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I . INTRODUCTION

The objective of this investigation is the determination of the performance and

hardware complexity of data compression algorithms applicable to color television sig-

nals. The results obtained are used to assess the feasibility of digital compression

techniques for Shuttle communications applications.

The investigation of digital compression techniques has been completed and the

desired results have been obtained. Por return link communications, the study has

shown that a non-adaptive Two Dimensional DPCM Technique compresses the bandwidth of

Field-Sequential Color TV to about 13 MBPS and requires less than 60 watts of secondary

power. For forward link communications, a facsimile coding technique is recommended

which provides high resolution slow scan television on a 144 KBPS channel. The on-

board decoder requires about 19 watts of secondary power.

	

j^	 1.1 BACKGROUND

Recent advances in digital communication systems have led satellite-to-ground

	

1{	 communications systems to take advantage of the greater efficiency and superior error

	

-	 control of digital communications. Television, however, has continued to utilize less

efficient analog signalling techniques because of its large bandwidth requirements.

The Shuttle orbiter has requirements for both uplink and downlink television via the

Tracking Data Relay (TDRS) satellite link. The TDRS links impose design limita-

tions on the Shuttle TV systems. Thus it is highly desirable, both for improved

performance and as•a contingency, to implement the Shuttle television links with

more efficient digital signalling systems.

Developments in digital television coding techniques have established that sig-

nificant compression of digital television data can be achieved at moderate cost,

while maintaining extremely low distortion. This is done by exploiting the high de-

gree of spatial, temporal, and spectral correlation in color video data. Most of

these algorithms require substantial amounts of memory and high computational rates.

However, with the advent of high-speed digital logic, a much greater degree of signal

processing is possible at reasonable cost, size, weight, and power. These new tech-

nologies make possible the development of relatively sophisticated data compression

	

i	 systems which promise to bring the digital transmission of Shuttle television into

the same bandwidth regime as analog.

The objective of the current study is to assess the feasibility of utilizing

digital compression techniques for television signals in Shuttle communications appli-

cations. The early Shuttle missions are scheduled to fly a converted Apollo color

television system. This sytem will use a black-and-white camera which is converted

to field-sequential color by the addition of a rotating color wheel. The bandpass of

the camera is 4.5 MHz which requires sampling the video signal at a minimum rate of

10 Msps. Assuming a minimum of 6-bits per sam ple, the system requires about 60 Mbps

S
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for downlink data transmission. Since it is anticipated that the Shuttle will switch

to a standard three-color MTSC television sys-em in the future, the bandwidth require-

ment would be about 130 Mbps. The goal is to reduce the required data rates of the

two systems by a factor of 5 to 10 while limiting spatial, spectral, and temporal

^i	 distortions to levels acceptable to an average viewer.

By taking advantage of the high degree of correlation in both the spatial and

temporal domains, the bandwidth of the video data can be reduced. A number of coding

(i.e., data compression) algorithms that exploit these correlations have been developed

in recent years. Efficient coding of the color television signal requires using se-

quential color fields in the field-sequential camera system to generate the usual (Y)

illuminance and the chromaticity components (I, Q). This involves on-board pre-

processing of the data and results in additional weight and power above that of other

realtime television applications. In the !NTSC television system, the color composite

signal must be demodulated to generate Y, I, Q components prior to the application of

a bandwidth compression method.

j

	

	 In addition to downlink color television transmission, slow scan black and white

television signals will be sent from the ground station to the Shuttle. Slow frame

rates, coupled with efficient coding of the television signals, can be utilized to

transmit high resolution television signals over the 144 KBPS channel.

1.2 STUDY TASKS

The objective of the study is to simulate and evaluate practical digital televi-

^^	 sion compression techniques applicable to the television signals used by Shuttle.

Two television systems are considered: 1) one system transmits high-quality

j	 color video in either field-sequential or standard NTSC TV format and 2) the other

system transmits high resolution slow scan television over a small bandwidth channel.

Task 1. System Definition and Analysis

In this task, specific characteristics of the two television systems are defined

in coordination with the dSC technical monitor. All parameters and operational con-

siderations pertinent to designing and simulating the video compression techniques

are defined. These include sampling rates, grey-level resolution, dynamic range, data

rates, frame and field formats, color structure and any constraints imposed by the

communication system.

1'F

Demodulation of the color , composite signal can be avoided by modifying the cameras
I'	 such that the video signals from individual cameras ^,re available directly.

jliw ^.	 1-2	
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Based upon the system characteristics, candidate algorithms are selected for com-

pressing the Shuttle field-sequential color video signal to achieve a 10-20 Mbps rate.

Where feasible, the impact and compatibility of these algorithms are explored when used

on NTSC color TV. However, selection of the compression technique favors the field-

sequential system as it is the current Shuttle baseline and offers the greatest un-

certainty in compression performance. At least one intrrframe and one intraframe

coding technique, which utilize spectral correlation within the color signal, are

included. Emphasis is placed upon a simple implementation approach that achieves a

t!	 performance plateau in the 10 to 20 Mbps range within the Shuttle weight and power

constraints.

LTwo methods of intraframe (single frame) coding are selected for compressing the

high resolution slow scan television signals. Intraframe techniques are emphasized

due to the lack of frame-to-frame correlation in slow scan systems and to afford max-

imum flexibility in the input signal accommodated. Special consideration are given

to techniques which allow simple decoding (for on-board application) at the expense

of more complex encoding. The selection considers the full range of currently known

!(	 intraframe compression methods relying heavily on our recent performance and imple-

mentation studies. Single field simulation will be used to aid the selection process

as deemed necessary.

Task 2. Compression Technique Evaluation

if	 The most promising candidate algorithms for both systems are simulated on a digi-

tal computer. These algorithms are used to experiment with the following data sets:

1) A number of fields, sufficient to study both spectral and temporal
characteristics, selected from the field-sequential color televi-
sion video tape supplied by NASA.

l^
2) A set of 2-3 frames of high resolution slow scan television data

digitized from the NASA provided video tapes.

The simulation results are used to compare and optimize the various algorithms

for each category. The mean square error and signal-to-noise ratio, as were as sub-

jectively quality of the compressed data as viewed on a Comtal image display, are used

in selecting and optimizing the best technique in each category. By iteratively simu-

lating and comparing the candidate algorithms, parameters of each are optimized and

minimum acceptable bit rates established. A Dicomed (D40) filmwriter is used to pro-

duce both black and white and color hard-copy prints for side-by-side comparison of

the original and compressed forms of the above data sets using the selected techniques.

Hardware and software implementations of each candidate algorithm are considered.

The objective is to design an on-board bandwidth compression system feasible for Shut-

tle's use including a goal to fall within a 20 pound/20 watt weight/power envelope.

The final deisgn incorporates limitations specified by the NASA/JSC technical monitor

1-3
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to make the system compatible with other Shuttle requirements. Design details are

provided including block diagrams, flour charts, parts counts and weight and power

estimates.

i
Task 3. Final Algorithm Selection and Demonstration

I]	 Upon approval by NASA /JSC, the best algorithm emerging from Task 2 in each Cate-

gory is simulated on a digital computer and perl'urmance is evaluated using the fol-

lowing inputs:

L^
1) The data base for the field-sequential color signals is 600 fields

of digitized data sampled at a resolution of 512 samples per line
and 525 lines per frame. This corresponds to 10 seconds of data
on the video tape supplied by NASA/JSC.

2) The data base for the high resolution slow scan television signal
lu 	̂ consists of about 10 frames of data digitized from a representative

slow scan system.

If	 The bandwidth compressed data of the field-sequential system is converted to

video tape and will be displayed on the modified SONY monitor at NASA/JSC to compare

its quality with that of the original signal.

1.3 SUMMARY OF RESULTS

The study considered the feasibility of using image bandwidth compression tech-

niques to reduce the bandwidth of Shuttle television. The TV systems considered in

the study are Field-Sequential and NTSC color TV systems for downlink transmission and

a slow scan high resolution system for uplink transmission. For each system a band-

width compression technique is recommended and its preliminary design is investigated.

For Field -Sequential color TV two different techniques are recommended. One is

a intraframe coding technique that uses a 2D-DPCM loop to encode individual fields

directly. This reduces the bandwidth of the Field-Sequential color TV signal to 24

Mbps and requires 27 watts of secondary power for its operation. The encoder re-

quires 85 integrated circuits (IC's). The second is an interframe coding technique

that exploits spectral, temporal, as well as spatial correlation of the Field-Sequen-

tial color TV signal. This reduces the bandwidth of Field-Sequential color TV system

to 13 Mbps and requires less than 60 watts of power for its operation. Its prelimi-

nary design requires about 348 IC's.

The recommended technique for NTSC color TV system utilizes spectral as well as

spatial correlation of the data. It reduces the bandwidth of NTSC color TV to 28 Mbps

using a 2D-DPCM loop and requires 30 watts of power for its operation. Its preliminary

design requires less than 100 IC`s.

1-4
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The slats-scan uplink TV requires a distortion-free bandwidth compression system.

The recommended technique for compressing the bandwidth of uplink system uses a two-

dimensional HCV code. It reduces the bandwidth of the slow-scan system by about 3

to 1. The decoder for the recommended system requires 19 watts and 102 IC's.

The recommended techniques approach the imposed weight-power goals and produce

high fidelity imagery, The performance of the recommended techniques were evaluated

via simulation and the results demonstrate that the recommended techniques can be
used to compress the bandwidth of Shuttle TV system wile providing high fidelity

reconstructed imagery.

jt

4

it	
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2. DESCRIPTION OF SHUTTLE TELEVISION SYSTEMS

U

	

ri	 In this section both field-sequential and NTSC color television systems are des-

	

I!	 cribed; then demodulation of these signals, which must be performed prior to their

bandwidth compression, is discussed. Finally, the attributes of the slow-scan uplink
i

system are described.

2.1 FIELD-SEQUENTIAL COLOR TELEVISION SYSTEM

The proposed space Shuttle color television system uses a color camera which is

basically a black-and-white camera. It has been converted to a field-sequential

color camera by the addition of a rotating color wheel. This technique is very

similar to the old CBS field-sequential system developed for color television in the

• ^X^ early 1940's. This sytem was characterized by the use of color band filters at the

camera and again at the receiver, with only one camera necessary for viewing a scene

and only one picture tube needed at the receiver. The Shuttle camera, like the old

CBS camera, employs a color filter wheel to produce a serial color signal.

The field-sequential system uses a rotating filter wheel to expose the camera's

image tube sequer+tially at the desired broadcast scan rate to the red, blue, and

	

^f	
green components of a scene. Thus the need for complex optical paths and color reg-

istration adjustment, such as required in commercial color cameras, is eliminated.

This enables the color camera to be lightweight and to require very little power.

In addition, it is capable of operating in a large dynamic range of light levels.

Since the output of a field-sequential system is in serial red-blue-green form, it

is not compatible with present broadcast standards. This requires that a ground

station color converter be utilized to change the sequential color signal to the

standard parallel National Television System Committee (NTSC) color TV format so it

can be rebroadcast by commercial stations.

A diagram of the color television system ( ' ) is shown in Figure 2-1. The image

is focused by a zoom lens through the color filter wheel onto the faceplate of the

image tube. To simplify the problem of synchronizati.n, the scan rate of the wheel

as the color filters pass in front of the image tube must be the same as that of the

TV networks, which is 60 fields per second. This is achieved by dividing the wheel

into six sections, with the colors arranged in red-blue-green, red-blue-green order,

and by driving the wheel at 10 revolutions per second. The motor speed is held con-

stant by the timing of the camera's sync generator.

2-1
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Figure 2-1. Apollo Color Television System

The field-sequential color signal, which is transmitted by an S-band transmitter

(for Apollo), is picked up and amplified by a receiver at the receiving station. The

signal is then clamped in a processing amplifier to restore the do component and

reestablish the average light value of the reproduced image.

The processed signal is placed into a series of two tape recorders for the pur-

pose of compensating for doppler shift and presenting realtime information. The

sequential color signal is then put into the scan converter that changes the video

from the serial color format to the parallel (simultaneous) color format. The scan

color converter is a storage and realout device holding the two previous fields in

memory and presenting the three fields at once at the output of the incidence of the

third field. As the new field is placed into the memory, the oldest field is

erased, updating the information at the field rate. Thus, the three colors are

simultaneously read out in the same manner as the output from a standard three-tube

!?TSC color camera. After video color conversion, the signal is sent to an NTSC

color encoder which processes it to form the composite video signal.

2.2 NTSC COLOR TELEVISION SYSTEM

Most cameras generate three primary color signals: red, green, and blue, which

are subsequently converted into a luminance and two chrominance components. The

luminance signal, given by the equation

Y = 0.30R + 0.116 + 0.5915
	

(2.1)

contains the black-and-white information in the picture, while the two chrominance

components, which are essentially the two difference signals (R-Y) and (B-Y), con-

tain the color information. The advantage of this representation is compatibility

2-2



with black-and-white signals, and the fact that the chrominance components are of

much lower bandwidth than the luminance signal. In the NTSC system two other chrom-

inance axes are used, dr fined by

I = 0.74 (R-Y) - 0.27 (B-Y)

Q = 0.48 (R-Y) - 0.41 (B-Y)
	

(2.2)

The reason for this choice is that the Q signal has a lower bandwidth than the (R-Y)

and (B-Y) signals. Finally, a composite signal is formed by quadrature modulating

the two chrominance signals onto a carrier at 3.579 MHz and adding them to the

luminance signal. Thus,

M(t) = Y(t) + I(t) cos(wct + 33 0 ) + Q(t) sin ( wct + 33 0 )	 ( 2.3)

where the angle 33 degrees corresponds to a displacement with respect to the

reference color burst signal.

Subjective results with color televisior have shni on that the human psychovisual
Y
e 

system is rather insensitive to high frequency components in the directions of I and
Q signals. Subjectively acceptable color quality is obtained by reducing the band-

width of I and Q signals to 1.5 MHz and 0.5 MHz, respectively. In the NTSC system,

the composite signal is limited to 4.2 MHz, the I and Q signals to 1.5 and 0.5 MHz,

respectively.

The luminance-to-chrominance interference is reduced by choosing the subcarrier

frequency fsc to be an odd multiple of half the line frequency fe (fsc = 455 fe/2).

This causes the spectral components of these two signals to be interleaved or equiv-

alently changes the phase of the color subcarrier by 180 degrees from line to line.

It is this spectral interleaving that permits separation of the chrominance and lumi-

nance information using comb filters.

2.2.1 European Color TV Systems

European television systems use a different set of transmission tristimulus

variables. These variables, denoted by Y, C l , and C2 , are related to the R, G, B,

signal as follows:

Y = 0.30 R + 0.11 B + 0.54 G

C 1 = R-Y

C2 = B-Y
	

(2.4)

Comparison of (2.1) and (2.2) with (2.4) shows that both systems utilize the same

illuminance components. The difference between the two systems is that both the C1,

Ji
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1

C2 components have -the same bandwidth and possess the same amounts of energy where in

the other system, the bandwidth and energy content of the Q component is less than it

is for the I component. Since this transformation is also reversible, one can generate

the R, G, B components from Y. C l , and C 2 in the ground station to make the system

compactable with the NTSC commercial TV system in the United States.

2,2.2 Demodulation of Color Signals

Bandwidth compression of television signals exploits the correlation of the sig-

nal in both the spatial and temporal directions. To bring out this correlation, the

composite color signal must be first demodulated. The field-sequential color signal

is already in demodulated form. Spectral correlation of the field-sequential signal

can be utilized by simply digitizing two consecutive fields (i.e., corresponding to

red and green components) and storing these in digital buffers. The Y, I, and Q com-

ponents (for each picture element) are then obtained by farming a linear combination

of the red and green components with the incoming (blue) component. Demodulation of

the NTSC color signal is more complicated. Two popular approaches to this problem	
-a

arQ digital color demodulation using comb filters and NTSC to time domain multiplexed 	 j

(TDM) conversion. However, in a special purpose application such as Shuttle Televi-

sion where a separate effort is undev4ay to design a NTSC color system for possible 	 j

use in later missions, one can make small modifications in the camera system to obtain 	
j

red, blue, and green signals from the camera directly. These signals are then digitized 	 1

and appropriate conversions to illuminance and tri-stimulus values are made by digital

processing.

2.3 SLOW-SCAN UPLINK SYSTEM

In addition to down-link transmission of television signals, there exist require-

ments for transmission of high resolution slow scan black and white pictorial informa-

tion from the ground station to the Shuttle. The capability of the uplink channel is

144K bits per second and at present, 4 possible modes of operation for the slow-scan

uplink system are under considerations. The spatial and gray-level resolution for each

:I	 mode along with the time which is required to transmit an 8"xiO" document is discussed

T in Section 4.1.2. To maintain the high fidelity of the documents that must be trans-

mitted over the uplink system, one requires bandwidth compression techniques which are

entirely distortion-free or introduce minimal distortion. In this study, we consider

only distortion-free bandwidth compression techniques for the uplink system.

{_
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3.	 A SURVEY OF DIGITAL IMAGE BANDWIDTH COMPRESSION TECHNIQUES

Digital television transmission	 was first demonstrated nearly 25 years ago by

the experiments of Goodall (2) with pulse code modulation (PCM).	 Since then there has

been considerable progress in the development of PCM image coding systems (3-5) ,	 Their

application has been limited, however, because of the extremely high bit rate required

for good fidelity transmission.	 In conventional PCM image coding, for example, a con-

tinuous image frame is sampled in the spatial domain to produce an M x N array of dis-

crete samples that are then quantized in intensity with 2 K levels where K is an

integer.	 Then, the total number of bits per second to be transmitted is given by

B = MNKF	 (3.1)

where F denotes the number of frames per second.	 In the Shuttle television system,

an image is scanned with about 350 lines with a horizontal 	 resolution of 425 samples

per line at a frame rate of F = 60 frames/sec.	 If the intensity is quantized to

64 (K = 6)	 levels, this	 corresponds to a bit rate requirement of 54 Mbps for a non-

' interlaced color signal 	 that uses a field sequential color camera.

u As a result of the wide bandwidth required for conventional PCM television

coding, a variety of methods have been explored to reduce the statistical and psycho-

physical	 redundancies within an image (6-10) .	 Several	 of the most promising tech-

niques are listed in Table 3-1. 	 These methods have been classified as to whether the

processing is within a frame (intraframe) or between frames (interframe). 	 Further-

more, the methods are categorized as a reduction if achieved simply by deleting image

' data, while with image compression methods, an attempt is made to exploit the bright-

ness distribution or the spatial and temporal correlation of an image source.

Table 3-1. Image Bandwidth Reduction
and Compression Techniques

3-1

Intraframe reduction

Reduced resolution

Variable spatial resolution

Interframe reduction

Reduced frame rate

Picture interlace

Intraframe compression

Quantization error reduction

Statistical coding

Interpolative coding

Predictive coding

Transform coding

Interframe compression

Frame replenishment

Predictive coding

Transform coding



The simplest means of intraframe reduction for Shuttle imagery is to limit

spatial resolution up to the point that an acceptable picture is obtained. The lower

limit of spatial resolution can only be verified by subjective tests. Another

approach to intraframe reduction that has been suggested is to position the camera

so that an object of interest lies at the center of the frame. Then, since the

?	 spatial resolution of a human observer is reduced at the periphery of his field of

re	 view, the spatial resolution can be degraded at the periphery of the image. With

this system, it is also necessary to constrain the viewer's viewing distance for best

results.

Inteaframe reduction can be accomplished by reducing the frame rate below the

60 frames/sec provided that some form of frame repetition is employed to prevent

display flicker. The frame rate lower limit will then depend upon the relative

speed of subject movement and the amount of smearing that one is willing to tolerate.

Another approach is to employ some form of line or dot interlace in which only a

fraction of the pixels of a field are transmitted in a single television field.

Some subjective tests have been made to determine the tradeoff between spatial

resolution, frame rate, and brightness quantization( ll ). , Such testing, however, has

not been extensive and has not included the field sequential color imagery that

Shuttle uses.

When the number of quantization bits is reducel below five, a grey scale con-

touring degradation usually becomes apparent with standard PCM coding. Preemphasis

and deemphasis networks have been employed to reduce quantization error( 2 ). Other

approaches include the addition of pseudorandom noise to the video signal before

quantization (13) and nonlinear quantization
(14,15)

	Also, techniques have been

proposed for shaping the quantizing error spectrum by using feedback around the

quantizer
(16,17)

	With the best of these techniques, image coding still requires at

least 3 bits/pixel.

I	 Statistical measurements on images indicate that the brightness of pixels within

i	 a cluster is highly correlated. Entropy calculations of information theory further

indicate that statistical coding can be performed on relatively small pixel clusters

at an average coding rate of about l bit per pixel or less without any loss of infor-

mation. Unfortunately, there are no known practical implementations of such a coder

at realtime television rates.

In interpolative image coding, an image scan line is approximated by simple mathe-

matical functions such as straight line segments to within some error tolerance(7).

The method results in excellent fidelity at a codin g rate down to 1 bit/pixel. Unfor-

tunately, the interpolation algorithms are complex and completely unsuitable to

realtime television implementation.mp1 mentation.
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The intraframe and interframe coding techniques which use predictive coding and

transform coding methods have proven to be practical for television bandwidth reduc-

tion. These methods are described in greater detail in the following sections along

with a hybrid transform/predictive coding method.

3.1 INTRAFRAME CODING OF PICTORIAL DATA

In intraframe coding of ,pictorial data, the spatial correlation of picture

elements is utilized to generate a set of uncorrelated or nearly uncorrelated signals

from the pictorial data. The bandwidth reduction is then achieved by not transmittinq

a fraction of the uncorrelated signals or quantizing them very coarsely. The intra-

frame coding techniques ignore the temporal correlation and thus are not as efficient

as their equivalent interframe coding methods. In general, however, they are less

complicated than the corresponding interframe encoders.

3.1.1 T_ransfo_rm_Image_Coding

Even though fine sampling and quantization of an image are essential for desir-

able subjective quality of a digital picture, from the viewpoint of a statistician,

the information in the picture can be conveyed quite adequately without all these

variables. On the otherhand one cannot simply discard a part of these because of
their equal statistical significance and the adverse effect that this would have

on the subjective quality of the picture.

An approach to this problem is to transform the image samples to a new set of

vsriates that have a complementary degree of significance in contributing to both the

information content and the subjective quality of the resulting picture. Then one can

discard the less significant of these variables without affecting the statistical

information content of the picture or causing a severe degradation in the subjective

quality of the picture. The method of "principal components" (better known as the
discrete Karhunen-Loeve transformation) is a linear transformation with the above
properties (18 ' 19) . A number of other unitary transformations such as Hadamard,

Fourier, Haar, Slant, and Cosine transforms also possess this property to some extent.

As indicated in Figure 3-1, these transform coding algorithms perform a unitary

transformation on the input data and follow this by some form of quantization in the

TRANSFORM	 SAMPLE	
CODE

	

QLlANTlZER	 CODER
ORIGINAL

.1-
I MAGE

CHANNEL	 DECODER	 iNVERSORM	 RECONSTRUCTED
 IMAGE

ERRORS	 Figure 3-1. Transform Image Coding
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transform domain. At the receiver, the inverse transform is performed on the quan-

tized values to restore the original data within some level of degradation. Theoret-

ical and experimental results indicate that the transformed samples can be well modeled

by a Gaussian distribution and are best quantized by a nonlinear quantizer. The

forward and inverse two-dimensional Karhunen-Loeve transformations are given by

N	 N

u i j _	
x; ^

i j (x,Y) u(x ,Y) 	(3.2)

f

N	 N

u(x,Y) - r	

1 ^
i a(x,Y) u ij	

(3.3)

It has been shown that the "eigenmatrices"(2) of 
^ij 

(x,y) of the whole picture or

subblocks of the picture that are composed of N by N pixels can be formed from outer

products of eigenvectors of the covariance of the data in the horizontal and the

vertical directions if the covariance of the data is separable and of the form

	

R(x,Y,x,Y) = RH (x,X) RV(Y,Y)	 (3.4)

where RH and R  refer to the covariance matrices of the data in horizontal and vertical

directions, and R(x,k,y,y) is the covariance "tensor" of the data. In the absence of

this assumption, the ordering of the two-dimensional data in a vector form is the only

practical solution. Computations indicated by equations (3.2) and (3.3) correspond to

operating on the rows of the image followed by operations on the columns of the hori-

zontally transformed data to obtain the two-dimensional transformation. Approximately

N4 multiplication/addition operations are required to perform the transformation.

Often the two-dimensional Karhunen-Loeve transformation is obtained for the Markov

process covariance function

R(x,x,y,y) = exp (-a`x-xj-3jy ..YD	 (3.5)

where a and 0 are estimated from the image.

The shortcomings of the method of principal components are the large number of

operations required for forward and inverse transformation of (3.2) and (3.3), estimation

of the covariance of the data, and calculation of the eigenmatrices. To eliminate

these difficulties, a number of other transformations have been considered and are

reviewed briefly below (see References 20 to 27 for details).

3-4
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For discrete data, the two-dimensional Fourier transformation

'	 choosing the basis matrices (images) of the form

ij(x.Y) s	
R exp I-27r(-1)

1/2 
tix+jy)^

1

m^

w^

^x

cr

i ,J.x,Y = 1,2-1—IN

while the two-dimensional Hadamard transform
(20,23)

 corresponds to choosing basis

images as

log2N-1

E Cb
h (x)bh (Y) + bh ( i )bh ( j )]	 (3,7)

O i j (x,y ) = R (-1)	
h=0

where bh (-) is the h th bit in the binary representation of (-), and N is a

power of 2. Both of the above transformations are members of a class of Kronecker

matrix transformations that have 2N2 
1092N  

degrees of freedom, and can therefore be

implemented by 2N2
109

2N2 computer operations. These transformations remedy the short-

comings of the Karhunen-Loeve transformation by eliminating the necessity of finding

an operator matched to the covariance of the image and significantly reducing the

computational complexity.

In addition to these transformations, a number of others possessing the above

two properties have been considered. For example, Cosine (26) and Slant transforma-

tions (27,28) have resulted in a better mean square error performance than either the

Fourier or the Hadamard transformations. The performance of these transforms is still

inferior to the performance of the Karhunen-Loeve transformation, which is the only

orthogonal transform that generates a set of uncorrelated signals. However, in most

practical applications, the computational simplicity and the ease of implementation

of the Hadamard and other suboptimum transformations more than compensates for the

suboptimal performance of the transforms.

Relatively simple transform image coding algorithms have been developed which

yield good fidelity results for coding with about 1 to 2 bits/pixel in relatively

small size blocks. The disadvantages of transform coding are primarily implementation

complexity. With most hardware implementation methods it is necessary to store a

number of television lines equal to the block size, e.g., 16 lines for a 16 x 16 block.

Also, for realtime TV systems, if implementation is to be performed with digital cir-

cuitry, a relatively large number of high speed adders, multipliers, and storage

registers will be required even with a fast computational algorithm.
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3.1.2 Predictive image Coding-

Conventional PCM is a relatively inefficient form of coding for images, since the

process ignores the spatial correlation of pixels. Transform coding, on the other

hand, exploits the spatial correlation by transforming pixel regions to a set of trans-

form coefficients which are nearly uncorrelated and can be efficiently coded separately

with a relatively small number of bits.

Another means of de-correlation of an image is based on classical prediction

theory. Consider the linear predictive coder of Figure 3-2 in which a set of corre-Y	 p	 9

lated variables [S i ] with mean zero and variance a 2 is to be coded. A linear predictor

'.	 provides an estimate of the next sample S o by So based on the previous n samples by the

linear operation

..a.

n

So =
	 Aisi	 (3.8)

i=1

C	 Next, a differential signal

eo = So - So	(3.9)

:aw

is formed. In a predictive coding system, the differential signal is quantized and

coded. At the receiver, the reconstructed differential signal is used to recreate

the sample estimate S o . The weignting coefficients A i are chosen to minimize the

variance of the differential signal for efficient quantization and coding. Experi-

mental results for images indicate that use of only the three nearest neighbors of a

pixel results in a nearly uncorrelated set of differential signals for transmission.

<.	
The linear predictive coder, often called a differential PCM coder, forms its

prediction based on observations in two dimensions. Often such coders are restricted

r	 to prediction only along a scan line to simplify imnlementation. Such designs, how-

ever, result in degraded performance(29,31)

The delta modulator is a simplified form of a DPCM coder in which the prediction

is based only on the previous pixel, and the differential signal is quantized only to

two levels. Such gross quantization usually results in severe distortion. Adaptive

delta modulation schemes have been developed to adjust the quantization levels to

image brightness changes. Also, a dual mode DPCM/delta modulation coder has been

developed in which the coder operates in a delta modulation state in image regions of

nearly constant brightness and switches to DPCM in regions of ra p id brightness

°q	changes(32).

r
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Figure 3-2. Linear Predictive Coder and the Pixels
Employed in Predicting Pixel So

Spatial domain predictive coders have proven to provide relatively good fidelity
x] h

for coding with as few as 2 bits/pixel. Furthermore, the implementation complexity

of such coders is reasonable for realtime television at resolutions of commercial

quality.

Y.	
3.1.2.1 DPCM Systems with Adaptive Predictors

yo

DPCM systems using a fixed optimized predictor generate a well behaved stationary

differential signal if the original data is stationary. The stationary differential

m°

	

	 signal can be encoded optimally using a nonlinear quantizer matched to its statistics,

However, when the signal is non-stationary and the predictor parameters are fixed, a

wr

	

	 non-stationary differential signal results. Optimal encoding of the non-stationary

differential signal then requires a variable quantizer which would change to accommo-

date the variations in the differential signal. In designing an adaptive DPCM system

one must either use a predictor with variable parameters such that the parameters

would change with the variations in the signal (always generating a stationary differ-

"`

	

	 ential signal) or one can use a fixed predictor with a variable quantizer to accommo-

date the resultant non-stationary differential signal. In addition to the above two

W

	

	 adaptive systems, the adaptivity can be incorporated in the system by using a variable

sampling rate and fixing both the predictor and the quantizer.

In a DPCM system with an adaptive linear predictor, the weightings on the adjacent

samples used in predicting an incoming sample can change according to variations in



the signal value.	 Atal and Schroeder
(28) studied the performance of such an adaptive

system for voice signals.	 Their proposed system included a 5 millisecond delay during

which the incoming samples were stored in an input buffer and were used to obtain an

estimate of signal covariance matrix.	 The measured covariance matrix was used to ob-

tain a set of weightings for the predictor.	 These values were then used for processing

the stored signals.	 The updated values of the predictor coefficients need to be trans-

mitted to the receiver once every 5 milliseconds.	 They used the variable predictor

with a two level quantizer and report good coding results. 	 Although identical systems

can be implemented for coding pictorial data, this type of system has not been reported

in open literature.	 Instead, researchers have used adaptive DPCM systems with a fixed

and simple predictor and an adaptive quantizer.

3.1.2.2	 DPCM Systems with Adaptive Quantizers

A DPCM system with a fixed predictor will have a non-stationary differential
}

signal	 for non-stationary data. 	 Using a fixed quantizer, non-stationary dif-

ferential signals would cause an abnormal saturation or a ''N11%quent utilization of the

smallest level	 in the quantizer.	 To remedy this situatioo .,4e threshold and the re-
t

construction levels of the quantizer must be made variable 4a expand and contract

according to signal statistics.	 Adaption of the quantizer to signal	 statistics is

<.,,= accomplished using various approaches. 	 Virupaksha and O'Neal
(29

^ suggested an

adaptive DPCM system for speech signal 	 that stores 25 samples of the differential

:e C:
signal	 to obtain an estimate for the local standard deviation of the signal. 	 Then

the stored signal	 is normalized by the estimated standard deviation and is quantized

using a fixed quantizer. 	 Naturally the stalling coefficient must be transmitted once

for every 25 samples for receiver synchronization. 	 Ready and Spencer (30) use a

similar approach in a system called Block-Adaptive DPCM that they use for bandwidth

compression of monochrome images.	 In Block-Adaptive DPCM Systems a block of M samples

is stored and is normalized by n possible constants. 	 The total	 distortion for all M

samples using each normalizing constant is calculated at the encoder. 	 The normalizing

constant giving the smallest distortion is used to scale the samples in the block

prior to their quantization and transmission. 	 The system requires (1092n)/M binary

digits per sample overhead information for receiver synchronization. 	 Ready and Spen-

cer use a two dimensional DPCM system employing 3 adjacent samples in its predictor

and use a block of 16 samples with 4 possible normalizing constants. 	 They report a

36% reduction in bit rate over a similar non-adaptive DPCM system at about 2 bits

per Sample.	 The improvement in performance is less at higher bit rates.

A different approach, which has not appeared in technical 	 literature, is a DPCM

system with a variable set of thresholds and reconstruction levels. 	 This is the self

synchronizing approach used in adaptive delta modulators where the step size contracts

and expands depending upon the polarity of sequential output levels. 	 In a DPCM quan-

f
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titer the set of threshold and reconstruction levels would contract and expand de- k	 ;
a

pending upon the sequential utilization of inner or outer levels of the quantizer.

For instance, a variable quantizer can be designed where all reconstruction levels
xi•,

expand by a factor of P (for some optimum value of P) upon two sequential happenings
i

of the outermost level and they would contract by a far. t 	 c" 1 upon two sequential

happenings of the smallest level.	 This system has the at^ • I7,tage that it is completely

adaptive and does not require any overhead information because the rece 4 ver is self

^i
synchronizing.

3.1.3	 Hybrid Transform/DPCM Image Coding

Analysis of the transform and DPCM image coding techniques has disclosed that

each possesses attractive characteristics and some limitations
(33934)

	Transform

systems achieve superior coding performance at lower bit rates; they distribute
z
^coding

coding degradation in a manner less objectionable to a human viewer, show less sensi-

tivity to data statistics (picture-to-picture variation), and are less vulnerable to

channel noise.	 DPCM systems, on the other hand, when designed to take advantage of

spatial correlation of image data, achieve a better coding performance at a higher

;.- bit rate.	 Perhaps the most desirable characteristic of DPCM is the ease of design

and the speed of the operation that has made it possible for DPCM systems to be used

in coding television signals in real 	 time.	 The limitations of DPCM are the sensitivity

of even well-designed systems to picture statistics and the propagation of channel

errors in a coded picture.

A hybrid coding system that combines the attractive features of both transform

and DPCM coding has been developed (34) .	 This system exploits the correlation of the

data in the horizontal direction by taking a one-dimensional transform of each line
u

of the picture, then operating on each column of the transformed data using a one-

element predictor DPCM system. 	 Since the unitary transformation involved is a one-

dimensional	 transformation of individual 	 lines of the pictorial data, the equipment°

complexity and the number of computational operations are considerably less than that

involved in a two-dimensional transformation. 	 Theoretical and experimental results

indicate that the hybrid system has good coding capability -- one that surpasses both

7-

DPCM and the transform coding systems.

In the hybrid system shown in Figure 3-3, image data is scanned to form N lines,

and each line is sampled at the Nyquist rate. 	 This sampled image is then divided

into arrays of N by M picture elements u(x,y), where x and y index the rows and the

columns in each individual	 array, so that the number of samples in a line is

f
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an integer multiple of M. The one-dimensional unitary transformation of the data and

its inverse are modeled by the set of equations

M

u i (Y) _ E u(X,Y) ^ i (x)	 i a 1 9 2, ... ,M

X-1	 y	 1,2,...,N	 (10a)

M

u(X,Y) '	 ui(Y)^i(X)	 (10b)	
I

i=1

where 4W denotes a set of M orthonormal basis vectors. Since the correlation of

samples in various columns of the transformed array is different, a'separate DPCM

loop is used to encode each transform coefficient.

The performance of three hybrid encoders using various transformations is shown

in Figure 3-4 for M-16 and N=256. The performance of the two-dimensional Hadamard

and two-dimensional DPCM encoders is included for comparison. This figure clearly

shows the superior performance of the hybrid encoder over both the two-dimensional

Hadamard and two-dimensional DPCM encoders.

The optimal hybrid coder (Figure 3-3) utilizes a set of different weighting

coefficients A l , A2 , ..., AM in the DPCM predictors at the transmitter and receiver.

Also, the quantizers in the DPCM systems are based on the statistics of the video

data. To simplify the encoder and permit its design to be independent of the signal

statistics, a suboptimal system has been developed which uses a common value for Al

through AM , and which uses some general statistics (obtained from a number of typical

.pictures) to obtain variances of the transform coefficient. In the block diagram of

the simplified DPCM encoder (Figure 3-5), a single loop encodes all transform coeffi-

cients in a sequential manner. Each transform coefficient is normalized by multiplying

by an appropriate gain factor g i before being processed by the DPCM loop. The processed

system has a maximum of 4 bits per coefficient. The bit assignment procedure is pro-

grammed in the controller which selects 0 to 4 bits per coefficient in a predetermined

manner. The nonlinearity of the quantizer is achieved by using a set of fixed non-

uniform threshold levels.
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Figure 3-5. DPCM Encoders for the Simplified Hybrid Encoder
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The simulation results show that performance of the sim plified h ybrid encoder is

only slightly inferior to the performance of the optimum hybrid encoder. The reduction

in SNR and subjective quality was minimal and well worth the resulting hardware simpli-

fication.

3.2 INTERFRAME CODING OF TELEVISION SIGNALS

In a monochrome television signal, a large fraction of the picture elements corres-

pond to background material that does not change significantly from one frame to the

next, while only a relatively small number of picture elements in a frame convey fresh

information. From a statistical viewpoint, the similarity of pixels from one frame to

the next corresponds to a high level of interframe correlation. Thus, the statistical

coding techniques exploiting spatial correlation that have been considered for coding

single frames of data could, in principle, be extended to take advantage of the frame-

to-frame correlation, thereby further reducing the bit rate required to transmit the

data. Indeed, some research in the area of three-dimensional Fourier and Hadamard

transformations has indicated that bit rates can be reduced by a factor of about 5 by

incorporating the correlation in the temporal direction 
(35). 

However, three-dimensional

transform encoding systems suffer from the serious shortcomings of computational com-

plexity and the requirement of large amounts of storage. For this reason, some
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researchers have avoided extending transform coding systems to a third dimension;
R

instead they have suggested suboptimum coding systems that do not require extensive

amounts of memory or computation.

s

	

	
Interframe coding of frame-sequential color signals of Space Shuttle suffer from

an additional shortcoming. This is due to the fact that, in frame-sequential color

television, the sequential frames represent both motion and spectral changes, whereas

in monochrome television sequential frames differ only due to the motion of the camera

with respect to the subject. This limits the coding efficiency of the interframe

coding systems since spectral variations, as encountered in going from a blue to a red

component of a color signal, are more significant than chan ges due to motion of the

	

^f.	
camera with respect to the subject. Efficient coding of the frame-sequential color

television signal requires using the sequential color signals to generate the illumin-

ance and chromaticity components of the color video signals on-board the spacecraft

and then applying the interframe coding to the illuminance and chromaticity components

individually. Naturally, this involves preprocessing the data on-board the spacecraft

and requires storing three frames to make the required transformation. Interframe

coding of the new color composite signals may require additional frame storage. This

	

u	
approach may not be feasible due to the light wei ght and the low power requirements

for the on-board encoder.

	

^	 Other approaches include application of only intraframe codin g methods or using

interframe coding algorithms on the frame-sequential color data directly. Using the

second approach, one would want to use a coding algorithm that would make maximum

use of the similarities of frame-sequential color signals. In the following, we

discuss a number of interframe coding algorithms which have been devised for coding

monochrome television signals. We address the anticipated performance of these

systems for the frame-sequential color video signal,

3.2.1 Conditional Frame Replenishment Coding

An efficient technique of interframe coding of monochrome television images is

simply to transmit the gray levels of the elements that have changed in successive

frames by replenishing the previous frames with the transmitted data 
(31,37)
	 Experi-

ments with Aicturephone signals using the conditional frame replenishment technique

have indicated good coding results for an average of 1 bit per pixel. A major short-

-	 coming of the system is that the data is generated it an uneven rate. This is caused

by the variation in number of pixels which change beyond a fixed threshold in each frame.

	

.	 To transmit this data over a fixed bit rate channel requires buffering the data prior

to transmission. The size of the buffer and the bit rate limit the amount of motion in

the video data for which this system can be employed. It has been determined that a

buffer size of 10 frames is needed to transmit television signals with a moderate de-

gree of motion. The buffer size can be reduced to one frame by transmitting only

clusters of data at the expense of increased hardware complexity.
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A second maJor shortcoming of the system is that only correlation of the data

in 	 he overall efficiency of the coderin the temporal direction is exploited. Thus, t	 ov a	 y	 o	 is

low, since spatial correlations are ignored. This coding system can be modified to

encode illuminance and the chromaticity components individually. Hardware develop-

ment of such an encoder is under study in Japan. The performance of the frame replen-

ishment algorithm on frame-sequential color signals is anticipated to be rather poor,

since there is a considerable change in the background caused by spectral variation.

3.2.2 Three-Dimensional Hadamard Transform Coding

A three-dimensional coding system that takes a transformation in the temporalq'	

direction as well as the spatial domain exploits the frame-to-frame correlation as

well as the correlation in the temporal direction, thus achieving a better coding

i	 performance than the two-dimensional transform coding methods. Although it is

possible to use any of the unitary transformations, the complexity of the system is

reduced by using a Hadamard transform that requires minimal hardware complexity.

At least two coding methods using three-dimensional Hadamard transformation are under

development in the United States.

BTL Three-Dimensional Hadamard Transform Coding System

--	 A three-dimensional Hadamard coder which employs 2 x 2 pixel blocks by 2 frames

s^ in time is currently under investigation at Sell Telephone Laboratories. This system

exploits the correlation of data in both the spatial and temporal directions, requires

only one frame of memory, and is amenable to simple hardware implementation. However,

this coding technique is not highly efficient due to the rather small number of pixels

(a -total of eight pixels) used to exploit correlations in the data. Hardware for this

encoder is in the development stage at Bell Telephone Laboratory (38)

NASA/Ames Three-Dimensional Hadamard Transform Coding System

NASA/Ames Research Center at Moffit Field, California, has developed a three-

dimensional Hadamard transform coder that uses a block size of 4 x 4 pixels and four

frames in time. This coder is designed to reduce the bandwidth of high resolution

^ r	television signals transmitted at 30 fps. It employs a 4 x 4 pixel sliding window

^14	technique to eliminate visual edge effects due to the Hadamard encoder.

The encoder is designed for standard U.S. commercial television signals and

thus uses 525 lines per frame. Each line is sampled to generate 512 sampes per

line. This corresponds to 8 megasamples per second on a corresponding 4 MHz analog

bandwidth for the original television signal. A functional block diagram of this
J 

encoder is shown in Figure 3-6. The Hadamard transformation is applied to subblocks

of 4 x 4 x 4 samples. The bandwidth reduction is obtained by assigning more bits to

lower coefficients and less bits to higher efficients. The system is capable of
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Figure 3-6. 3D Hadamard Encoder

operating from off-the-air television signal, video tapes, or television cameras.

A block diagram showing the fi pld demultiplexing essential to perform the three-

dimensional Hadamard transform of interlaced signals is shown in Figure 3-7. A block

diagram of the decoder is shown in Figure 3-8. The system can be programmed to oper-

ate at various bit rates. It also has an adaptive mode of operation that selects a

combination of vectors and cut points best fitted to the data.

The shortcoming of this system is the large storage requirements needed for four

frames of data. The system can be modified to encode color television by operating

on the illuminance and the chromaticity components individually. This requires storinq

as many as 12 frames of data at the transmitter, though it is conceivable that this

number could be reduced due to the fact that the chromaticity signals require a much

smaller bandwidth. The performance of the existing encoder operating on a frame-

sequential color video signal is anticipated to be inferior to its performance on

monochrome television due to smaller correlation in the spectral bands as compared

to the correlation of sequential frames in monochrome video signals.

^a
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3.2.3 Three-Dimensional Hybrid Encoders

Three-dimensional transform coding systems suffer from the shortcoming of exces-

sive storage requirements needed to store previous frames. A three-dimensional hybrid

encoder that uses a two-dimensional transformation on the spatial domain cascaded with

a DPCM encoder in the temporal domain will require storing only one frame of data and

should perform better than the corresponding three-dimensional encoders. This obser-

vation is based on the comparative performance of the two-dimensional hybrid and

,.,	 transform encoders which were discussed in Section 3.1.1. In the following, we

describe three different coding algorithms that are based on three-dimensional hybrid

encoders.

Two-Dimensional Cosine Transform/DPCM Encoder

^.	 Investigation of the hybrid encoder using a two-dimensional cosine transform

cascaded with a DPCM encoder for reducing the bandwidth of RPV imagery is underway by

the Naval Undersea Center in San Diego( 39 ) . This hybrid encoder exploits spatial

correlation of a television image by taking a two-dimensional discrete cosine trans-

form. Temporal correlation of the data is exploited by using a DPCM encoder. Theo-

-	 retical studies indicate that the hybrid intrrframe encoder possesses the attractive

feature of the hybrid intraframe encoder discussed in Section 3.1.1. It is antici-

pated that this system will reduce the number of binary digits needed for reconstruc-

tion of television at the receiver by a factor of a!)out 5 over the two-dimensional

hybrid encoder. This system can be modified to encode illuminance and the chromoticity

components of a color video signal. This requires storing three frames of data at the

transmitter. The performance of this system operating directly on the frame-

sequential color video data is expected to be inferior to its performance for mono-

chrome television signals.

Two-Dimensional Fourier Transform/DPCM Encoder

An alternative approach to the three-dimensional hybrid encoder that uses the

cosine transform in the spatial and the DPCM encoder in the temporal direction is a

system using a two-dimensional Fourier transform. This system would generate a two-

dimensional Fourier transform of each frame. Denoting the two-dimensional Fourier

transform of the k th frame by F k (u,v), we can represent Fk (u,v) by its amplitude and

phase as

Fk(u,v) = Ak(u	
jek(u,v)

,v) a	 (3.11)

where Ak (u,v) and 0 (u,v) refer to the amplitude and phase planes of the k th frame.

Many types of motion (such as a panned motion) correspond to significant changes in

the phase plane and small changes in the amplitude plane. Thus, for an efficient

encoder, we would assign a larger fraction of the available binary digits to changes

11	
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in the phase plane from one frame to the other frame and a smaller number of binary

digits to the corresponding changes from one amplitude frame to the other. The other

attractive feature of this coding method is relating the predictor in the DPCM feed-

back loop to the motion and performing a better prediction for the changes in phase

caused by the motion. This system is more complex than the three-dimensional hybrid

encoder that uses the cosine transform. The performance of this encoder on the frame-

sequential color signal is anticipated to be better than other three-dimensional coding

methods, since it is conceivable that spectral variations and motion will be registered

sufficiently different in the amplitude and phase planes to allow for more efficient

coding of these variations.

Two-Dimensional Hadamard/Frame Differencing

The three-dimensional hybrid encoder discussed above uses a two-dimensional

transformation on the spatial domain, and then the transform coefficients are encoded

by DPCM encoders in the temporal domain. The system can be simplified if only the

difference of the transform coefficients is quantized. This corres ponds to using a

gain of unity in the feedback loop of the DPCM encoder. In the three-dimensional

hybrid scheme. Such a system is implemented by Linkabit Corporation using two-

dimensional 4 x 4 Hadamard transform (40) . The error propagation is reduced by quan-

tizing and sending the transform coefficients once every four frames instead of the

frame-difference signals. The performance of this encoder is degraded if frame-

sequential color signals are used instead of the sequential frames of monochrome

television.



3.3 FACSIMILE CODING TECHNIQUES
L^	 E.

Transmission of video information over PCM channels requires sampling of the

analog signal to form pixels and then quantizing each pixel to one of 2
M
 levels. Each

pixel is then transmitted using M binary digits. Two-level data (also called two-tone)

such as weather maps or printed materials require only a single binary digit while con-

tinuous grey-tone pictures usually need 6 to 8 binary digits for a satsifactory repre-

sentation. Since the entropy of both types of data sources is smaller than the number

of binary digits M, a redundancy reduction technique will, in most cases, result in a

reduction in the bit rate without reducing the information content of the data. Redun-

dancy reduction techniques considered for the two data types are in general different.

Continuous grey-tone pictures are characterized by smooth edges and small sample to

sample variations and can be encoded by transform techniques (Fourier, Hadamard, Kar-

hunen-Loeve Transform) and some of the predictive coding techniques (DPCM and delta

modulators). All these techniques degrade the transmitted picture although in most

cases the degradation is virtually unnoticeable when encoded at I to 2 binary digits per

pixel. The half-tone sources (sometimes referred to as binary sources), on the other

hand, are characterized by sharp edges and often require encoding with no degradation.

The techniques developed for these sources are, in general, information preserving,

such as Huffman coding and are decoded at the receiver to prove an exact replica of the

source data. A third type of data source proves multi-level data that is characterized

by sharp edges and a limited number of grey levels. An example is a road map or a dia-

gram that uses a few different shades of grey. Due to the limited number of levels and

sharp edges that characterize this type of data source, tt can be encoded using modi-

fled forms of the algorithms that are developed for encoding two-level data. In this

section different techniques of encoding two-level sources are reviewed and the poten-

tial use of these techniques on multilevel 2-dimensional data is studied.

The techniques developed for encoding binary 2-dimensional data can be classified

into two categories. The first is the class of techniques that encodes each scan line of

pixels independently. The correlation between picture elements along the line is used

to reduce the redundancy inherent in that line. These techniques ignore the correla-

tions between lines. The second class of techniques store a portion of a frame or a

complete frame and consider the correlation between the picture elements in more than

one direction. Most of these techniques utilize the correlation in the vertical as
rr	

well as the horizontal direction; others go further and include correlations at all

possible angles. Theory and experiments have shown that the second class of techniques

produce better reconstructed picture fidelity.
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3.3.1 One-Dimensional Techniques

The major encoding techniques in the first class are:

1. Run-Length Coding - In this technique a counter keeps track of the number of

consecutive similar symbols (0's or 1's). These numbers, which are the length of the

run of black or white symbols, are encoded using some entropy coding technique such as

a Huffman code. A thorough performance evaluation of this technique in encoding

printed materials and weather maps is carried out by Huang (41) • In addition to the

experimental performance evaluation of run-length coding on 3 weather maps and 4 pages

of type written materials of varying resolutions, he has verified an upperbound on

the average number of bits/pixel required by the technique. Based upon a two-state

Markov chain model Huang finds an upperbound on the run-length coding techniques of

any two-level data regardless of its statistics.
:a

Run-length coding technique can be applied to multi-level data where m ad-

ditional bits per run are used to specify the value of each run for a data source with

2m possible levels. Here each run is designated by two numbers, one specifying the

length and the other magnitude. Since there is no logical relationship between these

two numbers, each can be encoded independently. A Huffman code based on average sta-

tistics of the data (histograms of the run lengths and run values over an ensemble of

pictures) can be used to encode these numbers into code words.

An optimized form of run-length coding technique is suggested by Bradley for

two-level data 
(42). 

This coding technique considers each run as a string of "zeros"
with a terminating "one". The code contains 2n entries (code words) of fixed length

n. The entries are of two types: Type 1 entries represent "zeros" with a terminating

"one" and Type 2 entries represent strings of consecutive "zeros". For a high resolu-

tion digitized engineering drawing (3000 x 4000 pixels), Bradley finds the theoretical

performance of his coding technique produces a compression ratio of 13.2. He compares

his approach to a run-length coding scheme which provides a compression ratio of 8.65

by using a fixed length code of 109 2 3000 bits to encode each run regardless of its

probability. The maximum compression ratio based on the entropy of the source is 17.58.

Of course the run-length coding technique could be improved by using Huffman coding,

but then this makes the coding source dependent.

The optimized form of run-length coding seems attractive for binary sources
-31	

but its application to the case of multilevel sources does not seem appropriate.

2. Encoding of the Changing Elements - This coding technique, considered for two-

level da-a as well as continuous-tone imagery, transmits only the changing elements

along with the addressing information as to where the change occurred. Various imple-
mentations of this technique are discussed in the literature. Ehrman considers three
different versions of this technique and employs them for redundancy reduction along
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either the horizontal or vertical direction for intraframe coding of continuous-tone

pictures (43) . Mount uses the technique along the temporal axis for intraframe coding

of picturephone signals (44) . This system is desirable since a threshold level can be

chosen such that only changes above that level are detected. This increases the com-

pression ratio and eliminated background noise. This technique, when applied to two-

level sources, would use a zero threshold to provide distortionless encoding. The

performance of this technique for two-level sources is inferior to run-length coding

if a PCM Coder is used to encode the addressing information; however, more sophisticated

schemes, such as one similar to the Cluster Coding (45) , might make this technique more a

efficient. This technique seems attractive for the case of multilevel sources.

3. Facsimile Coding by Shipping White - Most documents and line drawings contain

a large amount of white space. One approach to their efficient coding is to skip

the white space. A simple way of doing that was suggested by de Coulon and Kunt(45),
and Horlander (47) . Each sampled scan line is divided into N-picture-element (pel)

blocks. For a block containing at least one black pel, we use an (N+l) -bit code
word, the first bit being "l" and the next N bits being the binary pattern of the N-

pel block in question. For example, if N = 4 and a block contains two white pets

followed by two black pels, then the code word for that block is "10011". Here we

have used "0" to represent white and 1" black.

Once a value for N is fixed, the optimum code for the 2 N possible N-pel pat-

terns is of course the Huffman code based on the probability distribution on these

patterns. However, the implementation of a Huffman code is complicated. If the image

contains a large amount of white, then the Horlander-de Coulon-Kunt (HCK) code may per-

form almost as well as the Huffman code and is much simpler to implement.

For a given image or class of images, the average bit rate b N (bits/pet) of

the HCK code depends on the block size N. Some theoretical results for choosing N

to minimize the bit rate are available (48). Huang has modified the HCK code for

improved performance and reports that the modified HCK code is comparable to runlength

coding for texts, but runlength coding is more efficient for line drawings and weather
maps(48).

HCK codes can also be used for bandwidth compression of multilevel graphics.

For this application, each sampled scan line is divided into blocks containing N pic-

ture elements. A block of all white picture elements is encoded with a "0" and the

other blocks are encoded by (mN+1) bit code words, the first bit being a "1" and the

next mN bit are the actual pixel values. The compression ratio depends upon the

total number of all white blocks in the document.
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3.3.2 Two-Dimensional Techniques

The second class of facsimile coding techniques use the correlation of data in

more than one spatial direction. The major two-dimensional techniques are:

1. Block Coding Technique - In this technique, the picture is divided into

blocks of nxm arrays, the message space consists of 2 m possible patterns per block.

Each pattern is assigned a code word using a Huffman code based on the statistics of

the data. Huang has considered this technique and has compared it to a run-length

coding technique for various values of m and n. His results show that this technique

is inferior to the run-length coding.

2. Predictive Differential Quantizing - This scheme makes use of the correlation

between scan lines, and can be considered as an extension of run-length coding to two

dimensions. Here the differences between corresponding run lengths of successive scan

lines are transmitted. In applying this technique to encode weather maps and printed

material, Huang concludes that it outperforms both run-length coding and block coding

x '	 techniques when used on weather maps but it is inferior to run-length coding when used

for printed material. This technique also can be modified to encode multilevel rata;

however, it is rather complicated and does not seem to hold much promise.

3. Contour Tracing Algorithm - This class of algorithms is truly a two-dimensional

coding scheme. A contour tracing algorithm is suggested by Wilkins and Wintz(49)

which traces the outer boundary of the largest connected set of elements having the

same value as the initial point and always terminates back at the initial point.

Wilkins and Wintz constrained the direction of travel to only four spacial direction

to limit the direction information to 2 bits. All elements enclosed by the contour

and having the same value as the contour are neglected but can be reconstructed at

the receiver. The authors used Huffman codes for encoding the transmitted data and

simulated the system for a number of continuous-tone and two-level imagery. This

scheme performs particularly well for the case where the number of levels is about 8

to 32 levels, therefore, it is promising for encoding multilevel data. Its short-

comings are the large memory requirements and relative complexity of the contour

tracing algorithms.

4. Two-Dimensional HCK Codes - The one-dimensional HCK codes discussed in 3.1.3

can be modified for two-dimensional data. One modification considers blocks of M x N
samples. For a block consisting of all white pels, the 1-bit code word "0" is used.

For a block that consists of at least one black pel, an (MxN+1) bit code word is used,

where the first bit is "1" and the next M x N bits are the binary pattern of the M x N

pel block. The technique also applies to multi--level imagery by again using "0" for

all white blocks and using "1" following by M x N x 
1092m 

bits for the blocks with at

least one non-white pel. Here m is the number of grey levels per pel and it is assumed

that log2m is an integer.
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4. DIGITAL COMPRESSION SYSTEMS FOR SHUTTLE TV

In this section the characteristics of the Field-Sequential Color TV and the slow

scan uplink system are discussed. Based on the characteristics of these signals and

a rather severe weight-power limitations on the encoder or decoder, a number of band-

'	 width compression techniques, compatible with the Shuttle requirements, are chosen as
P	 q

candidate techniques. Based on the performance and the complexity of the candidate

systems, a 2D-DPCM technique is recommended for the downlink system and a two-dimen-

sional HCK facsimile coding technique for the low data rate uplink system.

4.1 CHARACTERISTICS OF SHUTTLE IMAGERY

The Shuttle will be using the Apollo Color Television System in the first few

missions for downlink transmission of pictorial data. The present plans call for

using a standard three-camera color television system for future missions. The

uplink system will transmit high resolution imagery in slow scan format. The spatial

and grey level resolution for various modes of operation of the slow-scan system are

described in Section 4.1.2. Although the future plans for the Shuttle downlink system

calls for a three-camera color camera, in this study bandwidth compression for the

Field-Sequential Color TV system is emphasized. This is because the characteristics

of the Field-Sequential Color TV system are markedly different from the characteristics

of both monochrome and commercial color television. Therefore, the bandwidth com-

pression techniques developed for commercial television are not adequare for com-

pressing the bandwidth of Field-Sequential Color Television.

4.1.1 Field-Sequential Color Imagery

f

The Field-Sequential Color TV system uses a modified monochrome TV camera with

a rotating color wheel. The rotating color filter exposes the camera image tube se-

quentially, at the commercial broadbast scan rate, to the red, blue, and green com-

ponents of a scene. Therefore sequential fields differ in spectral components in

addition to the field-to-field variations caused by temporal motion. This generates

spectral and temporal correlation in addition to the spatial correlation inherent in

all pictorial data. However, due to spectral variations, the relative degree of the

total spectral and temporal correlation of the Field-Sequential Color TV is less than

the temporal correlation between the sequential fields of monochrome television. There-

fore one can not achieve as high of a bandwidth compression with Field-Sequential color

TV as one achieves with monochrome television for the same image fidelity.

The bandwidth of the Field-Sequential signal is significantly smaller than the

bandwidth of a standard color TV system. This is because the standard NTSC color tele-

vision uses three color guns, each with the same bandwidth as the camera used in Field-

Sequential color TV system. However, the signal generated by NTSC color television

system exhibits more temporal and spectral correlation; therefore its bandwidth can be

compressed by a larger ratio.
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The Field-Sequential color TV images used in this study were generated from a

camera with a bandwidth of about 4.2 MHz. The minimum sampling frequency is about

9 M samples/second. Experimental results with commercial television has shown that

excellent image quality results when the sampling rate is set to generate 512 samples

for the active duration of each TV line. (5) Although there are only 240 active lines

per field in commercial TV, we have digitized 256 lines per field and will report the

equivalent bandwidth transmitting all 256 lines. The output of Field-Sequential Color

TV camera was recorded on video tape and then digitized. Digitization of the video

data was performed at EG&G Corporation in Los Alamos, New Mexico.

The digitization procedure requires taking two sequential fields from the video

tape and transferring them to an analog disk. The stored frame is then time base cor-

rected and digitized column-wise to a grey-level resolution of 8 bits per sample and

512 samples per line. The digitized data is then stored on a computer compatible mag-

netic tape. Before processing by bandwidth compression software, the digitized imagery

stored in the form of a 512 by 512 matrices is transposed to make each individual image

available in a line-to-line format. This is essential since normal TV imagery is scanned

in a line-to-line format.

The sampling and A/D conversion of the television signal performed at EG&G Inc.

limits the digitized image signal-to-noise ratio to 32 dB. The digitized data is then

bandwidth compressed using the recommended bandwidth compression technique simulated

on an Interdata-85 Computer and is returned to EG&G Inc. for conversion to a video

tape format. The inverse operation also introduces noise in the reconstructed signal.

Figure 4-1 shows two typical frames of the Field-Sequential TV data at a spatial

resolution of 512 by 512 samples. Figure 4-1(a) is generated by interlacing Blue-

Green and Figure 4-1(b) is generated by interlacing Red-Green fields. Naturally two

interlaced fields are separated by 9
' 0th of a second and on the monitor they would be

viewed 
60th 

of a second apart.

4.1.2 Slow-Scan Imagery

NASA is considering a slow-scan high-resolution system for transmitting pictorial

data from ground station to the Shuttle. At present a slow-scan system with fcur modes

of operation is under consideration. The specifications of these four modes are listed

in Table 4-1. As indicated in this Table, two modes of operation produce a binary

grey-scale while the other two modes produce a grey scale composed of 64 levels.
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(a) Interlaced Blue-Green Fields	 (b) Interlaced Red-Green Fields

Figure 4-1. Two Typical Field-Sequential Color Interlaced Fields

Table 4-1. Image Resolution for Various Modes of Operation for 8" x 10" Images.
Transmission Time is for an Uplink Channel of 144K bits/second.

Modes of Operation Spatial	 Resolution
Lines per Inch

Grey Level	 Resolution
Bits/Sample

Transmission Time
(Minutes)

1 125 1 0.14

2 250 6 3.47

3 350 1 1.13

4 500 6 13.89
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NASA/JSC has supplied TRW with a number of diagrams and graphics to be used for

evaluating our simulated slow-scan uplink bandwidth compression system. The originals,

shown in Figure 4-2, are typical of the material that is expected to be transmitted to

the Space Shuttle. These images were digitized at 8 bits per sample. The scanning

aperture was about 100 micron square which generated around 1024 by 1024 samples per

frame. The original scanned and digitized frames were then converted to a binary grey

scale. These are shown in Figure 4-3. These figures represent a spatial resolution

of about 350 scanned lines per inch which is equivalent to "mode 3" of the proposed

slow-scan system. Low resolution images (120 scan lines per inch) are produced on

the computer from the high resolution frames. This is done by generating an image

composed of every third sample and every third line. The low resolution images are

shown in Figure 4-4. Inspection of these figures shows that the lower resolution

(120 lines per inch) is not acceptable for most ordinary documents).

4.2 IMAGE BANDWIDTH COMPRESSION SYSTEM EVALUATION

To evaluate the performance of a particular bandwidth compression method, one

must determine whether the bandwidth compression method preserves sufficient informa-

tion for a given application. To do this, a criterion of optimally must be defined

by which the information loss is m.pasured. To measure the distortion in imagery,

a variety of criteria of optimality have been used. These criteria are necessarily

user-dependent. One such criterion is the weighted mean square error used in con-

junction with video data. This measure weights the error at various frequencies

according to the characteristics of human vision. The imagery data used for appli-

cations involving pattern recognition and pattern classification use other measures

such as the classification accuracy of the compressed imagery. In addition to these

criteria, which are used to evaluate the performance of a bandwidth compression tech-

nique, a different set of criteria exists which relate to the complexity, cost, and

the sensititivy of various image bandwidth compression technique to sensor and

channel transmission errors. These criteria are discussed under the general heading

of the system considerations. They are also of varying degrees of importance de-

pending upon the particular application.

In this study the criteria of optimality we use are mean square error, peak-to-

peak signal to RMS noise ratio, subjective quality, and the system complexity.

4.2.1 Mean Square Error and Signal-to-Noise Ratio

Mean square error is the most frequently used criterion of optimality in data

compression as well as in most other estimation and filtering problems. This is

partly due to the inherent simplicity of this criterion which allows for closed-form

analytical solutions and partly to the fact that many sensing systems respond directly

to the energy contained in the stimulus and that the energy and mean square error are

closely related. Many image bandwidth compression results are in terms of mean square

error or weighted mean square error.
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	 4.2.2 Subjective Quality	 k

An important criteria in evaluating the performance of bandwidth compression

techniques is the subjective quality of the reconstructed imagery. In this sense

the cosmetic quality of the bandwidth compressed signal is as important as its qual-

ity evaluated using some analytical measures. Unfortunately, the Field-Sequential

color TV signal is generated by a modified TV camera and the signal can be viewed in

full color only when it is replayed on a modified video playback unit. For this rea-

son it was impossible for us to optimize the bandwidth compression technique for color

fidelity. However, we have used all precautions to preserve the color quality. The

final demonstration of the selected bandwidth compression technique will involve dis-

playing 10 seconds of the bandwidth compressed signal along with the original signal

on a modified video player.

Individual frames of the field-sequential color TV data are in black and white.

Subjective evaluation of the bandwidth compression algorithms was performed on in-

dividual frames by viewing the reconstructed data on a COMTAL Image Display and by

comparing Polaroid pictures that were generated from the original and reconstructed

imagery on a DICOMED film writer.

4.2.3 System Complexity

In addition to the criteria of optimality which are used to evaluate and com-

pare the performance of various techniques, there exists a different set of criteria

which deals with the systems aspects of the various techniques. This set of criteria

is particularly important in the hardware design and operation of the system.

In the present study, the major constraints are the severe weight and power

limitations. For the downlink system, the design of the processing that proceeds

the encoding operation as well as the choice of the proposed encoder are compromised

to satisfy these constraints. That is to say that the same reconstructed image

fidelity could have been achieved at lower bandwidths if one aid not have to satisfy

the present constraints on weight-power requirements of the encoder. Similar con-

siderations are required for the decoder used with the uplink system.

4.3 GENERATION OF FIELD-SEQUENTIAL COLOR TV SIGNAL COMPONENTS

The characteristics of the Field-Sequential Color TV signal was discussed in

Section 3.2. The sailent feature of the Field-Sequential Color TV signal is that the

sequential fields exhibit temporal as well as spectral correlation and exploiting

those correlations in addition to spatial correlation is essential to the efficient

bandwidth compression of the Field-Sequential Color TV. Spectral correlation is best

4-8
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utilized by using red, green, and blue fields to generate the illuminance (Y) and the

chromaticity components (I, Q). These are related to the red, green and blue components

	

J.
	 of the color signal as follows:

Y = 0.30 R + 0.11 B + 0.596 G

I = 0.74 (R-Y) - 0.0.27 (B-Y) 	 (4.1)

Q = 0.48 (R-Y) - 0.41 (B-Y)

Sequential fields of the Field-Sequential Color TV signal are composed of the odd and

-	 even lines as shown on Figure 4-5.

In combining red, green, and blue components to generate Y, I, and Q, one utilizes

the correlation of the spectral components for a maximum compaction of energy in the

illuminance signal. A spectral compaction that results from identical signals for the

red, green, and blue components produces a maximum value illuminance and a zero grey

level for the chromaticity components. On the other hand, the most dissimilar red,

green, and blue signals will result in an identical signal for the illuminance and the

chromaticity components. In Field-Sequential Color TV, the sequential fields are com-

posed of odd and even lines. The odd red field exhibits spectral similarity with the

odd blue and odd green fields. However, these samples are separated by a temporal

distance of.4J60th ar a second and this causes some spectral decorrelation due to

temporal motion. The Y, I, and Q signals formed from all-odd or all-even frames,

which requires storing a minimum of 4 frames, are particularly susceptible to spectral

decorrelation from rapid temporal motion. An alternate procedure is to mix the odd

and even fields in generating the illuminance and the chromaticity components. This

-requires storing only two fields. The mixing of the odd and even fields results in

a smaller correlation among the spectral components but a larger temporal correlation,

since the three fields used in generating Y, I, and Q are only Wth of a second apart.

This gives a larger or smaller compaction of energy in the illuminance signal de-

pending upon the comparative size of spectral similarity and temporal motion. In

this study we choose a mixing of the odd and even fields in generating illuminance

	

}	 and chromaticity component mainly to reduce the memory requirements.

In addition to the mixing of the even and odd fields, we propose other modifica-

tions to reduce the memory requirements further. Although the Y, I, and Q signals

used in the United States Commercial Television lead to the most efficient analog TV

	

S	 bandwidth compression, the European Tv systems use a different set of chromaticity

	

I!	 components which are useful alternatives for digital bandwidth compression applica-

tions. These are related to red, blue and illuminance components as follows:

C l = R-Y	

(4.2)

C2 = B-Y
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The attractive feature of these chromaticity components are that they can he

generated using only a single field of memory if the illuminance signal is directly

available. This presents two set of alternatives that can be explored for design

simplifications,

4.3.1 Possible Color Wheel Modifications

Using the European system one can replace the green filter in the color wheel

by a "colorless" filter to obtain the illuminance signal directly. Then only one

field of memory is required to generate the C l and C2 components. The functional
diagram of the proposed system is shown on Figure 4-6. The only concern regarding

the characteristics of the "colorless" filter is that it must have a frequency re-

sponse such that the illuminance signal would have the same characteristics as that

of the Y signal obtained from R, G, and B components.

ff

8 R Y B R Y

I C2	 8-Y^
i

I 
	 i

i

Figure 4-6. Functional Diagram of the Modified System. Only Y Fields
Need to be Stored. C and C Fields are Generated from
Incoming R and B Fields and ire Transmitted
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4.3.2 Using Green Component Instead of Illuminance

A second approach, with attractive implementation properties, uses the standard

color-wheel and substitutes the green field for the illuminance signal. Then the

chromaticity components are obtained by subtracting the green from the red and the blue

components. This approach is based on the fact that the green spectral component is

very similar to the illuminance component for TV signals. Also, the green component

possesses more energy and shows more details than the red and blue components. Using

the green component instead of the illuminance, the transmission tristimulus signals

are

Y-G

C l = R-G	 (4.3)

C2 = B-G

C 1 and C2 possess a much smaller bandwidth and a smaller fraction of the signal energy

than the G component; therefore, they can be transmitted in a subsampled form utilizing

a smaller fraction of the available bit rate.

4.3.3 Recommended Color Signal Generation Approach

We recommend generating the tristimulus color components via equation 4.3. This

approach substitutes the green signal for the illuminance signal and does not require

modification of the color wheel. Since no results appear in the technical literature

relating to this approval, we designed a number of experiments to evaluated the sug-

gested system. Figure 4-7 shows reproductions of the 256 x 256 color pictures used

to generate the illuminance and the chromaticity components for the NTSC system used

in the United States, the system used by commercial television in Europe and the method

suggested for the Shuttle TV application.

In each system the illuminance signal is used directly while the chromaticity

components are subsampled. The chromaticity signals can be subsampled by taking every

other sample without affecting the quality of the reconstructed signal since human

vision is rather insensitive to color information at high frequencies. Transmitting

the chromaticity components in subsampled form means that the reconstructed composite

signal at the receiver has illuminance as well as the chrominance si gnals at low fre-

quencies, but contains only the illuminance information at high frequencies. Sub-

jective experiments with television viewers at normal viewing distances have indicated

that this is in fact acceptable.(51)
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The reconstructed composite signal is generated and is compared to the original

using subjective quality as well as the mean square error (MSE) between the original and

the reconstructed signal, The MSE results are shown in Table 4-2. The subjective

results are almost identical and are shown in Figure 4-7. The reconstructed composite

pictures shown square waves around the edges where the hue of the color changes. Most

of this effect will not be noticed by viewer watching a color TV monitor due to the

integration effect of human vision.

Table 4-2 shows that substituting green for illuminance results in a MSE of 40.32

as compared to a MSE of 29.44 for the European commerdial TV. However, these results

are for a subsampling by a factor of 5 to 1. Two-to-one subsampling results are also

shown in Table 4-2. Using a subsampling of 2 to 1, the resultant MSE is about 50% less

than at a subsampling rate of 5 to 1. The reconstructed picture at the subsampling

rate of 2 to 1 using green for illuminance also shows better subjective quality than

the picture reconstructed using the optimum system at a subsampling rate of 5 to 1.

This is shown in Figure 4-8. Based on these results we expect that the green can

be substituted for the illuminance in the proposed system and still maintain a high

quality color composite image.

4.3.4 Low-Pass Filtering of the Chromaticity Signals

Prior to subsampling the chromaticity signals, they must be filtered to eliminate

their high frequency components-to prevent aliasing. Although there exist sophisti-

cated filtering techniques to eliminate the high frequency components of discrete sig-

nals, experiments with imagery data has shown that a simple 3-point "hanning" filter

can be used with comparable results. A 3-point hanning filter uses weightings of 1/4,

112 and 1/4 to obtain the filtered signal as follows:

X i j - T Xi, j -1	 2 X i j *	 Xi,j+l
	

(4.4)

where Xij is the low-pass filtered form of X ij . This filter is particularly attrac-

tive for digital signals since the multiplies can be performed by shift operations.

In the proposed system the chromaticity signals are filtered by the 3-point hanning

filter prior to a 2 to 1 subsampling of these signals.

4,3.5 Candidate Field-Sequential Color Bandwidth Compression Techniques

A detailed study of bandwidth compression algorithms that process the G, R-g

and B-G have lead to three candidate techniques. These are two-dimensional DPCM, adap-

tive two-dimensional DPCM, and the Hybrid system combining a Hadamard Transform with

a DPCM encoder.
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Table 4-2. MSE for a Subsampling Rate of 5:1 for Various Systems and the
Proposed Shuttle System for a Subsampling Rate of 3:1 and 2:1

MSE

US Commercial TV

(Y,	 I,	 R)

Subsampled 5:1

European Commercial TV

(Y,	 C l ,	 C2 )

Subsampled 5:1

Substituting G
for Y

(G,,	 C l ,	 C2 )

Subsampled 5:1

Substituting G
for Y

(G,	 C1,	 C2)
Subsampled 3:1

Proposed Shuttle
System

(G, CI ,	 C2)

Subsampled 2:1

Red 43.213 42.732 83.638 34.074 25.416

Green 7.583 7.583 0.0 0.0 0.0

Blue 37.985 38.017 40.362 20.666 18.819

Average 29.93 29.44 40.33 18.24 14.74
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4,3.5.1 Two-Dimensional DPCM System

Two-dimensional DPCM systems were discussed in Section 3.1.2. The candidate tech-

nique we have selected uses a third order fixed predictor. The picture element Xij

is predicted using a linear combination of the adjacent element on the same line, the

adjacent element on the same column and the element diagonally across from 
Xij 

as

follows:

	

^.	 Xij = 0.75 
X i-1 ' j + 0.75 Xi,j_l - 0.5 Xi-l,,j-1	

(4.5)

The faxed values of 0,75, 0.75 and -0.5 have been used for the weightings of the pre-

dictor since these weights provided the best overall results in the simulation studies.

In addition, digital multiplication by these numbers can be performed by simple shift

and add operations. The DPCM encoder uses two quantizers. One consists of 8 quanti-

zation levels and is used to encode the green signal component. The other consists of

4 quantization levels and is used to encode the chromaticity components. The cut points

and output levels in the quantizer are selected for the best performance as measured

by mean square error and the subjective quality of the reconstrucred imagery. The two

quantizer characteristics, which are symmetrical, are shown in Figure 4-9. For conven-

	

t	 ience, only the positive portion of the quantizer characteristics are shown in the

figure.

4.3.5.2 Adaptive Two-Dimensional DPCM Systems

A number of adaptive two-dimensional DPCM encoders were surveyed in Section 3.1.2.

Two adaptive two-dimensional DPCM systems are selected for further analysis. These

are the block-adaptive DPCM encoder using multiple prediction loops and the block-

adaptive DPCM system that uses a single prediction loop with a quantizer characteristic

controlled by an auxiliary gain computation loop.

1. Block-Adaptive DPCM Encoder Using Multiple Loops

The block diagram of the encoder is shown in Figure 4-10. Each DPCM loop uses

a third order predictor defined by Equation 4.5. The quantizer in each loop has a dif-

ferent characteristic. The four quantizers are stalled versions of those shown in

Figure 4-9. The stalling constants are 1/2, 1, 2 and 4. Each DPCM loop stores a block

of 16 encoded samples in the shift registers arm computes the total encoding error.

The block select logic compares the distortion (total encoding error) for each loop

and transmits the contents of that shift register which corresponds to the smallest

distortion. The receiver needs information as to which DPCM loop was utilized for each

block of data; therefore, two bits of overhead information are transmitted with each

block indicating which loop (quantizer) was selected. This increases the bit rate by

1/8th of a bit per sample.
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Figure 4-10. Block Adaptive 2D-DPCM System Using Multiple Loops

2. Block Adaptive DPCM Encoder Using a Single Loop

In principalprincipal this technique is sirhilar a 'the adaptive DPCM system with mul-

tiple loops. Here a block of 16 samples is used in the gain computation loop (without

a quantizer) to generate an estimate for the variance of the differential signal as

shown in Figure 4-11. Depending upon the value of the variance, one of M gain factors

are selected and are used to scale the quantizer characteristic in the prediction loop.

We have used eight possible gain factors in this system (1/8, 1/4, 112, 1, 2, 4, 8, 16).

This requires 3/16th of a bit per sample for transmitting this overhead information.

4.3.5.3 Hadamard Transform/DPCM System

Hybrid encoders use a concatenation of a unitary transform and a DPCM encoder.

The hybrid encoder investigated in this study (Figure 4-12) uses a Hadamard Transform.

A block size of four picture elements is used for simple implementation. Each Hadamard

4-19



N
C]

ded

Figure 4-11. Adaptive CPCM Encoder Using a Single Loop



1.

Q

a
N

Eficoded
Data

r „N

Channel
Coder

Del ay	 '^	 }

a

Figure 4-12. Hybrid Hadamard/DACM Encoder



coefficient (Ho , H1 , H29 H3 ) is encoded with a DPCM loop using a one element predictor

with a fixed weighting coefficient. The bit assignment and weight coefficient for DPCM

loop encoding the green signal and the chromaticity components are listed in Table 4-3.

The quantizer in the DPCM l000ps are similar to those on Figure 4-9. However, the

scalling of the threshold and reconstruction values for each loop is different. We

have used scalling values of 2, 1, 1/4 and 1/4 for the DPCM loops encoding H Q , Hl,

H2 , and H3 , respectively.

Table 4-3. Bit Assignment and Weighting Coefficients
Per DPCM Systems in Hybrid Encoder

Type of Parameters DPCM for DPCM for DPCM for DPCM for
Signal Ho	 Coeff. H 1	Coeff. H2	Coeff. H3	Coeff,

Green
Bits/Sample 4 3 3 2

Field
weighting

718 3/4 3/4 112
Coefficients

Chroma- Bits/Sample 3 2 1	 0
ticity
Signals Weighting

Coefficients 3/4 3/4 1/2	 1/2

4.3.6 Algorithm Implementation Complexity

A major question in the evaluation and selection of a bandwidth compression algor-

ithm for downlink transmission of video data from Shuttle is it implementationai com-

plexity. A number of processing techniques were rejected from consideration because

of their complexity. In this section the complexity of the four candidate techniques

are investigated. The results are presented in terms of number of integrated circuits

and power required to implement each candidate technique. The processing that pro-

ceeds the coding of the signal as well as the buffering required at the output of the

candidate encoders are sized separately and then summed to obtain the total system

complexity.

4.3.6.1 Non-Adaptive 2D-DPCM System Complexity

The two-dimensional DPCM system has been chosen as the baseline system for imple-

mentation comparison purposes.

Figure 4-13 illustrates the functional operation of the baseline encoder. In-

coming digitized video information is brought in, and the difference between it and

its predicted value is quantized by the fixed quantizer. The quantizer contains 8

symmetrically distributed cutpoints, each having its associated output value.
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The output of the fixed quantizer is recoded for transmission, combined with synch in-

formation in a multiplexer, ans suppled to the transmission link. Additionally, the

fixed quantizer output is summed with the previous adjacent sample values, and stored

for one sample time in a latch. Simultaneously the present and previous samples, from

the line under consideration, are each scaled, and their difference stored in the Line

Store Memory. Gating logic is provided such that samples are stored only during the

active horizontal line time, and not during re-trace. The output of the Line Store

Memory, representing the adjacent samples from the previous line, is summed with the

scaled output from the latch (representing the adjacent sample from the line under

consideration), and is subtracted from the next adjacent sample on the line under con-

sideration.

Figure 4-14 illustrates the Non-Adaptive 20 DPCM Encoder implementation methodol-

ogy. Synchronization circuitry is shown which accepts the camera system synch signals

and generates all requisite system clocks and synchronization signals. The input analog

video signal is AID converted, and applied to the compressor loop. An important con-

sideration in the proper operation of this loop is that processing should be completed

in less than one sample time (125 nanoseconds). For this reason Emitter Coupled Logic

(specifically, Motorola MECL 10,000) was chosen for the loop mechanication. Using

this logic type, the worst case loop closure time is 116 nanoseconds. Where no speed

penalty is incurred, the signals are translated to TTL levels, and lower power con-

sumption elements employed (the One Line Storage Memory, and the Channel Coder and Mux).

4.3.6.2 Adaptive DPCM System Complexity

Figure 4-15 illustrates the functional operation of the Multiple Loop Adaptive

2D-DPCM Encoder, This system utilizes four non-adaptive loops as previously shown

in Figure 4-13. However, each loop is fitted with a different quantixer. The output

of each loop is stored in a block storage register (16 samples). The Block Select

Logic continuously calculated the Mean Squared Error for each block, at the sample

rate. Upon completion of a block of data, the Block Select Logic selects for trans-

mission the data block having the lowest Mean Squared Error.

Figure 4-16 illustrates the single loop block Adaptive 2D-DPCM Encoder which

utilizes multiple quantizers. Here, a 16 sample (data block) delay is provided while

the Gain Computation Logic determins the mean squared error and selects one of eight

different quantizers within the Compressor Loop, Figure 4-17 shows the mechanization

of this system. High speed ECL logic is required in both the predictor Logic and within

the Compressor Loop.
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4.3.6.3 Hybrid Hadamard/DPCM System Complexity

j	 The hybrid compressor utilizes a one-dimensional Hadamard transform in the ver-

tical (line to line) axis, and a one-dimensional horizontal (adjacent samples along

a line) DPCM compressor.

The Hadamard transform is performed on a subpicture comprised of four adjacent

vertic4l samples. This requires that four lines of video be stored, and that ver-

tically adjacent samples be presented simultaneously to the Hadamard transform pro-

cessing logic array. Figure 4-18 depicts this configuration. The seeming disadvantage

of having to store four lines of information is in reality an advantage. By providing

storage for an additional four lines of video, the Hadamard transform processing and

subsequent DPCM processing can be performed at 1/4 the pixel rate. The use of a pipe-

line Hadamard transform and parallel DPCM processing loops permits the usage of low

power Schottky logic elements. In turn, this provides a significant reduction in sys-

tem power consumption (comparable to the non-adaptive 2D DPCM system).

Figure 4-19 illustrates a mechanization of the hybrid system. Input video infor-

mation from the camera system is digitized at an 8 MHz rate. Internal processor system

clocks and synch signals are derived from the camera system synch signals, The encoded

video samples are demultiplexed into the four line storage elements. Each line of

storage is sufficient for 512 encoded samples. When the four line stores are filled,

the incoming video is demultiplexed into the other four line store while the previously

filled store outputs data, four lines at a time, at one quarter the video line rate.

The Memory Multiplexer operates in conjunction with the line demultiplexer, distirbuting

data to the transform unit.

The memory contents are transferred to the Hadamard transform processing array

four adjacent samples at a time. This processor performs the following algorithm:
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with the processing proceeding in accordance with the following flow:

The pipelined Hadamard processor outputs are fed to four non-adaptive DPCM com-

pressor loops, one per line. Subsequent to the parallel DPCM processing, the quantized

outputs are multiplexed along with the appropriate (line/field) synch and formateed

for transmission iri the Output MUX.

4.3.6.4 Comparison of Hardware Commpiexi Ly

Table 4-4 presents a comparison of the characteristics of each of these systems.

The parameters chosen for comparison are IC count (related to system size and weight),

and power consumption. Since the compressor loops consume the most power, the multiple

Quantizer-Single Loop Encoder compares favorably with the baseline Non-Adaptive system.

It has eight times the flexibility with only a 79% increase in power consumption, and

a 58% increase in IC count. It is felt that a more detailed sizing could further re-

duce these differences.

s	 F
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Table 4-4. Hardware Complexity Comparison of the Various
Bandwidth Compression Approaches

w
w

Adaptive Adaptive
IC	 Power Non-Adaptive 2D DPCM Encoder 2D DPCM Encoder Hybrid Encoder

Count	 Dissipation 2D DPCM Encoder (Multiple Loop) (Single Loop) (ID Hadamard/1D DPCM)

A/D Converter 3 Modules/1W 3 Modules/1W 3 Modules/1W 3 Modules/1W

Adaptive Predictor/ ------/----- 34 IC/8.9W 23 IC/11.27W -----
Block Select Logic

Compressor Loop(s) 26 IC/12.4W 224 IC/70W 42 IC/20W 76	 IC./10.24W

Line Store 6 IC/1.56W 20 IC/1.6W 16 IC/3.2W 55 IC/5.15W

Timing and Control 20 IC/6.3W 40 IC/12.8W 20 IC/6.3W 20 IC/6.3W

Miscellaneous 30 IC/5.6W 35 IC/5.6W 30 IC/5.6W 30 IC/5.6W

TOTALS 85 IC/26.9W 356 IC/99.9W 134 IC/47.4W 184 IC/28.3W

NOTES Baseline configura- Configuration em- Configuration re- Configuration allows
tion requires ECL ploys multiple quires ECL for usage of low power
for compression compression loops both predictor Schottky components.
loop.	 Worst case and a single block and compression Compressor loop figures
loop completion time selection logic. loops.	 Adaptive include both Hadamard
= 116 nsec. ECL logic required quantizer com- transform logic, and

within the compres- prising 8 indi- 4 DPCM loops.	 Eight
sion loops. vidual quantizers lines of multiplexed

requires 16 ECL ROMs. buffer storage are pro-
Partitioned (496 + vided within the line
16 bits) line memory store.
requires 40 ICs.
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4.3.7 Recommended Field-Sequential Color Data Compression Approach

Analysis of the Field-Sequential data along with the weight and power sizing of

the encoder lead to an approach that consists of using the green (G) field instead

of the illuminance and generating the chromaticity signals by subtracting G from the

red (R) and the blue (B) fields. This approach is fruitful if the chrominance signals

contain less energy and possess a smaller bandwidth than the original fields. Then

the chrominance signals can be subsampled by taking every other sample and encoded

using a coarser quantization; thus resulting in a further bandwidth compression.

Table 4-5 shows the statistics of the G and two chromaticity signals for three typ-

ical fields of the field sequential data. Figure 4-20 shows the power spectra of

the green as well as the chromaticity signals. These results indicate that the

chrominance signals indeed possess a smaller energy and a lower bandwidth than the

original fields.

The above processing of the field sequential data results in some reduction in

its bandwidth. This is due to subsampling of the R-G and B-G fields. A 2 to 1 sub-

sampling of R-G and B-G results in a total bandwidth compression ratio of 1.5 to 1. To

achieve additional bandwidth compression, the G, R-G, and B-G fields must be encoded.

Four candidate bandwidth compression techniques were presented in previous sections.

The performance of the candidate techniques are zihown on Figure 4-21. The two adaptive

DPCM systems have essentially identical performances. The performance of the hybrid

encoder, on the other "and, is almost the same as the performance of the non-adaptive

DPCM encoder. The difference in the performance of the adaptive and non-adaptive DPCM

system is fairly small at 3 hits per sample. At 2 bits per sample, the difference is

about 3 dB in Signal-to-Noise ratio and may be significant for some applications. On

the other hand, the complexity of the adaptive DPCM encoder (Table 4-4) is much greater

than the complexity of the non-adaptive DPCM encoder. For this reason and the fact

that the lighting will be well controlled in the Shuttle, the non-adaptive DPCM encoder

is selected over the adaptive DPCM system. The hybrid encoder was rejected because

it requires more than twice the parts count of the non-adaptive DPCM encoder.

Table 4-5. Statistics of the Field-Sequential G, R-G, and B-G Fields

Fields Minimum Maximum Average
Standard
Deviation

G 0.0 255 117.05 51.77

R-G -101 60 8.03 12.48

B-G -88 77 1.80 9.30
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4,3.7.1 Bandwidth Compression Procedure

A block diagram of the proposed bandwidth compression technique for the Field-

Sequential color TV is shown on Figure 4-22. The system starts its operation upon

the receipt of the green field. It is encoded using a 2D-DPCM loop and is trans-

mitted using 3 bits per sample. The green field is also filtered by a 3-point hanning

filter, subsampled and stored in the field memory. This requires storing only 256

samples per line. Next the R field is filtered, subsampled and combined with the

G field to generate R-G for each line. R-G is encoded using a DPCM loop with a

4 level quantizer. Finally, the same procedure is also used to generate and encode

the B-G field. Since G is encoded in full resolution at 3 bits per sample, but R-G

and B-G are encoded at 2 bits per sample with reduced resolution, rate buffering at

the output of the encoder is required.

B,R.G	 S

Switches S t and Sz are in "A" Position when G is at the input

Figure 4-22. Block Diagram of the Proposed Bandwidth Compression
Technique for Field-Sequential Color TV
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4.3.7.2 Field Memory and Buffering Requirements

Figure 4-23 illustrates the operation of the pre-compression green field memory.

Input video data from the A/D converter (8 MHz sampling rate) is applied to the Green

Field Select Logic. Green field data is passed via the output select logic to the

video compressor circuitry. Also, the green field, as well as red and blue fields,

are subsampled by taking every other sample in the subsampling logic. As a green

field emerges from the subsampling logic, it is loaded into the serial green field

memory by means of the recirculate switch. This switch is activated by the recircu-

late logic; thus data is returned to the memory during the next two successive fields

(red and blue). This insures that spatially related video samples differing only in
successive field numbers are subtracted from each other, and this difference is fed

to the DPCM compressor circuitry. During the initial memory load time, the subtractor

output is disabled, and the green field data is fed to the compression logic. Due

to the serial nature of the data, 16K CCD (charge coupled device) shift registers

have been chosen for implementation of the serial green field memory.

The proposed Field-Sequential Color TV compression system requires a post com-

pression rate buffer memory. This requirement arises from the unequal sampling rates

of the "Green" field and the R-G, B-G fields. In addition, the green field is encoded

at 3 bits/sample while the R-G and B-G fields are encoded at 2 bits/sample. Therefore,

the output rate changes from 23.6 Mb/s for the green field to 7.8 Mb/s for the re-

maining two fields. To maintain a constant output rate, a buffer memory is required

to smooth the output rate to 13.1 Mb/s. Figure 4-23 shows the functional block dia-

gram of the proposed rate buffer memory mechanization. Because of the differing input

and output data rates involved, a random access memory (RAM) has been chosen. The
output data from the video compressor is input to the demultiplexer for double buffering

into the RAM memory. Double buffering is required so that no interruption of the input

data will occur while memory loading takes place. Thus each sample is shifted into

the buffer register (a sample at a time) and loaded (rewritten) into the memory, 12

bits at a time. To prevent data loss, two buffer registers (double buffering) are

required, one holding data for load, the other accumulating data. This technique

slows the input and output memory data rates to where read/write collision 	 can

be avoided by simple priority logic. Table 4-6 lists the number of integrated

circuits and required power for the operation of the field memory and rate-buffering

The actual rate will be slightly higher due to inclusion of synchronizing signals.

**Read/write collision may be described as attempts to write into the memory at one
location (address) simultaneous with an attempt to read from the memory at another
location.
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logic. The double buffer slows the memory input rate to a point where in the event

of a collision, there is sufficient time to allow a data read before the data write.

This anti-collision control is provided by the Read/Write combiner and anti-collision

logic. Data read from the memory is stored in the output data buffer register, and

shifted to the transmission link. Read, Write and Refresh address control are pro-

vided by the appropriate counters.

Table 4-6. Field-Memory and Rate-Buffering Circuitry

Memory IC Count Power Consumption

Green Field 56 20.5 Watts

Rate Buffer 207 or 47 * 12.6 or 21.4* Watts

*
Rate Buffer Memory comprises 171 1K x 1 CMOS/SOS RAM memory elements.
The same Rate Buffer Memory may be implemented using 16K RAMS with a
parts decrease and power increase.

s'

The total hardware complexity of the non-adaptive 2D-DPCM Field-Sequential

Color TV bandwidth compression system is summarized in Table 4-7. For a modest in-

crease in power consumption (8.5 watts), the parts count can be reduced by almost

50 percent.

Table 4-7. Total Bandwidth Compression hardware Complexity

Rate Buffer Memory IC Count Power Consumption

1K RAMS 348 60.0

16K RAMS 188 68.5
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4.4 BANDWIDTH COMPRESSION OF NTSC COLOR TV

We propose a modification of the standard NTSC color TV system so that the analog

illuminance (Y) and chromaticity signals (I, Q) are available in an unmodulated form.

In the absence of such a modification, a comb filter is required to demodulate these

signals. The proposed bandwidth compression technique for the NTSC Color TV uses a

2D-DPCM loop.

In the analog transmission of I and Q signals, they are low-pass filtered and multi-

plexed with the illuminance signals as shown in Figure 4-24. This technique is prac-

tical since human vision is very insensitive to high frequency components of r and Q

signals. Taking advantage of this property, we also propose low-pass filtering of the

I and Q signals. The passbands of these filters are about one fifth of the illuminance

signal. Maintaining a spatial resolution of 512 samples per line gives a spatial reso-

lution of about 100 samples per line for I and Q signals. A further bandwidt ! ! compres-

sion can be achieved by alternating the transmission of the I and Q signals with each

line of the illuminance signal. The receiver then restores the missing color component

for each line by interpolating between the transmitted components for the previous

and the future lines. The performance of such a system was evaluated at Bell Labora-

tories for the Color Picturephone. (30) There was no color degradation as a result

of alternate transmission of the chromaticity signals.
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A block diagram of the proposed encoder is shown on Figure 4-25. The illuminance

signal is sampled at a rate of 7.8 MBPS and is encoded by a 2D-DPCM system at 3 bits

per sample. The sampling and transmission of the illuminance signal takes place during

the active period of the line scan. During the period of blanking, flyback and the 	
3

interval which is normally used for analog transmission of the modulated color signal,

we propose to transmit either I or the Q signals. The corresponding time intervals

for commercial NTSC Color TV are shown in Figure 4-26. This arrangement gives

sufficient time for transmission of 100 chrominance samples in the non-active interval.

Both illuminance and the chromaticity components can use the same 2D-DPCM encoder if

additional memories are provided to store 100 samples of I and 100 samples of the Q

signal for the use in the DPCM predictor. This additional memory and the memory re-

quired to delay I or Q for the active duration of a line scan are the only components

that need to be added to the 2D-DPCM encoder. The encoder sizing is summarized in

Table 4-8.

The performance of this system would be very similar to the performance of the

proposed system for Field-Sequential Color TV since they both use the same 20-DPCM

encoder for the bandwidth compression of the illuminance signal. The bandwidth of

this system, however, is higher. To maintain the same spatial resolution as that

of Field-Sequential Color TV signal requires 28 Mbit per second.

4.5 RECOMMENDED BANDWIDTH COMPRESSION APPROACH FOR THE SLOW-SCAN UPLINK

NASA is considering a slow-scan high resolution system for transmitting pictorial

data from the ground station to the Shuttle. Various modes of operation as well as the

characteristics of the imagery under consideration for this system were discussed in

Section 4.1.2. For this application we require distortion free bandwidth compression

techniques that require a simple decoder. One such technique with desirable charac-

teristics is the two-dimensional HCK code (see Section 3.3.2). The proposed facsimile

system is described in the following sections.

4.5.1 Algorithm Description_

The two--dimensional HCK code operates on blocks of M by N samples. For a block

consisting of white samples, a 1-bit code word "0" is used. For a block that con-

sists of at least one black sample an (MxN+1) bit code word is used, where the first

bit is "1" and the next M x N bits are the binary pattern of the M x N pel block.

The technique also applies to multi-level imagery by again using "0" for a block with

1 all white samples and using "1" followed by M x N x 1092m 
bits for the blocks with at

least one non-white sample. Here m is the number of grey levels per sample and it is

assumed that 
1092m 

is an integer.
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Table 4-8. Encoder Sizing for the NTSC Color TV System*

Technique	 Power (Watts)	 No. of Integrated	 Bandwidth
Circuits	 (Mbps)

NTSC Color TV	 30.5	 108	 28

It does not include the low pass filters in Figure 4-25

We have simulated this technique for binary data and blocks of 3 x 3 and 4 x 4

samples and the results are shown in Table 4-9. Compression ratios achieved vary be-

tween 5:1 and approximately 1:1. The "Galaxie" picture produced a slight bandwidth

expansion because the background of the image is black. If the encoding convention

for black and white was reversed, trien a reasonable compression ratio could be

achieved.

4.5.2 Implementation Complexity

Figure 4-27 shows the functional block diagram of the 1 bit per sample Uplink De-

coder. This system receives a serial data stream at the rate of 144 K bits per

second. The received data represents a block of 16 pixels (4 rows and 4 columns) and

is proceeded by a one bit preamble. If the preamble bit is a logic 1, the value of

the 16 pixels within the block follows. If the preamble bit is a logic 0, no further

data for that block will be received. Instead, the decoder will provide 16 logic 1's.

The decoder system performs an additional function of converting the data from block

format to line format, for use within a display system. The design described herein

is sufficiently flexible and modular as to accommodate any number of bits per pixel with

only minor changes in addressing logic, formatting logic and additional memory.

Throughout the following discussion, the one bit per system will be considered.

The six bit per pixel system will be mentioned wherever it significantly differs from

the one bit per pixel system. Figure 4-28 shows the block diagram of the decoder for

the six bits per sample configuration.
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Table 4-9. Performance of 2-Dimensional HCK Codes on Binary Images

t,
U1

Scenes 350 lines per inch

1
120 lines per inch

(1024 x 1024) (341 x 341)

Block size 3 x 3 Block size 4 x 4 Block size 3 x 3 Block size 4 x 4

(bits/pel) (bits/pel) (bits/pel) (bits/pel)

Prints
(70 samples/ 0.305 0.296 0.451 0.442
line)

Brake Control
0.406 0.385 0.493 0.488

Pedals

Skylab Maximum
0.395 0.374 0.494 0.498

Zoom Map

Galaxie 1.090 1.045 1.095 1.052

Circuit Diagram 0.230 0.199 0.298 0.301

Skylab Minimum
0.518 0.498 0.593 0.604

Loom Map

Average Compres
2.58 2.77 2.04 2.04

sion Ratio
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Serial data, a data clock, and frame sync are input to the system. The Timing

and Control Unit interrogates the data to determine the state of the preamble bit. If

the preamble bit is determined to be a logic 1, the buffer is enabled to pass the data

through the buffer gate. Simultaneously in synchronism with the Data Clock, the Memory

Address counters are advanced, and write commands are supplied to the memory to store

the next 16 bits. If the preamble bit is decoded as logic zero, 16 ones will be loaded

into the memory. The loading of these prestored logic l's will be accomplished using

an internal oscillator running at slightly more than 16 times the Data Clock Rate.

This higher rate is required so that the block will be loaded prior to the next in-

put data bit. The six bit per pixel system differs from the foregoing discussion in

that prior to memory load, the data stream will be serial to parallel converted using

a six bit serial in/parallel out shift register, Each bit of each sample will be

loaded into a memory chip at the same address, with six chips loaded simultaneously.

Format conversion is accomplished by the addressing logic. It is assumed that

the data is supplied in column serial format. That is, the first column top pixel

sequentially through the bottom pixel, the next column sequentially top pixel through

bottom pixel, etc. The memory is organized as 4 each (actually 8 each in a double

buffered configuration) 1024 word Random Access Memories (RAM) of one bit per word

format. Each RAM represents one complete row of data. Thus the data will be written

sequentially into the memories at a given address (column) while each RAM is sequen-

tially Enabled (row). When all four rows have been filled, the column (vertical)

address will be advanced. When 1024 locations within each row have been filled, the

read clock will be energized and the data read sequentially row by row to the display

device. The memory is provided as a double buffered stor y: so that reading pro-

gresses from one memory array while writing proceeds into the other. in this manner,

by writing in vertically and reading out horizontally the row/column conversion is

accomplished.

For the six bit/sample system, memory control is similar. The major difference

is that the data is written into, and read from six RAMS simultaneously.

Table 4-10 shows the estimated parts count (IC's) and power consumption for both

the one bit/sample and six bit/sample systems.
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Table 4-10. Hardware Complexity of the Proposed Bandwidth
Compression Technique for the Slow-Scan System

Systems No. of Integrated
Circuits

Power Consumption
(Watts)

One Bit/Sample System 102 18.7

Six Bits/Sample System 118 18.9

Note: Design assumes use of CMOS-SOS RAM organized as 1024 x l RAM.

i
i
I
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5. CONCLUSIONS AND RECOMMENDATIONS

This section discussed the major conclusions and recommendations of the study.

5.1 CONCLUSIONS

We have analyzed the feasibility of compressing the bandwidth of Shuttle TV

systems which include the Field-Sequential and NTSC Color TV for downlink transmission
and a slow-scan high resolution TV system for uplink transmission. The conclusions

are that digital bandwidth compression techniques can be utilized to reduce the band-
width of the Shuttle TV systems. The recommended techniques approach the imposed
weight power goals and produce high fidelity imagery. The performance of the recom-

mended techniques were evaluated by using mean square error and signal-to-noise ratio

between the original and the bandwidth compressed imagery, subjective quality of

single frames after bandwidth compression, and finally, by generating a video tape

of 10 seconds of Field-Sequential Color TV imagery and before and after bandwidth

compression. These results demonstrated that the recommended techniques can be used
to achieve bandwidth compression for Shuttle TV systems while still maintaining high

fidelity in the reconstructed imagery.

5,2 RECOMMENDATIONS

5.2.1 Recommended S.vstems

The TV systems considered in the study are the Field-Sequential and NTSC color

TV systems for downlink transmission and slow scan high ; •esolution system for uplink

transmission. We have recommended a bandwidth compression technique for each system

that meets the Shuttle requirements and their characteristics are summarized in

Table 5-1. The operation of each bandwidth compression system is summarized below.

5.2.1.1 Field-Sequential Color TV Data Compression System

The recommended data compression technique for the Field-Sequential Color TV

system first samples and digitizes each field at a spatial resolution of 256 lines

per field and 512 samples per line. The green field is then encoded using a 2D-DPCM

system at 3 bits per sample. The chrominance signals are generated by subtracting

green from the red and the blue fields, respectively.

The chrominance signals are then desampled and are encoded using the same 2D-DPCM

system at 2 bits per sample. The proposed technique requires a memory to store one-

half of the green field and a rate buffer at the output of the encoder. The resulting

outputs bit rate for the encoder is about 13 Mbps. It requires a total of 60 watts

of secondary power and can be built using less than 350 IC's.
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Table 5-1. Characteristics of Recommended Bandwidth Compression Techniques

Ul
N

TV System Algorithm Description Bandwidth of the Compression Ratio Power No. of Parts
Compressed Si na (watts)
(megabits/sec

G, R-G, and B-G are
13.1 4.8 60+ 348{

Field-Sequential
encoded using 2D-DPCM

Color TV System

G, R, B are encoded
24 2.66 27+ 85+

using 2D-DPCM

NTSC Color
Y,	 I, and Q (I and Q
subsampled 5:1) are 28 6.7

+
30

+
100

TV System
encoded using 2D-DPCM

Slow-Scan Coding by Shi pping White
0.144 3 19 102*

Uplink System 2D NCK code is used

+ - Encoder
	

* - Decoder



The performance of the proposed technique was demonstrated by encoding 10 seconds

of video data generated by a Field-Sequential Color camera. A side-by-side display

of the original and the encoded video data demonstrated the performance of the pro-

posed encoder at a compression ratio of about 4.8 to 1.

An alternative system, that requires only 21 watts of power, is one that uses a

2,1-DPCM encoder to operate on the red, green, and blue fields directly. To maintain

the same signal fidelity as that of the proposed technique, the 2D-DPCM encoder re-

quires 3 bits per sample for encoding with an output bit rate of 24 Mbps.

5.2.1.2 NTSC Color TV Data Compression System

The recommended NTSC color TV data compression technique operates on the de-

modulated Y, I and Q signal components. The bandwidth of illuminance signal (Y) is

reduced by encoding it with a 2D-DPCM loop at 3 bits per sample. The chromaticity

signals are desampled by a factor of 5 to I and are encoded by the same 2D-DPCM en-

coder at 3 bits per sample. Further bandwidth compression is achieved by trans-

mitting I or Q alternately for each line. For each line, either I or Q is restored

at the receiver by interpolating betweeen the previous and the future lines. The

transmission of the illuminance signal occurs during the active duration of the sig-

nal while transmission of I and Q takes place during the flyback period. The system

produces a data rate of 28 Mbps. It can be designed using less than 60 IC's and re-

quires less than 20 watts of secondary power for its operation.

5.2.1.3 Slow-Scan Uplink Data Compression System

The recommended technique for bandwidth compression of the slow-scan system uses

a two-dimensional HCK code. The image is divided into blocks of 4 x 4 samples. A

code word of "0" is used to encode blocks of all white samples while a code word of

"1" followed by the actual grey levels of the samples in the block is used to encode

the other blocks. The decoder of the uplink system requires 19 watts of power for

its operation and can be built using 102 IC's.

If one wishes to encode images with black backgrounds, such as the "Galaxie"

scene, the scheme for data encoding can be revised where the "0" code word represents

?	 a block of all black samples. In this manner, the encoding system would have two

modes of operation and the decoder could be configured at the beginning of a frame

to handle either type of data.

5.2.2 Recommendations for Future Activities

We recommend that a prototype data compression unit be built around the 2D-DPCM

technique which operates at real-time TV rates. The bread-board design can be used

with the Field-Sequential Color camera and a modified display system to test the per-

formance of the proposed bandwidth compression system under various conditions that

affect its coding performance. These include different lighting conditions, camera
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angles, distances of the subjects from the camera, different subject color composition,

and various degrees of subject motion. The main component of the proposed breadboard

encoder is the 2D-DPCM system which then can be used to evaluate the performance of

the second recommended system for Field-Sequential Color TV. With small modifications,

the 2D-DPCM module can be integrated into a bandwidth compression system to evaluate

the performance of the recommended bandwidth compression technique for real-time NTSC

Color TV signals. These tests, under controlled conditions, could give a realistic

and accurate evaluation of the on-board performance of the recommended encoders.
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