e., processes which
although of nc; direct interest (to the peodesist at least) still appear in experi-
ments directed towards the delermination of geodetic parameters and processes.
Having in mind current techniques for obtaining geodetic déta, we might
mention atmospheric refraction, nongravitational accelerations acting on
artificial satellites, and, of course, observational noises associated with the
observing instruments themselves,

The role that modeling of physical processes plays in the estimation of

geodetic parameters ig direcily proportional to the accuracy of the available
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observational techqiques. In the presence of large observational inaccuracies,
simple models, or even complete omission of the effect of the-process, may
be of no significant consequence on data analysis. In fact, advances in obser-
vational accuracy made possible the discovery or identification of processes
whose existence had been pyeestablished by theory.

Recent advances in observational techniques necessitate the use of
more sophisticated models if the objective of a "centimeter level geodesy' is
to be reaiized.

Among models for processes which appear to be of critical importance
in view of present day observational techniques, we shall outline here the two
which we consider most-important--the gralvity field and the rotation of the
earth.

4.2 The Gravity Field of the Earth
4.2.1 The Model

The gravity field of the earth is ugually divided into two parts: a
reference field (normal gravity potential) and the gilomalous or disturbing
potential, The disturbing potential T is known to belong to the class of
functions harmonic outside the surface of the earth and regular at infinity
(disregarding or including the effect of the atmosphere in the reference field).

It is also‘known' from Runge's theorem (see [Krarup, 1969]j that T may
be approximated arbitrarily well, in a certain sense, from members of the
class of functions harmonic outside a sphere contained in the earth's interior
(Bjerhammar sphere), and also regular at infinity. Such functions may be

expanded into a series of spherical harmonics

f(P) = Z Z fo €un (P) (4.1)

n=0 DS=-1

where
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n+l N cos]mlkp mz 0
R n- !
€ (P) = (r—P-) ‘/2(211‘!'1) (n+ o )! Pn]m] (COS Bp)

( sin |m| Ap m< 0
4.2)
where rp, Ap, 8, are the spherical coordinates of the point P, R is the radius
of the Bjerhammar sphere, and P,;(cos 8) are associated Legendre polynomials,

In view of the relation

1
e fenm (P) exa (P) dop = Ope Omy (4.3)

Sr
(Sr denotes the surface of the sphere of radius R), we can consider a Hilbert

space of potentials H, with inner product

1
< > = .
f, g o | f® g@) doy, £, g€H (4.4)

Sa
and with e,y (n =0, 1, ...; m=-n, ..., -1, 0, I, ..., n)as an orthonormal
basis. (For a more rigorous discussion see [Lauritzen, 1973, Chapter 2].)

Two functions with Fourier expansions —

f{(P) =E‘ fap € (P) ~ and g(P) =Z Enm €nn (P) (4.5)

. Dsym n, n

have inner product
o n
<f,g> = E E fan Bow (4.6)
n=0 fO=—1

In view of Dirichlet's principle [Heiskanen and Moritz, 1967, p. 18], we can
consider the restrictions of potentials on the surface of the Bjerhammar

sphere, constituting a Hilbert space H with the above inner product.



The disturbing potential T(P) can now he modeled as a random field
T(P, w) with sample functions g (P) in H or, alternatively, as a Hilbert-
valued random variable with values in H. The Fourier coefficients Tun of

the expansion of T in H are random variables

© n

TP, w) = E E Tous (W) eny (P) 4.7
n=0 m==n
An additional restriction is that T(P, w) should be a statistically homogenous
(isotropic) random field, i.e., that for any set of points Pg,- i=1, 2, ..., k,
the joint probability distribution of the random variables T (P, W) is identical

to that of the random variables T(Q:, W), where

T = MT 4.8
T Qu P (2-8)
T T
QTP
sentation of any rotation on the sphere (MMT =1, detM =1). Obukhov [1947]

are position vectors of points Q4, Pi, and M is a matrix repre-

has shown that for the random field T(P, w) to be isotropic, we must have
E{TwTul = of 84 6 (4.9)

This implies that the admissible covariance functions for isotropy are those
represented by a covariance operator &: H > H, having e,» (P) as its eigen-

functions and with corresponding eigenvalues G,,zm independent of m
Kew (P) = 02 enn (P) (4.10)

Any appropriate sequence of "coefficient variances" 0‘,21 ‘(i. e,., such that
T(P, w) is a second-order random field) defines a corresponding covariance

function

(P, Q) =Z Of Z €nn (P) €nn (Q) =E 0',12 (‘n+1) (COSi‘bpq)
n n " (4.13)
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HP, Q) = D o Pacosbe) = 1) (¢.12)
We have-used here the-addition formula for spherical harmonics [Milller, 1966,
p. 10], and we have introduced the "degree variances' ¢, [Heiskanen and
Moritz, 1967, p. 257]. Prq is the angular distance of the two points P and Q.
Lauritzen {1973] has proved that such a random field, under ‘the
restriction of Gaussianity, is not ergodic; and therefore its covariance
function cannot be found through sampling by taking averages over the sphere.
In his words [p. 80]:
This means that, even if we knew gravity all over the
earth, we would not be able to find the true value of the
covariance function. ... Somehow the problem is not
suited for statistical treatment.
However,' one can. still use a "model covariance' r({P, Q) and interpret the
algorithm as deterministic prediction (collocation) in a Hilbert space H(k)
with r{P, Q) as its reproducing kernel. We have already shown how such
an approach can be motivated from a "minimum error bound' point of vi(;w.
The application of this concept to prediction problems-related to the gravity
field of the earth leads to criteria for the optimality of the model covariance
function and thus opens the way for the solution of the very important

problem of the choice of norm (inner product) for the Hilbert space H(k) of

potentials.

4.2.2 Application of Minimum Error Bound Prediction in Gravimetric

Geodesy and the Optimum Norm Choice Problem

Suppose that we want to predict some quantity related to the earth's
disturbing potential T from observations also related to T. We shall
symbolically denote this problem by the triplet @, p, k) where D stands for
the set of observation functionals, p for the prediction functional, and k for

the covariance-reproducing kernel of the Hilbert space II(k) in which the
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prediction is faking place, The solution algorithm leads to a model variance
o of the prediction error. We have found that the prediction error is

bounded by
le] = o Tl (4.13)

where || T |lx is the norm of T in H(k)

I [ Z o T, @ey

n,n
Twn are the coefficients of the Fourier expansion of T not in H(k) but in the
Hilbert space H with orthonormal basis e,n. 02 are the coefficients in the

expansion of'the reproducing kernel of H{k) (model covariance function)

r(P, Q) = k(P, Q) “—"Z 0% en(P) @n(@Q) = Z 02 (2n+1) Py(cos Ppy)
o n n . (¢.15)

If we could find a bound for each coefficient
|Tow| € B o (4.16)

then a bound My of || T [l can be found:

IT = i =) ol (.17
Ry & ’
A proper place to look for bounds of the potential coefficients is the density
function P of the mass of the earth which, in the fir_st place, gives rigse to
the potential itself.
This has already been.done by Cholshevnikov [1965 and 1968], The
bounds refer to the total harmonic potential of the earth:

o n
V@) =Z 2 Voo Can (@) (4.18)
n=0

n=-n
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In our notation these bounds are (see also [Payne, 1973]):

4:17 G’pmx amax n+l

Vo al| < 87 GPasx faw\™  [tn-m)! m>0  (4.20)
l Vn,-ml (Il+1) \‘211"‘1 B (n+m) !

where Pryx is the maximum density of the earth, G is the constant of gravita-

tion, R is the radius of the Bjerhammar sphere, and ag. is the maximum
distance of the earth surface from the geocenter. Cholshevnikov also gives
hounds better than those above which, however, depend on the maximum
variation of density with longitude (A), V), maxs and with colatitude (8),

Vi, mx (t=cos 8) as follows:

1 1
nl

24G22T M (2Vt, max * Poax) (a)

| Vao| = (4.21)

@n+1) (n+1) \(@n+1) (n-1) R

Vae Il 8Gmam e\ fmem)
| Vay=n | \2n+1 m+l) m \ R (n+m)!
(4.22)

Using the known coefficients of the harmonic part of the reference potential,
we can compute bounds for every coefficient T,,, find the bound M of the

disturbing potential norm,.and finally the bound of the prediction error
le] = me = o M, (4.28)

This bound is independent of the observations and neglects the information

about T contained in the data

dg = <mT, 113 i=1,2, ..., n (4.24)

(i)

To take this information into account we decompose T as
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r = Bamy + Gy = To+ T (4.25)

where M ié the span of the observation functionals (data space) and Mt its
orthogonal complement in H(k).

"The prediction error now is

m
i

<1 -1, To+T'> = <E_T, T'> 4.26)
He) H(x)

ko Ok
since Iz - 1§ L To; and

el = <B~T, > f S IR-Bl Ik = ol T @.2m

where 1‘; is the representer of the prediction in H({k), and 1‘; is its projection
on the data space M. This is a better bound, since from the Pythagorean

theorem
It = BTl +] 'K and T[ < [T | (4.28)

The new bound for the prediction error becomes

le] = m = cr\’ME - | To | : (4.29)

The error bound, of course, depends on the choice of kernel in H(k), i.e.,

on the choice of a model covariance function.

—If I; and k; are two kernels giving rise to two error bounds
my > My,s We say that kernel k; is better than kernel ke for
predicting a certain quantity from a certain data set if my,
< my.,.
We have thus found a tool for comparing kernels, and the definition of the
optimal reproducing kernel (or optimal inner product or optimal model
covariance function) follows directly:
—We say that a kernel kg is the best kernel for predicting a
certain quantity from a cerfain set of data if the corresponding
error bound mgp satisfies

mo{D, P, ko) = min wm(@D, p, k) (4.30)
ke ™K
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where m(D, p, k) denotes the dependence of the error bound on the obser-
vations D, the prediction p, and the kernel k. ¥ denotes the class of all
"permissible' kernels. The class X is difficult to define. An obvious
necessary condition on memnbeérs 6f J¢ is that the corresponding bound of
the disturbing potential norm is finite

oo

M2 =E oo E Bpg < @ (4.31)
n=0

m~=-1n

It is more reasonable io lock for tt;e optimal kernel in a class of kernels
convenient for computations., Such kernels must be given by closed expres-
sions rather than by an infinite sequence o>, One could even try to find 2
closed expression including a finite number of parameters, such that the
family of kernels corresponding to different sets of parameter values is
"broad" enough in some sense. Then the opfimal sel of parameilers could
be found as the one giving the smaller prediction error bound. However,

the dependence of the bound on the kernel is guite complex:

X
3

m®, p, k) = o, o k) (MK - | @O, k]l (4.82)

where M® depends on the kernel, || To |? on the kernel and the observations,

and ¢ on kernel, observations, and prediction. More specifically

o> = Co-Ci C*Cy Co = <If, 15 > (4.33)
H (k)
with
Coyy = <L, > , ¢y = <K &> 4,34
(Ceht o o= 13 i 1y " ( )

where 15, 1% are the representers of the observation and prediction

functionals in H(k). We also have

n

Ta = E a, 1‘{ (4.35)

i=1

where the coefficients a, are found from the solution of the normal agquations

(sce Scetion 3.3, 2)
100


http:Za~l~(4.35

a = Cc'd (4.36)

It follows that

n
[Tl = E agjy <1, > =a'Ca = d'c’d (s

n
i=1 j=1

The final equation for the prediction error bound is

Ly
m = {Co-CsC"Cp j® Z 037 Bm - d C*d : (4.38)
Ty B

Anothér point to be made is that one is usually inferested not in one but in a
number of predictions, and the idea of applying a different optimal kernel for
each particﬁlar prediction is not appealing, in view of the computational effort
involved. In this case, one might instead introduce a rigk function, e¢.g., a
nonnegative function L{m) of the vector of prédiction error bounds m, with
the following properties [Jazwinsgki, 1970, p. 147]: L(0) = 0, L{w) = L{uz)
= 0for|w | = |uz|, where|u]| = ' u)%. The optimal kernel may now be
defined as the one minimizing the rigk function rather than any of each
individual bounds.

The objective of our discussion here has been not to give any final
answers, but rather to provide guidelines and motivation for more work on
the question of norm optimality in gravimetric collocation. An interesting
and motivating discussion on this problem can be found in [Eeg and Krarup,
1975, especially Section 5].

Our approach is novel and, what is more important, completely
independent of any probabilistic reasoning. The ffndings of Lauritzen
(nonergodicity)‘stand in support of a purely deterministic approach such
as ours and have actually motivated ocur work. Our criterion of prediction
accuracy {error bound m) shares the same nice asymp:cotic behavior with
probabilistic techniques: If the prediction functional approaches the data

space M (in the sense that 15 - ¥ (%) [l @ 0), then the variance of the
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prediction error tends to zero (02 < (), and also m = 0 since ¢ is one of the
product terms in m.

In 2 probabilistic technique, the variance ¢® is independent of the
actual outcomés of the observations' It only depends on what we have
observed and what we want to predict. In our approach m depends on the
outcomes of the observations through || To]|, the norm of the known component
of the potential T (its projection on the data space), The closer T is to the
data space, the larger | Tol|l becomes, and the smaller the bound m of the
prediction error. The main defect of our approach is the neglect of t};e
effect of observational noise. An cxtension lis obviously needed, either ina
determiﬁistic sense inlroducing bounds for tpe ocbservational errors too, or

by means of some combination of deterministic and probabilistic concepts.

4,3 The Rotation of the Earth

4.3.1 Choice of Reference Frame and Pérameterization

of Earth Rotation

In this Section we are concerned with the modeling of the motion of the
earth with respect to an inertinl sysiem within the framework of classical
mechanics. Depending on the type of available observations, the inertial
system is realized with the help of the dynamics of the solar system, the
stars {taking care of proper motions), or extragalactic radio sources, The
motion of the earth can be mathematically described by an infinite set of
functions

Xa®), Yi(d), Zi(h)

for all points i of the earth with inertial coordinates Xi, Yi, Zi. In reality
only the motion of points on the surface of the earth is directly observable,
and _practical reasons confine us to a finite system of points i=1, 2, ...,
n (nef:work stations). The vector valued function

X)) = KaYr ZyXo Ya Za ... Xy Yo Zal' (1) (4.39)
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giyes the statp of the point network for each epoch t and provides a descrip—fi
tion of its motion. :
Aﬁy arbitrary time dependent transformation matrix M(t) (i.e., sucI!1
that M(t) M' (t) = Iand det M(t) = 1 for every t), together with a vector
valued functiong(t), de%ines a new moving reférence framex, y, z. The

coordinates of the network points in the new system are given by

x] <,
y1 =Mt {| Y| + O (4.40)
“Jy %] )

c_)r
Tty = M(t) {Ret) + 6(1) ) (4.41)

We can group aii possible such frames into classes through the following -
definition: Two given reference frames defined by
My (5 (Rt + 61 ()}
Ma(t) {R(t) + G2 () }

T1(t)
Ta(t)

(4.42)

are said to be equivalent or rigidly connected if there exists a constant

transformation matrix M;; and a constant vector 815 such that
Te(t) = M {Tu(t) + 61z} ‘ | (4.43)

If the earth, or just the network of poinis in question, were rigid, it
wotlld have been possible to find a class of equivalent reference frames guch
‘that the coordinates of the points with respect to any of them would be time
'independent. For a nonrigid network, a reasonable choice is a class of
equivalent frames such that the relative motions of the points are minimized

in some certain sense, for exaniple,

_ Lt ‘ .
2 2 2
E ( f d(g—xt—’) +(-§%’1) +(g-§i) dt) = min  (4.44)
1
t :
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We can, furthermore, eliminate translatory motions by moving the
origin of the inertial frame to the geocenter, taking into account the corres-
ponding effects on the observations (e.g., secular and annual aberration,
annual parallactic displacement, relativistic effects). We can also identify
a particular frame from the optimal class with a frame of the same class with
origin at the geocenter and axes parallel to the former. By identification here
we simply mean that the rotation of both systems are described by the same
set of parameters, and we can therefore take advantage of the simplifications
in the equations of rotation when referred to a geocentric frame.

Alternative choices for a frame fixed, or rather attached, to a net-
work of points on the earth can be based on physically meaningful geometric
characteristics of the earth such as the geocenter and the principal axes of
inertia. Such choices become relevant only when available observations are
sensitive to such a physically appealing choice of frame as, for example, in
the case of satellite observations in orbits governed by the gravity field of
the earth. It is well known [Heiskanen and Moritz, 1967, p. 62] that the
geocenter and principal axes of inertia are connected to the first—- and second-
degree spherical harmonic coefficients in the expansion of the attraction
potential of the earth.

Even for strictly geometric observations involving both "earth"
points and "inertial" points (stars, quasars, points on the moon, etc.), the
directions of the principal axes of inertia appear implicitly in the equations
of the motion of the earth, However, the little sensitivity of present observa-
tions to such natural geomeiric characteristics of the earth and the uncertainty
present in the relevant equations of motion seem to justify the use of an
"arbitrary! frame, especially since relative motions of network points can
now be estimated to a comparatively high degree of accuracy.

The problem of connection between an arbitrary frame and a physically
meaningful one can be treated separately when sufficient observations for this

purpose are available,
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Our choice of an arbitrary "earth-fixed" frame from a properly
defined optimal class of equivalent frames (more precisely its geocentric
parallel from the same class) coincides with the concept of "'geographic
axes, ' "attached in a prescribed way to the observatories,' as discussed in
[Munk and MacDonald, 1960, p. 11],

The rotational time dependent transfox‘-ma;tion between the arbitrary-
geographic geocentric frame-and the quasi-inertial geocentric frame can be
described with the help of three parameters defining the transformation
matrix M{t). Among possible choices, a traditional one ig that of the Eulerian

angles ©, 6, P [Goldstein, 1950, p. 107]
M{E) = Rae@®(t)) Ra(@ (1)) Ra (@ (L)) ) {4¢.45)

where Ry, Rs are rotation matrices about the x and z axes respectively,

and M(t) transforms inertial into earth-fixed vectors as follows

Xy . X4
¥i = DM(t) | Yy (4.46)
Zg Z{

®) (t)

4.3.2 The Dynamics of the Rofation of the Earth, The Liouville
Equation

The instantaneous rotation vector of the earth with respect to the
earth-fixed system is connected to the Eulerian angles through the geometric

Euler's equations [MacMillan, 1960, p. 185]

W sin B sin ¥ cos 0 ®
Wzl = |sin 6 cosdh  -~sind 0 ) (4.47)
Wa cos 6 0 1 l,b
or
w=-s_ % . S _. @ g = [ 0 P 4.48
85yt 5% © ] _ (4.48)



The rotational motion of the earth is governed by the Liouville
equation [Munk and MacDonald, 1960, p. 9]

E{ew% * ol TP {C B TS T Ty @9
where
0 —ws W
fwA] = | wa 0 - .50
Wy Wy 0
and :
. A -F -E I-yz + 22 ~Xy -XZ
c = |-F B -D{| = f Xy & +28 -y dm
-E -D C carth | X2 -y7 X -*—y2
(4.51)

is the matrix of moments (A, B, C) and products (D, E, T} of inertia

(matrix representation of the inertia fensor Cyj).

h o= [ [?A]gfdm (T=[xyz]") (4.52)
e:;trth

is the relative angular momentum vector, and L is the vector of torques
exeried on the earth,

Replacing @ from Euler's geometric equations into the Liouville
equation, we obtain the following second-order nonlinear differential

equation

s . . l; e - —
85T {ed g, E8gy o B+ (8500 ] {858 +
+E} = T (4.53)

To find an analytical solution e " to the above deterministic equation for known

- ®
C(t), h(t), L(t) and initial conditions e(to), e(fo) appears to be an impossible

task without the help of some gimplifying npproximations,
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We can write Liouville's equation symbolically as
Liewy} = Tw _ (4.54)

" where Z stands for the relevant differential operator-. In reality, the
functions C(t), h(t), L(t) are only partially known, and they should be rather
modeled as stochastic functions C (£, @), h(t, w), L(t, w). Liouville's

equation now becomes a random equation
Loy oty 3 = T, w) (4.55)

where 7{&0)) is a random operator, (See [Bharucha-Reid, 1972, p. 71] for

relevant definition and discussion.) The proper mathematical theory for the

treatment of such a random equation is probabilistic functional analysis,

The solution is a stochastic process €(t, w) whose distribution depends on

the (possibly random) initial conditions &(to), 'é'(to) and the distributions of the

random functions C(t, ®), h(t, @), L{t, w). The introduction of probabilistic

concepts can only increase the difficulties in solving the above equation,
Alternatively, if we set ¥(t) =[e(i) "é'(t)]T, we can rewrite the Liouville

equation in the form

€
dy(t) _
dt - - - - - -
-(©8)* {1e§ + 818 + B + (88)A (C 85 +F) + T
(4.56)
or shortly
dy(t e
qO - FFm, v (4.57)
The stochastic analogue of this differential eguation is
d¥t: ©) - F(5@, wy, t, @) | (4.58)

dt

Upon integration we obtain a random nonlinear intogral equation of the

Volterra type [Bharucha-Reid, 1972, p. 1871:
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t

Vs ) = y(to, @) + f‘f’"ﬁ(s, w), s, ) ds (4.59)
to

Because of the complexity of the function f, both the stochastic differential
equation and its integral counterpart fall outside the types extensively
studied by mathematicians. We shall therefore have to introduce some
linearization giving rise to a sufficiently accurate approximate equation of
a simpler form. 7To do this we need to introduce a more convenient set of

parameters than €, G des cribing the rotational state of the earth,

, 4.3.3 Alternative Parameterization of the Rotation-of the Earth

In view of Euler's geometric equations, an alternative set of state
parameters is (&' ©' 1. The rotation vector @ can be transformed into the
same vector ﬁI with réspect to the inertial frame, with the help of the

fransformation
ﬁI(t) = Ra(P () Ru(B(t)) Ra(@ () W(t) = R (e(t) D (t) (4.60)

We can now introduce an alternative parameterization which conforms to

the traditional separation of the earth's rotation into three parts:

(#) Variation of the direction of the vector ﬁI with respect to the inertial
frame (precession-nutation).

(b) Variation of the direction of the vector @ with respect to the earth-
fixed frame (polar motion).

{c) Variation in the magnitude of the rotation vector, i.e., variation in the

angular velocity of the rotation of the earth (length-of-day variations).

The matrix M(t} of transformation from the inertial to the earth~fixed system

can be written in the form
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t

L CoL W )
M® = Rz (—fanl;i) R (tan \fal_l_za—w:s;) Rs (@o +f Q (1) dT)

fo

, 2 . n
Ry (~tan® —————=) Rp|tan’ _ (4.61)
‘/QH+\QI2 13

This representation differs from the classical one [Mueller, 1969]:

y.[_(t) = Rz (-Xe) Ri(-¥¢) Ra(GAST) Ri (-€ —AG) Ra(—Ai,b) Ra(¢€)
Rs (-2) Re'(8) Ra (-Lo) ' (4.62)

by the fact that no differentiation is made between precession and nutation,‘
and the Rs part in the precession-nutation transformation has been included
into the initial epoch angle &g of the diurnal rotation.

The earth-fixed system can be chosen to be sufficiently close to the
~ instantaneous rotation axis (at least for quite a long time interval where

secular polar motion causes no problem) so that

2@ _ Wi - EJ..}..
tan . ©a 0
) (4.63)
tanl Wa = Wz = -C_J.)_g = %
2 3 2, 2 03 Q
le +{Wg le'l'wa
where
_— — s
Q =llwl = Jo;ll = @i+wi+awd)® (4.64)-

The same approximation is not valid for 51 because of its variation with

respect to the inertial frame.

Lard

Y, 7 connected to the

inertial one X, Y, Z through the precession-nl._ltation theory transformation

Introducing a new geocentric moving frame ?(,
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X X
Y| = Ru(-€-A¢€) Ro(-BY) Ri(€) Ra(-2) Re(8) Ro(-Lo) |Y| =
Z |z
X
= Nt P{) |Y (4.65)
YA

the rotation vector £ with respect fo %, “‘f, 7 is near the 7 axis . With the

help of the same approximations as for @, we obtain

t

. g, 0
M) = Q (%’%2) Ra (@0 +fQ(s) ds) Q' (—ﬁ}", 'ﬁg) Nty P(t)

o

(4.66)
where for small angles p, g

1 1] P
QP, @) = Re(-p) Rafg) = {0 1 g (4.67)

P a4 1

4.3.4 The Linearized Liouville Equation

Since the rotation vector ® is close to the z axis, it can be approxi-
mated to the first order by a vector Wo = [0 0 £231', where §2; is an
approximate constant reference value for the angular velocity of rotation

£2(t). We can introduce a vector T of small quantities defined as

0
W) = Wt 0w | 0 | + Sgm () (4.68)
Qg (

In a similar way, the inertia tensor (matrix) can be approximated by a

constant matrix
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Co =10 A O (4.69)

and a small correction matrix c(t) can be defined as
CH = Co* c(h (4.70)

Munk and MacDonald [1960, p. 38, Section 6.1] show that with the help of the
above approximations and neglecting terms of products and squares of the
small dimensionless quantities ¢y;/C, my, and hy/ (Q;; C), the Liouville equa-

tion can be written in the following linearized form:

0 -1 0 O-0z(1)
WE) = 0|1 0 OfmE) +t |-0.o()| = o-PE(W) + T (1)
0 0 0 D3 (t)
: (4.71)
_C-A . . . 2T
where g, = {1 is the Eulerian frequency (period Pl 10 months)
r
and
Or Pz AM( Qrem - cia + by - Qe hy + Qg Ly)
—f.* = -0 @2 = A.l(-'\QR Ciz - égg - hl - O’Rl ﬁz + Qi-il LE) =
s c( - & - Qite + QF Lo)
= Co {Qgg‘é-i«:+gﬁ—§2§ﬁ+9§'ﬂ] (4.72)

* with© = [c1z Cos Cmal'. [

|
Matrix notation is more convenient for computations, but we will aliso

use complex notation for its analytical advantages. In complex notation, the

first two of the Liouville equations become

iZ 4+ o= P 4.78)
Ty

with
fﬁ = my +.im3
L . (4.74)
‘p <pl (pg 111



Setting'f‘* =¥ + ifs, we have & = é—?* and
Iy

M= io. @+ TF (4.75)

We shall call T* the total excitation function in discrepancy with Munk and
MacDonald who call @ the excitation function.

Of primary importance is the part of the excitation function t, due to
the rotational deformation of the carth. Rotational deformation gives rise to

the following changes in the products of inertia:

) ; k
Ciz = (C-A)%Hu = AQq o o
' ‘ (4.76)
3 k
e = AQy Or I M2
4

where k is one of the Love numbers and k the corresponding "fluid' Love
number [Munk and MacDonald, 1960, Chapter 5]. Using these product of

inertia changes, we obtain the excitation due to rotational deformation

ms
- k k —
= —— - - -— 0' S
fo O |~ o B (4.77)
’ 0

Setting = 'f‘;, +t, where T is the remaining, or simply the excitation,

function, we obtain

m = 0P - o )_lj_"fn‘+1"_ (4.78)
m = GPW +f (4.79)

where 0o = O: (1 - k/k;) is the Chandler frequency (period -i—’-r ~ 14 months).
~ o
In complex notation we have, affer setting f = f +if,,
e ~ L
m = jOom+ f (4.80)

The solution of the above equation with f = 0 gives rise to a circular motion
of the rotation axis with frequency o, (Chandler wobblo). To explain the
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broadening of the spectral peak corresponding to the Chandler frequency, it
has been suggested that the earth should he regarded as a damped linear
oscillator tuned to the Chandler fz-'equency and irregularly excited [ Rochester,
1970, p. 9].

To account for damping, a new linear term can be added to the

linearized Liouville equation

W = Gog‘ﬁi'-%gfn"-s-? ' . (4.81)
with '
1 0 0
D =(0o 1 o : (4.82)
0 0 o

where T is the relaxation time associated with the damping, In complex
notation we can introduce the concept of a complex frequency G¢ =0y + 1/T

to obtain [Smylie et al., 1973, p. 395],

m o= i0em +f (4.83)

4.3.5 Solution of the Linearized Liouville Equation

We are concerned here with the solution of the'linearized Liouville

equation without damping
M) = GeP ™ (t) + I (Y (4.84)
The last of the above three equations has the obvious solution

t

ma(t) = ma(to +f fs (s) ds {4.85)
to

while the first two can be written in complex form -
m@E) = icom() + £(t) (4.86)
with general solution [Munk and MacDonald, 1960, p. 46, equation (6. 7.1)]
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t
@ = e @, +ff(1') ar (4.87)

— 0
Setting t = to and solving for fiip, we obtain
to .
S = o Wty - f e 9T gryar - (4.88)
—3C

Setting this value in the general solution, we have
. t
~ i0o(t-to) ~ i -
m(t) = e o (t~to) m (to) +f ot G0 (= 7) f(m)y dT (4.89)

to

Separating real and imaginary parts and combining with the solution for
ma (t) into matrix notation, we finally have
t
() = Rs[-Oo (t ~to)] T (ta) + f Re [-0o (t~T)] £(T) dT (4.90)

to

It is well known [McGarty, 1974, Section 2. 2] that the solution to a linear

differential equation

ED - awxm + v (4.91)
is of the form
t
x(ty = ®(t, to x({bo) +j ¢, 1 y(mar (4.92)
to

where @ (t, s), called the state transition matrix, is the solution of the

differential equation
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4
dt

n

@ (t, o) Aty @ (t, to) (4.93)

with initial condition @ (to, to) = I, the identity matrix.
In our case it is easy to show that
@, s) = Ral[-Oo(t-s)] (4.94),
Differentiating with respect to £, we obtain

L o, t) = & Ral-0o (t-to)] = 0o R Rs [-0o (t-to)] (4.95)

and also the initial condition is satisfied, since

B(t,t) = Ra[To(t-t)] = Rsz(©) = I (4.96)
for any t. Ra [-0c (t-s)] also satisfies the trans-itionl proberf;y

@ (t1, ta) Btes ta) = Ral-Oo(ta-tz)] Ra[-00 (t2-ts)] =

= Ra[-Oo(ti-fette-ta)] = Rs [Oo(-ta)] = L(t, o) (4.97)

and the property

i}

@ (¢, s) Ra[-Oo(t-s)] = Ral[-0o (s:—t)] =

@, t) .= O (t, 8) (4.98)

1l

4.3.6 Stochastic Solutions of the Linearized Liouville Equation

Because of the unceriainty about the exact form of the excitation
function, it is not possible to obtain a solution for m(tf) in terms -of a finite
number"of parameters to be estimated from sufficient observational data.
Instead, a stochastic model for f {f) is more appropriate to account for
existing uncertainties. ‘

We shall assume that the excitation fimction is modeled as a

second-order stochastic process f(t, w) with known mean value function
Ee®) = E{f(t, wl (4.99)
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and correlation matrix

Rer (t9 S)

E {"f"(t, W T (s, w)}

(4.100)

The solution is also a stochastic process M (t, w) with-mean value function

Ex(t) = Ral-0o (t-to)] ™ (to) +f Ra [~Oo (t-7T)] By (T) AT

and correlation matrix Ru (t, S5).

introduce

with

Py (t)

We now have

t

to

Z({t) = Ral-0Oo (t-to)] M (to)

¥, wy = m(, w) ~ Z(H)

t

= E {7, w)} ='[Ra["0'o(t”7)] Be(T) a7
to

Bo(t) = Z() + Byt
and
Rum(t, 8) = Z{) Z' (s) + Hy(t)z (8) +
+ Z® By () + Ry
where

]

To avoid complicated formulas we

(4.101)

(4.102)

(4.103)

(4.104)

(4.105)

t
Ryy (t, 8) = [ f Rs [0 (E-1)] Ree (£, §) Ra {00 (s-0)] at dt

The covariance matrix of m {t, w) can easily be found to be

Coa(ts 8) = Rum(t,s) - Balt) E2(s) = Ry, s) - By By (s)

(4.106)

(4.107)



We have assumed here that the initial value W (ip) is deterministic, ie.,
either completely known or completely unknown (a parameter to be determined
from observations). If some a priori estima?,te of (o) is available, it can be
modeled as a vector random variable with mean {Io and correlation matrix

Ro. Under the additional assumption that T (to, w) is uncorrelated to f(t, w,

so that E { T (to, w) T(t, w)} = 0 for every t, we obtain

t

Eax(t) Ra[-0o (t-to)l Ho + f Ra[-Go (t -T)] He(T) AT =
to

= .0+ B (4.108)

Rm(t, 8) = Raf-Oo(t-1o)] Ro Ral0o (s ""'tO)] +

t s .
+ f f Ra[-Go(t-&)] R (€,8) Rafoo (s-¥)] A€ &
£t L=t (4.109)
and
Carfts 5) = Rmlt, 5) - Ba(t) B (5) (4.110)

From the mean and correlation of m (t, w}, the corresponding mean and

correlation of the rotation vector @ (t, w) can be found with the help of the

the transformation @ = Wy + Or'M

0
Ho® = | 0| + Qg 2Za(d) o@.11y
Qr
and
0 0 B (®)
Reo(t,s) = Q51 0 0 B () + 0F Rumf(t, 8)
2
.Uml(t) »ume(t) 1+Mms(t) ums(s)

(4.112)
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We have parameterized the rotation of the earth in terms of w1/, we/Q2,
£, Q,/Q, Qz/5. These parameters can be sufficiently approximated by
W1/Shg =m;, W2/Qx=mp, ws=8z(l+mg), /0, /& respectively.
Setting My = £1/Qr, Mz = Q,/Q%, the rotation transformation becomes
] ’ t )
M(® = Q(mi, we) Ra [0+ O t-to) + O f ms (1) A7 ]

to
Q" (My, Maz) N(t) P(t) : (4.113)

In addition to m;, mp, mg, we also need the statistics of M; and M. As an
intermediate step we need to obtain the mean and covariance function of the
rotation véctor with respect to the inertial frame 51 from the mean and
covariance of the vector @, Unfortunately, this requires' the solution of

the nonlinear stochastic differential equation
de(t - — 1,—, —
el - pE @ = s'(@) @ (4.114)

Even approximate solutions involve computationally tedious numerical

integrations. We can use the mean value function gy of @ to obtain
through numerical integration an approximate solution € of the deterministic
equation.

des

el S* (&) Fa (4.115)

A linearization is now possible through Taylor series expansion about

€p, o and neglect of second~ and higher -order terms, Introducing
6€ =8 -5, 0B = @ -Ta, we obtain
&e - —
gd—i@ = A)de) + B(t) 6T ) (4.1186)

wher o
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' 38 38 (Bo)] — ,
Ay = 5—% _ %—_—é—-"—’l Ho : (4.117)
. EO; Ho °

and

Bty = S| "= 8 (eo) 4.118)

.é-o )

Numerical integration of

-g; P(t, to) = A@) @(t, to) (4.119)
with ) .

D (te, to) = I (4.120)

yields the state transition matrix @ (t, s}, which can be used to find the

mean ¥ and correlation K(t, s) of 6€{t)
. 1 ,
) = B(t, to) Bgylic), + f B(t, T) B(N) Fy (AT . (4.121)

to

K(t, 5) = ®(t, to) E{8T(to) 88" (to)} ¥7(s, to) +

t s
. f f D(t, £) BE) E6W (£) 6@} BT €) " (s, 0y AL L
E=to C=to (4.122)

A similar linearization of the equation

Q; = R(E)W = Rs@®) Rub) Rap) @ (@.123)

leads to approximate statistics for {2 with the use of the known mean and
covariance functions of & and @, and finally to those of § and M, Ma.

Such a laborious propagation might be of some value despite the approxi-
mate linearizations involved if the true mean and covariance function of

the excitation function were known. However, this is not the case at present,

To obtain such "true' statistics one should identify all physical processes
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contributing to the total excitati;)n function, and also estimate their mean
and covariance functions. The present uncertainties about mechanisms
with effects on the earth's rotation [Rochester, 1973] limit the feasibility
of such an approach. The alternative is to use a simple model covariance
function for the excitation funection, which is computatiorially tractable and
hopefully approximates the true one. In this case the propagation from the
statistics of mj, ms, ma to those of Mi, Mz, simply offers model consistenecy -
which might be questionable in view of the approximations involved in the
linearizations. An independent simple covariance model for My, Mz may
serve our purpose and also considerably reduce the computational effort
involved.

Some more or less obvious properties that one might postulate on
the excitation function are zero mean and stationarity of the covariance
function.

A zero mean function gives rigse toa circul?,r motion of the pole
with the Chandler frequency, corresponding to the "expected' behavior of
the polar motion. Other irregularities superimposed on the Chandler wobble
are accounted for by the fluctuations of the actual excitation function about
its mean value function. However, the line—atrized Liouville equations holds
for an. arbitrary reference frame, while changes in reference frame cause
changes in the excitation fimction, With this in mind, the zex:o mean condition
on the excitation function must obviously hold for_only one partic}llar

reference frame. Since

Cof = Qn_136+"é+gﬁ—h}-;ﬁ+ﬂiﬂ-'ﬁ - (4.124)
and, assuming,

E{€} = E{R} = E{h} = E{T} = T . (4.125)
the condition E {f1-=-7 implies ‘

r{ec)l =0, e, kiew) =0, i=1, 2,13 . (4.126)
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For this to be true it is necessary that the direction of the z-axis in the
earth~fixed frame coincide with the "expected' direction of the correspond-
ing principal axis of inertia Z- If such an estimate is not available, the

introduction of two additional parameters of rotation from the z; o the

Z-axis
i 0 -
X = Refth) Ra(-MX ~ {0 1 x|} X . {4.127)
EA 1

leads to a new excitation function f (the old one beingfl with E {'f'i 1=10)
with

E{f} = oo |~u - (4.128)

The frequency 0o in place of the original one oy = A (C-A) £z accounts for
the compensation of the difference in the rotational deformation part of the
total excitation function. Use of the above mean valuc function results in

the following mean value of the solution

E{m@®]} = 8+ Ra[-0o(t-to)] [E {M(to)} - 8] (4.129)
where
5 = [ x o (4,130)

It can be seen by plotting the solution on the xy-plane (see Figure 4.1) that
the difference is only in a translation corresponding to the change of direc-
tion of the zaxis,

The mean value function, except from the above effect due to the
deviation of the z-axis from the principal axis of inertia, may also include
periodic terms already identified from pasi experience in polar motion

data analysis (annual,ﬂsemiannual icrms, ete.).
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=5 +R3(0 ) (m-0)
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H

oo(t-to)




The stationarity assumption of the covariance function corresponds
to the concept of regularity in the physical processes giving rise to earth
rotation, at least for periods of time which are short on a geological time
scale, This regularity is essential in introducing the concept of ergodicity,

which legitimizes the very use of probabilistic models.

4,3.7 Solution of the Linearized Liouville Equation with Damping

To include the effect of damping, a linear term is added to the

linearized Liouville equation

W) = CoPmit) - %Qﬁ(t) + T{D) (4.131)
with
1 0 0
D =10 1 o (4.132)
0 0 o

The only difference appears in the first two- equations which in complex

notation read

m = iG.mE) + T (4.133)
with
. = oo+ f—r (4.134)

The general deterministic solution is

t
ioct

my = e Mo +-/"f”(g) e ! G € at (4.185)

—on

Setting t = tp, solving for mg, and replacing it in the above equation, we

finally obtain
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t
e = ei'&'c(t—to)‘ﬁ(to)+f ei'&'c(t-g)?(g‘) & =

fo.
£
100 (t=to) ~(t-to)/T & (to) +fei Oo (t ~£)
to
e OT wevar (a.130)

Combining with the unchanged solution of ma(t} in matrix notation we have,
. t
m(t) = Raf-0o(t-to)] Q(t-to) M (to) + f Ra[-0o (t- )] Q(t- &) T(£) d&

to . (4.137)
where
Q@ = |o T g - (4.138)
0 0 1
is the "damping' matrix with the property
Q@) Rs(9) = Ra(8) Q@) (4.139)

The corresponding state transition matrix obviously is
&(t, s) = Ra[~Co(t-8s)] Q(t-s) (4.140y

In the absence of any excitation, the corresponding free motion
(on the xy-plane) is a contracting spiral whose center is the inertia
symmetry axis [ Rudnick, 1956, p. 137]. Sirice the Chandler wobble is known

to be maintained, the mean value functic;ri of the excitation must be such that

o100 (t-to)

Tut) = E{me@)l (4.141)

This implies that
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~ i —t ~
el Uo {t-10) 3

%um = 10 = 10cHs + Ft (4.142)

and, therefore,

iog (t "to) Eﬂ

ety = E{TH} = -,l;e (4.143)

The above condition must hold for proposed models of the excitation function.

The damping-excitation hypothesis, put forward as an explanation
of the broadening of the spectral pgeak correspot{ding to the Chandler fre-
quency, poses to this day two outstanding problems in polar motion an'alysis .
The first problem is the nature of the damping or‘dissipation mechanism,
manifes;iaed in our equations by the uncertainty in the value of the decay
time T. The second problem, the nature of the excitation of the Chandler
wobble, has been the matter of much controversy, mostly centered aiaout
the role of seismic activity and initiated by the work of Mansinha and Smylie
[1967]. A detailed account of the problem can be found in [Dahlen, 1971].

In general, the excitation function may be considered to consist of
two parts

—

f = fo+f (4.144)

a continuous-one f and a discontinuous one -f;, the latter associated with
abrupt changes of the earth's inertia tensor caused by earthquakes,

The discontinuous .excitation function is of the form

fp = Co {QaPT - G}

T = [013 Coz Cas }T (4'145)
The first two components in complex notation are

o= fmtfei = AT{iQeT+ T} (4. 146)

T = cuwt+icm

if AT, (Acy) denotes the change in G caused by the jth earthquake after some
initial epoch tp, occurring at epoch t;, we have [Mansinha and Smylie, 1967,
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p. 4733; Dahlen, 1971, p. 162]

T() = Z AT, u(t-ty)
h]

D bz, bty
3

(4.147)

T ()

where

0 t<
u(t-t;) = is 'the Heaviside step function
1 tz ¢

0 t# t
O(t-ty) = . is the Dirac delta function
I t= tJ

The excitation function becomes

~~ ) i Q ~ 1 ~ )
f(€) = - 1AR Z Acyug-ty) - A Z Acy (E-ty) (4.148)
d J

Inserting Tp “into the solution of the Liouville equation with damping, we

arrive after formal integration to

£

o LT (E-to) o £ A (€ +7.) ~ 1T (E-ty)
mit) = e _ m(to) + A E P e E Acy e

‘ ! : (4.149)
Separating real from i-maug;:;inary parts and combining with the solution of

the third componént

t
mz = 1a(to) +ffe(-§)d€ =
to
t
= mg(to) +f [-%ZAO@J ﬁ(ﬁ-ta):l ¢ =
;. to ! ‘ ‘
v » 1 -
mq(to) - "'6 E A(‘-mj (‘1.150)
3 .
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In matriz nofation

BB = RalOolt-to)] Qt-to)B(to) + )  BAT +
J

+Zg Rs [-Oo (t-13)] Q(t-ty) AT ' (4.151)
3
where
Qoo +oZ+72 . . Q/T 0
.1— 2 -2
G = A + 72 -Q/T Qoo tos+T 0| .152)
0 0 0
Uo/A l/TA. 0
Q . '
=R ar? -1/TA  0o/A 0 (4.153)
0 0 -1/C

(Note that all matrices Q, B, G, Ra(8) commute.)

The above equation is a solution to the deterministic problem when the
occurrence epochs and the effect of the earthquakes on the inertia tensor
of the earth are known. It can also be viewed as the solution correspond-
ing to a sample function in the stochastic case where uncertainty is present
in both the occurrence epochs t; and the inertia tensor changes ATy, A
stochastic model can be constructed with the help of two stochastic processes,
the (homogenous) Poisson count process and the filtered Poisson process.
- Refer to [Parzen, 1962, Chapter 4; Snyder, 1975, Chapters 2 and 4] [or the
relevant rigorous definitions. ‘
The Poisson count process N(t) refers to the number of earthquakes
occurring in the interval [to, 1] (N(to) =0 w.p.1), and it is cha;‘acter.ized

by the probability
e-—?\(t—s) \m (t-s)m .

P{N(t)-—N(S)=m} = —~ t> 8>t

(4.154)
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where A > 0 is called the intensity (or mean rate) of the.process, in view of
E{Ng } = E{N® -N(o)} = A(t-to) (4.155)
A filtered Poisson process is a stochastic proceéss of the form

()
Xty = E g (ts 3, Yy) (4.156)
=1 '
where Y, is a sequence of independent random vectors identically distrib-

- uted with a random vector Y.

The part of the damping-excitation solution i (t) of the Liouville

equation, independent of the initial state  (to)
N(t)

Xty = E {B+ GRa —0o(t-t) Qt-t;)} AT (4.157)
is a filtered Poisson process with
T(t, t;, AT) = {B + GRs - Oo(t-ty) Qt-ty)} AT (4.158)

provided that earthquakes occur with a probability distribution such as
described by the Poisson count process and the corresponding inertié
tensor changes AT are identically distributed.
If E {AT,} = £ {AE} and E (AT, Ac; } = E{Ac AcT} areknown,
the mean value and co;-relatmn of X (t) can be found with the help of
' -t
CEX@W = )Lf E{g, 7, AT) 4T (4 .159)
to )
--and
min(t, s)

A f E{E¢, 1, ADE (s, T, AT)} ar

to (4.160)

It

E X)X (s)}
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A usual simplification is {o replace the epochs t; as described by N(i), with

a sequence of equidistant epochs, such that
ter ~ty = At = A? (4.161)

in which case the filtered Poisson process is replaced by a random walk

in B® [Mansinha and Smylie, 1967, p. 4739].
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5. ADAPTIVE ESTIMATION

5.1 Introductorv Remarks

Perhaps the most intriguing problem in least squares estimation,
is the determination of weights. Both least squares adjustment and pre-
diction are based upon thea priori knowledge of means and covariances
of random parameters and stochastic processes (signals). The presence
of functions with uncertainties significant compared to the level of observa-
tional noise, necessitates the inclusion of their effect in modeling. One way
to circumvent this problem is to include only the values of the function at
observation points (epochs) as unknowns and fo secure enough observations
to estimate all the unknowns. This is actually done in geometric methods
of satellite geodesy, where simultaneity of cbservations increases: the
number of observations without a similar increase in unknowns (satellite
positions). However, this is not always possible and treating each function
value as an independent unknown generally results in overparameterization.
One way to avoid this problem is to represent the unknown function(s)
in terms of a finite number of parameters, using polynomials, trigonometric
series, step functions, etc. Although with a sufficient number of terms it is
possible to approximate a wide class of functions arbifrarily well with the
help of such representations, the fact that the function to be approximated
is unknown poses some serious problems. One has to determine the number
of terms to be included; and even then some of the coefficients of the terms
included might be very poorly determined from the available cbservations,

thus giving rise to singularities and computational problems.
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The alternative approach is to model unknown functions as stochastic
processes such that their probability distributions determine the "Mikely !
behaviour of the unknown functions. When the funetions to be modeled are
not directly observable, statistical sampling techniques for obtaining .
estimates of their means and covariances are not applicable. In this case,
proper mean and covariance models have to be determined from the only
a.vailaiole source of information, the observations themselves. We gay in -
this case that the stochastic model is "adapted' to-the observational data
and the resulting adaptive estimation techniques are the subject of this

chapter.

5.2. Review of the Continuous -Discrete Kalman ~ Bucy Filter

The problem in question is the estimation of the state vector X(t)
of a dynamical system whose evolution in time is described by the (contin~
uous) linear differential equation

d

3 X(6) = A(t) X(t) + G(t) u(t, ) (5.1)

from a finite number of chservations {discrete observations)
y(ty) = Hi X(t1) + n(t;, w) i=1,2,..,m (5.2)

A(t), G(t), H, are known matrices, the forcing term u(t, w) is a given
vector stochastic process, and n,( w) = n(t,, w) is a given sequence of
random vectors.

The term filtering refers to the estimation of X(t ») and the term
smoothing to the estimation of X(t,), i=1,2,..,m~1, from all the obser-
vations. The more general term prediction refers to the estimation of
X(t) for any epoch t, not necessarily coinciding with any of the obhservation
epochs t,. -
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I the random variables in X(t,, @), n,{ w) are second -order with
known means and covariances, the filtering ~smoothing problem can be
solved with the help of classical least squares adjustment techniques
{conditidon equations). and with a minimum variance criterion for estimate
optimality.

If a set of completely unknown parameters is involved, the general-
ized least squares method is to be used.

The prediction problem can be separately solved afterwards with the
help of the estimates of X(t,) obtained, and the mean and covariance function
of X(t), as a minimum variance least squafes prediction problem.

The problem has therefore been reduced to one of obtaining first and
second order statistics for-X(t, w) from those of u(t, w) and the initial
value X(ty, w) (in case it is modeled as a vector of random variables and
not _ais a vector of unknown pa.rameters). _ . ;

Usual assumptions are that u(t), ‘X(to),. n, a.:c"e mutually independent
and that n,; is a sequence of Gaussian inde'pelndent random vecto;rs. ,

If u(t) is a known s;_tocha‘stic process, 80 is G(t)-u(t) and we can
drop the coefficient mat;rix G(t) without any l.oss of generality. The state
differential equation can now be formally integrated with the he}p of the state

transition matrix ®(t,s ),‘ to obtain
't
- XL w) = B(t,ty) X(io, w) + [ o(t, &) u(§, w) dE

to (5.38)
Since u(t, w) is a stochastic process the integral
t
y(t, w) = f ®(t, £) u(f, w) dg (5.4)

to
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cannot be tx"ivia.lly defined as a Riemann integral in the general case.

The most trivial case appears when u(t, @) belongs-to the restricted class
of processes with Riemann integrable sample functions., We may relax the
integrability condition for sample functions u®(t) with WEA CQ, when '
P( A) = 0. In this case we say that almost all sample functions are Riemann
integrable, or that u(t, w) is Riemann integrable w.p.1 (;Nith probability
one). A more wide class of stochastic processes may be obtained by
requiring that the ahove integral exists in the mean square sense (see

[ Jazwinski, 1970, p. 66] for definition). Mean square Riemann i;ltegrabilii:y
of u(t, w) is equivalent to .Riemann integrability of its mean, correlation
and covariance functions [ Jazwingki, 1970, theorem 3.7 and corollary 1,
pp. 66 & 67]. In this case the propagation fx"om first and second order
statistics of u(t, w) to those of y(t, w) can be carried out with the help of

the (deterministic - ordinary) Riemann integrals.
4 t
E{y(t,w)} = f ®(t, &) E{u(t,w)} dg (5.5)

to

Ce . t .8 ‘
E{yt,w) y (s,w)} = [ [ O(t, &) Efu(é,w) u™(Lw} o' (s,8) dE At

Eto Potg (5.6)

-

A stochastic process attracting considerable attention because of its
applicability to engineering problems is the Gaussian white noise process,

with zero. mean, and covariance matrix
Ef{u(t,w)u(s,w)} = Q(t) b(t-s) (5.7)

where §(t-8) is the Dirac delia function. The white noise process has
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everywhere discontinuous sample functions and fails to be Riemann mean
square integrable. There is no shoricoming on the part of mathematical
theory here, for white noise is not a physically realizable proc.ess,__but only
an_-idealization introduced mostly for the simplifying integration prope_rties
of the Dirac delta function. It is possible to formally represent u(t, w) as
the derivative of t_he. Wiener process W(t, w) [ McGarty, 1974, p..‘ 80]

it w) = W) 5.9)

In view -of this relation oné might attempt to-define an integral of the form

b

/G(t) u(t, w) dt

a -
as a Stieltjes integral with the help of the Wiener process

b

fG(t)'dW(t,w)

a

This does not solve the problem because although almost all of the sample
functions Ww(t) are uniformly continuous, they are not of bounded varia-
" tion [ McGarty, 1974, Section 3.3]. Among various definitions of the
above integral, the one more widely used is that due to K, Ho, We shall
refer to [ Jazwinski, 1970, Chapter 4] for details, restricting ourselves to

the ﬁqrmal rule for obtaining the covariance of the process

t
Yt w) = f_cp(t,g).dW(g,w) : (5.9)

to
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min.(t,s)"
E{Y(t1w) YT‘(Ss w)} = f @(t,g)Q(éj) (I_)T(Sig) d's (5‘10’)

‘to

This rule agrees with the definition of y(t, @) as an o stochastic integral
and may also be formally derived from the covariapce Q(t) 5(t-—fs) of the
corresponding white noise process usipé’ the integrai:ion properties‘of the |
Dirac delta function. ‘ )

' We have succeeded in writing the solution of the state differential

" equation for X(t) driven by white noise, in the form
X(t) = @(t,t0) X(tg) + w(T) . . (.11)

From the known first and second order statistics of X(t,) and y(-t), thode
of X(t) can be easily derived and used to golve the filtering - smoo;;hing and
pred1ct10n problem, either globally by standard least squares ad;ustment
and prediction techmques or, most often, by means of a sequential refor-
mulatlon of the solution algorithm. The solution is similar when u(t, w) is
a process w1th Riemann integrable sample functions or snnply a memam

mean square 1ntegrab1e process.

5.3 Modeling of Stochastic Procesges

n rt—.jal life problems, when the state of a dynamical system (such as
the orbit of an artificial satellite or the rotation of the earth) is generated -
by a differential equation, the forcing term u(t) is in most cases an unknown
function. The modeling of u(t) as a stochastic process u(t, &) presuppo-
ses that although u(t) is not precisely known, it is not completely unknown
either. This situation of relative uncertainty about u(t) is manifested in
the probability distribution of the stochastic process model u(t,w) whi::h

roughly tells us what u(t) is "likely" to be, by means of a description of
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its "average! behaviour.
Since we are not concerned with an ensemble of functions f{u,(t) }
but rather with a unique function u(t), the averaging has to take place over
different parts of the function u(t) itself. This presupposes that the function
possesses some regularity properties, -such-that different pieces: (i. e. , the
flrnction over different time intervals) can be. congidered as samples with the
same "statistical'l behaviour,-and their comparison yields the "average"
behaviour of the function. These intuitive conce[;ts are expressed within the
probability theory framework-by the ergodicity property of. the stochastic
process u(t,w) serving as a model for the real (and in a sense determin-
istic) function u(t). Ergodicity presupposes stationarity, and before such
" a more or less restrictive -assumption is imposed, one .should make certain
that the process is 1rreducib1e, in the sense that if cannot be expressed as

a transformatlon of some other original process. This 31mp1y means that
a statlona.ry ergodic model should be used for unmodeled accelerations and
the excﬂ:atlon functlon, rather than the orblt of the satellite or the rotatlon
of the earth. .

Ik the funct:.on u{t) can be d1rect1y observed, the problem is a statig-
tlcal one of defermining d1str1but1ons (means and covariances are suff1c1ent
' for our purpose) from samples. However, we are primarily concerned here

with the case when the funetion u(t) cannot be directly observeo{ ‘o_r it is
practically impossible to do so, a situation common in geodetic 'work.

" In this ca;se one can only construct an empirical stochastic model with the
help of available mathematical tools. Before congtricting such a model
oné must first wonder whether the necessary tools are available in the first
" plice. To ask the question in a different way, suppose that a stochastic
"p'rocess u(i;,o':)' exists which is an appropriate model for thé unknown
function. What are our chances'of empirically arriving at such a model ?

Indeed, the mathematical literature is almost ex'clusively devoted to

the stidy of a nuniber of elementary procesges (white noise, Wiener,
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-Poisson) and processes derived from {ransformations of such processes. -
The answer is to be found in connection with the inverse problem, already
studied by mathematicians: Given an arbitrary stochastic process, isit ’
possible to express it in terms of some simple elementary processes ?
This is a problem of representation that has been given copsidera.ble
attention. A collection of papers on this subject can be foun_d in
[Ephremldes and Thomas, 1973}. ‘ - ’ s
For a wide class of stochastm processes ca.lled purely nondetermin——
) istic or linearly regural (see [ Cramer, 1964, p. 170; or ‘Cramer,. 1971, '

p. 7] for definition) it is possible to obiain a representation (Cramer~Hida

canonical representation) of the form

X(t,w) = Z fg (t,8) dz,(s,w) (5.12)

where z,(8,w) are N mutually independent stochastic processes with
orthogonal increments. In simple engineering terms, X(t) can be consi-
dered as the sum of the outputs of N linear filters with inputs white noise
processes E’ . The smallest number N for which such a representatioil
exists is caJléd the (spectral) multiplicity of the process X(t). The class
of second - order stationary processes we are concerned with here has
spectral multiplicity one [ Cramer, 1965, p. 218 ]. This ascertains the
posgibility of constructing a wide class of stationary models with the heIp
of the white noise process. ’

~ Another aspect of modeling is the necessity of parametrization of the
mean an;:l covariance functions of the empirieal mo_del. The optimal values
of such parameters must be determined from the observations available,
gince the non—bbservability of the function modelegl ‘excludes the use of
sampling techniques.

Empirical models are much in use in time series analysis techniques,
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when a function u(t) is observed at equidistant epochs t; (t,~t,., = At for
all i). X u(t) is modeled as a stochastic process u(t,w), the sequence of
random variables u,{w) =u{t,,w) is a new discrete parameter-stochastic
process. Three usually iiséd models are constructed with-the help of a
discrete parameter white noise process, i.e., a sequence of independent

identically distributed random variables n, with
E{n,}=0 and Efn,n,} = 0® 814

These are [ Koopmans, 1974, Chapter 7] the moving average model:

u, = E ay Ny, ' (5.13)

the autoregressive model:

. :
uy t E by ue-y = ony, Efu,n.}=0 forl<k,
L J:l (5-14)

and the mixed autoregressive ~ moving average model:

P

q
Zd, U~y = Z Ci My, (usually do=co=1), (5.15)
1=0 ’ ' )

1=0

' These are finite parameter models and the first two can be extended to

infinite by letting n, m, > « and introducing the conditions -

-_0

+m
E:a ' 2:3
ay < o b3<m
1
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Of particular importance is the one - sided moving average model

ne = Y ey mey (5. 16)

3=0

which possesses the property of physieal casuality since the state u, of the
process at epoch t, depends only on past values n,_, of the exciting white
noise process; and not on future ones. It can be silown that the solution {o
a finite autoregressive model is an one - sided (infinite} moving average
[ Koopmans, 1974, Section 7.31.

A purely nondeterministic second -order stationary stochastic pro-
cess X(t) satisfying certain conditiong (see [ Cramer, 1965, p. 219] for

details) has multiplicity one, and canonical representation of the form

t

X(t) = [ g{t-s) daz(s) (5.17)

-

An approximation of the above integral by a summation leads to

k k
Xy = X(t) = > glhet) [2(t)-2(te)] = ) &y By
1==a t==c (5.18)

We have set z(t,)-2{t,,) = n,, with E{n,} =0 and E{n,n,}= a° Byys
inview of E{dz}=0, E{]dz(t)|]®}=a (z(t,)-z(t,,)~dz) and the fact that
z(t) has orthogonal increments. A simple change of the summation index

from i fo j=k-1i gives

Xy = E By Mgy (5.19)
§=0
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which is an one - sided moving average model.

Without any approximation it can be shown that a discrete parameter
ZEero mean weakly stationary stochastic process can be expressed as the sum
of a purely deterministic and a purely nondeterministic zero mean processes
(Wold decomposition), the latter having an one - sided (infinite) moving
average representation [ Koopmans, 1974, p. 255]. This connection with
the Cramer - Hida representation establishes the importance of the one -
-sided moving average and the autoregressive scheme (whose solution is an
one - gsided moving average)- in modeling stationary stochastic processes.

Passing from the discrete to the continuous time case and resiric~
ting ourselves to the autoregressive model in view of its finite number of

parameters, we have

n—1

n 4
dut) Z p, dub . AW (5.20)

at® Yooae dt

J=0

f
i . .
Wl:nere W (t) is the Wiener process. Generalizing to a vector process u(t)

and allowing the coefficient matrices to be functions of time we obtain the

n* order autoregressive model

dru(t) d™tu(t) du(t)
+ B, (t) + ...+ B () + Bt uft) =
dt* at* ! dt
d W (t)
= Gt (5.21)
dt

The solution u{f) of the above differential equatic;n has multiplicity one and
ig a Gaussian Markov process [ Ephremides and Thomas, 1973, p. 13].
We shall limit ourselves to the first order (n=1) autoregressive process.and

we shall investigate conditions for u(t) to be stationary.
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The uge of the Wiener process instead of any other process with
independent increments restricts us to Gaussian processes. The
"Gaussianily'' assumption is essential in making possible statistical
inference on final Gaussian estimates, since means and covariances
completely speecify in that case the corresponding probability distributions.

Another important independent increment process is thé Poisson
{count) process and the generalized Poisson process [McGarty,-1974,
pp. 83-861. The formal derivative of the generalized Poisson process is
also a white noise process, although non-Gaussian. For the study of

Poisson driven Markov processes we refer-to [ Snyder, 1975, Section 4.21.

5.4 Construction of Exponentially Correlated Stationary Stochastic

Processes from White Noise

The most simple continuous time autoregressive model is the first

-order one-dimensional one with constant coefficients,

dx(t) dW(t) . .
+ p x(t) = ,  E{w@) W)l = o® s(t-8)
dt dt

(5.22)

. dw
where W = :1-*- . This is a linear stochastic differential equation
t
with state transition function

o P (t-8)

D(t,8) = (5.23)

anci solution
t

x(t) = e Pl7to), [ o PO=8) awie) (5.24)
to
We can differentiate between two types of solution according to whether
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x (ty) is a deterministic constant or a random variable:

A. For x(t,) =c, = const., we have

m(t) = E{x(t)} = e PP o

R(t,s) = E{x({t) x(s)} = .e-"P(t—to) 'Ci e—p(s—to) N

min(t, s)
+ g° .. e-—p(t—g) e-—p(s—g) d§ =
to
- [Ca ) o_a] S PrS) 2ptg 00 -plt-s]
o 2p Zp .
(5.26)
The covariance function of x(t) is
C(t,S) = R(t,s)-m(t) m(s) =
2 e . .
- goprs) 2pto O mpltes| (5.27)
2p 2p
and therefore x(t) is nonstationary.
B. For x(ts) = %o(w), with E{xo} = ¢4, Efx31} = cr:; and
E{x, W)} = 0, we have
m(t) g Pt-to) (5. 28)
2 G 7 -pltts) 2pt o® -~ plt-df
R(t,8) = [cro---]e e“Plo 4+ 2 (5.29)
2p 2p
o z" -p(t+ 2 pt 0‘2 - |t—s|
C(t,S) = [D‘%"_ - CD] e p( S)e p 0‘+ — ,D
2p 2p
' (5.30)

The solution x{t) is in general a nonstationary process. It is possible to
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obtain a stationary process by setting ¢ ,=0 (so that E{x({t)}=0= const. )

and o'g = g®/2p so that

2
,-Plt-s)

C{t,8) = (5.31)

2p

We have succeeded in consiructing a stationary stochastic process

from white noise. With appropriate selection of the parameters o>, p we
can obtain every such process from the class of exponentially correlated

processes with covariance functions of the form
C(r) = Co, expl-|T|/ T1, 7T=t-8, T>0 (5.32)

;:vhere Co = C{0) is the variance of xt (w) for every t, and T is the
Yeorrelation time' related to the "sharpness! of C{T). The smaller the
correlation time T is, the more the covariance function is concentrated '
about the C(rT) axis. 7
To extend these resulis to more dimensions consider the vector

stochastic process X(t) generated by a general first order autoregressivea

model of the form

d _ d
o X(t) = A(t) X(t) +EEW(t) (5.33)

with E{W() Wis)} = Q(t) 6(t-s), E{X(to)} = X4,
E{X(t) X"te)} = Ro » E{W(t) X7} = 0

The solution is
t

X(t) = @,t) X(to) + [ (L, E) dW(E) (5.34)

to
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m(t) = E{X(t)} = &(t,to) X, (5.35)

and covariance function
min(t, 8}

Clt,s) = Bty to) [ Ro-Xo X5] @'(s,t0) + / Q(t,£) Q) ®'(s,8) dE
. : (5.36)

The necessary and sufficient conditions for stationarity are m(t) = const,
(implying X = 0), and C(,s) = C(t-s). It can be shown (see for example
[ Buey and Joseph, 1968, p. 25]) that K(t) = C(t,t) is the solution of the
differential equation

.3_.5 K(t) = A(t) K(t) + K(t) AY(t) + Q(t) (5.87)
with initial condition K(to) = Co = Rg - Xo XJ
In the stationary case K(t) = K(0) = K(t,) = R, is constant and therefore

— Ry = 0 = A(t) Rg + Ry AT(t) + Q(t) {5.38)
This is a necessary but not sufficient condition for stationarity, We can -
obtain sufficient conditions (without claims to necessity) by setting

A(t)= A = const., Q(t) = @ = const., X,= 0, and’

ARy + Rg AT+ Q = 0 (5.39)

This is equivalent to the condition 2p oi = ¢° in the one-dimensional
case. An additional condition corresponding to p > 0 is that the eigen-
values of A must have negative real parts (see [ Arnold, 1974, p. 1331).

If X{ty) is also multivariate Gaussian, X(1) is a Gaussian process.

L4



5.5 The Dynamic Model Compensation (DMC) Algorithm

- Ingram and Tapley [ 1974] have deviced a method for the estimation
of the state of a spacecraft in the presence of unmodeled accelerations which
they call the "Dynamic Model Compensation' (DMC) algorithm. With the
help of material from [ Ingram, 1970, Tapley, 1973; and Ingram and Tapley,
19741 we shall give a somewhat generalized version of this technique. One
part of our generalization is the consideration of an unspecified dynamical

system with state governed by a linear differential egquation
d
d—-x(t) = A(t) x(t) + ut) (5.40)
t

. in place of the specific equations of spacecraft motion. u(t) is a vector
stochastic process serving as a mode! for unknown (unmodeled) forecing
terms, and generated by another first order differential equation

% u(t) = B(p) w(t) + n(t) (5.41)

where the coefficient matrix B(p) depends on a vector p of unknown para-
meters. The unspecified nature of the dependence of B on p is the second
aspect of our generalizaf:ion. Ingram and Tapley consider a diagonal matrix
B, and p has elements the negative inverses of the diagonal elements of B.
n(t) is a vector white noise process with E{n(t) nT(g)] = G(t) §(t-8), serving
as a formal representation in place of the mathematically precise Ito

stochastic differential equation
du(t) = B(p) u{t) + dW(t) (5.42)

The lack of a coefficient matrix in fron of n(t) poses no restriction since the

corresponding effect can be trivially incorporated in the covariance matrix
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G(t) by means of a simple propagation. ’I‘he constant vector p can be also

trivially modeled by the differential equat:on

g.‘__p“—-('}
dt

(5.43)

Summarizing, and after some obvious change to a more compact notation,

our-state.model becomes

Xy = Ay Xy +.ouy

=
o
Il

B(p) uy + ny

bt "= 0

Integrating with the help of initial values p(t,) =

x(t,)=x,, we obtain

Pt = Py
B
= t,t + a(ty
Uy Dy 1)(p1)u1 -/.‘I)( E)(p)n
. ‘ e
1
= éu(t,ti)(,og) ug + 1;(13,131,01)
. -t
xy = @.(t,1) x, + f D, (t, &) u§ d¢é

2

146

Py u(ty)=u,,

ty

]

dg

IH

&, (t,t,) x, + @xu(t,ti)(pi) u, + f ®,(t, &) 1,() d§

(5.44a)

(5. 44b)

(5.44c)

(5.45a)

(5.45b)

(5.45¢)



where

%
D (thty) = f ®, (t,£) D, (&, tL) dg {5.46)
t, -
Introducing
B (tytysXe,Wi,P1) = Dultyty) %, + S(tt,0,) uy  (5.472)
Bu(tsts,uy,P4) = Dty ty) uy (5.47b)
(P41}
Bp(p4) = py (5.47¢)
and
Mot = 0 ) (5.48a)
Nutsty,Py) = 1 (t,ty,Py) (5. 48b)
t
Nxa sty 04) = f &8 1,(,t,p,) df (5.48¢)
ty — )
we arrive at
Xy = 06(,t,X) + n4,t,X)) (6.49)

where
Xi=[xlul ptl, 6,=06; 6y 831, Ny =[Ny Nu 0]

For t=t,, we have
Xpr = O0twrst,Xy) + nylter,ty s Xy) (5.50)

This is a discrete state model and can be used together with n get of
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observations (assuming linear dependence on the state for simplicity)
vy = Hy X, + vy, Efv,}=0, E{v,v]}=R 6y (5.51)

to solve the prediction - smoothing problem. However, there are some .
difficulties associated with this model. One of them is the nonlmeanty of

B with respect to p,, which we can overcome by linearization. The second
is the dependence 6f the state noise 71, on the state X, (actually only on p,),
and the final one is the non-whiteness of the sequence {7, 1. I the values '

{p;}are considered to be constants, it can be easily seen that
E{n,}=0 and E{n, n}}=0 fori#j (5.52)

However, P, is part of the state X; and as such it is a random vector. In

view of Py = P,, we have

E{p:}=E{po} and E{p,p}}=E{popo}#0 (5.53)

Because of the complex dependence of lTh on p, it is difficult to evaluate
]é{n ' n} }, but the two vectors are in general correlated since o, and p;
are. To overcome these difficulties the sequence {7’}: } is approximated by
a new Sequence {ﬁi }, which does not depend on the state (p,) and is also
white (E{ninj} = 0 for i# j).

The approximation, which is essential to the resulting algorithm, is
to replace 1, (t;s,st4,P1) by a random vector 11 such that E{li} =0 and
E{{; 1]} = E{1,1]} &, . This we can achieve with the help of a white
sequence n,, such that E{n,} = 0 and E{n, n; }=1 6y, by setting

I, = K? n, (5.54)

where K, = T{l, 1‘; 1, and the expectation is taken by treating p, as a

nonrandom consiant,
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ti+l

Ki = f @u(ti-!-ug) G(E) @L(tﬂ_l,g) dg = Ki(tﬂ*lstispi) (5'55)

b

K, depends on p, since @, depends on P,. I follows easily that

.~ n 1
E{l, IJT} = KF E{nin;'} (ng y = Kfé (K?)T <81y = Ky 8y

By setting b

ﬁui = 1, ;?xg = f‘I’x(twlsE) d.E_ I, = 81,

t
i

and ‘61; = [1‘:1;1 ﬁfu 0 ], we have

E{n,} =0 and E{n,73] = Q b,

where
- =
S, K, 8{ 8K, 0
Q, = K, S{ K, 01 = Qupy)
0 0 0 |-
B _

We have now arrived at the state model

Xiry = B(Egs,,t, Xy) '?h

(5.56)

(5.57)

(5.58)

(5.59)

such that the smoothing - prediction problem can be solved with the help of

standard techniques (extended Kalman - Bucy filter, see [ Jazwinski, 1978,

p. 278; and Tapley, 1973, p. 4111), except for the dependence of the state

noise covariance matrix Q,(p,) on part of the state. Ingram and Tapley

simply write Q,(p) without specifying which value-of p is used (T,, T,,

T, in their notation)., I is natural to assume that p, is replaced
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by its current estimate P, based upon all past observations y . (r=1,2,..,1i).

The central poin’g in the derivation of the algorithm is the approxima-
tion of 1, by '1\'1 . Ingra&n [1970] offers no explanation or motivation about
this approximation. Further reference is given to [ Jordan, 1966] (to which
we had no access with thexemark [ Ingram, 1970, p. 22] that the original -
white noise process n(t) is considered constant over the interval [t;,1;+,].
This, at least mathefhatic‘ally, is absurd. The very essence of the white
noise process is the everywhere discontinuity of its sample functions, and
n(&) - n(&), &, LE[t;,t;41], is unbounded no matter how small |t a1ty is.

It must be pointed out that the same white sequence %1 may be
obtained by a much simpler argument. The random vector P£(t) is approx-
imated over the interval [t,,t,.,] by a constant nonrandom vector equal fo
its current estimate f)i tbased uﬁdn past observations up to the epoch t,.

In this case we replace 1, (b, 1stespyr) BY 1y(Eee1stss Py S0 that E{1,17} =
= K,(p,; ), and proceed to obtain the white sequence 7, with E{n, 7y } = Q4(Py).

Agsuming f_or a moment that despite the approximations involvéd, fhe

final solution (after smoothing where state noise covariance matrices are

also updated) is sufficiently close to the "true" solution of the original model

Xt = At, X + ut {5-4:4’3-)
Uy = B(P) uy + by (5.44b)
Py = 0 ‘ (5. 44c)

we may identify’the problem with the one described by
Xy = A, Xy + U, : - (5.60a)

*
B(p ) uy + Dy : (5.60b)

T L Uy

. * " . - - -
where P is the final optimal estimate of p based upon all the observations.
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In this case we can directly model u, as a stochastic process with known
mean and covariance function, spec.i 2d by the solution of eq. (5.60b) and
the initial value ugy = u(tp).

For the specific choice of

-0z 0 0 oi 0 0-
B(p)= | 0 -py O E{n,njl= |0 of 0| t-s)
0 o -pl o 0 o

N

each component of u: is an independent stochastic process with mean

o -
E{u ()} = e (TP pry (o)) . (.61

ap. covariance

g 1 1
C(tis) = [Efulinl-bolp,]| & Px oHofx
a
+ 5 0% Px ltmsle
~t+s)Px  2topa *
- © e * (E{ux(to)}) (5. 62)

with similar expressions for u,(t) and u,(t)-

Ingram { 1870, p. 22] claims éta.tionarity of u,(t), recognizing the
necessity of p, being a constant, but not the special relation between p
and the initial value u,(t,) slatistics also necessary for stationarity
(see Section 5.3). The initial values are modeled as random variables with
E{u(te)}= ug, E{u(s)uT(ty)} - up ug = qf; I [Ingram, 1970, pp.76-77.
K uy# 0, then E{u,} # const., and u, is certainly nonstationary. I

u, = 0, theﬁ, to secure stationarity one must set

2 O P .
p, = 2 Oox where @g = E{u(te)} (5.63)
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in which case p, should be a fixed constant and not a parameter under
estimation. gram and Tapley [ 1974, p. 195] mention that the initial
conditions are unknown. If this implies that u, is a deterministic constant
to be-estimated simultaneously, we again arrive to a nonstationary solution
in general (see Section 5. 3).

"In view of the reported success of the DMC algorithm, its adaptivity
must b’e looked for in the approximations themselves rather, than in the
original rigorous state equations. If p has been fixed, the siate noise .
matrix Q(t, ., ,’tk » p) should have been a priori defined. On the other hand,
the state noise matrix Q(t,,,,lx,p, ) is allowed to vary in the filtering
algorithm, according to the 'cu'rre'nt estimate ﬁk of the parameter p.
Although p, = p,_, inthe discrete state model, the same equality does
not hold for the corresponding esﬁmates

Px # Pr- ‘ (5.64)
where E)i is the estimate of p based upon past observations ¥, up to the
present epoch (j=1, 2,..., 1), and the one additional observation y, pro-
duces in general a change on the new estimaie .‘;51: of p.

The concept of an exponentially correlated forecing term can still be
maintained within each interval [tyst,+;] where PO, is treated as a constant
and corresponds to a "local covariance function" formulation designed to fit
the local behavior of the unknown disturbing function. On the whole time
intexval [t,,t.], however, the variation of the estimates p, of p used,

gives rise to a nbnstétionary stochastic'ﬁrocass u(t).

5.6 Adaptive Estimation in General
.The general adaptive estimation problem may be defined as follows:

The evolution in time of the state x, of a dynamical sysiem is described by

a differential equation of the form

Xy = f(Xeat, €y) ) (5.65)

152



where €, represents a function of unknown disturbances. It is possible to
model ¢,, not as a single stochastic process u,, but as a whole class of
stochastic processes generated with the help of some other known process

n, and a set of unspecified Iiarametérs D,

Wy = g(uy,tn,,p) . . (5.86)

_E‘very set of parameters p specifies a different stochastic prpceés u,, and
an optimal set p* is sought, such that the resuiting stochastic process u%
is.an optimal model (£n a sense that remai.ns to be s.pecified) of the unl‘mown
. disturbgnces( € ¢, for the purpose ;)f estimating the étate X, (and poésibly

another set of parameters a) from a finite set of observations
¥y = hx(Xtistua) + vy (5.67)

where v, is a sequence of zero mean random vectors with known covari-
anc-es. : ‘ ‘

It islessential to realize that the differential equation (5.66} does not
model any physically realizable dynamical system, but merely serves ag an
artificial meang for constructing a class of stochastic processés u-t(p).
The nature .c)f this.class must be a priori specified (by means of selecting a
certal process n, and a certain function g(uy ,—t,ht s D)), and.its appropria-
teness must be justified by considerations related to the nature of the
unknown disturbances ¢, to be modeled.

Since p is a vector of constants, we have p = 0, and through a

technique called "vector augmentation” we may rewrite our model as

Xt i f(xtstsut)
Xe = jug] = [8uy,i,ng,p) = F(tht,ﬂt) {(5.68)
P, 0

The solution io the above stochastie differential equation is by no means

=
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trivial because of the nonlinear dependence of F(X,,t,n,) on X, and n;.

The simplest linear model correspond to

f(xestony) = Ay xp + uy . 692)

g({ug,tyne,p) = By u, + D, p + ng. (5.69b)

In this case the solution u, is of the form

t o t
uy = @y (tsto) Uy + f@u(t,g) ng A + fcbu(t,g) Dy d&| p =

t t

° (-]

uyy + Dy p = Uy, + Ugy (5.70)

u, is now the sum of a known stochastic process u,, anda pa:;*ameu'ized
deterministic function uét {p) which does not contribqte to the covariance of
u,. I is possible to include the known mean of u,, in u,,, so that u, is
modeled as a stochastic pro'ceés with ’Imown covariance and parametrized
mean, Thisisa weli known technique (see for example [Parien, 1961}.))
bué deviates from our. main objective which is the adaptivity (parameétriza-
tion) of the covariance function also.

' " The next simpler model ig similar to the one in the DMC algorithm,
chiained ioy sétting - ‘

g(u,,t,n,,p) = B(p) u,. + n, (5.71)

the only nonlinearity being with respect to p.
Returning to the general nonlinear stochastic differential equation
(5.68), let us assume that a solution has been somehow cbtained. Such a
solution is a stochastic process X, with mean and cova:riance depending on
those of n, and the initial values X, (Xo.Us,Do) modeled a8 random vari-

ables.. Assuming for simplicity linear observations and no parameters,
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we have
v, = H, %, + vy, i=1,2,.0., 1 (5.72)

Let X denote the vector of all states x,,
X' = [xf x] ... % ]

U that of u,, and P. = p,, since all states p,; are the same. From the
known mean and covariance of the solution process X, it is possible to

obtain the mean and covariance of the vector

ZT=[XT Ut P,

— - — f—
-

| X X - 8X Syx Syu  Syxp
E{Z}= |U]| = |Uu - 68U, E{ZZ"}-Z2%= | Sy, Suy Su»
P P - §P _ | Sex Seu See

The observation equations can be writien in the following matrix forms
. F §X
Y= HX + V or L =Y-HX-=[H I}
’ A%
Solving this least squares adjustment (condition equations) problem we
obtain an estimate 63( and X = X + 86X . The effect of the observations
on the nonobservable parts of the state U and P can be evaluated through

least squares prediction,

N

~1, ~ ~ — -~

and similarly for U. X, the final estimate of the state at observation epochs
does not depend at all on the final estimate p of p, but only on the mean and
covariance function of the solution process X, and consequently on the mean

and covariance of the initial value p,. In fact there is no adaptivity of the



mean and covariance function of the state noise process u, in the vector
augmgntation technique. The solution differs from one with fixed f.oarame—
ters p, only in the fact that the uncertainty in an original estimate p, of p
has been taken into account. . '
Adaptivity can be introduced by resolving the problem, fixing p to the
value of the obtained estimate ﬁ » evaluating mean and covariance function

of u,, and using only the first part of the state equations
551. = f(x,t,u)

The optimality of the estimate p is hard to define. This estimate
depends on the observations (through 5( being a function of Y),. and to this
extend is adapted to the observational data, but it also largely depends on
the mean and covariance of the initial estimate p,. Because of this, the
vector augmentation technigue fails to provide a solution to the following
more idealized problem:

Given the mean and covariance of the state noise u, within a set of unknown
parameters p, find among all pefmissible values of p the one which is
optimal in a sence to be defined.

The solution x, of the state differential equation has mean and cova-
riance functmn dependmg on the unspemﬁed parameters p. The vector X '
correspondmg to _states at observational epochs has mean X {p} and cova- .
I‘IB.D(":Q matrix S(p), both depending on p. For linear observations the

model for the adjustment is
L(p) = Y - HX(p) =H §X +V, E{6X§X'}= S(p)

and the fingl estlmate X (p) = X {(p) + 6X(p) depends also on p.
A smlple way to define optlmahty of X (p) is the minimization of the vari-

ance "of any scalar linear functu?n of X
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i.e., to find the optimal vector p which minimizes

ol (p) = b' [E(X@) X'®)} - X@) X'} 1 b =

Il

b E{6Xp) 6XT@m)?} b .

Such a criterion however, can be justified only when the variance ;to be
minimize;d is the "true" variance based upon "true' a priori statistics of
both the observational errors and the signal §X. The result is the minimi-
zation of the nominal rather than the true variances of estimates and the
appropriateness of such an optimality criterion is questionable.

A more reasonable criterion of optimality is to be found through
intuitive reasoning, rather than in any rigorous definition, In essence, the
role of estimation is to separate the useful signal related to the states of the
dynamical system from the unwanted observational noise. If such a separa-
tion has not tal,«:en place because of the use of an incorrect model, the effect
is to be seen on the estimates of the observational residuals v,. Ifthe.
residuals. are too small, too much signal has been taken out. If they are too
large, or they just show some systematic pattern, then part of the signal
has not been detected. In general, the inconsistency of residuals with their
a priori statistics strongly indicates the use of an inappropriate model.

This effect manifests itself during computations associated with filtering in
what is commonly called "filter divergence'' [ Jazwinski, 1970, p. 302].

In a global (nonsequential) solution, the paramefers p determining
the statisties of the unlmown disturbing function u; must be varied by "trial
and error'" until consistency of residuals with their a priori statistics is
reached. This presupposes that first, the parameters p give rise to a class
of statistics for the process u, which is wide enough, so as to contain an
element close to the "true'" siatistics. The second assumption is that the
a priori statistics of the observational errors are accurately known through

caiibration and standard statisiical techniques.



Related to global adaptivity are techniques, such as the DMC algo-
rithm, of local or real time adaptivity. These techniques aim at modifying
the state noise covariance matrix during each step of the filtering process,
in order to overcome the filter divergence; problem. 'Such"te"chniqués are
discussed in [ Jazwinski, 1970, Chapter 8, especially Section 11; and Gelb,
1974, Sections 8.1 and 9.1].

" Jazwinski [1969] considers 4 discrete linear dynamical system model

Xett = Bpey X + Gy Wy _ (6.73)
with observations
Ve = Hy %X + vy 7 (5.74)

.where the state noise w, is a zero mean white Gaussian sequence, .
accounting for errors made in modeling the dynamics of the system. The
state noise covariance matrices Q, are considered to be the same over,

every N observations

Qk-{-i ‘= Qk,N’ i=1,2,-..,N.

and an algorithm is devised for determining Q,,, so that the produced
residuals are consistent with their a priori statistics.
Another approach very much gimilar to.the DMC algorithm, is )

given in [ Jazwinski, '1974]. The adopted system model is
xy = f(X,t) . Gouw -, (5.75)
and u, is modeled over each interval [t,,t,,,] between obgervations as

uy = u, + B (t-t,) (5.76)

where B, is a sequence of random variables with fixed a priori uncertainty.



The discrete state equations of the form
Xpr = F(Xy,uy) Lh=t=t,, . (5.77)
‘are augmented by
Wey = uy + By (t1+; -t,) - (5.78a)
Bixr = By (By=10 for t, =< t—s tiﬂ') (5.78b)

and the problem is solved with the help of the extended Kalman filter
algorithm.
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6. SUMMARY AND RECOMMENDATIONS

The objective of this work has been twofold: First, to clarify the
Iilathemaﬁcal and probabilistic background of standard linear estimation
techniques used in geodesy apd to reveal their interrelationship. Secondly,
to address what we.considered to be the two most important estimation
problems in geodesy: the norm choice problem in gravimetric collocation,
and the adaptive determination of the stochastic models for not-directly
observable physical processes,

Linear least squares adjustment and linear least squares prediction
have been shown to reduce to linear best approximation problems. In the -
former, the observations are best approximated from elements c_>f the
"model space, ' while in the latter, the unknown parameters are best
approximated from elements of the 'data space." Probabilistic concepts
in least squares adjustment have been shown to refer only to the definition
of the metric for the approximation, while in least squares prediction the
structure of the approximation space itself (space of second~order random
variables) in addition relies on probabilistic ideas. However, for the case
of Hilbert space valued random variables, least squares prediction has been
related to deterministic (exact) collocation. Estimate optimality criteria
(minimum error bounds) have been identified for the single parameter predic-
tion as opposed to the global minimum norm solution for the unknown fumction,

Kalman-Bucy filtering techniques have been shown to reduce in the .
case of discrete observations to least squares.adjustment (for filtering-
smoothing) and least squares prediction (for prediction), .

The use -of stochastic models has. been investigated for th_e two most
important physical processes related to geodetic wo’rk: the gravity field

and the rotation of the earth. Motivated by Lauriizen's proof of nonergodicity
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for the gravity field of the earth, a deterministic criterion for optimality of
related predictions ‘has been introduced leading to a proposed solution of the
optimal norm choice problem in (exact) collocation. In the case of ‘the rotation
of the.earth, the relation of stochastic models for polar motion and diurnal
rotation to those for the excitation function has b’een shown, . through the use

of the linearized Liouville -equation for both cases:with and without damping.

. The possibility of construecting simple stochastic models from white
noise has been explored, and the conditions for stationarity of thé output of
first;or-der autoregressive models, excited by white noise, have been
established.

The Dynamic Model Compensation algorithm has been generalized,
and its adaptive structure and inherent approi(irﬁations have been clarified,
Other possibilities for e\t;iaptivcly estimatingqboth s,t-ate and unknown cffects
on dynamical systems and the nature of the optimality of such estimates
have been explored, - .

"Of course a great deal has yet to be done both with respect fo.
gravimetric problems and to the adaptive estimation in geometric-
dynam{c geodesy.

The computational feasibility of obtaining an optimal model covariance
or norm, ‘using minimum error-bound criteria, remains fo be demonstrated,
A way must be found to include the effect of observational errors.

Adé,ptive'estimation techniques, because of thei_r"vary nafure
{(adaptivity to observational evidence), can only be compared and justified in
comnection with real problems. The success of the Dynamic Model Compensa-
tion algorithm in estimating unmodeled accelerations on satellites encourages
the use of this and similar adaptive algorithms, cspecially for VLBI observa-
tions when esi:imating the unknown excitation function giving rise to earth

rotation,
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