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I. Introduction

This report will be concerned with the nature of the thermo-

dynamic behavior of fluids in the vicinity of a critical point. We

shall restrict ourselves to classical fluids which means that we shall

not consider the superfluid transition in liquid helium. However,

3 4
the gas-liquid critical regions of He, He and other light fluids

do fall within the domain of this report. We shall begin with a

discussion of the nature of a critical point from thermodynamic con-

siderations . We shall then conclude this introduction with an outline

of the subjects covered in this report.

According to Gibbs1 phase rule, a one-component fluid has in

general two thermodynamic degrees of freedom. However, when two phases

of a one-component fluid coexist, only one degree of freedom is left.

Since all intensive properties or "fields" are equal in the two coexist-

ing phases, the condition of coexistence defines a curve in the space

of the two independent field variables. On this coexistence curve,

extensive properties or "densities", such as entropy and number density,

are-generally not the same in the two coexisting phases. The critical

point, however, is an endpoint on a coexistence curve at which not only

all fields but also all densities have become equal in the two fluid

phases. The two phases can no longer be distinguished from each other

and the coexistence curve terminates.

When two phases coexist in a two-component fluid, the system still

has two thermodynamic degrees of freedom. The condition of coexistence

then determines a two-dimensional surface in the three-dimensional space

of independent field variables. On this coexistence surface the density



variables such as number density, entropy and concentration generally

differ in the two coexisting phases. A coexistence surface may, however,

end in a critical line at which not only all fields but also all densi-

ties of the coexisting phases are equal, i.e. the coexisting phases have

become identical.

Critical points are focal points of exceptional thermodynamic

behavior, not only when they are approached from within the two-phase

region but also when approached from the one-phase region. They are

points of incipient instability. Thermodynamic stability requires that

the determinant of the matrix of second derivatives of the energy

U(S,V, ...) as a function of its characteristic extensive variables,

entropy S, volume V, etc., be positive definite. For a one-component

fluid this matrix has the form

Stiffness

Matrix

32u
3s2

32u
3s3v

32D
3s 3v

32u
3v2

T P
cv

Tap

KTCV

CP
V f~* \7V C*
T V T V

(1.1)

where C and C are the heat capacities at constant pressure and constant

volume, respectively, a = V (3V/3T) the isobaric thermal expansion
P P •

coefficient and K = -V (3V/3P) the isothermal compressibility. This

matrix was called the stiffness matrix by Tisza [1961]. Tisza chose

this wording to indicate an analogy with mechanics, where "stiffness"

denotes the increase of stress when the system is strained. The

analogy of strain in thermodynamics is a change in volume or entropy,

and the increase of stress is the corresponding change in pressure



P = -(3U/3v)0 or in temperature T = (9U/3S) . The determinant of theo V

stiffness matrix is given by

D(S,V) = (1.2)

At the critical point the compressibility K diverges strongly, that is,

at least as fast as the inverse temperature difference with the critical

point. Thus the determinant D(S,V) approaches zero at the critical

point, indicating marginal stability.

Tisza also introduced the so-called compliance matrix whose

elements are the second derivatives of -G(T,-P), where G is the Gibbs

free energy.

Compliance

Matrix

f 32G
3T2

32G
L 3T9P

32G
3T3p

32G
3P2 j

=

f p

T VOtP

P T

(1.3)

This choice of name again indicates an analogy with mechanics; the

compliance is the strain of a mechanical system due to an increase in

stress. The compliance matrix is the inverse of the stiffness matrix.

Since the determinant of the stiffness matrix approaches zero, all

elements of the compliance matrix diverge at the critical point. Thus

the strong divergence of K implies similar divergences in a and C .

It was discovered in the 1960's that the constant-volume heat capacity

C of fluids diverges weakly at the critical point, that is, roughly as

1 Note that G reduces to the chemical potential when taken per

mole or per particle.



the logarithm of the difference between the actual temperature and that

of the critical point. Thus the determinant of the compliance matrix,

D(T,P) = VKTCV/T , (1.4)

diverges "strongly times weakly" in the language of Griffiths and

Wheeler [1970]. In multicomponent fluids, the stiffness matrix contains

the second derivatives of the energy with respect to all independent

density variables. The determinant of the corresponding compliance

matrix, however, diverges "strongly times weakly," just as that of a

one-component fluid. The description of the thermodynamic anomalies

in a fluid mixture, therefore, bears a close analogy to that in one-

component fluids.

Closely associated with the marginal stability and diverging

compressibility is the presence of large thermal fluctuations in the

vicinity of the critical point (Klein and Tisza, 1949). These critical

fluctuations in turn lead to anomalous behavior of various dynamical

properties of fluids near critical points. The average size of a

critical fluctuation is indicated by the correlation length. Near a

critical point, this correlation length becomes much longer than the

range of molecular interaction. The fluid behaves as a collection of

"droplets" or aggregates of molecules of macroscopically fluctuating

density, in which the individual molecular interactions are of less

importance. Consequently, critical behavior shows considerable simi-

larity in a large variety of fluids. This similarity is expressed by

the term "universality" which we shall define precisely. The presence

of a new length scale, the correlation length, gives thermodynamic



properties in the critical region a character of homogeneity. The

homogeneity property makes it possible to reduce the number of inde-

pendent variables by proper choice of scale.

Scaling is the main theme of this report. In Section II the

concepts of homogeneity and scaling are introduced as properties of

the theoretical models for critical point phase transitions. In Section

III the scaling laws and the hypothesis of universality are formulated

for the thermodynamic behavior of one-component fluids and compared with

the experimental results. In Section IV the description is generalized

to include fluid mixtures. In Section V the postulate of homogeneity

is formulated for the correlation function and universality of the

correlation functions, both with three and with two scale factors, is

explored.

In this report we restrict ourselves to a review of the descrip-

tion of equilibrium critical phenomena in fluids. A survey of the

behavior of transport properties of fluids near the critical point will

be presented in a subsequent NASA contractor report.

In preparing this report we have benefitted from stimulating

discussions with Drs. A. J. Bray, R. F. Chang, R. W. Gammon, M. S.

Green, S. C. Greer, R. J. Hocken, P. C. Hohenberg and M. R. Moldover.

The late Mr. T. A. Murphy assisted us by determining scaled equation

of state parameters for a number of fluids. The research project was

cosponsored by the U. S. Office of Standard Reference Data and by the

Center of Materials Research at the University of Maryland.



II. Concepts for Describing Critical Phenomena in Fluids

2.1 Critical Exponents for Thermodynamic Properties

Let A be the Helmholtz free energy, S the entropy, p the chemical

potential per particle and p the number density. We also find it con-

venient to introduce a symmetrized isothermal compressibility v as

XT = Op/3y)T = P2RT . (2.i)

The thermodynamic properties are made dimensionless by expressing them

in units of appropriate combinations of the critical temperature T , the
c

critical density p and the critical pressure P . Specifically, we de-

fine

* * *
T = T/T , p = p/p , P = P/Pc c c

A* = A/VPC, y* = yPcA>c, XT* = XTPC/PC
2 (2 -2 )

S = ST /VP , C = C T /VP
c c V V c c

* *
Note that the reduced extensive thermodynamic properties A , S and

*
C are taken per unit volume. In addition we define the differences

*
AT = (T-T )/Tc c

Ap* = (p-p )/p (2.3)
C C

Ay = {y(p,T)-y(p ,T)}p /P ,
C C C

where y(p ,T) is the chemical potential on the critical isochore at
C

temperature T.

In the description of the anomalous critical behavior of a physical

property it is assumed that sufficiently close to the critical point the



property varies as a simple power of the temperature difference or the

density difference from the critical point. The exponent of the power

law will depend on the property chosen, the path along which the criti-

cal point is approached and the way the distance from the critical

point is measured. The most commonly used power laws for thermodynamic

Properties are summarized in Table I . The paths along which these

power laws are defined, namely the critical isochore Ap* =0, the

critical isotherm AT* = 0 and the coexistence curve Ap* = Ap are
cxc

schematically indicated in Fig. 1 together with the corresponding exponents.

The critical exponents introduced in Table I are not all indepen-

dent of each other. The laws of thermodynamics impose several rigorous

inequalities between combinations of the "thermodynamic" exponents a, 3»

Y» 6, 9 , 9 (Griffiths, 1965a,b, 1972; Rowlinson, 1969). In particular

(Griffiths, 1965a; Rushbrooke, 1965) 2-a"£ 3(6+1) ,

(Rushbrooke, 1963; Fisher, 1964) a" + 23 + y1 >.2,

(Liberman, 1966) 3(6-l)iy' , (2. 4)

(Griffiths, 1965b) 8
p̂ .a" + 3

(Mermin and Rehr, 1971) 6 <.a" + B

Furthermore, the scaling hypothesis for thermodynamic properties, to be

introduced in Section 3.2, leads to the exponent relations

a = a1 = a" = 0

Y = y

(2.5)
2-a = 3(6+1)

y = 3(6-1) ,

so that only two thermodynamic exponents can be chosen independently.



a -c SCALING

COEXISTENCE
BOUNDARY

Figure 1. Special paths in the Ap* - AT* plane and power law

exponents defined along them.
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Table I

Power Laws for Thermodynamic Properties

Path Power Law

T < T , p = p
- c cxc

* i * i RAp = ±B AT r
cxc

T = T
* * . *.

Ay = D(Ap ) Ap

T > T , p = pc c

T < T , p = p / one-phase
~ c cxc

* 1 * 1 — VX = TAT Y

XT
* i-V1

T >. T , P = P
C C

T <_ T , p = p , one-phase

T <. T / p = P , two-phase
c c

* * *-a"-1}

T <. T / two-phase
c

dV ,
cxc

| AT
'

T < T , two-phase
c

dV /dT*2 « [ATT°v
cxc ' '



2.2 A Model of a Critical-Point Phase Transition.

I. The Classical Equation with Third-Degree Isotherm

The first successful attempt at formulating an equation of state

exhibiting a critical point was that of Van der Waals [1872]. The place

of his work in the context of critical phenomena was recently commemo-

rated at the Van der Waals centennial conference (Prins, 1974). The

equation of Van der Waals is presently viewed as one of a large class of

equations of state that are called classical or mean-field equations.

Their common feature is that they assume an analytic dependence of the

Helmholtz free energy or of the pressure on volume and temperature.

while the critical point is characterized by the conditions OP/3V) = 0,

2 2 3 3
O P/3v ) = 0 and (9 P/8V ) ̂  0. Above the critical temperature, the

pressure is a monotonically decreasing function of volume, so that the

compressibility is positive and finite. At the critical point there

is a horizontal inflection point on the P-V isotherm, at which point

the compressibility diverges. Isotherms below the critical temperature

exhibit a "loop," on part of which the pressure rises with volume,

violating the condition for mechanical stability. The system then

splits J.nto two mechanically stable coexisting phases. The Maxwell

equal area construction, which replaces the "loop" by a straight line

Parallel to the volume axis, ensures that the temperatures, pressures

and chemical potentials of the two coexisting phases are equal.

Van der Waals' equation reads

(P+-^r) (V-b) = RT , (2.6)
\r

where V is the molar volume and R the r.olar gas constant. According

10



to this equation the critical behavior of the P-V isotherm comes about

through competition between the hard core repulsion of the molecules,

represented by the excluded volume term b, and the longer-range attrac-

2
tion between the molecules, represented by a pressure term a/V or an

internal energy term a/V. Van der Waals ' approximation for the attrac-

tive interaction is rigorous in the limit of weak long-range intermolec-

ular forces (Kac et at., 1963; Uhlenbeck et a.1 , 1963; Hemmer et al.,

1964; Van Kampen, 1964; Lebowitz, 1974) . In real fluids, however, the

attractive forces are usually not long range, as was realized by Van der

Waals. This is the reason why the mean- field theories fail to repre-

sent the observed thermodynamic behavior near the critical point.

The horizontal inflection point for the Van der Waals equation

is located at P , V , T with
c c c

» V = 3b, RT =» , .
c 27b2 c c 27b

If pressure, volume and temperature are measured in units of P , V
c c

and T the reduced equation of state
c

(P* +-̂ )(V* - i) =|T* (2.7)
v

is obtained in which there is no explicit appearance of parameters

characteristic of a particular substance. Van der Waals fluids have

identical reduced equations of state and are said to obey the law of

corresponding states.

As mentioned earlier, Van der Waals1 equation is an example of a

classical or mean-field equation of state which is analytic in volume

and temperature at the critical point. Most equations of state used in

11



engineering applications are of this nature. All classical equations

lead to a specific characteristic pattern of the critical anomalies.

This pattern can be explored by studying the Taylor expansion of the

classical equation around the critical point. Early investigations

of this type were carried out by Van der Waals [1893,1894] and by

Van Laar [1912]. Recent studies were made by Baehr [1963a,b],

Barieau [1966, 1968], Levelt Sengers [1970] and Mulholland [1973].

Before developing the Taylor expansion a choice of variables has

to be made. The relation between the variations of the field variables

pressure P, temperature T and chemical potential y is given by the

Gibbs-Duhem equation

SdT - VdP + Ndy = 0 , (2.8)

where N is the total number of molecules, if the chemical potential y is

taken per particle. In order to scale the conjugate extensive variables

they are usually divided by N, or more specifically, by the number

of moles N/N , where N is Avogadro's number. This procedure yields

the relation

dG = -SdT + VdP , (2.9)

where G, S and V are the molar values of the Gibbs free energy, entropy

and volume, respectively. By a Legendre transformation one obtains

the relation

dA = -SdT - PdV

12



for the Helmholtz free energy per mole A(V,T) as a function of volume

and temperature. Differentiation of A with respect to V then yields an

equation of state P(V,T) for the pressure as a function of V and T.

However, alternate but equivalent thermodynamic relations are obtained

when the extensive properties in (2.8) are scaled by the volume V so

that instead of (2.9)

dP = sdT + pdy , (2.11)

where s = S/V is the entropy density and p = N/V the number density.

A Legendre transformation then yields,.instead of (2,10), a relation

d(A/V) = -sdT + ydp (2.12)

for the Helmholtz free energy density A/V as a function of density and

temperature. Differentiation of the Helmholtz free energy relation

then leads to an equation of state y(p,T) for the chemical potential

as a function of density and temperature. From the point of view of

thermodynamics the two methods of description are completely equiva-

lent. In practice a description in terms of P(V,T) is often preferred

because of the more direct accessibility of the variables to measure-

ment. However, for real fluids near the critical point a description

in terms of ]J(p,T) deserves preference for reasons of increased symmetry

to be discussed in Section 3.1. For this reason we shall formulate

here the Taylor expansion of the Helmholtz free energy density in terms

of p, rather than the more conventional expansion of the Helmholtz

free energy per mole A in terms of V. However, if desired, the inter-

ested reader can easily work but the analogous expansion for A(V,T).

13



Using the reduced variables defined in (2.2) the fundamental

postulate of the classical theory can be formulated as

m=o n=o

*"- i "
m=o n=o

m=o n=o

* * * * * * *
Since y = (3A /3p ) and P = y p - A , the expansion coefficients

A , y and P are interrelated bymn ran mn

= A (m> 0)
m,n m+l,n —

P = A . + (m-l)A (m> 0) (2.14)m,n m+l,n m,n ~

„ n, „, n n\, n

The conditions of criticality imply that

A20 = A30 = °' ^10 = ̂ 20 = °' P10 = P20

We can arrange the'expansion coefficients into matrices of the

form

14



, *
A 1 ATmn

1 Aoo Aoi
Ap* Aoi Aii
* ?

(Ap ) 0 A21

* 3
(Ap ) 0 A31

* 4
(Ap ) A A

40 41

with

00 ~ 10 '

- A
30 40 '

y - A
40 50 '

A
^01 11 '

h.l = A21 '

y21 " A31 '

(AT*)2 y

A02

A12

A22

A32

A42

1 AT* (AT*)2 Pmn

0̂0 0̂1 0̂2

° ^11 ^12

* * 2i AT (AT )

p p p
00 01 02

° Pll P12

° y21 ^22 ° P21 P22

^30 y31 y32

u y y4̂0 41 42

p p p
30 31 32

P P P
40 41 42

1

(2.16)

*
P — a — A — p — 1
00 10 00 c •- -1

p = A = U
30 40 M30

p = A +3A =U +3U
40 50 40 40 30

P = A - A <2-17>
01 11 01

Pll ~ A21 ~ ̂11

p = A + A = U + y
21 31 21 21 11

Vie. assume here that P = y = A ^ 0. This is the case of

"•'jhree-point contact" between the critical isobar and the critical iso-

therm in the terminology of Baehr, since both the first derivative

2 2
(9P/9p)T and the second derivative O P/9p ) vanish at the critical

3 3
point, but not the third derivative (9 P/9p ) . It is also possible

to construct a classical equation of state in which P = \i = A = 0.

Thermodynamic stability then requires that P = y = A = 0 as v;ell.

If then P = y = A ^ 0 we obtain the case of "five-point contact" to
3U 50 oU

be discussed in Section 2.3. In the case of "three-point contact"

mechanical stability requires P = y = A to be positive. For the

15



compressibility to be positive at temperatures above T the coefficient

P must be positive as well. Thermal stability requires A to be

negative.

We first obtain the values of the critical exponents <5, Y and a.

*
The asymptotic shape of the critical isotherm (AT = 0) follows iirmedi-

J
ately from the form of the matrix (2.16).

*p - P = y - y = PAp + . . . , (2.18)

*
so that 6 = 3 and D = P /6. For the compressibility X,p along the

* *
critical isochore (Ap = 0, AT >_ 0) we find

X,/'1 = (9y*/8p*)T = PUAT* + . . . , (2.19)

-1 *
so that Y = 1 and F = P . The specific heat C along the critical

* *
isochore (Ap =0, T >_ 0) is given by

CV*/T* = -<8
2A*/9T*2)p = -AQ2 + . . . . (2.20)

*
The specific heat C in the one-phase region remains finite and a = 0.

As a next step we construct the two-phase region. For this purpose

we consider the lowest-order terms in the expansions of the pressure and

the chemical potential

P = PC + P01(
AT ) + Pn(AP J (AT ) + e"P30(Ap } + • • • (2.21)

U* = yc* + yQ1(AT*) + Mi:L(Ap*) (AT*) + f V3C)(
AP*)3 + • • • -

*
The term linear in AT changes sign at T . Its negative slope below

T causes the appearance of the "Van der Waals loop". The system then
C

splits into a vapor and a liquid phase such that

16



P = P,. / y = y,. , T = T . ivap liq vap liq vap liq

* *
while Ap 7^ Ap... . To lowest order we find for the coexisting phasesvap liq y ̂

Since y = P and y = P™/ the condition y = y . does not give

any new information to this order. The condition (2.23) may be re-

arranged to read

(Ap. . + Ap ) - (Ap1 . ) (Ap ) 6P1K K' ^' Kvap _ _
* P

AT 30

Since the right-hand side of (5.2.24) is independent of temperature, we

* * i *\hconclude that to lowest order Ap,. and Ap must vary as AT .
liq vap ' '

Thus the top of the coexistence curve is quadratic, that is 3 = ̂ .

Algebraic consistency leads us then to expect that the coexisting

densities can be expanded in powers of [AT | 2 so that (Van Laar, 1912)

* ± i * i % ± i * i ± i * iH
Apliq,vap = Bl'AT I + B2lAT I + BslAT I + • • • ' (2-

where the + sign refers to the liquid and the - sign to the vapor branch

of the coexistence curve. When this equation is substituted into the

expansions (2.21) for pressure and chemical potential, the coefficients
<»

of (2.25) are then determined by the condition that in each order the

pressures and chemical potentials of the two branches are to be the

same. We thus find (Levelt Sengers, 1970)
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B = B = -B = (6v, AuJ^-(6P, ,/P_VS , (2.26a)

p

- B2 ~

and

Apliq,vap = ±B!lAT*|% + B2|AT*| + . . . . (2.27)

We conclude that the coexistence curve has a quadratic top which is

symmetric. For the sum of the two coexisting densities we find

_
— is |

Asymptotically, this sum is linear in the temperature. For the classical

equation this "law of the rectilinear diameter" is a direct consequence

of the assumed analyticity of the equation of state. It therefore not

only applies in terms of the density, but it would also apply in terms

of volume.

For the compressibility in the one-phase region along the coexis-

tence curve we find

+ . . . - 2PU|AT*| + . . . ,

(2.29)

-1 &
so that Y1 = 1 and T1 = (2P1:1) •

 The specific heat in the one-phase

region along the coexistence curve reduces asymptotically again to

(2.20) , so that a' = 0.
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* * *
Finally, we consider the pressure PCXC =

 p
liq

 = p
vap

 and tne

chemical potential y*xc = y*icT = y*ap in the two-phase region obtained

when the expansion (2.27) is substituted into (2.21)

P —• P + P /
cxc 00 01

V1

30

£

'3D

11

11

30

')2 +

(2.30)

*We note that the coefficient of the term proportional to [AT | 2 vanishes.

*
An algebraic proof that only integer powers of AT contribute to the

* * *
vapor pressure P (T ) and the saturation chemical potential y (T) was

cxc cxc

recently given by Mulholland [1973].

For the pressure and chemical potential along the critical isochore

*
(Ap = 0) above the critical temperature we find

p*(Ap* = O,AT* >. o) = p
00 01

y (Ap = O,AT* >. 0) = yQO +
(2.31)

On comparing this with (2.30) we thus conclude

dP*
cxc
*

dT

3P*">

3T'

dycxc
dT

3y*

P.
(2.32)

The vapor pressure below the critical temperature and the pressure along

the critical isochore above the critical temperature have the same

limiting slope, as already demonstrated by Van der Waals [1900] .
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On the other hand, the second derivatives (3 P /3T* )p and (3 y /3T* )p

change discontinuously at the critical point

(2.33a)

2 *d Pcxc

dT*2

faVl

3T*2

P-I~ P '30

16
5 "pu

3P40

*30

d y
cxc

dT*2

•>*.,

3T*2 30
} • (2.33b)

Using a thermodynamic relation of Yang and Yang [1964]

3T
*2 - P ,*2 (2.34)

we find that the specific heat, on crossing the phase boundary from the

one-phase region at the critical density, increases discontinuously

by an amount

(CV*/T\I = 3P11/P30 (2.35)

The principal results for the classical equation with three-point

contact are summarized in Table II. In Table III we present values that

the coefficients in the power law expansion for the various properties

assume in the case of Van der Waals1 equation.
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Table II

Properties of the Classical Equation with 3-Point Contact

Taylor expansions (one-phase)

co oo

z i ̂ v <*>*>•<*•>".
m=o n=o

oo oo p

'10 - "20 - "' M30

m=o n=o
m!n! 10 20 30

*A
m,n
m!n!

,m
; A20 = A30 - °'m=o n=o

(For relations between coefficients, see (2.12.)

Critical exponents

a = a1 = a"

6 = h

y = y =1

6 = 3

= 0

Amplitudes

B =

r -

D -

(3iyu/M30)%

PU-I, r- .

Coexistence curve

. * i , *t-Ap = +B AT
r-v<- I Icxc

B_ =
2 ^30

Vapor pressure

P = 1 + P̂ .AT +P_
cxc 01 21

8P11

10P30
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Table II (Continued)

Saturation
chemical potential

30 30

Specific heat (p = p , T <. T )
c c

c /T = c + c AT + . . .
V U X

C = - 30

TABLE III

Coefficients of Power Laws for Van der Waals' Equation

P* = 8p*T*/(3-p*) - 3p*2

Compressibility r _ T, _ _
1 ~ 6' [ ~ 12

Critical Isotherm

Coexistence Curve

Vapor Pressure P01 =
21
5

Saturation Chemical Potential

Jump in C at p = p
V c

= 12
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2.3 A Model of a^ Critical-Point Phase Transition.

II. The Classical Equation with Fifth-Degree Isotherm

At the turn of the century it became evident that equations of

the Van der Waals' type did not predict correctly the asymptotic shape

of the coexistence curve and the critical isotherm of real fluids.

Verschaffelt [1900] found that the coexistence curve of isopentane

is approximately cubic while the critical isotherm is of a degree

slightly larger than 4. Therefore, Verschaffelt [1901, 1904, 1923]

and Wohl [1914] attempted to formulate equations of state with 3 = 1/3

and 6=4. However, the nonanalytic character of these equations was

very troubling to engineers. A historical study of the early deter-

minations of the values for the critical exponents was recently made by

one of the authors (Levelt Sengers, 1976). Because of the reluctance

to accept nonanalytic equations of state, attempts were made, first by

Van Laar [1912] and subsequently by Plank [1936], to formulate an ana-

lytic equation that has a flatter coexistence curve and critical isotherm

than equations of the Van der Waals1 type. This goal was achieved by

setting not two but four derivatives of P with respect to V equal to

zero at the critical point. The most extensive study of this case was

made by Baehr [1963a,b] who revealed some of its surprising features.

The expansion of A*, y* and P* have the same form as (2.13)

and the relations between the coefficients are again given by (2.14).

However, the conditions for criticality are now

A20 ~ A30 ~ A40 ~ A50

P = p =p =p =o,
10 20 30 40

23



while Pc- = y_,. = A > 0 and P = y - > 0. The equation for the
jO 50 oO J.J. -L-L

critical isotherm is

(2.37)

so that 6=5 and D = P /120. The behavior of the compressibility along

the critical isochore is the same as in the case of three-point contact

so that y = 1 and F = P The coexistence curve to lowest order is

now determined by the condition

5!

(2.38)

Following the same reasoning as before, one finds

Ap*. = ±B[AT*|%Kliq,vap ' ' . . '. , (2.39)

with

B
_

2 4 3u, , 7y_ i

5!P11

[ P 5 0 j

3
2 f P 21

I 3P,,

^
t

P60 8
7P^m 2150

(2.40a)

(2.40b)

Thus 3 = %f while the sum of the coexistence densities becomes

(2.41)

The law of the rectilinear diameter is no longer valid for this classi-

cal equation, neither in terms of density nor in terms of volume.
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Table IV

Properties of the Classical Equation with 5-point Contact

Taylor expansions (one-phase)

oo oo u
* r r- inn

J = } > -

m=o n=o

. m
(AT*)n; = o

= I I
m=o n=o

.mn (M*)m(hT*)n- P - P = P = P =o
m!n! (Ap } (AT } ' P10 ~ P20 P30 ?40 °

A* = I I TfSl )̂m *̂)n;
m=o n=o

(ror relations between coefficients see (2.14.)

20 A30 A40 A50 = 0

Critical exponents

a = a1 = o, a"

3 = %

y = Y1 =1

6 = 5

ep -

= h

Amplitudes

B -

' r' =
D = P50/5!

Coexistence curve

± B. B2 =

Vapor pressure

P = 1 + PnnAT + P3 AT
CXC 01 >2

42P5()
+

6 21
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Table IV (Continued)

Saturation
chemical potential

cxc AT*|/2

Specific heat (p = p , T < T )
c c

:v*/T*=^-lAT*l

For the compressibility along the coexistence curve one finds y1 = 1

and T1 = (4p ) . The temperature expansions for the vapor pressure and

the saturation chemical potential become

cxc ~~00 ~-,-01

(2.42)

Thus the slopes of the pressure and the chemical potential along the

critical isochore and the saturation curve are still continuous at the

critical point. However, in contrast to the case of three-point con-

tact, the second derivatives d P /dT* and d y /dT and hence
cxc

_L
C */T* in the two-phase region now diverge as |AT*| , so that

6=6 = a" = %. Of course a = a1 =0, since the Helmholtz free energy

is analytic in the one-phase region. The properties of the classical

equation with five-point contact are summarized in Table IV.
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2.4 Generalized Homogeneous Functions

The modern description of the thermodynamic behavior of a system

near a critical point is based on the assumption of homogeneity of the

basic thermodynamic functions. To introduce the concept of homo-

geneous functions we consider here functions of two variables only;

generalization to functions of more variables is obvious.

A function f(u,v) of two variables u and v is called a generalized

homogeneous function if it satisfies the relation (Stanley, 1971, 1972)

au av
f(X u,X v) = Xf(u,v) (2.43)

for two fixed exponents a and a and for all values of the parameter X.

s a p
It is noted that a relation of the type f (X ̂  u, X v v) = X f (u,v) can

always be reduced to the form (2.43) by a proper redefinition of the

parameter X.

When a function has the property of homogeneity one can always

deduce a scaling law, i.e. the dependence on the two variables can be

reduced to the dependence on one new variable by an appropriate change

of scale. For this purpose we take X u = u so that

u

where, for simplicity, we consider only positive values of the variables

u and v. Hence, the function f (u,v) after scaling with the factor u u

becomes a function of the single variable v/ua u. Another possible

choice is X v = v so that
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= f( — ,1) . (2.44b)
v v

au/av

Prom (2.44) we note that a generalized homogeneous function satisfies

a /a
a simple power law along any line u/v u = B

f(u,v) = f(B,l)v Sv , • (2.45)

where f(B,l) is a constant coefficient. In particular along the special

lines u = 0 and v = 0 the function behaves as

1/av l/au
f(0,v) = f(0,l)v , f(u,0) = f(l,0)u u . (2.46)

2.5 Homogeneity and Scaling Property of Classical Equations

In this section we consider to what extent in the vicinity of

the critical point the classical equation of state becomes a general-

ized homogeneous function of the independent thermodynamic variables

and satisfies a scaling law.

As mentioned in Section 2.1 thermodynamics imposes a number of

inequality relationships between the critical exponents. Of the five

exponent relations given in (2.4) we find that three are obeyed with

the equal sign for both classical equations, namely 2 - a" = 8(6+1),

3(6-1) = y and a" + 2g + y1 =2. The other two relations,

9 <_ a" + f? and 6 . <_ a" + 3, are obeyed as inequalities, since for

the case of three-point contact 6 =6 = a" = 0 and for the case
P M

of five-point contact 6 =0 =&"=%. We further note that in the
P U

case of three-point contact y = y1 = If o. = a,' = a" = 0, while in

the case of five-point contact y = y1 = 1, a = a1 = 0, a." = %.
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To formulate the scaling property of the classical equation we

develop our arguments again in terms of the equation of state for

y(p,T). We do stress, however, that for the classical equations the

same arguments would hold for any choice of variables, including P(V,T)

and P(p,T) . The Taylor expansions of the classical equations read to

lowest order ^

y* - yc* = U01AT* + j; y3Q(Ap*)
3 + y^fAp*) (AT*) ,

(three-point contact)

(2.47)

y* - yc* = yQlAT* + ̂  y5Q(Ap*)
5 + yu(Ap*) (AT*) .

(five-point contact)

It is convenient to define

Ay* = y* - y * - yolAT* . (2.48)

Introducing the critical exponents 6 = 3 , 3 = % (three-point contact)

and 6 = 5 , 3 = % (five-point contact) both equations (2.47) can be

rearranged as

Ay* = D(Ap*) + , (2.49)*)6 fi + ± AT*
L xo (Ap*)17

-1/8
where D and x^ = B are readily expressible in terms of y . Hence

0 mn

to lowest order Ay does indeed satisfy the homogeneity property (2.43)

Ay*(XapAp*,AaTAT*) = XAy*(Ap*,AT*) with a = 1/6 and aT = 1/36. if
f

Ay* is "scaled" by (Ap*)
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= D(l + x/xj , (2.50)
<AP*,S °

the result is a function of only one independent scaling variable

x = AT*/(Ap*)1/3.

The homogeneity and scaling properties of the nonanalytic equations

of state will be discussed extensively in Section III. Here it is

appropriate to point out the limitations of scaling for the classical

equations. The quantity Ay* defined in (2.48) is equal to y*(p,T) -

y*(p ,T) above T to linear order in AT*. Since the chemical potential
c c

y* (p ,T) along the critical isochore and the saturation chemical poten-
c

tial y* have continuous slopes, Ay* is also equal to y*(p,T) - y*

below T to lowest order in AT*. Thus the scaled equation (2.50) is
c

valid in the one-phase region both above and below T to linear order in

AT* . However the argument cannot be extended to include higher order

terms in AT . If, for instance, in the case of three-point contact the

term %y ^(AT*) is added to (2.47) and then included in the defini-

tion of Ay*, the quantity Ay* ? y*(p,T) - y* below T , since the
C

second derivative of y (p ,T) is discontinuous at the critical point.
c

* 2 *
Alternatively, if all terms contributing on the (AT ) level to y arecxc

included in (2.47) the feature of homogeneity is lost. Thus although

the classical equations of state obeys a scaling law to lowest order,

its second derivative, and consequently the specific heat, in general

do not scale even in lowest order.
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2.6 Â  Model of a_ Critical-Point Phase Transition

III. Ising Model and Lattice Gas

Lenz and Ising formulated a model for the ferromagnetic phase

transition in solids in which the assumption of long-range forces

implicit in the classical or mean-field theories was dropped (Ising,
•

1925). In this Ising model, magnetic spins are placed on a regular

array, one spin at each site, which may either point "upwards" or

"downwards." In the simplest form of the model, the interactions

between spins are limited to nearest neighbors only. These interac-

tions may be ferromagnetic, when the lowest energy state is that of

parallel spins on neighboring sites, or antiferromagnetic, when it is

energetically favorable for neighboring spins to line up in an anti-

parallel configuration. Lenz and Ising were only able to solve the

one-dimensional version of the model. However, in one dimension the

system remains paramagnetic at all finite temperatures and does not

exhibit a phase transition to- a ferromagnetic state. The reason is

that only one pair of opposite spins is enough to destroy the macro-

scopic magnetic moment.

In the 2- and 3-dimensional versions of the model a phase transi-

tion does occur (Peierls, 1936; Griffiths, 1972). Moreover, the 2-

dimensional Ising model in zero magnetic field can be solved exactly

as first achieved by Onsager [1944], who showed that the specific

heat at constant field H = 0 diverges logarithmically at the critical

point. This result was in direct contradiction with the assumption of

analyticity of the Helmholtz free energy at the critical point in the

classical theory.
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The importance of the Ising model is enhanced by the fact that

it can serve as a model for a variety of phase transitions (Green and

Hurst, 1964). We have already seen that by changing the sign of the

nearest-neighbor interaction both the ferromagnetic and the antiferro-

magnetic phase transitions can be described. If spins pointing

upwards are replaced by particles A, while spins pointing downwards

are replaced by particles B, we obtain a model for phase transitions

in binary solids. If the energetically favorable configuration is that

of unlike nearest neighbors, the order-disorder phase transition in

binary alloys can be modeled. If the configuration with like nearest

neighbors is more favorable, demixing in the solid phase can be de-

scribed. To the extent that a liquid can be approximated by a lattice

model, we obtain also a description of phase separation in partially

miscible liquids. Finally, the Ising model can be used as a model for

the gas-liquid transition. An early attempt in this direction was made

by Cernuschi and Eyring [1939] who devised a so-called hole theory of

liquids. The rigorous translation of the Ising model into a model for

a gas on a lattice was formulated by Lee and Yang [1952].

In the ferromagnetic Ising model, a spin variable a. is assigned

to each lattice site i, where a. can assume the value +1 or -1 depending

on whether the spin points "up" or "down." The energy E of a

microstate {0.} is given by

E{a±} = -J I a±a. - n£a , C2.51)
3

where J is an interaction constant and H the magnetic field and where

the sum is to be taken over all pairs of nearest neighbors <ij>. The

32



partition function Z as a function of T, H and the total number of
5

spins or sites N is then given by
5

I a.a + ̂ _ jo "J ,
<ij> B a -1

ZS(T,H,NS) - exP a.a + _ o , t2>52)
la.}

where k is Boltzmann's constant. The (Gibbs) free energy F(H,T) is
B

then obtained as

F = -k T£nZs (2.53)

To obtain a lattice gas each site is identified with the center of

a cell with volume v such that
o

V = v N . C2.54)
o s

To each cell an occupancy variable T. is assigned such that T. = +1 when

the cell is occupied by a molecule and T. = 0 when the cell is empty.

Multiple occupancy is forbidden so as to account for the finite size of the

molecules. To each pair of molecules in adjacent cells an attractive

energy -£ is assigned independent of the positions of the molecules

within the cells. The energy of a microstate is then

E{T.} = -e J1 T.T. , C2.55)
i . . L. . i ]

J

and the partition function Z(T,V,N) of the lattice gas becomes

N

Z(T,V,N) = -y I exp r^r IT.T. , (2.56)
*A J {T.} I^B <ij> 1 3-1

2 ^3with A = (h /27ntnk T) , where h is Planck's constant and m the molecular
B

mass. The accent on the summation sign indicates that the summation is

33



restricted to microstates with ZT. = N. This awkward constraint is

removed by considering the grand partition function

V fe v= L exP £-£• L TiTi
{T . } I-B <ij>i

y-kBTln(A
3/v0)

T̂
H(T,V,y) = i e '

N=0 . ±.

Kl-
The relation between the grand partition function H of the lattice gas

and the partition function Z of the Ising model is obtained by noting
S

that T. = ̂ (cr.+l) so that IT. = %(£0.+N ) and £ T.T. = % j> 0.0.

r. + »5aN , where q is the coordination number of the lattice.
1 M ao

1
Hence, the grand partition function of the lattice gas can be written

in the form

E(T,V,y) =

with

T = J » (2.59)

—) = 2H . (2.60)
o

Since PV = Pv N = k TlnE, it also follows that
os ^

v P = (H-^qJ) - F/N . C2.61)
o s

Furthermore, since p = < £ T.>/V and M/M = <£0.>/N , we find

2v p = 1 + M/M , where M is the saturation magnetization of the ferro-
o o o

magnetic Ising model. At the critical point of the Ising model M = 0

so that for the lattice gas p = l/2v and
c o

Ap* = M/MQ = M* . (2.62)

34



On the critical isochore M = 0, the field H = 0 above and below T .

Thus it follows from (2.60) that the chemical potential on the critical

isochore of the lattice gas is given by

V(Pc,T) = kBTln<£-) - ̂ , .(2.63)
o

and the quantity Ay introduced in (2.60) may be identified with

y(p,T) - y(p ,T) . The properties of the lattice gas follow immediately

from those of the Ising model via the relations given above (Fisher,

1966, 1967a) .

The results obtained for the Ising model have been discussed in

many places in the literature. Appropriate references may be found in

the review papers of Fisher [1967a] and Domb [1974]. The values of the

thermodynamic critical exponents for the 2-dimensional Ising model are

a = a" = 0, 8 = 1/8, Y = Y' = 7/4, 5 = 15; of these exponents a, 3 and

are known exactly (Fisher, 1967a) , while <S is known numerically to

within 0.5% (Gaunt and Sykes, 1972).

The 3-dimensional Ising model has not been solved exactly, but

many numerical results have been obtained from analyses of series expan

sions (Domb, 1974) . The current exponent values deduced from series

expansions are (Gaunt and Sykes, 1972, 1973; Gaunt and Guttman, 1974;

Meijer and Farrell, 1975; Camp et al.r 1976):

« = 0.125 ± 0.020, 8 = 0.312 ± 0.005,
(2.64)

Y = 1.250 ± 0.003, 8 = 5.00 ± 0.05 .

independent of the lattice structure and the magnitude of the spin.
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It is also believed that the values of the critical exponents do not

change if the interactions extend beyond nearest neighbours as long as

their range remains finite; it must be remarked, however, that the

numerical evidence is not conclusive (Dalton and Wood, 1969; Farrell

and Meijer, 1972) . Anticipating that the critical exponents may turn

out to be rational numbers, one frequently adopts as estimated values

for the critical exponents of the 3-dimensional Ising model

a = a" = |, 3 = A-, y = Y' = f, 6 = 5 . (2.65)

The theoretical and numerical evidence gathered for the Ising

model (as well as other lattice models) appears to be in accord with

the postulate that the free energy is a generalized homogeneous func-

tion of temperature AT* and H* = H/k T. From this postulate it follows

that the equation of state can be written in the form (Griffiths, 1967;

Fisher, 1967b) :

H* = M ^ M ^ h A T V l M ) . (2.66)

An equation of this form for the 3-dimensional Ising model was origi-

nally proposed by Domb and Hunter [1965] .

The equation of state for the lattice gas follows from (2.66)

using (2.60) and (2.62). The properties of this equation of state

will be discussed in Section 3.4. We also note from (2.62) that the

chemical potential of the lattice gas is a regular function of tempera-

ture along the critical isochore, in contrast to its behavior in the

classical theory. From the Yang- Yang relation (2.34) it then follows

that the anomaly in the specific heat C is equal to the anomaly in

2 2
d P/dT so that for the lattice gas a = a" = 9 , while 9 =0.
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The regular behavior of y(p ,T) is a consequence of the particle-

hole symmetry of the lattice gas. Since the Isirig hamiltonian is

invariant under reversal of the field H, while the magnetization M

changes sign upon reversal of the field, we note that Ay along an iso-

therm is antisymmetric with respect to the critical isochore

Ay*(-Ap*,AT*) = -Ay*(Ap*,AT*) . (2.67)

2
As a consequence the derivative XT

 = P ̂ v, = OP/^P)™ of the lattice gas

is a symmetric function of Ap . The pressure P, however, given by

(2.61), contains a symmetric and an antisymmetric term and therefore

does not exhibit any special symmetry. In contrast to the classical

equations, the equation of state for the chemical potential of the

lattice gas has a symmetry which is absent in the equation of state

for the pressure.

2.7 Renormalization Group Theory

On approaching a critical point a system exhibits large fluctua-

tions in the order parameter (the magnetization near the Curie point

of a spin system or the density near the gas-liquid critical point

of a fluid). The range of these fluctuations is characterized by a

correlation length £, a precise definition of which will be given in

Section 5.1. For the systems under consideration this correlation

length becomes much larger than the range of the intermolecular forces.

Kadanoff [1966] gave a plausibility argument that the long range nature

of the critical fluctuations causes the singular part of the free

energy to become a generalized homogeneous function of its variables.
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He also introduced the idea of universality: the critical singu-

larities do not depend on those parameters in the hamiltonian that

characterize the microscopic nature of the system on a length scale of

the order of the intermolecular distances, but depend only on some gross

features of the system such as the dimensionality of the system and the

number of components of the order parameter (Kadanoff, 1966, 1971, 1976).

These ideas have been given a firm theoretical basis by the renormaliza-

tion group theory of critical phenomena, formulated by Wilson [1971] and

further developed by many investigators.

In order to elucidate the method of the renormalization group

theory, let us consider a generalization of the Ising model called

Ising-like spin systems (Niemeijer and Van Leeuwen, 1976). An Ising-

like spin system is a lattice system in which the interactions are not

restricted to nearest neighbours only and in which the spin variable a.

may assume an arbitrary number of values. In accordance with (2.53)

the reduced free energy per spin F* = -F/N k T may be written in the
s 5

form

F* = In I exp H , (2.68)

where H is a generalized hamiltonian which depends on a number of para-

meters such as the temperature T, the field H, the number of states

that the spin variable 0. may assume, the interaction constants between

nearest neighbours, next nearest neighbours, etc. These parameters

may be formally indicated by the set of variables {K} = K , K , . . . .
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For a spin system with N lattice sites one may attempt to calcu-
s

late the free energy from (2.68) by first summing only over groups that

are within cells of length £, where J, is measured in terms of the lat-

tice constant. The result may then be interpreted in terms of the

properties of a new spin system for which the lattice sites correspond

to the cells of the original lattice. The number N ' of this new spin
S

system is related to the number N of the original lattice by N '/N =
s s s

= i , where d is the dimensionality of the system. The reduced free

energy F*' per spin of the new spin system may be written as

F*1 = F{K'} = In I exp HfK1} , (2.69)

where the summation is to be conducted over all possible values of the

spin variables CT.' of the new spin system and where the hamiltonian

H{K'} will be determined by a new set of values K ' of the parameters

of the hamiltonian. The transformation

{K1} = R,,{K} (2.70)

is called a renormalization group transformation. It satisfies the semi-

group property R. R. = R. 0 . Apart from an integration constant which

is an analytic function of the parameters K , the free energy F*{K'} of

the new spin system is related to the free energy F*{K} of the original

system by (Niemeijer and Van Leeuwen, 1976)

F*{K> = £~dF*{K'} . (2.71)

Upon iteration of the renormalization transformation one traverses

a trajectory in the space of the parameters of the hamiltonian. This
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means that one is studying the system with respect to a length scale

which becomes larger and larger. After having summed over the short

range contributions the properties of the spin systems thus generated

will vary little until one reaches a length scale comparable with the

correlation length £. At the critical point, however, the correlation

length is infinite. Hence, the crucial observation of the renormaliza-

tion group theory is that for a system at a critical point the procedure

always leads to a fixed point {K*} of the transformation at which

{K*} = R£{K*}. (2.72)

When the system is not at a critical point but close to it, the correla-

tion length £ is large but not infinite. Upon iteration of the renor-

malization transformation the trajectory in the space of the parameters

of the hamiltonian will approach the fixed point as long as the length

scale remains smaller than £ and will move away from the fixed point

when the length scale becomes larger than £. In the vicinity of the

fixed point the transformation may be represented by a linear approxi-

mation

(2-73)

Let us denote the eigenvalues of the matrix OK '/9K0) * (which are(X p K
y

assumed to be real and positive) by Si a and the corresponding eigen-

functions, usually referred to as scaling fields, by u (Wegner, 1972) .

Replacing the parameters K ' by the scaling fields u , the transforma-ot ot

tion (2.73) in the vicinity of the fixed point reads
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= £ UCX ' (2>74)

Hence, if we consider the free energy F as a function of the scaling

fields u , it follows from (2.71) and (2.72) that in the vicinity of

the critical point the free energy satisfies the relation

F*(ui,u2, . . .) = £~
dF*(Xyiui,XY2u2, . . .) . (2.75)

Thus the free energy becomes a generalized homogeneous function of

the type defined in (2.43). The exponents y can be calculated by

determining the eigenvalues of the linearized renormalization group

transformation defined in (2.73). The relation (2.75) applies to that

part of the free energy which we shall identify as the singular part

F . .In addition there is a regular contribution due to the summa-
sing

tions over the short range interactions.

The renormalization procedure is not restricted to lattice systems.

In fact, most calculations based on the renormalization group theory have

been performed for the so-called Landau-Ginzburg-Wilson model (Wilson,

1971; Wilson and Kogut, 1974). This model is a generalization of the

Ising-like systems in which the spin variable 0. is no longer asso-

ciated with discrete lattice sites but is replaced by a spin function

.-»• -».
0lx) which is a continuous function of the position x. The renormali-

zation transformation is then obtained by integrating over those Fourier

-»•
components of the spin function 0(x) that correspond to wave lengths

smaller than the corelation length £.
Xf

The scaling fields with H a > 1 (i.e. ya > 0) are called rele-
y

vant and the scaling fields with £ a < 1 (i.e. y <0) are called

irrelevant. In some special cases one may also encounter a marginal
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field with £ a = 1. Upon iteration of the transformation (2.75) we con-

clude that the singular part of the free energy in the vicinity of the

critical point will assume the same form independent of the starting

values of the irrelevant parameters. For Ising-like systems of a given

dimensionality d < 4, there are two relevant scaling fields which

asymptotically may be identified with the field H* and the temperature

AT*. Thus near the critical point the free energy satisfies the relation

F*. (H*,AT*) = £~dF*. (£yiH*,£Y2AT*). (2.76)
sing sing

V 1
Choosing H such that I 1 = H* , we conclude that the singular part of

the free energy satisfies a scaling law of the form

F*. (H*,AT*)=H*d/YlF*. ( -̂,1) . (2.77)
singv singvH*y2/yi

The renormalization group theory confirms that the singular behavior of

the free energy, and thus of all thennodynamic properties, depends on

only two critical exponents y.. and y . Since M* = (9F*/9H*) , one read-

ily verifies that a scaled equation of state of the form postulated in

(2.66) is recovered if the exponent 3 is identified with (d-y )/y_ and

the exponent 6 with y1/(d-y ). The renormalization group theory shows

how these critical exponents can be calculated from the eigenvalues of

the linearized renormalization group transformation. The scaling func-

tion of the free energy and other related properties can be obtained

by studying their dependence on the parameters of the hamiltonian in the

vicinity of the fixed point. For further details the reader is referred

to the literature (Wilson, 1971; Wilson and Kogut, 1974; Ma, 1973,1976;

Di Castro <Lt oJL., 1974; Schroer, 1974; Fisher, 1974; Van Leeuwen, 1975;

Niemeijer and Van Leeuwen, 1976; Wallace, 1976).
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An important consequence of the renormalization group theory is

that all systems whose hamiltonians differ with respect to the irrele-

vant parameters only, will have the same critical exponents and the

same scaling functions. Such systems are said to belong to the same

universality class. It is widely assumed that universality classes for

homogeneous, isotropic systems with short range forces may be assigned

according to the spatial dimensionality and the number of components

of the order parameter. Although the renormalization procedure has not

yet been carried out for systems with hamiltonians resembling fluids, it

is nevertheless expected that fluids near the gas-liquid critical point

and binary liquids near the critical mixing point should belong to the

same universality class as the Ising model and the Landau-Ginzburg-

Wilson model (Hubbard and Schofield, 1972). This hypothesis will be

further discussed in Sections 3.5 and 3.8.

Using the method of the renormalization group theory estimates

have been obtained for the critical exponents of this universality class

(Kadanoff <Lt dUL., 1976; Baker Qjt oJi., 1976; Golner and Riedel, 1975,

1976) . The most accurate estimates appear to be those reported by

Baker fct at. for the Landau-Ginzburg-Wilson model. In particular they

found for the critical exponents 3 and Y

6 = 0.320 ± 0.015, Y = 1-241 ± 0.002 . (2.78)

There exists a small unresolved discrepancy between the exponent values

obtained for the Landau-Ginzburg-Wilson model on the basis of the

renormalization group theory and the values (2.64) obtained for the

Ising model from series expansions. We shall return to this point in

Section 5.5.
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2.7 Gravity Effects

Experimentation near a critical point is difficult because of

the strong divergence in the thermal expansion coefficient and the com-

pressibility and the slow rate of decay towards equilibrium. For a

discussion of the type of thermodynamic information available and the

experimental difficulties encountered the reader is referred to a

review published elsewhere (Levelt Sengers, 1975). Here we restrict

the discussion to one major feature encountered in all critical region

experimentation with fluids, namely the effect of the earth's gravi-

tational field.

As noted by Gouy [1892], near the gas-liquid critical point

the compressibility becomes so large that gravity will induce an

appreciable density gradient. We may assume that at each level h

in the cell the local chemical potential y(p, ,T) equals the chemical
h

potential of a system with uniform density p at temperature T in the

absence of gravity. Since in the presence of gravity the total chemi-

cal potential is the sum of the local chemical potential y(p ,T) and

the gravitational potential mgh, we have

y(p ,T) - y(p ,T) = -mg(h-hQ) , (2.79)
o

where m is the molecular mass if the chemical potential is taken per

particle. In terms of dimensionless quantities

h-h
y*(p, ,T) - y*(p, ,T) = - -r—- , (2.80)

h h0 h

with

h = P /mgp . (2.81)
c c c
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In Table V we present values of the parameter h for a number of
c

fluids. Note that .the gravity effect on the chemical potential will be

proportional to h . Thus at a given Ap and AT* the gravity effects

in helium will be much larger than in steam. Since h is of the order
c

of 10 cm, gravity will contribute on the 10 level to the chemical

potential in cells with a height of about 1 cm. Since Op /9y*)

diverges, this small variation in y* will cause an appreciable density

gradient. As an example we show in Fig. 2 the predicted size of such

gravitationally induced density profiles in xenon at a number of tempera-

tures. In binary liquids near the critical mixing point gravity will

induce a concentration gradient (Yvon> 1937; Voronel and Giterman, 1965;

Mistura, 1971).

Gravity effects impose serious limitations upon the information <l

that can be obtained from conventional PVT experiments in the vicinity

of the critical point. The experiments become unreliable when the

average or bulk density as measured begins to deviate from the local

density prevailing at the level where the pressure is measured. The

magnitude of the range where the data are obscured by these effects

depends on a variety of factors such as the height of the vessel, the

value of h and the precision of the temperature control. Generally
c

no accurate information is obtained from conventional PVT experiments

I 4t \ —4
in the temperature range |AT | < 5 x 10

However, gravity effects can be used to advantage if the density

is measured as a function of height. In accordance with (2.80) such

measurements yield p as a function of y over a total pressure span of a

few hundred Pascals, i.e. a few millibars. Thus a resolution of the

equation of state can be obtained that is several orders beyond what is

attainable with conventional techniques.
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Table V

The Parameter h = mp g/P for a Number of Fluids
c c c

Fluid

3He

V

Ne

Ar

•» Kr

Xe

H2

N2

°2

H20

D 0

h ~1 x 103
c

m

3.48

3.00

1.72

1.08

1.62

1.86

0.24

0.91

0.85

0.14

0.16

h -1 x 103
c

Fluid m

CO 0.84

CO 0.62

NH 0.20

NO 0.61

SF- 1.90
6

CH4 0.35

C2H4 0.42

C-H_ 0.42
2. b

C3Hg 0.51

CC1F 1.50
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Calculated density profiles near the critical point
of xenon in the earth's gravitational field. At the
dashed part of the curves the density varies so rapidly
that the assumption of local thermodynamic equilibrium
is no longer valid.



Basically three different methods have been used to measure the

local density as a function of height: floats, capacitance and refrac-

tive index as a function of height. As early as the beginning of the

Century Teichner [1904] used floats to indicate the existence of a

density profile in CC1. near the critical point. Since the 1950"s

optical techniques have become increasingly popular. There exist

principally two complementary optical methods, namely that in which the

refractive index is measured as a function of height and that in which

the refractive index gradient is measured as a function of height. The

Lorentz-Lorenz relation is used to relate refractive index to density.

The result of the first method is a density profile and that of the

second method a compressibility profile. Capacitance measurements

provide a fast and accurate method of determining fluid densities.

Here the Clausius-Mosotti relationship is used to convert dielectric

constants to densities. In a density profile experiment, a stack of

capacitors is used to indicate the density at various levels.

For density or compressibility profile experiments to become

quantitative, great care has to be taken to eliminate thermal gradi-

ents. Due to the strong divergence of the thermal expansion coeffi-

cients, even small temperature gradients yield appreciable contributions

to the density profile. In view of the more awkward arrangements due

to the need for windows, optical experiments have been more prone to

thermal gradient errors than capacitance experiments. Moreover, as

emphasized by Verschaffelt [1905], uncontrolled impurities may affect

the observed density profile appreciably. Thus the earlier work

(Lorentzen, 1953; Palmer, 1954; Schmidt and Traube, 1962; Schmidt,
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1966), though pioneering, yielded conflicting results and only recently

have profile studies become more quantitative. Straub [1967] improved

the method of Schmidt and Traube for measuring the refractive index pro-

file. A number of Russian investigators have used both the float method

for measuring the density profile and the Schlieren method for measuring

the refractive index gradient (Naumenko <Lt at., 1967; Artyukhovskaya &t

at., 1971). Density profiles by measuring the dielectric constant as a

function of height have been obtained by Weber [1970] and Thoen and Gar-

land [1974]. The existence of concentration gradients near the critical

mixing point of a binary liquid has also been confirmed experimentally

(Lorentzen and Hansen, 1966; Blagoi <it at., 1970; Greer it at., 1975;

Giglio and Vendramini, 1975; Maisano <Lt at., 1976).

A very important experimental development was initiated by Wilcox

and coworkers (Wilcox and Balzarini, 1968; Estler <Lt at., 1975) who per-

fected an optical interferometric method originally proposed by Gouy

[1880] and who were able to reach a temperature stability to 20 micro-

degrees. A parallel beam of coherent light impinging on the cell will

be deflected downward. Maximum deflection will occur at the level of

maximum dn/dz, where n is the refractive index. Above and below this

level/ rays that experience the same deflection can be brought to

interference after passage through a lens. The resulting interference

pattern can be studied as a function of temperature; the location

and order of the various maxima, counting from the maximally deflected

beam upwards, contains all information necessary to obtain the equa-

tion of state. When combined with superior temperature control, this

method has great potential. In practice, there are limitations to

the number of decades in AT* or Ap* where the method can be applied.
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For the method to work away from the critical point it is necessary

that the level of maximum dn/dz stays somewhere near the center of the

cell. Since the locus of maximum dn/dz as a function of temperature

probably does not coincide with a curve of precisely constant density,

even the most careful filling of the cell cannot prevent the locus

* -4from moving out of the cell, limiting AT to values smaller than 10

When the critical point is approached another cut-off is caused by

gravity. When a band of strong refra'ctive index gradients develops

in the cell, the deflections of the rays become so large that they

pass through fluid layers of widely varying density. This effect is

proportional to the square of the thickness of the cell and provides

a lower limit to all optical experiments. In practice, with cells

a few mm thick, a range of AT* < 10 is excluded, leaving a range of

about one decade in temperature suitable for this technique (Holdover

it aJL.t 1976) .

When the density profile is measured using the capacitance

method other limitations appear. First, dielectric constant experi-

ments, unlike optical experiments, do not permit continuous sampling

of the density as a function of height. Furthermore, dielectric con-

stant experiments generally do not permit direct observation of the

temperature of meniscus disappearance. Finally, the results can no

longer be easily interpreted when the density variation between the

plates of one capacitor exceeds the desired experimental accuracy.

The limitations imposed by gravity are very severe in calori-

metric experiments. Since in calorimeters the bulk phase is heated,

redistribution of matter in the cell yields an additional contribu-

* -4tion to the specific heat which becomes appreciable at AT < 10
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(Schmidt, 1971; Hohenberg and Barmatz, 1972). Since the specific heat

anomaly is weak, background contributions are large everywhere except

very close to the critical point. Thus the cut-off imposed by gravity

restricts the precision with which the critical exponent a can be

determined in earth-bound experiments.

In laser light scattering, measurements in the gravity-affected

range can be carried out reliably if the intensity of the scattered

light is measured as a function of the height in the cell (Alekhin ejt

at., 1969a,b; Chalyi and Alekhin, 1971; Golik HJL at., 1969; Krupskii

and Shimanskii, 1972; White and Maccabee, 1975). Gravity imposes

limitations when the compressibility varies over the height of the

scattering volume (Dobbs and Schmidt, 1973). However, the most severe

limitations in the case of light scattering are not due to gravity but

to multiple scattering and attenuation of the light beam.

Finally, there exists an intrinsic limit as to how closely the

critical point can be approached in earth-bound experiments. Near

the gas-liquid critical point a fluid exhibits large fluctuations in

the density. The spatial extent of these fluctuations is charac-

terized by a correlation length to be defined in Section 5.1.

If the system were in true homogeneous thermodynamic equilibrium

the compressibility and the correlation length would diverge at the

critical point. However, the presence of a gravitational field pre-

vents the fluctuations from growing indefinitely. At each level the

system can be expected to be in local thermodynamic equilibrium,

when the local fluid properties do not vary appreciably over the
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distance of one correlation length. While the correlation length

increases on approaching the critical point, the gravity induced dens-

ity profile becomes more and more pronounced. Finally, a situation

is reached where the fluid properties such as the compressibility and

the correlation length vary non-negligibly over a height of the order

of the correlation length. Then the assumption of local equilibrium

ceases to be valid and the fluid properties themselves are modified

by the gravitational field. These phenomena will be encountered at

|AT*| < 10 ; present-day experimental techniques are on the verge of

entering this range.

In Table VI we present some estimates of the range where no

accurate information is obtained in experiments conducted near the

critical point of a fluid like xenon in the earth's gravitational

field. For further details the reader is referred to a report by

Moldover et at. [1976].
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Table VI

Limitations Imposed by Gravity on Critical-Region Experiments'

01

Experiment

PVT

Float
densimeter

Capacitance

Calorimetry

Refractive
index gradient

Light
scattering

All

Property
Measured

Density

Density

Density

Heat
capacity

Compressi-
bility

Compressi-
bility

correlation
length

Any

Characteristic
Length

Cell 1 cm high

Height of
float 2.5 mm

Spacing between
plates 0.2 mm

Cell 1 cm high

Path in cell
3 mm

Path in cell
3 E'JJl

Correlation
length

Nature of
Limitation

Density gradient

Density gradient

Density gradient

Redi s tr ibut ion
of matter

Curved path of
beam in cell

Turbidity

Non local
effects

Excluded Eange

P = P T = T
c . c

AT* Ap"

-4 -?
6 x 10 8 x 7.0

2 x 10~4 5 x 10~2

2 x 10~5 2 x 10~2

3.5 x 10~4 6 x 10~2

1.5 x 10~5 2 x 10~2

_K _0

5 x 10 3 x 10

1.5 x 10~6 1.5 x 10~2

The estimates refer to xenon in the earth's gravitational field when the indicated
property is to be measured within 1%. For details of obtaining these estimates see Holdover
et, al. [1976] and Hohenberg and Barmatz [1972] .



Ill. Scaling Laws for Thermodynamic Properties of One-Component Fluids

3.1 Choice of Variables

In this section we describe the choice of variables we have made

in scaling the thermodynamic properties of fluids, and the reasons for

that choice. A critique of our choice of variables is postponed until

Section 3.7.

As mentioned earlier, thermodynamics itself does not specify

uniquely which set of variables is to be preferred in describing the

critical behavior of fluids. The regularities found for the classi-

cal equations of state, e.g. the symmetry of the top of the coexistence

curve, are present for any choice of variables, such as p(T) or V(T)

or even p(P), in which we care to describe the coexistence curve.

On the other hand, in the lattice gas one system of variables is to be

preferred distinctly. The lattice gas has perfect antisymmetry with

respect to the critical isochore when y is considered as a function of p,

while this symmetry property is lacking in any other set of variables.

The analyticity of y on the critical isochore gives the possibility of

scaling to a higher order in AT* than is possible for the classical

equations. Thus if the assumption of scaling is to be tested on numeri-

cal data for the lattice gas, it is clearly advisable to consider

y(p,T) rather than P(V,T). The first choice of variables guarantees

a much larger range of asymptotic validity of scaling and the possibility

of scaling the specific heat C .

For real fluids we do not know a priori which variables are to

be preferred in describing critical behavior and the choice we have made
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is based on empirical considerations of symmetry (Tisza and Chase, 1965;

Vicentini-Missoni et al., 1969a; Levelt Sengers, 1970). The shape of

the coexistence curve can be studied by plotting either the coexisting

volumes or the coexisting densities as a function of temperature as

shown for argon in Fig. 3. In terms of p and T the coexistence curve

shows much more symmetry than in terms of V and T. In the lattice gas

the coexistence curve p (T) would be perfectly symmetric. In a real
cxc

fluid, like argon, the lack of complete symmetry is evident from the

locus of average coexisting densities which is approximately a straight

line, the "rectilinear diameter" but which does not coincide with the

critical isochore p = p .
c

In the one-phase region of real fluids we notice a clear prefer-

ence for a description in terms of y(p,T) rather than P(V,T). In Fig. 4

P(V)-isotherms and y(p)-isotherms are shown for argon; in contrast to

the P(V)-isotherms, the y(p)-isotherms are remarkably antisymmetric

with respect to p .
c

The analytic behavior of pressure and chemical potential on the

critical isochore appears also to be different. In Fig. 5 the two-phase

specific heat C */T* of steam (Amirkhanov and Kerimov, 1963) is plotted

as a function of Ap . According to the Yang-Yang relation (2.34) the

2 2
slope of the tie lines equals d y/dT and it does not vary much in a temp-

? ?
erature range of 10%. The intercepts of the tie lines equal d P/dT and

they show an appreciable increase on approaching T . In the lattice gas

2 2 2 2
d y/dT would be constant, while d P/dT would diverge weakly like C .

Hence, the asymptotic symmetry features of real fluids are reminiscent

of those of the lattice gas.
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Figure 3. The coexistence curve of argon in terms of volume and
temperature and in terms of density and temperature.
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Figure 4. P (V) isotherms and y(p) isotherms of argon in the critical
region. In contrast to the P(V) isotherms, the p(p) iso-
therms are nearly antisymmetric with respect, to p .
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Figure 5. The two-phase specific heat C /T of steam as a function
2 2

of Ap*. The slope of the tie lines equals d y*/dT* and
*5 O

the intercept equals d P*/dT* .
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Based on these arguments we choose as independent variables the

lattice-gas variables Ap and AT and as dependent variable for the

equation of state we take Ay* = y*(p*,T*) - y*(p *,T*). The Helmholtz

free energy density is written in the form

A* = A *(T*) + pV(p *,T*) + A*. (Ap*,AT*) (3.1)
o c sing

such that OA . /8Ap ) = Ay*. A (T*) is an analytic background term

depending on temperature, while A . is the singular part representing
sing

the anomalous thermodynamic behavior near the critical point. It is

assumed that A . is symmetric and Ay antisymmetric in Ap

(3.2)

Ay*(-Ap*, T*) = -Ay*(Ap*,AT*)

The range over which these symmetry relations hold depends on the nature

of the fluid and the precision* of the experimental data; that is, the

more precise the data, the sooner they will re.veal departures from sym-

metry. For many available equation of state data a rough guideline

for the range of symmetry is Ap* = ±0.25. The symmetry relations

'3.2) ignore the difference between the critical isochore and the

rectilinear diameter when applied below the critical temperature. The

coexistence dome of most fluids is so wide that a state with Ap =±0.25

is reached within |AT*| = 3 x 10 , in which range the departure from

the rectilinear diameter from p is very small. Modifications in the
c

choice of variables that may be needed to incorporate departures from

perfect symmetry around p will be discussed in Section 3.7.
c
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3.2 Homogeneity Postulate

It has been observed experimentally that the singular parts of vari-

ous thermodynamic properties follow a power law when the critical point

is approached along the critical isochore Ap =0, the critical isotherm

AT* = 0 and along the coexistence curve Ap*/|AT*| = ±B (Heller, 1967).

Hence, in analogy with (2.45) and (2.46), one is led to assume that

the singular parts of these thermodynamic functions are generalized homo-

geneous functions of Ap and AT . This homogeneity postulate was first

formulated by Widom [1965a] for the singular part of the chemical poten-

tial. Here we adopt the formulation of Griffiths [1967] assuming that

the singular part A . of the Helmholtz free energy density in the one-
sing

phase region is a generalized homogeneous function of its characteristic
•

variables Ap* and AT*

* (A PAp*,A TAT*) = AA* (Ap*,AT*) . (3.3)A ±

This hypothesis of homogeneity finds support in the known properties of

the lattice gas, confirmed by the renormalization group theory. How-

ever, since the lattice gas is a highly artificial model of a fluid,

the assumption of homogeneity and the choice of variables for real

fluids remain empirical postulates which may have to be modified.

The homogeneity property (3.3) for A . implies that the

chemical potential difference Ay*, the isothermal compressibility

y * = Oy /9p*) and the singular contribution to the entropy

S*. = -OA*. /9T*) and specific heat C* . /T* = -(82A*. /8T*2)sing sing p V,sing sing p

are also generalized homogeneous functions of Ap and AT . After
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differentiating (3.3) and redefining the parameter X appropriately

one obtains (Hankey and Stanley, 1972; Levelt Sengers, 1975)

= XAy*(Ap*,AT*), (3.4a)

(3.4b)

, AT*) , (3.40

C* C*V,sing ap/(i-2aT) * aT/(i-2aT) . _ V,sing
i p * I A K Ap , A AT ) -A ;pf

(3.4d)

Along the critical isochore Ap =0 and along the critical iso-

therm AT* = 0 these thermodynamic properties will vary according to

power laws analogous to (2.46). In particular

X*"1(0,AT*) = X*"
1(0,l)(AT*) * ̂ ^ (AT* ̂  0) ,

C* C* . U-2a J/a
* f l > (AT*) (AT* > 0) ,

(1-a )/a
Ay*(Ap*,0) = ±Ay*(l,0)|Ap*| p

For the two coexisting phases below the critical temperature Ay* = 0,

While Ap ^ 0. From the homogeneity assumption (3.4a) it followscue

that at coexistence Ay*(|AT*|~3p TAp*, -1) =0, so that

| AT* | -T Ap* = ±B .1 ' cxc
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where B is constant. The power law behavior of the compressibility and

the specific heat along the coexistence curve AP*/|AT*|^ = ±B fol-

lows from (3.4b) and (3.4d) in analogy with (2.45)

X*"1(Ap* ,AT*) = x*~1(B,-D |AT*|(:1

n* f* M -?a } /a
\7 ' V ' m'' IT
—'—z——(Ap* ,AT*) = —Sc——(B,-i) I AT* IT cxc T '

The specific heat anomaly in the two-phase region is obtained by observ-

ing that the singular part A * of the free energy inside the two-phase
s

region is independent of the density .and equal to its value at the phase

boundary: A*. T T=A*. (Ap* ,AT*)=A*. (B,-l)IAT*[1/aT. Differ-
sing,II sing rcxc sing ' '

entiation yields for the specific heat anomaly in the two-phase region

We thus have recovered the thermodynamic power laws introduced in

Table I with

(3.5)

Y = Y' = d-2ap)/aT, 6 = d-ap)/ap ,

so that

1 3 . 1 1
(3'6)

The thermodynamic critical exponents satisfy the relations (2.5) and all

power laws are determined by two independent exponents only.
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3.3 Thermodynamic Scaling Laws

The homogeneity postulate (3.3) implies in analogy with (2.44)

that the symmetric part of the Helmholtz free energy density satisfies

a scaling law of the form

A*. (Ap*,AT*)
Sing .^ -A*. (1,X) , (3.7)
|Ap*|6+1 Sing

where the scaling variable x is defined as

x = AT*/|Ap*|1/B . (3.8)

We find it convenient to write A . (l,x) = Da(x/x ), where D is the
sing o

amplitude of the power law Ay* = D{Ap*)|Ap*| for the critical iso-

therm and where x is related to the amplitude B of the power law
o

Q

Ap* =.±B|AT*| for the coexistence curve by
'cxc ' '

x = B~1/3 . (3.9)
o

Thus the Helmholtz free energy density (3.1) can be written in scaled

form as

A* = AQ*(T*) + p*y*(P *»T*) + |Ap*|
6+1Da(x/xo) . (3.10)

For the chemical potential difference Ay - OA . /8Ap ) we obtain the
S lily J.

scaling law

Ay* = Ap*|Ap*|(!;~1Dh(x/x ) , (3.11)
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v/here the functions a(x/x ) and h(x/x ) are related by the differ-
o o

-ential equation (Griffiths, 1967; Levelt Sengers et al., 1976)

6h(w) = -wa'(w) + B(6+l)a(w) , (3.12)

with a"(w) = da/dw. Curves of constant x in the Ap* - AT* plane

are schematically indicated in Fig. 6. The curve x = -x is the
o

coexistence curve, the curve x = 0 is the critical isotherm and the

curve x = °° is the critical isochore. The function h(x/x ) is normal-
o

ized such that at the critical isotherm h(0) = 1. From (3.10) and

(3.11) one can deduce scaled expressions for all thermodynamic proper-

ties in terms of a(x/x ) and h(x/x ); some of these expressions are
o o

given in Table VII.

When the experimental values of the ratios Ay*/(Ap*)|Ap |

are plotted as a function of the scaling variable x/x , then the scaling

law (3.11) predicts that different isotherms should all collapse onto

one single curve. An example of such a scaled plot is presented in

4
Fig. 7 for He as deduced from the data of Roach (1968) assuming

8 = 0.355 and y = 1.19 (Levelt Sengers et al., 1976).
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Figure 6. Curves of constant x in the Ap* - AT plane.
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Table VII

Scaled Expressions for Thermodynamic Functions

Chemical Potential

* * * * , * . <s— i
y = y (p ,T ) + Ap |A-p |°c

Compressibility

- -
0 PX0 X0

Helmholtz Free Energy

* * * * * -a. , * i (S-l-1 V

A = An (T ) + p y (p *:,T*) + |Ap |0 + -LDa(-X-)u c XQ

Pressure

* ** f * i *, <S-i v
P = -An (T ) + D Ap |Ap |° h(-X-)u I xn

xo o

Entropy

dA * (T* ) dy*(p *,T*) n-cn/B n
_S = —li + p* 2 + | A p * | U aJ/»JJa, ( _X j

dT* dT* X0 XQ

Heat Capacity

d 2 A Q * ( T * )
- 5 - + p

dT*

0 0
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Figure 7. Scaled chemical potential data for He as a function

of (x+x )/x . Reduction parameters are taken from Table X.
o o
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3.4 Scaled Equations of State

The scaling laws are a conjecture regarding the asymptotic

behavior of the thermodynamic properties in the vicinity of the critical

point. When the scaling laws are applied in a finite range of densities

and temperatures the results may be affected by the presence of less

singular correction terms not taken into account. As a consequence

the actual range of the validity of the scaling laws will depend on the

precision of the experimental data. The more precise the data, the

sooner deviations from asymptotic scaling behavior will be detected.

We shall first discuss a number of results deduced from an anal-

ysis of equation of state data in the range 5 x 10 <. |AT*|.£3 x 10

not significantly affected by gravity. In Section 3.6 we shall then

comment on some recent density gradient profile measurements obtained

at temperatures |AT*| < 10 and indicate how they affect our under-

standing of the thermodynamic behavior of real fluids near the critical

point.

In order to make a quantitative analysis of the experimental

thermodynamic data one needs an expression for the scaling functions

h(w) or a(w), where w = x/x . In the absence of an a priori, theore-

tical expression for fluids one has formulated approximate expressions

of an empirical nature. The choices for the function h(w) are re-

stricted by a number of conditions formulated by Griffiths [1967].

Some of these conditions arise from the requirements of thermodynamic

stability. Mechanical stability requires the compressibility to be

positive so that
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E£h(w) >. wh1 (w) . (3.13)

Thermal stability requires the specific heat to be positive so that

(Vicentini-Missoni, 1971)

a"(w) <. 0 . (3.14)

Additional conditions are imposed on h(w) by the assumption that y(p,T)

is an analytic function throughout the one-phase region with the

exception of the critical point and perhaps the phase boundary. Thus

h(w) should be analytic in the range -1 < w < <»; specifically for

small values of w,h(w) should have an expansion of the form

h(w) = 1 + I h w" . (3.15)
n=l n .

Analyticity of y at large w implies that h(w) can be expanded around

w = oo as

. , . r 3(<5+l-2n) ,, lr.h(w) = I n w . (3.16)
n=l n

It has not been possible to formulate a closed form for h(w) that

satisfies all these conditions. Vicentini-Missoni, Levelt Sengers and

Green [1969a,b] proposed an approximate expression to which we refer

as the MLSG equation (NBS equation in the original literature)

h(w) = (1+w)
f-1+E2 _,

(Y-D/2$

(3.17)

where E is an additional adjustable parameter. In this approximation

the equation of state (3.11) reads
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* 61 x r x 2B~i
i* = Ap*|Ap | E (1 + —) 1+E (1 + —)

o J- 0-1

Ay* = Ap*ApT Xd + f-) 1+E,(1 + ̂-) , (3.18)

with

The MLSG equation has been used to represent experimental

equation of state data for a variety of fluids (Vicentini et al.,

1969a,b; Wallace and Meyer, 1970; Levelt Sengers et al., 1976; Gulari

and Pings, 1973). As an example of the quality of the fit we show in

Fig. 8 a deviation plot when the chemical potential data deduced from

the P-V-T data of Rivkin et al. [1962, 1963, 1964, 1966] for steam are

fitted to the MLSG equation (Levelt Sengers et aZ., 1976).

The MLSG equation has the advantage that it expresses the equation

of state in terms of the primary variables Ap* and AT*. However, it has

two disadvantages. Firstly, while the equation does satisfy the analy-

ticity requirement for small values of w, it reproduces correctly only

the first two terms of the series expansion (3.16) for large values

of w. Secondly, the equation cannot be integrated analytically to yield

a closed form for the function a(w) (Schmidt, 1971; Lentini and Vicen-

tini-Missoni, 1973). Hence, the equation does not provide a satisfactory

basis for developing a fundamental equation and it can only be fitted to

experimental P-V-T data after they have been integrated numerically to

yield chemical potential data.

The two problems can be overcome by using parametric equations

introduced by Schofield [1969] and Josephson [1969]. This formulation
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Figure 8. Plot of normalized deviations {Au* - Ay* )/°A * as a function of (x+x )/x for H2O

(MLSG equation) . (T. * is the estimated experimental uncertainty; AJJ* is calculated
Ay calc

from the MLSG equation with parameters p = 322.2 kg/m , T = 647.05 K, B = 0.350,

= 4.5C, x = E = 1.215, E0 = 0.372 (Levelt Sengers et al . , 1976).



entails a transformation from the physical variables AT and Ap , into

two parametric variables, r and 0. The variable r is meant, in some

sense, to describe how closely the critical point is approached and the

variable 8 a "location on a contour of constant r." All anomalies are

then incorporated by the power laws in the r-dependence, while the 6-

dependence is kept analytic.

The manner in v/hich the thermodynamic variables are expressed in

terms of r and 9 is not unique (Fisher, 1971). The constraints that

the scaling laws are preserved are met by the following choice

AT* = rT(8)

Ap* = rSM(B) , (3.20)

Ay* = rB6H(8) .

On constructing the ratios Ay*/(Ap*)|Ap*| and x = AT*/|Ap*| one

sees immediately that both ratios depend on 6 alone, so that the scal-

ing law (3.11) is implied by the parametric representation (3.20).

The parameter 8 can be chosen to span the range -1 to +1, such that it

equals zero on the critical isochore and ±1 on the coexistence boundary,

as indicated schematically in Fig. 9. Choices compatible with the

assumed lowest order symmetry are those for which T(8) is a symmetric

function of 8 and M(0) and H(6) are antisymmetric functions of 8. The

two most popular choices compatible with these requirements are either

the; l^necOf model (Schofield, 1969) for which

T(0) = l-bL
202 ,

M(8) = k10 , (3.21)

H(8) = a18(l-8
2),
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Figure 9. The variable 6 in the parametric equations of state.
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or the cubic model (Ho and Litster, 1970) for which

T(6) = l-b2
262

M(0) = k26(l+c0) , (3.22)

H(6) = a26(l-9
z) ,

The linear model contains three constants k , a , b and the cubic

model four constants k , a , b , c which have to be determined.

Slightly more elaborate parametric equations have been considered by

Kierstead [1973] and Estler et al. [1975]. The relationships between

the constants of the scaled equations presented here and the ampli-

tudes of the thermodynamic power laws introduced in Table I are given

in Table VIII.

Both the linear model and the cubic model can be integrated

analytically to yield the Helmholtz free energy density and, hence,

the other thermodynamic functions (Hohenberg and Barmatz, 1972). The

parametric representations for various thermodynamic properties are

given in Table IX. For reasons to be discussed in the subsequent

section, one often uses restricted versions of these parametric equa-

tions in which the constant b of the linear model or the constants b_

and c of the cubic model are fixed by the conditions presented at the

bottom of Table IX.

Various authors have analyzed experimental data in terms of the

linear model (Anisimov et at., 1974; Ho and Litster, 1969; Hohenberg

and Barmatz, 1972; Huang and Ho, 1973; Levelt Sengers et al., 1974, 1976;

Murphy et al., 1973, 1975; Thoen and Garland, 1974; White and Maccabee,

1975). It turns out that the linear model, as well as the cubic model

(Huang and Ho, 1973; Murphy, 1975), yields a satisfactory representation
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Table VIII

Amplitudes of Power Laws

MLSG Equation

r - x Y/E E <Y-i)/2Br - X /EE

r- = 3xQ
Y/El

t
Parametric Equations

B = k(l+c)/(b2-l)e

D-a(b2-l)b3(6-1}AV+c)6

T = k/a

I" = (b2-l)Y~1[l-b2(l-26)-c{b2(3-2B)-3>]k/2c

A+ = -ak(2-a) (l-a)af0

(s0+S2+s»)-23(l+c) (s,+2su)
l-b2(l-23)-c{bz(3-23)-3}

ATT = -ak(2-a)(l-a)a(f +f_+f . + f , )
2 2 a

II 0 z 4 b

For definition of f.(i = 0,2,4,6) and s.(j = 0,2,4)

see Table IX.
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Table IX

PARAMETRIC REPRESENTATION OF THERMODYNAMIC FUNCTIONS

(Linear model: c = 0; cubic model: c ̂  0)

Variables AT* = r(l-b292)

Ap* = r&k9(l+c02)

Chemical
Potential

Compres- [3{
sibility 3j

Helmholtz
free energy

where

y* = y*(P*,c

3*1 ..* v-y k l-(b2-23b2

T*)

-3c)
l* XT a l-(b2-236b2+3)

T

A* = A*(T*) + p*y*(p*,
o c

T*)

+r
e6a9(l-02)

02 - (3-23)b2c9*
02 _ (236-3)b20"

+ r2~ttakf(0)

f(9) = f + f.e2 + ffl4 + f, e6
U z 4 b

_ 3(6-3)-b2ay c{b2(l+g) (3y+23)-6y}
0 2blf(2-a) (l-a)a 2b6 (2-a) (l-

= e(6-3)-b2a(l-2g) _ c{b2(l+a) (3y+2g)-6y>
2 2b2(l-a)a 2b't(l-a)a(l-Kx)

f = 1-2B c{b2(l+a)(3-2g)-3y>
4 ~ 2a 2b2a(l+a)

= (3-23)
6

Pressure P* = - A* (T*) + rB6a0(l-92)
o

r2 aak{62(l-62)(1+C02) - f(6)}

Entropy

where

s* = -
dA* (T*) dy*(p* ,T*)

P* +dT" dT'

s(0) =

= -(2-a)b2(i-23)f0-Tf2, s4 = -3yc/2b
2(l+a)
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Table IX (continued)

Pressure
Coefficient

... ,„ * fm*N
3P*^ **• (T
n* aks(6)

T

l-(b2-2Bb2-3c)02 - (3-23)b2c82 1 *

Heat CV o
Capacity T* *2 *2

-a) (l+3c92)s(e)-23(l+c02;
r"aak(

- (b -2Bb -3c) 0 - (3-2g)b c0

Conditions for ._
Restricted b = . R , c = 0
Linear Model: (6-1)(1-23)

Conditions for . _ oox, 2 3 -2po—
Restricted b = _ „ , c = ^-28
Cubic Model:
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of the experimental equation of state data of a quality comparable to

that obtained with the MLSG equation (Levelt Sengers et al,, 1976).

As an example we show in Fig. 10 a deviation plot when the chemical

potential data for steam are fitted to the linear model; the corre-

sponding deviation plot v/hen fitted to the MLSG equation was given

in Fig. 8. Unlike the MLSG equation, it is also possible to fit the

linear model and the cubic model directly to the original pressure

data (Murphy et al., 1973, 1975).

A stringent test on the validity of any equation of state is the

extent to which it is consistent with experimental specific heat data

as well. However, efforts to describe experimental P-V-T data and

C data simultaneously in terms of one scaled equation of state like

the linear model, cubic model, or the MLSG equation have had only

limited success (Lentini and Vicentini-Missoni, 1973; Huang and Ho,

1973; Barmatz et at., 1975, White and Maccabee, 1975).

78



Q.
X

-2

-4

T 647.30 K > 654.14 K

H20 Linear Model ' 647 57 K « 656'13 K

A 648.10 K < 658.10 K
v 648.16 K * 660.18 K

~ 9 H 649.12 K + 663.13 K
_ v . 0 650.12 K o 668.12 K

• * A v + 9 f * 651.17 K x 673.15 K
— • ^ * *> 652.18 K A 683.11 K

j \ A < (£ * 653 13 K ° 693 11 K

f ViO ̂ 4-A x ^x
? ^ x x x

7—7^ °+<^- x ^°-AX -H^ < + * A °

? / H ^ * * T ^ %%>A>9 ^ <>

- -\ %^ V*<+A

" V ^^

Jv
4! I

" ^ o 3 4 *
1 10 10^ 10^ 10* 10D K

X+X0

Xo

)6 1C

0 r1
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exp calc Ay o o ^
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3.5 Universality of Critical Behavior

The theoretical studies of various model systems have led to the

formulation of the hypothesis of universality. According to this hypo-

thesis systems having the same basic symmetries are expected to have

identical critical exponents and scaling functions, and are said to

belong to the same universality class (Jasnow and Wortis, 1968; Watson,

1969, Griffiths, 1970; Kadanoff, 1971,1976; Betts et al., 1971;

Milosevic and Stanley, 1972; Aharony, 1976). As discussed in Section

2.7 the hypothesis is supported by the renormalization group theory

of critical phenomena.

Specifically, the universality hypothesis implies that systems

belonging to the same universality class should asymptotically obey
•

the same scaled equation of state apart from only two adjustable con-

stants. That is, the critical exponents and the function h(x/x ) in
o

(3.11) should be the same for all these systems leaving only two

substance dependent parameters, namely D and x . Hence, the hypothesis
o

predicts that scaling plots of Ay /(Ap*)|Ap*| versus x/x for dif-

4
ferent fluids, such as the one shown in Fig. 7 for He, can be made

to coincide with proper choice of the adjustable scale factors D and

x . In Fig. 11 we show that the scaling plots of five different
o

3 4
gases, namely He, He, Xe, CO„ and HO, can indeed be brought into

one single universal curve, thus supporting the hypothesis of univer-

sality for these five gases (Levelt Sengers, 1974).
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In order to make a quantitative study of the validity of this

hypothesis , it is necessary to use an explicit expression for the scaled

equation of state. Using least-squares techniques, a goodness-of-fit

criterion is then readily established in the form of the standard devia-

tion; varying precision is taken care of by weighting, the deviations

of the individual points are compared with their estimated standard

error to check whether systematic errors are present and a number of

parameters such as T , p , the critical exponents and the adjustable
c c

constants D and x are varied to optimize the fit (Levelt Sengers et aZ.,
o

1976) .

The specific scaled equations of state described in the preceding

section are only suitable candidates for a universal equation of state,

if the number of adjustable parameters is restricted to two. Thus when

in the MLSG (3.18) E, and x are treated as adjustable parameters, not
1 o

only the critical exponents but also the constant E_ must be indepen-

dent of the fluid under consideration. In practice, E turns out to

be small and indeed roughly the same for a number of fluids.

Likewise, the principle of universality allows us to treat k

and a in the linear model (3.21) as adjustable parameters, but the

parameters b must be kept at a fixed value. A popular choice for

the parameter b in the linear model is that recommended by Scho field,

Litster and Ho [1969]

2 6-3 ...
bl ~ (6-l)( ' (3> }
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E "1
E2

b (6-3)/(y-D

L •*-' J

26

-1 ,

2
With this choice for b the representation of the singular part of the

specific heat in terms of the linear model parameters reduces to

Cv ,sing _ A+ -a (i-2B)Y(y-i)(6-i) -a
T* ~ ar ~ alkl 2a(6-3) (3- '

so that a contour of constant r may be interpreted as a contour of con-

stant anomalous specific heat. We refer to the linear model with the

2
special choice (3.23) for b as the restricted linear model. If this

special choice for b is substituted in

(3.25)

one obtains a corresponding restricted version of the MLSG equation

(Levelt sengers et al., 1976).

With the cubic model the compressibility Y can be made indepen

dent of 6 by the choice (Ho and Litster, 1970)

, 2 3 2g6-3 ,,
b2 = 3̂ B' ° =132B~ ' (3'

For this restricted cubic model

k
Ŷ * = ~̂ , (3.27)

and contours of constant r correspond to contours of constant compressi-

bility Ŷ *.

It has been found that the cubic model does yield a satisfactory

representation of the equation of state data for the 3-dimensional
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ising model though with values of b_ and c that differ from the

choice (3.26) (Wallace and zia, 1974; Tarko and Fisher, 1975; Wallace,

1976).

To investigate the hypothesis of universality for fluids we made

a statistical analysis of the equation of state data for He (Wallace

and Meyer, 1970), 4He (Roach, 1968), Xe (Habgood and Schneider, 1954),

C02 (Michels et al., 1937), H2O (Rivkin et at., 1962, 1963, 1964, 1966)

and density profile data for O2 (Weber, 1970). It was found that the

experimental data of all these fluids could be fitted to the same scaled

equation of state for which we chose the restricted linear model. With

the exception of O_ the range of the fits corresponded approximately to

5 x 10~4 <. |AT*| <. 3 x 10~2 , |Ap*| <. 0.25 . (3.28)

In this range the critical exponents of those fluids were compatible

with the "universal" values (Levelt Sengers and Sengers, 1975)

a = 0.10 ± 0.04 8 = 0.355 ± 0.007 ,

(3.29)

Y = 1.19 ± 0.03 6 = 4.35 ± 0.10

These exponent values are similar to the values found by other authors

3 4
for He (Wallace and Meyer, 1970); Chase and Zimmerman, 1973), He

(Roach, 1968; Moldover, 1969; Brown and Meyer, 1972; Kierstead, 1973;

Tominaga, 1974), Ar (Lin and Schmidt, 1974a; Wu and Pings, 1976), Kr

(Gulari and Pings, 1973), Xe (Edwards et al., 1968; Smith et al., 1971;

Cornfeld and Carr, 1972; Thoen and Garland, 1974), CO_ (Lipa et at.,

1970; Levelt Sengers et al., 1971; Murphy et al., 1973; White and
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Maccabee, 1975), N2O and CC1F (Levelt Sengers et al., 1971) and

reviewed elsewhere (Levelt Sengers, 1974).

If we represent the equation of state data in the range (3.28)

by a scaled equation of state with the exponent values (3.29) and

assume universality between fluids, we may then try to impose the

same equation of state with the same exponents upon the data for

other fluids and determine the resulting values for the two remaining

adjustable parameters. Equation of state parameters thus obtained

for a variety of fluids in terms of a universal equation of state

(restricted MLSG equation, restricted linear model and restricted

cubic model) are presented in Table X. The parameters should be

treated as informed estimates corresponding to the range (3.28). For

accurate calculations one should return to the parameter values ob-

tained in the original statistical fits to the data of the individual

fluids (Levelt Sengers et al., 1976). The last column of Table X

contains correlation length parameters to be discussed in Section 5.7.

The hypothesis of universality implies also universality for

the amplitude ratios T/T\TDB ~1 and A+/A~ (cf. Table VIII). The

parameter values given in Table X yield r/T'-= 4.0, FDB = 1.5 and

f̂ /̂ j. = 0.47 to be compared with the values T/T' = 5.07, FDB ~1 = 1.7

and A /A = 0.51 for the 3-dimensional Ising model (Aharony and

Hohenberg, 1976).

85



Table X

Critical Region Parameters for a Number of Fluids Assuming Effective Universal Exponents

oo
cr>

3He
4
He

Ar

Kr

Xe

P-H2

N2

°2
H2°
D2°
co2
NH3
SF6
CH4

C2H4
C2H6
C3H8

Notes :

Critical

P
c

MPa

0.11678

0.22742

4.865

5.4931

5.8400

1.285

3.398

5.043

22.06

21.66

7.3753

11.303

3.7605

4.595

5.0390

4.8718

4.247

a = O.ioo

Y = 1.190
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3.6 Questions Raised by Experiments

According to the hypothesis of universality fluids are expected

to belong to the same universality class as the Ising model and the

Landau-Ginsburg-Wilson model. In the previous section we arrived at

the conclusion that the experimental PVT data of six fluids could be

represented in the temperature range 5 x 10 <. |AT*| <. 3 x 10 by a

universal scaled equation of state with exponent values 3 = 0.355 ± 0.007

and y = 1.19 ± 0.03. However, these exponent values exclude the values

quoted in (2.64) and (2.78) for this universality class.

The picture of universality of fluid critical behavior with the

exponent values found in (3.29) has to be challenged as soon as, for

at least one fluid, a different critical exponent value is found.

Such experimental challenges do exist. One example is the exponent

for the coexistence curve of SF which has been measured in three
6

independent experiments (Balzarini and Ohrn, 1972; Rathjen and Straub, .

1973; Weiner et at., 1974). In each case, a value of 3 near 0.34 was

found; in the last case, the value of 3 was 0.340 ± 0.001 in the range

— ̂  «— o
2 x 10 < |AT*| < 5 x 10~ . In binary liquids, to be discussed in

Section 4.5, a value of 3 near 0.34 is the rule rather than the excep-

tion (Stein and Allen, 1974).
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With respect to the exponent y, the value Y = 1.19 ± 0.03 in

(3.28).is to be compared with a value y = 1.14 recently deduced for

He by Behringer, Dorion and Meyer [1976] from highly accurate PVT

data, with a value y = 1.19 ± 0.01 determined for C H by Hastings and

Levelt Sengers [1976] from precise PVT data, and with y values of about

Y = 1.22 from light scattering data that are usually obtained at temp-

eratures closer to T (Puglielli and Ford, 1970; Lunacek and Cannell,
c

1971; Cannell, 1975) .

The most serious challenge, however, has come from the study of

gravity-induced density gradients .by optical techniques developed by

Wilcox and coworkers and discussed in Section 2.7. From an optical

study of the coexistence curve of SF Balzarini and Ohrn [1972] noted
6

that the exponent 8 decreases when the temperature range is reduced.

Very recently, Hocken and Moldover [1976] measured density gradient

profiles in Xe, CO and SF in the range -1.5 x 10 < [AT | < 5 x 10

Analyzing the data in terms of a scaled equation of state, they ob-

tained 3 values around 0.324 and y values around 1.25, indicating

that the critical exponents of fluids do approach Ising-like values

sufficiently close to the critical point. Since these exponent values

are only attained for |AT*| < 10 , it must be concluded that correc-

tions to asymptotic scaling must be present in the entire range where

conventional PVT experiments are accurate. Since these correction

terms may vary from fluid to fluid, they may cause the deviations

from universality of the apparent critical exponents determined in

the conventional ranges.
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3.7 Scaling Fields and Corrections to Scaling

The treatment of the thermodynamic behavior of fluids in the

critical region outlined in the preceding sections has been challenged

by theory in two respects. The first challenge pertains to the choice

of scaling variables and the second one regards the corrections to be

applied when the range of the asymptotic validity of the scaling laws

is exceeded.

The choice of variables is best discussed in terms of intensive

or "field" variables, P, y and T. It can be readily verified that the

thermodynamic scaling laws formulated in Section 3.3 are equivalent

to the statement in terms of field variables that the pressure has the

form

p* = P*. (Ay*,AT*) + Ay* - A*(T*) , (3.30)
sing o

with

P*ing(Ay*,AT*) = |AT*|
2~af(Ay*/|AT*|3<S) . (3.31)

In the plane of the independent field variables y* and T one direction

is singled out as special, namely the slope c, = dy /dT of the
1 cxc

coexistence curve at the critical point. To linear order in AT* our

first scaling field Ay* has the form Ay* = y* - y * - c AT*, where

y * = y*(p ,T ). As the second scaling field in (3.31) we simply
C C C

chose the temperature difference AT*. There is, however, no physical

reason why this second scaling field could also not be a function of

y*-y * and AT*. In fact, the renormalization group theory of critical

phenomena indicates that the singular part of the pressure, which is
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analogous to the free energy of a spin system discussed in Section 2.7,

will in general have the form (Wegner, 1972; Rehr and Mermin, 1973) ;

where the scaling fields ir and u are analytic functions of y and T

^ = (y*-yc*) - ĉ T* + . . . ,

(3.33)

ufc = AT* - c2(y*-yc*) + . . . .

The term Ay* - A*(T*) in (3.30) represents an analytic background term

in terms of the field variables AT* and Ay*. Allowing for a more

general analytic background one obtains a revised scaled equation of

the form

±j ID c

With P00 = V = 1 «* P01 " PC* * X-

This equation reduces asymptotically to (3.30). However, the

revised equation (3.34) with the scaling fields (3.33) leads to some

additional features not contained in (3.30). In particular, the

expression for the coexistence densities implied by (3.34) has, in
a

addition to the leading term of the form |AT*| , a correction term with

the entropy-like structure |AT*| (Widom and Rowlinson, 1970; Rehr

and Mermin, 1973). This term drops out when the difference p* - P*
liq vap

is formed, but it persists in the sum p,. + p . Hence, it is
liq vap
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predicted that the coexistence curve diameter is not straight, but that

it has a small "hook" at the critical point. Thus far this hook has

been observed in one experiment only (Weiner et al., 1974), but the

theoretical arguments in favor of its existence in all fluids are

rather strong. The reason that it has almost always escaped experimental

detection is probably due to the fact that the |AT*| term is followed

by a (AT*) term, so that the effect of the former is only visible ex-

tremely close to the critical point (Zollweg and Mulholland, 1972).

The hook on the diameter implies that critical densities estimated by

extrapolating the rectilinear diameter are overestimated, but the error

is generally less than 0.5%. The effects of the different choices of

scaling fields in the behavior of fluids in the one-phase region have

not yet been studied in any detail.

We now turn to the so-called corrections to scaling. Suppose

that the scaling fields u, and u have been defined properly and that

the scaling hypothesis (3.32) .is made. Then one can expect this hypo-

thesis to be valid only in a limited range around the critical point.

The renormalization group approach to the theory of critical phenomena

also provides estimates of the form and the size of the correction

terms beyond the asymptotic range, as pointed out by Wegner [1972].

They are obtained by retaining in (2.75) not only the relevant scaling

fields u, = u, and u_ = u / but also irrelevant scaling fields u ,
1 h 2 t 3

u . . . . In analogy to the free energy of a spin system the singu-

lar part of the pressure then assumes the form (Wegner, 1972; Ley-Koo

and Green, 1976)
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Psing(VVW —} =

(3.35)

Unlike the relevant scaling field u, and u , the irrelevant scaling

fields do not approach zero at the critical point. They scale with

different powers of u , indicated by the so-called gap exponents Aj,

A2, . . . . These gap exponents are again expected to be universal.

Current estimates of the first two gap exponents for Ising-like systems

in three dimensions are AI = 0.50 and A2 = 1.5 (Golner and Riedel, 1975,

Saul et at., 1975, Baker et al., 1976, Camp et al.r 1976).

The irrelevant scaling fields do not contribute to the leading

anomalies at the critical point, but they do lead to corrections to

the asymptotic scaling laws. For instance, the expansions for the

coexisting densities obtain the form (Ley-Koo and Green, 1976):

AP*. +AP*
liq vap _ ,. *. J--« . p AT* + B

2 - VAT I + P11AT + BC3'

B
x*> -L

(3.37)

where the coefficients with subscript M refer to terms originating

from "mixing" the y and T variables in forming the scaling fields and

those with subscript C to corrections to scaling.
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3.8 Assessment of Status of Fluid Critical Behavior

As discussed in Sections 3.4 and 3.5, when equation of state

data of fluids are considered in a range of ±0.25 in Ap and ±0.03 in

AT*, the data can usually be represented in terms of a simple scaled

equation of state with critical exponents that vary only slightly from

fluid to fluid, but that are distinctly different from those of the

Ising model. However, recent optical experiments at |AT*| < 5 x 10

have shown that in that range the fluid critical exponents are approach-

ing those for the Ising model (Hocken and Holdover, 1976).

The optical data can be reconciled with the data obtained in more

conventional ranges if a Wegner expansion (3.35) with a sufficient

number of terms is used. Since the gap exponent in this expansion is

small and the coefficients are expected to be of order unity, the

Wegner expansion will converge only slowly and a large number of terms

will contribute in the range 10 < |AT*| < 10 . Ley-Koo and Green

(1976) recently fitted the difference of coexisting densities of SF .
6

They found that a simple power law B|AT | with 3 = 0.327 ± 0.003

i * i *™4
was restricted to a range |AT | < 7 x 10 . A temperature range

(AT*| < 2 x 10 already required three terms in the expansions (3.36)

and (3.37). Had they imposed the value $ = 0.312 suggested from

series expansions for Ising-like systems, the asymptotic range would

have been even smaller and more correction terms would have been

required. A value for 8 slightly larger than 0.312 is thus supported

by the optical experiments of Hocken and Moldover [1976], by an
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analysis of the coexistence curve data for SF (Ley-Koo and Green,
b

1976) and, as we shall see in Section 4.5, by data on coexisting

phases in partially miscible binaries.

A value of 0 slightly larger than 0.312 is also supported by

calculations on the basis of the renormalization group theory. As

quoted in (2.78) the calculations of Baker et al. (1976) yield

$ = 0.320 ± 0.015. Exponent values recently calculated by Golner

and Riedel imply 3 = 0.322 with undetermined error. It is as yet not

clear how the small discrepancy with the series expansion estimate

for the exponent 6 will be resolved.

From a practical point of view, the representation of the thermo-

dynamic data of fluids by a Wegner expansion in extended ranges around

the critical point will be quite involved and unappealing. Hence, it

is expected that the phenomenological expressions with effective

exponents present in Section 3.5 will remain useful for many practical

purposes.
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IV. Critical Phenomena in Fluid Mixtures

4.1 Phase Transitions in Fluid Mixtures

In the one-phase region, a fluid mixture of n components possesses

n+1 thermodynamic degrees of freedom. For two phases to coexist, the

number of degrees of freedom is reduced by one. The intensive or field

variables are the same in the two coexisting phases. The thermodynamic

states with two coexisting phases correspond to a n-dimensional surface

in the (n+1)-dimensional space of independent field variables. The

condition of criticality is that the two coexisting phases become

identical; this condition reduces again the number of available degrees

of freedom by one. Thus the n-dimensional coexistence surface may termi-

nate in a (n-1)-dimensional critical surface.

As an example we show schematically in Fig. 12 the geometry of the

gas-liquid transition in a binary fluid in the 3-dimensional space of

independent field variables. Since the chemical potentials y and ]i^ of

the two components diverge to -°° at infinite dilution, it is often conveni-

ent to use instead the fugacities f = exp(y /k T) and f = exp(y /k T).
1 IB Z 2. B

As the three independent field variables we choose P, T and f . The

coexistence surface is a 2-dimensional surface that terminates in a

1-dimensional critical line. The vapor-liquid critical points located

on the critical line are called "plait points"/ a term dating back to

Van der Waals. In this particularly simple example the critical line

connects the critical points of the two pure fluids. In many cases, the

critical line is interrupted and more complicated phase behavior re-

sults. The interested reader is referred to some excellent reviews on

this subject (Kay, 1968; Rowlinson, 1969; Schneider, 1970,1972; Scott,

1972; Streett, 1974; Hicks and Young, 1975).

95



PURE
COMPONENT I

CRITICAL LINE
CRIT. PI 2

CRIT PT

PURE
COMPONENT 2

Figure 12. The gas-liquid coexistence surface and critical line of a binary fluid in the

space of independent field variables pressure P, temperature T and fugacity f



In addition to the coexistence of a vapor and a liquid in a

binary fluid, there exists also the possibility that two liquid phases

of different composition coexist. This gives rise to another coexis-

tence surface in the space of independent field variables. Such binary

liquids are usually studied in the presence of a vapor phase; the

resulting system has one degree of freedom and traces a curve on the

coexistence surface. The possibility exists for the two liquid phases

to become identical; such a critical point is called a consolute point.

This point is part of a line of consolute points terminating the co-

existence surface. In P-T space, the line of consolute points is

usually very steep, since the pressure has only a small effect on the

critical solution temperature. In general, the plait point critical

curve and the consolute critical curve are separated, but examples exist

where one curve goes continuously over into the other. In some cases

where the critical points of the two pure components are not connected,

the critical line, starting from the critical point of the least volatile

component (i.e. the one with the higher f and P ) moves up to higher
c c

temperatures and pressures. Since a phase separation now occurs at

temperatures and pressures above the critical ones of both components,

one speaks about gas-gas equilibria. The simplest systems in which gas-

gas separation occurs ere mixtures of light and heavy noble gases.

They have been the subject of several recent studies (De Swaan Arons

and Diepen, 1966; Streett, 1965, 1967; Trappeniers and Schouten, 1974).

Although the variety of phase behavior, even for systems of two

components, may seem somewhat bewildering, the description of critical-

region phase behavior in multicomponent fluids is basically simple.
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Particular insight is provided by the theory of Griffiths and Wheeler

[1970] who developed the geometry of the critical region in the space of

field variables. If we exclude a special direction of any coordinate

axis, the critical behavior of a binary fluid at any type of critical

point is a straightforward generalization of that in a one-component

fluid, while no new features are introduced when three- or more-component

fluids are considered.

Special orientations occur when critical lines pass through

maxima or minima in temperature or pressure, or when critical azeotropy

is encountered. Azeotropy occurs in binary fluids when two coexisting

phases, which in general have different values of all extensive vari-

ables or densities, happen to have the same concentration. An azeotrope •

may trace out a curve on the coexistence surface; if it reaches the

critical line one speaks of critical azeotropy. All these cases are

considered separately in the theory of Griffiths and Wheeler. A brief

account of this theory is given in the subsequent sections.

4.2 Introduction to Theory of Griffiths and Wheeler

Griffiths and Wheeler [1970] developed a description of thermo-

dynamic behavior in the vicinity of critical surfaces in multicomponent

systems that leads to a classification of the types of divergences to

be expected in certain thermodynamic derivatives. The theory is most

easily introduced by first reconsidering the description of the thermo-

dynamic behavior near the critical point of a one-component fluid in

terms of field variables. As the independent field variables we take
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temperature and pressure and as dependent field variable the chemical

potential. We have seen that the slope of the vapor pressure curve

(coexistence curve in the P-T plane) has a finite limiting value at

the critical point and the P- and T-axis do not have a special direc-

tion parallel to this coexistence curve. In addition we note that the

second derivatives -(3 y/3T ) = C /T and -(32y/3P2)T = VI^ diverge

strongly at the critical point as discussed in Section I. It is

concluded that second derivatives of the dependent field variable

with respect to directions that are oblique to the coexistence surface

are strongly divergent.

Next we consider a second derivative of y taken along the coexis-

tence surface, i.e. coexistence curve for a one-component fluid. For

this purpose Griffiths and Wheeler introduce the thermodynamic identity

Y Y V

2 2
where Y is any direction in the P-T plane. It is seen that 9 y/9T

will diverge strongly, as K , for any direction Y that does not coincide

with the direction of the critical isochore V = V . However, if the
c

direction Y does coincide with that of the critical isochore at the

2 2
critical point, then the term in brackets vanishes and 3 y/3T will

In Sections II, III and V the chemical potential is taken

per particle. In this section we find it more convenient to take the

chemical potential per mole. Molar values of extensive thermodynamic

quantities are indicated by a tilde.
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diverge only weakly, as C . Thus, a second derivative taken in this

special direction is a derivative in which an extensive variable or

"density" (V) rather than a field (P) is kept constant.

It remains to be shown that the direction V = V is asymptotically
c

the same as that of the coexistence curve. We have seen that this is

indeed the case for the classical equations and the lattice gas. In

general, one makes use of the thermodynamic identity

oxc

which relates the slope dV/dT and the compressibility (9V/3P) on either

side of the phase boundary. The slope dV/dT has a different sign on

the two sides of the phase boundary, but the compressibility has the

same sign. Thus the term in square brackets must vanish at the critical

point and, in fact, it must go to zero as |AT*| . Thus the conti-

nuity of the slope of the vapor pressure curve and the critical isochore

at the critical point holds for real fluids as well. It is concluded

that second derivatives of the dependent field variable with respect

to the independent ones, but taken along the coexistence surface, are

in fact derivatives in which a density is held constant and. that these

derivatives diverge weakly.

Finally in multicomponent fluids a third direction exists, namely

the one along the critical surface. One-component fluids do not provide

us with any clues for the behavior of derivatives along this additional

direction. However, we have seen that in binary fluids critical lines
"•*-!-*

are smooth curves in field space. We thus expect second derivatives
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taken in this direction to be nondivergent; as we shall see, they

correspond to derivatives in which not one but two densities are held

constant.

4.3 Classification of Thermodynamic Anomalies

in Fluid Mixtures

In order to make the ideas about the geometry of critical-point

phase transitions in mixtures more precise, Griffiths and Wheeler con-

sidered the properties of the compliance matrix introduced in Section

I. We have seen that second derivatives with respect to the field

variables,

D(P) = -O2p/9P2) , D(T) = -O2U/9T2) , (4.3)

are strongly divergent if no special geometric relation exists between

the field variables and the coexistence surface or the critical surface.

Although each element of the compliance matrix diverges strongly, its

determinant D(T,P) = VK C /T is seen to diverge only as the product of

a strongly (K ) and a weakly (C ) diverging quantity. The factor K

corresponds to a second derivative taken at an angle with the coexis-

tence curve. For an n-component mixture, the determinant of the full

(n+1) by Cn+1) compliance matrix is still no more divergent than

strongly times weakly because, in the space of independent field vari-

ables, a base can be chosen with only one vector at an angle to the

coexistence surface ("strong" direction) and only one vector in the co-

existence surface, but not in the critical surface ("weak" direction).

Thus the behavior near a critical point in a multicomponent mixture

is no more complicated than critical behavior in a binary mixture.

101



Similar considerations can be applied to any subset A of m inde-

pendent field variables with m <_ n+1. If in this subset a base can be

chosen such that one vector is oblique to the coexistence surface and

one lies in the critical surface, then the determinant D(A) of the

matrix of corresponding second derivatives will be strongly times weakly

divergent. If the base lacks a vector oblique to the coexistence sur-

face, D(A) is weakly divergent. If it contains a vector oblique to the

coexistence surface but lacks one in the critical surface, then D(A)

is strongly divergent. If the base has no vectors other than in the

critical surface, D(A) is nondivergent.

As an example, let us consider a binary mixture with field

variables T, P, y , y . As the dependent variable we consider

-y (T,-P,A) as a function of T, -P and A = y -y . In terms of these

variables the Gibbs-Duhem equation assumes the form

d(-y2) = SdT + Vd(-P) +XdA , (4.4)

where X is the mole fraction of component 1. The second derivatives

flfuz
CPA/T = - PA 3P- TA

Xrpp (4.5)
TP

are expected to diverge strongly, since the derivatives are taken in

directions that are oblique to the coexistence surface. In the termi-

nology developed above, these quantities are of the form D(A) where A is

a single vector not parallel to the coexistence surface.

However, with the exception of Y p which can be studied by light

scattering, derivatives with two fields constant are usually not very

accessible to the experimenter who tends to conduct measurements at
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constant concentration rather than at constant A. Hence, one is

more interested in the behavior of derivatives like K , K , C , and
TX SX PX

C , i.e. derivatives in which one or more densities are held constant.

Using Jacobians such derivatives can be expressed in terms of ratios of

determinants of matrices of second derivatives, as pointed out by Grif-

fiths and Wheeler [1970] . A few examples will suffice to give the

general idea:

D(PA)
~ ~ 3(PA) 3(PX) ~ " 3 (PA) ' 3A ~ D(A)

TX

and, likewise,

CPX _ D(TA)
(4.6b)

A second derivative with one density constant, such as K or C r, canTX PX

be written as the quotient of a determinant, such as D(PA) or D(TA)

which diverges strongly times weakly, and a determinant, such as D(A)

which is strongly divergent. Hence we expect derivatives with one

density held constant to be weakly divergent. A derivative at constant

density is taken along a path asymptotically parallel to the coexis-

tence surface.

Derivatives in which two densities are held constant can be

handled in a similar manner. For example

(3v| _ 3(vsx) 3(TA) _ D(TPA) /, ., ,_ - ,:=— I - - -, — « - - . , C4.7a)
3(sx) ua;
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and, likewise,

CVX D(TPA)
' (4-7b)

Since both determinants diverge strongly times weakly, we expect the

derivatives with two densities held constant to be nondivergent. These

derivatives are taken along a path that lies asymptotically in the

critical surface.

We should expect exceptions to these rules when the critical sur-

face or the coexistence surface bears a special relation to any of the

coordinate axes. For instance, critical lines often pass through pres-

sure extrema as a function of A. At such an extremum the critical curve

is parallel to the T-A plane. In this plane we can choose a base with

one vector parallel to the critical line and one vector at an angle to

the coexistence surface. As a consequence D(TA) no longer diverges

strongly times weakly, but is only strongly divergent. Thus we conclude

from (4.6b) and (4.7a) that C is nondivergent and VK weakly
PX oX

divergent, just the opposite of the general case. Similarly if a

critical line goes through an extremum in temperature, D(PA) is strongly

divergent and we conclude that VK is nondivergent, while C is
TX VX

weakly divergent, again the reverse of the general case.

Along an azeotrope the volumes of the two coexisting phases,

V = (9y /8P) ., and the entropies, S = -Oy /9T) . are unequal, while

the concentrations X = -(3y /3A) are the same. By applying C4.4)

to the two coexisting phases it can be readily shown that under these

conditions
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.*), - -0•
Thus the coexistence surface is parallel to the A-axis and D(A) is

weakly divergent in the case of critical azeotropy. From (4.6) we

conclude that K and C are strongly divergent as in a one-component
TX lr X

fluid, while C. remains finite. Other cases of exceptional orienta-

tion of a coordinate axis with respect to the coexistence surface can

be treated in a similar manner.

The thermodynamics of binary mixtures near the gas-liquid critical

line was also considered by Saam [1970].

4.4 Thermodynamic Behavior Near a Critical Line

i.n Binary Fluids in Terms of Scaling Laws

A procedure for describing the critical behavior of binary fluids

using scaling laws was recently developed by Leung and Griffiths [1973].

They consider the case where the critical line connects the critical

points of the two pure fluids as indicated in Fig. 12 and Fig. 13. As

the dependent field variable they take the pressure P; as the indepen-

dent field variables they take the temperature T and two variables 0

and £ which are related to the fugacities f and f by

0 = Clfl + C2f2 ' ? = C2f2/G ' (4'9)

where c and c are positive constants. The value £ = 0 corresponds

to the pure fluid 1 and the value £ = 1 corresponds to the pure

fluid 2. The critical line may be characterized by T (£). We now

consider the behavior of the mixture as a function of T and 0 for a

given value of £ (see Fig. 13). The intersection of the coexistence

surface with a plane £ = constant defines a coexistence curve that
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Figure 13. Independent field variables used in the Leung-Griffiths equation of state near the

critical line of a binary gas-liquid system.



terminates in a point on the critical line but that can conceptually be

extended into the one-phase region. For £ = 0 and t, = 1 this intersec-

tion reproduces the coexistence curves of the pure fluids 1 and 2,

respectively. Leung and Griffiths now observe that the behavior of the

mixture in the plane £ = constant is completely analogous to the behav-

iour of a one-component fluid. In this plane a coordinate system can

be chosen with coordinates T = T - T (£) and h = In(0/0 ), where

Q (C,T) is the value of 0 on the coexistence surface for the given

values of £ and T. The variables T and h are closely related to the

variables AT* and Ay* in the scaling laws for one-component fluids.

In the formulation of Leung and Griffiths it is assumed that the pres-

sure in the plane ? = constant can be written as the sum of a regular

background term P (£,T,h) which is an analytic function of its vari-

ables and a singular term P . (£,T,h) which satisfies the same
sing

scaling law in terms of T and h as the singular part of the pressure

of one-component fluids does in terms of AT* and Ay* (cf. (3.31)).

In addition P . contains a factor which is a smooth function of C
sing

so that one can interpolate between the scaled equations of state

of two pure components.

The approach of Leung and Griffiths is an application of the

geometric considerations outlined in the previous section. They

applied it with success to describe the experimental equation of state

data obtained by Wallace and Meyer [1972] near the critical line of

mixtures of He and He. Doiron et al. [1976] showed that the same

equation also is in good agreement with the experimental data of the

pressure coefficient (3P/3T) for these mixtures. However, the cusp
VX
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like behavior of C and (3P/8T) , and the weak divergence of K ,
VX * VX TX

predicted by the theory and incorporated in the equation of Leung and

Griffiths, were not observed experimentally. Leung and Griffiths
t

[1973] estimated that the cusp like behavior of C and the divergence

of K would not be visible unless the critical line is approached to
TX

within 10 K. Outside this region, C seems to diverge just as in
«

pure fluids (Brown and Meyer, 1972) and K appears to rise to a finite

maximum (Wallace and Meyer, 1972).

3 4
The He- He system has the simple feature that the critical line

is a straight line connecting the critical points of the two pure com-

ponents. Approximating the critical line by a quadratic curve D'Arrigo

et al. (1975) applied the method of Leung and Griffiths to a mixture

of CO,, and C H which exhibits critical azeotrppy. They were able to
£• £ 44

describe the experimental dew and bubble curves satisfactorily. As

discussed in Section 4.3, the theory of Griffiths and Wheeler predicts

that K will diverge weakly away from the critical azeotrope and
TX

3 4
strongly at the critical azeotrope. As in the case of the He- He

mixture it was found that these predicted anomalies in practice elude

experimental observation, and it may be difficult to find systems in

which they can be tested experimentally.

Moldover further generalized the method of Leung and Griffiths

to systems in which the critical line is an arbitrary smooth curve

connecting the critical points of the two pure components. He applied

the method to the systems CO_-C_H^, SF -C,H0 and C,H -C H,0 with satis-2 2 6 6 3 8 3 8 8 1 8

factory results (Moldover and Gallagher, 1976).
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4.5 Critical Behavior Near the Consolute Point

of Binary Liquids

The approach of Leung and Griffiths towards describing experimental

data near a plait point is based on the continuity of critical phenomena

in one- and two-component fluids. Thus, if universality of critical

behavior is valid for one-component fluids, it is expected to extend

to critical behavior in fluid mixtures as well.

The theory of Griffiths and Wheeler applies to all kinds of criti-

cal points in fluid mixtures, but the specific approach of Leung and

Griffiths in its present form does not apply near the consolute point

of partially miscible binary liquids. Nevertheless, a direct analogy

can be made between critical phenomena near the gas-liquid critical

point of a one-component fluid and critical phenomena near the critical

mixing point of a binary liquid. When the pressure is held constant,

the fundamental differential relation (4.4) for a binary mixture

reduces to

dy,, = -£<3T - XdA. (4.10)
L̂

Since the effect of pressure on critical mixing is small and since

experiments in binary liquids usually are conducted with the vapor phase

present, most experimental data may indeed be interpreted as obtained

at constant pressure. On comparing (4.10) with the corresponding

relation -dP = -sdT-pdy, given in (2.11) for one-component fluids,

we conclude that the behavior of the fundamental equation y (T,A) for

binary liquids at constant P near the critical mixing point will be

analogous to that of P(T,y) near the critical point of a one-component

fluid. A number of thermodynamic p-roperties exhibiting analogous
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critical behavior are listed in Table XI. The concentration X is now

the order parameter analogous to the magnetization of a ferromagnet near

the Curie point and the density of a fluid near the gas-liquid critical

point. It appears that the coexistence curve is considerably more sym-

metric when the concentration of either species is taken per unit of

volume of the mixture rather than per unit of mole (Hildebrand et al,

1970). Therefore, the experimental data near the consolute critical

point of a binary liquid are preferably analyzed with the concentration

measured in terms of volume fractions.

Table XI

Analogy Between Critical Behavior of One-Component Fluids and

Critical Mixing of Binary Liquids

Susceptibility
(strongly divergent)

Specific Heat
(weakly divergent)

One-Component
Binary Liquid
(P = Constant)

Fundamental

"Density"

Coexistence

Equation of

Equation

Curve

State

P(T,y)

p = (9p/9y)T

P(T)

y(P,T)

y2(T,A)

•x = -(9y2/9A)

X(T)

A(X,T)

T,P

= (92p/9y2)T XT = -(9
2y2/9A

2)T>p

cy/v = T(9
2P/3T2)p
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The critical exponents a, $/ Y» <$ now represent the power law

behavior of C as a function of temperature, the composition differ-
PX

ence between the two coexisting phases as a function of temperature,

the osmotic susceptibility v as a function of temperature and the

critical isotherm of y as a function of concentration. A power law

analysis of coexistence curve data for nine binary liquids mixtures was

made by Stein and Allen [1974]. A comprehensive review of critical

exponent values found experimentally for binary fluids has been pre-

sented by Scott [1977]. When the coexistence curve data for various

fluids were represented by a simple power law one most frequently de-

duced effective values for the exponent 3 between 0.33 and 0.35 (Stein

and Allen. 1974; Scott, 1977}. The experimental information concerning

the exponents a and 3 of binary liquids is rather limited. Morrison

and Knobler [1976] recently reported 0.08 <_ a <. 0.14 for the isobutyric

acid-water system.

Recently, experimental information has become available which

does support the hypothesis of universality for binary liquid mix-

tures. Greer [1976] obtained a set of very accurate coexisting

density data for the isobutyric acid-water system using a magnetic-

float densimeter. After converting the data to volume fractions

she found that the coexistence curve could be represented by a simple

ft — *5
power law fi|At*| in the range |AT*| < 6 x 10 with 3 = 0.328 ± 0.004.

She also showed that an analysis of the coexistence curve data reported

by Gopal et al. [1973, 1974] for carbondisulfide-nitromethane in terms
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of a 3-term Wegner expansion of the type presented in (3.37) yields

a leading exponent 3 = 0.316 ± 0.008. Earlier Balzarini [1974] had

already noted that the exponent 3 of aniline-cyclohexane assumed the

constant value 3 = 0.328 ± 0.007 in a range |AT*| < 10~ . The osmotic

susceptibility X™ = OX/3A) and, hence, the exponent y can be deter-
T T,P

mined by measuring the intensity of scattered light (Fabelinski, 1968).

From a review of the light scattering data Chu [1972] suggested as the

most probable value y = 1-23 ± 0.02. Recent light scattering measure-

ments obtained by Chang et at. [1976] for 3-methylpentane-nitroethane

at temperatures corresponding to |AT*| < 3 x 10 gave a value

y = 1.240 ± 0.014. The close agreement between the exponent values

currently found experimentally for 3 and y of binary liquids with the

values (2.78) calculated theoretically from the renormalization group

theory does provide substantial evidence in support of the hypothesis

of universality. The asymptotic power laws in binary liquids near the

critical point appear to hold over a somewhat larger temperature range

than in fluids near the gas-liquid critical point. Whether there exists

a physical reason for this phenomenon or whether it is just the conse-

quence of a fortuitous cancellation between the first few correction

terms in the Wegner expansion is not clear yet.

Attempts have also been made to represent experimental chemical

potential data of binary mixtures near the critical mixing point by a

scaled equation of state analogous to (3.11) (Simon et at., 1972).

However, progress has been limited due to a lack of sufficient experi-

mental data off the critical isochore and coexistence curve.
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V. Critical Fluctuations

5.1 Correlation Function and Power Laws

When a system approaches a critical point, its thermodynamic

states are accompanied by large fluctuations in the order parameter.

Thus a fluid near the gas-liquid critical point exhibits large density

fluctuations and a liquid mixture near the critical mixing point

exhibits large concentration fluctuations. Here we shall develop an

explicit description of these fluctuations in a fluid near the gas-

liquid critical point. The corresponding equations for a binary

liquid near the critical mixing point are obtained if the density is

«.

replaced with the concentration of either component.

The magnitude and spatial character of these fluctuations are

described in terms of a correlation function defined as

p2G(|r-r'|) = <{p(r)-p}{p(r')-p)}> = <p(r)p(r')> - p2 , (5.1)

where the brackets < > indicate an equilibrium average over a grand

-> ->•
canonical ensemble, p(r) is the local number density at position r and

p = <p(r)> is the average equilibrium density which is independent of

->•
the position r (not considering the presence of external forces such as

.->• ->• .
gravity). The correlation function G(|r-r'|) measures the joint proba-

->• -»•
bility of finding molecules in volume elements dr and dr' minus the
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average number of pairs. For an isotropic fluid this probability is

,-»• -»- •
only a function of the distance |r-r' |. The zeroth moment of the corre-

lation function is related to the compressibility by the fluctuation

theorem (De Boer, 1949)

kBTXT = P r G U ) , (5.2)

where X = P2K is the symmetrized isothermal compressibility introduced

in (2.1). The correlation function G is a function of Ap* and AT* as

well as of r. Whenever we want to indicate the dependence on the thermo-

dynamic variables explicitly, we write G(Ap*,AT*; r) instead of G(r) .

tt
A static structure factor may be defined as

2 .-> ->
X(Ap*,AT*; k) = £— Jdreik*rG(Ap*,AT*; r) , (5.3)

V

so that

X(Ap*,AT*;0) = X(Ap*,AT*) . (5.4)

t !-»•-»• iIn the literature the correlation function G(|r-r'|) is usually

defined such that p2G(|r-r'|) + p6(r-r') = <p(r)p(r')> - p2, where the

6-function accounts for the self correlation at r1 = r (Hirschfelder

&t al., 1954). Here we prefer to absorb this 6-function in the defini-
• -»- -»• .

tion of G(|r-r'|). Because of their long-range character the difference

between the two correlation functions becomes irrelevant sufficiently

close to the critical point.

In the definition of the structure factor we have included a

factor k T so that x has the same dimension as the symmetrized com-

pressibility Y • This factor may for all practical purposes be

identified with k T in the region where the scaling laws apply,

but may have to be treated more carefully when corrections to the

asymptotic scaling laws are considered.
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This structure factor as a function of the wave number k can be

measured, since it is directly proportional to the intensity of

scattered electromagnetic radiation as a function of scattering angle

(Pabelinskii, 1968; Mclntyre and Sengers, 1968). We find it also con-

venient to introduce a dimerisionless structure factor x defined as

P
Y* = —^-YX IT** ' (5.5)c

The range of the correlation function and, hence, the spatial

extent of the fluctuations is characterized by a correlation length £.

It may be defined as

1 /dr r2G(r)
— — i (5.6)
2d /drG(r)

where d is the dimensionality of the system or, in terms of the structure

factor,

(5.7,

The correlation length 5 = £(Ap*,AT*) is a function of density and

temperature which diverges at the critical point. In particular along

the critical isochore Ap* = 0 and the coexistence curve Ap* = AnK cxc

it behaves as

C(0,AT*) = £ (AT*) (AT _> 0) , (5.8a)

£(AP* ,AT*) = E '|AT*| V (AT* £ 0) , (5.8b)
\J

which defines the critical exponents V and V1
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Another exponent r| is introduced to specify the nature of the

dependence of the correlation function on the distance r. It is defined

such that at the critical point Ap* = 0, AT* = 0

G(0,0.-r)

or, equivalently

X(0 ,0 ;k) « k11"2 . (5.10)

The exponent f) is zero in the classical theory of Ornstein and Zernike

(Fisher, 1964) . However, the exponent r\ is known to be different from

zero for the lattice models with short range interactions that have been

solved theoretically. Series expansion estimates for the correlation

function exponents of the 3-dimensional Ising model are (Moore et al.,

1969, camp et al., 1976)

0.002 0.006
V = 0.638 ± n = 0.041 ± (5.11)

0.008 0.003

while the calculations of Baker et al. [1976] for the Landau-Ginzburg-

Wilson model yield the values

V = 0.627 ± 0.01 , n = 0.021 ± 0.02 (5.12)

Using some heuristic arguments Thompson [1976] proposed the formula

v =

which implies V = 5/8 for dimensionality d = 3,
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5.2 Homogeneity Postulate for the Structure Factor

In formulating the homogeneity postulate for the thermodynamic

properties in Section 3.2 we started from the observation that the

chemical potential difference Ay is an odd and the compressibility

XT = p K is an even function of the density Ap*. We then expect from

(5.3), (5.4) and (5.7) that also the structure factor x (Ap*,AT*;k) and

the correlation length £(Ap*,AT ) will be symmetric functions of Ap* as

they are in the lattice gas. Unfortunately/ there exists very little

experimental information concerning the density dependence of the

structure factor and the correlation length of fluids (Thomas and

Schmidt, 1963,1964; Chu and Lin, 1970 Lin and Schmidt, 1974a) , but the

scant available data are at least consistent with this assumption ..

(Hanley et al., 1976). We shall thus assume the symmetry properties

X(-Ap*,AT*;k) =
(5.14)

to be valid for real fluids, but more accurate experimental information

is desirable. .

It is now postulated that the structure factor, for densities and

temperatures sufficiently close to the critical point and for wave

numbers k small relative to the inverse molecular interaction range,

is a generalized homogeneous functions of its variables (Hankey and

Stanley, 1972)

b b b
X*U PAp*,X TAT*;X *k) = Xx*(Ap*,AT*;k) . (5.15)

This homogeneity property was first formulated by Kadanoff [1966] for
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the correlation function of the Ising model. It follows from the

renormalization group theory in the same manner as shown in Section 3.7

for the free energy (Niemeijer and Van Leeuwen, 1976). On evaluating

(5.15) in the limit k ->• 0, we see that the homogeneity postulate for the

thermodynamic functions is recovered, if the exponents b and b are

identified with

K - aP - B i , _ aT i
bp ~ " 1̂ 2a~ ~ ' Y = " 6=1' bT - ' T̂ T~ " ~ Y ' '

Substitution of (5.15) into (5.7) yields after proper redefinition

of the parameter A

-b /b ~br/bt
E(X p *Ap*,A kAT*) = A£(Ap*,AT*) . (5.17)

Thus the correlation length C is a generalized homogeneous function of

the thermodynamic variables Ap* and AT* as we found earlier for the

singular part of the thermodynamic properties. Along the critical
n

isochore Ap* = 0 and along the coexistence curve Ap* = ±BJAT*| we

find in analogy with (2.45) and (2.46)

-b /b
5(0, AT*) = £(0,1) (AT*) (AT* >. 0) ,

-b /b
£(Ap* ,AT*) = C(B,-D | AT* | (AT* <_ o)

C2CC

We thus recover the power laws (5.8) with

V = V = b,/b (5.18)
JC T

118



The homogeneity postulate (5.13) reads in terms of the

exponents $, y, V adopted for the power laws

X(Y = AX(Ap*,AT*;k) - (5.19)

AV/YTaking A" ' = k, we conclude that at the critical point

~Y/V
X(0,0;k) = k x(O'O'l) • Comparison with (5.10) yields the exponent

relation (Fisher, 1964)

Y = v(2-n) (5.20)

119



5 . 3 Scaling Laws and Hypothesis of Three-Scale

Factor Universality

A generalized homogeneous function of three variables can be
•

scaled to become a function of only two variables. To deduce a scaling

R/v *
law for the structure factor we take A = Ap in (5.19) and obtain

X*(Ap*,AT*;k) =

1 /R
where x = AT*/|Ap*| is the thermodynamic scaling variable intro-

— \>/ft
duced earlier and y = k|Ap*| a new scaling variable. In the limit

k -> 0

X*(Ap*,AT*;0) = l A p ^ ' x / x ^ , (5.22)

where X(X/XQ) = {6h(x/xQ) - (x/RxQ)h' tx/XQ) F
1 is the scaling function

for the isothermal compressibility introduced in Table VII.

The correlation length £ satisfies a scaling law which may be

written in the form

£(Ap*,AT*) = |Ap*|~V/BE 5(x/x ) , (5.23)
'o,c

where, in accordance with (5.7)

»•«>

The factor ^ is the amplitude of the power law for the correlation
o, c

length along the critical isotherm

£(Ap*,0) = F |Ap*rV/0 (AT* = 0) . (5.25)
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It follows from (5.22) and (5.23) that the scaling law (5.21) for

the structure factor also can be written in the form

X*(Ap*,AT*;k) = XT*(Ap*,AT*)Y(̂ -;k?) . (5.26)
o

This formulation has the advantage that the new scaling function Y(u,v)

satisfies the boundary conditions

lim Y(u;v) = 1 , (5.27a)
v->-0

n . 9Y(u.-v) ,
—JJv2 = "" ' (5.27b)

v»-0

Alternate forms for the scaling law of the structure factor are

X*(Ap*,AT*;k) = £2~n$ (~kC)
X Xo

(5.28)

X fAn* AT*»T^ — V W ( Vf^\LA\J / t-i-L * -K-/ — **• i \ /-K-sy /
X o

where the functions $ (x/x ;k£) and ¥ (x/x ;k£) can be readily related
X o X o

to the scaling functions introduced above.

The structure factor can be determined experimentally as a

function of £ and k by measuring the intensity of scattered light as a

function of temperature and scattering angle. The wave number k is

related to the scattering angle 6 by the Bragg condition k = 2k sin(8/2),

where k is the wave number of the incident light. If the observed
o

scattered light intensity I(k) « X(k) ' divided by the extrapolated

intensity 1(0) at zero scattering angle, is plotted as a function of

k£, it follows from the scaling law (5.26) that data obtained along a

curve of constant x, such as the critical isochore, critical isotherm

or coexistence curve, should collapse onto one single curve. In Fig. 14
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Figure 14. Scattered light intensity ratio I(k)/I(0) for 3-methyl-
pentane-nitroethane at the critical concentration as
a function of k£.
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we present an example of such a plot based on light scattering data

obtained at three scattering angles (40°, 60°, 90°) for the binary

liquid 3-methylpentane-nitroethane at the critical concentration as

a function of temperature (Chang et al., 1972).

In Sections 2.7 and 3.5 we formulated the hypothesis of univer-

sality of thermodynamic behavior near the critical point. This same

principle, when extended to the correlation function, asserts that for

all systems which differ only with respect to irrelevant parameters in

their Hamiltonians, the scaling function x*d'x?y) introduced in (5.21)

will be the same, except for three adjustable factors which define the

scale of x*/ x and y (Kadanoff, 1971; Ferer and Wortis, 1972). For

these scale factors we may choose the power law amplitudes D, x and

£ (or £ ). Thus the hypothesis of three-scale-factor universality
o, c o

predicts that not only the function h(x/x ) introduced in (3.11) for

the equation of state, but also the scaling functions Y(x/x ;k£) and

5(x/x ) for the structure factor and correlation length wil be the

same for all systems within one universality class.

5.4 Correlation Scaling Function and Corre-

lation Function Exponent Values

In order to deduce the correlation function exponents V and n

and the correlation length £ from experimental data and to make a

quantitative analysis of the universality hypothesis, one needs

an explicit functional form for the correlation scaling function

Y(x/x ;y) as a function of y = k£. For small values of y the inverse

2
scaling function has a Taylor series expansion in terms of y (Fisher,

1964)
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Y 1(x/xo;y) = 1 + y
2 + 0(y4) , (y « 1) , (5.29)

where the first two terms follow from the boundary conditions (5.27).

For very large values of the variable y the scaling function Y is ex-

pected to have the form (Fisher and Langer, 1968; Stell, 1968; Brezin

et al.i 1974a,b; Fisher and Aharony, 1974).

C (x/x

where C , C• and C are (universal) functions of the thermodynamic
_L ^ J

scaling variable x/x .

The early experimental light scattering work has often been inter-

preted using either the Ornstein-Zernike scattering function

OZ 1+y2 '

or the simple Fisher scattering function

(5.31)

for all values of y (Calmettes et al., 1972; Chu, 1972; Lai and Chen, 1972;

Volochine, 1972) . However, the Ornstein-Zernike scattering function

implies that n = 0 which is known to be incorrect from the theoretical

model results, while the simple Fisher scattering function (5.32) cannot

accommodate simultaneously the correct amplitudes of the leading terms in

the small and large y expansions. A proposed scattering function is not

satisfactory unless it provides a method of interpolating between the

asymptotic forms (5.29) and (5.30). The problem is compounded by the

fact that the scaling function Y is not only a function of k£, but also
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of the thermodynamic scaling variable x/x . In practice one tries to

formulate a scattering function that accommodates the known numerical

results for the 2- and 3-dimensional Ising model .

For the 3-dimensional Ising model Tarko and Fisher [1975] proposed

2 In

where the parameters $, A and fi are (universal) functions of x/x and

where

x
x~~}o

Taking A(co) = 0, this form reduces at the critical isochore x = <» to

(Fisher and Burford, 1967)

v , , {i+$2(~)y2)n/2
YFB(°°?y) = - -

where ty(°°) = 1 + %n$ (°°) • For large values of y the leading term in the

asymptotic expansion (5.30) is recovered with C (°°) = <j) (») / {l+?5n<f>2 (°°) } .

However, the Fisher-Burford and Tarko-Fisher scattering functions (5.34)

and (5.33) still do not reproduce the higher order terms in the asymp-

totic expansion (5.30). A quantitative analysis of the limitations of

these scattering functions by testing them on the exactly-solved 2-

dimensional Ising model was made by Tracy and McCoy [1975] . Lin and

Schmidt [1974a) have analyzed their X-ray scattering data for argon

near the critical point in terms of the Fisher-Burford and Tarko-Fisher
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scattering functions. Swinney and Saleh [1973] evaluated the effect of

the Fisher-Burford scattering function on the theoretical expression

for the decay rate of the order parameter in fluids. Tartaglia and

Thoen [1975] tried to discriminate between the various scattering

functions from an analysis of sound absorption and dispersion data

near the critical point of xenon.

Recently, Bray [1976] proposed a scattering function which in two

dimensions does reproduce the known Ising model values for all k£ to

within 0.03%. It was obtained by modifying an earlier scattering func-

tion of Ferrell and Scalapino [1975] so as to incorporate the Fisher-

Langer form (5.30) for large values of y = k£. For the 3-dimensional

Ising model in zero field which corresponds to the critical isochore

of the lattice gas, this scattering function is defined through the

equations

(-1/9) , (5.3Sa)

f(z) = f sin (HL, fe ̂ - , (5.35b)
w w
o

P+Q cotg (—)
F(w) = — , (5.35c)

with

sin

The constants C^ and C are to be identified with the coefficients C " (~)
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and C,(°°) in the Fisher-Langer form (5.30) for large values of y and

must be the same for all systems within one universality class. The

integration cut-off constant w in (5.35b) is related to the coeffi-

cient C-jC00) by the condition

(̂(0°) = 3~nf (-1/9) . (5.35d)

The value of this coefficient estimated from series expansions for the

3-dimensional Ising model is 0.90 ± 0.01 (Ritchie and Fisher, 1972).

Many light scattering data and X-ray scattering data are obtained

under conditions for which k£ « 1-. One may then neglect the higher

order terms in the expansion (5.29) and analyze the data in terms of

X(k) = X a (5.36)

Thus if the inverse scattering intensity I (k) « X (k) is plotted as

a function of k , at each temperature and density the data will fall on

a straight line whose intercept is proportional to the inverse compres-

sibility x (0) while the ratio of slope over intercept yields the

2
correlation length £ . Such a plot is usually referred to as an

Ornstein-Zernike plot. According to the Ornstein-Zernike theory the

data would follow a straight line for all values of k£; since the

exponent of r\ is small the deviations from linear behavior observed in

real fluids are very small. We show examples of such O-Z plots in

Fig. 15 for carbon dioxide near the critical point based on X-ray scat-

tering data (Chu and Lin, 1970) and in Fig. 16 for the binary liquid 3-

methylpentane-nitroethane near the critical mixing point based on light

scattering data (Wims, 1967; Mclntyre and Sengers, 1968) .
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Figure 15. Reciprocal relative scattering intensity as a function of
(k/k0)

25S62 for carbon dioxide at the critical density and
at various values of AT = T - Tc (Chu and Lin, 1970).
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The correlation length has been determined experimentally for

3 4
such gases as He (Ohbayashi and Ikushima, 1975), He (Tominaga, 1974;

Kagoshima et al., 1973), Ar (Lin and Schmidt, 1974a), Xe (Smith et al.,

1971), CO_ (Chu and Lin, 1970; Lunacek and Cannell, 1971), SF,2. 6

(Puglielli and Ford, 1970; Cannell, 1975) and for a number of binary

liquids reviewed by Chu [1972], Anisimov [1975] and Scott [1977].

In interpreting the experimental results one must realize that there

exists a strong correlation between the exponent v and the amplitude

£ of the power law (5.8). Although a variety of values have been

reported for the exponent V the more reliable data are all consistent

with V = 0.63 ± 0.02 for gases as well as binary liquids.

Having determined in addition the exponent Y from the zero-angle

scattering data limx (k), one may then infer a value for the exponent
kr>0

from the Fisher relation (5.20). Typical values thus obtained are

n = 0.07 ± 0.04 for CO,, (Lunacek and Cannell, 1971) and n = 0.03 ± 0.03

for SF (Cannell, 1975), but they are obviously very sensitive to the
6

values adopted for y and v.

In order to obtain more detailed information one needs to measure

the intensity of scattered light over a larger range of k£ values.

For a given wave length and a given range of scattering angles this can

be done in principle by approaching the critical point more closely.

However, here one runs into major complications due to multiple scat-

tering and attenuation of the light beam (Chalyi, 1969; White and

Maccabee, 1971; Oxtoby and Gelbart, 1974; Bray and Chang, 1975; Boots

et al., 1976; Moldover et al., 1976).
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As an alternative one can use X-ray scattering or neutron

scattering which probe the fluctuations at larger values of k. From

neutron scattering experiments Warkulwiz et at. [1974] reported a

value n - 0.11 ± 0.03 for neon and from X-ray scattering experiments

data Lin and Schmidt [1974b] deduced a value r) = 0.10 ± 0.05 for argon.

However, there exists some doubt as to whether the structure factor can

still be represented by the simple scaling law (5.26) without correction

terms at the values of k covered by these experiments (Mozer, 1976;

Schmidt, 1976).

Very recently Chang et at.. [1976] obtained an accurate set of

light scattering data for the system 3-methylpentane-nitroethane. This

system has a relatively small scattering cross section and they were

•able to cover a range 0.18 < k£ < 26 with only minor corrections for

double scattering and turbidity. The data could be well represented by

the scattering function (5.35) with the parameters C2 = 1.773,

C = -2.745, w = 1 and the exponent values

V = 0.625 ± 0.005 , n = 0.016 ± 0.014 (5.37)

These values are in good agreement with the exponent values (5.12)

calculated by Baker et at. [1976] and support the validity of the uni-

versality hypothesis for the correlation function. It appears that the

critical exponent values (2.78) and (5.12) calculated theoretically

from the Landau-Ginzberg-Wilson model are in slightly better agreement

with the experimental data for fluids than the estimates (2.64) and

(5.11) deduced from series expansions for the 3-dimensional Ising

model.
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5.5 Hyperscaling Relations

The hypothesis of universality has its origin in the long range

character of the fluctuations. Since in the critical region the corre-

lation length £ becomes much larger than the range of the molecular

interaction, it is expected that the singular nature of the cooperative

phenomena become independent of the detailed shape of the molecules.

The correlation length £ was defined in (5.6). For distances much

smaller than E, the density fluctuations are highly correlated, while for

distances much larger than £ the density fluctuations become uncorre-

lated. Hence, the correlation length £ may be visualized as the radius

of droplet-like conglomerates referred to as clusters (Widom, 1974).

The singular thermodynamic behavior is characterized by two criti-

cal exponents among the thermodynamic exponents a, fl, y and 6. The

long-range behavior of the correlation function is characterized by the

two exponents V and r). If the singular behavior of the system is com-

pletely determined by the long-range character of the correlation

function, one would expect that the thermodynamic exponents are related

to the correlation function exponents. One such a relation is the

Fisher relation y = V(2~n). However, a second relation is needed to re-

late the thermodynamic exponents and the correlation function exponents

uniquely. Such a relation may be obtained by an argument first pro-

posed by Widom [1965b,1974].

The energy associated with the spontaneous density fluctuations

that extend over a distance £• will be of order k T ~ k T . Hence the
B Be

free energy density associated with these fluctuations will be of order

(j!

kj.T̂ /5 . One expects this energy to be solely responsible for the singu-

lar contribution A . /V to the Helmholtz free energy density. Thus

A«=-ir,r/v =p~A2-ir,~ (cf- (2-2)) is assumed to be proportional to k,,T /£ .o J-Ily c S lily 13 Q

132



It is convenient to introduce the dimensionless quantity

A . /ve P A*

Be B c

which, according to Widom's arguments, is expected to remain finite at

the critical point. Since along each curve of fixed x = AT*/|Ap*| ,

A*. varies as |AT*| and £ as JAT*| , this assumption implies the

exponent relation

dv = 2-a . (5.39)

When this relation is combined with the other exponent relations one also

obtains (Fisher, 1967a; Stell, 1970)

2-n 5-1 ,_ ...
— ' • (5'40)

The relations (5.39) and (5.40) are sometimes referred to as

hyperscaling relations. They contain the dimensionality d and are

expected to be valid in those dimensions (d <. 4) where the correlation

function becomes sufficiently long range. The hyperscaling relations

are satisfied for the 3-dimensional Ising model. The validity of the

hyperscaling relations in two and three dimensions is implicitly as-

sumed in the renormalization group theory of critical phenomena. Hence

they are automatically satisfied by the numerical estimates (2.78) and

(5.12) for the Landau-Ginzburg-Wilson model. The problem is, however,

that they are not satisfied within error by the series expansion esti-

mates for the 3-dimensional Ising model (Baker, 1976). The origin of

this discrepancy has not yet been resolved. The hyperscaling relations
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are satisfied by the fluid critical exponents within the accuracy with

which they are currently known experimentally.

5 . 6 Hypothesis of Two-Scale-Factor Universality

According to the hypothesis of universality formulated in Section

5.3, the scaling function for the structure factor is a universal func-

tion of the scaling variables AT*/|Ap*| ' and k|Ap*|~" except for

three scale factors D, x and £ . The number of independent scaleo o , c

factors can be further reduced by the hypothesis of two-scale-factor

universality. It follows from the assertion, proposed by Stauffer,

Ferer and Wortis [1972] , that the dimensionless quantity Q, defined in

(5.38) is a universal function Q(x/x ) of the thermodynamic scaling

variable x/x ; that is, along any given curve x/x = constant, the
o o

quantity^ Q should assume the same value for all systems within one uni-

versality class. If we now substitute into (5.38) the scaled expres-

sions A*. = |Ap*| (2~a)/3Da(x/x ) and £ = |Ap*|"V/^ E (x/x ) in
O Of O O

accordance with (3.10) and (5.23), and assume the validity of the hyper-

scaling relations, this hypothesis of universal Q(x/x ) implies

Pc d; DC = universal constant , (5.41)
k T o,c
B c

yielding a relation between the scale factors D and £ . The hypo-
o, c

thesis of two-scale-factor universality does follow from the renormali-

zation group theory as recently shown by Hohenberg et at. [1976].

Since the Helmholtz free energy density is usually not measured

directly the assumption is often restated in terms of the specific

heat density C /V. Universality of Q implies that also the combination
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£ I AT* I C /V is universal. Empirical evidence in support of this hypo-

thesis for fluids was presented by Bauer and Brown [1975] .

In principle/ the hypothesis of two-scale-factor universality

could be investigated by comparing the experimental data for C and

for different fluids at the same Ap* and AT* without taking recourse

to a power law analysis (Stauffer et al., 1972; Bauer and Brown, 1975).

Here, however, we investigate the relations between the power law

amplitudes implied by the hypothesis. In the absence of experimental

data for the correlation length amplitude £ along the critical iso-o, c

therm, we consider the value of Q along the critical isochore x = °°

P + 1/3
2(005 = {idr (2-cO d-a)a} ?o = constant ' (5'42a)

B c

or, in terms of the constants of the parametric equations of state in

Table VIII

pc 1/3
Q(OO) = {r—̂ ~ ak|fQ|} £0 = constant . (5.42b)

°

The hypothesis of two- scale-factor universality presupposes that

the experimental data for different fluids can be represented by a

power law with universal exponents. As discussed in Section 3.8

the range of simple asymptotic behavior of fluids near the gas-liquid

critical point is restricted to |AT*| < 10 . In this range insuffi-

cient experimental correlation length data are available to investigate

the validity of the hypothesis with any precision.

We have evaluated the quantity Q(°°) for a number of gases in an

extended temperature range using the effective fluid exponents (3.29)

adopted in Table X. The results are presented in Table XII. The free
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energy amplitude akf was calculated from the parameters presented in

Table X. Substitution of the effective thermodynamic exponents (3.29)

into the hyperscaling relation (5.39) yields an effective value V = 0.633

for the correlation length exponent V. Estimates for the corresponding

correlation length amplitude £ were obtained as follows. For He and

Ar we took the values reported by Tominaga [1974] and by Lin and Schmidt

[1974a], respectively. For Xe we took £ = (2.0 ± 0.2) 8 based on the
o

data of Smith et al. [1971] as reinterpreted by Swinney and Henry [1973].

A reanalysis of the X-ray scattering data of Chu and Lin [1970] for CO_

yields £Q = (1.6 ± 0.1) X, while Lunacek and Cannell [1971] report

£ = (1.50 ± 0.09) X. From the work of Cannell [1975] we estimate for

SF £ = (1.9 ± 0.1) X, but there are some differences with the data6 o

of Puglielli and Ford [1970]. In no case is the correlation length on

an absolute basis known with an accuracy better than 10%, so that we

Table XI'I

Test of Two-Scale-Factor Universality for Gases

(Wc)1/3

r1

4He 0.1470

Ar ' 0.1327

Xe 0.1135

CO., 0.1207
2

SF^ 0.0949

(aJd

1

2

2

2

2

y1/3

.46

.15

.15

.44

.42

2

1

2

1

1

go

X

.2 ±

.7 ±

.0 ±

.55±

.9 ±

0.

0.

0.

0.

0.

6

25

2

1

1

0.

0.

0.

0.

0.

47

48

49

46

45

o

+

+

+

+

+

(00

0

0

0

0

0

,,

.13

.07

.05

.03

.03
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cannot expect to check two-scale-factor universality better than to

within 10%. Nevertheless, it appears from Table XII that the quantity

Q(oo) = o.46 ± 0.04 is remarkably constant for these five gases. The

hypothesis of two-scale-factor universality would thus appear to be

consistent with the current experimental evidence. The corresponding

value of Q(°°) for the 3-dimensional Ising model is 0.43 (Stauffer et al.,

1972), but such a comparison is of dubious value since we have used

exponent values that differ from those of the Ising model.

5.7 Correlation Length and Equation of State

If we adopt the effective universal value Q(°°) = 0.46 for all

gases, we can predict an effective value for the correlation length

amplitude £ from the equation of state parameters presented in Table X.

The values thus estimated for £ are given in the last column of Table X.

In order to calculate the correlation length at densities other than the

critical density we need to formulate a functional form for the scaling

function H(x/x ) introduced in (5.23). For the 3-dimenSional Ising
o

model this question has been considered by Tarko and Fisher [1975].

In analogy to the formulation used for the singular contributions

to the thermodynamic properties, the required analyticity properties of

£ in the one-phase region away from the critical point can be automati-

cally ensured by a parametric representation

AT* = r(l-b292)

Ap* = kr^6(l+c62) , (5.43)

C = £or~
Vg(9) ,
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where g(9) is an analytic function of 9 which must be even in 9. The

case c = 0 corresponds again to the linear model and the case c j4 0

corresponds again to the cubic model. In order to reproduce the correct

power law amplitudes along the critical isochore and the coexistence

curve, the function g(9) must satisfy the boundary conditions

g(0) = 1 , g(±l) = E '/£ . (5

For the 3-dimensional Ising model £ '/£ = 0.51 (Tarko and Fisher, 1975).o o

For fluids the ratio £ '/£ is only known with very limited accuracy.o o

The most careful study of this ratio was made by Lin and Schmidt [1974c]

with the result £ '/£ = 0.49 ± 0.05. For He Tominaga [1974] reportedo o

€0V€ = 0.45 ± 0.1.

A more practical approach is to relate the correlation length to

the isothermal compressibility. It follows from (5.20) and (5.23) that

the correlation length can be written in the form

5 = eoR(8)<r~
1xT*)

1/2~n , (5.45)

where R is a universal function of x/x and, hence, a universal functiono

of the parametric variable 9. On the critical isochore and coexistence

curve it is equal to

vl/2-n
R(0) = 1 , R(±D =T^-(^T • (5.46)

For the 3-dimensional Ising model R(±l) = 1.17 (Tarko and Fisher, 1975).

The proportionality constant between £ and X * along the critical

isochore and coexistence curve of argon was determined by Lin and
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Schmidt [1974a] with a precision of about one percent; from their work

we conclude R(±l) = (4.04 ± 0.05)/(3.45 ± 0.03) = 1.17 ± 0.03 in good

agreement with the theoretical value R(±l) = 1.17 for the Ising model.

The simplest polynomial accommodating this boundary condition would be

R(9) = 1 + 0.1762 . (5.47)

In practical calculations of the correlation length of fluids

R(6) is usually assumed to be independent of 6. In this approximation

(5'48)

which for the restricted cubic model reduces to

5 = € r~V . (5.49)
o

This assumption is not strictly correct as suggested by the Ising model

and confirmed by the work of Lin and Schmidt. The approximate equation

(5.48) reproduces correctly the behavior of the correlation length along

the critical isochore, but not along the coexistence curve. When it is

used in conjunction with the equation of state parameters given in

Table X, it yields £ '/£ = (T'/T) 1/(2~ri) = Q.46 which is 10% lower
o o

than the corresponding value for the Ising model, but well within the

precision with which this ratio is currently known experimentally for

fluids.
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