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APPENDIX B 

MISSION OPPORTUNITIES
 



N. ATLANTIC
 
(WAVES)
 

Orbit & Daylight Nightime 
Target Pass Pass LEGEND 
Location (min.) (min.) 

00 6.5 13 GSET
 
1C 7.0
 
2C 8.0
 
3FW 4.5 Geographic sectior 
4NWT 
13 SET 
14SE 4.0 Orbit number 
15C 6.0 
16C 7.5 

N - North17C 8.0 

18SW 8.6
 

S - South
19FSW 2.5 

29FSE 2.5
 

- East
- 30SE 6.5 E 

- 31C 7.5 
W - West
32C 7.5 


33C 9.0
 
- 34SW 5.5 C - Central
 

45SET 4.5
 
46C 6.5 NE - North East
 
47C 8.0
 
48C 9.0 SW - South West
 

49C 8.5
 
50SWT 1.5 SET - South East Tip
 

60FSET 2.0 
61SE 5.0 FNW - Far North West 
62C 6.5 
63C 8.0 GSET - Graze South East Tip 
64C 10.0 
65SW 6.5 Etc. 

76SET 3.5 

77C 6.5 Indicates orbits which were 

78C 8.0 
selected for data taking operations790 8.0 


80C 9.0
 
81SW 4.5
 
92SET 3.5 1.5
 
93C 6.5
 
94C 8.0
 

-95C 10.0
 
-96C 8.0 
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N. 	 PACIFIC 
(WAVES) 

Orbit & Daylight Nightime Orbit & Daylight Nightime 
Target Pass Pass Target Pass Pass 
Location (rain.) (min.) Location (min.) (min.) 

3FE 1.5 100C 12.5 1.5 
4E 5.0 101C 5.5 
5E 8.0 102SW 6.5 
60 12.0 103SW 4.5 
70 11.0 104SWT 0.5 
8C 9.0 
9WT 2.5
 
19SE 3.5
 

- 20E 6.5 
- 21C 21.0 
- 220 13.5 

230 13.0
 
240 6.0
 
25SW 3.0
 
26GSW 0.5
 
34SET 1.5
 
35SE 4.5
 
36C 7.5
 
37C 11.5
 

- 38C 13.0
 
39C 8.5
 

-40SW 5.5
 
41 SWT 3.5
 
50SET 6.0
 
5ISE 6.5
 

52C 8.5
 
530 13.5
 
540 11.0 
55C 7.5 
56SW 4.5
 
57FSWT 2.5
 
66SE 4.0
 
67E 7.5
 
680 10.5
 
690 13.5
 
700 10.0
 
71SW 6.5
 
72SW 3.5
 
81SET 2.0
 
82SE 5.5
 
83C 8.5 
84C 12.0
 
85C 11.5
 
860 7.5
 
87SW 5.0
 
88SWT 3.0
 
97SET 2.5 1.5
 
98E 4.5 1.5
 

99C 8.0 2.0
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GULF STREAM 
(CURRENT) 

Orbit & Daylight Nightime 
Target Pass Pass 
Location (min.) (min.) 

- 21C 1.5
 
31E 4.5
 
52N 1.5
 

- 68S 1.5 
78W 2.5 
99C 2.0
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SEA OF JAPAN
 
(CURRENT)
 

Orbit & Daylight Nightime
 
Target Pass Pass 
Location (min.) (min.)
 

70 4.0 
- lINE 1.5 
- 12GSW 1.5
 

22GE 3.5 
- 27C 3.5 

380 4.5
 
- 42NET 2.5
 
- 43SWT 1.0
 
- 58C 3.0
 

69E 4.5
 
- 73GN 1.5
 
- 74C 3.0
 

85GW 1.5 2.5
 
- 89N 3,0
 

100GE 3.0
 
- 05C 3.0
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NEWFOUNDLAND BANKS
 
(TrMP)
 

Orbit & Daylight Nightime 
Target Pass Pass 
Location (min.) (min.) 

4G 2.0
 
15E 3.0
 
19NE 2.5
 
31GW 2.0
 
35W 2.0
 
46G 2.0
 
50GNE 2.0
 
62C 3.0
 
66C 2.5
 
93E 3.0
 
97NE 2.5
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SPANISH SAHARA COASTAL WATERS
 

Orbit & 

Target 

Loaction 


3C 
13GW 

- 19G 
- 34NET 

44C 
- 50SW 

75E 
81C 
91GW 
97G 

(TEMP)
 

Daylight Nightime
 
Pass Pass 
(min.) (min.) 

2.0 
3.0 
2.0 
2.0 

4.0 
3.0 
2.0 
3.5 

4.0 
2.0 
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PERU COASTAL WATERS
 
(TEMP)
 

Orbit & Daylight Nightime 
Target Pass Pass 
Location (min.) (min.) 

7G 1.5 
8W 4.5
 
14SE 1.0 
15GNW 2.5
 
300 4.0
 
39C 7.5
 
46N 3.5
 
61SE 2.5 

- 70E 6.0 
77C 4.5, 

- 86FW 6.0 
92S 2.0 
93GNWT 2.5 
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CONUS 
(EM) 

Qr-bit & Daylight Nightime
 
Target Pass Pass
 
Location (min.) (min.)
 

- 16E 8.0 
- 17C 7.5 

18NW 3.5
 
- 33W 7.0
 
- 48C 5.0 3.0 

49NW 6.0
 
54GFW 2.5
 
64SW 3.5 4.0 

-- 65NWT 3.5 
78SE 1.0 4.0
 

-- 79C 1.5 7.0
 
80SW 3.0 4.0
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CONUS
 

(MW) 

Orbit & Daylight Nightime
 
Target Pass Pass 
Location (min.) (min.)
 

5FE 2.0
 
16E 2.5
 

- 21E 3.0
 

32C 1.0 

36FNE 2.0 

47SE 2.0 1.0 

52NE 3.0 

- 63E 2.0 

83NE 2.5 

- 94E 2.5 

-- 990 3.0 
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CHILE 
(MINERAL) 

Orbit & Daylight Nightime
 
Target Pass Pass 
Location (mi.n) (min.) 

23N 2.5 
45N 2.5 
70N 2.5 
76N 3.5 

- 01GN 2.0 
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PERU
 
(MINERAL) 

Orbit & Daylight Nightime 
Target Pass Pass 
Location (min.) (min.) 

14S 3.5
 
230 3.5
 
30C 3.0
 
54NET 5.5
 
61C 3.5
 
70W 6.0 
77FW 2.0
 
92S 2.0
 
- i0C 6.0
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ZAIRE 
(MINERAL) 

Orbit & Daylight Nightime
 
Target Pass Pass 
Location (min.) (min.)
 

3C 2.0
 
tOE 5.0
 
19FW 3.0
 
26W 5.5
 
33E 4.0
 
41SET 3.0
 

- 50W 5,0
 
57C 5.5 

- 64NET 4.0
 
- 66GW 3rO
 

73GW 4.5 
- 80C 6.0 

880 6.0 
97FW 3.0 
104W 6.0 
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ZAMBIA 
(MINERAL) 

Orbit & Daylight Nightime 
Target Pass Pass 
Location (min.) (min.) 

3C 1.0 
10GW 2.0
 
19FWG 2.5
 
25GE 2.5 
33GE 2.0 
41C 3.5 
50W 2.0 
72E 4.5
 

- 0C 1.5
 
97FW 3.0
 
103GE 3.0
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991NUs 
(MINERAL)
 

Orbit & Daylight Nightime 
Target Pass Pass 

Location (min.) (min.) 

170 3.5 
- 22W 5.0
 
- 33W 4.0
 

- 38W 4.0
 

48C 5,0 $.0 
53W 3.0 
54GFW 2.5 
64SW 3.5 4.0 
69W 5.0 

80SW 3,0 4.0 
85SW 4.5 6.5 
95SW 2,0 
lOONW 5,0
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CONUS 
(TIMBER) 

Orbit & Daylight Nightime
 
Target Pass Pass
 
Location (min.) (min.)
 

1C 11.0
 
2W 6.0
 
5FE 4.5
 
6C 7.5
 
7FW 3.5
 
16E 8.0
 
17C 7.5
 
18NW 3.5
 
20FNE 1.5 

- 21E 7.0 
22W 8.5 
82C 6.0 1.5 
33W 7.0 
34W 1.0 
36FNE 2.5 
37C 9.5 
38W 4.5 
47SE 4.5 3.0 
48C 5.0 3.0 
49NW 6.0
 
51 GNET 2.5 
52NE 6.0
 
53W 7.5
 
63E 2.5 6.0
 
64SW 3.5 4.0
 
65NWT 3.5
 

67FNE 2.5 
68C 8.5 
69W 7.5 
78SE 1.0 1.0 
79C 1.5 7.0 
80SW 3.0 4.0 
83NE 5.5 
84NW 9.0 
85SW 4.5
 
94E 8.5
 
95SW 2.0 6.5 
96NWT 1.5 3.0 

- 98FNE 2.0 
990 7.5 

- 1OONW 9.0 
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CONUS 
(URBAN)
 

Orbit & Daylight Nightime 
Target Pass Pass
 
Location (mi.) (mi.
 

IC i1.0
 

2W 6.0 
5FE 4.5 
6C 7.5 
7FW 3.5 
16E 9.0 
17C 7.5 
18NW 3.5 

- 20FNE 1.5 
21E 1.0 
22W 8.5 
32C 6.0 1.5 
33W 7.0 
34NWT 1.0
 
36FNE 2.5
 
37C 9.5
 
38W 4.5 
49SE 3.5 3.0 
48C 5.0 3.0
 
49NW 6.0
 
5 IGNET 2.5
 
52NE 6.0
 
53W 7.5
 
54GSW 2.5
 
63E 2.5 6.0
 
64SW 3.5 4.0
 
65NWT 3.5
 

- 67FNE 2.5 
68C 8.5
 
69W 7.5
 
78SE 1.0 1.0
 
79C 1.5 7.0
 

80SW 3.0 4.0 
- 83NE 5.5 

84NW 9.0 
85SW 4.5
 
94E 8.5 
95SW 2.0 6.5
 
96NWT 1.5 3.0 
98FNE 2.0
 
99C 7.5 
iooNW 9.0 4.0
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HAWAII
 
(URBAN) 

Orbit & Daylight Nightime 
Target Pass Pass 
Location (min.) (min.) 

30 0.5 0.5 
9G 2.0 
34GE 2.0 

-	 56C 2.0
 
81G 2.0
 

- 103GW 2.0
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APPENDIX D
 

CREW TIMELINE 
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APPENDIX E
 

POWER PROFILE
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APPENDIX F
 

EVAL PAYLOAD VIBROACOUSTIC TEST PLAN EVALUATION
 

INTRODUCTION
 

This analysis applies the methodology being developed under Contract NAS
 

5-20906 for NASA-GSFC to evaluate cost effective vibroacoustic test plans for a
 

representative EVAL Shuttle Spacelab payload. Statistical decision theory is used
 

to quantitatively evaluate seven alternate test plans which include component, sub­

assembly, or payload testing and combinations of component and assembly testing. The
 

optimum component and assembly test levels and the expected cost of failures are
 

determined for each test plan. By including the direct costs associated with each
 

test plan and the probabilistic costs due to ground-tests and flight failures, the
 

test plans which minimize project cost are determined.
 

THE TEST PLANS
 

The test plans considered under Contract NAS 5-20906 are listed in Table 1.
 

Test Plans 1-5 were considered as a group to develop the basic methodology. A
 

multiple mission facility type payload was utilized. The results for that group of
 

test plans are documented in GE document No. 76SDS4223, "Vibroacoustic Test Plan
 

Evaluation", dated June 1, 1976. Based on the results of that study, the methodology
 

is currently being expanded and the group of Test Plans 4-9 are being evaluated. This
 

EVAL analysis is limited to Test Plans 4-9.
 

In the context of this study the term subassembly implies a group of functionally
 

related components mounted on a connon substructure that is testable at that level of 

assembly. System implies a fully integrated payload. lhe component tests are con­

sidered to be random vibration, which provides a good simulation of the effects of 

F-1 



Table 1
 

Vibroacoustic Test Plan Matrix
 

Test Plan Component Subassembly System Structure
 

No. Test Test Test Test
 

1 Mix* 

IA Mix SDM** 

2 Mix Protoflicht - Protoflight 

3 Mix Protoflight Protoflight
 

3A Mix Protoflight 5DM
 

4 Protoflight Protoflight
 

5 - Protoflight Protoflight
 

6
 

7 Protoflight
 

7B Protoflight Protoflight
 

8 Protoflight Protoflight Protoflight
 

9 Protoflight Protoflight Protoflight
 

* Prototype housekeeping components and protoflight experiment components 

** Prototype Structural Development Model 

F-2 



acoustic excitation at this level of assembly. Ac6ustics testing, which provides
 

a good simulation of the flight conditions, is considered to be performed at the sub­

assembly and system levels. Any test failure is assumed to result in redesign and re­

test. The test plans involve the evaluation of the change in vibroacoustic reliability
 

of the payload as a result of one or two ground tests at the various assembly levels.
 

The structural design is varied on the basis of the structural test option con­

sidered. If no structural test is performed (Test Plans 6 and 7), an ultimate design
 

safety factor of 2.0 is used. When the protoflight structure is tested (Test Plans
 

4, 5, 7B, 8, 9), an ultimate design safety factor of 1.5 is used. A 13 percent and
 

a 35 percent increase in structural weight were considered for design safety factors
 

of 1.5 and 2.0, respectively. The flight and test failure probabilities for the
 

structure were determined from empirical data.
 

TLI DAVI fll rnN1CTr1ID vrTn IC 

A representative Earth Viewing Applications Laboratory (EVAL) payload, Figure
 

was used for this analysis. Although the physical arrangement of the payload may
 

preclude subassembly testing, Test Plans 4-9 are considered to be applicable. As in
 

Contract NAS 5-20906, the payload is considered to be composed of a series of house­

keeping components that are grouped into three subassemblies (power, control, data
 

handling), the experiments, and the structure. Rather than study the 18 individual
 

experiments planned for EVAL missions, the experiments were grouped according to the
 

number of missions expected for each experiment. Within these groups the number of
 

components peculiar to each experiment was.averaged. This resulted in four con­

figurations used in this analysis, Table 2 The basic payload parameters used in
 

the analysis are defined in Table 3.
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Table 2 

Payload Configurations 

Configuration NEXP NCPE NF Mission NCPEi 

1 4 2 2 Multibeam Communications 
Bandwidth Compression 
Modulation 

Urban and Regional Planning 
Mineral Exploration 

1 
1 

2 
3 

2 2 2 10 Geomagnetic Field Measurements 
Timber Inventory 

1 
3 

3 6 4 20 Electromagnetic Happing 
Cloud Climatology 
Crustal Motions Monitoring 
Water Inventory 
Sea Surface Temperature 
Ocean Waves and Currents 

1 
2 
3 
3 
4 
6 

4 6 3 
I 

40 Ozone Sounding and Mapping 
I a 3U Llfie cjt IuI![u I I 

Troposphere Trace Constituents 
Coastal Zone Pollution 
World Crop Survey 
Stratospheric Pollution Mapping 

1 

2 
3 
4 
5 

where 

NEXP = number of experiments 

NCPE = number of components (sensors) peculiar to an experiment 

NF = number of flights 
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Table 3 

Payload Parameters 

Total Equipment Weight 10000 pounds 

Payload Length 40 feet 

Number of flights 2, 10, 20, 40 

Number of Housekeeping Components 16 

Number of Housekeeping Subassemblies 3 

Number of Experiments per Configuration 2, 4, 6 

Number of Components per-Experiment 2, 3, 4 

Housekeeping Components Protoflight 

Experiment Components Protoflight 
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THE RELIABILITY MODEL
 

The probability of achieving the flight objectives is needed to determine the
 

expected cost of flight failures. A component flight failure does not always result
 

in a complete loss of the mission. To determine the expected cost of a flight
 

failure, a reliability model at the component level is used to estimate the
 

probability of achieving a portion of the flight objectives. To estimate the probability
 

of achieving the flight objectives the payload reliability model shown in Figure 2
 

is used. This model represents the payload as a series of redundant components and a
 

group of parallel experiments. The series components reoresent the basic subsystems
 

used for housekeeping functions; they are assumed to have single redundancy, except
 

for the structure. These components are common to all experiments and are essential
 

to the success of the flight. Each experiment contains a series of components which
 

have no redundancy. The payload subassemblies are considered to be the experiments,
 

the structure, and the three housekeeping subassemblies. The components in the house­

keeping subassemblies are grouped as follows:
 

1. Power subassembly - 4 components 

2. Control subassembly - 4 components 

3. Data handling subassembly - 8 components
 

THE ENVIRONMENT
 

For this test plan evaluation the component test environment is based on the
 

145 dB shuttle payload bay acoustic spectrum and is related to the flight environment
 

by the standardized vibration variable, UV, which is the number of standard deviations
 

from the mean. This 145 dB environment is defined to be the mean plus two sigma acoustic
 

level with a standard deviation of 2 dB. The component test vibration level or design
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requirement is varied from 8 to 104 g rms (UV = 1.2 to 3.2) and the assembly test
 

acoustic level is varied from 143 dB to 157 dB.
 

THE COSTS
 

When a particular test plan is selected there are some direct costs which are
 

certain to be incurred. For each test plan these direct costs are summarized in
 

Table 4 It is noted that direct costs common to all test plans do not need to be
 

included since they will not affect the cost differences between the test plans. A
 

direct cost associated with an increased weight due to designing with a higher safety
 

factor is included. It is assumed that 20 percent of the total equipment weight is
 

structure weight. Also included in this analysis is a direct cost associated with
 

designing hardware to margins of safety in excess of those possible with conventional
 

spacecraft.
 

T hU piubbilistic costs are those costs that result from failures during ground
 

testing and flight. A probabilistic cost is the sum of the products of the failure
 

costs and the associated probability of occurrence. The probabilistic costs that
 

are associated with the various test plans are also summarized in Table 4
 

The values used in this EVAL analysis for the various cost parameters are
 

summarized in Tables 5 & 6 forthe direct costs and probabilistic costs, respectively.
 

TEST PLAN EVALUATION
 

Cost Optimization
 

The decision model for each test plan-was exercised for the four EVAL payload
 

configurations. The payload configuration complexity was varied by considering either
 

2, 4, or 6 experiments, with each experiment comprised of either 2, 3, or 4 serial
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Table 4 

Cost Summar, 

Cost 

Type Cost Parameter 

Component Tests 

Subassembly Tests 

4 

X 

5 

Test Plan 

6 7 7B 

X X 

8 

X 

X 

9 

X 

U 

System Tests 

Structure Tests X 

X 

X X X 

X 

X 

Structural Weight 

Design Cost 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

Component Test Failures 

Subassembly Test Failures 

Sysrem Test Failures 

Structural Test Failures 

X 

X 

A 

X 

X 

, 

X 

X 

X 

X 

X 

X 

X 

Flight Failures X X X X X X x 
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Table 5 

Direct Cost Parameter Summary
 

Test Plan 

Cost Parameter 4 5 6 7 7B 8 9 

Component Test - - - 8. 8. 8. 8. 

Subassembly Test 21. - - - - 21. -

System Test - 199. - - - - 199. 

Protoflight Structure Test 32. 32. - - 32. 32. 32. 

Structural Weight (per pound) 0.21 0.21 0.21 0.21 0.21 0.21 0.21 

Component Design Cost * * * * * * * 

* Component Design Cost = 1800 - 20 10 < g < 100 
(100. - g)
 

where g is the component design/test level
 

NOTE: Costs are given in thousands of dollars
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Table 6
 

Probabilistic Cost Parameters Summary
 

Cost Parameter Test Plan 
4 5 6 7 7B 8 9 

Cost of Component Test Failure - - - 15 15 15 15 
Redesign/Retest 

Cost of Subassembly Test Failure 50 - - - - 50 ­
Redesign/Retest 

Cost of Flight Failure 50 50 50 50 50 50 50 
Redesign/Retest 

Cost of Subassembly Functional Test 13 - - 13 -

Subassembly Test Failure Cost Factor 120 - -- 120 -

Cost of Protoflight Structure Failure, 150 - - 150 
Subassembly Testing 

Cost of Protoflight Structure Failure, - 240 - - 240 
Paylnd Tesrinn 

Payload Test Failure Cost Factor - 120 - - - - 120 

Cost of One Launch 17000 17000 17000 17000 17000 17000 17000 

Cost of Additional Functional Test 16 16 16 16 16 16 16 
After Refurbishment
 

NOTE: Costs are given in thousands of dollars.
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components, and each configuration being flown on either 2, 10, 20 or 40 flights.
 

The housekeeping section of the payload was not changed; it consisted of the power,
 

control, and data handling subassemblies having a total of 16 redundant components
 

and the structure.
 

The expected cost was obtained as a function of the component vibration level
 

and the applicable assembly acoustic test level. The vibration level has a dual
 

meaning. For those test plans having component testing, the vibration level is the
 

component random vibration test level. For those test plans that do not include
 

component testing (Test Plans 4, 5, 6), it represents the component design requirement.
 

The component strength distribution is considered to be a function of the component
 

design/test level so that the vibration strength of the untested components continually
 

increases as the vibration level is increased. Associated with this increase in
 

strength as the vibration level is increased is the increase in the cost of designing
 

the components to the higher level.
 

Optimum component and assembly test levels are clearly defined for all test
 

plans for Configurations 2, 2, 10 and 6, 4, 20. For Configuration 4,2,2 the expected
 

costs showed a continual increase as the assembly acoustic test level increased,
 

indicating the optimum assembly test level is 143 dB or lower. For Configuration 6,3,40
 

the expected costs showed a continual decrease as the assembly acoustic test level
 

increased, indicating the optimum assembly test level is 157 dB or higher. At each 

assembly test level for these two configurations, however, there is a clearly defined 

optimum component test level. It should be noted that optimums are obtainable for all 

test plans of this analysis because the component design cost was considered. This
 

cost was not included in the earlier study documented in GE document 76SDS4223. These
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optimums are summarized by test plan and payload configuration in Tables 7 and 8,
 

respectively.
 

Comparison of the expected costs for the optimum test levels indicates that,
 

for all of the payload configurations analyzed, minimum cost is achieved with Test
 

Plan 4, which uses subassembly testing only, and Test Plan 5, which uses system
 

testing only. The cost rank of the other test plans varies with the configuration.
 

Except for Configuration 4,2,2, Test Plan 8, which uses both component and sub­

assembly testing, ranks next, followed by Test Plan 9,which uses both component
 

and system testing, Test Plan 7B, which uses only component testing, and either
 

Test Plan 7, which also uses only component testing but no structure testing, or
 

Test Plan 6, which uses no testing. For Configuration 4,2,2, Test Plan 6 ranks
 

third, followed by Test Plans 8, 7B, 9, and 7.
 

The optimum test levels do not vary in the same manner as the optimum cpsts.
 

However, the optimum levels for all test plans increase as the number of flights
 

increases. The optimum expected cost also increases as the number of flights in­

creases.
 

Comparison of the optimum expected costs for Test Plans 7 and 7B indicates
 

that the protoflight tested structure is more cost effective than no structural
 

test. The cost saving increases as the number of flights increases ($0.2M for 2
 

flights; $0.9M for 10 flights; $1.9M for 20 flights; $2.7M for 40 flights).
 

The major cost elements involved in establishing the optimum test levels are
 

of interest. For Test Plans 4 and 5 the optimum results from combining the increasing
 

design cost with the decreasing costs of assembly test failures and flight failures.
 

For Test Plan 6 the increasing design cost interacts with the decreasing costs of
 

flight failures. For Test Plans 7 and 7B the increasing design cost and costs of
 

component test failures interact with the decreasing costs of flight failures.
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Table 7
 

Sumnmary of Optimums by Test Plan
 

Test 
Plan 

Payload 
Configuration 
(NEXP,NCPE,NF) 

4 4,2,2 
2,2,10 
6,4,20 
6,3,40 

5 4,2,2 
2,2,10 
6,4,20 
6,3,40 

6 4,2,2 
2,2,10 
6,4,20 
6,3,40 

7 4,2,2 
2,2,10 
6,4,20 
6,3,40 

7B 4,2,2 
2,2,10 
6,4,20 
6,3,40 

8 4,2,2 
2,2,10 
6,4,20 
6,3,40 

9 4,2,2 
2,2,10 
6,4,20 
6,3,40 

Expected 

Cost 

($x 106) 


0.561 

1.283 

2.818 

4.265 


0.787 

1.664 

3.398 

4.906 


1.354 

4.539 

12.472 

19.106 


1.731 

4.602 

12.005 

20.526 


1.550 

3.676 

10.134 

16.768 


1.361 

2.112 

4.148 

5.513 


1.674 

2.527 

4.814 

6.175 


Component 

Vibration 

Level 

(g rms) 


22.5 

29.0 

29.0 

37.4 


22.5 

29.0 

37.4 

37.4 


37.4 

62.4 

62.4 

80.6 


22.5 

48.3 

62.4 

62.4 


22.5 

48.3 

62.4 

62.4 


13.5 

22.5 

22.5 

29.0 


13.5 

22.5 

29.0 

29.0 


Assembly
 
Acoustic 

Level 

( dB) 

143. 

151. 

155. 

157. 


143. 

149. 

153. 

157. 


-

-
-
-

-
-
-
-

-

-
-
-

143. 

151. 

155. 

157. 


143. 

149. 

153. 

157. 


Vibroacoustic
 
Reliability
 

0.9887
 
0.9975
 
0.9896
 
0.9921
 

0.9887
 
0.9961
 
0.9855
 
0.9921
 

0.8943
 
0.9672
 
0.8256
 
0.8934
 

0.9457
 
0.9816
 
0.8980
 
0.8831
 

0.946A
 
0.9823
 
0.8986
 
0.8837
 

0.9830
 
0.9973
 
0.9890
 
0.9919
 

0.9830
 
0.9957
 
0.9849
 
0.9919
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Table 8 

Summary of Optimums by Payload Confiqurations
 

Payload 
Configuration 
(NEXP,NCPE,NF) 

i
I Test 
Plan 

Expected 
Cost 6 
($x 10) 

[Component 
Vibration 
Level 
(g rms) 

Assembly
Acoustic 'Vibroacoustic 
Level Reliability 

1(dB) 

Cost 
Rank 

i 
tReliability 
Rank 

4,2,2 4 0.561 22.5 143. 10.9887 1 1 
5 0.787 22.5 143. 0.9887 2 1 
6 1.354 37.4 - 0.8943 3 7 

I7 1.731 22.5 0.9457 7 6 
7B 1.550 22.5 - .0.9464 5 5 
8 1.361 13.5 143. 0.9830 4 3 
9 1.674 13.5 143. 0.9830 6 3 

2,2,10 4 1.283 29.0 151. 0.9975 1 1 
5 1.664 29.0 149. 0.9961 2 3 
6 4.539 62.4 - 0.9672 6 7 
7 4.602 48.3 - 0.9816 7 6 
7B 3.676 48.3 - 0.9823 5 5 
8 2.112 22.5 151. 0.9973 3 2 
9 2.527 22.5 149. 0.9957 4 A 

6,4,20 4 2.818 29.0 155. 0.9896 1 1 
5 3.398 37.4 153, 0.9855 2 3 
6 12.472 62.4 - 0.8256 7 7 
7 12.005 62.4 0.8980 6 6 

I 7B 10.134 62.4 - 0.8986 5 5 
8 4.148 22.5 155. 0.9890 3 2 
9 4.814 29.0 153. 0.9849 4 4 

6,3,40 4 4.265 37.4 157. 0.9921 1 1 
5 4.906 37.4 157. 0.9921 2 1 
6 19.106 80.6 - 0.8934 6 5 
7 20.526 62.4 0.8831 7 7 
7B 16.768 62.4 - 0.8837 5 6 
8 5.513 29.0 157. 0.9919 3 3 
9 6.175 29.0 157. 0.9919 4 3 
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For Test Plans 8 and 9 the increasing design cost and costs of component test
 

failures interact with the decreasing costs of assembly test failures and flight
 

failures.
 

Reliability and Cost Optimization
 

In Tables 7 and 8 the payload flight vibroacoustic reliabilities associated
 

with the optimum expected costs are also indicated. In this analysis the flight
 

vibroacoustic reliability is defined as the probability of no data loss from the
 

payload as a result of a vibration failure of a component. For all of the payload
 

configurations analyzed, the test plan with the minimum cost, Test Plan 4, also has
 

the maximum reliability. Except for Configuration 6,3,40, Test Plan 6, which uses
 

no testing, has the lowest reliability. Within these bounds the reliability rank
 

varies with the configuration. For all test plans Configuration 2,2,10 has the
 

highest reliability, but the configuration with the lowest reliability varies from
 

test plan to test plan. The low flight reliability of Test Plan 6 is consistent
 

with its being, together with Test Plan 7, the least cost effective.
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