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CORRELATION OF AH-lG FLIGHT VIBRATION DATA
AND TAILBOOM STATIC TEST DATA WITH

NASTRAN ANALYTICAL RESULTS*
i

By James D. Cronkhite, Henry E. Wilson,
and Victor L. Berry

Bell Helicopter Textron

1. SUMMARY

This report includes the results of two studies to correlate j
a NASTRAN analysis of the AH-lG helicopter air frame structure.}
The first study is the comparative evaluation of the analysis
for calculating level flight airframe vibration at main rotor
excitation frequencies. The second is the comparison of a
NASTRAN tailboom analysis with test data for evaluation of
methods used to determine effective skin in a semimonocoque
sheet-stringer structure. These . studies are a continuation of
two earlier programs in which a NASTRAN airframe model was
developed and then compared to static stiffness and vibration
tests (References 1 and 2).

f-1-igh-t— v-i-bration—eo-r-re-1-ation-- involved -eompa-r-i-son— of— leve-1--;
flight vibration for two helicopter configurations: clean wing,
at light gross weight and wing stores at heavy gross weight. <
Vibration response was compared at main rotor two-, four- and j
six-per-rev frequencies for airspeeds of 60 to 140 knots.
There was good agreement of the vertical vibration at two-per-
rev, the. predominant excitation frequency of the Bell two-
bladed rotor. Four- and six-per-rev correlations were fair. i

Measured main rotor hub accelerations and control loads were !
used to excite the NASTRAN model. Some problems that were :

encountered in the method of applying hub accelerations as i
excitation are/ discussed. In particular, the vertical (axial)
stiffness modeling of the main rotor pylon in the NASTRAN
analysis was found to be very critical. i

In the. tailboom correlation, deflections and internal loads |
were compared using static test data and a NASTRAN analysis. i
An iterative procedure was used to determine the amount of
effective skin of buckled panels under compression load.
In general, comparison of internal loads and deflections from
analysis agreed well with test, the analysis being slightly.
stiff er. Stresses did not compare as well and were strongly
dependent on the appropriate cross , sectional area that was
used in the analysis.

-*-T-he--contract re-search effort--wh-ich-has- lead—to—the—resul-ts
in this report was financially supported by USAAMRDL (Langley
Directorate).



2. INTRODUCTION

A NASTRAN model of the AH-1G helicopter airframe was developed
under Army Contract DAAF03-73-C-0122. The model was to be
suitable for representing the low frequency vibration charac-
teristics of the airframe with complete documentation so that
government personnel could independently make changes to the
model and use it for in-house analyses. The resulting model
is documented in Reference 1 and is shown in Figure 1.
Briefly, the fuselage and wing 'structures are built-up ideali-
zations using primarily rods and shear panels in the bending-

i sections. The tailboom is idealized as an elastic line using
bar elements.. The main rotor pylon is modeled as an elastic j
line using bar elements with scalar springs at the elastomeric:
mount attachments to the fuselage. The number of degrees of
freedom in the model was reduced to about 250 by the Guyan j
reduction to produce an acceptable analysis size for the '
Givens eigenvalue solution. ,

Following development of the NASTRAN model, static testing of ,
the AH-1G fuselage, wings, tailboom and vertical fin was done

I to verify the stiffness modeling that was used-. Shake testing
| was also done in order to verify the,vibration response charac-
-te-r-i-s-t-i-cs—(-i-nciud-ing—both— stiffness- and- mas ŝ ef feets~)~r—The ,
iresults of the comparison.of the analysis with the static and I
vibration tests is presented in Reference 2. In general, the ;
| agreement between the vibration analysis and test was good '
through main rotor four-per-rev (21.6 Hz). However, there

1 were significant differences in pylon rocking natural fre- !
;quencies and damping that could be important in the flight ;
[vibration correlation where main rotor excitation is used.

[This study, involves correlation of the AH-1G NASTRAN model with
jin-flight vibration test data collected under an AH-1G opera- j
tional load survey (Eustis Contract DAAJ02-73-C-0105). In- !
flight vibration at main rotor, two-, four-, and six-per-rev ;
excitation frequencies is compared to the NASTRAN analysis.
Hub accelerations and control loads are used to excite the j

i model. |

In addition to flight vibration correlation, deflection and i
internal load data from static tailboom tests are compared
with a NASTRAN analysis. The purpose of the tailboom test
correlation study is to better quantify the effects of buckled >
skin under compression loading ,on the stiffness and internal
loads of the semimonocoque tailboom structure. Rather than
use the elastic line model of the tailboom, a built-up NASTRAN
tailboom model was developed for the analysis. This was ;



considered necessary so that the many load paths that were
instrumented in test were represented in the model for direct
comparison.

In the previous tailboom static test .comparison, the NASTRAN
elastic line model agreed well with measured deflections.
The tailboom stiffness properties for the elastic line model
were calculated by considering the skins as fully effective.
This is not totally accurate since the tailboom is of semi-
monocoque sheet-stringer design. This type of design compen-
sates for skin buckling and the- corresponding reduced element
areas at stress levels near the limit design stress. Since
this analysis is based on stress levels resulting at Ig level J
'flight conditions rather than 3.5g limit conditions, considera-
tion of the skins as being fully effective is believed accurate
However, better procedures for determining the effective skin
should be developed to determine the stiffness of sheet metal
panels under various loadings for use in dynamic analysis. !
This study is a step in that direction since current methods j
are evaluated by comparison with test. !

3. FLIGHT VIBRATION CORRELATION

3.1 FLIGHT VIBRATION TESTS• ' ' i

The flight test data used for correlation of the NASTRAN ;
analysis was taken under the AH-1G operational load survey, '
| Eustis Contract DAAJ02-73-C-0105. Details of that program '
are given in Reference 3. The helicopter used in the tests '

:is shown in Figure 2. '

iLevel flight vibration data were selected for two configura-
tions: clean wing at aft eg and wing stores at mid eg. The

• clean wing configuration used was Flight 35A which was 3768 kg
i (8300 Ib) gross weight at aft eg. After selecting Flight 35A,
there was found to be a problem in obtaining airframe vibration
'data for that configuration. Data from Flight 34B (comparable
to Flight 43 in Reference 3) was then used. Flight 34B is a
clean wing configuration at mid eg and is considered comparable
to Flight 35A. The wing store configuration that was selected
was Flight 36A which was 4086 kg (9000 Ib) gross weight at mid
eg. Wing stores used in Flight 36A are shown in Figure 3.

iLevel flight vibration data were taken at six airspeeds for
each configuration. The airspeeds flown were the following:



Configuration

35A Clean wing at aft eg

36A Wing stores at mid eg

Airspeed (knots)

1

67

61

2

85

76

3

101

95

4

114

108

5

128

120

6

142

134

Measured hub accelerations and boost cylinder control loads j
were used as excitation in the NASTRAN analysis. Locations '
of the. hub accelerations and boost cylinder control loads that
were instrumented in test are shown in. Figure 4. Two-, four-,
and six-per-rev hub accelerations and corresponding boost cylin-
der control loads are tabulated in Appendix A.

Airframe accelerations were recorded and harmonically analyzed
for comparison with the NASTRAN analysis. Airframe locations
of. accelerometers used in the flight tests are shown in Figure
5. Main rotor two-, four-, and six-per-rev harmonics of the
acceleration data are presented in Appendix B as plots of
magnitude versus fuselage station. The mode shape data that
are shown is phase related to the maximum nose responses.

3.2 NASTRAN ANALYSIS

I A discussion of the NASTRAN analysis that was used for com-
parison with flight vibration test data is included in this

! section. In addition to the forced response analysis, a
.discussion of two problem areas that were studied is also
I included. The problem areas were, first, the effect of pylon
j vertical stiffness on vibration response when using enforced
hub accelerations and, second, -the effects of pendulum

; stiffening, elastomeric mount stiffness and pylon mode damping
ion the isolation of moments into the fuselage.
I
|3.2.1 Forced Response Analysis :

The NASTRAN airframe model shown in Figure 1 was used in the
forced response analysis. The model useful weights were t
changed to correspond to the two configurations that were flown.
The wing stores for the. Flight 36A condition were modeled as l

rigid bodies with rigid (stiff bar) attachments to the wings.
The useful weights for the two configurations are listed in
Tables I, II, and III. The airframe natural frequencies are
given ,in Table IV.

Measured hub accelerations and boost cylinder control loads
were used to excite the. NASTRAN model. The measured data is
| tabulated in Appendix A. Hub accelerations were applied to



the NASTRAN model using a big hub mass of .454 x 107 kg (107

Ib). The big hub mass was excited- with the force required to
give the mass the measured 'g1 acceleration. For example, a
force of 4.448 x 107 N (107 Ib) is required to produce a Ig
acceleration of the .454 x 107 kg (107 Ib) hub mass. The size
of the mass is arbitrary but must be large enough so that it
is not influenced by the airframe response, i.e., the response
to the applied input force is the only significant response
of the. big hub mass.

j The boost cylinder control loads were applied to the NASTRAN
I model at the locations shown in Figure 4. The boost cylinder !

support beams were modeled using bar elements. The support
ibeams distribute the.control loads to the airframe and should
!not affect the local structural stiffness.

'The two-, four-, and six-per-rev responses were computed using
I the NASTRAN rigid format 8, Direct Frequency Response analysis
in NASTRAN. Two percent damping was used. This was input by
setting PARAM G equal to .04. The G parameter is considered

i as two times the percent critical damping at the natural fre-
quency. The analytical results are compared to measured data

i in Appendix B. The results of the comparison of analysis and
! test are discussed in Section 3.3.

3.2.2 Effect of Pylon Vertical Stiffness for Applied
Hub Accelerations

The vertical hub accelerations were found to be much smaller
than the horizontal hub accelerations, about a factor of
40 to 50 at high airspeeds. This is illustrated in the plot
of two-per-rev hub accelerations in Figure 6. The difference
in hub component accelerations is caused by the stiff vertical
load path into the airframe through the mast transmission
case and lift link. The pylon rocking motions are reacted
by soft elastomeric mounts resulting in the hub being much
softer horizontally than vertically. A sketch.of the pylon
mounting is shown in Figure 7,.

When applying the hub accelerations using a big hub mass as
described in the preceding section, the hub is essentially
pinned to ground. The resulting loads that can develop..in the
pylon due to response of the airframe are not controlled and
could become very large, especially in the vertical direction.
The vertical hub response shown in Figure 6 is on the order
of .04g to .05g, or about .0001 m (.004 in) deflection:.at two-
per-rev (10.8 Hz). Horizontal deflections are on the order of
.005 m (.20 in). A difference of a few ten thousandths of a
meter deflection in the vertical direction would have a tre-
mendous effect on the relative vertical response with negli-
gible effect in the horizontal direction.



When coupling the hub accelerations to the NASTRAN model, it
was found that the vertical stiffness of the pylon was very
important to the computed airframe response. The sensitivity
of the two-per-rev airframe response to changes in the axial
s.tiffness of the pylon is shown in Figure 8. The low response-
condition shown in Figure 8 results from the original rigid
modeling of the pylon in the vertical direction. The high
response condition was for an arbitrarily soft spring rate of
175 x 105 N/m (105 Ib/in) to assess the effect of pylon vertical
stiffness. The response difference is more than an order of
magnitude. After observing this, it was obvious that axial
deformations of the pylon which were originally considered j
negligible were in fact extremely important to the airframe <
response. j

Calculations of the actual pylon axial stiffness were made. j
The vertical spring rate that was calculated was 770 x 10§ N/m|
(4.4 x 105 Ib/in). Two-per-rev response for this spring rate
is shown in Figure 8. This spring rate includes the stiffness
of the mast, thrust bearing, upper transmission case, side case
and lower case. Resulting stiffnesses for the pylon components
and a schematic of each is shown in the cutaway sketch in '
Figure 9. The spring rate was represented in the NASTRAN
model by making the axial stiffness of the bar at the top of
-the—ma-s-t—eq-ua-1—to—the eaieuiated- -pylon spring rate^ '

The sensitivity of the airframe response to the vertical
(axial) stiffness of the pylon results from the method of
applying hub accelerations which does not limit the load to
the pylon. The load applied at the hub comes from the main
rotor and will be limited between a cantilevered (highest
load) and a free (zero load) boundary condition on the rotor
hub. The use of hub shear loads rather than hub accelerations
should be a more representative method of applying excitation
in the NASTRAN analysis, at least in the vertical direction.

With helicopter isolation systems that provide vertical
isolation as well as horizontal, such as the "nodal beam"
(Reference 4), the problem of extreme sensitivity to small
deformations is not expected. For these systems, two-per-rev
vertical deformations at the hub are the same order of magni-
tude as the horizontal hub deformations. . ;

For all conditions used in the correlation study and plotted i
in Appendix B, the 770 x 10s N/m (4.4 x 10s Ib/in) spring rate :

was included.



3.2.3 Effect of Pylon Damping and Stiffness Parameters

The pylon was represented as a linear elastic model with scalar
springs representing the translational stiffness of the elasto-
mer ic mounts (see Figure 7). Two percent modal damping was
selected for all modes since that value was considered repre-
sentative of the damping of predominant airframe modes of the
helicopter. In the vibration testing of Reference 2, it was
found that the natural frequencies and damping of the longitu-
dinal and lateral pylon rocking modes were both higher than the
NASTRAN analysis. It was therefore surmised that some known
stiffening and damping effects should be incorporated .into .the
pylon model in Border to evaluate their influence on two-per-
rev airframe vibration. Two-per-rev (10.8 Hz) is the most
significant rotor harmonic since it is closest to the pylon
rocking modes which are below 5 Hz. Effects of near resonance,
amplification and damping decrease as the forcing frequency . •'
becomes further removed. I

I

! The known pylon stiffening and damping effects considered are !
! the following:
i
| - pendulum stiffening due to rotor thrust,

el-a-stomer-ie—mount—cock-ing•—(-rot-a-t-ion-ai-) s-tif fness-ji—and —

i- 10 percent damping of the pylon rocking modes.

The pendulum stiffening of the pylon is controlled by the rotor
thrust at the hub. When the pylon rocks, the Ig rotor thrust at
jthe hub produces a restoring moment. This effect was analyzed in
| NASTRAN using a DMAP alter. The alter allowed addition of the
I differential stiffness matrix from a static load condition with
Ig rotor thrust to be added to the structure stiffness matrix.!
The resulting stiffness matrix was then used to determine the i
pylon natural frequencies and airframe frequency response using
rigid format 11. I

A simplified model was used for the NASTRAN analysis. The
elastic pylon model was attached to a rigid body fuselage to
evaluate the differential stiffness effect on pylon isolation
at two-per-rev. The fuselage was attached to ground by
soft springs in order to perform the static analysis. The
springs were soft so as not to affect the pylon rocking fre-
quencies. In addition to the pendulum stiffening, measured
cocking spring rates of .113 x 10s N-m/rad (105 in-lb/rad) 'were
added to the elastomeric pylon mounts which were represented by
only the mount translational spring rates in the airframe model.
Also, ten percent modal damping was used in the analysis as



jindicated from the measured frequency response in Reference 2.
This model was then compared to the original pylon model with-;
put the stiffening effects and using two percent modal damping',
A comparison of pylon rocking frequencies is given below. I

Mode

Pylon Pitch (Longitudinal)'

Pylon Roll (Lateral)

Natural Frequency (Hz)

Baseline

3.215

3.357

Stiffened

3.308

3.621

The comparisons of the frequency response of the fuselage eg
iare shown in Figure 10. Roll response to a lateral hub shear
iand pitch response to a longitudinal hub shear are presented.
! Although the responses are shown to be quite different near
I the pylon rocking frequencies, the responses at two-per-rev
ido. not differ.significantly. Therefore, the stiffness and
1 damping effects discussed in this section are not considered
' significant in the flight vibration correlation and are not
included in the NASTRAN airframe analysis.

3.3 COMPARISON OF TEST AND ANALYSIS

In this section, the results of the comparisons between measured
I and calculated flight vibrations at main rotor two-, four- andi
six-per-rev frequencies are discussed. In Appendix B the
data from flight test and the NASTRAN analysis is overlayed ,

! on plots of acceleration (g's) versus fuselage station. ;
i Both maximum amplitudes and "mode shapes" (forced response) j
are shown. The harmonic, direction, configuration and air-
speed for each comparison plot is listed in Table B-l in
Appendix B for reference. ;

i Both qualitative and quantitative methods are used for evalu-
ating the comparisons between measured and calculated flight
jvibration data. Following the discussion of results in Section
3.3.3, a qualitative assessment of the analysis for design is ;
given. Quantitative comparisons of the vibration data are j
given in Appendix C.

3.3.1 Guidelines for Evaluating the NASTRAN Analysis :

The following criteria are suggested as necessary to evaluate
consistency between test and analysis:



1. The frequency range of validity of the NASTRAN model:

Results of the vibration test comparison in Reference
indicate the airframe analysis agrees quantitatively
well through four-per-rev (21.6 Hz) but differs signi1

ficantly in the frequency range proximate to four-
and through six-per-rev. The magnitudes and phases
of responses at the. main rotor harmonics are most
important.

2. The accuracy of the test data used for the purposes
of correlation:

No rationale is available to place weighting factors
of importance on any of the transducers used in the
flight test. Poor locations of accelerometers and
their local effects cannot be ascertained.

3. Suspected NASTRAN modeling deficiencies:

The effect of the noseboom, downwash impingement, |
simplified modeling of the elevator, pylon dynamics, I
structural damping and elastomeric nonlinearities '
are typical influences.

3.3.2 General Comments on Vibration Characteristics of the I
AH-1G Helicopter , j

i
Two-per-rev is the predominant excitation frequency of the Bell
two-bladed rotor. The loads are higher and, consequently,
the response is normally higher than the four- and six-per-rev ,
harmonics. The loads increase with airspeed and coupling
between the in-plane and vertical response becomes more signi-
ficant. Large percentage errors in low response levels are.
not considered important. The ability to predict high responses
is considered essential if fatigue damage and annoying vibra- i
tion environments are to be assessed. ,i

3.3.3 Discussion of Results ' i

Comparisons between the calculated flight vibration responses
and test are presented in Appendix B. Possible explanations
for poor correlation (large percentage errors) are discussed
below.

3.3.3.1 Vertical Responses

1. Two-per-rev

For both the clean wing and wing stores configura-
tions, there is general agreement of the harmonic



amplitudes between analysis and test. The trends
of response with airspeed are consistent with
tion of the highest airspeed. In these cases the
forward fuselage response predictions are signif i-: .. .
cantly lower than test. The vibratory hub shears in
the horizontal directions increase more than the
vertical hub shears at the higher airspeeds (refer to
Figure 6) , and the idealized NASTRAN pylon may be
isolating pitching moments due to the horizontal
shear better than test indicates. Also, the noseboom
that was on the test helicopter (see Figure 2) but
not in the NASTRAN analysis may be affecting the nose
response.

2 . Four-per-rev

For both flight test configurations, the NASTRAN
response is extremely high compared to flight test.
The four-per-rev vertical resonance introduced by i
the big hub mass is a possible source for these i
large differences. This big hub mass constrains the ,
hub and produces a vertical bounce mode of the fuse-
lage on the pylon axial spring. The resulting verti-
cal hub shear at the top of the mast is 14233 N

--- (-3-2-00— ib-)-. - The— expected- -vertical loady- using— the— in--̂ :
flight vertical vibration at the hub and the indicial
vertical hub response from Reference 2, is 1388 N
(312 Ib) . This ratio of applied vertical load to
expected vertical load reduces the response by a
factor of ten. The reduced responses agree much
better with test. This supports the hypothesis dis-
cussed in Section 3.2.2 that hub shears instead of
hub accelerations are a more practical means of
exciting the model in the vertical direction.

NOTE:. The expected vertical' load was calculated
as follows: . -. : ' . ' . . ;

Vibration test .000045 g/N
vertical hub response • = , nnm ~/IK\
(Reference 2,. page 117) : . ('0002 g/lb)

resp°nse = .077g = .75 m/s2at 142 knots ^

Rotor weight = 430 kg (947 Ib)

/
10



Vertical load = [,077g -r .000045 g/N]

- 1430 kg x .75 m/s2]

= 1388 N (312 lb)

Assuming that the method for -reducing the~ NASTRAN
responses -is -feasible-;- the-- following -commerrts- "apply.
•Although the -percentage -error rs not small', the pre-
dicted responses are the ~same -order "of 'magnitude as
the measured response with better agreement at the
higher airspeeds. ' The, trend with airspeed for the
clean wing configuration is poor as indicated by
the apparent scatter, in the data. For the wing stores
configuration, the overall trends of response with
airspeed agree well, with analysis being somewhat
higher at the high airspeeds. !

i
The frequency response data of Reference 2 indicates >
some degradation of correlation near four-per-rev. ,
The method of applying hub excitations introduces
an artificial vertical resonance. For these reasons,
the lessened degree of correlation at the four-per-

Additional analyses and ground tests appear necessary
to confirm these suspected deficiencies.

In general, the four-per-rev response levels are
significantly lower than the two-per-rev responses.
For purposes of design these differences between
analysis and test may be of little consequence.

Six-per-rev

The overall predicted xesponse levels are the same
order of magnitude as test.- The most significant
differences occur along the tailboom and the vertical
fin. The higher measured elevator response is con-
trolled by the. elevator natural frequencies. The
NASTRAN elevator model is a simplified elastic line
representation with very few degrees of freedom
remaining in the analysis after the Guyan reduction.
The calculated elevator natural frequencies are 42 Hz
for the symmetric bending mode and 47 Hz for the
asymmetric bending mode. The test data indicate
this mode to be closer to six-per-rev. Improved
correlation may be possible by a more detailed
representation of the. elevator model in NASTRAN.

11



The frequency response data of Reference 2 indicate
significant differences at the six-per-rev main rotor
harmonic. Consequently, any agreement for this
flight vibration correlation study is difficult
to assess. The six-per-rev responses are, in general',
lower than the two-per-rev responses except along the
tailboom. Although the percentage errors are large,
the trend in terms of response magnitude was pre-
dicted. These differences between analysis and test •
may not be important for design. j

. I
3.3.3.2 Lateral Responses j

1. Two-per-rev .

The correlation between analysis and test is poor,
especially at the tail. The predicted responses are
considerably lower than test. These significant
differences are important in design since NASTRAN
underestimates the order of magnitude and trend
characteristics necessary to structural fatigue and
vibration isolation assessments.

The large differences may result from main rotor
downwash—exciting—the - tail" -fin—laterally-; rn~add±=—
tion, the idealized NASTRAN pylon may be isolating
rolling moments due to in-plane hub shears better
than test indicates. i

The frequency response data of Reference 2 is insuffi-f
cient.for excitation at the main rotor hub and suspect.
Additional analysis and test is necessary to resolve
this problem.

i
2. Four-per-rev :

i
While the two-per-rev responses were underestimated, '
the predicted four-per-rev responses are signifi-
cantly higher than test. Strong coupling between
the lateral response and the artificial vertical !
pylon bounce mode resonance that was discussed '
earlier may explain these differences for the clean
wing configuration. However, this trend is not
present for the wing stores configuration, indicating:
the vertical pylon bounce mode has shifted between
the two configurations. The data of Reference 2
indicate NASTRAN is consistently higher than test.
Additional analysis and test is required to properly
assess these differences. It is considered an

12



important design requirement to predict low responses;
as well as high responses if fatigue damage and vibrar
tion isolation are to be properly assessed.

3. Six-per—rev
t

For the clean wing configuration the predicted
responses are generally higher than test except at
mid and high airspeeds where the measured elevator (
and tail responses are higher. An elevator asymmetric
mode near six-per-rev is suspected. This mode pro- J
duces torsion in the tailboom which in turn causes '
high lateral responses .at the tail. j

For the wing stores configuration the vibration levels
are much lower for both test and analysis. j

i
The frequency response data of Reference 2 indicates i
significant differences between NASTRAN and test
for six-per-rev. Consequently, any agreement for :

this main rotor harmonic may be fortuitous.

3.3.4 Qualitative Assessment for Design

-The—f o-l±ow in g—tabie—p re s e n t s -an- ove rai-1- qua 1 i-1 a t-i-ve—a s s e s-smen-t-
of the aforementioned flight vibration correlation results.
The impact of this study on design is emphasized. The resultsj
are considered adequate if response magnitude and trends
appear reasonable. The results are considered inadequate if
the response magnitude and trends cannot be:assessed because
of insufficient data.
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SUMMARY TABLE OF QUALITATIVE ASSESSMENT

Condi-
tion

CW

WL

CW

WS

CW

WS

CW

WS

CW

WS

CW

WS

Direc-
tion

V

V

L

L

V

V

L

L

V

V

L

L

Harm-
onic

2

2

2

2

4

4

4

4

6

6

6

6

Correlation

adequate

adequate

inadequate

inadequate

adequate

adequate

inadequate

adequate

inadequate

inadequate

inadequate

inadequate

NASTRAN
Problem area

nose at 142 kt,
low . .

hose at 134 kt,
low

response low
esp. at tail

same

response was
reduced by a .
factor of 10
based on loads

response high,
trend good with
airspeed

response very
high esp. at
tail

nose higher,
tail lower

mast higher,
elevator, tail
lower

same

same

sa.me

Explanation

pitch isolation,
noseboom

same

roll isolation,
main rotor
downwash on fin

same

artificial reso-
nance due to big
mass used for
hub accelerations

none

lateral coupling
with artificial
vertical mode
in resonance

none

suspect elevator
mode near 6/rev
in test

same

same

same

CW = clean wing
WS = wing stores
V = vertical
L = lateral
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4. TAILBOOM STATIC TEST - NASTRAN CORRELATION

4.1 INTRODUCTION

The objectives of this study were the following:

1. Static tests were to be conducted and stresses measured,
for comparison to stresses calculated using a NASTRAN
model of an AH-1G attack helicopter tailboom.

2. A NASTRAN model was to be made and the effects of
effective skin on the internal load distribution and
•deflections investigated.

3. The stresses calculated by the NASTRAN model were to be
compared with those measured from test.

4.2 STRUCTURAL DESCRIPTION OF AH-lG TAILBOOM AND VERTICAL FIN

The tailboom and vertical fin structure are shown in Figure 11.
The tailboom is bolted to the fuselage at four attachment
fittings located at the four main longerons of the tailboom
and the four main beam caps of the fuselage.

The tailboom is of semimonocoque construction having aluminum
|skins, stringers and longerons. The longerons and stringers
i are supported by bulkhead frames spaced down the length__of_ the
fboonuA"Ey~picaT~ cross" "section" of "the" tailboom" is shown~Tn~
Figure 11. The hinged tail rotor drive shaft cover on top of
the boom is assumed nonstructural.

The vertical fin has a two-cell cambered airfoil section with
two spars and a trailing edge strip. The hinged tail rotor
;drive shaft cover on the front of the fin is assumed nonstruc-
tural as well as the top portion of the fin which extends above
the 90-degree gearbox. A typical fin cross section is shown

I in Figure.11.

4.3 STATIC TAILBOOM TEST

The test was conducted with the tailboom cantilevered from a
support fixture with the tailboom centerline horizontal as
shown in Figure 12. Three separate shear loads were applied at
the ends of the tailboom: lateral right, lateral left, and ver-
tical down. Strain gages were installed in three different
bays near the forward end of the tailboom. Figure 14 and Table
V show the location of the gages. Some typical skin panel
strain gage installations are shown in Figure 13. Gages were
installed on stringers, longerons and skin panels. Load-stress
data were taken using an automated data recording systen. All
reference to direction in this report is with respect to a
forward facing position in the helicopter.
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4.3.1 Test Specimen

The tailboom and fin assembly used in this test is from an
:AH-1G helicopter, Ship No. 68-15048, obtained from Rock Island
Arsenal in Illinois, and is the same specimen used in a pre-
vious load-deflection test, (Reference 2). The tailboom in-
stallation is Part No. 209-030-800-7, (Reference 9). The '
flight history of the tailboom is unknown but no obvious struc-
tural defects were present. All cargo and inspection covers
were in place and secured for the test. The driveshaft and
cover were removed.

i

4.3.2 Test Loads
l 7

'Three separate loads were applied perpendicular to the tailboom
• centerline at Boom Sta. 227. Lateral right and lateral left
"loads of 5604̂  Njnaximum were appj-ied at Boom Sta. 227, W.L.
'61.10. A vertical down load of 4448 N maximum was applied
at Boom Sta. 227, B.L. 0.0. The lateral right and left loads
were applied in thirteen increasing increments with four de-
creasing increments- The- vertical down load was., applied in
ten increasing increments with four decreasing increments.

4.3.3 Test Fixtures

The tailboom was cantilevered from a support fixture with the
tailboom centerline horizontal as shown in Figure 12. The fix-
ture was bolted to the floor of the BHT Engineering Test Build-
ing with the tailboom mounted to the test fixture at the four
production fuselage attachment fittings.

Test.loads were applied to the tailboom using a hydraulic cy- :•
linder and hand pump with a calibrated pressure gage. A con-
tour fitting frame was attached to the tailboom at Boom Sta.
227 and load was applied through the frame. The applied load
was cycled from 0 to maximum at least three times before data
were measured. Data were then recorded for three separate ̂ .test
runs for each load condition.

'4.3.4 Instrumentation

Single active arm strain gages were installed at various loca-
tions on the tailboom with the axis of the gage parallel to
the tailboom centerline. Table V indicates the location of
the gages. Figure 14 shows typical gage installations for a
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skin panel. Other gages were installed inside the tailboom on
stringers and longerons.

Data were recorded automatically with a Hewlett Packard 9830A
data acquisition system. The strain level for each gage was
converted to stress using a conversion factor for aluminum
;based on a Young's modulus of E = 7.240 x lO^0 N/m2. It should
be noted that no correction was made to the indicated stress
due to changes in indicated strain caused by Poisson effects.
Results were printed out for each increment of load.

;4.3.5 Test Results

Data were .taken during three separate load applications for each
load condition. There was no significant difference between
iresults from each load application. The third load applica-
tion was selected for plotting, since any settling in the
'joints of the structure would have most likely occurred during
the first and second loadings. Plots of load vs. stress for
the tests are given in Appendix C.

4.4 NASTRAN ANALYSIS

To study the effects of effective skin and have an analysis to
-compare—to—the- test --data-/- -a—NAST-RAN model of the-AH-lG tailboom
was made. The test load cases were simulated with the model.

The results for the maximum test loads are given in Tables VI,
VII, VIII and IX.

4.4.1 Modeling Philosophy

The objective of the modeling of the tailboom was to provide
an analysis for evaluating the test data. To achieve good com-
parison between the test and analysis, the structural load
'paths must be correctly represented. These paths are a func-
tion of geometry and sectional properties of the structural
members. To meet this primary objective it is important that
the stiffness of the structure be accurately represented. Some
guidelines used in modeling are the following:

i

1. In the built-up modeling of the tailboom, grid points
are located at the intersection of panels. This is

: done because the axial members (rods) are generally
1 easier to relocate to the grid point than shear panels.

2. Skin panels are modeled with shear panels and are
assumed to carry no axial load. If the skin is un-
buckled or has some of itsi material effective, the
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area of the stringer or longeron is increased to
reflect the effective skin. The method used is dis-
cussed in section 4.4.2. j

3. The longerons and stringers are modeled with rod
elements that carry only tension or compression axial
loads, since their own bending stiffness is assumed
negligible compared to the section.

4. The ring bulkheads do not significantly affect the
bending stiffness of the overall tailboom. These
bulkheads are modeled with bending bars, with stiff-
ness in the plane of the bulkhead to preserve the lo- ;
cation of the axial members around the periphery.

4.4.2 Effective Skin

jAs disucssed in the previous section, the primary objective of ,
the NASTRAN model is to provide an analysis to accurately com-
ipare to the test data. To do this, effective axial load carry-
ing skin was accounted for by adding area to the stiff ener's
cross sectional areas. Each load case was run several times
to iterate to the correct amount of effective skin. The method
used for determining the portion of the skin panels which are
effective in resisting axial loads follow the procedure out-
lined in Reference 5, page 374, but with two notable excep-

These exceptions are:

1. The bending analysis of Reference 5 uses the classical
approach based upon the assumption that plane sections
remain plane while resisting bending loads. The method
contained herein uses a finite element technique for
the bending analysis and as such assumes equilibrium
and continuity at the model element joints only. Sec-
tions which were originally plane in the unloaded state

i do not necessarily remain plane while resisting bend-
ing loads .

2. The bending analysis of Reference 5 includes some effec-
tive skin in the first iteration and adds additional

| effective skin for each successive iteration. The
i method used in this study assumes no effective skin for

the initial iteration but progressively adds the skin
areas which are calculated to be effective for each

' succeeding iteration.

To calculate the effective skin for each iteration, the follow
ing methods were used:
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The skin elements on the tension side of the neutral
axis are considered 100% effective in resisting axial
load. The area of these skins is distributed equally
to adjacent longerons or stringers. Also, at the
longeron locations where skin overlap occurs, the skins
between the longeron-to-skin attachments are assumed
to be 100% effective in both tension and compression.
An effective width of skin, W, centered on the line of
skin-to-stringer attachments can carry the same com-
pression stress as the stringer. Effective skin widths
W W0/ W_, etc., are shown on the typical tailboom cross

_L ^ o
section in Figure 16 and can be calculated by:

W = (2)(.85)

where W is the effective skin width on both sides of
a stringer, t the skin thickness, o-axiai the applied
axial stress of the attached longeron or stringer and
E is the modulus of elasticity of the skin material.
The remainder of the curved skin between axial members
carries a maximum compressive stress of:

crcritical
for AJ = .3 and < 500 (Reference 6

t page 389)

"critical = E(9(i)1<6 + O.ie^Hfor 500.< f <3000

and 0.1 <! < 3000

"critical = KE(§)2 f°r flat Sheet (R = °° >

where o~critical is the buckling stress of the skin
element, R the radius of curvature of the skin ele-
ment, .L'is the tailboom bay depth, K is a constant
and is 3.62 minimum and b is the distance between

1 axial members.

Thin curved skin between the axial members normally buckles at
a compressive load less than that required to buckle the axial
members. In this analysis, the curved skin is treated as an
element with varying effective area which depends on the ratio
of the curved skin's buckling stress, ^criticalt to the axial
member's stress, ^axial- Hence, the effective skin area,

for the buckled skin panels can be written,

Aeff = b't (^critical/°axial)
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where b1 is the width of the curved skin between the effective
skin widths W , W?, W_, etc., as shown in Figure 16.

4.4.3 NASTRAN Internal Loads Analysis

The first eight tailboom bays were examined using the NASTRAN
model. Since the test loads were applied to the bulkhead just
forward of the fin attachment, only the skins and stiffeners
forward of that point were considered in the determining of
the correct amount of effective skin.

; i
'The load cases first examined using the NASTRAN model were the j
{maximum loads obtained during the test. The load cases are:

: 1. 5604 N(1260 Ib) to the right
2. 5604 N(1260 Ib) to the left
3. 4448 NdOOO Ib) down

The loads were all applied at tailboom station 227.> The axial
iloads calculated for the stiffeners of the first eight tail-
boom bays for the first and final iterations along with the
initial and final stringer areas are given in Tables VI, VII
and VIII.

Variation in effective skin (stiffness) can result in a change
-i-R—the- -s-fe-r-i-ng-e-r—loads-. F-0-r— lateral -loading, -a differe-nee—o-f-
7% is found on the compression side, but for the down load, a
20% difference is shown on element 5 in bay 2. Figure 15 gives
the stringer numbering convention.

As the compression stresses in the skins increase, less skin
•is effective. To study the behavior of the tailboom as the
stress levels approach the material yield (advanced stages |
of post buckling), an 35584 N right load was applied to the
(NASTRAN model. However, this was not examined in test. The
(results are given in Table IX.

;4.5 COMPARISON OF TEST AND ANALYSIS

• 4.5.1 Stress Comparison

A comparison between the stresses measured in the test and the
stresses calculated in the NASTRAN analysis will full effective
skin is given in Table X. Each test load was applied three times,
The average of three readings are given as the test stress.

;In reviewing the comparison of the test and analysis stresses,
good correlation as well as poor correlation can be shown. For-
the right load, a difference of 35% is shown for element 4, the
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compression side, of bay 4 while a 37% difference is shown for
the tension side, element 10 of bay 4. Similar discrepancies
are observed for the left loading. The down loading had gener4
ally better correlation with the exception of the bottom string-
er, element number 6, which show a difference of 38% for bay 2,
0% for bay 3, and 26% for bay 4.

For this analysis, the skin was assumed to carry a constant . :
jload equal to the buckling load after buckling occurs. Upon
|examining the strain behavior of the buckled panels, an assump-r
jtion of the buckled panels carrying no load might give better ;
correlation between test and analysis.

4.5.2 Deflection

A comparison between the calculated and measured deflections is
j shown in Figures 17 and 18 for vertical and lateral load condi-^
jtions. Measured deflections are taken from Reference 2. De-
!flections with and without effective skin are given. The
effective skin analysis for the vertical deflection agrees well
with the test results. The lateral load case shows the NASTRAN
analysis to be stiffer than test. Figure 19 illustrates the
load-stress behavior for a buckled panel. The solid line
shows the load in the panel as it was assumed to behave for
-this analysis, constant—load equal-to the buckling load after —
buckling occurs. The dashed _line curve shows the post buckling
[behavior of the panel more realistically, with the stress
ifailing off with load. Using the method of calculating effec- i
tive skin presented in this report, a model that is too stiff
may result. This is probably why deflections for the lateral
•loading do not agree with the test results. Little buckling j
occurred for the vertical loading while there was considerable
ibuckling for lateral.
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5. CONCLUSIONS AND RECOMMENDATIONS

5.1 FLIGHT VIBRATION CORRELATION !|

Test data from an AH-1G operational loads survey (Eustis
Contract DAAJ02-76-C-0105) were compared to a NASTRAN analysis.
Measured vibration responses of .the airframe for level flight
|conditions were compared to a NASTRAN vibration model.
,Measured hub accelerations and control loads were used to
I excite the analytical model. The correlation was based;on j
j comparing vibration amplitude and mode shape curves at three i
imain rotor harmonics: two-, four- and six-per-rev. Guidelines
jused for evaluating the correlation were discussed and used ini
: judging the correlation.
i . '
I Conclusions from the flight vibration correlation study are asi
|follows: :
i

1. There was good agreement between calculated and
measured vertical two-per-rev vibration. This pre-
dominant excitation frequency of the Bell two-bladed

; rotor produces vibration levels that are normally
[ higher than those at the higher harmonics.

-2-i Lateral -two-per-rev "vibration levels were ~caTcula~te~d
to be much lower than those measured in test, pri-
marily at the tail. Poor prediction of roll isolation
from the main rotor pylon or main rotor downwash i
excitation on the fin are suspect.

i
3. Vertical stiffness of the main rotor pylon was ,

extremely important in. the-vibration analysis. '
This problem was caused by using hub accelerations
without control of the applied load. Since the
applied vertical hub acceleration was very small,
vertical deflections on the order of a few thousandths
of an inch had a significant effect on the applied
load. Pylon designs with vertical isolation, such
as the nodal beam, should not be as sensitive to
vertical deflections of the mast and transmission.

4. Pendulum stiffening due to rotor thrust, elastomeric
mount rotational stiffness, and increased pylon
modal damping were analyzed to determine..the effect
on two-per-rev isolation of the main rotor pylon.
The results of the analysis showed there was not a
significant effect at two-per-rev.
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5. Except for a resonance of an artificial mode at four-
per-rev caused by the method of applying hub accelera-
tions, calculated and measured four- and six-per-rev j
vibration responses agreed fairly well. It is not i
surmised that the accuracy of the analysis at these
frequencies can be judged, however, since the vibra-
tion response at these frequencies was not strongly
influenced by modes in close proximity to the forcing.
frequency. From the results of the vibration testing!
in Reference 2, the air frame vibration prediction ,
was quantitatively accurate through four-per-rev, \
but deviated from measured results significantly at !

six-per-rev. In addition, when exciting at the main
rotor hub through the pylon, the correlation obtained
was poorer than that obtained when exciting directly j
on the airframe. Considering these factors, the ,
agreement of four- and six-per-rev may have been '•
coincidental. More information is needed in order
to judge the NASTRAN analysis for prediction of
airframe vibration at these frequencies.

This study was a continuation of an organized program by the
Army to develop, document, correlate and evaluate a NASTRAN
analysis of the AH-1G helicopter airframe and determine its

prediet±ng~low ~f requency ~vibration"~respons"er

produced by rotor and weapon firing excitations. The results ;

to date are documented in References 1 and 2 and this report.

Recommendations for further investigations are as follows :

1. Investigate the effect of pylon dynamics on airframe
vibration by a combined analytical and test correlation
program.

i

2. Investigate the main . rotor two-per-rev downwash
environment on the AH-1G fin.

3. Investigate validity of . current rotor analyses for
prediction of two-, four- and six-per-rev excitation
for pylon/airf rame NASTRAN analysis. A valid analyti-*-
cal model of the airframe will not accurately predict
the vibration response of the airframe if the excita-
tion is not accurate. In addition, a convenient
method for measuring hub shears should be developed.

5.2 TAILBOOM STATIC TEST CORRELATION

The tailboom of the AH-1G Attack Helicopter was tested to
determine the effect of buckled skin panels on the stress
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distribution in the tailboom. Stresses were measured and com-
pared with stresses calculated using a NASTRAN finite element
model. The loads on the model were used to calculate effective
areas of buckled panels. These areas were then introduced [

back in the model and loads recalculated. This iteration and
procedure was repeated until the effective skin areas had
converged.

! Conclusions from the study are the following:
j
j 1. The built-up model with effective skin gives good ;
i deflection correlation.
i ^
; 2. Proper effective skins are needed to determine

internal loads accurately.

3. Stress correlation is fair, but can be improved by
better representation of discontinuities and effec- '
tive skin areas.

!As different effective skin calculations are investigated, ;
' the deflection correlation should improve. The method used
in this study was slightly stiffer than test. In the analysis

. presented, a panel was assumed to maintain its critical
-buck-ting--load—after—buckling-occurred. After "buckiringT however,
the load in the panel probably decreases as - the applied load
increases. This would tend to soften the tailboom.

As indicated by comparing the test results with the analysis,
better correlation in certain areas of the tailboom can be ;
!achieved. Discontinuities such as doors and shelves along
with incorrect effective skin attribute to the areas of poor
correlation.

'As a continuing study, two recommendations are offered.

1. Obtain test data from the tailboom for loads that
cause stresses in the tailboom to approach the material

I yield point. This will allow for examination of the !
; behavior well within the post-buckled region.

| 2. Investigate alternate effective skin equations.
; Better correlation between the analysis and test

must be achieved before drawing any definitive
I results as to the importance of effective skin in
i performing a stress analysis of the tailboom.
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APPENDIX A

MEASURED HUB ACCELERATIONS AND CONTROL LOADS

This appendix contains tables of measured main rotor hub
accelerations and boost cylinder control loads that were used
in the flight vibration correlation study for excitation in
the NASTRAN analysis. The data were measured under an AH-1G
operational loads survey (Eustiis Contract DAAJ02-73-C-0105)
for level flight conditions. The data were reduced so that
accelerations and loads at main rotor excitation harmonics
(two-, four- and six-per-rev) were obtained. Amplitude and
phase harmonics of the accelerations and control loads are
tabulated for six airspeed conditions and two configurations,
clean wing and wing stores. Airspeeds corresponding to each
flight condition are listed below.

Configuration

Clean wing at aft eg

Wing stores at mid eg

Airspeed (kt)

1

67

61

2

85

76

3

101

95

4

114

108

'5

128

120

6

142

134

TABLES

A-l Two-per-rev Hub Accelerations

A-2 Two-per-rev Boost Cylinder Loads

A-3 Four-per-rev Hub Accelerations

A-4 Four-per-rev Boost Cylinder Loads

A-5 Six-per-rev Hub Accelerations

A-6 Six-per-rev Boost Cylinder Loads

Page

26

27

28

29

30

31
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TABLE A-l. TWO-PER-REV HUB ACCELERATIONS

Gross .weight configuration/
true airspeed

3768 kg (8300 Ib) -
clean wing aft eg

67 kt

85 kt

101 kt

114 kt

128 kt

142 kt

4086 kg (9000 Ib) -
wing stores raid eg

61 kt

76 kt

95 kt

108 kt

120 kt

134 kt

Hub accelerations.
Fore-and-aft
Amp
(g)

0.839

0.968

1.014

1.281

1.538

2.063

0.771

0.865

0.993

1.119

1.434

1.893

Phase
(deg)

21772

224.5

227.3
1

215.6

208.8

216.1

341.3

329.6

329.4

320.3

315.4

307.0

Lateral
Amp
(g)

0.763

0.863

1.026

1.284

1.557

2.193

0.685

0.704

0.984

1.212

1.451

1.972

Phase
(deg)

121.1

122.3

126.1

120.1

110.7

118.4

254.5

242.4

231.6

227.5

225.2

211.9

Vertical
Amp
(g)

0.057

0.055

0.057

0.043

0.051

0.039

0.031

0.055

0.022

0.016

0.037

0.014

Phase!

(deg)

30.7

32.6

30.8

31. 4'

20.7

48.7'

147.8

137.6

145.5

102.4

119.3

126.8
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TABLE A-2. TWO-PER-KE

Gross weight configuration/
true airspeed

3768 kg (8300 Ib) -
clean wing aft eg

67 kt

85 kt

101 kt

114 kt

128 kt

142 kt

4086 kg (9000 Ib) -
wing stores mid eg

67 kt

76 kt

95 kt

108 kt

120 kt

134 kt

V BOOST CYLINDER LOADS

Boost Cylinder Loads j
Fore-and-aft
Cyclic

Amp
N (Ib)

1499(337)

1526(343)

1788(402)

1984(446)

2393(538)

3167(712)

1557(350)

1472(331)

1979(445)

2104 (473)

2166(487)

2842(639)

Phase
j(deg)

37.2

56.6
!

. 87.8-

167.2

225.3

.343.6

269.6

334.8

335.8

336.5

340.1

44.5

Lateral
Cyclic

Amp
N (Ib)

2197 (494)

2531(569)

2598(584)

2816(633)

3149(708)

3536(795)

1962(441)

2420(544)

2460(553)

2736(615)

3185(716)

3581(805)

Phase
(deg)

132.1

159.5

196.5

264.2

312.9

69.8

14.8

79.9

83.6

74.7

76.3

134.5

Collective

Amp
N (Ib)

1308 (294)

1681(378)

2491(560)

3487 (784)

4088 (919)

4270 (960)

1232(277)

1610(362)

2175(489)

2953(664)

3665 (824)

3990(897)

Phase
(deg)

I

308.1

333.9

0.9

77:i

139.3

263.1

205.1

269.3

254.7

253.2

262. 4

329. 8'

1
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TABLE A-3. FOUR-PER-'REV HUB ACCELERATIONS

Gross weight configuration/
true airspeed

3768 kg (8300 Ib) -
clean wing aft eg

67 kt

85 kt

101 kt

114 kt

128 kt

142 kt

4086 kg (9000 Ib) -
wing stores mid eg

61 kt

76 kt

95 kt

108 kt

120 kt

134 kt

Hub Accelerations
Fore-and-aft
Amp
(g)

0.304

0.269

0.498

0.753

0.950

1.193

0.249

0.286

0.436

0.448

0.365

0.564

Phase
|(deg)

156.4

92.3

130.8

160.6

154.9

168.8

1 89.2
1 93.5

217.2

303.2

352.7

318.0

Lateral
Amp
(g)

0.245

0.373

0.494

0.431

0.418

0.867

0.077

0.079

0.347

0.564

0.469

0.539

Phase
(deg)

47.1

28.2

57.6

67.6

41.0

43.9

0.3

225.6

225.9

231.7

247.1

196.6

Vertical
Amp
(g)

0.041

0.021

0.076

0.074

0.090

0.077

0.050

0.038

0.024

0.053

0.069

0.076

Phase
(deg)

i

216.2

102. 5j

125.2

128.5.

69.8

59.0

23.7

73.4

242.9

284.8

252.0

218.9;



TABLE A-4.. FOUR-PER-REV

Gross weight
configuration/
true airspeed

3768 kg (8300 Ib) -
clean wing aft eg'

67 kt
85\kt

101 kt
114 kt
128 kt
142 kt

4086 kg (9000 Ib) -
wing stores mid eg

61 kt
76 kt
95 kt

108 kt
120 kt
134 kt

BOOST CYLINDER LOADS

Boost cylinder loads
Fore-and-aft

cyclic
Amp

N (Ib)

102(23)
351(79) '
503(113)
374(84)
383(86)
280(63)

98 (22)
222 (50)
374(84)
427(96)
418(94)
360(81)

Phase
(deg)

310.1
5.2
97.9
247.7
347.4
251.8

183.6
218.5
249.6
252.5
246.0

8.8

Lateral
cyclic

Amp
N (Ib)

360(81)
632(142)
703(158)
485(109)
311(70)
236(53)

209(47)
498(112)
609(137)
431 (97)
423(95)
276(62)

Phase
(deg)

65.8
149.3
238.5
22.5
145.4
115.0

173.7
339.9
12.9
19.4
20.6
168.1

Collective

Amp
N (Ib)

142(32)
80(18)
196(44)
311(70)
276(62)
200(45)

142(32)
120(27)
76(17)
200(45)
200 (45)
196(44)

Phase
(deg)

299.0
11.0
351.6
144.2
267.2
163.8

50.8
230.9
101.9
132.9
150.8
267.9
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TABLE A-5. SIX-PER-REV HUB ACCELERATIONS

Gross weight
configuration/
true airspeed

3768 kg (8300 Ib) -
clean wing aft eg i

67 kt
85 kt

101 kt
114 kt
128 kt
142 kt

4086 kg (9000 Ib) -
wing, stores mid eg

61 kt
76 kt
95 kt
108 kt
120 kt
134 kt

Hub accelerations
Fore-and-aft
Amp
(g)

0.177
0.339
0.263
0.068
0.197
0.210

0.059
0.292
0.199
0.217
0.114
0.124

Phase
(deg)

337.5
23.4
60.1
353.2
7.2

42.7

336.4
247.8
4.8
50.7
41.6
4.9

Lateral
Amp
(g)

0.128
0.256
0.285
0.207
0.387
0.485

0.127
0.289
0.361
0.247
0.338
0.587

Phase
(deg)

307.5
356.3
351.3
301.1
268.2
305.9

226.0
248.2
251.2
241.0
226.3
203.8

Vertical
Amp
(g)

0.063
0.042
0.049
0.035
0.025
0.039

0.035
0.098
0.053
0.070
0.022
0.029

Phase
(deg)

241.3
203.2
145.1
168.0
13.0
15.1

12.6
106.6
23.4
40.7
31.0

201.8



TABLE A-6. SIX-PER-REV BOOST CYLINDER LOADS

Gross weight
configuration/
true airspeed

3768 kg (8300 Ib) -
clean wing aft eg

67 kt
85 kt

101 kt
114 kt
128 k6
142 kt

4086 kg (9000 Ib) -
wing stores mid eg

61 kt
76 kt
95 kt
108 kt
120 kt
134 kt

Boost cylinder loads
Fore-and-aft
cyclic

Amp
N (Ib)

67(15)
289 (65)
463 (104)
347(78)
396(89)
222(50)

120(27)
276(62)
334 (75)
245(55)
325(73)
418(94)

Phase
(deg)

345.
105.
177.
35.

190.
229.

238,
227,
188,
181.
196,
40,

6
8
3
6
6
9

4
9
5
2
0
3

Lateral
cyclic

Amp
L̂ N (Ib)

196(44)
436(98)
120(27)
93(21)
356(80)
476(107)

116(26)
387(87)
129(29)
182(41)
231(52)
414 (93)

Phase
L (deg)

334.2
92.3
201.3
252.8
35.5
75.0

248.4
170.0
301.5
8.8
39.5

251.7

Collective

Amp
N (Ib)

22(5)
62(14)

-. 67(15)
169(38)
205 (46)
320 (72_)

116(26)
173(39)
138 (31)
222 (50)
351 (79)
378(85)

Phase
(deg)

187.4
207.1
254.2
86.1
271.0
282.5

150.2
315.1
273.6
258.0
287.3
144.0



APPENDIX B

FLIGHT VIBRATION COMPARISON OF j
TWO-, FOUR- AND SIX-PER-REV RESPONSE 1

This appendix contains AH-1G helicopter flight vibration
comparisons of measured and calculated data. The measured
vibration data were taken under an AH-1G operational loads i
survey (Eustis Contract DAAJ02^76-C-0105). The calculated (
data came from the NASTRAN airframe vibration analysis. '

i Acceleration amplitudes and mode shapes are plotted in the
j figures for main rotor two-, four- and six-per-rev excitation ,
; frequencies at six airspeed conditions and for two helicopter
I configurations: clean wing and wing stores. Comparisons are
I made of vibration responses in .the vertical and lateral direc-,
1 tions. The .05g band indicated on the figures represents a
minimum error band for the measured data. The error band is '
1 percent of full scale. Full ,scale was 5g or higher for the

! airframe measurements recorded in the flight tests. Measure-
ments within the .05g band are not, considered highly accurate
for correlation purposes.

! The measured and calculated amplitudes can be compared directly
•-but—the—mode—shapes—can be -mis-leading ̂  The mode—shapes^ are
phase-referenced to a selected location on fuselage and all
responses are not generally at .maximum value at the same
phase angle as the referenced station. The mode shapes are
presented for comparison of the predominant shape in which the
airframe is vibrating. j

The comparison figures are listed in Table B-l. Figure number[,
harmonic, direction, configuration and airspeed for each i
comparison figure are tabulated to facilitate locating any |
particular condition.
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TABLE B-l. FLIGHT VIBRATION DATA COMPARISONS

U)
U)

Figure
Number

B-l
B-2
B-3
B-4
B-5
B-6
B-7
B-8
B-9
B-10
B-ll
B-12
B-13
B-14
B-15
B-16
B-17
B-18
B-19
B-20
B-21
B-22
B-23
B-24
B-25
B-26
B-27
B-28
B-29
B-30

Main Rotor
Harmonic

Two-pe

Two-pe
Four-f

;r-rev

;r-rev
>er-rev

Four-per-rev

Response
Direction

Vert

Vert
Late

Late
Vert

.iceLl

.ical
>ral

;ra!
.ic.

Vertici

L
al

il

Configuration

Clean

Clean
Wing

Wing
Clean

Clean
Wing

<

Wing
Clean

Wing

Wing
Stores

Stores
Wing

Wing
Stores

Stores
Wing

Clean Wing

Airspeed
;( Knots)

67
85

101
114
128
142
61
76
95
108
120
134
67
85
101
114
128
142
61
76
95
108
120
134
67
85

101
114
128
142



TABLE B-l. FLIGHT VIBRATION DATA COMPARISONS (Continued)

Figure
Number

B-31
B-32
B-33
B-34
B-35
B-36
B-37
B-38
B-39
B-40
B-41
B-42
B-43
B-44
B-45
B-46
B-47
B-48
B-49
B-50
B-51
B-52
B-53
B-54
B-55
B-56
B-57
B-58
B-59
B-60
B-61

Main Rotor
Harmonic

Four-per-rev

Four-per-rev
Six-per-rev

Six-per-rev

Response
Direction

Vertical

Vertical
Lateral

Lateral
Vertical

Verticcll
Lateral

!

Configuration

Wing Stores

Wing Stores
Clean Wing

Clean Wing
Wing Stores

Wing Stores
Clean Wing

Clean Wing
Wing Stores

1

Wing Stores
Clean Wing

Airspeed
(Knots)

61
76
95
108
120
134
67
85
101
114
128
142
61
76
95
108
120
134
67
85
101
114
128
142
61
76
95
108
120
134
67



! TABLE B-l. FLIGHT VIBRATION-DATA COMPARISONS (Concluded)

Figure
Number

B-62
B-63
B-64
B-65
B-66
B-67
B-68
B-69
B-70
B-71
B-72

Main Rotor
Harmonic

Six-per-rev

Six-per—rev

Respoi
Direci

Laterc

ise
:ion

il

Lateral

Configuration

Clean Wing

Clean Wing
Wing Stores

'•
Wing- Stores

Airspeed
. (Knots)

85
101
114
128
142
61
76
95
108
120
134

OJ
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Figure B-43. - Four-per-rev lateral response comparison
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Figure B-52. - Six-per-rev vertical response comparison
at 114 knots - clean wing.
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Figure B-53 - Six-per-rev vertical response comparison
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Figure B-61. - Six-per-rev lateral response comparison
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Figure B-64. - Six-per-rev lateral response comparison
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APPENDIX C

QUANTITATIVE COMPARISON OF TEST AND ANALYSIS

This appendix contains a quantitative comparison between
measured and calculated vibration data using a method suggested
by the contract technical monitor from the Army office at
Langley, Dr. F. D. Bartlett, Jr.

The relative accuracy between test and analysis is assessed
by calculating the. average or mean of the differences and
standard deviation of the differences for each set of data
presented in the figures of Appendix B. These values are
ratioed to the mean and standard deviation of the test data
as an indication of percentage error and are tabulated in
terms of airspeed and main rotor harmonic. The vertical and
lateral components of response are presented separately.
There is a table for each helicopter configuration. Each data
entry in these tables is calculated from the corresponding
figure in Appendix B.

The calculations used for determining the mean and standard
deviation are given below.

_ _

x = — 2^, x> ' where x. = value of ith data point

~ n = total number of data points

n(n - 1)

Note that for Ax and aAx/ x = |xtest - xcalculated
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TABLE C-l. VERTICAL TWO-, FOUR- AND SIX-PER-REV
RESPONSE COMPARISON - CLEAN WING -
CONFIGURATION

Main Rotor Two-per-rev, 10.8 Hz

Airspeed
(Knots)

67
85
101
114
128
142

Mean

Ax

.0360

.0229

.0605

.0998

.0753

.0854

XTEST

.1857

.1774

.2185

.2899

.3031

.3006

Ax/xTEST

.194

.129

.277

.344

.248

.284

Standard Deviation

°Ax

.0356

.0130

.0344

.0713

.0394

.0317

,aTEST

.1726

.1500

.1630

.2177

.2138

.1619

°Ax//aTEST

- .206
.087
.211
.328
.184
.196

Main Rotor Pour-per-rev, 21.6 Hz

Airspeed
(Knots)

67
85
101
•114
128
142

Mean

Ax

.3360

.0954

.5207

.3835

.8058

.9868

XTEST

.0925

.0634

.0613

.0712

.0672

.0891

Ax/xTEST

3.632
1.505
8.494
5.386
11.991
11.075

Standard Deviation

°AX

.3402

.0999

.4806

.4112

.8203

.9162

aTEST

.0714

.0510

.0221

.0221

.0275

.0553

°Ax//aTEST

4.765
1.959
21.747
18.606
29.829
16.568

Main Rotor Six-per-rev, 32.4 Hz

Airspeed
(Knots)

67
85
101
114
128
142

Mean

Ax

.0456

.1016

.0361

.0446

.0669

.0524

XTEST

.0348

.0236

.0582

.0753

.0580

.0354

' Ax/XTEST

1.310
4.305
.620
.592

1.153
1.480

Standard Deviation

aAx

.0412

.0574

.0330

.0405

.0718

.0707

-aTEST

.0107

.0170

.0363

.0436

.0192

.0159

CTAx/aTEST

3.850
3.376
.909
.929

3.740
4.447
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TABLE C-2. VERTICAL TWO-, FOUR- AND SIX-PER-REV
RESPONSE COMPARISON - WING STORES
CONFIGURATION•

Main Rotor Two-per-rev, 10.8 Hz

Airspeed
(Knots)

61
76
95
108
120
134

Mean

Ax

.0473

.0841

.0346

.0500

.0558

.0545

XTEST

.1826

.1953

.1779

.2291

.2683

.2724

Ax/xTEST

.259

.431

.194

.218

.208

.200

Standard Deviation

a .Ax

.0301

.0344

.0141

.0344

.0139

.0528

aTEST

.1705

.1767

.1431

.1770

.2121

.1803

aAx//aTEST

.177

.195

.099

.194 .

.066

.293

Main Rotor Pour-per-rev, 21.6 Hz

Airspeed
(Knots)

61
76
95
108
120
134

Mean

Ax

.0688

.0699

.0272

.0579

.1103

.1293

XTEST

.0748

.0812

.0421

.0392

.0296

.0505

Ax/xTEST

.920

.861

.646
1.477
3.726
2.560

Standard Deviation

%x

.0663

.0486

.0244

.0748

.1149

.1279

QTEST

.0422

.0484

.0216

.0232

.0164

.0349

aAx//0TEST

1.571
1.004
1.130
3.224
7.006
3.665

Main Rotor Six-per-rev, 32.4 Hz

Airspeed
(Knots)

61
76
95
108
120
134

Mean

Ax

.0263

.0411

.0348

.0200

.0226

.0414

XTEST

.0426

.0393

.0375

.0342

.0393

.0588

' AX/XTEST

.617
1.046
.928
.585
.575
.704

Standard Deviation

a .Ax

.0410

.0286

.0204

.0253

.0228

.0347

aTEST

.0396

.0315

.0235

.0134

.0184

.0319

aAx/aTEST

1.035
.908
.868

1.888
1.239
1.088
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TABLE C-3. LATERAL TWO-, FOUR- AND SIX-PER-REV
RESPONSE COMPARISON - CLEAN WING
CONFIGURATION

Main Rotor Two-per-rev, 10.8 Hz

Airspeed
(Knots)

67
85
101
114
128
142

Mean

Ax"

.0469

.0639

.0500

.0824

.1012

.2044

XTEST

.0700

.0902

.0836

.1192

.1397

.2573

Ax/xTEST

.670

.708

.598

.691

.724

.794

Standard Deviation

a .
Ax

.0407

.0861

.0611

.1422

.1781

.3329

°TEST

.0519

.0961

.0639

.1395

.1918

.3729

°Ax//aTEST

.784

.896

.956
1.019
.929
.893

Main Rotor Four-per-rev, 21.6 Hz

Airspeed
(Knots)

67
85
101
114
128
142

Mean

Ax

.0317

.1395

.2300

.0634

.1731

.2315

XTEST

.0605

.0544

.0422

.0531

.0282

.0815

Ax/xTEST

.524
2.564
5.450
l.*194
6.138
2.840

Standard Deviation

a .Ax

.0396

.1200

.1922

.0292

.1408

.1734

0TEST

.0515

.0471

.0354

.0668

.0234

.0705

aAx//aTEST

.769
2.548
5.429
.437

6.017
2.460

Main Rotor Six-per-rev, 32.4 Hz

Airspeed
(Knots)

67
85-
101
114
128
142

Mean

Ax

.0592

.0898

.0741

.0706

.1060

.1131

XTEST

.0360

.0397

.0654

.0873

.0710

.1097

' AX/XTEST

1.644
2.262
1.133
.809

1.493
1.031

Standard Deviation

aAx

.0498

.0815

.0589

.0912

.0684

.0710

aTEST

.0241

.0275

.0797

.0971

.0893

.1154

°Ax/'aTEST

2.066
2.964
.739
.939

, .766
.615
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TABLE C-4. LATERAL TWO-, FOUR- AND SIX-PER-REV
RESPONSE COMPARISON - WING STORES
CONFIGURATION

Main Rotor Two-per-rev, 10.8 Hz

(Knots)

61
76
95
108
120
134

Mean

Ax

.0642

.1097

.0775

.1077

.1153

.1404

XTEST

.0821

.1316

.1046

.1370

.1496

.1927

/̂̂ TEST

.782

.834

.741

.786

.771

.729

Standard Deviation

°Ax

.0674

.1481

.0865

.1424

.1834

.1981

aTEST

.0744

.1560

.0989

.1546

.2002

.2429

°Ax/aTEST

.906

.949

.875

.921

.916

.816

Main Rotor Four-per-rev, 21.6 Hz

Airspeed
(Knots)

61
76
95
108
120
134

Mean

Ax

.0319

.0294

.0297

.0374

.0250

.0424

XTEST

.0380

.0518

.0475

.0438

.0368

.0752

Ax/xTEST

.839

.568

.625

.854

.679

.564

Standard Deviation

°AX

.0280

.0302

.0224

.0249

.0202

.0296

aTEST

.0286

.0443

.0373

.0262

.0275

.0518

°Ax//aTEST

.979

.682

.601

.950

.735

.571

Main Rotor Six-per-rev, 32.4 Hz

Airspeed
(Knots)

61
76
95
108
120
134

Mean

Ax -

.0320

.0460

.0301

.0259

.0563

.0960

XTEST

.0362

.0535

.0427

.0346

.0660

.0951

' AX/XTEST

.884

.860

.705

.749

.853
1.009

Standard Deviation

aAx

.0477

.0512

.0243

.0198

.1072

.0994

aTEST

.0503

.0557

.0250

.0207

.1043

.1094

CJAx//aTEST

.948

.919

.972

.957
1.028
.909
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TABLE I. - WEIGHT SUMMARY - CLEAN WING

Item

• Basic ship

• Useful loads

(1) Fuel
(2) Pilot
(3) Gunner
(4) Ballast

• Total

Weight
kg (Ib)

2855 (6289)

740 (1630)
68 (150)
68 (150)
45 (100)

3777 (8319)

Fuselage Station
of eg

203.3

200.4
135.0
83.0

305.0

200.6

TABLE II. - WEIGHT SUMMARY - WING STORES

Item

• Basic ship

• Useful loads

(1) Fuel
(2) Pilot
(3) Gunner
(4) Ballast
(5) Ballast
(6) Wing

Stores
• Total

Weight
kg (Ib)

2855 (6289)

740 (1630)
68 (150)
68 (150)
23 (50)
68 (150)

295 (650)

4117 (9068)

Fuselage Station
of eg

203.3

200.4
135.0
83.0
40.0
75.0
196.3

196.2
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CTi

TABLE III. - WEIGHT "PARAMETER" "COMPARISONS

Parameter

Weight, kg (Ib)

CG: station
buttline
waterline

Inertia: roll, kg-m2

(inrin
2) ,

pitch/ kg-m2

(lb-in2)
yaw, kg-m2

(lb-in2)

j Configuration

Clean Wing Wing Stores
i . ||

NASTRAN !

3768 (8300)

198.34
-.0349
72.705

3511
(1.1983xl07)

17973
(6.1342xl07)

14942
(5.0997xl07)

Test II NASTRAN
_ _ _ _ _ll

3777 (8319)

200.6
-
-

-

4109 (9059)

194.09
-.0320
70.283

4044
(1.3802xl07)

188~40
(6.4300xl07)

15990
(5.4572xl07)

Test

4117 (9068)

196.2
-

—

-



TABLE IV - CALCULATED AIRFRAME NATURAL FREQUENCIES

1

! Mode
i
i
JVIain rotor pylon fore-and-aft
jrocking (pylon pitch)

Main rotor pylon lateral
rocking (pylon roll)

First fuselage lateral bending

First fuselage vertical bending

fekid

First fuselage torsion

Second fuselage vertical bending

Second fuselage lateral bending

Fuselage roll/engine lateral

Skid

Fuselage torsion/wing yaw

Wing asymmetric torsion

Skid

Third fuselage vertical bending

Main rotor mast lateral bending

Third fuselage lateral bending

Main rotor mast fore-and-aft
bending

Wing symmetric torsion

Skid

Fourth fuselage vertical bending

Fuselage torsion

Natural frequency, hertz
3768 kg-clean
wing-aft eg

2.987

3.866

7.121

7.969

14.572

16.032

17.221

17.783

19.273

19.834

21.879

-

23.431

25.153

25.591

26.529

27.099

-

29.104

32.264

34.013

4086 kg-wing
stores-mid eg

2.965

3.414

6.927

7.736

14.538

15.622

17.242

16.595

18.362

19.826

20.639

22.767

23.414

23.720

25.522

24.667

26.609

28.085

28.645

31.315

31.913
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TABLE V - LOCATION OF STRAIN GAGES FOR
TAILBOOM STATIC TEST

Gage
Channel
No.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Item to Which
Gage Attached

Stringer
Longeron, Upr, RH
Stringer
Stringer
Longeron, Lwr, RH
Stringer
Longeron, Lwr LH
Stringer
Stringer
Longeron, Upr, RH
Stringer
Stringer
Longeron, Upr, RH
Stringer
Stringer
Longeron, Lwr, RH
Stringer
L6 ng e r o n , Lwr , LH
Stringer
Door Panel
Longeron, Upr, LH
Stringer
Stringer
Longeron, Upr RH
Stringer
Stringer
Longeron, Lwr, RH
Stringer
Longeron, Lwr, RH
Stringer
Stringer
Longeron, Upr, LH
Stringer
Skin Panel

^kin Panel

Location in Tailboom Coordinates
W.L.

16.26
11.60
3.94

-3.80
-11.56
-16.30
-11.56
-3.80
3.94

11.60
16.26
14.95
10.77
3.72

-3.44
10.60

-14.99
-10.60
-3.44
3.72
10.77
14.95
13.65
9.93
3.49

-3.08
-9.64
-13.67
-9.64
-3.08
3.49
9.93
13.65
10.32
9.05
7.77
6.49
5.22
2.65
1.36
.07

-1.22
-2.51

B.L.

3.67
11.53
12.95
12.98
11.36
0.0

-11.36
-12.98
-12.95
-11.56
-3.67
3.67

10.61
11.92
11.94
10.45
0.0

-10.45
-11.94
-11.92
-10.61
-3.67
3.67
9.70
10.88
10.89
9.53
0.0

-9.53
-10.89
-10.88
-9.70
-3.67
Right
Contour

Right
Contour

Boom Sta.

69.97

\

69.97
90.91

90.91
112.85

112.85
69.97

69.97
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TABLE V (Cont'd)

Gage
Channel
No.

44
45
46
47
48
49
50
51
52
53

Item to Which
Gage Attached

Skin Panel

Skin Panel

Location in Tailboom Coordinates
W.L.

3.06
1.56
0.0

-1.53
-3.06
-4.06
-5.44
-6.75
-8.06
-9.37

B.L.

Right
Contour

Right
Contour

Boom Sta.

90.91

90.91
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Ele.
No.

Area
1

Load

Area
2

Load

Area
3

Load

Area
4

Load

Area
5

Load

Area
6

Load

Area
7

Load

Area
8

Load

Area
9

Load

Area
10

Load

Area
11

Load

Bay 1

BS 41-BS 60
Initial Final

.044 .327

-102 -238

.312 .703

-3255 -3666

.142 .439

-724 -583

.142 .480

-548 -497

.510 .865

-4332 -4051

.080 .454

38 -7

.436 .907

4216 3955

.142 .462

638 621

.142 .439

751 640

.446 .901

3214 3603

.054 .314

103 223

Bay 2

BS 60-BS 80
Initial Final

.044 .296

-106 -427

.312 .619

-2172 -2647

.142 .204

-1294 -1074

.142 .206

-1647 -1358

.431 .673

-3139 -3042

.080 .383

55 -37

.312 .670

2892 2842

.142 .316

1860 1611

.142 .312

1447 1298

.198 .559

1928 2420

.054 .299

174 414

Bay 3

BS 80-BS 101
Initial Final

.044 .281

-37 -3637

.312 .607

-1816 -2254

.142 .215

-873 -878

.222 .316

-982 -903

.332 .616

-2141 -2337

.080 .366

-7 -84

.312 .646

1926 2268

.222 .383

1100 1065

.142 .301

1088 1112

.198 .538

1396 2058

.054 .283

190 343

Bay 4

BS 101-BS 122
Initial Final

.044 .268

-36 -310

.312 .607

-1601 -1938

.142 .283

-802 -838

.222 .382

-1003 -1062

.312 .611

-1869 -2041

.080 .356

-48 -100

.536 .825

1718 2136

.222 .379

1117 1038

.142 .286

1057 974

.446 .749

1087 1862

..054 .266

245 2883

Bay 5

BS 122-BS 143
Initial Final

.044 .244

-38 -309

.292 .593

-1555 -1676

.142 .237

-1085 -979

.142 .322

-1494 -1494

.312 .658

-2332 -2155

.080 .499

-44 -60

.312 .687

2232 2215

.142 .325

1640 1446

.142 .307

1380 1129

.124 .433

1042 1562

.054 .294

255 322

Bay 6

BS 143-BS 164
Initial Final

.044 .228

-68 -352

.080 .353

-1420 -1359

.142 .290

-998 -987

.142 .305

-962 -1033

.312 .661

-2253 -2072

.080 .323

-33 -15

.312 .660

2186 2056

.142 .305

1055 1049

.142 .288

1229 1059

.124 .406

1020 1310

.054 .231

244 344

Bay 7

BS 164-BS 185
Initial Final

.044 .203

-87 -249

.248 .052

-1134 -1186

.142 .244

-779 -791

.142 .261

-878 -823

.312 .636

-1711 -1610

.080 .351

-26 -8

.312 .637

1654 1592

.142 .286

958 871

.142 .269

960 821

.124 .379

814 1053

.054 .213

230 331

Bay 8

BS 185-BS 194
Initial Final

.044 .191

-45 92

.248 .482

-968 -1304

.142 .247

-666 -656

.142 .263

-654 -645

.312 .601

-1293 -1088

.080 .283

-31 -27

.312 .616

1252 1100

.142 .271

725 709

.142 .253

826 753

.124 .358

669 810

.054 .201

186 256

1 pound = 4.448 newton
1 in2 = 6.452 x 10-4 meters2

TABLE VI - 5604 NEWTON LATERAL RIGHT LOAD



Ele.
No.

Area
1

Load

Area
2

Load

Area
3

Load

Area
4

Load

Area
5

Load

Area
6

Load

Area
7

Load

Area
8

Load

Area
9

Load

Area
10

Load

Area
11

Load

Bay 1

BS 41-BS 60
Initial Final

.044 .304

102 175

.312 .767

3255 3523

.142 .439

724 626

.142 .462

548 588

.510 .981

4332 4148

.080 .428

-38 -35

.436 .832

-4216 -4141

.142 .466

-638 -562

.142 .443

-751 -658

.446 .845

-3214 -3353

.054 .328

-103 -311

• Bay 2

BS 60-BS 80
Initial Final

.044 .290

106 300

.312 .673

2172 2491

.142 .312

1294 1235

.142 .316

1647 1565

.431 .778

3139 3036

.080 ' .387

-55 -91

.312 .599

-2892 -3042

.142 .204

-1860 -1478

.142 .202

-1446 -1256

.198 .316

-1928 -2138

.054 .289

-174 -620

Bay 3

BS 80-BS 101
Initial Final

.044 .273

37 225

.312 .640

1817 2118

.142 .301

873 1071

.222 .394

982 1097

.332 .665

2141 2334

.080 .377

74 -71

.312 .589

-1926 -2458

.222 .325

-1100 -924

.142 .216

-1088 -922

.198 .490 .

-1396 -1933

.054 .291

-190 -518

Bay 4

BS 101-BS 122
Initial Final

.044 .255

36 201

.312 .614

1601 1865

.142 .286

802 977

.222 .379

1003 1081

.312 .625

1869 2077

.080 .321

48 -8

.536 .836

-1718 -2348

.222 .233

-1117 -733

.142 .218

-1057 -773

.446 .738

-1087 -1878

.054 .268

-245 . -379

Bay 5

BS 122-BS 143
Initial Final

.044 .239

38 254

.292 .601

1556 1619

.142 .307

1085 1108

.142 .325

1494 1488

.312 .687

2332 2194

.080 .356

44 -6

.312 .673

-2232 -2411

.142 .254

-1640 -1245

.142 .249

-1380 -998

.124 .412

-1042 -1618

.054 .253

-255 -385

Bay 6

BS 143-BS 164
Initial Final

.044 .221

68 315

.080 .362

1420 1345

.142 .288

998 1052

.142 .305

962 1044

.312 .660

2253 2077

.080 .323

33 -22

.312 .657

-2186 -2170

.142 .266

-1055 -939

.142 .244

-1228 -947

.124 .401

-1020 -1365

.054 .234

-244 -389

Bay 7

BS 164-BS 185
Initial Final

.044 .204

86 236

.248 .503

1135 1176

.142 .269

779 813

.142 .286

878 863

.312 .637

1711 1584

.080 .294

26 -6

.312 .660

-1654 -1646

.142 .264

-958 -817

.142 .246

-960 -760

.124 .378

-813 -1087

.054 .215

-230 -355

Bay 8

BS 185-BS 194
Initial Final

.044 .191

51 -84

.248 .482

959 1276

.142 .253

665 684

.142 .271

656 662

.312 .616

1298 1073

.080 .266

29 13

.312 .617

-1249 -1118

.142 .261

-723 -677

.142 .252

-826 -736

.124 .384

-673 -830

.054 .224

-181 -263

1 pound = 4.448 newton
1 in2 = 6.452 x 10~4 meters2
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to
Ele.
NO.

Area
1

Load

Area
2

Load

Area
3

Load

Area
4

Load

Area
5

Load

Area
6

Load

Area
7

Load

Area
8

Load

Area
9

Load

Area
10

Load

Area
11

Load

Bay 1

BS 41-BS 60
Initial Final

.044 .305

289 409

.312 .767

3135 2911

.142 .439

321 240

.142 .461

-153 -198

.510 .969

-3440 -3108

.080 .335

-402 -536

.436 .857

-3023 -2956

.142 .461

-192 -217

.142 .439

276 231

.446 .901

2818 2816

.054 .315

323 412

Bay 2

BS 60-BS 80
Initial Final

.044 .289

548 905

.312 .673

2607 2020

.142 .326

520 397

.142 .319

-395 -418

.431 .763

-2929 -2323

.080 .359

-844 -1210

.312 .649

-2417 -2200

.142 .315

-370 -440

.142 .326

540 418

.189 .559

2019 1903

.054 .299

675 954

Bay 3

BS 80-BS 101
Initial Final

.044 .273

531 1008

.312 .640

2744 1758

.142 .301

467 303 '

.222 .447

-303 -306

.332 .671

-2524 -1927

.080 .335

-853 -1299

.312 .651

-2150 -1899

.222 .450

-184 -276

.142 .301

597 331

.198 .526

1706 1634

.054 .283

677 1061

Bay 4

BS 101-BS 122
Initial Final

.044 .255

509 958

.312 .614

2513 1609

.142 .286

452 259

.222 .393

-345 -296

.312 .618

-2287 -1729

.080 .305

-820 -1194

.536 .846

-1985 -1772

.222 .393

-167 -237

.142 .286

680 269

.446 .749

1351 1515

.054 .266

672 984

Bay 5

BS 122-BS 143
Initial Final

.044 .239

479 768

.292 .601

2199 1075

.142 .307

352 278

,142 .341

-441 -200

.312 .679

-2246 -1457

.080 .336

-759 -955

.312 .676

-1835 -1437

.142 .346

-141 -187

.142 .307

610 299

.124 .433

1114 1028

.054 .249

627 792

Bay 6

BS 143-BS 164
Initial Final

.044 .221

426 527

.080 .362

1803 922

.142 .288

355 241

.142 .317

-264 -134

.312 .658

-2021 -1188

.080 .302

-678 -771

.312 .659

-1594 -1149

.142 .317

-93 -114

.142 .288

509 252

.124 .406

971 842

.054 .231

537 578

Bay 7
BS 146-BS 185
Initial Final

.044 .204

336 527

.248 .503

1396 922

.142 .268

324 241

.142 .290

-211 -134

.312 .643

-1596 -1188

.080 .272

-566 -771

.312 .645

-1301 -1149

.142 .290

-72 -114

.142 .268

436 252

.124 .379

786 841

.054 .214

420 578

Bay 8

BS 185-BS 194
Initial Final

.044 .191

190 79

.248 .482

1147 1019

.142 .252

245 1818

.142 .271

-142 -136

.312 .628

-1214 -911

.080 .239

-534 -657

.312 .629

-1018 -846

.142 .271

-39 -97

.142 .252

364 218

.124 .358

623 637

.054 .201

323 511

1 pound = 4.448 newton
1 in2 = 6.4516 x KT4 meters2

TABLE VIII - 4448 NEWTON VERTICAL DOWN LOAD



Ele.
No.

Area
1

Load

Area
2

Load

Area
3

Load

Area
4

Load

Area
5

Load

Area
6

Load

Area
7

Load

Area
8

Load

Area
• 9

Load

Area
10

Load

Area
11

Load

Bay 1

BS 41-BS 60
Initial Final

.044 .259

-649 -1600

.312 .615

-20666 -23411

.142 .248

-4600 -3504

.142 .262

-3479 -2818

.510 .748

-27507 -26046

.080 .392

244 -60

.436 .907

26770 25056

.142 .462

4053 4033

.142 .439

4769 4107

.446 .901

20405 22901

.054 .314

655 1338

Bay 2

BS 60-BS 80
Initial Final

.044 .266

-673 -2940

.312 .560

-13788 -17144

.142 .166

-8216 -6358

.142 .165

-10454 -7895

.431 .657

-19929 -19936

.080 .302

347 -359

.312 .625

18346 17895

.142 .316

11807 10481

.142 .312

9183 8347

.198 .559

12244 15441

.054 .299

1104 2467

Bay 3.

BS 80-BS 101
Initial Final

.044 .267

-236 -2419

.312 .575

-11534 -14981

.142 .166

-5546 -4441

.222 .253

-6236 -5036

.332 .561

-13596 -15046

.080 .331

-46 -883

.312 .646

12232 14352

.222 .383

6986 6846

.142 .301

6906 7174

.198 .538

8865 13182

.054 .283

1207 1918

Bay 4

BS 101-BS 122
Initial Final

.044 .167

-229 -1971

.312 .566

-10163 -13449

.142 .168

-5091 -3902

.222 .441

-6370 -6967

.312 .551

-11869 -13337

.080 .321

-307 -11878

.536 .849

10907 13695

.222 .379

7091 6733

.142 .286

6710 6299

.446 .749

6900 11918

.054 .266

1558 1606

Bay 5

BS 122-BS 143
Initial Final

.044 .240

-241 -2354

.292 .555

-9876 -11835

.142 .181

-6892 -5417

.142 .178

-9488 -7261

.312 .600

-14807 1̂5069

.080 .395

-277 -1060

.312 .687

14175 14303

.142 .325

10411 9347

.142 .307

8761 7307

.124 .433

6619 9926

.054 7354

1621 2117

Bay 6

BS 143-BS 164
Initial Final

.044 .224

-431 -2905

.080 .317

-9018 -9590

.142 .181

-6337 -5285

.142 .186

-6107 -4663

.312 .558

-14303 -14376

.080 .377

-210 -805

.312 .660

13881 13285

.142 .305

6701 6819

.142 .288

7801 6860

.124 .406

6473 8456

.054 .231

1552 2206

Bay 7

BS 164-BS 185
Initial Final

.044 .205

-553 -2013

.248 .476

-7202 -8169

.142 .185

-4948 -4082

.142 .190

-5576 -4387

.312 .600

-10865 -10865

.080 .294

-162 -477

.312 .637

10501 10191

.142 .286

6085 5641

.142 .269

6095 5337

.124 .379

5170 6837

.054 .214

1458 1989

Bay 8

BS 185-BS 194
Initial Final

.044 .191

-287 424

.248 .465

-6147 -8618

.142 .191

-4227 -3805

.142 .201

-4153 -3483

.312 .593

-8208 -7368

.080 .266

-195 -301

.312 .616

7948 6977

.142 .271

4606 4561

.142 .253

5247 4849

.124 .358

4234 5172

.054 .201

1182 1591

1 pound = 4.448 newton
1 in2 = 6.452 x 10~4 meters2

NJ
U)

TABLE IX - 35584 NEWTON LATERAL RIGHT LOAD



TABLE X - COMPARISON BETWEEN. THE AVERAGE TEST STRESSES AND THE
STRESSES CALCULATED USING NASTRAN LOADS

Tailboom
Bay

2

3

4

Ele.
No.

1
2
3
4
5
6
7
8
9

10
11

1
2
3
4
5
6
7
8
9

10
11

1
2
3
4
5
6
7
8
9
10
11

5J5.04 -N Rt. Load
TEST NASTRAN

-1936 -1443
-2969 -4276
-5281 -5269
-5432 -6590
-4984 -4520
211 - 96
4839 4242
5682 5099
3127 4159
4957 4329
599 1383

-1291 -1294
-3516 -3713
-3983 -4084
-4075 -2856
-5511 -3795

20 - 228
4'9 5"7 3511
3838 2780
2772 3695
3575 3826
1752 1212

-1185 -1158
-3760 -3192
-4470 -2962
-4300 -2783
-3872 -3340
- 53 - 281
3917 2589
2746 2740
3193 3404
3970 2486
2021 1084

5604 N Lft Load
Test NASTRAN

1448 1036
3424 3702
5063 3958
4280 4953
3220 3902

53 - 236
-3792 -5079
-5471 -7247
-3555 -6220
-7038 -6768
-2061 -2147

1613 827
4734 3310
4707 3556
3661 2786
3615 3510

59 -1895
-3753 -4174
-3160 -2843
-2791 -4267
-4312 -4114
-2679 -1780

1237 787
3786 3037
4372 3418
3937 2852
3351 3323

- 13 - 25
-3476 -2808
-2607 -3148
-2949 -3544
-4378 -2545
-2568 -1415

4448 N Down Load
Test NASTRAN

3331 3131
1949 3002
968 1217

-1086 -1311
-2548 -3045
-5458 -3371
-3516 -3391
-1541 -1397

948 1284
4128 3404
4187 3191

3904 3694
2759 2747
777 1007

- 790 - 685
-3035 -2872
-3817 -3877
-3681' -2917
- 704 - 614

626 1100
2752 3107
4029 3750

4319 3757
2679 2621
790 905

- 955 - 754
-2904 -2798
-3141 -3916
-2963 -2094
- 580 - 603
770 943
3127 2022
4168 3700

1 pound = 4.448 newton
1 PSI = 6895 N/m2
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Degrees of
Freedom

K99
Knn

Kff

Kaa

Kll

2940

2699

1714

241

235 ,

Elements

.BAR

ROD

SHEAR

QDMEN

TRMEM

184

2013

340

160

243

Figure 1. NASTRAN model of AH-1G helicopter airframe.
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KJ
CTl

Blade instrumentation covers
(removed for flight)

Nose boom

Figure 2. AH-1G helicopter used for flight tests.



WEIGHT = 148 kg (325 Ib) per side

CG: STA 196.25
BL ±42.50
WL 43.41

INERTIAS = ROLL
PITCH
YAW

5.859 kg-m2

17.912 kg-m2

17.912 kg-m2

(19995 lb-in2)
(61132 lb-in2)
(61132 lb-in2)

Figure 3. Wing store
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fixed system hub accelerations

collective

longitudinal cyclic

FS 191.24
V

WL 66.77

BL 9.00

lateral cyclic

boost

cylinder loads (3)

-9.00
WL 65.65
FS 209.90

boost cylinder
support beam

Figure 4. Main rotor excitation to airframe,
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BL 59—

LV LV

Nose
FS 46

BL -59
V

Tailboom
junction
FS 300

V

Hub
FS 200

FLV
WL 153

LV

Gunner seat
FS 93

Engine deck
FS 250

Pilot seat
FS 148.50

Elevator
FS 400

90° gearbox
FS 521

Tail
FS 485

F ~ Fore-and-aft
L ~ Lateral

V ~ Vertical

FS ~ Fuselage station

WL ~ Waterline

BL ~ Buttline

Figure 5. Accelerometer locations for flight tests.
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2.0

1.5

O
.•H
-P
(0

â)
H
:<1)
O

0.5

0

Fore-and-aft

—-—— Lateral

_—._ Vertical

3768 kg (8300 Ib) clean wing
'aft eg configuration

I
50 100

True airspeed, knots
150

Figure 6. Two-per-rev hub accelerations versus airspeed.
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Main rotor pylon
transmission case

Elastomeric
itiount (5)

Center wing
Carry through beam

(lift beam)

Figure 7. Main rotor pylon mounting.

131



a)

o
•H
c
o

<D

1.20

0.80

0.40

O Test data

^Kvert = i7-!*107 N/m (4.4x105 Ib/in)
>Kvert. = il.7~5xl0

7 N/m(l.OxlO5 Ib/in)

^vert = stiff /

100 200 300 400

Fuselage station

500 600

Figure 8. Effect of vertical pylon stiffness on vertical
two-per-rev response.
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Hub
Kvert

_ _
K K K Km u K

7 N/m ,
1(4.4x10s Ib/in)

Mast K H2i28xlp8 N/m
m ,(1.3x10''Ib/in)

iThrust bearing

<K =J7. 00x108 N/m
1 'i(4.0xl06 Ib/in)

Upper case K =;7.OOxJLO^ N/m_
"(476x10'6~ Ib/in)

Side case
f( ' Ko=!2.4_5xl08 N/ms ;(1.4xl06 Ib/in)

.Lift
'link

attachment

_ _
!(4.0xl06 Ib/in)

Transmission and mast cutaway

Figure 9. Vertical stiffness of main rotor pylon.

133



100

o
0)
W
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*»

to
o
M 1
<U

ta

0)
H
0)
O
O

• — baseline pylon
I I I

— pylon with cocking spring
!rates and differential

—! stiffness effect

2/rev
(10.80 Hz>

CG pitch response t o < 4 4 4 8 N _ ( 1 0 0 0 Ib) fore-and-aft
Tiub"~shear I

0. 01.
0 5 10 15

,Forcing frequency, hertz
20

——baseline pylon
i I i

-pylon with cocking spring
rates and differential

effect

2/rev
CIO. 86 Hz)

0)
uo

CG roll response to;4448
shear"

N (1000 Ib) lateral hub

0.01
0

Figure 10.

5 10 15

Forcing frequency, hertz

Effect of pylon stiffening and damping
on two-per-rev isolation.

20
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90° Gear Box and
Tail Rotor Mast

Elevator

Trailing
Edge Strip

Typical Section -
Vertical Fin

Bolt Attachment
Fittings to Fuselage (4)

Longerons (4)

Typical Section
Tailboom

NASTRAN idealiz.ed, model

Figure 11 - Tailboom and fin.
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Figure 12 Test setup for tailboom static load versus
internal stress.

Arrows indicate:

1. AH-1G tailboom test specimen
2. Contour frame for load application
3. Fixture for attaching hydraulic cylinder for

lateral right load
4. Hydraulic cylinder for applying vertical down load
5. Hand pump with calibrated pressure gage
6. HP9830A data acquisition system
7. Tailboom mounting fixture
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Figure 13. Skin panel gage installations for AH-1G
tailboom static load test.

A typical single active arm gage is indicated by the arrow
The angle brackets were used in a previous test.
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U)
00

Section A-A
B.S. 69.97

19

18 16

17

Section B-B
B.S. 90.91

Section C-C
B.S. 118.85

101.38
122,33

59.50
80-44 39 - 40

41 ̂  42
43"

80.44 59.50101.38

Figure 14 - Illustration of strain gage location forAH-1G static test.



Figure 15 - Typical tailboom cross:section arid "element
numbering convention.
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O
•H
*J
O
(1)

0)
D

-No effective skin "

With effective skin

60. 80. 100. 120.: ,140.

Tailboom station location

160. 180. 200.

1 inch = 0.0254 meter

Figure 17 - Lateral deflection for 4448 newton side load.



to

O
•H
4J
O
0)
H
M-l
0)
D

No effective skin

. , .
•feite With effective skin

100. 120. 140. 160. 180. 200.

Tailboom station location 1 inch = 0.0254 meter

Figure 18 i--Vertical deflection for 4448 newton down load.



P = Buckling load

cr Assumed

i Actual

Deflection

Figure 19 - Skin buckling behavior.

: 143




