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ADDITION OF HIGHER ORDER PLATE AND SHELL ELEMENTS
 

INTO NASTRAN COMPUTER PROGRAM
 

By 

1
 
R. Narayanaswami


ABSTRACT
 

Two higher order plate elements, the linear strain triangular membrane
 

element TRIM6 and the quintic bending element TRPLTI, and a shallow shell
 

element TRSHL, suitable for inclusion into the NASTRAN® (NASA STRuctural
 

ANalysis) program are described in this report. Additions to the NASTRAN
 

Theoretical Manual [NASA SP-221 (03)], the NASTRAN Users' Manual [NASA SP-222
 

(03)], the NASTRAN Programmers' Manual [NASA SP-223 (03)], and the NASTRAN
 

Demonstration Problem Manual [NASA SP-224 (03)], for inclusion of these
 

elements into the NASTRAN program are presented herein
 

INTRODUCTION
 

New higher order plate (nonconforming quintic) and shell elements
 

suitable for inclusion into the NASTRAN (NASA STRuctural ANalysis) program
 

have been developed by Narayanaswami (refs. 1 and 2). The linear strain
 

triangular membrane element developed by Argyris (ref. 3) has proved to be an
 

accurate element for solving for membrane action in plates. Preliminary
 

studies in the NASTRAN environment indicate that these elements are more
 

efficient than the existing plate and shell elements in NASTRAN. These
 

elements hav( now been added to the level 16.0 version of NASTRAN® and the
 

complete computer listing for the addition has been delivered to the NASTRAN
 

Systems Management Office, NASA Langley Research Center, Hampton, Virginia
 

This report describes the theoretical formulations, information pertaining to
 

their use, programming details and demonstration problems pertaining to the
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three elements, TRIM6, TRPLT1 and TRSHL in update form suitable for incorporation
 

into the respective NASTRAN manuals (refs. 4, 5, 6 and 7).
 

DETAILS OF ELEMENT FORMULATIONS
 

The Linear Strain Triangular Membrane
 

Element TRIM6
 

First proposed by Argyris (ref. 3), this element has six nodes, three at
 

the corners and three at the midpoints of the sides. The element uses a
 

quadratic displacement field. The thickness of the element as well as the
 

temperature distribution within the element are permitted to have bilinear
 

variation; the three constants of the bilinear equation for the same are
 

evaluated by the respective user-specified values at the three corner nodes
 

of the element. The FORTRAN subroutines for stiffness, mass, thermal load
 

vector, and stress data recovery have been coded and tested out in stand-alone
 

computer programs. The updates for incorporating the element into the NASTRAN
 

program have been prepared and checked out in NASTRAN" ) Level 16.0 versions.
 

The element is currently designed for use with the statics and normal modes
 

rigid formats of NASTRAN.
 

The Higher Order Triangular Bending
 

Element TRPLT1
 

This element was developed by Narayanaswami (refs. 1 and 7) as a
 

modification of the high precision triangular plate bending element developed
 

by Cowper et al. (ref. 8). The element has six nodes, three at the
 

corners and three at the midpoints of the sides. A quantic displacement field
 

is chosen for the transverse displacement. Transverse shear flexibility is
 

taken into account in the stiffness formulation. The thickness of the
 

element is permitted to have bilinear variations, the three constants of the
 

bilinear equation for the same are evaluated by the respective user-specified
 

values at the three corner nodes of the element. The FORTRAN subroutines for
 

stiffness, mass, thermal load vector and stress data recovery have been coded
 

and tested out in stand-alone computer programs. The updates for incorporating
 

the element into the NASTRAN program have been prepared and checked out in
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NASTRAN® Level 16.0 version. The element is currently designed for use with
 

the statics and normal modes rigid formats of NASTRAN.
 

The Triangular Shallow Shell
 

Element TRSHL
 

This element was developed by Narayanaswami (ref. 2). In the element 

coordinate system, the element has 30 degrees of freedom (d.o f.), viz , the 

three translations u , v , w in the x , y , z directions and the 

2 rotations a and S about the xz and yz planes, at each of the
 

3 corner nodes and 3 midside nodes of the triangle. The membrane behavior of
 

this element is approximated by the TRIM6 element, the bending behavior is
 

approximated by the TRPLT1 element and the membrane-bending coupling is
 

approximated using shallow shell theory of Novozhilov (ref. 8) The element
 

is currently designed for use with the statics, normal modes and buckling
 

rigid formats of NASTRAN.
 

ADDITIONS OR MODIFICATIONS TO NASTRAN MANUALS
 

AND SOURCE CODE
 

The updates to the NASTRAN Manuals for the addition of these elements
 

are given in Appendixes A, B, C and D. The list of subroutines that are
 

being modified or added to the NASTRAN Source Code is given in Appendix E.
 

CONCLUDING REMARKS
 

The addition of higher order plate elements, TRIM6 and TRPLTI, and the
 

triangular shallow shell element TRSHL, into the NASTRAN program is completed
 

)
These elements are added to the Level 16.0 version of NASTRAN®2. The
 

demonstration problems indicate the excellent accuracy of these elements for
 

solving plate and shell problems. The availability of these elements in
 

NASTRAN enchances the program's capability in these areas.
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APPENDIX A
 

Updates to the NASTRAN Theoretical Manual 
for the addition of TRIM6, TRPLT1, 

and TRSHL elements 



5.8 PLATES
 

NASTRAN includes two different shapes of plate elements (triangular
 

and quadrilateral) and two different stress systems (membrane and bending)
 
which are, at present, uncoupled. There are in all a total of 13 different
 

forms of plate elements as follows:
 

1. TRMEM - A triangular element with finite inplane stiffness and zero
 

bending stiffness.
 

2. TRIM6 - A triangular element with finite inplane stiffness and zero
 

bending stiffness. Uses quadratic polynomial representation for membrane
 
displacements; bilinear variation in terms of the planar coordinates is
 
permitted for the thickness as well as the temperature distribution of the
 

element
 

3. TRBSC - The basic unit from which the bending properties of the other
 

plate elements are formed. In stand-alone form, it is used mainly as a
 

research tool.
 

4. TRPLT - A triangular element with zero inplane stiffness and finite
 

bending stiffness. It si composed of three basic bending triangles that are
 

coupled to form a Clough composite triangle; see section 5 8 3.3
 

5. TRPLTI - Higher order bending element - a triangular element with 
zero inplane stiffness and finite bending stiffness. Uses quintic polynomial 

representation for transverse displacement, bilinear variation in terms of 

the planar coordinates of the element is permitted for the element thickness
 

6. TRIAl - A triangular element with both inplane and bending stiffness
 

It is designed for sandwich plates in which different materials can be
 

referenced for membrane, bending, and transverse shear properties.
 

7. TRIA2 - A triangular element with both inplane and bending stiffness
 

that assumes a solid homogeneous cross section
 

8. QDMEM - A quadrilateral membrane element consisting of four over­

lapping TRMM elements
 

9 QDMEMI - An isoparametric quadrilateral membrane element.
 

AJNG3 PAGE BLAWNj NOT Flugm, 
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10. QDMEM2 - A quadrilateral membrane element consisting of four
 

nonoverlapping TRMEM elements.
 

11. QDPLT - A quadrilateral bending element. It is composed of four
 

basic bending triangles.
 

12. QUADI - A quadrilateral element with both inplane and bending
 

stiffness, similar to TRIAl.
 

13. QUAD2 - A quadrilateral element similar to TRIA2.
 

Anisotropic material properties may be employed in all plate elements. TRMEM
 

and TRBSC are the basic plate elements from which TRPLT, TRIAl, TRIA2,
 

QDMEM, QDMEM2, QDPLT, QUAD1, and QUAD2 elements are formed. The stiffness
 

matrices of plate elements are formed from the rigorous application of energy
 

theory to a polynomial representation of displacement functions. An
 

important feature in the treatment of bending is that transverse shear
 

flexibility is included.
 

All of the properties of the elements except those of TRIM6 and TRPLTI
 

are assumed uniform over their surfaces. For elements TRIM6 and TRPLT1, the
 

thickness can have bilinear variation over their surfaces. In addition,
 

element TRIM6 has bilinear variation over the surface for the temperature
 

distribution.
 

The detailed discussion of the plate elements is divided into subsections 

according to the following topics: membrane triangles, TRMEM, QDMEM, QDMEMI, 

QDMEM2, the basic bending triangle, TRBSC; composite triangles and quadri­

laterals, TRPLT1, TRIAl, TRIA2, QDPLT, QUAD1, QUAD2, the treatment of inertia 

properties; the isoparametric quadrilateral membrane element, QDMEMl, linear
 

strain membrane triangle, TRIM6; higher order bending element, TRPLT1. The
 

accuracy of the bending plate elements in various applications is discussed
 

in section 15.2, the accuracy of the quadrilateral membrane elements is dis­

cussed in section 15.3, and the accuracy of the TRIM6 element is discussed in
 

section 15.4.
 

5.8.6. TRIM6 The Linear Strain Membrane Element
 

This element was first formulated by J. H. Argyris and is described in
 

references 1 and 2. The present development is based on the derivation in
 

8 



3 

reference 2, and the important characteristics of the element are
 

that­

1. The stresses and strains vary within the element linearly
 

2. Bilinear variation in the planar coordinates for the thickness of
 

the element is permitted.
 

Bilinear variation in the planar coordinates for the temperature
 

in the element is provided.
 

4. Differential stiffness and piecewise linear analysis capability
 

are not implemented at present.
 

The element is compared for accuracy against theoretical results in
 

section 15 4. The calculation of its mass properties is discussed in
 

section S.8.4
 

5.8.6.1 Geometry and Displacement Field
 

The geometry of the element is shown in figure Al. The element has six
 

grid points, three at the vertices and three at the midpoints of the sides.
 

u and v are components of displacements parallel to the x- and
 

y-axes of the local (element) coordinate system The inplane displacements
 

at the corners of the element are represented by the vector {ue where
 

{UeIt = Lui vI u2 v2 u3 v3 U v4 u vS u v6j (1)
 

Let [Kee] be the stiffness matrix referred to the vector {ue
 

i.e.,
 

}
[Keel {Ue} = {fe (2)
 

where the elements of {fe I are the inplane forces at the corners of the 

element. The stiffness mAtrix [Keel is derived by standard finite element 

procedures. 

The u and v displacements are assumed to vary quadratically with
 

position on the surface of the element,
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Figure Al. TRIM6 membrane element in element coordinate system.
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2 2
u = a, + a2x + a3y + a4x + a5xy + a6y (3) 

b7 
2 + b1 2y

2v = + b8x + b9y + b1 ox + bllxY (4) 

The quantities , , . . . , , , may bea1 a2 a6 b7 b8 b12 


regarded as generalized coordinates to which the displacements at the corners
 

of the element are uniquely related, i.e , the vector of generalized coordinates
 

is expressed as
 

=
fa}T aasa4asaeb7b8bbl obubli 2j (5)
 

In concise form equations (3)and (4)are written as
 

6 m n
 
u ax y (6) 

12 pi ql

V E b x y (7)

i=7 i
 

For convenience in later calculations, the range of summation is kept as
 

1 to 12 for expressions for both u and v , i.e.,
 

12 m n
 
u aix y (8) 

12 . qx
1 ()
v bbx y9)

i=1
 

such that
 

m1 = 0 , m2 = 1 , m3 = 0, m4 = 2 , m5 = 1, m6 = 0 

n I = 0 , n2 = 0 , ng = 1 , n 4 = 0 , n5 = 1 , n6 = 2 

a = m = n. = 0 1= 7 to 12 (10) 
1 11 



=P7 = 0, P8 = I ; p9 0 ; Pl0 = 2 ; P1l = I ; P12 = 0 

q7 = 0 ; q8 = 1 ; q9 = 0 ; q10 = 0 ; q11 = I ; q12 = 2 

= =bi = Pi q, 0 1 = .1 to 6 .(11) 

In matrix notation, the vector {ue Iis written as
 

{u} = [H] {al (12)
 

where the 12 x 12 [H] matrix can be obtained by substituting the coordinates
 

of the six grid points into equations (8) and (9). Since complete polynomial 

expressions are chosen for the u and v displacements, the inverse of
 

[H] matrix exists. Hence fal can be expressed as 

{a} = [H]-1 {uel (13) 

Bilinear variation in the x- and y-coordinates is assumed for the
 

thickness t of the element, i.e., the thickness t of the element at
 

any point (x,y) within the element is given by
 

t(x,y) = c1 + c2x + c3y (14) 

In concise form, this is written as
 

3 rk s k 
t L ckx y (15) 

k=l 

The thickness of the element at the three vertices is specified as 

t , t 3 ,t 5 . Hence the coefficients cI , c 2 , c3 can be expressed 

as 

t1a + t3b
 
Cl =(a + b) (16)
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-t 3 t1 
C2 = a + b (17) 

1 
c3 = 1- (t5 - cl) (18) 

where a , b , c are the projected lengths of the triangle on the local 

x- and y-axes and are obtained from the basic coordinates of the vertices 

of the triangle as given in section 4.87.21.2 of the Programmers' Manual. 

The membrane strains are
 

yi
=x u 12 (rm-i) n (19)
 

-
av 12 Pl (ql I) (20)ay-- bIVIX 
y y b x Y 

@u av = mI (n1-i) (p-l) q1) (21)+ - Ix y + b ipx y) 

The stress vector {} is related to the strain vector by the two-dimensional
 

elastic modulus matrix, [Ge :
 

{u} = [Ge] {c} (22) 

The specification of [Ge] for isotropic and anisotropic materials is the
 

same as that given by equations (13), (14), and (15) in section 5.8.4.
 

The membrane strain energy of the element is
 

Es = -i f {a}T {el tdxdy (23) 

By virtue of equation (22) and the symmetry of matrix [Ge] 
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= 1 f FIT" [G. JI tdxdy (24) 

Substitution of equation (15) into equation (24) results in
 

1 (k31 rksk
 

E = 1 f {SIT [G]I s (± %xk y ) dxdy (25) 

Expressing the elements of the symmetric portion of the matrix [G] by 

G , G ,12G13 , G22 , G23 , G33 , i.e., 

G11 G12 G13
 

[G1elG2 2 (26)
 
LSy G331 

and performing the matrix multiplication of equation (25), the expression for
 

strain energy becomes
 

Es =.fIc 12G~ + s2622 + y2 G33 + 612 (e £ + e XJ 

+ G13 (Esxj + Yex) + 623 (67y+ YEy) (27) 

To proceed further it is necessary to have a formula for the integral of 

the type 

ff xmyn dxdy 

taken over the area of the element. The value of the integral is given in
 

reference 3 as
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ff 	 xmyndxdy = F(m,n) 

Cn+l am+l (-b)m+l } m'n! (28) 

(m+n+2)!=c a1 

Using equations (19), (20), (21), and (28) in (27), the first term of
 

equation (27) becomes
 

I ff 2I 3 r k Sk) 

eff2 E CkX y) dxdy
k=l
 

(29)
 
12 12 3 

i=1Z =lZ. k=lZ aaajckmImj k F(mI + m + rk -2,k= 	 1S3) 

Similarly the other terms of equation (27) can be expressed in terms of the 

area integral F . The strain energy, E , can also be expressed as 
1S 

Es 1	 {aT [ke {a} (30)1 ]2 1 gen 

where 	 [kgen] is the stiffness matrix with respect to generalized coordinates 

{a} Expressing each of the terms of the-right-hand side of equation (27) in
 

terms of the area integral F and comparing the same with equation (30), the
 

jth element of the ith row of the generalized stiffness matrix is
 

k =E ck + m + rk -2, n + n + 
k=l L i 3 9 

+ 22q 	q F(PI + P + r k' q, + q3 + Sk - 2) 

" G33 	nnF(m i+m + rk, n + n + sk - 2)1~ r 3 
(31) 

+ 	p p F(pi + p + rk - 2, qI + q) + sk) 
13 n + n j k ­

n IpIF(m +k n +s+p 1 +q ­

pIn F(m rIql+ +)J kp rk+ 	 - (continued) 
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+ G12ImjqiF(mj + pi + k - 1, , + qi + 'k = 1) 

+ mlqjF(m, + p. + r - 1, n + q. + k 
13mi 1 1k - i, n. nJs 

+ G13 (mn + minj)F(m, + m3 + rk ni + n + S )j k 

+ m P.F(mI + Pi + rk - 2, n. + qi + Sk) (31)
(concluded)
 

+ mip F(m. + p. + rk - 2, n. + qj + S
 
13 1 3 10)~ 

" G23I (piqj + pjqi)P(pi + pj + r k - , q + qj + sk 1) 

niqjF(mi + pj + rk, n i + qj + Sk - 2) 

-+ njqiF(m + Pi + rk, n, + qi + sk 2)ll 

Using equation (13), the generalized stiffness matrix [kgen I can be 

transformed to element stiffness matrix [kee ] as 

.[keel] = [H-1]T [kgen ] [H-'] (32) 

As a final step, the stiffness matrix is transformed from the local
 

element coordinate system to the basic coordinate system of the grid points
 

and to the global coordinate system. Let the transformation for displacements
 

be
 

= [E] T {Uelement} (33){"basic} 

and
 

(34)i U global} = [T] {%a.sc} 

Then, 

[kbasic] = [E] [kelement] [E] T (35) 
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and 

[kglobal] = [T] T [kbasic] [T 	 (36) 

Substituting equation (32) in equation (35) and equation (36), the global
 

stiffness matrix becomes
 

[kglobal] = [T] T EE] [H-i]T [kgen] [H-1] [E] T [T] 	 (37) 

Equivalent Thermal Load Vector:
 

Thermal expansion of an element produces equivalent loads at the grid points.
 

Thermal expansion is represented by a vector of thermal strains.
 

e 

{E:xt 	 ae 1 (T-TO) ={at (T -TO) (38) 

ae3lyt 	 a 

Where fae} = [U]-1 {UmI is a vector of thermal expansion coefficients, 

[U] is the strain transformation matrix given in equation (15) in section 

5.8.4, and {aM} is the vector of thermal expansion coefficients in the 

material axis system, T0 is the reference or stress-free temperature of the 

material, and T is the temperature at any point (x,y) in the element and 

is given by a linear polynomial. 

T = d, + d2x + d3y 	 (39)
 

In concise form, this is written as
 

3 tgug
 

T 	 Z d~x y (40) 
£=i1 

17 



The temperature T1 , T3 , and T5 at the three vertices of the 

element will be modified by the reference temperature T0 and used to 

evaluate the three constants d, , d2 , and d3 

Tia + T~b
 
(a + b) (41)
 

d2 T; 1(42)

(a + b)
 

d3 = 4 [T; d1] (43) 

where
 

T= (TI -T) ; T = (T3 -T) ; and T= (T3 -T) (44)
 

An equivalent elastic state of stress that will produce the same thermal
 

strains is
 

t =a [Ge ist} = [Ge] {%} (T- T) (45) 

An equivalent set of generalized loads {PgenI applied to corners of
 

the element is obtained from the relation
 

{a}t Pgen} = J {}t {at I tdA
 
gn A
 

ff {SIt [Ge{aI ( t1 dxY (46) 

Y) dxdy(t1 

18 



Performing the matrix multiplications in equation (46) and using the following
 

notations, viz
 

G1 = Gll el + G12ae2 + G13 ae3 	 (47)
 

G22 = G2ael + G22ae2 + G2 3 ae3 	 (48)
 

G33 = G13ael + G2 3ae2 + G33ae3 	 (49) 

Equation (46) reduces to
 

{a}t {P genI = ff 	 CG11 + :yG2 + YG 3 ) 

(50)

/3 t u\) 	 3 rk sk 

_ CkX y) dxdydx Y 


Performing the integration term by term, the first term in equation (50)
 

becomes
 

ff CxG 1 F± dyxrz (L CkX y) dxdy 

12 3 3 
E ZE , GilamCkd ff x + rk + - 1) 
1=l k=l Z=l (51) 

. y(n i + s k + uZ) dxdy 

12 3 3 
E12 E G'1a m cd F(m+r+t-1 n s 

+

l aimi kdYFi t - i '+k u)1=lk= 	 rk 


Similarly, the second and third terms of equation (50) reduce to
 

12 3 3 

Z Z Z GI2b q ckd F(p + rk + t q1 + s + u£ -1) 
i=l k=l £=l 

19 



and
 

Z E Gk3ckdz{ainF(m + rk + t, n. + sk + u. -)i k z 

+ bIpIF(pi + rk + t- qi + 'k + ) 

respectively. From equations (50) and (51), the ith element of the generalized 

load vector {Pgen I is 

3 3r(Pgen) = 3 3l k t [GLimiF(mi + rk + tt - i, n, + + 

k=l k=i 

+ G 2qiF(pi + rk + t, qi + + u£ - 1)22 ' s ' u.(52) 

+ Gv'{niF(m + rk + tz, nli + Sk + u. -1) 

I,
+ PiF(pi + rk + t - qI + sk + u£)}] 

The generalized equivalent load vector {Pgen I is transformed to load vector 

IPe I in element coordinate and to {P } , in global coordinates by the 

following transformations 

{Pe } = {H-}T{Pgen} (53) 

and 

{Pg1 = [T]T [B] (Pe } (54) 

After the grid point displacements have been evaluated, stresses in the 
element are computed by combining the relationships 

fueI = [E] [T]T fug1 (55) 

fal = [H-i] {use (56) 
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{} is evaluated from equations (19), (20), and (21). Stress vector
 

{a} is then equal to
 

[a) 	= [Ge ({i - {St1) (57) 

The stresses are computed at the three vertices and at the centroid.
 

The principal stresses and the maximum shear force are computed from the
 

elements of faI The direction of the maximum principal stress is
 

referenced to the side 3oining grid points 1 and 3 of the triangle.
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5.8.7 TRPLTI, higher order bending element
 

This element was developed by Narayanaswami (refs. 1 and 2) as a 

modification of the high precision bending element of Cowper, et al. (ref. 3). 

The element has grid points at the vertices and at the midpoints of the sides 

of the triangle. At each grid point, there are three degrees of freedom 

in the element coordinate system, viz, the transverse displacement, w , 

normal to the X-Y plane, with positive direction outward from the paper, and 

the rotations of the normal to the plate a and 8 , with positive directions 

following from the right-hand rule. The element, thus, has 18 degrees of 

freedom in the element coordinate system. The transverse displacement, 

w , at any point within and on the boundaries of the element is assumed to 

vary as a quintic polynomial. Since the variation of deflection along any 

edge is a quintic polynomial in the edgewise coordinate, the six coefficients 

of this polynomial are uniquely determined by deflection and edgewise slope 

at the three grid points of the edge. Displacements are thus continuous 

between two elements that have a common edge. The rotation about each edge 

is constrained to vary cubically; however, since the rotations are defined 

only at three points along an edge, there is no rotation continuity between 

two elements that have a common edge. The element thus belongs to the class of 

nonconforming elements. The requirement that the edge rotation varies 

cubically along each edge established three constraint equations between the 

coefficients of the quintic polynomial for w . These equations together 

with the 18 relations between the grid point degrees of freedom and the 

polynomial coefficients serve to evaluate uniquely the 21 coefficients 

al to a 21  of the quintic polynomial assumed for the transverse displacement. 

5.8.7.1 Derivation of element properties
 

Element geometry: Rectangular Cartesian coordinates are used in the
 

formulation. An arbitrary triangular element is shown in figure A2.
 

X , Y , and Z are the basic coordinates, x , y , and z are the local
 

coordinates. The grid points of the element are numbered in counter-clockwise
 

direction as shown in the figure. The lengths a , b , and c shown in
 

figure A2 can be easily evaluated from the basic coordinate (XI, YI, ZI),
 

(X3, Y3, Z3), and (X5, Y5, Z5) of the vertices of the triangle.
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X
 

Figure A2. Triangular element TRPLTI geometry.
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Displacement field: The deflection w(x,y) within the triangular
 

element is assumed to vary as a quintic polynomial in the local coordinates,
 

that is,
 

2 + a7 x 3 
w(x,y) = a1 + a2x + a3y + a4x

2 + a5xy + a6y

+ a8x2y + agxy2 + al0y 3 + alx 4 + aj2x3y 
(i)
 

+ al3x2y2 + a14xY
3 + a15y4 + a16x5 + a17X4y 

3 2 2+ a1 8x y + a19x y3 + a20Xy
4 + a21y 5 

In concise form, this is written as
 

21 m.n.
 
w aix l (la) 

i=l
 

There are 21 independent coefficients, a1 to a21  These are evaluated
 

by the following procedure.
 

The element has 18 degrees of freedom; namely, lateral displacement 

w in the z-direction, rotation a about the x-axis, and rotation S 

about the y-axis at each of the six grid points. The rotations a and a 

are obtained from the definitions of transverse shear strains yxz and 

y yz ,that is,
 

7xz -Dw ++w yz =ayC2 (2)@x 


It is shown later on that yxz and yyz and hence a and a at any
 

grid point can be expressed in terms of the coefficients a1 to a21 .
 

Thus, 18 equations relating w , a and $ at the grid points to the 21
 

coefficients are obtained. Three additional relations are required so that
 

the 21 coefficients can be uniquely determined. These relations are obtained
 

by imposing the condition that the edge rotation varies cubically along each
 

edge. It is clear that these three constraint equations involve only the
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coefficients of the fifth degree terms in equation (1), since the lower
 

degree terms satisfy the condition of cubic edge rotation automatically.
 

Moreover, the condition depends only on the orientation of an edge. Along
 

the edge defined by grid points 1 and 3 (where y = 0), the condition of
 

the cubic edge rotation requires that
 

a17 = 0 (3) 

Along the edge defined by grad points I and 5 (inclined at angle & to the
 

x-axis) the edge rotation re is given by
 

ee
 
re = sin & + a cos 6 = - (Sa6 X 4 + 4a7x3y + 3a8x2y2
 

3 4 3 2 2
+ 2a1 gxy + a20y
4 ) sin 6 + (a17x + 2a18x y + 3a19x y (4)
 

3
+ 4a20xy + 5a21y
4) cos 6 + . 

where the dots indicate terms of third or lower degree. Also, along this
 

edge,
 

x = s cos 6 y = s sinS (S)
 

where s is the distance along the edge and
 

2
cos 6 = b//7 sin 6 = c/b--2 + c (6) 

By substituting x and y from equation (5) and cos 8 and sin 6
 

from equations (6) into equation (4) and rearranging (so that the leading
 

terms are positive), the condition for cubic variation of rotation about
 

edge 1-5 is
 

2 3
5b4ca1 6 + (4b
3c - b5)a1 7 + (3b

2c - 2b4c)a1 8
 

(7)
 
+ (c5 - 4b2c3)a 20 - Sbc4a 21 = 0
 

+ (2bc4 - 3b3c2)a19 
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Similarly, the condition for cubic variation of the rotation about the edge
 

defined by grid points 3 and 5 (fig. 1) can be written as
 

2c3
5a4ca16 + (-4a 3c2 + a5)a1 7 + (3a - 2a4c)a18
 
(8)
 

5
+ (-2ac4 + 3a3c2)a19 + (c - 4a2c3)a20 + 5ac4a21 = 0 

The 18 relations between grid point displacements and the coefficients of the
 

polynomial in equation (6)are written as
 

{&} = [0] {a} (9)
 

where {6} is the vector of grid point displacements, [QJ is the 

18 x 21 matrix involving the coordinates of grid points substituted into the 

functions w [eq. (1)] and the appropriate expressions of a and B derived 

in detail later, and {a} is the column vector of coefficients a, to 

a 2 1 . The [Q] matrix is now augmented by the three constraint equations 

(3), (7), and (8) to form a new 21 x 21 matrix [R] in the following equation­

{a = [R] {a} (10) 

where
 

(SI
 

0 
{6a} = 0 (10a)
 

0 

For use in the evaluation of the stiffness matrix, {a} needs to be expressed 

in terms of ISa ; and, hence, it has to be established that the inverse of 

matrix [R] exists. The nonsingularity of such a matrix [R] for the 

T-15 and T-21 elements of Bell (ref. 4) follows from the completeness of 

the polynomials for w . For the high precision element, Cowper et al. 

(ref. 3) give an explicit expression for the determinant of such a matrix and 
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show that the matrix is nonsingular in all practical situations. For this
 

element, a numerical experiment described in reference 1 verifies that
 

R is nonsingular for all practical cases. Hence, equation (10) is inverted
 

to give
 

{a} = [R]-i {6a} (11) 

This equation can also be written as
 

{aI = Es] {w} (12) 

where Is] is a 21 x 18 matrix and consists of the first 18 columns of
 

[R]- . 

From the computational standpoint, it is advantageous to substitute 

equation (3) into equation (1) and replace coefficients a18 to a21 
by coefficients a1 7 to a2 0 , respectively. The matrix [Q] then is of 

size 18 x 20, [R] becomes 20 x 20 , and Is] becomes 20 x 18. To add 

to the clarity of presentation, however, the complete quintic polynomial for
 

w in equation (1) is retained throughout this section, and matrices [Q] ,
 
[R] , and [s] and vector {a} will have sizes 18 x 21, 21 x 21, 21 x 18, 

and 21 x 1, respectively. 

Elastic relationships The elastic relationships are obtained from the
 

theory of deformation for plates (ref 5) The curvatures are defined by
 

x @B
 
x x
 

x 3t(13)
 
y -)1
 

xy ax ay
 

Bending and twisting moments are related to curvatures by
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= [D] (14) 

Ix{} 

where [n] is, in general, a full symmetric matrix of elastic coefficients.
 

For a solid isotropic plate of uniform thickness t
 

[D] V 1 0 (15)t3--- 12 (1 - v2) 

2 

The thickness t of the element is assumed to vary bilinearly with
 

position over the surface
 

t : c1 + c2x + c3Y (16) 

In concise form, it is written as
 

3 
 rk s-k
t L cCkX K (16a) 

k=l 

The thickness of the three vertices of the element tI , t3 , and t5 

will be used to evaluate the constants cl , c2 , and c3 It can be 

shown that 

t1a + tgb 
Cl = (a + b) (17) 

- tI 
C2 = (a + b) (18) 

t3 


C3 = " [t5 - Cl] (19) 
c
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where a , b , c are the length of the element marked in figure BI.
 

For an isotropic plate, [D] becomes
 

r +r +r s +s + 

[D] = [G] E 7 c cCXk) 	 (20)
j=1 k=l
 

where 

E E0 
22 1-vi-V 

[G] = E E 0 	 (21) 
-v 2 -V 2 

E0 0 o o 2(1 + v) 

For anisotropic materials with the material orientation axis inclined at
 

to the x-axis, the material elastic modulus matrix [Dm] is transformed to the
 

element elastic modulus matrix by
 

[D] = [U]T [Dm] [U] 	 (22) 

where 

Ccos 2 sIn2 ~ cos *sin~ 

2 2[U] 	= sn cos -cos sin # (23) 

2-2cos sin p 2cos sin q cos - sin 2 

The posLtive sense of bending and twisting moments and transverse shear
 

resultants is shown in figure A3.
 

The moment equilibrium equations are written as
 

v+±~i+- -2=0 	 (24)
x x ay 
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3M 
m + Xydy 

v+ avY dy-aay y + a--y dyD 

>, N,, Vx 
vg+am dx ax 

3V 

Mx- dy 
X 

Mx + 'Mydx 

M + - dx 
V x 

X 

/ 3M 

MYY 

dx 

xy
 

Figure A3. Sign convention for moments and shears.
 



aM 3M
 
V - + x (25) 

y ay ax 

Transverse shear strains are related to the shear resultants by
 

{y} = = [E] (26) 
IYyz V y
 

The matrix [J] is, in general, a full symmetric 2 x 2 matrix of elements 

Jll , J12 (J2 1 = J12) and J2 2 . For a plate with isotropic transverse 

shear material, 

(27)
[j] =] 


t * where G is the shear modulus and is an "effective" thickness for 

transverse shear. For a simple case of a plate of uniform thickness t 

t* has the value t .
 

From equations (24), (25), and (26), it follows that
 

= + +Yxz -J11 [-ax -ax a -­

(28)
 

- 2 I + XyYyz -J1 2 - + . 1 
Lz x ay 22 Ly axj 

Performing the partial differentiation with respect to x and y on
 

equation (14), with subscripts on D denoting the elements of [D],
 

results in
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am
 aaxy
x -xx + Da3--xBM-- + DIZ--x ax 

BM , ax ax ax
 

-y =D12--y D22;y
+ 	
By 

(29)
 

amXy D1 ax a ax
 
- D23-aX +13 

-- X ax + D3 axy 

am - D13ax + axy
By ay Dy - + axX 

where the symmetry of the [D] matrix has been used. By substituting
 

equations (29) into equations (28),
 

3
= x Ba Bx
 
yz 1T l'x + D12 -y+ DI- ­

+ D13-- + D23 axy + D33axY 
a8x 	 Bx 1 

J12~1- D D 3-y + -- y­

+ U1-'x + D22 + D23 

and
 r ax Bxy a.xv 
[, ,
12 aXx + aXY+ D13 a _xY
 

+ D13- X + D2 a + Dax 
(31) 

- J 1 D 23 + D22±7 + D23 -y 

Ixx 	 IXy D aXxy ] 

(321
1 x 
 ax 
 3x
 



Rearranging and writing equations (30) and (31) in matrix notation yields
 

Xx,x 

Yz 
 [AI 1 AI 2 A1 3 A1 4 A1 5 A1 6 xy C2
 

Yyz A21A2 2A2 3A24 A2 5A2 6] 	 Xx(
 

~X y
 

Xxyy
 

where a comma in the subscript denotes partial differentiation and where 

All = -(J1 DII + J1 2D1 3) (33a) 

=A1 2 -(J11 D 2 + J12D2 3) 	 (33b)
 

A1 3 = -(J 1 1 D1 3 + J1 2D33) 	 (33c) 

A14 = -(J11 D1 3 + J1 2D1 2) 	 (33d)
 

A1 5 = -(JID 2 3 + J1 2D2 2) 	 (33e)
 

A1 6 = -(J1ID 3 3 + J12D2 3) 	 (33f)
 

A2 1 = -(J12DI1 + J2 2D1 3) 	 (33g)
 

A22 = -(J12 DI3 + J2 2D2 3) 	 (33h)
 

A2 3 = -(J1 2D1 3 + J2 2D3 3) 	 (331) 
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A24 = -(Jl 2D13 + J22DI2) (33j)
 

A25 = -(JI2D 2 3 + J2 2D2 2) (33k)
 

A26 = -(J12D33 + J2 2D2 3) (331) 

From equations (2)and (13), it follows that
 

2
a8D w ayxz
 
= -5
x= x -x 

2ax 3x Bx
 

-y B B2w Yyz (34)
=
By y
 

B2
Saa as -2 w BYxz ByZ 
xy =-x By- axay By ax 

Shear forces (and hence shear strains) are proportional to the third
 

derivatives of the displacements. Since the displacement within the
 

element is assumed to vary as a quintic polynomial, shear strains are
 

expressed by a quadratic polynomial as follows
 

2
Yxz = b1 + b2x + bgy + b4x2 + bxy + b6y (35)
 

2
Yyz = b7 + b8x +b9 y + blox2 + bllxy + b12y (36)
 

The task now is to express the unknown coefficients b, to b6 and b7 to 

b12 in terms of the generalized coordinates a, to a21 . Performing the 

differentiations on Xx xy , and xxy and substituting w I Yxz 

and yyz from equations (1), (35), and (36) into equations (34) 
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Xx,X 

x 
33w 
3 

ax3 
-

a2Y 
__ 

3x2 
=6a7 + 24al1x + 6a 12y + 60a1 6x 

2 

+ 24a 17xY + 6a1 8y
2 - 2b4 

(37) 

3w a yYZ = a9 + 4a1 3x + 6a14y + 6a1 8x
2 

X~ axay 2 8x y 

+ 12al9xy + 12a 20Y
2 - bl 

(38) 

Xxy,x 2a -- - 2 y 32DX---X-
-
x 2 3w a yxz yyz = 4a3 + 12a 12x + 8a1 3y
__x2_y - xx ___ 

2 
- - 2blo
2 + 24a 1 8xy + 12a 19y
b5 


+ 24a 17x


- - xz = 2a8 + 6a12x + 4a13Y + 12al7x
2 

(40)
 
+ 12a,8xy + 6a1 gy

2 - bs
 

2 
-_ YZ = 6a1 O + 6a1 4x + 24a15y + 6a1 9x

8y3 3y2 

(41)
 
+ 24a2 oxy + 60azly 

2 - 2b12 

and
 

Xxyy =2 32W XZ = 4a9 + 8a13x + 12a 14y
2 Dy2 axay
@xay

(42)


2
+ 12a 18x
2 + 24a1 gxy + 24a20y - 2b6 - bl,
 

By substituting equations (35) to (42) into equations (32), the foll6wing
 

equations are obtained.
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2
bi + b2x-+ b3y + 	b4x + b5xy + b6y 2 = Al1 (6a7 + 24al1x
 

+ 	6a12y + 60a6x2 + 24alTxy + 6alay2 - 2b4) 

2+ A12(2a9 + 4a13x + 6ally + 6a18x 2 + 12algxy + 12a20y - bil) 

2 
+ A1 3 (4a8 + 12a 12x + 8a13Y + 24a1 7x

2 + 24a18xy + 12a 19y
(43) 

- b5 - 2bio) + A14 (2A8 + 6a12x + 	4a13y + 12a 1 7x2 + 12al8xY 

+ 6a19y2 - b5) + A15,(6a10 + 	6a14X + 24a 15x + 6a19x
z 

+ 24a 20xy + 60a2jy
2 - 2b12) 	+ A16 (4a9 + 8a13x + 12a 14y 

+ 12a1 8x
2 + 24algxy + 24a 2 0y

2 -	2b6 - bil) 

2
b7 + bSx + b9y + bloX
2 + b11xy + b1 2x = A21 (6a7 + 24a11x 

2+ 	6a12y + 60a 16x
2 + 24a17xY + 6a18y - 2b4) 

2 + 12a19xy + 12a 20Y
2 

+ A22 (2a9 + 4a13x + 6a14y + 6a18x

- b1l) + A23(4a8 + 12a 12x + 8a1gy + 24a1 7x
2 + 24a18xy 

2 (44) 
+ 6a12x + 4a1 3Y 	+ 12a 7x
 

- 2b10 ) + A2 4 (2a8
+ 12a 19y
2 - b5 

+ 	 12al8xy + 6a19y
2 - bs) + A25 (6a10 + 6a14x + 24a15y 

2+ 	6aj9x 2 + 24a20xY + 60a 21y - 2b12) + A26 (4a9 + 8a13x 

2 2b6+ 12a 14y + 12a 1 8x + 24a1gxy + 24a 2 0Y
2 

- - bi ) 

By comparing coefficients of like powers in x , y 	, 2 , xy , and 

2
y and constants of equations (43) and (44), the coefficients b, to
 

be and b7 to b12  can be expressed in terms of the generalized
 

coordinates to Thus
a1 a21  
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b2 = 24Aiial + 6(A1 4 + 2A1 3)a12 + 4(A1 2 + 2AI6)aj3 + 6A1 5a 14 

b3 = 6Alla 1 2 + + + 6(A 1 2 + 2AI6)aI4 + 24A1 5a1 54(A 1 4 2A1 3 )a 1 3 

b4 = 60Allal6 + 12(A 1 4 + 2AI3)a1 7 + 6(A12 + 2A1 6)ai8 + 6A1 sa1g 

= 24Alla 1 7 + 12(A 14 + 2AI3)a1 8 + 12(A 12 + 2A16)a1 9 + 24A15a20 (b 5 (45) 

b 6 = 6AIa 1 8 + 6(A14 + 2A13)a19 + 12(A 12 + 2AI 6)a20 + 60A15 a21 

bl = 6Alia 7 + 2(A14 + 2AI)a 8 + 2(A12 + 2A16)ag + 6A15a1 0 

- 2Ajlb 4 - (A1 3 + A 1 4 )b5 - 2A1 6b 6 - 2Alsb10 - (A1 2 + A,6)bll 

- 2A 1 5 b 1 2 

b8 = 24A2 1all + 6(A2 4 + 2A2 3)a1 2 + 4(A2 2 + 2A26)al3 + 6A2 5a14
 

b9 = 6A21a12 + 4(A2 4 + 2A23)a13 + 6(A2 2 + 2A2 6)al4 + 24A2 5a1 5 

blo= 60A 2 1 + 12(A 2 4 + 2A23)a17 + 6(A 2 2 + 2A26)a18 + 6A2 5 a1 9
 1 6 


bl = 24A2 1a1 7 + 12(A 24 + 2A2 3)a18 + 12(A 22 + 2A2 6)a1 9 + 24A2 5a20 
(46)
 

b12 = 6A21a1 8 + 6(A2 4 + 2A2 3)a1 9 + 12(A 2 2 + 2A2 6)a20 + 60A 2 5a21 

b 7 = 6A21a7 + 2(A2 4 + 2A2 3)a8 + 2(A22 + 2A26)a9 + 6A2 5a1 0
 

- 2A2 1 b4 = (A2 3 + A2 4 )b5 - 2A2 6b 6 - 2A2 3 b 10 - (A2 2 + A26)bll
 

- 2A2 5 b1 2 
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If equations (45) and (46) are substituted into equations (35) and (36),
 

the explicit relation between the transverse shear strain and the generalized
 

coordinates (i.e., coefficients of the displacement polynomial) can be
 

obtained in matrix notation as
 

{y} = [B1] {al (47) 

where [B1 ] is a 2 x 21 matrix whose nonzero elements are as follows:
 

Bj(1 ,7) = 6Aj 1 (47a) 

Bi(1,8) = 2A31  (47b) 

B1(1,9) = 2A32  (47c)
 

B1 (l,I0) = 6A15  (47d)
 

BI ( I ,1 I ) = 24AIx (47e) 

BI (I,12) = 6(A31x + Ally) (47f) 

BI(l,13) = 4(A32x + A31y) (47g) 

BI(l,14) = 6(A15x + A32y) (47h)
 

B1 (1,15) = 24A 15y (471)
 

BI1(,16) = -120(A 2
11 + A13A2 1 - 0.5AIIx2 ) (47j)
 

BI(l,17) = -24 [All(A 31 + A38) + A13A33 + A21A39
 

(47k)
 
- O.5A 31x

2 - AIXYJ 
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BI(1,18) = -12(A 1IA 3 2 + A13A34 + A38A31 + A39A33 + AlIA16 

(471)
 
2
+ A15A21 - O.SA - A3 1xY - 0 SAlly 2)32x


B1 (1,19) = -12(A 11A1 5 + A13A25 + A38A32 + A39A34 + A16A31 

(47m)

2
+ A15A33 - 0 SAI5 x - A 3 2xY - 0.5A 31y

2) 

BI(1,20) = -24(A 1 5A 3 8 + A25A39 + A16A32 + AI5A34 

(47n)
2)

- O.5A32y
 

- A1 5XY 


B1 (1,21) = -120(A 15A1 6 + A15A25 - 0 SA15y
2) (470)
 

BI(2,7) = 6A21 (47p)
 

B1 (2,8) = 2A3 3  (47q)
 

Bl(2,9) = 2A34 (47r) 

B1 (2,10) = 6A2 5  (47s)
 

BI(2,11) = 24A 2 1x (47t)
 

B1 (2,12) = 6(A33x + A2 1Y) (47u)
 

BI(2,13) = 4(A34x + A3 3y) (47v)
 

B1 (2,14) = 6(A25x + A34y) (47w)
 

BI(2,1S) = 24A 2 5Y (47x)
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BI(2,16) = -120(A1IA2 1 + A23A2 1 - O.5A 2 1x
2) 

B1 (2,17) = -24(A 21A3 1 + Al1 A4 0 + A23A3 3 + A21A34 

- 0.5A 3 3x
2 - A2 1xY) 

B1 (2,18 ) = -12(A 2 1A32 + A2 3A34 + A4 0A31 + A4 1A 3 3 + A26AIl
 

2
+ A2 5A2 1 - O.SA 3 4x - A3 3xy - O.SA2 1Y
2) 

BI(2,19) = -12(A 21A1 5 + A2 3A2 5 + A4 0A32 + A4 1A 3 4 + A26A31
 

2
+ A25A3 3 - O.5A2 5x - A34xy - O.5A33Y
2)
 

B1(2,20J = -24(AI5A4 0 + A2 5A41 + A2 6A 32 + A2 5A 34 - A2 5xy 

- 0.5A 34Y
2 ) 

B1 (2,21) = -120(A 15A2 6 + A2 - O.SA2 5y
2 )  

2 5 


where All , A12 , A1 3 , A14 , A1 5 , A16 , A21 , A2 2 , A2 3 

A2 5 , and A2 6 are as defined in equations (33) and 

A3 1 = A14 + 2A1 3
 

= A1 2 + 2A1 6A3 2 


A 33 = A24 + 2A2 3  


A 34 = A2 2 + 2A2 6
 

= A 3 3 + AllA 3 5 


(47y)
 

(47z)
 

(47aa)
 

(47bb)
 

(47ec) 

(47dd)
 

, A2 4
 

(48)
 

(continued)
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A36 = A34 + A31
 

A 3 7 = A2 5 + A32
 

A 3 8 = A13 + A14
 

(48)
 
(concluded)
A 3 9 = A12 + A1 6 


A 4 0 = A2 3 + A24
 

=
A4 1 A2 2 + A2 6
 

If the plate is assumed to be rigid in transverse shear, the coefficients 

Al1 to A1 6 and A 2 1 to A2 6 of equations (33) are zero (since G = m), 

and, hence, coefficients b1 to b6 and b7 to b 12 of equations (40)
 

and (41) are zero. Moreover, the transverse shear strains vary linearly with
 

G-1 with {y} approaching 0 as G +- , that is, convergence to the
 

limiting case of zero transverse shear is uniform.
 

Stiffness matrix. The strain energy for a plate may be written as
 

U = +ff WMT {xl + M T )Ydxdy (49) 

where fM} is the vector of bending and twisting moments per unit length,
 

{X} is the vector of curvatures, {V} is the vector of transverse shear 

forces per unit length, and {y} is the vector of transverse shear strains. 

Substituting equations (14) and (26) into equation (49), and using the 

symmetry of [D] and [J] matrices, yields 

ffjXi [ (50)[D] {X + {y}T [G] {y} dxdy 


where
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With [Kgen] denoting the generalized stiffness matrix, that is the 
stiffness matrix with respect to generalized coordinates (coeffcients of 

the displacement polynomial) {aI , the strain energy can also be expressed 

as 

u=2aT [Kgen]{a} 

The vector of curvatures {X} is now rewritten as 

=X {Xi} + {X21 =([B2z] + [B3]) {a} (53) 

where
 

32m almi~ i l~(m.-2) n. 
Za mm. ­ 1 y 

{XI} a2W ainl(ni - m)x(n,-2) (53a) 

Wy 

1 1~ ( i~x (2a xay 


and
 

ax
 

- yz 
1 (53b)X21 = z 

-ay 8y~b
 

-Iyxz IYyz
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It follows that {X11 is the vector of curvature in the absence of
 

transverse shear and {X2} Is the contribution of transverse shear to the
 

vector of curvatures.
 

Substituting equation (53) into (50) and comparing the resultant equation 

with (52), noting that {a} is independent of x and y , the generalized 

stiffness matrix can be obtained as 

[Kgen] = ff [B21' ED] [B2] dxdy +ff[B2T [D] [B3] dxdy 

+ ff [B3] T [D] [B2] dxdy + ff [B3]T [D] [B3] dxdy (54) 

" ff [BI] T [G] [Ba] dxdy 

The evaluation of the elements of the generalized stiffness matrix
 

[kgen] in closed form is, though straightforward, very tedious The
 

first term ff [B2] T ED] [B2] dxdy is evaluated in closed form, the other
 

four terms are evaluated by using numerical integration. If the plate is
 

assumed to be rigid in transverse shear, the matrices [B1] and [B3] are 

null, and the last four terms vanish. The numerical integration formulae 

used are the seven-point integration scheme listed in reference 6 and are
 

given below for easy reference. For a triangle, the integrals of the form
 

1 l-L
1 
I= f f f(LIL 2L3)dLIdL2 (55) 

0 0 

can be integrated by using a seven-point numerical integration which can
 

exactly integrate functions up to and including quintic order The value
 

of the integral is given by
 

7 
I = Z Wkfk (L,L2,L3) (56) 

k=l 
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where the points and the weighting factors are as follows
 

Point Triangular Coordinates Weight, 2Wk
 

LI, L2, L3
 

1 1/3, 1/3, 1/3 0.2256 

7 2 al aI $I 
1 

3 3 a1I SI 0.13239415 

4 01 kl a1 

5 a2 52 02 

6 $2 a 2 $2 0.12593918 

7 02 02 a2
 

with
 

a, = 0.05971588 01 0.47014206
 

a2 = 0.79742699 a2 0.101286505
 

Note the error in the value of a, as given in reference 6, page 151. 

Denoting by GII , G12 , G13 , G22 , G23 , and G33 the symmetric 

portion of the Ge matrix of equation (21), it can be shown that the jth 

element of the ith row of the generalized stiffness matrix [Kgen, for the 
case of a plate infinitely rigid in transverse shear, is given by 
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1 3 3 3
 

(KC) gen = S Cklk2ck3
 
k1=1 k2=1 k3=l1
 

Gl 1 m (mI - 1)(m - 1) F(mI + m3 + rk + rk2 

rk - 4, n + n + + + Sk3) 

+ G22n n3 (ni - l)(n - 1) F(mI + m. + rkj 

+rk2 + rk3 n + n +S +s + Sk 4) 

+ ( 4G33mIm3 nn + G12 mIn. (im - 1)(n3 1) 

57)
mjn (m - 1)(n - i)) F(m+ m3 +rkl 

+Tk +rk - 2, n + n + + + - 2) 

2G1imnn3n 3(m - 1) + m} F(m I + m3 

+ ~r+r +53, +n 


rkj + rk2 + 
Tk3 3, nI ki
 

n]2 13 JiJ3nn (n1 - 1)Sk2 + s k - 1) + 2 2 1m3n 

+ mnn 3 (n - )1 F(mI m rk r k2 

rk3 -, + sk sk2 Sk3nI 


All computations involved in evaluating [Kgen ] for the case of a
 

plate infinitely rigid in transverse shear can be carried out within the
 

computer. For plates with transverse shear flexibility, the contribution
 

of the last four integrals of equation (54) will be evaluated using the
 

numerical integration formula [eq. (56)] and algebraically added on to the
 

closed form expression for [Kgen] evaluated by equation (57).
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Once the generalized stiffness matrix [Kgen] is evaluated, the
 

element stiffness matrix in the local element coordinates [ee J is
 
obtained as, by virtue of equation (12),
 

[Kee] = [S]T [Kgen] ES] (58) 

[Keel can then be transformed to the global coordinate system of the 

-surrounding grid points in the same manner as for all other elements. 

Let the transformation for displacements be
 

fubasic = [E]T {ulelement (59) 

and
 

{Ulglobal = IT] fulbasic (60) 

Then, the stiffness matrix in global coordinates is
 

[K]global = [T]T [E] [Keel [BI [T] (61) 

Equivalent thermal bending loads
 

The following derivation to obtain the equivalent thermal bending loads
 

is given for the case of different thermal gradients at the three vertices
 

of the element. This capability is not currently operational in NASTRAN.
 

However, the derivation is valid for cases with the same thermal gradients
 

at the vertices, if T3 and T5 in equations (83), (74), and (75) are set
 

equal to TI .
 

The stress-free strains developed in a free plate due to a variation
 

of temperature with depth are
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{Et y : e2 (T- Tref)= {ael (T- Tref) (62)
yt 


I e3et 

where T is the temperature at any point (x,y,z) of the element, T ef is
 

the reference or stress-free temperature of the material, and {ae) is the
 

vector of thermal expansion coefficients in the element coordinate system
 

An applied stress vector which would produce the thermal strains is
 

{Gt = Ge ] {t } = [Ge] {ae (T - Tref) (63) 

where [Ge] is the matrix of elastic coefficients at the point on the
 

cross section 
t 

The generalized equivalent thermal load vector {p n is obtained 
as gen 

(Pten a f {sf'ot}dv (64) 
gen dial v 

The strains {r} are related to the curvatures {XI by
 

{6} = -z{x} (65) 

where z is measured from the neutral surface of the plate Substituting
 

equations (63) and (65) into equation (64),
 

{Pten } = -{a} f z{xyT [Ge]{t e } (T - Tef)dV (66) 

The variation over the surface of the element of the mean temperature,
 

T , and the thermal gradient at a cross section, T' , is assumed to be
 

a bilinear polynomial.
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i0 dx yp (67)q, 

3 p, q,
 

i=l
 

TO = d.x y (68)
 

so that the temperature at any point (x,y,z) T , is 

T=T0 + T'z (69)0
 

The constants d. and d' are evaluated from the values at the
 1 1
 

vertices. Thus,
 

Tola + T 3b
 
dl = (a + b) (70)
 

T;3 - T01!
 

d2 = (a + b) (71)
 

d3 [T 5 - d1 ] (72)
 

T'a + T b
 
dj = (a + b) (73)
 

- T( 
d (a + b) (74) 

d= = [ - d{] (75) 

where T I , T , and T'5 are the difference between the grid point 

mean temperature T01 , T03 and T0 5 , at grid points 1, 3, and 5, 

respectively, and the reference temperature, Tref 
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It is convenient to define the equivalent thermal moment vector
 

Mt} = - f [G ] {} (T- "T,,f)z Z
 
z
 

+t/2
 

= - f [Ge] { e} (TI + T')zdz (76) 
- t/ 2 

t 3
 

= - [Ge] (ae T' 


Substituting for t from equation (16a) and for T'1 from equation (68),
 

3 3 3 3 

{Mt} = 12 [] {a}e T' Z > > c c c 
1 1=1 12=1 13=1 3=1 1 12 13 

(77)
 
(r+r-2+r13+P ) (s l+s2+s 3+q )
 

x y
 

At the three vertices the value of {Mt will be given by
 

3 
ti
 

Mt1I = - [Ge e e} T1' (78)
 

t3
 

fMt}3 = - [G1e {a3 T3T (79)
e 


3 

{Mt 15 = - [e] {ae} T5 (80) 

where tI , tg , and t5 are the thicknesses at the vertices G, 

G3 and G5 , respectively, of the element. 

The "effective thermal gradient," T , at the vertices is defined as 

T= f T1 z dz (78a) 
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T'= tfY3 z dz (79a) 

T5= f T5 z dz (80a) 

This capability of specifying the thermal gradients or the thermal
 

moments at the three vertices of the element is not currently implemented.
 

The theoretical derivations of the evaluation of the thermal load vector
 

is,however, given for such linear variation of the thermal gradient values
 

over the surface of the element.
 

Substituting equations (16), (53), (67), (68), and (69) into equation (66).
 

{Pt I = 3' rr(L + T [Geife
 
gen = 3 {X}) []
JJ\X1 Le {%} 

3 3 3 3
 

c. (81)
cc . d
Z Z E Z 11 12 13 i11=1 12=1 i3=1 3=1 


(rl+ri2+r13+P ) (Sil+Si2+si3+qj)
 

x y dxdy
 

As in the case of the derivation of the generalized stiffness matrix, the 

generalized thermal load vector will be evaluated in two stages, viz., the 

closed form expression [Pt ] due to [x1] , the vector of curvatures 

in the absence of transverse shear, and the numerically integrated 

expression [P 12 due to [X2] , the contribution of transverse 
gen


shear to the vector of curvatures. Using the following notations, viz.,
 

G = Glael + G12ae2 + G13ae3 (82) 

G 2 = G12ael + G2 2a + G23a (83)
 

22e 3
C' G1 c G~ 2 0(84) 
=
33 Gl31 + G23ae2 

+ G33ae 3 (8
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the ith 	element of the generalized load vector {P en will be given by
 
gen
 

{Pt~
 
gen 1 2 Z Z S S cc c'


11= 1 12=1 13=1 ii 12 13 j 

[G{lmi(m, - 1) F(mI + r 1 + r12 + r1 3 + p - 2,
 

nf +5+ s + q + G'+n5(n - 1) 
1 1 12 13 3 2 nj1 1 

+ r12 + 	r1 3 +p, n + 12 (85)
F(m + r1 


+13 + 	 q 2) + G13 min F(m + r + r. 
1333i1 1 11 12 

+ r13 + P-, n + sl + si2 + 513 +q - )] 

The load vector {Pte 12 is evaluated using numerical integration

gen 

and [pg] is obtained as the sum of [Pt 1 and [Pt For plates
gen]
ge]gen


infinitely rigid in transverse shear, [Pt 12 is null. The equivalent 
gen


thermal bending load in the local element coordinate system is obtained
 

as, by virtue of equation (17),
 

{pt} = [S]TpPt en( 	 86)e ~ ge 

The load vector can then be transformed to the global system by
 

{Ptl = {Tf' [E] {Pt} 	 (87) 

RECOVERY OF INTERNAL FORCES
 

The bending moments and shear forces are recovered at the three
 

vertices, the stresses are evaluated at the three vertices and at the centroid 

of the element. After the displacements of the element are transformed 

from the global system 1u.1 to the element coordinate system [uel 
the generalized coordinates [a) are evaluated from equation (12) The
 

curvatures {XI are evaluated from equation (53) with the nonzero elements
 

of [B3] being as listed below.
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B3 (1,11) = -24A I I
 

B3(1,12) =-6A31 

B3 (1,13) =-4A32 

B3(1,14) =-6A15 

B3 (1,16) = -120Al1 x
 

B3 (1,17) = -24(A 3 1x + Ally)
 

B3 (1,18) = -12(A 32x + A3 1y)
 

B3(1,19) = -12(A 1 5x + A 3 2Y)
 

B3(1,20) = -24A 15y
 

B3(2,12) = -6A21
 

B3 (2,13) = 

B 3(2,14) = 

B 3(2,15) = 

B3(2,17) = 

B3 (2,18) = 

B3(2,19) = 

B3 (2,20) = 

B3(2,21) = 

-4A3 3
 

-6A34 

-24A 2 5 

-24A 2 1x 

-12(A 3 3x + A2 1y) 

-12(A 34x + A3 3y) 

-24(A 2 5x + A 3 4y)
 

-120A2 5Y
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B3(3,11) = -24A 2 1 

B3(3,12) = -6(All + A33)
 

B3(3,13) = -4(A3 1 + A34 )
 

B3(3,14) = -6(A32 + A 2 5)
 

B3(3,15) = -120A 15
 

B3(3,16) = -120A 21x
 

Bg(3,17) = -24 [(All + A3 3)x + A2 1y]
 

B3(3,18) = -12 [(A34 + A31)x + (A34 + AI)y]
 

B3(3,19) = -12 [(A 2 5 + A3 2 )x + + A3 1 )y]
(A3 4 

B3(3,20) = -24A15x + (A32 + A2s)y
 

B3(3,21) = -120A15y
 

where All , A12 , - - , A 34 are as given in equations (33) and (48) 

Moments at the vertices are then obtained from 

{M}I = [D], {x} - {Mt I (88) 

{M}3 = [D] 3 {x) - {Mt13 (89) 

{M} 5 = LD] 5 fxl - {Mr}5 (90) 
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The 	transverse shears are evaluated as follows:
 

{yl is evaluated from equations C28) and C47). 

[V} 	 is then evaluated from equations (24) and (25).
 

The 	stresses at the three vertices are evaluated at distances ZIl,
 

Z21, ZI3, Z23, ZIS, and Z25 specified by the user. The stresses at the
 

centroid are evaluated at the top and bottom fibers of the element.
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5.14 TRSHL, Higher Order Shallow Shell Element
 

This element was developed by Narayanaswam (ref. 1). The element has
 

grid points at the vertices and at the midpoints of the sides of the triangle 

At each grid point, there are five degrees of freedom in the element coordinate 

system- viz., the membrane displacements u and v parallel to the x and 

y axes, the transverse displacement, w , in the z-direction normal to the 

x-y plane, with positive direction outward from the paper, and the rotations
 

of the normal to the shell a and S , about the xz and yz planes, with
 

positive directions following from the right-hand rule. The element, thus, has
 

30 degrees of freedom in the element coordinate system.
 

The membrane displacements u and v for the shell are expressed as
 

quadratic polynomials and are the same as for the higher order membrane
 

triangular element, TRIM6. The displacement function for the normal deflection,
 

w , is taken as a quintic polynomial as for the higher order bending triangular
 

element, TRPLT1. The geometry of the shell surface is approximated by a
 

quadratic polynomial in base coordinates Shallow shell theory of Novozhilov
 

(ref. 2) is used for including the membrane bending coupling effects. Thus, the
 

element can strictly be used only in cases where the shell is shallow. However,
 

reasonably good accuracy is seen even when the elements are used to analyze
 

shells that are only marginally shallow The user is cautioned, however, to be
 

careful while interpreting results obtained when the shell analyzed is very
 

deep Due to the excessive computation time associated with such calculations,
 

the transverse shear flexibility is not taken into account in the element
 

formulation. The element can be used in the statics, normal modes and
 

differential stiffness rigid formats.
 

Derivation of Element Properties
 

Element geometry Rectangular Cartesian coordinates are used in the 

formulation An arbitrary triangular element is shown in figure A4 X 

Y , and Z are the basic coordinates, x , y , and z are the local 

coordinates The grid points of the element are numbered in counterclockwise
 

direction as shown in the figure.
 

The lengths a , b , and c shown in figure A4 can be easily evaluated 

from the basic coordinates (XI, Y1 , ZI), (X3, Y3, Z3) and (X5 , Y5, Z5) of the 

vertices of the triangle 
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Figure A4. Triangular shell element geometry.
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Displacement Field The u(x,y) and v(x,y) displacements are assumed to
 

vary quadratically with position on the plane of the element, while displacement
 

w(x,y) within the triangular element is assumed to vary as a quintic polynomial
 

in the local coordinates.
 

2 2
+ a5xy + a6y
u(x,y) = al + a2x + a3y + a4x
 

2
2 
a9y + a1ox + allxy + a12yv(x,y) = a7 + a8x + 

w(x,y) = a1 3 + a14x + al5y + a16x
2 + a17xy + alsy 2 

(1) 
3 2 2 3 3
+ a19x + a2 ox y + a21xy + a2 2y + a2 4x y 

2 2 3 4 5 4
+ y ya2 5x + a2 6xy + a2 7y + a2 8x + a2 9x


3 2 2 3 4
+ a30x y + a31x y + a32xy + a3 3Y
5 

In concise form, u , v and w can be written as
 

33 mI ni
 
u = aI x y =m =n =; 1 = 7 to 33 (2)


i=l1
 

b3 P l3
q1 

= 
v = b x y b = = q = , = to 6 (3)
 

= 13 to 33
 

33 r s
 

w= 3 c x 1 =ri = s =, =1 to 12 (4) 
i=i
 

The detailed derivation of the stiffness matrix for the triangular shell
 

element follows closely that for the TRIM6 and TRPLTI elements. Hence, only
 

the salient features of the derivation are given in this section
 

The geometry of the shell surface is approximated by a quadratic poly­

nomial in base coordinates
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2
z(x,y) = h, + h 2x + h3y + h4x 2 + h5xy + h6y (5) 

Hence the curvatures of the shell surface are
 

Z =2h (6) 

Z, = h5 (7)xy 

Z,yy = 2h6 (8) 

The membrane thickness of the shell element is assumed to vary linearly
 

over the surface of the element, i.e.,
 

3 t. u 
tm= Z d x I Y (9) 

The bending thickness of the shell element is also assumed a similar linear
 

variation
 

3 tt u!tb= Z ,dx'y
 
i=lI


Following the shallow shell theory of Novozhilov (ref. 2), the membrane
 

strains in the shell are given by
 

X = 
-u 2~x w
 

tc ax 'xx
 

33 m-1 vI s (10)
 
= (m al x Y 

ni 
- 2hii ci x Y I 

av
 
Sy =y -zyyw
Z--


33 yqi- v s.)(11) 
= q bl x p -2h 6 c. x I ) 

i=l 

58 



ex -+ av- 2zx way ax X 

33 n n-i 	 pl - I q1Z mI 	 1(n a i x'Y' + p b x y 	 (12) 

-2h5 c x y 

In the absence of transverse shear effects, the bending strains are given by
 

a 3w v1 -2 s 

Ax = 2w 3E v (v -v)cII= x y (13) 
ax :L=l 

32W 3 (s -l)c 1si-2 
2 	 (14)
ax i=1
 

32w 33 v -I s -i 
Xx = 2 Ey= 2 v s c x Yr (15) 

7 @@ 1=111 

Following the procedure outlined in sections 5.8.6 and 5.8.7, the jth
 

column of the ith row of the generalized stiffness matrix is obtained as
 

3 

K.1 = [Gll(m mj dk F(m + m + tk - 2, n + n + Uk)k=l 	 ]
 

- mi k F(m +++ 	 uk) +dF + rk -nh4 

- h4 m3 dk F(m + rI + tk 1, n3 +S+ Uk) 

+hd F(r +r+ tk, s + s + U0) 

q 	 (16)
+ 	tk, q+q + Uk - 2 )+ 	G22q I q dk F(p + p 

- h6 q dk F(p + rI + tkq,+s+ ­uk 

- h6 q dk F(r + P + tk' s + q + uk -i) 

+hdk F(r + r 1 +3 Uk) (continued) 
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+n kn + ­

1- k ~+S + -1 ) 

+ G33(n. ni dk E(in + tk , + n u. 2) 

+ I j dk F(mi 	 + p3+ tk -1 iI + b +Uk­

-	 h 5 ni dk F(m + r. + tk' n i + s3 + uk - 1)
 

+
Pnjk + i 3 - 3 +Sp In 3d kF(p 1(P + tk 1, qi1 + n K -1 ) 

Pi1 Pj dk F(Pi + Pj + tk - 2, q + q3 
+ Uk)
 

- h 5 p, dk F(p 1 + r3 + tk - l, qI + s 3 
+uk)
 

- h5 nj dk F(r I + mj + tk S I +n + uk )
 

- dk F(ri + pj + tk - 1, sI + q +
h 5 p3 


+ h kF(r +r + +IS+ 	 k ­5 1 k' i Ij U)
 

"Gi2 i qj dk F(mi + p3 + t-k , n1 qj +Uk
 

-h6 Mi dk F(m i + r. + tk - 1 , n I + s.++(uk )
 

- h4 q] d k ' F(r I + pj + tk s i + qj + uk - 1)
 

+ tk sI + S + Uk)
 

S2h h6 d k F(rI + r' + tk, q +
 

+ qh m dk F(pi 	+ m3 + tk - 1, s+n 4 k-) 

+ i q1 dk 1 + 	 rp + t] + q+ )F(p	 q uk 

" G13nj (MidkkF + s - 1)ni+U 
-h mi dk F(r i 	 + m. + t k 1 , i + uk ) 

+ Gaa(m. n3 dk F(m. + in + t k - 1, ni. + n. + uk - i) 

m.1 p dk F(min + p] + tk -2, n +q
 

-+k i dk F(i.a' +rk] - I1, +
.+sh J Uk) 

-h n dk F(r I 	 + m + tk, sI + + uk - 1)4 

- h4 p dk F(r i 	 + pj + tk - 1, s i + qj + Uk) (contlnued) 
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+ 2h4 h 5 dk F(r I + r + tk +i + + 

+n 	 imj dkF( + + tk -1, n + n +uk -1 )
 

h4 ni dk F(m + r. + tkj nI 3
 

+ p1 m dk F(pl + m + tk 2, q, + n + Uk) 

-h4 p dk F( r+ - 1, qI + s + uk)
 
_ m-kFr.+m +1Uk))
 

h5 m7 dk Fr i + m + t k 1, s i + n+
 

+ G2 3(qn dkF(p1 +hmI+tk, q, + n + uk - 2 ) 

+ q1p dk F(p1 + Pj + tk - 1, q, + q] + Uk - 1) 

+ 	 +
-h5 q, dk F(P, r3 +tk q, , + Uk - )
 

-h6 n dk F(r I + mJ +tk, s + n + uk - 1) (16)
 

- h6 p3 dk F(r, + p3 + tk - 1,s, + qj +u k)
 

+ 2h5 h6 dk F(r + r + 	 Uk) 

+ nl q3 dk F(mI + p + tk' nl + q3 + Uk - 2)
 

- h6 n dk F(mI + r + tk' n + 3 + uk -l)
 

+ pI q3 dk F(pI + p + tk + +- ,q qj u.
 

- h6 p dk F(p + r + -, qI+ s+Uk)
 

' 
- h5 qj dk F(r 1 + P + tk s + q3 + Uk -i))] 

3 3 3
 
E E [- dfkdkE 3 (GI1 r i rj (r i 1)(r J -1)


23 

kl=l k2=1 k3=1 

F(r + r + t + t' + t' - 4, s + s + 'l+ u') + q3 

(continued) 
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" G22 s s (s -)(s 1) F(r + r + tT + t + t ,
 
1 j 1 i + 1 k ic 2 k3'
 

+ 5 + S. + + 2 + - 4)
1 J 	 i 

+ (4G33 r z 1 s3 s 3 + Gi2{r i s (rI - l)(s - 1) 

+ r. s. (r. - l)(s - 1)}) F(r. + r. + t' + t' + t' - 2,
3 i( j 1 1I k3k2 

+ s i + I+ 2 + q3 -2) 

+ 	2G13{r i r3 s. (r i - 1)+ r. r s i (rj - i)} F(r + r (16)
1 3 3 1 1 (concluded) 

tt + t' + t' - 3, s + s + ' + q + u' - 1)
 
ki kz kg 1 3 Uk1k 2 kg
 

+ 2G23{r. s I 	 s (s I - 1) + ri s i s. (s - i)1 F(r + r 

+ t' + t + t' - 1,s. + S. +u +q + - 3)]
ki k2 k3 1 i 

The generalized stiffness matrix can be transformed to the element and
 
C 

global coordinates by transformations similar to that for TRIM6 and TRPLTI
 

elements.
 

Equivalent Thermal Load Vector:
 

The equivalent thermal load vector for the shallow shell triangular
 

element consists of loads due to thermal expansion as well as due to thermal
 

bending caused by variation of temperature with depth. The detailed derivation
 

of the thermal load vector is similar to that used for TRIM6 and TRPLTI
 

elements; hence, only the essential steps are given here.
 

The vector of thermal strains is
 

Sxt al 

tE S = ae2 (T--Tre)={ael(T--Tre) (17)jet 
where fae = [u]-1 {am} is a vector of thermal expansion coefficients, [U] 

is the strain transformation matrix given in equation (15) of page 5.8.4, (a m 
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is the vector of thermal expansion coefficients in the material axis system,
 

Tref is the reference or stress-free temperature of the material and T is the
 

temperature at any point (x,y) in the element
 

An applied stress vector which would produce the thermal strains is
 

t: []GJ {st } = [Ge] {ael (T - Tref) (18) 

The generalized equivalent thermal load vector (P t is obtained as
 
gen
 

{pt f fet{aI1 (19) 
gen - 3{a} tSI fat dv1v 

The strain vector fel is given by
 

x X - ZXX 

{f} SYy vy - Zyy W - Z Xy (20) 

Cxy Ly + - 2Z W - z Xy 

where z ,xx' zyy and zx are the curvatures of the shell surface and z is 

measured from the neutral surface of the plate. 

The temperature at any point (x,y,z), T , is given by 

T = T + T' z (21) 

where T is the mean temperature and T' is the thermal gradient. 

'The following derivation to obtain the equivalent thermal load vector is
 

given for the case of linear variation of thermal gradient over the planar
 

coordinatesof the element; the values of the thermal gradient at the three
 

vertices being defined as Tj , T; and T; . This capability is not
 

operational in NASTRAN currently. The derivation, however, is valid for
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cases with the same thermal gradient at the three vertices by setting T3 

and TA equal to TI, Thus, T and T' of equation (21) vary over the 

element as follows: 

T = el + e2x + egy (22)
o 

T' = e + ekx + e~y (23) 

i.e.,
 

3 v W. 
T = > e x Y (24) 

1=1 

3 V' W! 
T' = e!. x I Y (25) 

The constants el , e2 , e3 and e I , e and e; can be evaluated from 

the user supplied values of the mean temperature and temperature gradient at 

the vertices of the element; however, as stated earlier, only the capability
 

of specifying a temperature gradient for the element is currently available
 

and hence e{ will be equal to the element temperature gradient and el
 

and e will be equal to zero.
 

Substituting equations (10) through (15) into equation (20) and substituting
 

for {6 and tat I in equation (19), the generalized equivalent thermal load
 

vector {Pen I is obtained as
 
gen
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33 m -i n. v s 

(m a x y -2h 4 cl x y 
1=1 

v -2 s 

33(q~ b h I) eiyqIx I Y 
1 1 

11i 

ten} j{} f I=I 

vZs I (s I - ) I x y ) 
-
33 m nl-I pl q 

(nI aI x y + pl bl x y 

3~~ Z 2h5 cx xhcV.1 Ysv 2z v s1.wV1c- x -is-Y 

[G,] E (e 3 x J + e x 3 y J z) dxdydz (26) 

=1 1 

Integrating over the thickness and noting that
 
11 1 1 

(27)
ft/ f(x,y) z dx dy dz = 0 

-t/2 

equation (26) reduces to 

33 

m a 

m -i 

-x 

n 

y 2h 4 c 

1vi 

x y ) 

3q 1 1 1 

33- n q mI nx y -I P+ p bdxx -I  q 1y -2h5 c vx I sy I 

[Ge f e3 x y 3 dk t y dxdy (28)I {a e }  

e=q a=o (cont(nued)
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v.-2 s. 
v (v -l) c x y 1 t 

v. s -2ff s (s- )c x y [GI (a 

v.-I s -1 
2v.2 is. c. x 1 y 

(28) 
(concluded)
 

E' xX y 3) E F, dkkdk lK2 33e' xt 7 ) 3 >i Z dkdk xtkl+tkZtk 3 
3=1 k1=l k2=l k3=l 

Uk+Uk+k dxdy 

The generalized equivalent thermal load vector will be obtained by performing 

the differentiation and integration operations of equation (28) and the final 

expression for {P}ge will be similar to those obtained for the TRIM6 

and TRPLTI elements, except that an additional expression involving the 

curvatures of the shell surface h4 , h5 and h6 will be added now. The 
generalized thermal load vector fPe I can then be transformed to the element 

gen
and global coordinate system by the usual procedures.
 

7.3.6. Differential Stiffness Matrix for Triangular Shell Element TRSHL
 

The expression that is used for the energy of differential stiffness per 

unit area of the shell element consists of a part UI due to out-of-plane 

motions and a part U' due to in-plane motions. The expressions for U' m bL 
and U1 are the same as for plate elements and given in equations (18) and
m 
(19) of section 7.3.1.; the expressions for membrane strains will, however,
 

involve the effects of coupling due to bending. Thus,
 

U 11' + U'u = ub m (1) 
m 

where 

UT~~~~~ ta7O w awb + y + (2)
6\y/ yx 3y 
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and 

U (-[ (w2 +2wis ) +a-C (W2 - 2w e ) + 2T ( -sE )wz (3)m 2 x z z xy y z z xy xy y xzi
 

The stresses ax ' , ay and Txy at any point within the element is 

assumed to vary linearly, the values at the three corner grid points being 

used to evaluate the coefficients in the linear variation. 

aX (x,y) = el + e2x + e3y (4)
 

a (x,y) = fl + f2x + f3Y (5)Y 

axy (x,y) = g1 
+ g 2x 

+g 3Y (6) 

In condensed form
 

3 R S 
ax e x1 y (7)i=l
 

3 R S
 a = f x y (8) 

y i=l
 

3 R S
 
Ixy= Z gI x y (9)xy =1
 

Also
 

3= - (10) 

3w
 
aw 
 (11)
y = axii6 
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1 a3l (12) 

au
 
= ex 1- (13)Z,xx W 

av- w (14) 
y ay 'yy 

exy = Ox + 2 - 2z'xy w (15) 
xy ax ay 'x 

The thickness of the element t at any point
 

t(x,y) = 3 tk k (16) 

The jth column of the ath row of the generalized differential stiffness
 

matrix is
 

3 3
 
K- = dke r r F(r + r + tk + R -2, s + s.+u+
 

13 k=l £=3 j k t u k S) 

* dk fY s i s F(ri + rj + t k + Rk, + S uk + S - 2) 

+ dk Z r. F(r. + r + tk + R - 1, s+ S +uk+ S 1) 

+ dk g2 s r. F(r i 3 + tk + - 1, + + k - 1) 

+
+ 0.25 dk e. P, P3 F(pI + p3 + tk + R - 2, qI + q + Uk S) (17) 

+ 0.25 dk ez I n + m + tk + R., n + n. + + St 2) 

- 0.25 dk e, p1 nj F(p + mj + tk + R- 1, qi + nI Uk+ St ) 

- 0.25 dk ez ni F(mI + p + tk + RI - 1, n+ + Uk+St-)p3 


+ dk e P nj F(p1 + m + tk + R -i, q + n + + S i) (continued) 
68 j3 
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+ dk e£ P1 j F(p + p + tk + R k -2, q + q + Uk + S3d
 
- dk et Pi h5 F(pI + r + tk + R - 1, q + s 
 + uk +S) 

-d k e n I nj F(mi + m + + R, nIci 	 t k + n + S -2)k Z j mu 2) 

- d et n p3 F(m + p + tk + R - 1, i .+ q + uk + S -) 

+ t k + Rt, n + s + + St - 1) 

+ 	0.25 dk fkP ip F(p I+ p. + tk + Rz - 2, q, + qj + uk + 

3+ t k + Rt - 2,qI + n + uk + 

S 
St 

) 
- 1)
 

0. 25 dk f£P n 	 F(pi +M +tk + 1, q+ + u+ S 2 ) 

+ 0.25 dk fi nl n F(m. + in + tk + R n + n + u + 	 Sk-

So. 2 Sdk f£np F + p +R - n + qkd~~~~ a+tk+ 
+tk 

Y, 
1, + Uk S£ - 1)pjnjF( 	 +f~ Ic,1 
 k +SZ-2 

"dk f2kp 3 F(P + p + tk + R - 2, 1 + + Uk + 

" dk f£ P, njF(pI + M + t k + R nI+ 3 

q3 S
 
+ uk + S - ) 

+ dk f2 hqp5 F(p + +t + + St)
 

dk f£ n n3 F (m +~ +R 
 +SU -2
 
+ k f£i Fm 1J 3 + +- dn fh5 F~m + tk c+ Rk,R niI3 +I + +k +2.r + tk s 	 I+ uk k -1
 
-dR n F ++ tk +R-, n sq + Uk+Sz - i)
 

+kgyq05 p. Fp 1-di£nl h5 PF(ml +~ 
p+ t k +R R , + 3 q +++ S Y,+3
 

F(l j] P k £f+S i + £3U
+ . k gi a. +	 + £-i 

+ 0.S dkc g . q3 pl F(P1 + pJ + tkc + R2. - 1, ql + qJ Uk + S - i) 

-0.5dat q ,1 F(p p k + R, + n + uk + St - 2) 

0.Sd k g£qn	 F(Pz +3 m3 t 4-j 3 2 

- 0.Sd ck g2 q3 n1 + + c + , q3 nF(p 3 m tk R2. + +UcSZ2 

- O.S dk gY P3 h6 F(v + p + tk + Rk 1, +I q + lL + 39 (continued) 
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- 0.5 dk gi pi h6 F(v. + P1 + tk + RY - 1,_ s. + qi + uk + SZ)

3+ n. + uk + Sk - 1)
 

+ 0.5 dk g ' he F(r + m + tk + RV s, + n. + Uk + 1 

0.5 dk g£ n h 6 F(rj + i + tk + Rz, sj + l+U 

0.5 dk 9k mi pj F(mi + pi + tk + RZ - 2, n, +q u+S+ )k 


- 0.5 dk g mj Pi F(m. + P + tk + RY 2, + +- n + q Uk S (17) 
(concluded)
 

+ 0.5 dk g m. n F(m. + m + tk + R- 1, n + n. k 
3- + Uk + S - ) 

+ 0.5 d gk mI n, F(mI + m3 + tk + RP -1, n + n3 +Uk + -1) 

+ 0.5 dgk P3 h4 F(ri + p ++ tk + Rk - 1, s i + q3 + uk Sd 

+ 0.5 di gj p1 h4 F(r. + p + tk + Rk - s3,+ q + Uk + S 

- 0.5 dk gz ni h4 F(r + m. + t k + R, s. + n + + Sk - )uk 

- 0.5 dk gZ ni h4 F(r + mi + tk + Ri, sI uk 

The generalized differential stiffness matrix is transformed to the
 
element coordinate system, basic coordinate system and the global coordinate
 
system in the normal manner.
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Section 15.2
 

Modeling of Plate Structures Using TRPLT1 Elements
 

The Figure 1, shown on page 15.2-3, is modeled using higher order
 

triangular bending element, (Figure 2, page 15.2-3(a)), CTRPLTI
 

Because of symmetry, the quarter section of the plate is discretized
 

and detail of the discretzation is given by the side of the modeled figure.
 

Four different mesh sizes are used for each case.
 

The central deflection is plotted in figures on pages 15.2-4 to 15.2-11
 

and also given in Tables 1 and 2 on 15.2-3(b) and 15 2-3(c).
 

Such high accuracy is obtainable for other plate structure problems
 

using the TRPLT1 element in view of the use of the quintic displacement field
 

for the displacement pattern in the element.
 

15.2-2(a) (1/1/77)
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Modeling Errors in the Bending of Plate Structures.
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Figure 2. Discretization and schedule of rectangular plate
 
15.2-3(a) (1/1/77)
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Table 1 Central deflection of simply supported rectangular plates 
b 
- = 2 

Number 
of 

Elements 
per
Side 

N 

2 

Concentrated Load at Center 
I 

Q-mesh P-mesh 

21.3344 19.0681 

Uniformly Distributed Load 

Q-mesh P-mesh 

10.9158 10.17408 

4 17.7814 17.1537 10.1459 10.0245 

8 16.9230 16.6984 10.0776 10.0548 

- 12 16.7212 16.6073 10 1320 10.1230 

~Exact Solut
Solution 16.5 10.125 



Table 2. Central deflection of clamped rectangular plates 11 = 2 
a 

Number 
of Concentrated Load at Center Uniformly Distributed Load 

Elements 
per
Side Q-mesh P-mesh Q-mesh P-mesh 

N 

2 10.4294 10.8878 3.9168 3.870672 

4 8.4193 8.0427 2.7757 2.7453 

8 7.6242 7.4392 2.5791 2.5738 

12 7.4282 7.3293 2.5603 2.5585 

-Exact 

Solution 7.22 2.54 
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Section 15.4
 

Modeling Membrane Plate Using TRIM6 Element
 

In the same figure 2, the cantilever beam is discretized using the
 

linear strain triangular membrane element TRIM6. Discretization and result
 

of the corresponding displacement is shown on page 15.3-3.
 

The cantilever beam shown on page 15.3-3 (figure 2) is divided into
 

eight equal triangular (TRIM6) elements. The displacement pattern obtained
 

using this mesh coincides with the exact one. Such high accuracy is
 

obtainable for other membrane plate problems using the TRIM6 element in
 

view of the quadratic displacement polynomial for the element.
 

15.3-4 (7/1/76)
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Modeling Errors in Membrane Plate Elements
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Deflection of cantilever beam idealized by QDMEMI and TRIM6 elements. 
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Updates to the NASTRAN Users' Manual
 
for the addition of TRIM6, TRPLTI and TRSHL elements
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STRUCTURAL ELEMENTS
 

1.3.5. Plate Elements
 

NASTRAN includes two different shapes of plate elements (triangular
 

and quadrilateral) and two different stress systems (membrane and bending)
 

which are uncoupled. There are in all a total of thirteen different forms of
 

plate elements that are defined by connection cards as follows
 

1. CTRMEM - triangular element with finite in-plane stiffness and zero
 

bending stiffness.
 

2. CTRIM6 - a triangular element with finite in-plane stiffness and zero
 

bending stiffness.
 

3. CTRBSC - basic unit from which the bending properties of the other
 

plate elements are formed.
 

4 CTRPLT - triangular element with zero in-plane stiffness and finite
 

bending stiffness.
 

S. CTRPLT1 - higher order bending element--a triangular element with
 

zero in-plane stiffness and finite bending stiffness.
 

6. CTRIAl - triangular element with both in-plane and bending stiffness.
 

It is designed for sandwich plates which can have different materials referenced
 

for membrane, bending and transverse shear properties
 

7. CTRIA2 - triangular element with both in-plane and bending stiffness
 

that assumes a solid homogeneous cross section.
 

8. CQDMEM - quadrilateral element consisting of four overlapping CTRMEM 

elements. 

9. CQDMEMl - an isoparametric quadrilateral membrane element. 

10 CQDMEM2 - a quadrilateral membrane element consisting of four 

nonoverlapping CTRMEM elements. 

11. CQDPLT - quadrilateral element with zero in-plane stiffness and finite
 

bending stiffness
 

1.3-5 (4/1/73)
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12. CQUADI - quadrilateral element with both in-plane and bending stiff­

ness. It is designed for sandwich plates which can have different materials
 

referenced for membrane, bending and transverse shear properties.
 

13. CQUAD2 - quadrilateral element with both in-plane and bending stiff­

ness that assumes a solid homogeneous cross section.
 

Theoretical aspects of the plate elements are treated in Section 5.8 of the
 

Theoretical Manual.
 

In addition, a shallow shell element, CTRSHL is also available. The
 

elements and the coordinate systems are shown in figures 14(a), (b) and (c)
 

1.3-6 (3/1/76)
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Figure 14(a). TRIM6 membrane element in element coordinate system
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Figure 14(b). TRPLT1 triangular bending element geometry.
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Figure 14(c) 	 TRSHL shell element geometry and
 
coordinate systems
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BULK DATA DECK
 

Input Data Card CTRIM6 Triangular Element Connection
 

Description: Defines a linear strain triangular membrane element (TRIM6)
 
of the structural model.
 

Format and Example:
 

1 2 3 4 5 6 7 8 9 10 

CTRIM6 EID PID G1 G2 G3 G4 GS I G6 Al 

CTRIM6 220 666 100 110 120 210 1 220 320 +C2 

+BC TH 

+C22 9.0 

Field 	 Contents
 

EID 	 Element identification number (integer > 0).
 

PID 	 Property identification number (integer > 0).
 

GI thru G6 	 Grid point identification numbers of connected 
points (integers > 0; GI t G2 0 G3 4 G4 GS A G6). 

TH Material property orientation angle in degrees
 
(Real). The sketch below gives sign convention
 
for TH.
 

y
 

GC
 (xm
 

G6G4THX
 

~G3
 

G2
 

G9
 

92 



Remarks:
 

1. 	The grid points must be listed consecutively going around the
 
perimeter in an anticlockwise direction and starting at a vertex.
 

2. 	Material properties (if MAT2) and stresses are given in the
 
(xm, y m) coordinate system shown in the sketch.
 

3. 	G2, G4, and G6 are assumed to lie at the midpoints of the sides
 
The locations of these grid points (on GRID Bulk Data cards) are
 
used only for global coordinate system definition, GPWG (weight
 
generator module), centrifugal forces, and deformed structure
 
plotting.
 

4. 	Continuation card must be present.
 

S. 	Element identification numbers must be unique with respect to all
 
other element identification numbers
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BULK DATA DECK
 

Input Data Card PTRIM6 Linear Strain Triangular Element Property
 

Description: Defines the properties of a linear strain triangular membrane
 
element TRIM6.
 

Format and Example:
 

1 2 3 4 5 6 7 8 9 10 

PTRIM6 PID MID TI T3 TS NSM 

PTRIM6 666 999 1.17 2.52 3.84 8.3 

Field Contents
 

PID Property identification number (integer > 0).
 

MID Material identification number (integer > 0).
 

TI, TS, TS Thickness at the vertices of the element (Real).
 

NSM Nonstructural mass per unit area (Real).
 

Remarks:
 

1. 	For structural problems, the material may be MATl or MAT2.
 

2. 	The thickness varies linearly over the triangle. If TS or TS
 
is specified 0.0 or blank, it will be set equal to Tl.
 

3. 	All PTRIM6 cards must have unique property identification numbers.
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BULK DATA DECK
 

Input Data Card CTRPLT1 Triangular Element Connection
 

Description Defines a triangular bending element (TRPLT1) of the structural
 
model.
 

Format and Example
 

1 2 3 	 4 
 5 6 7 8 9 10
 

CTRPLT EID PID G1 J 2 63GS G6 +abc
 

CTRPLT 160 20 120 10 30 40 70 110 +ABC
 

+abc TH
 

+ABC 16 2
 

Field 	 Contents
 

BID 	 Element identification number (integer > 0)
 

PID 	 Identification number of a PTRPLT property card
 
(Default is BID) (integer > 0).
 

Gl, G2, G3, G4, GS, G6 	 Grid point identification numbers of connection 
points (integer > 0" G1 # G2 # G3 # G4 # G5 # G6). 

TH 	 Material property orientation angle in degrees (Real) -

The sketch below gives the sign convention for TH. 

y
 

(M
 
(~x
 

SGS 


G1
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Remarks­

1. 	Element identification numbers must be unique with respect to all
 
other element identification numbers.
 

2. 	Interior angles must be less than 1800.
 

3. 	The grid points must be listed consecutively going around the
 
perimeter in an anticlockwise direction and starting at a vertex.
 

4. 	Continuation card must be present.
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BULK DATA DECK
 

Input Data Card PTRPLT1 Triangular Plate Property
 

Description- Used to define the bending properties of a triangular plate
 
element. Referenced by CTRPLT1 card. No membrane properties are included.
 

Format and Example
 

1 2 3 4 5 6 7 8 9 10 

PTRPLT1 PID MIDI I 13 15 MID2 TSI TS3 +abc 

PTRPLTI 15 25 20 30 40 -35 3.0 1.15 +PQR 

+abc TS5 NSM Zil Z21 Z13 Z23 ZiS Z25 

+PQR 1.0 -1 0 1 5 -1.5 2.0 -2.0 2.5 -2.5 

Field Contents
 

PID Property identification number (integer > 0).
 

MIDI Material identification number for bending (integer > 0)
 

Il, 13, I5 Area moment of inertia of the element per unit width at
 
the vertices 1, 3, 5 of the element (Real > 0.0)
 

t3 
 t3 t5
 
II = I2 
 13 UT 15 = 

where T1 , T3 , T5 are the thickness of the element
 
at the vertices 1, 3, 5.
 

MID2 Material identification number for transverse shear
 
(integer > 0).
 

TSI, TS3, TS5 	 Transverse shear thickness (Real > 0 0) at the
 
vertices 1, 3, 5 of the element.
 

NSM 	 Nonstructural mass per unit area (Real)
 

ZII, Z21, Z13, Z23, Fiber distances for stress computation at grid points
 
Z15, Z25 GI, G3, GS, respectively, positive according to the
 

right-hand sequence defined on the CTRPLT1 card (Real)
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Remarks:
 

1. 	All PTRPLT1 cards must have unique property identification numbers.
 

2. 	If TSI is zero, the element is assumed to be rigid in transverse
 
shear.
 

3. 	If TS3 or TS5 is 0.0 or blank, it will be set equal to TS1. 

4. 	If I3 or IS is 0.0 or blank, it will be set equal to I1.
 

S. 	The stresses at the centroid will be computed at the top and bottom
 
fibers.
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BULK DATA DECK
 

Input Data Card CTRSHL Triangular Shell Element Connection
 

Description: Defines a triangular thin shallow shell element (TRSHL) of
 
the structural model.
 

Format and Example
 

1 2 3 4 5 6 7 8 9 10 

CTRSHL EID PID G1 G2 G3 G4 G5 G6 +abc 
CTRPLT 160 20 120 10 30 40 70 110 +ABC 

+abc TH
 

+ABC 16.2
 

Field Contents
 

EID Element identification number (Integer > 0)
 

PID Identification number of PTRSHL property card
 
(Default is EID) (Integer > 0) 

Gl, G2, G3 Grid point identification numbers of connection 
G4, G5, G6 points (Integer > 0: G1 # G2 # G3 # G4 G5 # G6) 

TH 	 Material property orientation angle in degrees (Real)
 
The sketch below gives the sign convention for TH.
 

G6
 

G61G
 

Remarks
 

1. 	Element identification numbers must be unique with respect to all
 
other element identification numbers
 

2. Interior angles must 	be less than 1800.
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3. The grid points must be listed consecutively going around the
 
perimeter in an anticlockwise direction and starting at a vertex.
 

4. Continuation card must be present.
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BULK DATA DECK
 

Input Data Card PTRSHL Triangular Shell Property
 

Description Used to define the bending properties of a triangular shell
 

element. Referenced by the CTRSHL card.
 

Format and Example
 

1 2 3 4 5 6 7 8 9 10
 
PTRSHL PID MID1 Tl T3 TS MID2 II 13 +abc
 

PTRSHL 10 20 3.0 6.0 4.0 30 2.25 18.0 +PQR
 

+abc 15 MID3 TSl TS3 TSS NSM Zil Z21 +def
 

+PQR 5.33 40 2.5 5.0 3.5 50 1.5 -1.5 +STU
 

+def Z13 Z23 ZiS Z25
 

+STU 3.0 -3.0 2.0 -2.0
 

Field Content
 

PID Property Identification number (Integer > 0).
 

MID Material identification number for membrane effect
 
(Integer > 0).
 

Ti, T3, TS 	 Thickness for membrane action at vertices 1, 3, S of
 
the elements (Real > 0.0).
 

MID2 Material identification number for bending effects
 
(Integer > 0).
 

Il, 13, IS Area moments of inertia of the element at the vertices
 
1, 3, 5 of the element (Real > 0.0)
 

MID3 Material identification number for transverse shear
 
(Integer > 0).
 

TSI, TS3, TSS Transverse shear thickness (Real > 0.0) at the vertices
 

1, 3, 5 of the element.
 

NSM 	 Non-structural mass per unit area (Real).
 

Zll, Z12, Z13, Fiber distances for stress computation at grid points
 
Z23, Z1S, Z25 G1, G3, GS, respectively, positive according to the right­

hand sequence defined on the CTRSHL card (Real > 0.0).
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Remarks:
 

1. 	All PTRSHL cards must have unique property identification numbers.
 

2. 	If T3 or TS equal to 0.0, or blank, they will be set equal to TI.
 

3. 	If 13 or 1S equal to 0.0, or blank, they will be set equal to Ii.
 

4. 	If TS3 or TS5 equal to 0.0, or blank, they will be set equal to TSI.
 

5. 	If TSl is 0.0, or blank, the element is assumed to be rigid in
 
transverse shear.
 

6. 	The stresses at the centroid will be computed at the top and bottom
 
fibers.
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APPENDIX C
 

Updates to the NASTRAN Programmer's Manual
 
for the addition of TRIM6, TRPLT1 and TRSHL elements
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4.87.21. TRIM6: Linear Strain Triangular Element
 

4.87.21.1 	 Input Data for TRIM6 Element
 

1. 	EST entries for TRIM6 are
 

Symbol Description 

EID Element Identification Number 

SIL1 , SIL2, . ., SIL 6 Scalar indices of connected grid points 

0 Anisotropic material orientation angle 

Mat ID Material Identification Number 

TI, T3, TS Thickness of corner grid points 

11 Nonstructural mass per unit area 

N Local coordinate system numbers and 

X location coordinates in the basic 
i =1, 6
 

Y system for the connected grid
i 

Z points
 

TOl, T02, T03, T04, TOS, T06 Temperatures at the grid points
 

2. Coordinate system data
 

The numbers N X. ,, Y and Z are used to calculate 3 by 3
 

basic-to-global coordinate transformation matrices [Tj1 for points 

i = 1, 2, 3, 4, 5 and 6 

3. 	Material data
 

Symbol Description
 

[G] 	 3 x 3 stress-strain matrix
 

p Mass density 

ax ay a Thermal expansion coefficients 

TO o werence temperature 
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a 	 Structural damping coefficiente
 

at , aCS 	 Stress limits for tension, compression, 

and shear 

4.87.21.2 Basic Equations for TRIM6
 

1. The element coordinate system is defined by the following equations:
 

{V13} = 	 Y1 - Y)
 

{V15} = 	 Y5 - Y1 (2) 

Z5 -ZI 

(V131
 
{i} = 7 (3) 

fil x {V13} 
{k} }(4)

TIT" {V13}I 

{jI = fk} x {i} (5) 

2. The displacement transformation matrix from basic coordinates to
 

in-plane coordinates is:
 

JI 32 j 3
 

3. The local (element) coordinate system of the element is as follows.
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The x-axis is obtained by joining grad points 1 and 3 of the element.
 

The y-axis is the perpendicular from grid point 5 to the x-axis (lane
 

joining grid points 1 and 3).
 

Depending upon the location of grid point 5 relative to grid points 1
 

and 3, 3 cases of triangle orientation are possible: (refer to fig. 4.87.21.1)
 

Case I Acute angles at grad points 1 and 3
 

c I1i} x {V1511 (7) 

b = (i} {V13} (8) 

a = f{V 3}I - b (9) 

Coordinates of points are
 

x= -b ; 2 2 " x3 = a, x4 ; x5 = 0
x


b 
X6= -

Yl 0 Y2 = 0 ; 3 = ,Y4 Y5 =c Y6 C 

Case II. Obtuse angle at grid point 3 

c = j{t} x {V1511 (12) 

b = {i} •{V15} (13) 

a = b - {W13} (14) 

Coordinates of points are
 

-a - b a

Xl = -b , x2 = 2 X3 = -a , x 4 = - , = 0 

b (15) 
X6 2 
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y 

(O'c)
 

6 4
 

1(-b,O) 2 3(a,O)
 

Case I. Acute angles at grid points 1, 3, and 5.
 

y y 

1 2 3 1 2 3 
(-b,O) (-a,O) (b,O) (a,O) 

Case II. Obtuse angle at grid point 3. Case III. Obtuse angle at grid point I 

Figure 1 Triangular element shapes. 

4.87-21.1 
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= = 
Y 0 , Y2 0 ;Y3 = 0 ; Y4 ,Y5 c ,Y6 (16)
 

Case III Obtuse angle at grid point I
 

= [{i} x {V15} (17) 

b = {i} • U151 (18) 

a = J{V 1311 + b (19) 

Coordinates of points are 

x, b x2 a+b a b2 =
2 x3 a , x4 , x5 = 0; x6 = 

= =Yi= ; Y2 0 ; Y = 0 Y4 C2 Y5 c = CY6 

4. The matrix [HJ relating grid point displacements and the generalized
 

coordinates (in the equation {ul = H {al) is given by
 

.... ;I-

LHI ..i. (20) 

where 

1 yl xl xlyl y
 
x2 Y2 2 2 

X21Y 2 X2Y2 Y2
 
X3 2 2 

[H] 3 3 X3 Xg 3 y3 
[H11 = 2 2 (11 x4 Y4 X4 X4Y4 Y4
 

X5 ~2 2 

5 Ys X y5
X5 X5)y5 

X6y~ 2 2 
X6 Y6 X X6Y 6 Y6 
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S. The matrix [B] relating strain vector to the generalized coordinates
 

(in the equation {e} = '[B] fal) is given by
 

[ 1 0 2x y 0 0 0 0 0 0 

B = 0 0 '0 0 0 0 0 0 x 2y (22) 

0 0 1 0 x 2y 0 1 0 2x y 0 

4.87.21.3 Stiffness Matrix Calculation for TRIM6 (Subroutine KTRM6S and KTRM6D)
 

The polynomial expressions for variation of u , v and t within the 

element are 

12 m. n 

u = a x y (23)
i=1
 

V = 1 bi x P yq (24)
 

=1
 

3 r. s. 
t = c x 1 y (25)

i=1l 

The values of min nI P' qi, r , sI are 

= mI = 0 m2 =1 , m3 = 0 ; m4 = 2 ; m5 = 1 ,m 6 0 

(26) 
m7 to m12 = 0 

n = 0; n 2 = 0 ; n 3 = 1 ; n 4 = 0 ; n 5 =1 , n 6 = 2 

(27)
 
n 7 to n 1 2 = 0 

PI to P6 = 0 , P7 = 0 , P8 = 1 , p9 = 0 , plO = 2 

(28) 

Pl = 1 P12 = 0 
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=
= = 
q, to q6 =0 ; q7 =0 , q8 0 ; q9 1 ; qlO 0 

(29) 
q 1= , q12 = 2 

r, = 0 ; =1 , = 0 (30)r 2 r 3 

= 0 ; s2 = 0 , S3 = 1 (31)s I 

to a12 =0; b, to b = 0 (32)a7 


The coefficients a, to a6 and b7 to b12 are generalized
 

coordinates of the element and can be evaluated once the displacement vector
 

is known.
 

The coefficients c, c2 and c3 can be evaluated from the specified 

thicknesses , and t5 of the 3 corner grid points and the geometric t1 t3 

dimensions a , b and c of the element 

t1a + t3b 
c1 = (a + b) (33) 

- tI
 
C2= (a + b) (34)
 

t3 


C3 =1 (t5 - cj) (35) 

The elements of the symmetric portion of the stress-strain matrix 

[Gel are denoted by GI, , G12 , G13 , G22 , G23 , G33 * 

A formula for the integral of the type xmyn taken over the area of
 

the element is
 

ff X dx dy = F(m,n) = cn+l {am+l - (-b)m+ll +1n 2)! (36) 
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The equation used in the stiffness matrix generation in generalized
 

coordinates is
 

3
 
(klj)gen =l ck [Glm m F (mi + m + rk - 2, n + n3 + Sk)
 

+
+ 622qIq3 F (pi + pj + rk, q, qj + Sk - 2)
 

+ Ggg{nIn3 F (m + mI + rk, n i + n3 + sk - 2)
 

2 +
+ pIp F (p + p + rk - , q + qJ s )
 

+ (G33nip + G12mq3) F (mi + p3 + rk - 1, ni + q. + S - )
 

+ (G3 3n pi + Glzmjqi) F (m + pi + rk - 1, n + qI+ Sk - I7 

+ G13{(m n + min ) F (m + m. + - 1, n + n + - 1)
 

2
Ip F(mI+p,+ rk - n3 + s k-) 

" Masp 3 F (mI1 + p. + rk -2, n + q +k)
 

k
+ G2 3{(piqj + p3q) F (pi + P + r - l, q +q+ Sk -1) 

+ nIqj F (mi + pj + + s k - 2) 

+ njq i F (mi. + p + rk' r + qI +sk - 2)1] 

The stiffness matrix in global coordinates is
 

[k] = [E] [T]T [H- ]T [k]gen [H-'] [T] [E]T (38) 

For use in the overall structural matrix, the 3 x 3 k13 partition 

of the stiffness matrix [k] corresponding to grid point i and connection 

point j is expanded to 6 x 6 to form 

k 0 
ki3 - T _ 0_- (39) 

0
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4.87.21.4 	Mass Matrix Calculation for the TRIM6 Element (calculated in the
 

stiffness subroutine KTRM6S and KTRM6D)
 

The mass is generated by the following algorithm
 

{V13} = 	 (40)
Y3 iiY} 
1Z3 -Z1I
 

{Vl5} = 	 Y5 YI} (41) 

Z5 -Z1 

The area is
 

A 	 {v=x
15 	 (42)
 

Volume
 

V = cI F(O,O) + c2 F(1,O) + c3 F(0,1) 	 (43) 

where cl , c2 , c3 [see eq. (33), (34), (35)] are the constants in the 

thickness equation of the element [eq. (2s)J and zero factorial has a value 

of 1. The mass at each point is 

m = I (pV 	 + Ali) (44) 

which is 1 the total mass.
 
6
 

For each point the diagonal mass matrix in element coordinate system
 

at all the grid points is
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m 0
 

m 

Emi l = 1 = 1, 2, ., 6 (45) 

0 

00
 

so that [Mee] the element mass matrix has [mi] matrices arranged 

diagonally.
 

The mass matrix in global coordinate system is obtained as
 

[Mgg ] = [E] [ET]T [Mee] [T] [E] T (46) 

4.87.21.5 Element Load Calculations for TRIM6 (Subroutine TLODM6)
 

The temperature within the element is assumed to vary bilinearly
 

3 r. s 
T = dx y (47) 

with
 

rl = 0 ; r 2 =1 , r3 = 0 (48) 

and
 

s, = 0, s2 =0 and s3 = 1 (49)
 

The coefficients dl , d2 and d3 are evaluated from the specified 

temperatures T01 , T03 , T05 at the three corner grid points (obtained 

from the GPTT data block) and the reference temperature To of the element 
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Toa + T 0 3b 
dl = (a + b) (50) 

T03 - To, 
d2 = (a + b) (51) 

d3 = I- [0 5 - d] (52) 

The constant d1 is modified by the reference temperature, TO 
d1 = d1 - . The ith element of the generalized load vector {Pgen } is 

3 3{P E >iE ckdZ [Gjl rn-F (m n

izgen k=1 k=1 k + rk + t nl+sk + u) 

++ G22 q F (Pi + rk t, q, + Sk + u- ) 

(53)+ 3 {nI F (ml+ rk + tI, n + sk + u. - ) 

+ PI F (p1 + rk + t- q,q +k + udi] 

where 

G11 = GII a1 + G12 a2 + GI3 a 1 2
 

1
G22 = G12 al + G22 a2 + G23 U12
 

1
G33 = G13 al + G23 a2 + G33 a12
 

The generalized equivalent load vector {PgenI is transformed to
 

load vector (Pe in local element coordinates and to load vector {Pg}
 

in global grid-point coordinates by the following transformations 

T
PeI = [H -I] {pgen } 
(54)
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{Pg} = [E] 	[T]T {Pe (5)
 

{Pg } is a 	18 x 1 vector. 

The forces 	are placed in the PG load vector data block.
 

4.87.21.6 Element Stress Calculations for TRIM6 Element (Subroutine STRM61
 

and STRM62 of module SDR2)
 

1. The relationship between strain and generalized coefficients is
 

{c} = [B] {a} (56) 

where 

0 0 x 0 0 0 0 0 0 0 

[B] 	 o0 o0 1 0 x 25) 7o 

0 0 1 0 x 2y 0 1 0 2x y 0 

The transformation from displacements to stress is.
 

[s) = [C] [B] [H-i EE]T [T] 	 (58) 

The temperature to stress relation is 

{St ' = -[Ge] {a' (59) 

where
 

{l a {1} 	 (60) 
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for isotropic materials. {a} is input by the user for anisotropmc materials
 

and corrected for material angle by
 

a = [J {am } (61) 

2. Calculations performed by STRM62 (Phase 2 calculations)
 

The equation for stress is
 

{ } = [ s {Ug] fSt } (T3 - T0 ) (62)u + 

xy i 

where T is the loading temperature for the point where stress is evaluated
 

(3 corner grid points and centroid) and is obtained from the GPTT data block.
 

The temperature of the centroid is taken as the average of the grid point
 

temperatures.
 

The principal stresses are
 

a1 = (Cx a + (C 2 ) + Y (63) 

a2 ( -- y)- (x yj+Ka (64) 

=
1 2 2a
 
e = arctan in degrees (65)
 

where 0 is limited to: -900 < 0 < 900 

The maximum shear is
 

T (x2 (66) 
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The stresses are output for 4 points for every element. 3 corner grid
 

points and the centroid.
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4.87.22. TRPLTI Higher Order Plate-bending Element
 

4.87.22.1 Input Data for TRPLT1 Element
 

1 EST entries for TRIBI are.
 

Symbol Description 

BID Element Identification Number 

SIL 1 , SIL 2 , ., SIL 6 Scalar indices of connected grid points 

0 Anisotropic material orientation angle 

Mat ID Material Identification Number for bending 

Mat ID5 Material Identification Number for shear 

Ii, 13, is Area moment of inertia per unit width at corner 

grid points Ii = -3 1 = I2 =1 

TSI, TS3, TS5 Effective thickness for transverse shear 

at corner grad points 

Nonstructural mass per unit area 

ZI1, Z21, Z13, Z23, Distances ZI and Z2 for stress
 

ZI5, Z25 calculation at 3 corner points
 

N Local coordinate system numbers
1 

X and location coordinates in the 
i1=1, 6 

Y basic system for the connected

1 

Z grid points
 

TEMP Element temperature
 

2. Coordinate system data
 

The numbers Ni , XI , and Z1 are used to calculate the 3 by 3 

basic-to-global coordinate transformation matrices ET ] for points 

i = 1, 2, 3, 4, 5, 6, (via subroutines TRANSD or TRANSS). 
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3. Material data
 

Symbol Description
 

[G] 3 x 3 stress-strain matrix 

p Mass density 

ax, ay a Thermal expansion coefficients
 

For mat. TO Reference temperature
 

IDb ge Structural damping coefficient
 

at, Uc, as Stress limits for tension, compression
 

and shear
 

For mat. G Shear coefficient
 

IDs
 

4.87.22.2 	 Basic Equation for TRPLTI
 

1. The element coordinate system is defined by the following equations­

(Xa - X 

{V13} = 	 Y3 - Y1 (1) 

Z3 - Z 

(x5 - x1 

{V151 = jY-YIj (2) 

1IV3 x 	{V2 15}I(3 

M 3 1
 fil 	 (4)
TTv13}I
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{I} x {VIB}
{k} : j~z ' {v13}] 

{j} = {k} x {iI (6) 

2. The displacement transformation matrix from basic coordinates to
 

in-plane coordinates is:
 

[E]rT [k, k02 k03 i01 012 ial (7)
 
(7
 

0 0 31 i2 J3
 

3. The local (element) coordinate system of the element is as follows
 

The x-axis is obtained by joining grid points 1 and 3 of the element.
 

The y-axis is the perpendicular from grid point 5 to the x-axis (line
 

joining grid points 1 and 3).
 

Depending upon the location of grid point 5 relative to grid points I
 

and 3, three cases of triangle orientation are possible: (refer to fig. 4.87.21.1)
 

Case I Acute angles at grid points 1 and 3.
 

c= I{i} x {V15} (8) 

b = {il {V15} (9) 

a = [{V 1311 - b (10) 

Coordinates of points are 

a-b = aX2 = 2 x3 a X4 = 2, x 5 0 
(11) 

b 
X6 = 7
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Yl = 0 ; Y2 = 0 ;Y3 = 0 ;Y4 = ; Y 5 = C ; Y6 S- (12) 

Case II: 

C = 

Obtuse angle at grid point 3: 

I{i} x {V15}I (13) 

b = {i - {V15) (14) 

a = b - I{V13}1 (15) 

Coordinates of points are 

x, = -b; 

X6 

x2=-

b--f 

a-b
2 x 3 

= , 
a

x4=-, x 5 = 0 

(16) 

YI = 0; Y2 ; Y3 =0 ; y Y5 =c ; Y6= (17) 

Case III- Obtuse angle at grid point 1. 

c = [{i} x {V15} (18) 

b = {i} •{V15} (19) 

a = I{V13}I + b (20) 

Coordinates of points are: 

X1 

xbba2=2 
=b 2 

bX6 =2 

; x 3 = a ,- x 4 = ; x5 = 0, 
(21) 

Yi 0 ; Yz = 0 , Y3 = 0 Y4 = 
c
C- ; Y5 =c , Y6=-

c 
(22) 
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The matrix [Hi] (for plates infinitely rigid in transverse shear) 

relating grid point displacements and the generalized coordinates (in the 

equation {u} = [H] {a}) is given by the matrix [Hi] , on the following 

page 

S. The matrix [B2] relating curvatures (for plates infinitely
 

rigid in transverse shear) to the generalized coordinates in the equation 

{XI = [B2 ] {a) is given by 

00020 06x2y 00 12x2 bxy2y2 0 0 20x3 6xY2 2y3 0 0
 
2x3
[B2]= 0 0 0 0 2 0 0 2x by 0 0 2x2 bxy 12y2 0 6x y 12xy2 20y3 

8y30 0 0 2 0 0 4x 4y 0 0 6x2 8xy 6y2 0 0 12x2 y 12xy 2 0
 

(24)
 

6. The matrix [Bl] relating transverse shear strains {y} to the 

generalized coordinates (in the equation {Jy = [B] {a}j) is a 2 x 20 matrix 

whose nonzero elements are as follows: 

BI (I,7) = 6All (25a) 

B I(l,8) = 2A 3 1  (25b) 

BI(I,9) = 2A 32 (25c) 

B1 (l,10) = 6A 1 5  (2Sd) 

Bl(lll) = 24A1 lx (25e) 

BI(1,12) = 6(A 31x + Ally) (2Sf) 

BI(1,13) = 4(A32x + A3 1y) (25g) 

BI (1,14) = 6(A15x + A3 2y) (25h) 

BI (l,I5) = 24A 1 5Y (251) 
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3X676 

2 2X678 
3X6 78 

476 5X6 
2 2x6Y 6 

2 3x6 y 6 
4X6 76 

5Y6 

0 0 

0 -1 

1 0 

0 -2X6 

X6 

-Y6 

2y6 

0 

0 

-3x2 

X2
1 2 

2x6Y6 

2X6Y 6 3y20-6 6 
-y2 0

6 6 

0 
~ 

-4x3
6 

X3 2x~y 6 3x6 Yg6Y63y 6-24yy6 
_3x2y 6 -2x6Y y

6 6 Y6 

4yg 0 23ye 2xy 4x 6 Y 
0­ 4y6 -3x6y 6 7y 

-x4 2 2 _2 3Y 4y
0 -SX6 -3x 6 6 x y _ 6 

S7 
0 

0 



( 2 5 j)B I(1,16) = -120(A 1 1 + A1sA21 - 0.5A1 1 x 2 ) 


B I (1,17) = -12(A 1 1A 3 2 + AI3A34 + A38A31 + A39A33 + AIIA 6
 

(25k)
2 y 2 )+ A1sA21 - 0.5A3 2x - A 3 1xY - 0.SAl 

Bl(1,18) = -12(A 11A1 5 + AI3A25 + A38A32 + A9A3 4 + A16A31 

(251)

2
+ AlsA33 - O.SA 1 5x - A 3 2xy - 0.5A 31y

2) 

BI(1,19) = -24(AISA3 8 + A25A39+ + -AA3-Al 5 xy 

(25m)
 
- 0.5A3 2 Y2 ) 

BI(1,20) = -120(A 1 5AI6 + A15A25 - 0.SA1 5y
2) (25n) 

BI(2,7) = 6A2 1 (25o) 

BI(2,8) = 2A3 3  (25p) 

BI (2,9) = 2A3 4  (25q) 

B1 (2,10) = 6A2 5  (25r) 

B1 (2,11) = 24A21x (25s) 

B1 (2,12) = 6(A3 3x + A2 1y) (25t) 

Bl(2,13) = 4(A34x + A3 3y) (25u) 

B1 (2,14) = 6(A2 5x + A34y) [25v) 

B1 (2,15) = 24A25Y (25w) 

BI(2,16) = -120(ALIA 2 1 + A23A21 - O.5A2 1x
2) (25x) 
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B1 (2,17) = -12(A 2 1A 32 + A2 3A34 + A 4 0A3 1 + A4 1A 3 3 + A26Alt
 

2)
2 A 3 3xY - 0.5A 21y
-
- O.5A 34x
+ A2 5A2 1 


B1 (2,18) = -12(A 2 1A 1 5 + A23A2 5 + A4 0A 3 2 + A 4 1A 34 + A26A31
 

(25z)
2 - A34xy - .SA33y2 )
 

+ A2 5A3 3 - 0.5A2 5x
 

B1 (2,19) = -24(A 13 A4 0 + A 2 5A4 1 + A26A32 ­+ A2 5A3 4 A2 5xy
 

2 ) (2Saa)
 
34y
O.SA
-

B1 (2,20) = -120(A 1 5A26 + A5 - 0.5A 2 )  (25bb2 5y 

where
 

All = +-(J11 D11 J 12D13 )
 

A 12 = -(J1lD 1 2 + J 1 2D2 3 )
 

A 1 3 - -(JllD 1 3 + J 12D3 3)
 

A 14 = -(JlD 1 3 + J 1 2 D1 2 ) 

A 15 = -(J1 lD2 3 + J12D22)
 

A 1 6 = -(J 1D3 3 + J 1 2 D2 3)
 

(25cc)
 
A 2 1 = -(J 1 2 DII + J 2 2 D1 3) 

A 2 2 = -(J 1 2 D1 3 + J 2 2D2 3 )
 

A 2 3 = -(J 1 2D 1 3 + J 2 2 D3 3)
 

A 2 4 = -(J 1 2D 1 3 + J 2 2 D1 2 ) (continued)
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A2 5 = -(J 1 2 D2 3 + J 2 2 D2 2 ) 

A2 6 = -(J1 2D3 3 + J2 2D28) 

=A31 A14 + 2A1 3
 

A32 = A12 + 2A16
 

A 3 3 = A2 4 + 2A23
 

A34 = A 2 2 + 2A2 6 

A3 5 = A 3 3 + All 

A36 = + A31 (25cc)A3 4 

(concluded) 

A37 = A2 5 + A32 

A 38 = A1 3 + A14 

A3 9 = A12 + A1 6 

A40 = A2 3 + A2 4 

A41 = A2 2 + A2 6 

7. The matrix [B3] relating {X2} , the contribution of transverse shear 

to the vector of curvatures, to the generalized coordinates [in the equation 

{X21 = [B3] {al) is given by 

B3(1,11) = -24A11  (26a)
 

B3(1,12) = -6A31 (26b) 

B3(1,13 ) = -4A32 (26c) 
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B3(1,14) = -6AI5 (26d) 

B3 (1,16) = -120Allx (26e) 

B3 (1, -17) = -12(A 32x + A31y) (26f) 

B3 (1,18) = -12(Al5X + A32y) (26g) 

B3 (1,19) = -24AISy (26h) 

B3(2,12) = -6A2 1 (261) 

B3(2,13) = -4A3 3 (26j) 

B3 (2,14) = -6A34 (26k) 

B3 (2,15) = -24A 2 5  (261) 

B3(2,17) = -12(A 33x + A2 1y) (26m) 

B3 (2,18) = -12(A34x + A3 3y) (26n) 

B3 (2,19) = -24(A 2 5x + A34y) (26o) 

B3(2,20) = -120A2 5Y (26p) 

B3 (3,11) = -24A 2 1 (26q) 

B3(3,12) = -6(All + A3 3) (26r) 

B3(3,13) = -4(A3 1 + A 34 ) (26s) 

B3 (3,14) = -6CA32 + A2 5) (26t) 

B3(3,15) = -24A 15 (26u) 
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B3(3,16) = -120A 2 1x (26v)
 

B3 (3,17) = -12 [(A34 + A3 1)x + (A3 3 + All)y] (26w)
 

B3 (3,18) = -12 [(A2 5 + A3 2)x + (A3 4 + A 3 1)y] (26x) 

B3 (3,19) = -24 [A,5x + CA32 + A2 5)y] (26y)
 

B3 (3,20) = -120A 1 5y (26z)
 

where All , A12 . . , A34 are as given in equations (25cc). 

8. For plates with transverse shear flexibility the modified []
 
matrix, [H'] , is given by subtracting the matrix [BI] for each of the six
 

grid points from the respective rows of a and a of the grid points in
 

the [H] matrix.
 

9. For plates infinitely rigid in transverse shear,
 

[H] EH] (27)
 

10. The two constraint equations involving the coefficeints a16 

a1 7 , a18 , a19 , and a20 of the quantic polynomial for transverse 

displacement so as to insure cubic edge rotation on the sloping edges of the 

triangular element are now entered as the 19th and 20th rows of [H'] 

i.e., the 19th and 20th rows are-

E0 2 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sb4c (3b c3-2b4 c) (2bc4-3b c2) (c5-4b2c3) -Sbc4] 

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sa 4c (3a c3-2a4 c) (-2ac4+3a3c2) (c5 -4a2c3 ) 5ac4] 

This is now added as the 19th and 20th row of the [H'] matrix to form 

[H"] matrix. [H"] is a 20 x 20 square matrix that is nonsingular 1 

1 A numerical experiment to verify that [H"] is nonsingular for all practical 

element sizes is described in "New Triangular and Quadrilateral Plate-bending
 
Finite Elements" by R. Narayanaswami, NASA TN D-7407, Apr 74.
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11. The [Ht matrix is 	inverted. The first 18 columns of the
 
-
[011 1matrix is denoted 	by the matrix [H'] (Size 20 x 18), i.e.,
 

-
[H"'] = The first 18 columns of ["'	 (28) 

4.87.22.3 Stiffness Matrix Calculation for TRPLTI (Subroutines KTRPLS and KTRPLD)
 

The polynomial expressions, for variation of w and t within the 

element, are 

20 m. n
 
w = a x Iy 	 (29)i=J. 

3 r. s 
t = cx y (30)i=l1
 

The values of mi ' nl Pi and qi are
 

m I =0 ; M2 =1 , m3 =0 ; m4 =2 ; m5 =1 ; m 6 = 0 

m 7 = 3 ; m8 = 2 ; m9 = 1 ; m 10 = 0 ; rol, = 4 

(31) 
m2 = 3 mi = 2 , m = 1 ; M = 0 , m = S1 14 1 5 1 6 


m17 = 3 , M 1 8 = 2 ; mi1 9 	 = 1 ; m 20 = 0 

n= 0 n2 =0 ; n 3 =1 , n4 = 0 , n 5 =1 , n 6 = 2 

= 0 ; = 1 ; = 2 , = 3 ; n1l = 07 n 8 n 9 n1 0 

(32)
 
n12 = in = 2 n4 	= 3 ; n15 = 4 , n16 = 0 

= 

13 


n17 = 2 ; n 18 = 3 n1 9 4 ; n20 = 5
 

rI = 0 ; r2 = 1, r3 =0 	 (33) 

sI = 0 ; S2 =0; S = 1 	 (34) 
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The coefficients a, to a20  are generalized coordinates of the
 

element and can be evaluated once the displacement vector is known.
 

The coefficients c1 , c2 , and c3 can be evaluated from the
 

specified thicknesses t1 , t3 , and t5 of the 3 corner grid points and
 

the geometric dimensions of the element
 

tla + t3b 
C1 = (a + b) (35) 

t 3 - t 1 
C2 = (a + b) (36) 

C3 = I (t5 - cl) (37) 

where tI , t3 , t5 are evaluated from the values I1 , 13 and 15 

respectively. 

The elements of the symmetric portion of the stress-strain matrix
 

[Ge] are denoted by GI , G12 , Gi3 , G22 , G23 , and G33 *
 

A formula for the integril of the type xmyn taken over the area of
 

the element is
 

nfl mlmnl m~n
 

ff xydx dy = F (m,n) = cn+l{a - (-b)m+l  mn ! (36)
(m + n+ 2)! 36
 

The equation used is the stiffness matrix generation in generalized
 

coordinates for plates infinitely rigid in transverse shear is given by
 

3 3 3 

(k)ge 12 k 1 =1 k2=l k3=l I k2 k3 
1 

[Glmlmm3 Cm1- l)1m 3 - 1) F(m + m + rk, + rk2 + Trk - 4, 

(39) 
niz + nj + sSkl s1k2 + k) Gnn(ij - )(n J)n 1) F(m1 in+ Sk3 G22n n (n - + 

+ rk + rk2 + rk3 ' n + Sk Sk2 + S k - 4) (continued) 
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+ (4G33m m nin 3 + Gl2{m1n (mi - 1)(n - 1) + mninl (m - 1)3 


* Cm3 - l) )F (mi + m +rk +rk2 + rk n+ Skl 

+ Sk2 + Sk 3 2) + 2G1 3{mimjn. (mi - 1) + m.n.m. (m - 1) F(mi (39) 
2. J 1 11 J 1(concluded) 

+m3rkrk2rk k3 -3, n. 1c1 k2 ­+ +rk +rk + n. +SSk + +SSk3 1) 

+ 2G2 3{im n.n (ni. - 1) + m.n.n (n - I)} F(m + m + r + r 
3 ij 1 ii1 3 j 1 j k1 k2
 

+ rk ,n.+ n. k+ k+ k+k 3 - 3)] 

For plates with transverse shear flexibility, the expression for
 

generalized stiffness matrix consists not only of the closed form expression
 

but four additional integrals, given below, that are evaluated using numerical
 

integration, i.e.,
 

[Kgen]= EKgen](e q. 39) +ff[B2]T [D] [Ba] dx dy
closed form
 

+ffEB3 f [DJ [B2 ] dx dy +ff[B3]T ED] EBs] dx dy (40) 

"ff[B j T [G] EB] dx dy 

[D] matrix is obtained from the stress-strain matrix [Ge] as
 

ED] G_L 3 3 3 rI+r +rksI+ S(1si k i ) (41)l ccc x 

1[G]= Gt* 0 (42) 

where t* is the effective thickness for shear at the integration point and
 

is evaluated from the user specified values TSl, TS3, and TS5. The
 

132 



numerical integration formulae used are the seven-point integration
 

scheme listed in Zienkiewicz1 and are given below.
 

For a triangle, the integrals of the form
 

I JI-L 7 
= J f(L 1 L2 L 3) dL1 dL2 = E Wkfk(L1L2L3) 

0 0 k=l 

where the points (L1, L2, L3) and the weighting factors are as follows
 

Point Triangular Coordinates Weight, 2Wk
 

L1, L 2, L 3 

0.225
2 6 1 1/3, 1/3, 1/3 


42 
 a1 1 Sl 

33 l al 51 0.13239415
 

4 81 1 l
 

5 
 a2 82 0
 

6 S2 a2 2 0.12593928
 

7 
 82 82 a2
 

with 

al = 0.05971588 al = 0.47014206
 

= 0.79742699 02 = 0.101286505
a2 


The stiffness matrix in global coordinates is
 

[k] = [E] [T]T [H"]T [k]gen [H"] [T] [E]T (43) 

10. C. Zienkiewicz, "Finite Element Method on Engineering Science,"
 
New York, London McGraw-Hill, 1971.
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4.87.22.4 Mass Matrix Calculation for TRPLTI (Calculated in Stiffness
 

Subroutines KTRPLS and KTRPLD)
 

Two different mass matrices are used: the lumped mass and the
 

consistent mass. The lumped mass matrix is calculated in the same manner
 

as for TRIM6:
 

1 (4
 
m = 1 (pV + Ap) (44)
 

where
 

V, the volume of the element = c1F(0,0) + c2F(l,0)
 
(45)
 

+ c3F(O,l)
 

For each point, the diagonal mass matrix in element coordinates at
 

all the grid points is
 

0 

0 0 
m 

0 i = 1, 2, . , 6 (46)[mi] 0 

0 

0 

so that [Me] the element mass matrix has Emi] matrices arranged 

diagonally. 

The mass matrix in the global coordinate system is obtained as 

EMgg ]= [] [T]T [Mee] [T] [E]T (47) 

If the parameter COUPMASS is set by the user, the consistent mass matrix
 

will be formed. The Jth element of the ith row of generalized mass matrix
 

is given by
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3
I PJ'ff E c k Xm +m + k ynl+n+sk dx dy
[ g]en k=l 

(48)

m.+m. n +n 


+ Pffx y, 3 dx dy 

3 
m +
= LkEl {ck F~ m + rk' nI + n + s0 

k=l c :+r nn 
(49)
 

+ p F(mI + m, n + n) 

The mass matrix in global coordinates is
 

m] =[E] [T]T H,,, ] T [Mgen] PH"'] [T] [E] (50) 

4.87.22.5 Structural Damping Matrices for the TRPLTI Element
 

The structural damping matrices are
 

[k = (51) 

where ge is the structural damping coefficient for the bending material
 

referenced.
 

4.87 22.6 Stress and Element Force Calculations for the TRPLTI Element
 

(Subroutines STRPII and STRP12 of Modules SDR2)
 

1. STRP11 is used to calculate the phase 1 stress-displacement
 

relations.
 

Frequent reference will be made to the equations from sections 4.87 22.2
 

and 4 87.22.3
 

The following data are calculated
 

1.[H"'] - 20 x 18 Matrix relating generalized coordinates to grid 

point displacements. 
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2. [B2] - 3 x 20 Matrix relating bending curvatures and generalized
 

coordinates.
 

3. [B3 ]- 2 x 20 Matrix relating curvature contribution of transverse
 

shear strains and generalized coordinates
 

4. [E] - element to basic coordinate transformation.
 

S. [D] - 3 x 3 Matrix of elastic coefficients relating bending moments
 

and curvatures.
 

6. [Gs] - 2 x 2 Matrix relating transverse shear forces and shear
 

strains.
 

7. [T] - i = 1, 2, . . , 6 - Global to basic transformations. 

The following calculations are performed.
 

[s*]- [D] [B2] [HITT] (52) 

[SMI is a 3 x 18 matrix; this is split into six 3 x 3 matrix Partitions
 

as follows:
 

I1~ I * [sJ*= [SM:l SM2 I 61 (53) 

Each of the six matrix partitions is multiplied as follows:
 

[M] [S] E [T] i = 1, 2 .... , 6 (54) 

[s } [c [B3] [H"',] (55) 

[G ]isa 2 x 18 matrix, this is split into six 2 x 3 matrix partitions as
 
follows:
 

[s = L%S G2 I 6 ] (56). 
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Each of the six matrix partitions is multiplied as follows:
 

[S [ET T ] 1 = 1, 2, . . , 6 (57)G = SG 

The S x 6 matrix [si] is obtained as 

Isi] SG i = 1, 2, .. o6 (58) 

2. Phase 2
 

(a) The vector of forces is computed as
 

M
 
x 

y 6 
M 

(EMy Es.] {li)- {Mtl (59) 

XY 
V
 
Vx
 

y 

where {Mt I is the thermal moment vector If the thermal gradient is 

specified, 

{Mtl -[]l{aIIT' (60)
 
1 

where I is the moment of inertia of the cross section and T' is the

1 1 

thermal gradient at vertex i of the element. 

The stresses and forces are evaluated at the vertices of the element,
 

in addition, the stresses are also evaluated at the centroid. The simplification
 

is made that the thermal moment vector at the centroid is the average of that
 

at the vertices.
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(b) With no given temperatures at the stress points, the stresses are
 

then calculated from the equations
 

Mz
 
x
a 

x I M , My , M and I for the 

appropriate points (vertices or centroid);

Mz 

are
a Y (61) z values for the corner grid points 
y I as those given in the PTRPLT1 card and for 

the centrold, the z values are the top
 
Sxyz and bottom fibre distances.
 

xy I
 

If mean temperature T0 and the gradient T' are specified at the
 

three vertices,
 

a M 
X. Xxi Z C 

I 1 1 
=M + [D] {a}T= - y (To - ) [D] {a} i = 1, 2 (62) 

aXY 1 , xy 

where T is the average temperature of the element. 

The principal stresses and angles are calculated using the same formula
 

as for the membrane element TRIM6 (section 4.87.21 6).
 

4.87.22.7 Thermal Load Calculations for the Bending Elements (Subroutine
 

TLODT1, TLODT2 and TLODT3 of Module SSGl)
 

The variation over the surface of the element of the mean temperature, 

TO and the thermal gradient at a cross section, T' , is assumed as a 

bilinear polynomial 

O = d x'yY (63) 

138 



= 
i=l 

d. x y (64) 

so that the temperature at any point (x, y, z) is T = TTO + 

The constants d and d' are evaluated from the values at the
 
I I 

vertices and the reference temperature T0 of the element
 

Tola + Tosb T03 - To, l r d (66) 
dil= -- (a +b) -To; d2 = + b)0;; d-(a~b) (a +b) 3=LOc1
 

11 1111 1 

1i Tja +Tb T3 - TrT -d](7- dl (67)(a+b) 2 = (a + b) ; 


It is convenient to define the elements of [G ]{etI 
as
 

Gi = G11ael + G1 2ae2 + G1 e3 
 (68)
 

G22 = Gl2ael + G22 e2 + G2 3 e3 (69) 

G33 = Gj3el + G2 ce3 + e3(70) 

t 

The thermal load vector in generalized coordinates, Pgen , will be 

evaluated in two stages, viz., the closed form expression {Pt }, due to1
 gem

the vector of curvatures in the absence of transverse shear and the
 

numerically integrated expression {Pten2t due to the contribution of
 
h otiuino
gen12det 


transverse shear to the vector of curvatures. The ith element of {pt J1
 
gen


is given by 

1 3 3 3 

[{pUt - c c c d' [G 1i(m(m - 1) F(m + r
 
gen 2 i = I 13=1 I 1 1 12 13 [ 1 1
 

(71)
+ r12 + ri,+ p3- 2, n + s 12 + s + q3) + G§2nn i - 1) F(mI 

r 
 +r +p, n +s..r +s +s + q - 2) (continued)
 

139
 



*G3 min F(m + r + +. -ln + s + sGi I 1 k2 +k3 + i 3 12 (71) 

(concluded)
+ S13 + qj - i)] 

t
 

The load vector {Pgen2 is evaluated using numerical integration of
 
the following expression.
 

{Pgn 1 2 = - ff EB3]T GJ {ae} rt 3 dx dy (72) 

The generalized thermal load vector is
 

{Pget = {pte, + {pt }2 (73)
 

gen gen gen
 

The thermal load vector in global coordinates is
 

[E ]T= (74)
[TT [H"] T {pt } 


{t g = E' Egen 

The forces are placed in the PG load vector data block.
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4.87.23. TRSHL. Shallow Shell Triangular Element
 

4.87.23.1 Input Data for TRSHL Element
 

1. EST entries for TRSHL are 

Symbol Description 

EID Element Identification Number 

SILl, . . . SIL6 Scalar indices of connected grid points 

0 Anisotropic material orientation angle 

Mat IDm Material-Identification Number for membrane 

behavior 

TI, T3, T5 Membrane thickness at corner grid points 

Mat IDb Material-Identification Number for bending 

Ii, 13, 15 Area moments of inertia at corner grid points 

Mat ID Material-Identification Number for transverse 
s 

shear 

TSI, TS3, TSS Thickness for transverse shear at corner 

grid points 

p Nonstructural mass per unit area 

ZI1, Z21, Z13, Z23 Distances Z1 and Z2 for stress 

Z15, Z25 calculations at three corner grid points 

N Local coordinate system numbers 

Xi i=1i, . . .6 and location of coordinates in the 

Y basic system for the connected grid 

Z points 

TEl, TE2, TE6 Element temperature at the six grid points 
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2. Coordinate system data
 

The numbers NI , Xi , and Z are used to calculate the 3 by 3
 

basic-to-global coordinate transformation matrices TI for points
 

i = 1, 2, 3, 4, 5, 6, (via subroutines TRANSD or TRANSS)-.
 

3. 	Material data
 

Symbol Description
 

[G] 3 x 3 stress straan matrix
 

p Mass density
 

For mat. a x ay axy Thermal expansion coefficients
 

ID TO Reference temperature
m 

ge Structural damping coefficient 

Ut, a, asStress limits for tension, compression and shear 

For mat. j D 3 x 3 bending stress-strain matrix 

IDb 

Gs
For mat. Shear coefficient
 

IDs
 

4.87.23.2 	Basic Equation for TRSHL
 

The calculations for the TRSHL element are very similar to those of TRIM6
 

and TRPLTI (sections 4.87.21.2 and 4.87.22.2 respectively) that only the essential
 

details are given here.
 

The displacement transformation matrix from basic coordinates to in-plane
 

coordinates is
 

iI 	 0 0 0
12 1 3 


l 32 J3 0 0 0
 

[E]T 
 kI k2 k3 0 0 0 (1)
 

0 0 0 11 12 1
 

0 0 0 31 j2 3
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where i , j and k are as given by equations (4), (5) and (6) of section 

4.87.22.2. No transverse shear effects are considered for the TRSHL element.
 

The matrix [H] relating grid point displacements and the generalized
 

coordinates (inthe equation v [H] (al ) is similar to that for TRIM6
 
w 

and TRPLT1. The inverse matrix relating generalized coordinates to the grid­

point displacement vector is a 32 x 30 matrix and is given by
 

H- 1 [
 

6x6 I 0
 

I Hf I 
[H]-'- 66 (2) 

I I 20x18I I 

where H1 is a 6 x 6 matrix given in equation (21), section 4 87.21.2 and
 

H"' is a 20 x 18 matrix given in equation (28) of section 4.87 22 2.
 

4.87.23.3 Stiffness Matrix Calculation for TRSHL (Subroutine KTSHLS and KTSHLD)
 

The polynomial expressions for variation of u , v , w and thickness t 

within the element are 

32 m. n 
u= a x y (3) 

32 P i q 1 (4) 

32 v s
W c x 1 y (5) 

i14
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3 t. u 
t= d.x 	 (6)
 

tm iYl 1 1 	 (6) 

i=I 3 t'
 
3 t U.!
 

t= > d x'Iy 1
 

The values of mi , n. , p , , vq , s. , ti , ui , _ and1 	 11 

U. are
1 

miC= 1,32): 0, 1, 0, 2, 1, 0, 26*0
 

ni( = 1,32): 0, 0, 1, 0, 1, 2, 26*0
 

p(i = 1,32): 6*0,0, 1, 0, 2, 1, , 20*0
 

qi(i = 1,32): 6*0, 0, 1, 0, 2, 1, 2, 20*0
 

v (1 = 1,32): 	 12*0, 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 4, (7) 

3, 2, 1, 0, 5, 3, 2, 1, 0 

Si(i = 1,32): 	 12*0, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0,
 

1, 2, 3, 4, 0, 2, 3, 4, 5
 

t.(i = 1,3): 	 0, 1, 0; t':O, 1, 0, s1:0, 0, 1; s'*O, 0,1
 

The coefficients aI b and c. are undetermined parameters such that 

a = 0 i = 7 to 32 
1 

b = 0 	 i = I to 6 and 13 to 32 (8)
 

c = 0 	 i = 1 to 12 

ai, i = 1 to 6; bI, i = 7 to 12, and cI, 1 = 13 to 32 can be determined once 

the element displacement vector is known. 

144
 



The coefficients d and d' i = 1 to 3 are evaluated from the 
I I user specified values of the membrane thickness and the area moments of inertia,
 

respectively, by equations similar to those for TRIM6 and TRPLT1 elements.
 

The equation used in the stiffness matrix generation in generalized
 

coordinates is (following the procedure outlined in sections 5.8.6 and
 
5.8.7), the jth column of the ith row of the generalized stiffness matrix'is
 

obtained as
 

K.. = [Gii(m i.dk F(mi + m. + tk nI + n + Uk)
k=l
 

- h4 mi dk F(m + r. + tk - 1, ni + s +u) 

-h 4 mj F(m + + t k - 1, n + s Uk)dkj k j r i tks s + kk 

+ h2 dk F(r + r + t S + S+ U 

+ G22(qI qj dk F(pi + pj + tk q u - 2)
 

-h6 qi dk F(p1 + rI + tk, q, + si + uk -)
 

- h6 qj dk F(r1 + p3 + tk' s i + q) + uk -)
 

+ h2 
6 dk F(r + r + tk s + s +uk)), 


1nj+I tk 1 j. uk -2 (9),+ G33 i n dk F( + + + n n k -2) 

nij 1~m+ p %, j+ n. pddk km +p+tk +t k- + qj + ukk -1) 

-h5 n i dk F(m + r + tk, n + s + uk 

+ p1 nj dk F(p + m. + t k - 1, qi + n +uk
 

+
+ pi p d.k F(P + P + tk - 2, qi + q Uk)
 

- h5 p1 dk F(p 1 + r3 +tk-,qI+s3 +uk
 

- h5 nj dk F(r + +tk' s + n + uk -1) (continued)
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- h5 pj dk F(r i + Pi + tk -,5s + qj + Uk)
 

2X
+ hSdk F(i + r + t k, s i + s5 + U0) 

+ G2(mi q dk F(m1 pj + t k - L, n + q + uk -) 

h6 mi dk F(m i + rj tk - 1, ni + S + uk)
 

- h4 qj dk F(r i + pi + tk , s i + qj + u k - 1)
 

+ 2h4 h6 dk F(ri + ax + tk, si + s. + Uk) 

+ q1 m, dk F(p1 + m + tk - 1, qi + nj + uk - 1)
 

- h4 qi dk F(pi + rx + tk, q. + sj + u k - i)
 

- h 6 mj dk F(r i + m. + tk -1, si + nnj uk 

+ G13(m i nj dk F(mI +1- mj + tk - 1, n I + n + Uk1+q U -1
 

mI pj dk F(mi + + tk 2, n+ + Uk) 
(9)
 

- h5 mi dk F(mi + r + tk - 1,n. + S. + Uk) 

-Lh4 nj dk F(ri + Mnj + tk' s I + nj uk - 1) 

- h4 pj dk F(ri + p + tk - 1, s + q + Uk) 

+ 2h4 h5 dk F(r + rI + tkl s + S + Uk) 

+n i mi dk F(m + mi + tk , n i + -1)
 

h4 ni dk F(m + r3 tk, n + S Uk - 1)
 

+ p1 mj dk F(p 1 + mi. + tk - 2, q. + n + uk)
 

- h4 pi dk F(p +3 +tk 1, q1I + Uk)
 

-h 5 m3d k FrI + mi + t k , s i + n 

+ G23(q 1 n3 dk F(pi + m3 + tk' q + n3+ Uk -2) 

dk F(P I 
+ qi p3 + p3 + tk -1, qI + q + Uk - 1) (continued) 
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- h5 qi dk F(pi + r 3 +tk qi + s + Uk -)
 

-h6 n dk F(rI +m. + uk -l)
 

- h6 p3 dk F~r I + p + tk - 1, si + qj + Uk)
 

+2h5 h6 dk F(rI + r s + Uk)
 

+ nI qj dk F(ml + P + tk' n1 + q3 + Uk - 2)
 

- h6 ni dk F(mi + r + tk, n + s + uk - 1)
 

+ Pi q3 dk F(pi + P + tk - 1, q + q3 + Uk -1) 

- h6 p1 dk F(pi + r+ - 1, q + s+uk) 

dk- hs q3 F(rI + PJ + tk" si + q3 + Uk - 1))]
 

3 3 3 dt d'd (
 

kl=l k2=1 k3=1 k r r (r - )(r - 1)
 

F(r + r + t' + t' + t - 4, s + s + u + U' + u)
i j kI k2 k3 j k k2 ) (9) 

"G22 5 s (s -1)(s -1) F(r +-r + t' + t' + t, (concluded)
i 3 1l 1 1 i k2
 

+51+ S.+ +1 +11skS~I 2 
+ '{ 4)
 

+ (G33 ri rj si s +12rs 3 (r -)(s 1) 

+ r. s (r - )(s - 1)}) F(r + r + t + t + t - 2,
j I d13 k3k1 k2 


+ S + S +ut u +u' - 2) 
a j ki u 2 + kc3 

+ 2G13{r I r s (r - 1)+ ri r3 sI (a 3 - 1)1 F(r I + r 

+t' +It 2 + 3 - 3, s +i s J + rln + i'+ U'k3 -1)ki ' iI2 k3 


+ 2G23(r3 s s3 (s -I) + r sI sj (s3 - 1)) F(rI + r. 

+ t' + t + t" - 1 s. + s + i + + u' - 3)]ki kd2 1 j2 Id 2 +k 3
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The generalized stiffness matrix can be transformed to the element and global
 

coordinates by transformations similar to those for TRIM6 and TRPLTI elements.
 

4.87.23.4 Mass Matrix Calculation for the TRSHL Element (Calculated in the
 

stiffness subroutine KTSHLS and KTSHLD)
 

Two different mass matrices are calculated: lumped mass and consistent
 

mass. The calculations are the same as for TRIM6 and TRPLT1.
 

4.87.23.5 	 Structural Damping Matrices for the TRSHL Element
 

The calculations are similar to those for TRIM6 and TRPLT1 elements.
 

4.87.23.6 Stress and Element Force Calculations for TRSHL Element (Subroutines
 

STRSLI, STRSLV and STRSL2 of module SDR2)
 

The 	calculations are similar to those of TRIM6 and TRPLTI elements.
 

4.87.23.7 Thermal Load Calculations for the TRSHL Element (Subroutines TLODSL
 

of module SSGI)
 

The 	calculations are similar to those for TRIM6 and TRPLTI elements.
 

4.87.23.8 Differential Stiffness Matrix Calculations for the TRSHL Element
 

(Subroutine DTSHLD of module SSGl)
 

The steps leading to the calculations of the differential stiffness matrix
 

are given in section 7.3.6 of the theoretical manual (pages 66 to 70 of this
 

report).
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APPENDIX D
 

Updates to the NASTRAN Demonstration Problem Manual
 
for the addition of TRIM6, TRPLT1 and TRSHL elements
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Demo Problem 1.3-4(a)
 

Analysis of a Free Rectangular Plate with thermal loading using higher
 

order triangular membrane TRIM6 element The quarter section of the plate
 

shown in figure 1, is discretized using TRIM6 element. Discretization is given
 

on page 1.3-4(b), figure 3(a).
 

The graphs for the measured stresses a and a at x = 1.5 shown on
x y
 

pages 1.3-5 and 1.3-6. The results obtained by this analysis are not included
 

in the same graph, since for the chosen mesh the stresses are evaluated at
 

locations different from those shown in the graph. However, good agreement
 

is seen for the stresses for the chosen mesh.
 

1 3-4(a) (1/1/77)
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Figure 3(a). Model of free rectangular plate using TRIMG element.
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Demo Problem 1.7-5
 

Triangular Shallow Shell Element
 

Two problems, (1) that of a spherical cap, and (2) that of a cylindrical
 

shell roof, are considered. These are the same two example problems analyzed
 

in reference 23.
 

(1) The spherical cap, with finite element discretization is shown in
 

figure 5. Due to symmetry, only one fourth (quarter) of the cap was analyzed.
 

Good agreement in deflections at the center of the cap is obtained even
 

with relatively coarse mesh sizes as shown in Table 1. Even though the results
 

appear to be oscillating about the exact value, the percentage error in the
 

converged solution is very negligible.
 

(2) The shell is shown in figure 6 along with pertinent dimensions and
 

associated material properties. The finite element discretization for the shell
 

is shown in the same figure. Due to symmetry, only one fourth (quarter) of
 

the shell was analyzed.
 

Results for the shell roof problem and the exact solution reported by
 

Cowper et al (ref. 23) are given in Table 2. Reasonable agreement is seen
 

between the finite element and the exact solutions.
 

The values given in Table 2 are obtained from a stand-alone program wherein 

the global stiffness matrix had S d.o.f. per grid-point, viz., u , v , w 

a and 5 . This is consistent with shallow shell theory. In NASTRAN, the 

global stiffness matrix has 6 d.o.f. per grid point, viz., u , v , w , a 

$ and y . It is necessary therefore to constrain the sixth degree of freedom 

at all grid points where all the elements connected to that grid point are in 

the same plane. This requirement is to ensure that the global stiffness matrix 

is nonsingular for a given sufficiently supported condition of the structure. 

Theoretically, however, the above requirement is equivalent to the introduction
 

of additional constraints on the problem and hence the solution obtained from
 

NASTRAN will be lower bounds to the actual values obtained from the stand alone
 

program and given in table 1. The values obtained from NASTRAN and CTRSHL elements
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are given in table 2. For shells that are strictly shallow, the solution from
 

NASTRAN will approach that obtainable from stand alone programs based on a strict
 

application of shallow shell theory.
 

An alternative to solve problems where shell is only marginally shallow,
 

as the example discussed herein, is to use combination of TRIM6 and TRPLT1
 

elements. The result of using a 2 x 4 and 3 x 3 mesh of CTRIM6 and CTRPLT1 elements
 

from NASTRAN is given in table 4. Note that the values are very close to the
 

exact values.
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Table 1. Center deflections for spherical cap problem.
 

Deflection 6 
c 

Etw 
c

P R2 

0 

Finite 
Element 
Grid 

Rt 
--
L2 

0.02 
Rt 
=0.005 

L2 

1 x 1 1.15107 1.13951 

2 x 2 1.00774 0.99178 

3 x 3 1.00452 1.00177 

4 x 4 1.00437 1.00084 

Exact 1.00978 1.00043 
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Table 2. Results for a cylindrical shell roof from stand-alone program (values are in element
 

Finite 

Element
 
Grids 


1 x 1 


2 x 2 


3 x 3 


4 x 4 


, 2 x 4 


3 x 6 


4 x 8 


5 x 5 


6 x 6 


Exact 


coordinates).
 

louA 


(in.) 


-0.4516$ 


-0.7812 


-1.09590 


-1.2939 


-0.9041 


-1.1244 


-1.3845 


-1.4160 


-1.4733 


-1.51325 


wB 


(in.) 


-0.29100 


-12516 


-2.49876 


-3.4332 


-2.2815 


-3.6227 


-4.1526 


-3.88152 


-4.09176 


-4.09916 


10v B 


(in.) 


-2.48424 


-4.77312 


-7.12872 


-8.57580 


-6.15 


-8.5968 


-9.5295 


-9.29000 


-9.76992 


-8.76147 


lowC 


(in.) 


-4.0700 


-2.1344 


-1.3606 


2.2224 


0.888 


3.1031 


3.9238 


2.8182 


3.0900 


5.2494 


10- 3NxxB 


(lb./in.) 


2.4659 


4.2801 


5.4948 


6.0277 


5.1312 


6.1862 


6.4839 


6.3279 


6.4444 


6.4124 


10-3MyyC 


(lb. in./in.) 


0.7685 


-0.9395 


-2.0283 


-2.3828 


-1.415 


-1.9414 


-2.0459 


-2.3538 


-2.3242 


-2.0562 


10-2MxxC
 

(lb. in./in.)
 

2.8520
 

-0.8896
 

-1.1136
 

-1.7912
 

-2.0196
 

-1.8912
 

-1.6724
 

-1.9770
 

-2.0638
 

-0.9272
 



Table 3. Results for cylindrical shell roof from NASTRAN using 
CTRSHL elements (values are in global coordinates). 

Finite 
Element IV V (in.) ( 
Grids UA (in.) B B C 

2 x 4 -0.0945 -1.6437 -0.5181 0.1938 

3 x 3 -0.09054 -1.7309 -0.4801 0.3813 

Exact -0.151325 -3.70331 -1.96372 0.52494 
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Table 4. Results for cylindrical shell roof from NASTRAN using 
CTRIM6 and CTRPLTI elements (values are in global 
coordinates). 

Finite 
Element U (in.) IV (in.) VB (in.) Wc (in.) 
Grids A BB 

2 x 4 -0.1233 -3.4162 -1.7445 0.4287 

3 x 3 -0.1335 -4.2560 -2.1226 1.1007 

Exact -0.151325 -3.70331 -1.96372 0.52494 
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Figure 5. 
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Figure 6. 	Geometry of cylindrical shell roof and finite element
 
idealization
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Demo Problem 1.8-5
 

Analysis of a Beam Using TRIM6
 

A. 	Description
 

The cantilever beam shown on page 1.8-4 is modeled with the NASTRAN TRIM6
 

element as shown in figure 2, page 1.8-7. This problem demonstrates the
 

analysis of a beam subdivided into the six noded triangular membrane elements.
 

The loads were chosen to approximate the stress distribution due to a
 

moment on one end of a beam. The other end is constrained to resist the moment.
 

The plane of symmetry is not used.
 

B. 	Input
 

1. 	Parameters Similar to those listed on page 1 8-1.
 

2. 	Boundary Constraints. on x = 0 plane, ux = uy = 0 

3. 	Loads- total moment = M = 2.048 x 103 . This moment will produce 

bending about the z-axis. It is modeled by a set of axial loads at 

x = Z which, in turn, represents an axial stress distribution: 

a = 1.5 x y 

4. 	Subcase - I Consistent loading.
 

5. 	Subcase - 2: Lumped loading.
 

Considering strip near extreme fiber
 

-(1.5 x 6 + 1.5 x 8) 2 4 = 84
 

C. 	Analysis and Results
 

Analysis. refer to pages 1 8-1 and 1.8-2
 

Results
 

1.8-S (1/1/77)
 

161 



Comparisons of Displacement
 

-4) 
Theory (10 Consistent Loading Lumped Loading
 

Grid Y =2E - -
Ps. 4)
 Grid Pts. y Subcase 1 (10 4) Subcase 2 (10


3 0 0 0
 
13 .0625 .0515 .0523
 
23 .25 .2377 .2467
 
33 .5625 .549 .5744
 
43 1.0 .985 1.0172
 

Comparisons of Stress
 

Figures 3(a) and 3(b) show stresses obtained from the analysis.
 

Referring to figure 3a, subcase 1, we have stress at
 

Grid point 5 = 9.567 (C)
 

Grid point 3 = 1.64 + 1.31 + 1.31 = 1.4 (C)

3
 

Grid point 1 = 11.7 + 15.46 (T)
 

Referring to figure 3b, subcase 2, we have stress at
 

Grid point 5 = 9.87 (C)
 

1.64 + 1.35 + 1.35Grid point 3 = 3 = 1.48 (C)
 

Grid point 1 = 12.1 + 15.96 - 14.03 (T)
2
 

If the cantilever beam is discretized with the same type of mesh and the same
 

number of elements, but the diagonal oriented in the opposite direction to
 

figure 2, i.e., as shown in figure 4, then the stresses for subcase 1, at
 

grid points 5, 3, and 1 would be
 

Grid point 5 = 13.58 (C)
 

Grid point 3 = 1.4 (C)
 

Grid point 1 = 9.567 (T)
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Therefore the stresses at grid points 5, 3, and 1 are taken as the average 
of the two types of meshes (i.e., figure 2, and figure 4). 

Therefore, for subcase 1, we have stresses at 

Grid point 5 =9.67 + 13.58 11.575 C)
 

Grid point 3 = 1.4 +
2
1 4 = 1.4 (C) 

Grid point 1 = 13.58 + 9.567 - 11.575 (T)
2
 

Conclusion
 

NASTRAN 
Stresses at Grid Point Theory TRIM6 

5 12 11.575 

3 0 1.4 

1 12 11.575 
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Subcase 2. Lumped Loading
Subcase I* Consistent Loading 


S 84 c-­

8 

Ai-

2 P 
Ax 

= 128 -

1' 

N -

96 < 

y 

-12.4jt.N 
0-. y 128 - 96 

FA-
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-x 

64 

12 x=8 x 

-384 

4 

at y 8 

Total Axial Force = F 
x 

.5y = 1.5 x 8 = 12 

x 8 x 12 x 4 = 
2 

192 

Total Axial Force F 8 

Considering strip near N.A., F =- x 2 
x 2 

x (1.5 x 2)4 = 12 

Considering strip in between N.A. and extreme 

fiber Fx = 1(1.5 x 2 + 1.5 x 6)4 x 4 = 96
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Demo Problem 1.9-4
 

Thermal and Applied Loads on TRIM6 Elements
 

A. 	Description
 

This problem demonstrates the use of the TRIM6 elements. Ten triangular
 

membrane elements are used to model a 2 x 1 x 10 beam. The dimensions and
 

boundary conditions are shown in figure 2. Two loading conditions are applied:
 

axial stress and thermal expansion. Symmetry boundary conditions are used.
 

B. 	Input
 

1. 	Parameters. similar to those listed on page 1.9-1.
 

2. 	Boundary Constraints: u = uy = 0 at x = 0 , uy = 0 at y= 0
.x 


3. 	Loads: Subcase 1, consistent loading
 

F = 24 x 103 (total axial force)
x 24
 
-= 12


Total force on symmetric part = 


1
 
Force divided into the ratio of
 
1:4 1, i.e., I x 12 4 x 12 
 1 x 	12
 
11 e 6 6 6
 

Subcase 3, Lumped loading
 

Force divided into the ratio of
 
1 2.1, 1 x 12 2 x 12 1 x 12
 
1 2 i 4 4
4 


Subcase 2, Thermal loading
 

T = 60' (Uniform temperature field)
 

To = 100 (Referpce temperature)
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C. Analysis and Results
 

Analysis: refer to page 1 9-2.
 

Results:
 

TRIM6 Sol.
 
x (10-3) Subcase 2
 

Exact Sol. Subcase Subcase
 
-
(10 3) 1 3 Exact Sol. TRIM6 Sol.
 

0 0 0 0 0 0
 
2 1 0.98 0.98 0.1 0.109
 
4 2 
 1.98 1.98 0.2 0.2093
 
6 3 2.98 2.981 0.3 0.3093
 

8 
 4 3.98 3.98 0.4 0 4093
 
10 5 4.98 4.981 0.5 0.5093
 
12 6 
 5.98 5.981 0.6 0.6093
 
14 7 6.98 6 98 0.7 0.7093
 
16 8 
 7.98 7.98 0.8 0.8093
 

18 9 8.98 8.99 0.9 0.9093
 
20 
 10 9.98 10.026 1 0 1.00937
 

Displacement (Ux)
 

Graph is given on pages 1.9-7 and 1 9-8
 

Conclusion
 

The results of all three subcases are exact to the single precision
 

limits. 
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y 
Applied Uniform Load
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=0 

y 

Figure 2. Model of Cantilever beam using TRIM6 element.
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Demo Problem 1.11-4(a)
 

Analysis of a simply supported rectangular plate with a thermal gradient
 

using higher order triangular bending TRPLT1 elements: The quarter section of
 

the plate is discretized using TRPLTI element. Discretization is given on
 

page 1.11-4(b), figure 2.
 

For input and theory, refer to pages 1.11-1, 1.11-2, and 1.11-3.
 

Result:
 

The maximum displacement obtained was 0.5935, a difference of about 5
 

percent from the analytical value. A more refined mesh is likely to yield
 

closer values to the exact ones.
 

The graph for the moments M , My and M obtained by analysis 

at x = 0.5 is shown on page 1.11-6. The results obtained by this analysis 

is not included in the same graph, since for the chosen mesh the moments are 

evaluated at locations different from those shown in the graph. However, good
 

agreement is seen for the moments for the chosen mesh.
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Model of simply supported rectangularplate using 
TRPLT1 element. 
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Demo Problem 1.11-8
 

Deflection of Thick Rectangular Plate Using TRPLTI Element
 

The TRPLTI element is used for solving moderately thick to thick plate where
 

the effects of transverse shear are present.
 

The rectangular plate in figure 1, shown on page 1 11-11, is discretized
 

by using higher order triangular bending element TRPLTI. Because of symmetry,
 

the quarter section of the plate is discretized and details of the dascretization
 

are given in the same figure.
 

Four different mesh sizes are used for Q-mesh and P-mesh The result is
 
a 

tabulated for the simply supported and clamped edge with two different ratios,
 
on page 1.11-9 and 1.11-10 respectively. 

t
 

Input: 

E = 3.0 x 107 lbs/in.2 (Young's modulus) 

v = 0.3 (Poisson's ratio) 

q = 1000 lbs/in.2 (Uniform distributed load) 

q = 1000 lbs. (Concentrated load at center) 

b = 2 (Length/width)
 
a 

t = 1.0 in. (Thickness of the plate)
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Table 1. Central deflection of simply supported rectangular plates 
(Q-mesh) including the effects of transverse shear. 

Number Concentrated Load Uniformly Distributed 
of at Center Load 

Elements 
per a a a a 
Side t t 
N 

2 21.3373 22.22 10.983 11.2651 

4 17.7854 20.0133 10.2084 10.5612 

8 16.9276 19.4859 10.1396 10.4831 

12 16.73 19.5322 10.1330 10.5468 
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Table 2. Central deflection of clamped rectangular plates (Q-mesh)
 
including the effects of transverse shear.
 

Number Concentrated Load Uniformly Distributed 
of at Center Load 

Elements 
per
Side S~ett 

a 1 00  a 
- 4 

a -= 100t 
a
T 4 

N 

2 10.4330 12.5582 3.942 4.5086
 

4 8.4230 10.565 2.7932 3.133
 

8 7.6283 10 0845 2.5953 2.9375
 

12 7.4336 10.1791 2.561 2 9475
 

1 11-10 (1/1/77) 

177 



Modeling Errors in the Bending of Plate Structures.
T y'
 
a e
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b0 
aaTb 

n 
4 6 

.240 
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Figure 1. Discretization and schedule of rectangular 
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Demo Problem 1.11-12
 

Analysis of Rectangular Plate Using TRPLT1 Element
 

This problem demonstrates the accuracy of TRPLTI element in the evaluation
 

of moments in rectangular plate.
 

The rectangular plate with dLscretization, shown on page 1 11-9 (figure 1),
 

is analyzed.
 

Two different mesh arrangements are used, i.e., Q-mesh and P-mesh. The
 

result is tabulated for the points marked on x- and y-axis, as shown in
 

figure 2, page 1.11-17.
 

Input:
 

E = 3.0 x 107 lbs/in.2 (Young's modulus)
 

v = 0.3 (Poisson's ratio)
 

q = 1000 lbs/in.2 (Uniform distributed load)
 

b (Length/width)
 
a 

t = 1.0 in. (Thickness of the plate)
 

N = 12 (No. of-elements per side)
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Table 1. Numerical factor S' in the equation Mx = $1 qa 2 for bending moments 
of simply supported rectangular plate under uniformly distributed load 
(along 


x 


0.Sa (center) 


0.416667a 


0.33333a 


0.25a 


0.166667a 


0.083333a 


Oa (end) 


y = 0). 

NASTRAN-TRPLTI 

' (y = 0) 

Q-mesh P-mesh 

0.1001332 0.1022486 

0.105326 0.1070887 

0.099048 0.102471S9 

0.087942 0.0923552 

0.0710574 0.0751297 

0.04853 0.0393438 

0.022253 0.0254971 

Exact 
Average of 

0.1012 0.1017 

0.10620733 0.098875 

0.100759796 0.09075 

0.0901486 0.076875 

0.07309355 0.058 

0.0439369 0.032 

0.02387506 0.0 
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v v 2
 
Table 2. Numerical factor oj in the equation MZ = 0{ qa for bending moments 

of simply supported rectangular plate under uniformly distributed load 
(along y = 0). 

NASTRAN-TRPLTI 

8_ (Y = 0) Exact 
x Q-mesh P-mesh Average 

0.5a (center) 0.046605 0.0470838 0.0468444 0.0464 

0.416667a 0.047194 0.0474771 0 0473355 0.045 

0.33333a 0.0432597 0.0441237 0.04369171 0.0410625 

0.25a 0.0369394 0.0379362 0.037438 0.0344375 

0.166667a 0.0280123 0.02855153 0.028282 0.0252 

0.08333a 0.01630765 0.0100907 0.0132 0.013875 

Oa (end) 0.006676 0.01902541 0.0128507 0.0 
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2
 
Table 3. Numerical factor $" in the equation Mx = 8" qa for bending moments
 

of simply supported rectangular plate under uniformly distributed load
 
(along x = 0). 

NASTRAN-TRPLTl 

8 (x = 0) Exact 

y Q-mesh P-mesh Average $" 

0.5b (center) 0.1001332 0.1022486 0.1012 0.1017
 

0.416667b 0.103584 0.1087446 0.1061643 0.099625
 

0.33333b 0.0969304567 0.1131157037 0.1050231 0.09025
 

0.25b 0.0850907 0.1218893745 0.10349 0.080625
 

0.1666667b 0.0674407 0.14173259 0.1045866 0.06175
 

0.08333b 0.04365204 0.1811511029 0.1124016 0.033625
 

O.0b (end) 0.01275513 0.037393 0.025074 0.0
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Table 4. Numerical factor WI in the equation My = 61 qa2 for bending moments
 
of simply supported rectangular plate under uniformly distributed load
 
(along x = 0). 

Y Q-mesh 

NASTRAN-TRPLT1 

S7 (X = 0) 

P-mesh Average 

Exact 

s', 

0.Sb (center) 0.046605 0.0470838 0.0468444 0.0464 

0.416667b 0.0486921 0.05105566 0.049874 0.0465625
 

0.33333b 0.049534 0.057433 0.0534835 0.0465625
 

0.25b 0.049873 0.0679783 0 05892565 0.0460625
 

0.166667b 0.04794 0.0850651 0.06650255 0.041125
 

0.083333b 0.03933845 0.109444 0.0743913 0.0288125
 

0.Ob (end) 0.001104162 0 01272338 0.0069137754 0.0
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Demo Problem 3.1-6
 

Vibration of Tapered Rectangular Plates
 

This problem demonstrates the use of the higher order triangular bending
 

element CTRPLTI to solve problems in vibration of thin isotropic plates.
 

The structural problem consists of a linearly tapered rectangular plate
 

with two different support conditions, namely (i) simply supported and
 

(ii) cantilever.
 

(i) Linearly tapered simply supported rectangular plate The model as
 

shown in figure 4a uses only half of the plate due to symmetry. The plate
 

thickness is given by:
 

t = t o (i + K x ) 
(1) 

0 a 

where K is a constant determining the rate of taper. Two different mesh sizes
 

of the finite element model, 1 x 2 and 2 x 4, are used. Nondimensional
 

fundamental frequencies for rectangular plates for three different aspect
a 
ratios a and K = 0.5 and 0.8 are presented in table 2.
 

The frequency parameter is defined as'
 

N E- a(2) 
0
 

where w is the circular frequency, a is the length, p is the mass density, 

t is thickness and Do is the bending rigidity. Analytical results from 

reference 20 are also shown for comparison. 

(ii) Linearly tapered cantilever rectangular plate The plate is
 

idealized with a mesh size of 2 x 4 or 16 elements, as shown in figure 4b.
 

Results of frequency parameters 2 as defined in equation (2), where m
 
and n represent the number of nodal lines perpendicular and parallel to
 

the support, respectively, using TRIA2 and TRPLTI are shown in table 3
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Constant thicknesses of 0.0405 in. (0.1029 cm) and 0.1215 in. (0.0386 cm) were
 
used when modeling with TRIA2 element. Experimental data obtained by Plunkett
 

in reference 21 are also given.
 

Tables 2 and 3 show that very good results have been obtained using the
 
higher order plate element.
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Table 2. Fundamental frequency for linearly tapered rectangular
 
plates simply supported on all edges- v = 0.3.
 

Aspect 
Ratio 


RatioFinite
 

a 

b 


0.5 


1 0 


2.0 


NASTRAN 

TRPLTI
 

Element 

Layout 


1 x 2 


Theory 


1 x 2 


2 x 4 


Theory 


1 x 2 


2 x 4 


Theory 


Frequency Parameter
 

=a 2 Pt 0O 1/2
 

(0 

Taper Rate Taper Rate
 

K = 0.5 K = 0.8
 

14.662 16.242
 

15.304 16.994
 

24.171 26.901
 

24.454 --­

24.556 27 354
 

58.560 64.770
 

60.346 --­

60.982 67.500
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Table 3. Frequency parameters for a linearly tapered rectangular
 
cantilever plate; v = 0.3. 

Frequency Parameter 0mn 

= a2 Pt o 

mn a2 ( D) 

1/2 

m 

0 

Mode 

n 

0 

TRIA2 

2.28 

NASTRAN 

TRPLT1 

2.25 

Experiment 

2.47 

1 0 9.8 10.0 10.6 

0 1 14.5 13.6 14.5 

1 1 23.8 27.0 28.7 

0 2 35.9 32.8 34.4 

0 3 51.5 47.3 47.4 

2 0 31.0 53.3 52.5 

1 2 64.0 57.7 54.0 
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Y 

b
 

L - a 

to
 

1 x 2 Layout 	 2 x 4 Layout 

Ca) Simply 	supported plate.
 

3.70' 

2.5 in. 

(6.35 c 
5 inv.. .
 

(b) Cantilever plate
 

Figure 4. 	Plate geometry and finite elment
 
idealization for the TRPLTI element
 
test problems.
 

3.1-10 (1/1/77)
 

189 



Demo Problem 5.1-5
 

Buckling of Columns and Plates
 

The out-of-plane buckling of plate elements is evaluated from the
 

differential stiffness matrix of bending plate element TRPLTI due to membrane
 

prestress effects obtained from a membrane analysis using TRIM6 elements.
 

To solve out-of-plane buckling of plates, a membrane-bending combination
 

element is necessary. TRSHL is such a combination element with the added
 

feature of membrane bending coupling for shell problems; where the curvature
 

is zero, there is no coupling between membrane, and bending effects, and TRSHL
 

for such cases reduces to a combination element. The results for problems
 

in this section have been obtained using TRSHL elements.
 

Three buckling problems were investigated using the triangular plate and
 

membrane elements. Following are the three different problems: (i)Buckling of
 

a tapered column fixed at the base is shown in figure 3a. The area moment of
 

inertia at any cross section can be expressed in the form
 

Ix = Ii ( ) (1) 

where I, is the moment of inertia at the top of the column (x = a). Results
 

for the buckling factor for a tapered column of I/I2 = 0.2 have been obtained
 

from NASTRAN using TRIA2 and TRSHL, and an analytical solution from reference
 

22 is given in table 1 for comparison. (ii)Buckling of a simply supported
 

square plate sub3ected to uniform compression in one direction. Owing to
 

symmetry, only one quarter of the plate (modeled with 2 x 2 mesh size) is used
 

as shown in figure 3b. Results of the buckling factor from NASTRAN TRIA2 and
 

TRSHL elements and the exact solution are shown in table 2.
 

The nondimensional buckling factor X is represented by the formula:
 

N = r2D (4) 
cr b2
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(iii) The third problem considered is buckling of simply supported rectangular
 

plate of aspect ratio a/b - 0.8 under in-plane bending loading shown in
 

figure 3c. Due to symmetry, only half of the plate is used in the analysis.
 

NASTRAN results using TRIA2 and TRSHL with different mesh sizes are shown
 

in table 3, along with analytical results from reference 22. Table 3 clearly
 

shows that the TRSHL elements gave a much better prediction of the critical
 

buckling load than the TRIA2 elements.
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A 

1_ 	 -

L 

2 

(a) 	 Tapered column. (b) Simply supported square 
plate under uniform 
compression.
 

b 

a 

(c)Simply supported plate under
 
i-plane bending.
 

Figure 3. 	Column and plate geometry for TRSHL element buckling
 
test problems.
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Table 1. Buckling factor for a tapered column.
 

L2
 P 

Buckling Factor X = c
El2
 

Finite Element Layout
 

TRIA2 1.4242 1.3618 1.3420 

TRSHL 1.6437 1.6050 1.5853 

Theory 1.505 

Table 2. Buckling factor for simply supported 
square plate uniformly compressed in 
one direction; v = 0.3. 

N b2 

Buckling Factor X = cr 

w2D 

TRIA2 4.0356 

TRSHL 3.9779 

Exact 4.0000 
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Table 3. 	Buckling factor for a simply supported rectangular plate
 
of aspect ratio 0.8 under in-plane bending, v = 0.3.
 

Buckling Factor X - (N0 crb
2
 

2D
 

Finite Element Layout
 

TRIA2 29.7815 35.3289 23.8702 

TRSHL 24.5507 24.1103 24.1708 

Theory 24.4 
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APPENDIX E
 

The NASTRAN source code subroutines that
 
need to be modified or added for
 

inclusion of TRIM6, TRPLT1 and TRSHL elements
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APPENDIX E
 

The NASTRAN Subroutines that are modified to add the TRIM6, TRPLT1
 

and TRSHL elements are
 

1. DSl 15. IFX7BD 29. LDl4
 

2. DSIA 16. LDOI 30. LDIS
 

5. EDTLZZZ 17. LD02 31. LD21
 

4. ELELBL 18. LD03 32. LD22
 

S. EMGPRO 19. LD04 35. LD23
 

6. GPTABD 20. LD05 34. LD34
 

7. 1FP 21. LD06 35. LINEL
 

8. IFSlP 22. LD07 36. 6FPIA
 

9. IFX1BD 23. LD0S 37. 0FPIBD
 

10. IFX2BD 24. LD$9 38. PPSBD
 

11. IFX3BD 25. LDl0 39. FIPBD
 

12. IFX4BD 26. LDII 40. 0FSPBD
 

13. IFX5BD 27. LD12 41. SDR2B
 

14. IFX6BD 28. LDl3 42. SDR2E
 

New Subroutines Added
 

1. KTRM6S: Stiffness and mass matrix generation subroutine, single
 

precision version, for element CTRIM6.
 

2. KTRM6D: Stiffness and mass matrix generation subroutine, double
 

precision version, for element CTRIM6.
 

3. TLODM6: Thermal load vector calculation for element CTRIM6.
 

4. STRM61 Stress data recovery, Phase I for element CTRIM6.
 

S. STRM62: Stress data recovery, Phase II for element CTRIM6.
 

6. KTRPLS Stiffness and mass matrix calculations, single precision
 

version Cwithout the effects of transverse shear), for element CTRPLT1.
 

7. KTRPLD Stiffness and mass matrix calculations, double precision
 

version (without the effects of transverse shear), for element CTRPLTI.
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8. TSPL1S. Transverse shear calculations, single precision version,
 

for element CTRPLT1. This subroutine performs the numerical integration to
 

obtain the contribution to the generalized stiffness matrix due to transverse
 

shear effects.
 

9. TSPLID. Same as TSPL1S, double precision version.
 

10. TSPL2S Calculations, single precision version, to obtain the matrix, 

[B2] , relating curvatures to generalized coordinates (in the equation 

{x1} = [B2] {al). 

11. TSPL2D: Same as TSPL2S, double precision version.
 

12. TSPLSS Calculations, single precision version, to obtain the matrix,
 

[BI] , relating transverse shear strains to the generalized coordinates (in the
 
=
equation {1i [BI] {al) for use in the TSPL1S subroutine.
 

13. TSPL3D" Calculations, double precision version, to obtain the matrix
 

[BI] , as in TSPL3S, for use in the TSPLID subroutine.
 

14. TLODT: Thermal load vector calculations in the absence of transverse
 

shear effects for element CTRPLTI.
 

15. TL0DT2: Numerically integrated contribution to the thermal load
 

vector for element CTRPLT1 due to transverse shear effects.
 

16. TL0DTS. Calculations to obtain the matrix, [BI] , relating trans­

verse shear strains to the generalized coordinates (in the equation
 

{yl} = [BI] {a}) for use in the TL0DTI subroutine.
 

17. STRPII: Stress data recovery, Phase I, for CTRPLTI element.
 

18. STRPTS: Calculations to evaluate matrices for recovery of shear
 

forces for CTRPLT1 element.
 

19. STRPl2 Stress data recovery, Phase II, for CTRPLT1 element.
 

20. KTSHLS Stiffness and mass matrix calculations, single precision
 

version, for triangular shallow shell element CTRSHL.
 

21. KTSHLD: Stiffness and mass matrix calculations, double precision
 

version, for triangular shallow shell element CTRSHL.
 

22. TL0DSL Thermal laod vector calculations for element CTRSHL.
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23. STRSL1" Stress Data Recovery, Phase I, for element CTRSHL.
 

24. STRSLV Calculations to evaluate matrices for recovery of shear
 

forces for CTRSHL element.
 

25. STRSL2- Stress Data Recovery, Phase II, for element CTRSHL.
 

26. DTSHLD. Differential Stiffness Matrix generation, double precision
 

version, for element CTRSHL.
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