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ADDITION OF HIGHER ORDER PLATE AND SHELL ELEMENTS
INTO NASTRAN COMPUTER PROGRAM

By

R. Narayanaswami1

ABSTRACT

Two higher order plate elements, the linear strain triangular membrane
element TRIM6 and the quintic bending element TRPLT1, and a shallow shell
element TRSHL, suitable for inclusion into the NASTRAN (NASA STRuctural
ANalysis) program are described in this report. Additions to the NASTRAN
Theoretical Manual [NASA SP-221 (03)], the NASTRAN Users' Manual [NASA SP-222
(03)], the NASTRAN Programmers' Manual [NASA SP-223 (03)], and the NASTRAN
Demonstration Problem Manual [NASA SP-224 (03)], for inclusion of these

elements into the NASTRAN program are presented herein
INTRODUCTION

New higher order plate (nonconforming quintic) and shell elements
suitable for inclusion into the NASTRAN (NASA STRuctural ANalysis) program
have been develcped by Narayanaswami (refs. 1 and 2). The linear strain
triangular membrane element developed by Argyris (ref. 3) has proved to be an
accurate element for seolving for membrane action in plates. Prelimanary
studies in the NASTRAN environment indicate that these elements are more
efficient than the existing plate and shell elements in NASTRAN. These
elements havé ncw been added to the level 16.0 version of NASTRAN(:) and the
complete computer listing for the addition has been delivered to the NASTRAN
Systems Management Office, NASA Langley Research Center, Hampton, Virginia
This report describes the theoretical formulations, information pertaining to

their use, programming details and demonstration problems pertaining to the

! Research Associate, 0ld Dominion University Research Foundation, Norfolk,
Virginta 23508



three elements, TRIM6, TRPLT1 and TRSHL in update form suatable for incorporation
into the respective NASTRAN manuals (refs. 4, 5, 6 and 7).

DETAILS OF ELEMENT FORMULATIONS

The Linear Strain Triangular Membrane
Element TRIM6

First proposed by Argyris (ref. 3}, this element has six nodes, three at
the corners and three at the midpoints of the sides. The element uses a
quadratic displacement field. The thickness of the element as well as the
temperature distribution within the element are permitted to have bilinear
variation; the three constants of the bilinear equation for the same are
evaluated by the respective user-specified values at the three corner nodes
of the element. The FORTRAN subroutines for stiffness, mass, thermal load
vector, and stress data recovery have been coded and tested out in stand-alone
computer programs., The updates for incorporating the element into the NASTRAN
program have been prepared and checked out in NASTRAN Level 16.0 versions.
The element 1s currently designed for use with the statics and normal modes
rigid formats of NASTRAN,.

The Higher Order Triangular Bending
Element TRPLT1

This element was developed by Narayanaswami (refs. 1 and 7) as a
modification of the high precision triangular plate bending element developed
by Cowper et al, (ref. 8). The element has six nodes, three at the
corners and three at the midpoints of the sides. A quintic displacement field
1s chosen for the transverse displacement. Transverse shear flexibility is
taken into account 1n the stiffness formulation. The thickness of the
element 1s permitted to have bilinear variations, the three constants of the
bilinear equation for the same are evaluated by the respective user-specified
values at the three corner nodes of the element. The FORTRAN subroutines for
stiffness, mass, thermal load vector and stress data recovery have been coded
and tested out in stand-alone computer programs. The updates for incorporating

the element into the NASTRAN program have been prepared and checked out 1in



NASTRAN<:) Level 16.0 version. The element 1s currently designed for use with
the statics and normal modes rigid formats of NASTRAN.

The Triangular Shallow Shell
Element TRSHL

This eclement was developed by Narayanaswami (ref. 2). In the element
coordinate system, the element has 30 degrees of freedom (d.o £.), viz , the
three translations u, v, w inthe x, y , Z directions and the
2 rotations o and B about the xz and yz planes, at each of the
3 corner nodes and 3 midside nodes of the triangle. The membrane behavior of
this element is approximated by the TRIM6 element, the bending behavior is
approximated by the TRPLT1 element and the membrane-bending coupling is
approximated using shallow shell theory of Novozhilov (ref. 8) The element
1s currently designed for use with the statics, normal modes and buckling
r1igid formats of NASTRAN.

ADDITIONS OR MODIFICATIONS TO NASTRAN MANUALS
AND SOURCE CODE

The updates to the NASTRAN Manuals for the addition of these elements
are given in Appendixes A, B, C and D. The list of subroutines that are

being modified or added to the NASTRAN Source Code s given in Appendix E.
CONCLUDING REMARKS

The addition of higher order plate elements, TRIM6 and TRPLT1, and the
triangular shallow shell element TRSHL, into the NASTRAN program 1s completed
These elements are added to the Level 16.0 version of NASTRAN . The
demonstration problems indicate the excellent accuracy of these elements for
solving plate and shell problems. The availability of these elements in

NASTRAN enchances the program!s capability in these areas.
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APPENDIX A

Updates to the NASTRAN Theoretical Manual
for the addition of TRIM6, TRPLT1,
and TRSHL elements



5.8 PLATES

NASTRAN includes two different shapes of plate elements (triangular
and quadrilateral) and two different stress systems (membrane and bending)
which are, at present, uncoupled. There are in all a total of 13 different

forms of plate elements as follows:

1. TRMEM - A triangular element with finite inplane stiffness and zero

bending stiffness.

2. TRIM6 - A triangular element with finite inplane stiffness and zero
bending stiffness. Uses quadratic polynomial representation for membrane
displacements; bilinear variation in terms of the planar coordinates is
permitted for the thickness as well as the temperature distribution of the

element

3. TRBSC - The basic unit from which the bending properties of the other
plate elements are formed. In stand-alone form, 1t 1s used mainly as a

research tool.

4, TRPLT - A triangular element with zero inplane stiffness and finite
bending stiffness. It si composed of three basic bending triangles that are

coupled to form a Clough composite triangle; see section 5 8 3.3

5. TRPLT1 - Higher order bending element - a triangular element with
zero inplane stiffness and finite bending stiffness. Uses quintic polynomial
representation for transverse displacement, bilinear variation in terms of

the planar coordinates of the element is permitted for the element thickness

6. TRIALl - A triangular element with both inplane and bending stiffness
It 1s designed for sandwich plates in which different materials can be

referenced for membrane, bending, and transverse shear properties.

7. TRIAZ - A triangular element with both inplane and bending stiffness

that assumes a solid homogeneous cross section

8. QDMEM - A quadrilateral membrane element consisting of four over-
lapping TRMEM elements

9 QDMEM1 - An isoparametric quadrilateral membrane element.

Ly .
ri-'R.L.‘) '
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10. (QDMEMZ - A quadrilateral membrane element consisting of four

nonoverlapping TRMEM elements.

11. QDPLT - A quadrilateral bending element. It is composed of four

basic bending triangles.

12. QUAD1 - A quadrilateral element with both inplane and bending
stiffness, similar to TRIAIL.

13. QUADZ - A quadrilateral element similar to TRIAZ.

Anisotropic material properties may be employed in all plate elements. TRMEM
and TRBSC are the basic plate elements from which TRPLT, TRIAl, TRIAZ,

QDMEM, QDMEM2, QDPLT, QUAD1, and QUADZ elements are formed. The stiffness
matrices of plate elements are formed from the rigorous application of energy
theory to a polynomial representation of displacement functions. An
important feature in the treatment of bending is that transverse shear

flexability is included.

All of the properties of the elements except those of TRIM6 and TRPLT1
are assumed uniform over their surfaces. For elements TRIM&6 and TRPLT1, the
thickness can have bilinear variation over their surfaces. In addition,
element TRIM6 has bilinear variation over the surface for the temperature

distribution.

The detailed discussion of the plate elements is divided into subsections
according to the following topics: membrane triangles, TRMEM, QDMEM, QDMEM1,
QDMEMZ2, the basic bending triangle, TRBSC; composite triangles and quadri-
laterals, TRPLT1, TRIAl, TRIAZ, QDPLT, QUAD1, QUADZ, the treatment of inertia
properties; the isoparametric quadrilateral membrane element, QDMEMI, linear
strain membrane triangle, TRIM6; higher order bending element, TRPLT1. The
accuracy of the bending plate elements in various applications is discussed
in section 15.2, the accuracy of the quadrilateral membrane elements is dis-
cussed 1n section 15.3, and the accuracy of the TRIM6 element is discussed in

section 15.4.

5.8.6. TRIM6 The Linear Strain Membrane Element

This element was first formulated by J. H. Argyris and is described in

references 1 and 2. The present development is based on the deraivation in



reference 2, and the important characteristics of the element are
that -

1. The stresses and strains vary within the element linearly

2. Bilinear variation in the planar coordinates for the thickness of

the element is permitted.

3  Bilinear variation in the planar coordinates for the temperature

1n the element 1s provided.

4. Differentral stiffness and pilecewise linear analysis capability
are not implemented at present.

The element is compared for accuracy against theoretical results in
section 15 4. The calculation of 1ts mass properties 1s discussed in

section 5.8.4

5.8.6.1 Geometry and Dispilacement Field

The geometry of the element 1s shown in figure Al. The element has six

grid points, three at the vertices and three at the midpoints of the sades.

u and v are components of displacements parallel to the x- and
y-axes of the local (element) coordinate system The inplane displacements

at the corners of the element are represented by the vector {u } where

t
‘[ue} = Lu]_ Vi Uz Vo U3 V3 Uy Vy Ug Vg Ug Vg_J (1)

Let [K ] be the stiffness matrix referred to the vector {u.} ,
ce €
1.e.,

[k, ] fu} = (£} (2)

where the elements of {fe} are the inplane forces at the corners of the

element. The stiffness matrix [Kee:] 1s derived by standard finite element
procedures,

The u and v displacements are assumed to vary quadratically with

position on the surface of the element,
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Figure Al. TRIM6 membrane element in element coordinate system.
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u = ap +agk + agy + ayx® + asxy + agy? (3)
v = by + bgx + bgy + bygx%? + byixy + byoy? (4)
The quantities a; , a8 , . . . @8 , by, bg, . . . biyp may be

regarded as generalized coordinates to which the displacements at the corners
of the element are uniquely related, 1.e , the vector of generalized coordinates

1s expressed as

T
{a}" = |ajasasayasagbybgbgbigbyibys | (5)

In concise form equations (3) and (4) are written as

6 m, 1
u = 2: ax’y 1 {6)
1=1
12 P; 4
v = blx 1y * (7)

For convenience in later calculations, the range of summation is kept as

1 to 12 for expressions for both u and v , 1.e.,

12 ml nl

u = a.x "y (8}
. i
i=1
12 2|

v o= bix ly * (9)
1=1

such that

m =90, m=1, my3=0, mp=2, mg=1, mg=290

ng =90, na=0, nzg=1, ngy=0, nsgs=1, ng=2

a =m =mn; = 0 1 =7 toe 12 (10)

11



p7=0, pg=1; Ps=0; P1o=2; pP12=1; P12=0

q7 =03 qgz3=13; q9=03 q10=03; 4ai3 =13 q13 =2

bl =p; =4q, = 0 1=01to 6 . (1
In matrix notation, the vector {ue} 1s written as

{u} = [H] {a} (12)

where the 12 x 12 [H] matrix can be obtained by substituting the coordinates
of the six grid points into equations (8) and (9). Since complete polynomial
expressions are chosen for the u and v displacements, the inverse of

[H] matrix exists. Hence {a} can be expressed as
- -1
{a} = [H]™? {u} (13)

Bilinear variation in the x- and y-coordinates is assumed for the
thickness t of the element, i.e., the thickness t of the element at

any point (x,y)} within the element 1s given by

t(X,¥) = ¢ + CyX + Cqy (14)
1 2 3

In concise form, this is written as

3 T, 5
t= 3 cx kK (15)
=1 K

The thickness of the element at the three vertices is specified as

ti1 , tz , ts . Hence the coefficients ¢; , c¢p , c3 can be expressed
as
tia + tgb
C1 % ——— 16
1 (2 + D) (16)

12



ty3 -ty

i

(17)

c ——————
2 a-+b

1§

cg %- (tg - e31) (18)

where a , b, c¢ are the projected lengths of the triangle on the local
x- and y-axes and are obtained from the basic coordinates of the vertices

of the triangle as given 1in section 4,87,21.2 of the Programmers' Manual,

The membrane strains are

3u 12 (ml-l) n
o T ax T & A MX y (19)
1=1
12 p, (q,-1)
- 9V _ i, 1
€ = %y > b V.x 7y (20)
m, (n_-1) (p:-1) q,
. du v _ i1 i 1
Y= v + <= Z (alnlx ¥ + blpix ¥y ) (21)

The stress vector {o} 1s related to the strain vector by the two-dimensional

elastic modulus matrix, |G ]
e

{o} = [Ge] {e} (22)

The specification of [Ge] for i1sotropic and anisotropic materials is the

same as that given by equations (13), (14), and (15) 1n section 5.8.4.

The membrane strain energy of the element is

E, = % f o} {e} tdxdy (23}

By virtue of equation (22} and the symmetry of matrix [Ge] s

13



B, =2 [ eV [e] fe} taxdy (24)

Substitution of equation (15) into equation (24) results in
s 2

3 T, S
E =% {e}t [Ge] {e} ( > Cp X ky k ) dxdy (25)
k=1

Expressing the elements of the symmetric portion of the matrix [Ge] by

Gi1 , G2 , Giz , Ga2 , G23 , Gzz , z.e.,

G11 Gia Gis
[Ge] = Go2 Ga3 (26)
sym Gzg

and performing the matrix multiplication of equation (25), the expression for

strain energy becomes

1 2 2 2
B, =35 ff {Ex G11 + £y Gzz + Y°Gas + Gi2 (Exiy + EyEXJ

+ Gi3 (EXY - YEXJ + G23 (EYY + YEY)’} (27)

(f: c.erkysk) dxdy

k=1

To proceed further 1t i1s necessary to have a formula for the integral of

the type

f f xy" dxdy

taken over the area of the element. The value of the integral 1s given in

reference 3 as

14



SS MMaxdy = Fm,n)

_ n+l e+l m+l min! (28)
= c { a - (-b) } CEEREIL

Using equations (19), (20), (21), and (28) in (27), the first term of

equation (27) becomes

1 3 Tk Sk
iff Eszll(kZ:l ¢ X Y ) dxdy
(29)
12 12 3
=1 Y, aacmm F(m +m +1, -2,n +n_+s)
2 1=1 721 k=1 13 k1 1 J k T J k

Similarly the other terms of equation (27) can be expressed in terms of the

area integral F . The strain energy, Es , can also be expressed as

E_ = %— a} [kgen]{a} (30)

where [kgen] is the stiffness matrix with respect to gemeralized coordinates
{a} Expressing each of the terms of the -right-hand side of equation (27) in
terms of the area integral F and comparing the same with equation (30), the

Jth element of the 1th row of the generalized stiffness matrix 1s
3
klj = éé& Sy [Gllmiij(ml + m__J Ty 2, no+ nJ + sk)
+ GzquqJF(Pl + PJ t I 9 % QJ 5y - 2)
+ Ga3 lnanF(mi + mJ T, m ot nJ * S - 2)

(31)
PP F(p; v Py Ty -2, q ) s

+ nlpJF(m1 + pJ Ty - 1, n o+ qJ + Sy - 1)

+ panF(mJ tPp, T - 1, nJ +q, * s - 1) (continued)

15



+ Glz{quiF(mj *Pyt Ty - 1, nj +q; * sy - 1)
+m1qu(m1 + P; Ty - 1, n_+ q; S - 1)}
* G13{ [mjni + minj)F(m1 + m3 T - 1, n; + nj + 5 - 1)
¥ mJPiF(mJ * Py Ty -2 By T AT 1) (concltclgigl)
+ miij(mi + P; *re- 2, ng 4 a; + sk)}
+ 523{ (Piqj + iji)F(pi TPyt Ty - 1, q, % a3 * Sy - 1)
+ niqu(mi + P; +t Ty, g a3 * Sy - 2)
+ njti(mj * P, ot Ty, nJ +qQ; + s - 2)]]

Usaing equation {13}, the generalized stiffness matrix [kgen] can be

transformed to element stiffness matrix [kee] as

o [ d = [ [k J067] (32)

As a final step, the stiffness matrix 1s transformed from the local
element coordinate system to the basic coordinate system of the grid points
and to the global coordinate system. Let the transformation for displacements
be

{u'basa.c} - [E] ' {uelement} (33)

and

{uglobal} =[r] {ubasu;} (34)

Then,
l:kbasu::l = [E] [kelement] I:E] T (35)

16



and

[kglobal:| = [T] ! I:kl:tasic:l ET] (36)

Substituting equation (32) in equation (35) and equation (36), the global

stiffness matrix becomes

Cgropend = (11T (21 [0 [ J0e [21 7 [] (57

Equivalent Thermal Load Vector:

Thermal expansion of an element produces equivalent loads at the grid points.

Thermal expansion 1s represented by a vector of thermal strains.

Ext 0cel
{st} = - = %, (T - T)) = {ae} (T - T) (38)
Yt u83

Where {ae} = [U]‘l {um} 15 a vector of thermal expansion coefficients,

[U] 1s the strain transformation matrix given in equation (15) 1in section
5.8.4, and {am} 13 the vector of thermal expansion coefficients in the
material axis system, To 1s the refersnce or stress-free temperature of the
material, and T 1s the temperature at any point (x,y} 1in the element and

1s given by a linear polynomial.

T = dy + dox + dgy {39)

In concise form, this 1s written as

3
T= 3 dx'y* (40)
=1

17



The temperature T; , Tz , and Ts at the three vertices of the
element will be modified by the reference temperature To and used to

evaluate the three constants d; , dz , and dj3 :

Tia + Tib
e (41)

Tl - Tl

3 1
I ) (42)
dg =L [ - a] (43)
S c 5 1
where

Ti = (T, - TO) 5 Ty = (T, - To) s and Ty = (T3 - To) (44)

An equivalent elastic state of stress that will produce the same thermal

strains is
to,} = [6, ] e} =[6 ] 1o} (T - T ) (45)

An equivalent set of generalized loads {Pgen} applied to corners of

the element is obtained from the relation

i

t _ t
{a}" {P .} = jA' {e}" {o,} tdA

3 t u
= JJ 1 [6 ] ta (gl a,x %y R) (46)

18



Performing the matrix multiplications in equation (46) and using the following

notations, viz

Gy = Gllael + Glzaez + G130Le3 (47)
G22 = Glzael + Gzzd-ez + ngaez (48)
G33 = Glgael + G23Gez + G330.e3 (49)
Equation (46) reduces to
t
{a} {Pgen} = .jZ[' (e 61, + €61, + YGL)
3 t2 u, 3 rk sk (50
Z dx "y Z Xy dxdy
pA k
2=1 k=1
Performing the integration term by term, the first term in equation (50)
becones
3 t u 3 r, s
278 k. 7k
e_G! (Z: dxy) (E cxy) dxdy
ff x 11 s 2 ! k
12 3 3 .
= L) _
:2_; ); Z=:l G},a;m c,d, ff L rr st - 1)
(51)
y@i % 5T ) axay
12 3 3
= ' -
E g Z=: Gllalmickdgp(mi ottty 1, no+os ul)

Sim:larly, the second and third terms of equation (50) reduce to

3 3
L 2, GbacdF( s vt q +s +u, - 1)

19



and

Zi: % ZR: GL 30, d, [aian(ml T Rt sty - 1)

PO Fpy vty -1, gy v b))

respectively. From equations (50) and (51), the ith element of the generalized

load vector {Pgen} is

3 3
e = L & K% (o« my vty - 1ony v 5+ )

* GpqsFlpy * 1y * 5y, gy Fsptuy - 1) 52)

' d
+ G33 'niF(m1 T Ft, N ts tuy 1}

P PFlpy r Tt ty -1 q kst uz)}]

The generalized equivalent load vector {Pgen} 1s transformed to load vector
{Pe} in element coordinate and to {Pg} , 1in global coordinates by the

following transformations

= fu=1T
{Pe} = {1} {Pgen} (53)

and

)= [t [&] {r.} (54)

After the grid point displacements have been evaluated, stresses in the

element are computed by combining the relationships

tu 3 =[] [T tug} (55)

{a} = [H71] {u} (56)

20



{e} 1is evaluated from equations (19), (20), and (21). Stress vector

{o} 1s then equal to

{o} = [6,] (e} - L. 1) (57)

The stresses are computed at the three vertices and at the centroid.
The principal stresses and the maximum shear force are computed from the
elements of {ol} . The direction of the maximum principal stress is

referenced to the side joining grid points 1 and 3 of the triangle.
REFERENCES
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5.8.7 TRPLT1, higher order bending element

This element was developed by Narayanaswami (refs. 1 and 2) as a
modification of the high precision bending element of Cowper, et al. (ref. 3).
The element has grid points at the vertices and at the midpoints of the sides
of the triangle. At each grid point, there are three degrees of freedom
in the element coordinate system, viz, the transverse displacement, w ,
normal to the X-Y plane, with positive direction outward from the paper, and
the rotataons of the normal to the plate o and B8 , with posative directions
following from the right-hand rule. The element, thus, has 18 degrees of
fireedom 1in the element coordinate system. The transverse displacement,

w , at any point within and on the boundaries of the element is assumed to
vary as a quintic polynomial. Since the variation of deflection along any

edge is a quintic polynomial in the edgewise coordinate, the six coefficients
of this polynomial are uniquely determined by deflection and edgewise slope

at the three grid points of the edge. Displacements are thus continuous
between two elements that have a common edge. The rotation about each edge

1s constrained to vary cubically; however, since the rotations are defined

only at three points along an edge, there is no rotation continuity between

two elements that have a common edge. The element thus belongs to the class of
nonconformng elements. The requirement that the edge rotation varies
cubically along each edge established three constraint equations between the
coefficients of the quintic polynomial for w . These equations together
with the 18 relations between the grid point degrees of freedom and the
polynomial coefficients serve to evaluate uniquely the 21 coefficients

-

a; to ap; of the quintic polynomial assumed for the transverse displacement.

5.8.7.1 Derivation of element properties

Element geometry: Rectangular Cartesian coordinates are used in the

formulation. An arbatrary triangular element is shown in faigure A2.

X, Y, and Z are the basic coordinates, x, y , and z are the local
coordinates. The grid points of the element are numbered in counter-clockwise
direction as shown in the fagure. The lengths a , b, and ¢ shown in
figure A2 can be easily evaluated from the basic coordinate (X1, Y3i, Z1),

(X3, Y3, Z3), and (X5, Y5, Zg) of the vertices of the triangle.
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Figure A2, Triangular element TRPLT1 geometry.
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Displacement field: The deflection w(x,y) within the triangular

element is assumed to vary as a quintic polynomial in the local coordinates,

that 1s,

W(X,}’) = aj + asxX + agy + a,+x2 ¥ agxy + asyz + 3_7;(3

+ agx?y + 39XY2 + ajgyd + appxt + a12X3Y

(1)
+ ajgxly? + apxy? + ajsy® + ajex® + agpxty
+ a1gxdy? + ajgx?yd + apexyt + agyyd
In concise form, this is written as
21 mi ni
w="°3 a,x "y (1a)

i=1

There are 21 independent coefficients, a; to as; . These are evaluated

by the following procedure.

The element has 18 degrees of freedom; namely, lateral displacement
w in the z-direction, rotation o about the x-axis, and rotation B8
about the y-axis at each of the six grid points. The rotations « and B8
are obtained from the definitions of transverse shear strains Yyz and
sz , that is,

-1 = ¥
Yxz “ax 7B Yyz 5y = © (2)

It is shown later on that sz and sz and hence o and B at any
grid point can be expressed in terms of the coefficients a; to asj .
Thus, 18 equations relating w , o and B at the grid points to the 21
coefficients are obtained. Three additional relations are required so that
the 21 coefficients can be uniquely determined. These relations are obtained
by imposing the condition that the edge rotation varies cubically along each

edge. It 1s clear that these three constraint equations involve only the
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coefficients of the f£ifth degree terms in equation (1), since the lower
degree terms satisfy the condition of cubic edge rotation automatically.
Moreover, the condition depends only on the orientation of an edge. Along
the edge defined by grid points 1 and 3 (where y = 0), the condition of

the cubic edge rotation requires that
ayy = 0 (3)

Along the edge defined by grid points 1 and 5 (anclined at angle § to the

x-axis) the edge rotation r, is given by
T, =B8sin 8+ acosd= - (Saigx* + da;;x3y + 3a,gx2y?

+ 2a19xy3 + apgy?) sin § + (aysxt + 2a;gx3y + 3a;qx2y2 (4)

+ dayaxy3 + Sagiy*) cos § + .

where the dots indicate terms of third or lower degree. Also, along thas

edge,
X =5cos § y = s sin 6 (5)
where s 1s the distance along the edge and

cos § = b/bZ + ¢2 sin 6 = ¢/ b? + c2 (6)

By substituting x and y from equation (5) and cos § and sin §
from equations (6) into equation (4) and rearranging (so that the leading
terms are positive}, the conditzon for cubic variation of rotation about

edge 1-5 1s

Sbhcajg + (4b3c2 - bS)ajy + (3b2e3 - 2bh%c)agg

(7)
+ (2bc* - 3b3c?)ajq + (c5 - 4b2c3)ayy - Sbctasy = 0
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Similarly, the condition for cubic variation of the rotation about the edge

defined by grid points 3 and 5 (fig. 1) can be written as

Sa*cayg + (-4a3c2 + a%ay; + (3a2c3 - 2a%c)a,

(8)
+ (-2acht + 3a3c?a;q + (c5 - daZcB)a,, + Sacta,; = 0

The 18 relations between grad point displacements and the coefficients of the

polynomial in equation (6) are written as

{6} = [q] {a} (9)

where {8} is the vector of grid point displacements, [Q] is the

18 x 21 matraix involving the coordinates of grid points substituted into the
functions w [eq. (1)] and the appropriate expressions of g and g derived
in detail later, and {a} is the colum vector of coefficients a; to

as; . The l:QJ matrix is now augmented by the three constraint equations

(3), (7}, and (8) to form a new 21 x 21 matrix [R] in the following equation”

(6,1 = [R] (a} (10)
where
({6})
0
6,1 = 3 o ( (102)
L 9

For use in the evaluation of the stiffness matrix, {a} needs to be expressed
in térms of {6a} ; and, hence, it has to be established that the inverse of
matrix [R] ex1sts. The nonsingularity of such a matrix [R] for the

T-15 and T-21 elements of Bell (ref. 4) follows from the completeness of
the polynomials for w . For the high precision element, Cowper et al.

(ref. 3) give an explicit expression for the determinant of such a matrix and
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show that the matrix is nomnsingular in all practical situations. For this
element, a numerical experiment described in reference 1 verifies that
R 1s nonsingular for all practical cases. Hence, equation (10) 1s inverted

to gave

fa} = [R]™ s} (11)

This equation can also be written as
{a} = [s] (8} (12)

where [S] 1s a 21 x 18 matrix and consists of the first 18 columns of
[r]7 .

From the computational standpoint, 1t is advantageous to substitute
equation (3) into equation (1) and replace coefficients a;q to ay;
by coefficients aj;; to app , wespectively. The matrix [Q] then 1is of
size 18 x 20, [R] becomes 20 x 20 , and [S] becomes 20 x 18. To add
to the clarity of presentation, however, the complete quintic polynomial for
w 1in equation (1} 1s retained throughout this section, and matrices [Q] s
[R] , and [S] and vector {a} will have sizes 18 x 21, 21 x 21, 21 x 18,
and 21 x 1, respectavely.

Elastic relationships The elastic relationships are obtained from the

theory of deformation for plates (ref 5) The curvatures are defined by

( \ (_ 38 \
xx 3x
3o
ﬁ xy \ < 5; f (13
2o 38
Xy / \ ax  dy/

Bending and twisting moments are related to curvatures by
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X X

= [b
My [D] X, (14)
Mo *xy

where [D] is, in general, a full symmetric matrix of elastic coefficients.

For a solid isotropic plate of uniform thickness t ,

1 v 0
3
D] = —E8 — v 1 0 (15)
12{1 - v2)
0 0 1 -
L 2 .

The thickness t of the element is assumed to vary balinearly with

position over the surface

t = Cp + CoX + Cgy (16)

In concise form, 2t is written as
3 T
t= Y cxfyK (162)
k=1

The thickness of the three vertices of the element t, , t3 , and tg
will be used to evaluate the constants ¢; , ¢ , and c¢3 . It can be
shown that

tia + tgb
R CRE ) a7
ty - T
2 T @I DY (18)
es =2 [t5 - 1] (19)
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where a , b, ¢ are the length of the element marked in figure Bl.

For an 1isotropic plate, [D] becomes

3 3 T_+r_+¥, 5 _+S5_+S
_ 1 1 7] "k 1 7y Tk
[D] =15 [Ge] (Z Z Z_: cichkx b4 ) (20)
1=1 j=1 k=1
where
E E 0
1 -2 1 - v2
[6,]=]—= £ 0 (21)
1 - v2 1 - v2
E
| 0 0 T+ ) 4

For anisotropic materials with the material orientation axis inclined at ¢
to the x-axis, the material elastic modulus matrix [Dm] is transformed to the

element elastic modulus matrix by

[0] = [W]" [ ] [v] (22)

where

cos? ¢ sin? ¢ cos ¢ S1m ¢
[U] = sin? ¢ cos? ¢ -cos ¢ sin ¢ (23)
-2c0s ¢ sin ¢ 2cos ¢ sin ¢ cos? ¢ - sin? ¢

The positive sense of bending and twisting moments and transverse shear

resultants 15 shown in figure A3.

The moment equilibrium equations are written as

3MX BMXY
Vet Y 5y 0 (24)
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LA, (25)

Transverse shear strains are related to the shear resultants by

n' Vv

{y} = = [J] (26)

v
Tyz y

The matrix [J] is, in general, a full symmetric 2 x 2 matrix of elements
Ji1 » Ji12 (J21 = Jys) and Jso . For a plate with isotropic transverse

shear material,

[7] - &= [1 O} 27)

0 1

where G 1s the shear modulus and t* 1s an "effective" thickness for
transverse shear. For a simple case of a plate of uniform thickness t ,

t* has the value t .

Erom equations (24), (25), and (26}, it follows that

'BMx oM. T aMy aMxy' )
Yez = 712 | 9x * oy | J12 5y © Bx i
| (28)
'BMx 3M&yf BMY 3Mky'
Yyr = 2t Ty T Y22 [y T N

Performing the partial differentiation with respect to x and y on
equation (14), with subscripts on D denoting the elements of [D] s

results in
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3M, My 3 9
5 = D1y * D1 * Dusd
aM )Y 9y ¥

X _ X Y Xy

5y - D1z, * Daz—pp + D2sp
oM, 3y 3 X
5% D137y * Daygp* D_33 ax
oM 3x a Ix

Xy _ i X ¥ Xy
5y - D135y * Dasgy + Dss—3—

where the symmetry of the [D] matrix has been used. By substituting

equations (29) into equations (28),

ax 3 ax
gz = 7 I11 [Dll 7 * Dy Dy
+ D13a)3{ DZJB::; D33a§;y]
- J1z [012‘?}3{—; + Dzz?—;(% * D23a_?a%z
+ Dl:-;%* D23aax * Da;i—ix]
and
F D13E>3(_;§ + Dzjaz){ + Dbssa:;y]

3x d ax
X
- Jzz[Dlz—a)-;’f D22 ;(;; * D23 a;?r

E‘xx axy Bxxy:I

* Dig—3p + Dag—y *+ Dag—33

32
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(30)
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Rearranging and writing equations (30) and (31) in matrix notation yields

XZ

YZ

where a comma i1n the subscript denotes partial differentiation and where

A1l

Ao

Ays

Ary

Ars

i

(]

Aj1A12A1301 57546

Ag1A22A03A04 A0 5/

~(J11D11

-(J11D12

-WJ11D13

-(J11D13

-(J11D23

-{(J11D33

-(Ji12D11

-(J12D13

-{J12D13

+ J12D13)

* J12D23)

+ J12D33)

+ J12D12)

+ J12D27)

+ J12D23)

+ Ja9D13)

+ Jo2Ds3)

+ JooD33)

\

Xxy,y

/

(32)

(33a)

(33b)

(33¢)

(33d)

(33e)

(33£)

(33g)

(33h)

(331)
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Agy = =(J1oD33 + JooDy2) (333)

Ags = -(J12D23 + J22D52) (33k)

Asg = ~(J12D33 + Jo2D23) (331)

From equations (2) and (13), 1t follows that

Lo e W
X ax 3x2 X
_da_ 22w Tyz \ (34)
¥y T T e T Ty
_da 38, 3%w _Bsz_ Nys
Xy T X Y 3xdy ay 9x )

Shear forces (and hence shear strains) are proportionzl to the third
derivatives of the displacements. Since the displacement within the
element is assumed to vary as a quintic polynomial, shear strains are

expressed by a quadratic polynomial as follows

by + box + bgy + byx? + bgxy + bgy? (35)

-2
1l

Xz

sz

b7 + bgx + bay * b1gx® + byixy + bypy? (36)
The task now 1s to express the unknown coefficients b; to bg and by to
b12 1n terms of the generalized coordinates a; to a,; . Performing the

differentiations on Xy 2 Xy , and Xxy and substituting w , ¥y

xz '’

and Tyz from equations (1), (35), and (36) into equations (34)
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X = ——~ - —ZZ = Bay + 24a;1X + 6aj,y + 60a;gx2

+ 24ay7xy + 6aygy? - 2by

32
33w YYZ
¥ " - = 23,9 + 48.13)( + 631L;Y + 6318x2
YaX o axay2 0%
+ 12a19xy + 12ap0y2 - by
32y 3%y
33y Xz z
Xxy,x = 2 T dxdy L2 = dag + 12a15x + 8ajgy
s 3x28y axz
+ 24&17}(2 + 24&18XY + 123-19y2 - b5 - 2b10
32y
33w XZ
= - = 2ag + 6a1sX + 4a + 12a7x2
Xx,y sx2ay  OXY 8 L2 i H
+ 12a1gXy + 6219Y% - bs
2
3 3%y
X o = 2 o YZ o gay, + Gajux + 24aysy + 6ay9x2
Y,y BYS aYZ
+ 2daggxy + 603-21Y2 - 2byp
and
2 2
Xx _ °wW _ Xz axayz = dag + 8ajgx + 12a,4y
¥y axay2 ayz y

+ 12a19x2 + 24a1gxy + 24a50y2 - 2bg - bis

(37)

(38)

(39)

(40)

(41)

(42)

By substituting equations (35) to (42) into equations (32), the folldwing

equations are obtained.
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b1 + box-+ bay + byx? + bsxy + bey? = Ay (6ay + 24a;;x
+ 6ajoy + 60a1x> + 24a17xy + 6aigy® - 2by)
+ Arp(2ag + 4a13x + Gajyy + 6a1gx® + 12219Xy + 122502 - b11)
+ Ajg(dag + 12a;3,x + 8aygy + 24a;7%% + 24ajgxy + 12a19y?2

(43)
bg - 2byg) + A1y (2Ag + 6ajpx + dajygy + 12a17x2 + 12a;gxy

\
6ajgy? - bs) + Aps(6ajg + 6a1yx + 24a1sx + 6a19x”

+

24ap0xy + 60ag1y2 - 2bys) + Ajg(dag + 8ajsx + 12ay

+

l2a13x2 + 24ai9xy + 24a20y2 - 2bg - b11)

+

by + bgx + bay + bygx? + byjxy + bypx® = Ag1(6ay + 24a2;1x
+ 6ajgy + 60a1gx? + 24a;7xy + 6a1gy2 - 2by)

App(2ag + 4213x + bajyy + 6a1gx? + 12a)j9xy + 12asqy”

o+

bii)} + Aga(dag + 12a1ox + 8ajgy + 24a17x2 + 24aigxy

1

(44)
12a;9y2 - bs - 2byg) + Apy(2ag + Gajpx + daygy + l2ajzx?

+

+

12a3gxy + 6a19y% - bs) + Azs5(6ajg + 6ajux + 24a5y

+

6&19X2 + 24&20xy + 60321y2 - 2b12) + A26(4ag + 8a;gx

+

12214y + 12a3gx2 + 24a)19xy + 24apgy? - 2bg - bi11)

By comparing coefficients of like powers in X , Yy , x2, xy , and
y2
bg and by to bjyz can be expressed in terms of the generalized

and constants of equations (43) and (44), the coefficients b; to

coordinates a3 to aj; . Thus
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b2 = 24An1a11 + 6(A1y + 2A13)a31p + 4(A12 + 2ZAjglais * OArsaln
b3 = 6A11a12 + 4(A1s + 2A33)aig + 6(A1p + ZAjglagy + 24A;5215
by = 60Aj1a1e + 12(A1y + 2Ay3)ayy + 6(A1z + 2A16)a1g + BArsaig
bs = 24Aj1a317 + 12(A1y + 2Aj3)ayg + 12(Agp + 2A16)a19 + 24A15820 . (45)
> (45
bg = 6Ajia18 + 6(A1y + 2A33)a19 + 12(A1p + 2Aj6)app + 60A 532,
b1 = 6Aj1a7 + 2(A1y + 2Ap3)ag + 2(A12 + 2A1g)ag + 6Aysa1p
- ZA11by - (A3 * A1y)bs - 2A3ebg - 2A13b1g - (A1z + Arelbin
- 2A;5b12 )
\
bg = 24Az1a31 + 6(Agy + 2Az3)aip + 4(Azp + 2Azg)a13 *+ 6Azsaly
bg = 6Ap13312 + 4(Agy + 2Ap3)agg + 6{Agy + 2Apglayy + 24Ag531s
bio = 60Az1216 + 12(Agy + ZAng)ayy + 6(Azz + 2Agglarg + 6Azsaig
by1 = 24As1a217 + 12(Age + 2Ap3)ajg + 12(Ags + 2Agg)ajg + 24A5s539g
e (46}
bz = 6Ap1218 + 6(Aay + 2Ap3z)ayg + 12(Apy + 2Azglapp + 60Aps53g;
b7 = 6Azia7 + 2(Agy + 2Ap3)ag + 2(Agp + 2Agglag + OApsaig
- 2Ag1by = (Ap3 + Agy)bs ~ 2Aggbg ~ 2Ap3b1g - (Agz + Agelbyy
- 2A2s5b1)




If equations (45} and (46) are substituted into equations (35) and (36},
the explicit relation between the transverse shear strain and the generalized
coordinates (i.e., coefficients of the displacement polynomial) can be

obtained in matrix notation as

{v} = [B,] {a} (47)

where [By] 1s a 2 x 21 matrix whose nonzero elements are as follows:

B1(1,7) = 6A;; (47a)
B1(1,8) = 2A3 (47b)
B3(1,9) = 2A3, (47¢)
B;(1,10) = 6A;s (47d)
B;(1,11) = 24A1;x (47¢)
B1(1,12) = 6{Ag1X + Ay1y) (47£)
By (1,13) = 4(Azsx + Agpy) (47g)
By(1,14) = 6{A)5x + Agoy) (47h)
By(1,15) = 24A,5y (471)
By (1,16) = -120(A2;; + Aj3Ay; - 0.5A;7x2) (473)
By(1,17) = -24 [A};(Agq + Agg) + AysAgg + AyjAgg

5 (47k)
- 0.5A3;x% - Ajpxy]
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By(1,18) = -12(A11A3, + ApsAgy + Agghzy + AggAgz + Ajjhgg

(471)
+ AisAgy - 0.5A3px% - Agjxy - 0 5A13y2)
B1(1,19) = -12(A11A15 + Ajghps + AggAgy + Agghgy + Ajghg;
(47m)
+ ApsAgs - 0 SApsx® - Agpxy - 0.5A31y2)
B1(1,20) = -24(A15A35 + AgsA39 * A1ghAgn + AjsAgy
(47n)
- A1sxy - 0.5A3py2)
B1(1,21) = -120(A15A16 + A;sAg5 - O 5A15y2) (470)
B1(2,7) = 6Ay; (47p)
B1(2,8) = 2A33 (479)
B1(2,9) = 243, {(47r)
B]_ (2,10) = 6A25 (475)
By (2,11) = 24A01x (47¢)
By (2,12) = 6(A33x + Ag1y) (47u)
B1(2,13) = 4(Az,X + Aggy) (47v)
B1(2,14) = 6(Azsx + Azyy) (47w)
By (2,15) = 24A5sy (47x)
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B3(2,16)

B; (2,17)

-120(A11Ap; + Az3Az1 - 0.5A21x%)

1

-24(Ag3A37 + Aj1Ay0 + Aggfgzz + ApjAgy

]

- 0.5A33x2 - Ag1xy)

B1(2,18) = -12(Ag1A32 + A23Azn + AygAzl + AniAgsg + Agghy)

+ Apshpy - 0.5A34x2 - Aggxy - 0.5A5;y2)

B1(2,19) = -12(A1A15 + Az3Az5 + AypAzp + AyjAgy + Agghsy

* AgsAgy - 0.5Ap5x? - Agyxy - 0.5A33y2)

B1(2,20) = -24(A1sfug + AzsAy1 *+ Aggh3a + Agshgy - AgsXy

- 0. 5A31*y2)

B1(2,21) = _120(A15A25 + A225 - 0.5A25Y2)

where Ayp ,

Agzs ,

40

Ao 5 Ay s Ay, Ais s Mg s Azy s Asp s Apg

and Ayg are as defined in equations (33) and

Ag;

il

If

1

Ay + 2A;3 \
Ayp + 2Aq
Asy + 2853 >
Agp + 2Agg
Agz + Ayg )

(47y)

(472)

(47aa)

(47bb)

{(47¢cc)

(47dd)

s Agy

(48)

{continued)



Azg = A3y + Az

\ (48)
concluded)
Azg = Ajp + Ajg ¢
Ayg = Agg + Agy
Ay = Apy + Apg )

If the plate 1s assumed to be rigad in transverse shear, the coefficrents

Ay to Ay and Ay to Ajg of equations (33) are zero (since G = =),
and, hence, coefficients bj .to bg and b; to b;, of equations (40)

and {41) are zero. Moreover, the transverse shear strains vary linearly with
Gl with {y} approaching 0 as G -+« , that 1s, convergence to the

limiting case of zero transverse shear is uniform.

Stiffness matrix. The strain energy for a plate may be written as

U= %—ff({M}T I} o+ Vi {Y}) dxdy (49)

where {M} 1s the vector of bending and twisting moments per unit length,
{x} 1s the vector of curvatures, {V} 1is the vector of transverse shear
forces per unit length, and {y} 1s the vector of transverse shear strains.
Substituting equations (14) and (26) into equation (49), and using the
symmetry of [D] and [J] matrices, yields

U= [f0aT [0] i3+ 3" [6] v} dxdy (50)

where
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{c] = 177 (51)

With [ngn] denoting the generalized stiffness matrix, that is the
stiffness matrix with respect to generalized coordinates (coeffcients of
the displacement polynomial} d{al , the strain energy can also be expressed

as
U= %-{a}T [ngn] {a} (52)

The vector of curvatures {x} 1s now rewritten as

o = Dl + Db - ([BZJ ; [331) (@) 53)

where

( \ ( )
(mi—Z) n,

— z:aimi(mi - Dx y

m (nl-Z)

{x1} = | — ¢ = 3 z:ainl(ni - x Yy r (53a)

(mi-l] (nl-l)

2%
2 > a;m n.x y |
\

and

{x2} = 1 Jz > (53b)

ay 89X
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It follows that {y;} 1s the vector of curvature in the absence of
transverse shear and {yx,} Is the contribution of transverse shear to the

vector of curvatures.

Substituting equation (53} into (50) and comparing the resultant equation
with (52), noting that {a} 1s independent of Xx and y , the generalized

stiffness matrix can be obtained as

[ngn] =ff [82]" [0] [B2] dxdy +ff (8.1" [0] [Bs] dxdy
« [f (831" [p] [Bo] axdy + ff [Bs]" [0] [Bs] dxdy (54)
+ [f [8:" [6] [B1] axay

The evaluation of the elements cf the generalized stiffness matrix
[kgen] in closed form is, though straightforward, very tedious  The
first term ff [82]T [D] [Bz:l dxdy 1s evaluated in closed form, the other
four terms are evaluated by using numerical integration. If the plate is
assumed to be rigid in transverse shear, the matrices [B;] and [B;] are
null, and the last four terms vanish. The numerical integration formulae
used are the seven-point integration scheme listed in reference 6 and are

given below for easy reference. For a triangle, the integrals of the form

1
1= [ f £(L1LoLg)dL;dL,y (55)
0 0

-

can be integrated by using a seven-point numerical integration which can
exactly integrate functions up to and including quintic order The value

of the integral 1s given by

7

I= 2, W (Li,Ly,Lg) (6)
k=1



where the points and the wexrghting factors are as follows

Point Triangular Coordinates Weight, ZWk
Ly, Lp, L3
4 1 1/3, 1/3, 1/3 0.225
b_ 2 ¢3 By B1
q 3 B1 o1 B1 0.13235415
/
4 B1 Br o1
5 az Bo B2
6 Bo 0p Bap 0.12593918
7 32 52 Oo
with
a; = 0.05971588 By = 0.47014206
as = 0.79742699 o = 0.101286505

Note the error in the value of «; as given in reference 6, page 151.

Denoting by Gi;7 , Gi2 , Gi3 , Gos , Gpg , and Gzz the symmetric
portion of the Ge matrix of equation (21), 1t can be shown that the jth
element of the 1th row of the generalized stiffness matrix [kgen;]’ for the

case of a plate infinitely rigid in transverse shear, is given by



2 % }::T 53_?
XK. ) = ¢, ¢, C
i37gen 12 7 k0T K5l Kika ks

G
[

[Gllmlmj (ml - I)CmJ - 1) F(ml + mJ ot Ty

1 2

- + + + 5
+ rk3 4, n1 n} + Skl skz ka)

+ Gzznlnj(nl - lJ(nJ -~ 1) F(ml + mj + rk1

+ rkz + rk3, n o+ nJ + skl + sk2 + ska - 4}

+ ( 4Gzgn m n 0 + Glz{mlnj(ml - l)(nJ -~ 1)

] 1]
+ mjnl(mJ - 1) (nl - 1)}) F(Irll + m] + rkl (57)
+ rk2 + rk3 - 2, n, +n_ o+ sk1 + skz + sks - 2}

+ 2Gla{mlmjn3(ml -1) + minlmj(mJ - 1} Fm +m

+ + + - + +
rkl Ty T 3, n nJ skl

2 k3
Y Sp, t S T 1) + 2G23{mjnln3(nl -1

+ mlnlnl(nJ - 1)} Flm +m + 7 * T

2

+ rk3 -1, nl + n:| + skl + sk2 + 5k3 - 3)]

All computations involved in evaluating [ngn] for the case of a
plate infinitely rigid in transverse shear can be carried out within the
computer. For plates with transverse shear flexabilaty, the contribution
of the last four integrals of equation (54) will be evaluated using the
numerical integration formula [kq. (561] and algebraically added on to the

closed form expression for [ngn] evaluated by equation (57).
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Once the generalized stiffness matrix [ngn] is evaluated, the
element stiffness matrix in the local element coordinates EKee] is

obtained as, by virtue of equation (12),

k.o = [s]" [k, 1 [s] (58)

[Kee] can then be transformed to the global coordinate system of the

-surrounding grid points in the same manner as for all other elements.

Let the transformation for displacements be

{u} = [E]F w (59)

basic element

and

{u} = [T] {u}

global basic (60)

Then, the stiffness matrix in global coordinates 1s

(KDgropar = (117 [1 (ko] T 1] (61

Equivalent thermal bending loads

The following derivation to obtain the equivalent thermal bending loads
is given for the case of different thermal gradients at the three vertices
of the element. This capability is not currently operational in NASTRAN.
However, the derivation is valid for cases with the same thermal gradients
at the vertices, if Té and Tg in equations (83), (74), and (75) are set
equal to Ti .

The stress-free strains developed in a free plate due to a variation

of temperature with depth are
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el
fet= ety = <Sa,0 T-T =1} T-T o (62)
£t “e3

wvhere T 1s the temperature at any point (x,y,z) of the element, Tref 1S
the reference or stress-free temperature of the material, and {ae} is the

vector of thermal expansion coefficients in the element coordinate system

An applied stress vector which would produce the thermal strains is

{o } = [Ge] {e,} = [Ge] {og} (T - T, 2 (63)
where [Ge] 15 the matrix of elastic coefficients at the point on the
cross section

The generalized equivalent thermal load vector {P;en} 1s obtained
as
t . _ 3 T

®ent = 507 {, {e}’ {0, }dv (64)
The strains {el} are related to the curvatures {y} by

{e} = -z{x} (65)

where 2z 1s measured from the neutral surface of the plate  Substituting
equations (63) and (65) into equation (64),

gen} =T BE;} Jﬂ Z{X}T [Ge]{ae} (T - Tref)dv (66)

The variation over the surface of the element of the mean temperature,

T0 , @and the thermal gradient at a cross section, T' , 1s assumed to be

a bilinear polynomial.
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so that the temperature at any point (x,y,z) T,

vertices,

where

T!

™

]

T=T +T'z
Q

The constants

d3

1
To1 »

Thus,

d.
i

TE}]_a + T(‘)gb
ST @ o)

t
Tos - To1
T (a + b)

%‘ [Tos - d,]

Tia + T3b

(2 + b)

T3 - Tg

1
Tos »

(a + b)

2 [rs - ai]

and T65

mean temperature Tp; , Ty

are the difference between the grid point

and TUS 3

at grid points 1, 3, and 5,

respectively, and the reference temperature, T
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and di are evaluated from the values at the

ref °

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)



It 1s convenient to define the equivalent thermal moment vector

{Mt} = - ‘C [Ge] {ae} (T - )Tref)zdz
+t/2
= - iy [Ge] {o ¥ (1) + T')zdz (76)

1 't3
- [Ge] o 3T 3

Substituting for t £rom equatzon (16z) and for T' from equation (68),

1

3 3 3 3
1
Ml=-=[clictm ¥ 3 2 ¥ c . c c
t 12 e e 1751 1551 1351 j=1 i1 12 13

(77}
(r11+r12+r13+PJ) (311+512+513+q3)
X . y
At the three vertices the value of {Mt} will be given by
]
M} = - [Ge] {o } ¥ T3 (78)
3
t3
{Mt}3 = - [Ge] {OLe]' 17 Té (79)
£3
= - —_— 1
M }s [6 ] (e } 5 T (80)

where t; , tz , and tg are the thicknesses at the vertices G, ,

Gz , and Gs , respectively, of the element.

1
The "effective thermal gradient," T , at the vertices 1s defined as

1 _
T] = Tlle z dz (782)
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TY = %—1 [ 2 az (792)
TL = %1 S Ts 2 daz (80a)

This capability of specifying the thermal gradients or the thermal
moments at the three vertices of the element is not currently implemented.
The theoretical derivations of the evaluation of the thermal load vector

is, however, given for such linear variation of the thermal gradient values

over the surface of the element.

Substituting equations (16), (53), (67), (68), and (69) into equation (66).

et 3= -5t ff(bad + xad) TI6 T )

2 3 3 3
MDD Z d: (81)
11=1 1p=1 ig3=l 3=1

11 12 13 b

r +r. +1 + sS. +8., +s. +3g.
( iy 12 13 pJ) ( 11 12 13 qJ)

x y dxdy

As in the case of the derivation of the generalized stiffness matrix, the
generalized thermal load vector will be evaluated in two stages, viz., the
closed form expression [Pgen]l due to [Xl] , the vector of curvatures
in the absence of transverse shear, and the numerically integrated
expression [Pgenjz due to [Xz] , the contribution of transverse

shear to the vector of curvatures. Using the following notations, viz.,

G:;.l = Gllcﬂel + Glzaez + G13Geg (82)
H =

G, Glzael * Gzzaez * ngaes (83)

Gés = Glguel + G23aez + G33(1e3 (84)
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the 1th element of the generalized load vector {P;en} will be given by

1171 1 12 13 ]
n, o+ 511 * 512 + s13 +q. )+ Gln(n 1)
F(ml ¥ 1) ¥ T1p N 13 ¥ Pys By N ®11 ’ s12 e
+ 513 + qJ - 2) + G} gM; 1 F(m + rl1 + ri2

+ T+ -1, n, + s + 5. + 5 + ~ 1
13 PJ i i} 12 13 qJ )]

The load vector {P }» 1s evaluated using numerical integration
‘ gen [pt ]
and [PgenJ 1s obtained as the sum of Pgen and [Pgenjz

infinitely rigid in transverse shear, [Pgen]z is null. The equivalent

For plates

thermal bending load 1n the local element coordinate system i1s obtained
, by virtue of eguation (17),

ty _ T [pt
ey = [s]" o, 3 (86)
The load vector can then be transformed to the global system by

{p;} = {r7" [2] @5 (87)

’

RECOVERY OF INTERNAL FORCES

The bending moments and shear forces are recovered at the three
vertices, the stresses are evaluated at the three vertices and at the centroid
of the element. After the displacements of the element are transformed
from the global system El ] to the element coordinate system [u ] s
the generalized coordlnates {a} are evaluated from equation (12) The
curvatures {y} are evaluated from equation (53) with the nonzero elements

of [B3] being as listed below.
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B3(1,11)

B3(1,12)

B3(1:13)

B3(1,14)

B3 (1,16)

B3 (1,17)

B3(1,18)

B3(1,19)

B3(1,20)

B3(2,12)

B3(2,13)

B3(2,14)

B3(2,15)

B3(2,17)

B3(2,18)

B3(2319)

B3(2:20)

B3(2,21)

-24A;

-6A53

~4A3p

—120A11x

-24(Az1x + Ap7Y)

~12(Ag2x + Az1y)

~12(A15x + A3z2y)

-24A 15y

-6Az)

-6A3y

-24A,5

—24A21X

-12(Az3x + Aj1y)

-12(AgyXx + Agzy)

~24(Ay5x + Agyy)

-120A, 5y



B3(3,11)
B3(3,12)
B3(3,13)
B3(3,14)
B3(3,15)
3B4(3,16)
B3(3,17)
B3(3,18)
B3(3,19)
B3(3,20)

B3(3,21)

where A7 , Az ,

~24A,,

-6(A11 + Ag3)

-4 (Az1 + Agy)

-6(Ags + Ays)

~120A;s

~120A51%

24 [(Ay; + Azg)x + Agpy]

212 [(Agy *+ As)X + (Ags + A1p)Y]
212 [(Ags + As2)x + (Asy + Ag)y )
-24A15x + (Agg + Aps)y

-120A15y

-, Az, are as given in equations

Moments at the vertices are then obtained from

{M}h

It

(M},

{Mls

[p]; {x} - M
b]5 {x} - M 13

[pls {x} - M Is

(33) and (48)

(88)

(89)

(90)
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The transverse shears are evaluated as follows:
{y} 1s evaluated from equations (28) and (47).
{V} 1s then evaluated from equations (24) and (25).

The stresses at the three vertices are evaluated at distances Z11,
221, 213, 723, Z15, and Z25 specified by the user. The stresses at the

centroid are evaluated at the top and bottom fibers of the element.
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5.14 TRSHL, Higher Order Shallow Shell Element

This element was developed by Narayanaswami (ref., 1). The element has
grid points at the vertices and at the midpoints of the sides of the triangle
At each grad point, there are five degrees of freedom in the element coordinate
system- viz., the membrane displacements wu and v parallel to the x and
y axes, the transverse displacement, w , 1in the z-direction normal to the
X-y plane, with positive direction outward from the paper, and the rotations
of the normal to the shell o and B , about the xz and yz planes, with
positive directions following from the right-hand rule. The element, thus, has

30 degrees of freedom in the element coordinate system.

The membrane displacements u and v for the shell are expressed as
quadratic polynomials and are the same as for the higher order membrane
triangular element, TRIM6. The displacement function for the normal deflection,
w , 1s taken as a quintic polynomial as for the higher order bending triangular
element, TRPLT1. The geometry of the shell surface 1s approximzted by a
quadratic polynomial in base coordinates Shallow shell theory of Novozhilov
(ref. 2) 1s used for including the membrane bending coupling effects. Thus, the
element can strictly be used only in cases where the shell 1s shallow. However,
reasonably good accuracy 1s seen even when the elements are used to analyze
shells that are only marginally shallow The user is cautioned, however, to be
careful while interpreting results obtained when the shell analyzed 1is very
deep Due to the excessive computation time associated with such calculataions,
the transverse shear flexibility is not taken into account in the element
formulation. The element can be used in the statics, normal modes and

differential stiffness rigid formats.

Derivation of Element Properties

Element geometry Rectangular Cartesian coordinates are used in the
formulation An arbitrary triangular element 15 shown in figure A4 X ,
Y , and Z are the basic coordinates, x , y , and z are the local
coordinates The griad points of the element are numbered in counterclockwise

direction as shown in the figure.

The lengths a , b, and ¢ shown in figure A4 can be easily evaluated
from the basic coordinates (X3, Y1, Z3), (X3, Y3, Z3) and (X5, Ys, Zg) of the

vertices of the triangle
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Figure A4.

Triangular shell element geometry.



Displacement Field The u(x,y) and v(x,y) displacements are assumed to

vary quadratically with position on the plane of the element, while displacement
w(x,y) within the triangular element 1s assumed to vary as a quintic polynomial

1n the local coordinates,.

u(x,y) = a1 + apgx + agy + ayx® + agxy + agy?
V(X,y)} = a7 + agx + agy + ajoX> + apiXy + ajy?
W(X,y) = ajg + ajgX + ajsy + ai1gx? + ayyXy + ajgy?
(1}
+ apex’ + aygx?y + axxy? + agyyd + a5,x%y
+ apsx2y2 + azexy® + agzyt +oaggxd + asgxty
+ agpx3y? + az;x?y3d + agoxyh + a33)’5
In concise form, u, v and w can be written as
33 m1 n1
u = E: a, x vy a, =m =n = 0; 1 =7 to 33 (2)
1=1
33 P, 4
1
v = Z: b x T y b, =p =q =0, 1 =1to6 (3)
i 1 1 L
1=]1
1 =13 to 33
33 rl s1
W = Egi c,xy c, =1 =s =0,1=1to12 (4)

The detailed derivation of the stiffness matrix for the triangular shell
element follows closely that for the TRIM6 and TRPLT1 elements. Hence, only

the salient features of the derivation are given in this section

The geometry of the shell surface 1s approximated by a quadratic poly-

nomial in base coordinates
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z(x,y) = hy + hpx + hgy + hyx? + hgxy + hgy? (5)

Hence the curvatures of the shell surface are

Z,xx = 2h|+ (6)
z, = h 7
xy 5 (7
2, =2h 8
vy 6 (8)

The membrane thickness of the shell element 1s assumed to vary linearly

over the surface of the element, i.e.,

t. u

3
t, = Z dlxl)i':L (9
i=1

The bending thickness of the shell element is also assumed a similar linear

variation

Following the shallow shell theory of Novozhilov (ref. 2), the membrane

strains in the shell are given by

X ax XX
33 m -1 mn, v s (10)
= (max yl-2h4cx y)
1=] *
e = v z, W
y 9y Yy
33 p, ;-1 voos, (11)
= gl(qlblx y -2h5cix y )
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v T Tax T 2y ¥
33 m. n_-1 p.~-1 q
11 1 1
= (nl a; x Ty P, b:L X y (12)

32y

1 1
X, = ——— = v. (v. - 1) ¢c. x Y (13)
X axz 1=1 1 1 1

32W 33 Vl 51-2

Xy = — = sl (sl -1 cl Xy (14)

3x2 1=1

82w 33 Vl-l Sl-l

I T 5;% 2V S3e XY (15)

Following the procedure outlined in sections 5.8.6 and 5.8.7, the Jjth

column of the ith row of the generalized stiffness matrix 1s obtained as

3
KiJ = ééi [Gll(F1 mJ dk F(m:L + mJ - 2, n o+ nJ + uk)

- hy m, dk F(ml + rj + tk -1, n, + sJ + uk)

- hy mJ dk F(mJ tT, ot - 1, nJ s F ukJ

+ hﬁ dk F(rl + rJ ot S0t 53 + ukq)

* Gzz(gl A d Flpy + 2y + ty, qp +a) + o - 2) 7
- hg q, dy F(pl + rJ T, gt sJ o - 1)
- hg qj dk F(rl + PJ + tk’ s, * qJ - 1)
+ hé dk F(rl + rJ + tk, s * sJ + uk)) {continued)
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+ Ggg(Pi nj dk F(ml + m3 + tk’ ni + n} + u - 2)

o pJ dk F(mi + P, *t -1, n 0+ qj oo~ 1)

+
=
+

- hg n. dy F(ml tys n, + sj - 1)

* P, T 4, Flp; + m te - 1,95 *+ B, tu - 1)
*P; Py dkF(pi+pj+tk-2, q1+qJ+uk)
-hsp; d Flp, # 7+t -1, q + 5.+ u)
- hg nj dk F(r:L + mj * s s nJ - 1)

- hs pJ dk F(ri + pj + tk -1, s, * qJ + uk)

+

2
hg dk F(rl + rj + tk’ s; * sJ + ukl)

+ Glz(ml a, dy F(mi + P, +t -1, n o+ qj e - 1)

-hgm d F(m, + T+ ty -1, n, o+ syt ) (1)
- hy qJ dk‘F(r1 + pj *t, S5t qj U - 1)
+ 2hy hg dk F(ri + rJ +ty, s, * sJ + uk)
*aq, mJ dk F(p1 + nﬁ + Ty - 1, ql + nJ T 1)
- hy q, dk F(p1 + rJ . oq ¥ sj - 1)
- hg ma dk F(ri + mj + tk -1, s ¢+ nj + ukq)
+ Glg(mi nJ dk F(mi + mj + tk -1, n, + nj - 1)
+ m. pJ dk F(m1 + pJ Ty - 2, n + qJ + uk)
- hg my dk F(mi + rj + tk -1, n, + Sj * uk)
- hy nJ dk F(r1 + Hﬁ + tk, s, + nJ - 1)
- hy P, d, F(r; + P; -1, s 0¥ q, ) {(continued)



+

o+

-+

hy n, dk F(ml

+
+

p, m_d, F(p,

J

+

by p_d Flp,

+

hsg mJ dk F[I‘i

625(a, v, 4 Flo,

+m + t

2hy hs dk F(rl + rJ T, s sJ + uk)

n mJ dk F(ml + mJ + -1, n, * nJ tuy - 1)

U 1)

*t-2,q * nJ + uk)
ot - 1, q, * s] + uk]
+ tk -1, s; ¢+ n3 -+ uk))

k94 + nJ - 2)

]

+q, pJ dk F(p1 + pj +t - 1, q; * qJ - 1)

~ hs 4 dk F(p1 + rJ + tk’ q, * sJ +tuy - 1)
- hg n 4 F(r, + m, * s Sy F Iy Yy - 1) (16)
- hg P, d Flr, + Py * t, -1, s + q; * uk)
+ 2hs hg dk F(r1 + rJ + tk’ s, * sJ.+ uk)
1 q, dk F(ml + P, ., n, * q - 2)
- hg n_ dk F(ml * rJ + tk, n, o+ sJ - 1)
* P9y d E(p, + I L T T 1)
- hg P, dk F(p1 + rJ oty - 1, q * s] + uk)
- hs qj dy F(rl + pJ e, s+ qJ oy - 12)]
3 ﬁ% fi [+ ardd (Gpr r (x, - 1), - 1)
K21 ko2 Ko 2 kq kgdk3 115 7y Y J
. p(rl ¥ rJ + tél + tiz + té3 -4, s sJ + uil + uiz + uﬁs)
{continued)
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A

+ Goo s S (51 - 1)(5j - 1) F(r1 + rJ +t! o+t o+t

3 kj ks

1 1 T -
s, sj + ukl + ukz + uk3 4)

+ (%Ggg r, rf s, sJ + Flg{ri sJ (rl - l)(sJ - 1)

+
[
|
N
-

+ rj S5 (rj - 1)(5; - 1)}) F(ri + rj + til + tiz ks

+s5, +s5_ +uw +u +u -2
i J uk1 ukz uk3 )

s. (r. - D} F(xr. + (16)
] i J (concluded)
+ t! o+t o+ t!

1 1 T
ki ko k3 3 5. F SJ * ukl * ukz * ukg 1)

1) + T, S: sj (sJ - 13} F(r1 + T

+ 2G13{ri T, S (r; - 1) + 1, T

+ 2G23{rj s, sJ (Sl

]
93]
ot
B

+ 1 + 1 + ] - . L 1 1 t
tkl ko tka Losy + 55 7 Uiy T Uy T kg

The generalized stiffness ?atrix can be transformed to the element and
global coordinates by transformations similar to that for TRIM6 and TRPLT1

elements.

Equivalent Thermal Load Vector:

The equivalent thermal load vector for the shallow shell triangular
element consists of loads due to thermal expansion as well as due to thermal
bending caused by variation of temperature with depth. The detailed derivation
of the thermal load vector is similar to that used for TRIM6 and TRPLT1

elements; hence, only the essential steps are given here.
'

The vector of thermal strains is

£ a
Xt e1

{st} = Syt = aez (T - Tref] = {ae} (T - Tref) (17)
“xyt Ye1a

where {ae} = [u]-! {am} 1s a vector of thermal expansion coefficients, [U]

1s the strain transformation matrix given in equation (15) of page 5.8.4, {am}
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1s the vector of thermal expansion coefficients in the material axis system,
Tref 15 the reference or stress-free temperature of the material and T 15 the
temperature at any point (x,y) in the element

-

An applied stress vector which would produce the thermal strains is
fe,}=[6] te3 =[6.]ta} (T-1, 0 (18)

The generalized equivalent thermal load vector {Pgen} 1s obtained as

®f, ) = 3 { {el* {0 } v (19

gen

The strain vector {e} 1s given by

€ Bu Z W=~ Z
X ax XX Xx
{e} = {¢ = v 2 W-2ZY ) : (20)
y ay yy y
au av
EXY L3§-+ X ZZXY w - Z xny
where =z , Z and z are the curvatures of the shell surface and z is
XX Yy Xy .

measured from the neutral surface of the plate.

The temperature at any point (x,y,z), T , 1S given by
T=T +T! z (21)

where To 15 the mean temperature and T' 1is the thermal gradient.

“The following derivation to obtain the equivalent thermal load vector is
given for the case of linear variation of thermal gradient over the planar
coordinates, of the element; the values of the thermal gradient at the three
vertices being defined as Tj , Té and Té . This capability 1s not

operational in NASTRAN currently. The derivation, however, is valid for
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cases with the same thermal gradient at the three vertices by setting T}
and T! equal to Tj . Thus, T0 and T' of equation (21) vary over the

element as follows:

To = g + esxx + €3y (22)
— ¥
T! = ei + eéx *oegy (23)
1.e.,
3 v, W
To = 2: e XY (24)
1=]
3 vi w!
T"= 2 elxtylt (25)
=1 %
The constants e; , e; , ez and el e, and e} can be evaluated from

the user supplied values of the mean temperature and temperature gradient at
the vertices of the element; however, as stated earlier, only the capability
of specifying a temperature gradient for the element 1s currently available
and hence ei will be equal to the element temperature gradient and eé
and e} will be equal to zero.
Substituting equations (10) through (15) into equation (20) and substituting
for {e} and {Gf} in equation {19), the generalized equivalent thermal load

vector {Pt } 1s obtained as
gen

64



33 m -1 n, v s,
> m, a x y -2Zwe xTy
1=1
vo-2 s,
—zv, (V. -1 c x y )
33 P q. -1 v 3
Z (qlbl}(ly:L —2h5c1x1y1
1=1
3
{p_ 1} = f V. s.-2
gen of{al " _zs (s - 1) c, x*y )
33 m n_-1 p.-1 ¢q
1 1 1
;gi (n,a x"y +p b X y
V. s Vl—l sl-l
- 2hg c:L Xy 1.2z v S €. X y
3 Vj WJ v:'l wJ'
. [Ge] {ae} [ng (eJ X y- o+ e:'l x°y“” z) :l dxdydz (26)

Integrating over the thickness and noting that

t/2
f £(x,y) z dx dy dz = 0 27
-t/2

equation (26} reduces to

3 v.oow 3 t
-[Ge]{ae}(z ejxjyj)(z dkxkyuk) dxdy (28)

k=1 (continued)
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V.-2 S5, )
v, v. - 1) c; X ¥ t
d —]l-ff s (s. - 1) c xvi 5272 ) [G 1}
T 8{a} (12 171 Y54 i y e e
vl-l sl-l
2\!i si ci X y
| j (28)

(concluded)
3 v% w; 3 3 3 tk
. (ng e; Y ) o2 X dkldkzdks x

ki=1 kp=1 k3=1

U, +
. yukl ka2 ks dxdy

The generalized equivalent thermal load vector will be obtained by performing
the differentaiation and integration operations of equation (28) and the final
expression for {P;en} w1ll be similar to those obtained for the TRIM6

and TRPLT1 elements, except that an additional expression involving the
curvatures of the shell surface hy , hg and hg will be added now. The
generalized thermal load vector {Pgen} can then be transformed to the element

and global coordinate system by the usual procedures.

7.3.6. Differential Stiffness Matrix for Triangular Shell Element TRSHL

The expression that is used for the energy of differential stiffness per

unit area of the shell element consists of a part Ué due to out-of-plane

motions and a part Uﬁ due to in-plane motions. The expressions for Ué
and U, are the same as for plate elements and given in equations (18) and
(19) of section 7.3.1.; the expressions for membrane strains will, however,

involve the effects of coupling due to bending. Thus,

U=y e U (1)
where
t f— fow\%2 — /fow)?2 — 3w oW
T o= & o ox g ax
Uy =3 {c’x ax) * o (By * 2Ty B ay} (2)
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and

R T 2 - 2 _ = _ }
Um 2 {Ux (wz * sz Exy) * Uy (mz zmz sxy) * ZTxy {Ey sx) v, (3)

The stresses E; s E& and ¥¥y at any point within the element 1s

assumed to vary linearly, the values at the three corner grid peints being

used to evaluate the coefficients in the linear variation.

G (X,y) = e1 + epx + egy (4)
5} (x,¥) = £1 + faox + f3y (5)
FX}, (x,¥) = g1 + gox + g3y (6)

In condensed form

_ 23: Rl S1

o= e Xy {(7)
X =1

. f R1 81

o = £ x"y (8)
Y =1 *

. % R:L S:L

0., = g x "y (9)
x 1=1

Also
oW
‘-Ux = -53; (10)
ow
UJY = - E (ll)
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N E Y (12)

2 T2 Ix  Jy

Ju
€ =T = Zagy ¥ (13)

v

=, w 14

fy =%y T Foyy (14)
e =L B _ oy (15)
Xy = 8x oy Xy

The thickness of the element t at any point

3 t
txy) = 3 4 x ¥ < K (16)
2

The jth column of the 1th row of the generalized differential stiffness

matrix is
3 3
Ki] = égi Eéé [?k e, T, rj F(rl + rJ + tk + RL - 2, Sl + sj + u + SZ)
* dy fz s; sJ F(rl + rj + 1t * R, s; * sJ o Sg - 2)
+ dk 8y S, rj F(ri + rJ + tk + R2 -1, s, ¥ sj + u + S£ - 1)
dk gg sJ T F(ri + rJ + tk + Rz -1, s, * sJ oyt Si -1
+0.25d, e, p. p. F(p, +p, +t, +R, - 2, q +q_+ +8,) (a7
k "2 71 53 1 ] k 2 7 3 Uk 2
+ 0.25 dk e, n nJ F(m1 + mJ + tk + Rg, o+ nj ot Sg - 2)
- 0.25 dk e, P, nJ F(pl + mj +t *R, - 1, q; + nj ot Si - 1)
- 0.25 dk e, Ty pJ F(m1 + PJ + tk + Rz -1, n + qj oyt Sg - 1)
- dk ey Pi/ nj F(pl + mJ ot R, - 1, q, + nJ tu ot S, - 1) (continued)
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dk o Py PJ F(Pl TRy Tt Rﬂ -2 9 F qj T T 52)
dk e, b, hs F(p1 tro+t o+ Rg -1, q s__J ot Sz)
dk &y T nJ F(mi + m o+ tk + RR’ nl + nJ + Uy + Sz ~ 2)
dk &, n, pJ F(ml + p. o+ tk + Rg -1, n, + qJ tu o+ Sg - 1)
dk e, 1 hg F-'I:m:L T+t + Ry, n_ o+ sJ oy o+ Sl - 1)
0.25 dk fl P, pJ F(p, + p. + tk + R1 - 2, q_ * qj tuo+ Sg)

0.25 dk f2 P, nJ F(pl + mJ + tk + R£ -1, q, * nj tu o+ 52 - 1)

0.25 dk fg n nJ Fm, +m_ + t,_ + R, n + nJ +u

i 7 k% 5 -2

k

0.25 dk f2 n pJ Flm_ +p_ +t, =+ R’Q -1, n, o+ qj tu ot S2 - 1)

dk fz P nJ F(p1 +m_+t +R -1, Q * nJ + Uy + Sg - 1)

dk fz P, PJ F(pl TRy tk * RE 2, 4, * q] * U ¥ SLJ
dk fz P, hs F(pl +r +t +R_ -1, q; * sJ *u *S,)
dk fg n_ nJ F(m1 +m. o+t o+ RR’ nl + nJ + Uy + SZ ~ 2)
dk fz n_ p:l F(m1 + p. o+ tk + R2 -1, no+ qJ ot Sz - 1)

+ R

+
H
+
r—f

dk £2 n hs F(ml 5 K gr My F S] ot Sg -~ 1)

0.5 dk g, a4 pJ F(pl + p] o+ R2 -1, q, * qJ tu o+ SQ -1)

05d g a,p Flo, +p + t +R -1, Ay * 95 * e S - 1)

J

0.5 d, g, 9, n, F[pl + ma ot Rg, q, * n, ot S2 - 2)

0.5 dk g, qJ-nl F(p__j +m + tk + Rz’ qJ o o+ Wt Sg -2

(17

0.5 dk g P, hg F(Vl TPt o+ Rg -1, s, + qJ Ty o+ Sg) {continued)
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- 0.54d, g, p, hg F(v

+ 0.5 dk gy M hg F(r

+ 0.5d n_ hg F(r

x 82 g 3
. F(m.
- 0.5 dp g, mj P. F(mj
. n. F{m,
+0.54d g, m n Flm
+ 0.5 dy gy pJ hy F(ri
+ 0.5 dk g P, hy F{r.

J

- 0.5 dk g nj hy, F(rl

0.5 dk g, 1 hy F(rJ

The generalized differential stiffness matrix is transformed to the

Rg ~lusy +ay +uy +5)

Rz’ + Sg - 1)

S.+n, +u
1 J k

R +n +u +S -1)

&’ SJ 1 k A
Rp -2, m, + G5 F Sg)

R -~ 2,n. + 9, * oy o+ SzJ

R, ~ 1, n_ + nJ + U + 5 -1)

L

R, -1, 5. + qJ tu o+ S

o)
Re -~ Lisg+q +u +8)
Rl’ s, % nj ot SE -1

Rﬂ’ sJ R Sz - l)]

(17)

(concluded)
R, -1, n + nj + U + Sz - 1)

element coordinate system, basic coordinate system and the global coordinate

system in the normal manner.
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Section 15.2
Modeling of Plate Structures Using TRPLT1 Elements

The Figure 1, shown on page 15.2-3, is modeled using higher order
triangular bending element, (Figure 2, page 15.2-3(a)), CTRPLT1

Because of symmetry, the quarter section of the plate is discretized
and detail of the discretization 1s given by the side of the modeled figure.

Four different mesh sizes are used for each case.

The central deflection is plotted in figures on pages 15.2-4 to 15.2-11
and also given in Tables 1 and 2 on 15.2-3(b) and 15 2-3(c).

Such high accuracy 1s obtainable for other plate structure problems
using the TRPLT1 element in view of the use of the quintic displacement field

for the displacement pattern in the element.

15.2:2[a) (1/1/77)
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Modeling Errors in the Bending of Plate Structures.

1 I
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n
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P-Mesh

Figure 2. Discretization and schedule of rectangular plate
15.2-3(a) (1/1/77)
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¢l

(££/1/1) (@g-z°s1

Table 1 Central deflection of szmply supported rectangular plates g- 2.
Number
of Concentrated Load at Center Uniformly Distributed Load
Elements :
gfz; Q-mesh P-mesh Q-mesh P-mesh
N
2 21.3344 19,0681 10,9158 10.17408
4 17.7814 17.1537 10.1459 10.0245
8 16.9230 16,6984 10,0776 10.0548
12 16.7212 16.6073 10 1320 10.1230
Exact 16.5 10.125
Solution : :




(7

(£L2/1/1) (@)g-z°s1

Central deflection of clamped rectangular plates

b_,
a

)

Number
of Concentrated Load at Center Uniformly Dastributed Load
Elements
éfg; Q-mesh P-mesh Q-mesh P-mesh
N
2 10.4294 10.8878 3.9168 3.870672
4 8.4193 8.0427 2.7757 2.7453
8 7.6242 7.4392 2.5791 2.5738
12 7.4282 7.3293 2.5603 2.5585
Exact

Solution

7.22

2.54




Deflection Coefficient (c¢ x 103)
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15.2-4 (1/1/77)
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Deflection Coefficient (o x 103)
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15.2-5 (1/1/77)




Deflection Coefficient (o % 103)
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Deflection Coefficient (a x 109)
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15.2-7 (1/1/77)




Deflection Coefficient (o x 103)
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15 2-8 (1/1/77)
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Deflection Coefficient (o x 103)
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Deflection Coefficients (B x 103)
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11.0
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Section 15.4

Modelaing Membrane Plate Usang TRIMG6 Element

In the same figure 2, the cantilever beam 1s discretized using the
linear strain triangular membrane element TRIM6., Discretization and result

of the corresponding displacement 1s shown on page 15.3-3.

The cantilever beam shown on page 15.3-3 (figure 2Z) 1s divaded into
eight equal triangular (TRIM6) elements. The displacement pattern obtained
using this mesh coincides with the exact one. Such high accuracy is
obtainable for cther membrane plate problems using the TRIM6 element in

view of the quadratic displacement polynomial for the element.

15.3-4 (7/1/76)
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Nondimensional Deflection,

Modeling Errors in Membrane Plate Elements
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Figure 2.
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s/L

Deflection of cantilever beam idealized by QDMEM1 and TRIM6 elements.
15 3-3 (7/1/76)



APPENDIX B

Updates to the NASTRAN Users' Manual
for the addition of TRIM6, TRPLT1 and TRSHL elements
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STRUCTURAL ELEMENTS

1.3.5. Plate Elements

NASTRAN 1ncludes two different shapes of plate elements (triangular
and quadrilateral) and two different stress systems (membrane and bending)
which are uncoupled. There are in all a total of thirteen different forms of

plate elements that are defined by comnection cards as follows

1. CTRMEM - triangular element with finite in-plane stiffness and zero

bending stiffness.

2. CTRIM6 - a triangular element with finite in-plane stiffness and zero

bending stiffness.

3. CTRBSC - basic unit from which the bending properties of the other

plate elements are formed.

4  CTRPLT - triangular element with zero in-plane stiffness and finite

bending stiffness.

5. CTRPLT1 - hagher order bending element--a triangular element with

zero i1n-plane stiffness and finite bending stiffness.

6. CTRIAl - triangular element with both in-plane and bending stiffness.
It 1s designed for sandwich plates which can have different materials referenced

for membrane, bending and transverse shear properties

7. CTRIAZ - triangular element with both in-plane and bending stiffness

that assumes a solid homogeneous cross section.

8. CQDMEM - quadrilateral element consisting of four overlapping CTRMEM

elements,
9. CQDMEML - an 1soparametric quadrilateral membrane element.

10 CQDMEMZ - a quadrilateral membrane element consisting of four

nonoverlapping CTRMEM elements.

11. CQDPLT - quadrilateral element with zero in-plane stiffness and finite

bending stiffness

1.3-5 (4/1/73)

£ BLAWK NOT ELMED ¥

PRECELING. PAG



12. CQUAD1 - quadrilateral element with both in-plane and bending stiff-
ness. It is designed for sandwich plates which can have different materzals

referenced for membrane, bending and transverse shear properties.

13. CQUAD2 - quadrilateral element with both in-plane and bending stiff-

ness that assumes a solid homogeneous cross section.

Theoretical aspects of the plate elements are treated in Section 5.8 of the

Theoretical Manual.

In addition, a shallow shell element, CTRSHL 1s also available. The

elements and the coordinate systems are shown in figures 14(a), (b) and (c)

1.3-6 (3/1/76)
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MATERIAL ORIENTATION

(0,c)

G4

G3

(-b,0) G2

(a,0)

Figure 14(a). TRIM6 membrane element in element coordinate system



06

7.5

MATERIAL ORIENTATION
AXIS

Figure 14(b). TRPLT1 triangular bending element geometry.



Figure 14(c)

z(x,y)

TRSHL shell element geometry and
coordinate systems
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Input Data Card  CTRIM6

DescrlEtlon:

of the structural model.

Format and Example:

BULK DATA DECK

Triangular Element Conmection

Defines a linear strain triangular membrane element (TRIM6)

1 2 3 4 5 6 7 3 S5 10
CTRIM6 EID PID Gl G2 G3 G4 G5 Go Al
CTRIMé 220 666 100 110 120 210 220 320 +(C2
+BC TH
+C22 9.0
Field Contents
EID Element identification number (integer > 0).

PID Property 1dentification number (integer > 0).

GI thru Gé6 Grid point identificatzon numbers of connected
points (integers > 0; Gl # G2 # G3 # G4 # G5 # G6).

TH Material property orientation angle in degrees

92

(Real).
for TH.

The sketch below gives sign convention




Remarks:

1.

2.

The grid points must be listed consecutively going around the
perimeter in an anticlockwise direction and starting at a vertex.

Material properties (i1f MAT2) and stresses are given in the
(xm, ym) coordinate system shown in the sketch.

G2, G4, and G6 are assumed to lie at the midpoints of the sides
The locations of these grid points (on GRID Bulk Data cards) are
used only for global coordinate system definition, GPWG (weight
generator module), centrifugal forces, and deformed structure
plotting.

Continuation card must be present.

Element identification numbers must be unique with respect to all
other element identification numbers
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BULK DATA DECK

Input Data Card PTRIM6  Linear Strain Triangular Element Property

Description: Defines the properties of a linear strain triangular membrane
element TRIMG.

Format and Example:

1 2 3 4 5 6 7 8 9
PTRIMG PID MID T1 T3 T5 NSM
PTRIM6 666 999 1.17 2.52 3.84 8.3
Field Contents
PID Property identification number {(integer > 0).
MID Material identification number (integer > 0).
T1l, T3, TS Thickness at the vertices of the element (Real).
NSM Nonstructural mass per unit area (Real).
Remarks:

1. PFor structural problems, the materral may be MATL or MAT2.

2. The thickness varies linearly over the triangle. If T3 or TS
1s specified 0.0 or blank, it will be set equal to TI.

3. All PTRIM6 cards must have unique property identification numbers.

94




BULK DATA DECK

Input Data Card CTRPLT1 Triangular Element Connection

Description Defines a triangular bending element (TRPLT1) of the structural

model.

Format and Example

1 2 3 4 5 6 7 8 9 10
CTRPLT EID PID Gl G2 G3 G4 G5 G6 +abc
CTRPLT 160 20 120 10 30 40 70 110 +ABC
+abc TH
+ABC 16 2
Field Contents
EID Element identification number (integer > 0)

PID Identification number of a PTRPLT property card
(Default 1s EID) (ainteger > 0).

Gl, G2, G3, G4, G5, G6 Grid point identification numbers of connection
points (integer > 0- Gl # G2 # G3 # G4 # G5 # G6).

TH Material property orientation angle in degrees (Real) -

The sketch below gives the sign convention for TH.
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Remarks -

1. Element identification numbers must be unique with respect to all
other element identification numbers.

2. Interior angles must be less than 180°.

3. The grad points must be listed consecutively going around the
perimeter 1n an anticlockwise direction and starting at a vertex.

4. Continuation card must be present.
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Input Data Caxd

Descraption®

element.

Format and Example

PTRPLT1

BULK DATA DECK

Triangular Plate Property

Used to define the bending properties of a triangular plate
Referenced by CTRPLT1 card. No membrane properties are included.

1 2 3 4 5 6 7 8 9 10
PTRPLT1 PID MID1 I1 13 I5 MID2 TS1 TS3 +abc
PTRPLT1 15 25 20 30 40 35 3.0 1.15 +PQR
+abc TS5 NSM Z11 221 Z1i3 23 Z15 Z25
+PQR 1.0 -10 15 -1.5 2.0 -2.0 2.5 -2.5
Field Contents
PID Property identification number (integer > 0).

MID1 Material i1dentafication number for bending (integer > 0)
I1, I3, IS5 Area moment of inertia of the element per unit width at
the vertices 1, 3, 5 of the element (Real > 0.0)
I =.Ei T = E;. I- = EE
1712 3712 °5° 12
where T, , T3, Tg are the thickness of the element
at the vertices 1, 3, 5.
MID2 Material identification number for transverse shear

TS, T83, TS5

NSM

411, 221, 213, Z23,
215, 225

(integer > 0).

Transverse shear thickness (Real > 0 0) at the
vertices 1, 3, 5 of the element.

Nenstructural mass per unizt area (Real)
Fiber distances for stress computation at grid points

Gl, G3, G5, respectively, positive according to the
right-hand sequence defined on the CTRPLT1 card (Real)
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Remarks:

98

SN

1.

2.

All PTRPLT1 cards must have unique property identification numbers.

If TS1 is zero, the element is assumed to be rigid in transverse
shear.

If TS3 or TS5 1s 0.0 or blank, 1t will be set equal to TS1.
If I3 or I5 is 0.0 or blank, it will be set equal to 1l.

The stresses at the centroid will be computed at the top and bottom
fibers.



BULK DATA DECK

Input Data Card CTRSHL Triangular Shell Element Connection

Description: Defines a triangular thin shallow shell element (TRSHL) of
the structural model.

Format and Example

1 2 3 4 5 6 7 8 9 10
CTRSHL EID PID Gl G2 G3 G4 G5 G6 +abc
CTRPLT 160 20 120 10 30 40 70 110 +ABC
+abce TH
+ABC 16.2
Field Contents
EID Element identification number (Integer > 0)

PID Identification number of PTRSHL property card
(Default 1s EID) (Integer > 0)
Gl, G2, G3 Grid point identification numbers of connection
G4, G5, G6 points (Integer > 0: Gl # G2 # G3 # G4 # G5 # G6)
TH Material property orientation angle in degrees (Real) -

The sketch below gives the sign convention for TH.

Remarks

1. Element identification numbers must be unique with respect to all
other element identification numbers

2. Interior angles must be less than 180°.
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3. The grid points must be listed consecutively going around the
perimeter in an anticlockwise direction and starting at a vertex.

4, Continuation card must be present.
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BULK DATA DECK

Input Data Caxrd PTRSHL Triangular Shell Property

Description Used to define the bending properties of a triangular shell
element. Referenced by the CTRSHL card.

Format and Example

1 2 3 4 5 6 7 8 9 10
PTRSHL PID MID1 Tl T3 TS5 MID2 11 I3 +abc
PTRSHL 10 20 3.0 6.0 4.0 30 2.25 18.0 +PQR
+abc 15 | wMIp3| TSI TS3 TS5 NSM 711 721 +def
+PQR 5.33 40 2.5 5.0 3.5 50 1.5 -1.5 +STY
+def Z13 zZ23 Z15 7225 !
+STU 3.0 -3.0 2.0 -2.0
Field Content
PID Property Identification number (Integer > 0),

MID Material identification number for membrane effect

(Integer > 0).

Ti, T3, TS Thickness for membrane action at vertices 1, 3, 5 of
the elements (Real > 0.0),

MID2 Material identification number for bending effects
{Integer > 0).

11, I3, 15 Area moments of inertia of the element at the vertices
1, 3, 5 of the element (Real > 0.0)

MID3 Material identification number for transverse shear
(Integer > 0).

TS1, TS3, TS5 Transverse shear thickness (Real > 0.0) at the vertices
1, 3, 5 of the element.

NSM Non-structural mass per unit area (Rezl).
Z11, Z12, Z13, Fiber distances for stress computation at grad points
223, Z15, Z25 Gl, G3, G5, respectively, positive according to the right-

hand sequence defined on the CTRSHL card (Real > 0.0).
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Remarks:

102

All PTRSHL cards must have unique property identification numbers.
If T3 or T5 equal to 0.0, or blank, they will be set equal to TIl.

If I3 or I5 equal to 0.0, or blank, they will be set equal to Il.

If TS3 or TS5 equal to 0.0, or blank, they will be set equal to TSl.

If TS1 is 0.0, or blank, the element is assumed to be rigid in
transverse shear.

The stresses at the centroid will be computed at the top and bottom
fibers.



APPENDIX C

Updates to the NASTRAN Programmer's Manual
for the addition of TRIM&6, TRPLT1 and TRSHL elements



4.87.21. TRIM6: Linear Strain Triangular Element

4.87.21.1 1Input Data for TRIM6 Element

1. EST entries for TRIM6 are

Symbol Description

EID Element Identification Number
SIL;, SIL,, . . ., SILg Scalar indices of connected grid points
<] Anisotropic material orientation angle
Mat ID Material Identification Number
Ti, T3, TS Thickness of ccrner grid points
u Nonstructural mass per unit area
Nl ) Local coordinate system numbers and
Xl location coordinates in the basic

P 1=1,6
Y1 system for the connected grid
Zl ) points

T01l, T02, TO3, T04, TDS, TO6 Temperaturas at the grid points

2. Coordinate system data

The numbers Nl s X, o, Yl and 2 are used to calculate 3 by 3

i
basic-to-global coordinate transformation matrices Eﬁlj for points

1=1, 2, 3,4, 5 and 6 .

3. Material data

Symbol Description
[G] 3 x 3 stress-strain matrix
p Mass density
o ay, axy Thermel expansion coefficients
TO BE@Eference temperature

v ©
™
EB@’B 105
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g Structural damping coefficient
C Stress limits for tension, compression,

and shear

4.87.21.2 Basic Equations for TRIM6

1. The element coordinate system is defined by the following equations:

X3 - X3
{V13} = Y3 - Y3 (1)
Zg - I3
Xz - X1
{Vis} = Ys - Y3 (2)
s - 27
{Vis}

{i} = -I—{—m- {(3)

{i} x {Vi13}
U3 = Ty T (4)
{73} = {k} x {1} (5)

2. The displacement transformation matrix from basic coordinates to

in-plane coordinates 1s:

=l - [11 . 13] (6)

J1 J2 s
3, The local {element) coordinate system of the element 1s as follows.
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The x-axis is obtained by joining grid points 1 and 3 of the element.

The y-axas 1s the perpendicular from grid point 5 to the x-axis (line

joining grid poants 1 and 3).

Depending upon the location of grad point 5 relative to grid points 1

and 3, 3 cases of triangle orientation are possible: (refer to fig., 4.87.21.1)

Case I  Acute angles at grid points 1 and 3

c = |{2} x {Vi5}] (7
b= {1} » {Vls} (8)
a = I{Vlg}l - b (9)

Coordinates of points are

Xy =-b; X2=a£b, X3 =a, X4=%, X5 =0,
(10)
wo.D
6= "2
c c
Y].'_‘O: Yo=0; y3=20, Y'-}:"z": Ys=c¢, y6='2_ (1]-)
Case II. Obtuse angle at graid point 3
c = {1} x {V15}] (12)
b= {i} « {V;s5} (13)
a=>b - I{VIS}I (14)
Coordinates of points are
Xy = -b , x2=*a2_b; Xg = -a& , xu=—%, Xg =0,
b (15)
st-f
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5(0,¢)

[ —

1(-b,0) 2 3(a,0)

Case I. Acute angles at grid points 1, 3, and 5.

Y

(-b,0) (-a,0) (b,0) (2,0)

Case II. Obtuse angle at grid point 3. Case III. Obtuse angle at grid point 1

Figure 1 Triangular element shapes.
4,87-21.1
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Yi=90, ya

0

y3 =0

Yy =

Case IITI  Obtuse angle at grid point 1

c = [{1} x {vis}!
b= {i} -« {Vy5}
a = [{Vig}| +b

Coordinates of points are

X3 b s Xo

yi =03 y2

[}

a+b

3 3

X3 = a,

X

N0

a

2 >

=c, v6=%5 (16)

(17)
(18)

(19)

b
Xs = 03 xg =

¢
0; y3=0; yy=c2, ys=¢3; Vg =5

4. The matrax |H] relating grid point displacements and the generalized

coordinates (in the equation {u} =

Hy

Wl= |---

where

(1] =

-— -

X1
X2
X3
Xy
X5

Xg

71
Y2
Y3
Yy
7s

¥e

H {a}) is gaven by

X1Y1
X2Y2
X3¥Y3
XYy
X5Y5

XgYs

(20)

(21)
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5. The matrix [B] relating strain vector to the generalized coordinates

(1n the equation {e} = {B] {al) 1s given by

0 1 0 2xy 0 O 0O O 6 0 0

B = |0 06 0o0'0 0o 0o 0 0 1 0 x 2y (22)

4.87.21.3 Staffness Matrix Calculation for TRIM6 (Subroutine KTRM6S and KTRM6D)

The polynomial expressions for variation of uw , v and t within the

element are

12 m, n,
u = a x"~ vy (23)
; 1
i=1
12 P, 4
v = b. x "y & (24)
1
i=1
3 T, sS4
t = 52& c; Xy (25)

The values of m_ , n_, P, > 9 » T, 5> S are

1 1 i 1
m=0; mp=1, my3=0; m=2; mg=1, mg=20,
’ (26)
my to myo =0
ny=0; np=0; ng=1; n,=03; ng=1, ng=2,
(27)
Ny to n12 =0
p1 to pg =0, pr=0, pg=1, pg=0, pig=2,
(28)

Piz =1, p1z=20
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q:1 to qg =03 q7=0, 9qg=03; qg=13 qi0=0,
(29)
qi1 =1, qi2 =2
Iry = 0 o = 1, Tz = 0 (30)
s;=03; s, =0, s3=1 (31)
az to a;p = 0 ; bl to bs =0 (32)

The coefficients a; to ag; and b; to by, are generalized
coordinates of the element and can be evaluated once the displacement vector

1s known.

The coefficients c¢; , c¢p and cy can be evaluated from the specified
thicknesses t; , tz and tg of the 3 corner grad points and the geometric

dimensions a , b and c¢ of the element

tia + tzb

T TEEE (33)
t3 - t1

C2 = @ E By (34)
1

¢y =< (ts-cy) (35)

The elements of the symmetric portion of the stress-strain matrix
[Ge] are denoted by Gyy; , Gi2 , Gy3 , Goy , Gpg , Gzg .

A formula for the integral of the type men taken over the area of

the element 1s

+1} m'n!
(m+n + 2)!

Jf ™" ax ay = Fm,n) = <™ @™ - o)™ (36)
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The equatzon used in the stiffness matrix generation in generalized

coordinates 1is

3
(klj)gen = égi Cx [GllmlmJ F (m1 + Hﬁ Ty - 2, n o+ nJ + sk)

* G22q,q, F (p; * Py ¥ Tys 4y FQy toSy - 2)

4

Ggg{nlnj F (ml + mJ * Ty, Nt nJ * 5 - 2)

+Plij(P1+pJ+rk"23 C{l“'qJ"‘Sk)}

+

(G33nipJ + Glzmiqj) F (mi + pJ T - 1, n, + qj * s - 1)

+ (G33nJPi * Glzqui) F (mj * pi * rk -1, n_ + ql + sk - 1)

! (37)
G13{(m5n1 + minJJ Fo(m + m; 4T - 1, n + o+ sy - 1)

+

+ mjp1 F (mJ +p, otry - 2, nj +q + sk)

+ mp, F (m + Py * Ty - 2, n, + q, * 5 4

+

Gzaitpiqj + qul) F (p + A A 1)
+ nlqj F (mi 3 PJ * 1y, n 4 qJ * 5 - 2)

+ nqu F (mj * P, T, rJ +q, * s - 2)1]
The stiffness matrix in global coordinates is
T -1 =1
[ - &) B 0097 e, [e] O] [T (58)

For use in the overall structural matrix, the 3 x 3 klJ partition
of the stiffness matrix {k] corresponding to grid point 1 and connection

point 3 1is expanded to 6 x 6 to form

S g (39)
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4.87.21.4 Mass Matrix Calculation for the TRIM6 Element {calculated in the
stiffness subroutine KTRM6S and KTRM6D)

The mass 1s generated by the following algorithm

X3 - X1
{Vi3} = Y3 - Y3 (40)
Z3 - 43
X5 - X1
{Vls} = Y5 - Yl (413
Zs - Iy
The area 1s
A =%— |{V13} % {V}_s}] (42)
Volume
V = ¢; F(0,0) + ¢y F(1,0) + cg F(0,1) (43)

where c¢c3 , ¢2 , €3 [see eq. (33), (34), (35]] are the constants in the
thickness equation of the element [eq. (25)] and zero factorial has a value

of 1. The mass at each point is

m = %-(pV + Ap) (44)

which 1s é‘the total mass.

For each point the diagonal mass matrix in element coordinate system

at all the grad points is
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[mj_]= 0 1=1.’2:°°‘:6

so that [Mee] the element mass matrix has Emi] matrices arranged

diagonally.

The mass matrix in global coordinate system 1is obtained as

b, 1= [E] O [, ] O] [E]°

4.87.21.5 Element Load Calculations for TRIM6 (Subroutine TLADM6)

The temperature within the element is assumed to vary bilinearly

3 ri S,
T = 2: d.x ~y
1=1
with
ry=0; r2=1, 73=0
and

sy =0, s,=0 and s3=1

(45)

(46)

(47)

(48)

(49)

The coefficients d; , d, and d3 are evaluated from the specified

temperatures Tg1 , Tg3 » Tgg at the three corner grid points (obtained

from the GPTT data block) and the reference temperature T, of the element
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Toia + Tosb

e I (50}
Tos - Tox

2 = mT57 (513

dz = %- {Tos - d1] (52)

The constant d; 1s modified by the reference temperature, T, ,

d; = d; - Tg . The ith element of the generalized load vector {Pgen} is

3 3
_ 1
{Pl}gen = E;ﬁ ég% ¢y dy (61 m; F(m +x + t, -1, n 45 %)

1
* G22 ql F (Pi + rk + tg: ql + Sk + ug = 1)

. (53)
+ G33 {nl F (m + Tt ty, ot s tu - 1)
TR F Ryttt oL q) sy s ug)}]
where
1
G11 = Gi1 a3 + G2 a3 * Gy3 033
1
G2z = Gi12 @y + Gpy 0p + Goz w33
1
G3gz = Gz o1 + Gp3 wp + G33 a1p
The generalized equivalent load vector {Pgen} 1s transformed to
load vector {Pe} in local element coordinates and to load vector {Pg}
in global grid-point coordinates by the following transformations
P r=[E1T 3 (54)
e gen
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.} = [£] []" {p_} (55)

{Pg} 1s a 18 x 1 vector.

The forces are placed in the PG load vector data block.

4.87.2)1.6 Element Stress Calculations for TRIM6 Element (Subroutine STRM61
and STRM62 of module SDR2)

-

1. The relationship between strain and generalized coefficients is

{e} = [B] {a} (56)
where
¢ 1 0 2x y O O ¢ 0 O 0 ©
fBl= 0 0o o 0 0o 0o o0 0o 1 0 x 2y (57)
0 0 1 0 x 2y 0 1 0 2xy O
The transformation from displacements to stress is-
- T
[sd = [6.] (6] ][] [r] (58)
The temperature to stress relation 1S
{s.} = -[6 ] fa} (59)
where
1
{a} =a <1 (60)
0
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for isotropic materials. {a} 1s input by the user for anisotropic materials

and corrected for material angle by
o= [V] (o} (61)

2. Calculations performed by STRM62 (Phase 2 calculations)

The equation for stress 1is

o

xX

. 6

y = i};_‘,l [51] fud| + 48} (T - 1) (62)
cxy

where TJ is the loading temperature for the point where stress is evaluated
(3 corner grid points and centroid) and is obtained from the GPTT data block.
The temperature of the centroid is taken as the average of the grid point
temperatures.

The principal stresses are

g + Q@ g - g

oy = (-.-.}_c_z..._l.) + \/(_}_{_._2_.__3’) + ciy (63)
o+ O o -0 2 )

Gp = ( 5 Y) - (_____2__Y) + Q'Xy (64)

2a
@ = 5 arctan ( — ) in degrees {65)
X Y
where © 1s limited to: -90° < @ < 90°
The maximum shear 1is
Ux - g 2 9
T = ("—2-‘-—X> + 0 [:66)
Xy
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The stresses are output for 4 points for every element. 3 cormer grid

points and the centroad.

i18



4,87.22., TRPLT1 Higher Order Plate-bending Element

4.87.22,1 Input Data for TRPLTl Element

1 EST entries for TRIBI are.

Symbol Description

EID Element Identification Number

SILiy, SILs, . . ., SILg Scalar indices of connected grid points

C Anisotropic material orientation angle
Mat IDb Materzal Identifaication Number for bending
Mat IDjg Material Identification Number for shear
11, 13, 15 Area moment of inertia per unit width at corner
t3 t3 3
grid points 1I1 = 17 I3 = 1z ° I5 = 12
TS1, TS3, TS5 Effective thickness for transverse shear
at corner grid points
B Nonstructural mass per unit area
Zi1, Z21, Z13, Z23, Distances Z1 and 22 for stress
215, Z25 calculation at 3 corner points
N1 ) Local coordinate system numbers
Xl and location coordinates in the
y 1=1,6
Yl basic system for the connected
Zl } grid points
TEMP Element temperature

2. Coordinate system data

The numbers Ni ) X1 , and Zl are used to calculate the 3 by 3
basic-to-global coordinate transformation matrices [le for points
1=1, 2, 3, 4, 5, 6, (via subroutines TRANSD or TRANSS).
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3. Material data

For mat. } TO

ID g

For mat. | G
[

IDS

Symbol

Description

3 x 3 stress-strain matrix

Mass density

Thermal expansion coefficrents
Reference temperature

Structural damping coefficient

Stress limits for tension, compression
and shear

Shear coefficient

4,87.22.2 Basic Equation for TRPLT1

1. The element toordinate system is defined by the following equations-

120

1l

(X3 - X7 )
{Y; -1, §
(23 - Zp
(X5 - X1 )
QY5 - Y1 p
\Zg - Z

%‘|{V13} x {Vy5}]

{Vy3}

~ TIV1sY]

(1

(2)

(3)

(4)



{1} x {Vi3}
Rl [V R >)

{k

{7} = {k} x {i} (6)

2, The displacement transformation matrix from basic coordinates to

in-plane coordinates 1s:

EF= o o o i; 1, ig %)

3. The local (element) coordinate system of the element is as follows
The x-axis 1s obtained by joining grid points 1 and 3 of the element.

The y-axis 1s the perpendicular from grid point 5 to the x-axis (line
joining grad points 1 and 3).

Depending upon the location of grid point 5 relative to grid points 1

and 3, three cases of triangle orientation are possible: (refer to fig. 4.87.21.1)

Case I  Acute angles at grid points 1 and 3.

¢ = {1} x {V5}] (8)
b= {1} - {Vls} )
a = [{Vig} -b (10)

Coordinates of points are

a-b a
X3 =-b, xp= 73 X3=a, X=3%, X§= g,
(11)
. _ b
XB——§
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Y1=0;Y2=0;Y3=0;Y1;=%;Y5=C;Ys=§' (12)
Case II: Obtuse angle at grid point 3:
c = [{i} x {Vys}] (13)
b= {1} « {V;5} (14)
a=b- [{Vy3} (15)
Coordinates of points are

x1=-b; xp= -5 5y x3=0, x4=- %', X5 =0,

(16}

. c c
y1=0; y2=0; y3=203 yw=%5, ¥s=¢; Y =73 (7
Case III- Obtuse angle at grid poant 1.
c = I{i]‘ * {V15}] (18)
b= {i} + {Vi5} (19)
a = |{Vyz}| + b (20)
Coordinates of points are:
Xl'—'b, X2=a;b, Xz = a , XL}—;-', X5=0,
(21)
xg = 2
€~ 2
o4 c
Y1 =03 y2=0, yz3 =0 ; yli-:j: Ys = ¢, YS=§- (22)
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The matrix [H] (for plates infanitely rigid in transverse shear)
relating grid point displacements and the generalized coordinates (in the
equation {u} = [H] {a}) 1s given by the matrix [H] , on the following
page

5. The matrix [32] relating curvatures (for plates infinitely
rigad 1n transverse shear) to the generalized coordinates in the equation
{x;1} = [?2] {a}) 1s given by

0002006x2y 0 012x2bxy 2y2 0 0 20x3 6xy? 2y3 0 0
[B2]={000002 0 G2xby 0 0 2x2bxy 12y2 0 2x3 6x2y 12xy? 20y3
000020 04x4y 0 O 6x2 8xy 6y2 0 0 12x%y 12xy? 8y3 0
(24)

6. The matrix [Bl] relating transverse shear strains {y} to the
generalized coordinates (in the equation {y} = [Blj {a}) 15 a 2 x 20 matrix

whose nonzero elements are as follows:

B, (1,7) = 6Aq, (25a)
B,(1,8) = 244, (25b)
B1(1,9) = 2A5, (25¢)
By(1,10) = 6A;g (254d)
By(1,11) = 24A,;x (25ei
B1(1,12) = 6(Ag;x + Apqy) (25£)
By (1,13) = 4(Ag,x + Ay y) (25g)
B, (1,14} = 6(A15x + Aszy) {25h)
B, (1,15) = 24A,.y (251)
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By (1,16)

B (1,17)

~120(A%1 + AygAp; - 0.5A;,x2)

=12(Ag1A3, + Ajghay + Agghgy + Aggfgs + AjjA g

+ AjgApy - 0.5A55x2 - Agxy - 0.54,,y2)

B1(1,18)

= =12(A137A15 + Ayghos + Agghgy + Aggfig, + A A,

+ A15A33 - 0.5A15X2 - Aszxy - 0.5A31y2)

By (1,19)

-0

By (1,20)

B1(2,7)

B1(2,8)

B1(2,9)

Bl (2310)

B1 (2,11}

B1(2,12)

B1(2,13)

By (2,14)

By (2,15)

By (2,16)

= -24(A15Agg + AgsAzg + Ajghsgn + AjgAgy - Ay

.5A3,y2)

= -120(AysArg + AysAgs - 0.5A;5y2)
= 6Az)

= 2A33

= 2A3y

= 6Azs

= 24A,;x

= 6(Ag3x + Az1y)

= 4(AguX + AzzYy)

= 6(A25X + Agyy)

= 24hp5y

= -120(A11A21 + Ag3Agy ~ 0.5Ap:x?)

(2533

(25%)

(251)

(25m)

(25n)

(250)

(25p)

(25q)

(25r)

(25s)

(25t)

(25u)

(25v)

(25w)

(25x)
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where

126

B3(2,17) = ~«12(Ap1A3n + AggAgy + Ayghay + AyiAsg + ApghAy;

B1(2,18) = -12(Az1A15 + Ap3fAps + AygAgo + AyjAgy + Ajghg;

B1(2,19) = -24(A15A40 + ApsAyy + ApgAgs + AgsAgy -~ Agsxy

2
B1(2,20) = -120(A15825 + AZg - 0.5A,5y2)

+ AgsAny - 0.5Ag4x% ~ Agsxy - 0.5A;1y?)

+ AosAgy - 0.5A25x2 - Aguxy - 0.5A33}"2)

- 0.5A34y%)

-(J11D3p +

~(J11Dqy3 +

[}

-(J11D33 +

= -(J3iDp3 +

= -(J1iP33 *+

1§

~{(J12D1; +

-(J12D33 +

-(Ji1oD13 +

[}

-(J1oDq13 +

3

J12D13)

J12D023)

J12D33)

J12D15)

J12D32)

J12D53)

J22D13)

Ja2sD33)

J 2290 33}

Jo2D19)

(25y)

(25z2)

(25aa)

{25bb)

{(25¢cc)

{(continued)



Aps = ~(J12D23 + J22D22)
Agg = =(Jy1oD33 + JooDo3)
3

Agy = Ay + 2433
A3z = A2 + 2A1g
Azg = Ay + ZAz3
Agy = Apgp + 2Ang
Ags = Agz + A3

Age = Agy *+ Agg ; (25cc)

{concluded)
Ag7 = Ags + Az
Agg = A1z * Ay

Agg = Ajp + Alp

Ayg = Ap3z + Apy

Ay = Agpy + Agg )

7. The matrax [B3] relating {ys;} , the contribution of transverse shear
to the vector of curvatures, to the generalized coordimates (in the equation
{x2} = [Bs] {a}) is given by

B3(l,11) = -24Aq, (262)
B3(1,12) = -6A3 (26b)
B3(1,13) = -4Ag, (26¢)
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B3(1,14)

B3(1,16)

By (1,17)

B3(1,18)

B3(1,19)

B3(2,12)

B3(2,13)

B3(2,14)

B3(2,15)

B3(2,17)

B3(2,18)

B3 (2,19)

B3 (2,20)

B3(3,11)

B3 (3,12)

B3(3,13)

B3(3,14)

B3 (3,15)

-6A15

-120A3;x
-12(Agox + Agyy)
-12{A1sx + Agy)
-24A15Y

-6A0)

-4A33

-6Agy

-24A55

~12{(Ag3x + AgY)

=12(A3nx + Aazy)

=24 (A25X + Agyy)
~120A55y

2445,

-6(Ay; + Azz)
-4(A33 + Agy)
~6(A3; *+ Ayg)

-24A1¢

(26d)

{26e)

(261)

(26g)

(26h)

{261)

(263)

(26k)

(261)

(26m)

(26n)

(260)

(26p)

(26q)

(261)

(26s)

(26t)

(26u)



B3(3,16) = -120A5;x (26v)
B3(3,17) = -12 [(Ag, *+ Asp)x + (Agz + A1)y ] (26w)
B3(3,18) = -12 [(Aps + Aga)x + (Agy + Azq)Y ] (26x)
B3(3,19) = -24 [Ajsx + (Azp + Aps)Y] (26y)
B3(3,20) = -120A;gy (262)

where Ay1 , Ain , . . . , Agy are as given in equations (25cc).

8. For plates with transverse shear flexibilaty the modified EH]
matrix, [Hf] » 15 given by subtracting the matrix [Blj for each of the six
grid points from the respective rows of o« and B of the grid points in
the [H] matrix.

9. For plates infinitely rigid in transverse shear,

[s] =[] @7)

10. The two constraint equations involving the coefficeints ajq ,
217 , 218 , @ig , and a,g of the quantic polynomial for transverse
displacement so as to insure cubic edge rotation on the sloping edges of the
triangular element are now entered as the 19th and Z0th rows of [Hﬁ] s
i.e., the 19th and 20th rows are-

{o 0000000000000 0 Sb*c (3b2c3-2b%c) (2bck-3b3¢2) (e5-4b2¢3) -SbckJ

000000000000 000 S5a%c (3a2c3-2a%c) (-2act+3a3c2) (c¢9-4a2¢3) Sack

This 1s now added as the 19th and 20th row of the [Hf] matrix to form
[H'ﬂ matrix. [H"] 1s a 20 x 20 square matrix that is nonsingular !

1 A numerical experiment to verify that Bﬂﬂ 15 nonsingular for all practical
element sizes 1s described in "New Triangular and Quadrilateral Plate-bending
Finite Elements" by R. Narayanaswami, NASA TN D-7407, Apr 74.
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i1, The [H'a matrix is inverted. The first 18 columns of the
[H"]—l matrix is denoted by the matrix [H"'] (Szze 20 x 18), i.e., -

[H"‘_-_l = The first 18 columns of [H" -1 (28)

4,87.22.3 Stiffness Matrix Calculation for TRPLT1 (Subroutines KTRPLS and KTRPLD)

The polynomial expressions, for variation of w and t within the

elenent, are

20 111i n1

W = ax 'y (29)
F. 1
i=1
3 T. s1

t = c x Ly (30)
i=1

The values of mo, M, Py and gq. are

my =33 mg=2; mg=1; my=20; my; =4 ;

(31)
Mp =33 Mg=2, my=1; mg=0, mg=5,
my7z = 3, Mg = 2 ;3 Mjg = 1l Maq = 0
n1=0,n2=0,n3-1,m*=0,n5—l,n6=2,
iz = 0 s Hg = 1 5 QNg = 2 s+ N = 3 3 3 < 0,
(32)
Nys = 1; i3 = 2, Ny = 33 N5 = 4, Nig = 0 ;
N7 = 2 ; jg = 3, Nig = 4 ; Nog = 5
r17=0; ro=1, T3=0 (33)
s=03 s5=0; s3=1 (34)
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The coefficients aj; to asp are generalized coordinates of the

element and can be evaluated once the displacement vector is known.

The coefficients ¢; , ¢ , and cz can be evaluated from the

specified thicknesses t; , tz , and ts of the 3 corner grid points and

the geometric dimensions of the element

_ tia + 't3b

LT TEEE) (35)
_ta- %

27 @) (36)
_1

€3 = < (ts - c1) (37)

where t; , tz , ts are evaluated from the values I; , I3 and Ig
respectively.

The elements of the symmetric portion of the stress-strain matrix
[he] are denoted by Gi1 , Giz2 , Gi3 , 6oz , Gpz , and Gaz .

A formula for the integrdl of the type xmyn taken over the area of
the element 13

S & ey = F @) = MM o™l B (36)

The equation used i1s the stiffness matrix generation in generalized

coordinates for plates infinitely rigid in transverse shear 1is given by

1 3. 3 3
(k..) = e ¢, ¢ ¢
1)°gen 12 k§;1 kggl kggl k; ko kg
1
[Gllmlmj - D -1 Fm +m o+ rx tr -4
(39)

n_ o+ n-_I + skl + sk2 + Skg) + Gzznlnj(nl - 1)(11J - 1) F(ml + mJ

+ rkl + rk2 + rks’ n o+ nJ + sk1 + sk2 * sk3 - 4) (continued)
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+

(4G33mlm.jninJ + Glz{man(mi - I}an - 1) + mjni(HB - 1)

(n1 -1} ) FOmi + mJ + rkl + rk2 + rk3 - 2, n, * nJ + skl
+ s + s - 2) + 2G;q{m.n.n.(m, - 1} + m.n.m.{m. - 1 F(m 39
k2 k3 ) 18 +J J( + 12 J( J J1EC - (conclédeg)
* mj + rkl + rk2 + rk3 - 3, n, *+ nj + skl + sk2 * Sk3 - 1)

+

2G23{mJn.1n.J(ni - 1) + mininj(nJ - 1)} F(m1 + HB + rkl + rk2

+ T -1, n, +n, + s + 5 + s -3
SRR R T TR )

For plates with transverse shear flexibility, the expression for
generalized stiffness matrix consists not only of the closed form expression
but four addational integrals, given below, that are evaluated using numerical

integration, 1.e.,

[Kpen 1= [Kpep dea. 39 + [fT8,07 [0] [Bs] ax ay

closed form

+ff Bal' [ B2] ax a4y +ff[Bs:lT D] [Bs] axday (40)
+ ff B [6.] (1] ax ay

[ﬁ] matrix is obtained from the stress-strain matrix [?e] as

[x]

(41}

Tr_+r +Tk S +S.+Sk)

. 3 03 3 LT X
_2[61(2:_: 5;—: ;1 ©%% * y

1 o0
G t* (42)
0 1

where t* 1s the effective thickness for shear at the integration point and

[c, ]

1s evaluated from the user specified values TS1, TS3, and TS5. The
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numerical integration formulae used are the seven-point integration

scheme listed in Zienkiewicz! and are given below.

For a triangle, the integrals of the form

1-L 7

1 ,
s S b aL L, - 3w Catata

where the points (L;, L,, L3} and the weighting factors are as follows

Point Triangular Coordinates Weight, 2wk
Ly, Lo, Lj
1 1/3, 1/3, 1/3 0.225
b 2 a; By By
q 3 Bi oy By 0.13239415
4 B1 B1 o
5 Gy Bs B
6 Bo oap Bs 0.12593928
7 Bo B2 @y
with
a; = 0.05971588 By = 0.47014206
oo = 0.79742695 Ba = 0.101286505

The stiffness matrix in global coordinates is

(61 = 16T 617 [, B [ BT 49

1 0. C. Zienkiewicz, "Finite Element Method on Engineering Science,’
New York, London  McGraw-Hill, 1971.
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4.87.22.4 Mass Matrix Calculation for TRPLT! (Calculated in Stiffness
Subroutines KTRPLS and XTRPLD)

Two different mass matrices are used: the lumped mass and the
consistent mass. The lumped mass matrix 1s calculated in the same manner
as for TRIM6:

m =

| =

(eV + An) 44

where

V, the volume of the element = c1F(0,0) + co,F(1,0}
(45)
+ c3F (0:1)

For each point, the diagonal mass matrix in element coordinates at

all the grid points 1s

[mi]= 0 0 i=1,2,...,6 (46)

0

so that [Me] the element mass matrax has [mi] matrices arranged

diagonally.

The mass matrix in the global coordinate system is obtained as
[, 1= [E] B° Do, 1 (2] [ETF )

If the parameter COUPMASS 1s set by the user, the consistent mass matrix

will be formed. The jth element of the 1th row of generalized mass matrix
1s given by
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3 m M+, N 4R, +S
[Ml] =pff2 ckxljkyljkdxd}'
J gen =1
_+T +n (48)
+ uJil'x ] y o) ax dy
3

=p ggi {ck F(m% + na + Ty, ¥ nJ + sk)}

(49)

+ F(ml + mJ, n o+ nJ)

The mass matrix in global coordinates 1s
b =[] [" [ 7 Do ] o] [ [ED (50)

4.87.22.5 Structural Damping Matrices for the TRPLT1 Element

The structural damping matrices are
LA g
[, 1= 5, [ (51)

where 8e is the structural damping coefficient for the bending material

referenced.

4.87 22.6 Stress and Element Force Calculations for the TRPLT]1 Element
(Subroutines STRP11 and STRP12Z of Modules SDRZ)

1. STRP11 1s used to calculate the phase 1 stress-displacement

relations.

Frequent reference will be made to the equations from sections 4.87 22.2
and 4 87.22.3

The following data are calculated

1. [ﬂ"'] - 20 x 18 Matrix relating generalized coordinates to grid
point displacements.
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2. [Bz] - 3 x 20 Matrix relating bending curvatures and generalized

coordinates.

3. [Bg:l— 2 x 20 Matraix relating curvature contribution of transverse

shear strains and generalized coordinates
4, [E] - element to basic coordinate transformation.

5. [b] - 3 x 3 Matrix of elastic coefficients relating bending moments

and curvatures,

6. [?s] - 2 x 2 Matrix relating transverse shear forces and shear

strains,

7. [Ti] -i=1,2, ..., 6 -Global to basic transformations.

The following calculations are performed.
(s 1= 7 [=] (] (52)

*
[?M:] is a 3 x 18 matrax; this is split into six 3 x 3 matrax partitions

as follows:

b

x " | S
[SM]= [le: SMZ: ... § SMS] (53

Each of the six matrix partitions is multiplied as follows:
[SMJ = [S;l][E]T .1 1=1,2,...,6 (54)
[seF [6, 1] ] (59

*
ISG ] 1s a 2 x 18 matrix, this 1s split into sax 2 x 3 matrix partitions as

follows:
* * I * [ l %
[sG]= [SGI; S, : o SGG] (56)

136



Each of the six matrix partitions is multiplied as follows:
* T
[SGI] = [SGJ [E] [Tl:l 1=1,2,...,6 (57)

The 5 x 6 matrax [Si:] 1s obtained as

S

[51]= S—l i=1,2,...,6 (58)

G
1

2. Phase 2

(a) The vector of forces is computed as

(M)
M
Y 6
3 MxyL = (1231 [s. ] {ul})- .} (59)
v
X
\ Yy

where {Mt} 1s the thermal moment vector If the thermal gradient is
specified,

M} = -[Ge]{ae}ll’['; (60)

where I1 1s the moment of inertia of the ecross section and Ti is the

thermal gradient at vertex 1 of the element.

- The stresses and forces are evaluated at the vertices of the element,

in addaition, the stresses are also evaluated at the centroid. The simplification
1s made that the thermal moment vector at the centroid 1s the average of that

at the vertices.
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(b) With no given temperatures at the stress points, the stresses are

then calculated from the equations

»

Mz
% = T
Mx R My R Mﬁy and I for the
appropriate points (vertices or centroid);
G = Mzz L (61) z values for the corner grid points are
y I as those given in the PTRPLT1 card and for
the centroid, the 2z values are the top
c = Mxyz and bottom fibre distances.
xy 1 )

If mean temperature T0 and the grad:zent T' are speczfied at the

three vertices,

( \ [/ ]

g M

X. X

1 Z

l J—

4oy1 = - Mg ol « ekt - 21y -D [B] e} 2=1,2  (62)
G M

\xle [\ XY ]

where T 1s the average temperature of the element.

The principal stresses and angles are calculated using the same formula
as for the membrazne element TRIM6 (section 4.87.21 6).

4.87.22.7 Thermal Load Calculations for the Bending Elements (Subroutine
TLODT1, TLODTZ and TLODT3 of Module SSGl)

The variation over the surface of the element of the mean temperature,
T0 , and the thermal gradient at a cross section, T' , is assumed as a

bilinear polynomial

3 P, q
Ty = 3 d xty? (63)
1=1 1

138



T = Z d: x 'y * (64)

so that the temperature at any point (x, vy, z) 1s T = 'I'0 + T

The constants d1 and di are evaluated from the values at the

vertices and the reference temperature T0 of the element

Toz1a + Tosb Toz - Tox

_ . _ . _ 1 (66)
dl_W-TO’ dz-—(-é—;-gy—, dS—E[TOS'dIJ
1 1 1 1
Tia + T3b T3 - T3
1 1 RS S T Y B |
dy = (a + b) > d2 = (@ + b) ’ d3y = c ETS - dl] (67)

it 1s convenient to define the elements of [Ge]{ae} as

Gi11 = Glldel + Glzuez + G13ae3 (68)
'

= 69

G22 = G1ae,, + Gap0 + Gasa,, (69)
!

Gz3 = Glgael + ngaes + Ggades (70)

The thermal load vector in generalized coordinates, {P;:ren} , Wwill be
evaluated in two stages, viz., the closed form expression {Pgen}l , due to
the vector of curvatures in the absence of transverse shear and the
numerically integrated expression {Pt }> due to the contribution of

gen

transverse shear to the vector of curvatures. The 1th element of {Pzen}l

135 given by

3 3 3
t 1
(e, h] = = L X L Cllcizclsd; [Ghmi (m - 1) Fm +

1 13=1 10=1 1g=1 j=1
, (71)
+ :c'l2 + rl3 + pJ - 2, n,o+ s11 + 512 + 513 + qj) + Gz_g_ni(n:L - 1) F(ml
+ -
1‘11 + rlz + r13 + pJ, no+ si1 + ::‘.i2 + Sla + qJ 2) {continued)
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+ Gé3 m.n, F(m:L +r

+* + + 71, - +
1 rk2 rk3 pj 1, no+s +S

1 12 (71)

+£5 +qg. -1 {concluded)
2y 9 - D]

The load vector {P;en}z 1s evaluated using numerical integration of

the following expression.

f b= S Bed" [6,] o} TR ax gy (72)

gen

The generalized thermal load vector is

T

{Pg

_ ¢t t
en} = {Pgen}1 + {Pgen}z (73)

The thermal load vector in global coordinates is
ty _ T runr1T (ot
{P°1, E] ] [H {Poen? (74)

The forces are placed in the PG load vector data block.
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4,87.23.

TRSHL. Shallow Shell Triangular Element

4.87.23.1 Input Data for TRSHL Element

1.

EST entries for TRSHL are

Symbol

EID
SIL1, .
0

Mat 1D
m

. SIL6

Ty, T3, Ts

Mat IDb

Il: I3, IS

Mat ID
S

TS1, TS3,

u

TS5

711, Z21, Z13, 723

715,
N b

1

X

S S
Y

1

Z

1
TE1, TE2,

Z25

TE6

DescriEtlon

Element Identification Number

Scalar indices of connected grid points
Anisotropic material orientation angle
Material-Identification Number for membrane
behavior

Membrane thickness at corner graid points
Material-Identification Number for bending
Area moments of inertia at corner grid points
Material-Identification Number for transverse
shear

Thickness for transverse shear at corner
grid points

Nonstructural mass per unit area

Distances Z1 and Z2 for stress
calculations at three corner grid points
Local coordinate system numbers

and location of coordinates in the

basic system for the connected grid

points

Element temperature at the six grid points
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2. Coordinate system data

The numbers N1 s Xi s, and Zl are used to calculate the 3 by 3
basic-to-global coordinate transformation matrices T:L for points
1=1, 2, 3, 4, 5, 6, (via subroutines TRANSD or TRANSS)-

3. Material data

Symbol Description
[c] 3 x 3 stress=strain matrix
p Mass density
For mat.1 ¢ ay; axy Thermal expansion coefficients
IDm TO Reference temperature
ge Structural damping coefficient
{05 O_s O Stress limits for tension, compression and shear
For mat. { D 3 x 3 bending stress-strain matrix
IDb
For mat. Gs Shear coefficient
o |

S

4,87,23.2 Basic Equation for TRSHL

The calculations for the TRSHL element are very similar to those of TRIM6
and TRPLT1 (sections 4.87.21.2 and 4.87.22.2 respectively) that only the essential

details are given here.

The displacement transformation matrix from basic coordinates to in-plane

coordinates 1is

iy 1 13 O 0 0

ji 32 33 0O 0O O
E]¥=1xi ko k3 0 o0 0 @)
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where 1, 3J and k are as given by equations (4), (5) and (6) of section

4,87.22.2. No transverse shear effects are considered for the TRSHL element.
The matrix [H] relating grid point displacements and the generalized

u

coordinates (in the equation {v} = [H] {a} ) 1s similar to that for TRIM6
w

and TRPLT1. The inverse matrix relating generalized coordinates to the grid-

point displacement vector 1s a 32 x 30 matrix and 1s given by

at | i ]
e |0
e ] - -
. | Ht |
(u] = | x| (2)
AU PERSENNE D
| | HM
: : 20%x18

where H; 1s a 6 x 6 matrix given in equaticn (21), section 4 87.21.2 and

H™ 15 a 20 x 18 matrix given in equation (28) of section 4.87 22 2.

4.87.23.3 Staffness Matrix Calculation for TRSHL (Subroutine KTSHLS and KTSHLD)

The polynomial expressions for variation of u, Vv , w and thickness ¢t

within the element are

32 m. n,
u=s ) a x'y (3)
=1
32 P. q
v= 3. b xty? 4
1
1=1
32 Vv 5
W o= ¢ X : y 1 (5)
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t = Z d xlyl (6)
m o1 1
3 ' t; ui
t, = Z dlx y
1=1
!
The values of L ni » Pys 4y s vV, 5 S5 ti s Uy t, and
u, are
i
mi(l =1,32): 0, 1, 0, 2, 1, 0, 26%0
ni(i =1,32): 0, 0, 1, 0, 1, 2, 26*0
pl(i =1,32): 6%0, 0, 1, 0, 2, 1, O, 20*%0
qi(l =1,32): 6*0, 0, 0, 1, 0, 1, 2, 20%0
v (1 =1,32): 12%*0, 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 4, %
v 3,2,1,0,5,3,2,1,0
Si(1 =1,32): 12*0, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, O,
1, 2, 3,4, 0, 2, 3, 4, 5
t.(x=1,3): 0,1, 0; t':0, 1, 0, s_:0, 0, 1; s.-0, 0,1
i 1 1 i

The coefficients a b1 and c, are undetermined parameters such that
a = 0 i=7to 32
bl =0 1=1to 6 and 13 to 32 {(8)
c. =0 1 =1 to 12

1
ai, 1 =1 to 6; bl, 1 =7 to 12, and cl, 1 =13 to 32 can be determined once

the element displacement vector is known.
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The coefficients d1 and dl , i=1to 3 are evaluated from the
user specified values of the membrane thickness and the area moments of inertia,

respectively, by equations similar to those for TRIM6 and TRPLT1 elements.

The equation used in the stiffness matrix generation in generalized
coordinates is (following the procedure outlined in sections 5.8.6 and
5.8.7), the jth column of the 1th row of the generalized stiffness matrix 'is
obtained as

3

= -2

K3 ééi [Gll(pl m, dy F(m, + bt 2,04y
- hy m. dk F(ml + rj Ly o- 1, n, + sJ + uk)

- hy mJ dk F(mJ trow tk -1, nJ AT uk)

2
+ hy dk F(rl + rJ + tk’ s; ¢+ sJ + “k?)

+ Gzz(ql qj d}\ F(pi + pj + tk’ q, * qJ tuy - 2)

- hg q; clk F(p1 + rJ . gt sj Uy - 1)

- hg qJ dk F(r1 +p o+ t,, s, + q3 +u, - 1)

1 k? 71 k

+ hé d; F(rl + r YL, s+ 5 + uk))

+ G33(?1 nJ dk F(ml + mJ + tk’ n1 + nj + uk - 2) ®
+ny pj dk F[m1 + P +t - 1,0 + q, - 1)
- hg n, dk F(m1 + rJ T, n tso+u - 1)
* P, nj dk F(p1 + Hﬁ Yy - 1, q; * n3 - 1)
*P; Py d, F(p, + Py * Y - 2, 95 * q, *+ u, ]
- hg 1 dk F(pl + rJ * tk -1, q, + sJ + uk)
- hg nJ dk F(rl + mJ + tk’ s, ¢+ nJ uyo- 1) {containued)
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144

- hs p dk F(ri + Pj + t

+ h5 d F(r + r t oty
+ Glz(@i qJ dk F(m1 pj + t

~ hg m dk F(mi + rJ +

-hqud F(r, * D,

+

2hy, hg dk F(I‘i + I‘J. +

*q m, dy F(p1 + na + t

hy 93 dk F(pi + rj + t
- hg mj dk F(ri + Hﬁ +t
+ Glg(yi nJ dk F(ml + mj +

tm pj dk F(mi + pJ +t

hsg m_ dk F(mi + rJ + T

hy nJ dk F(r:.L + m3 +t

+

2hy hg dk F(I‘l + I‘J +

+

+tp,m 5 dk F(p1 + mj oty - 2, q4

hy P; dk F(p1 + rJ +
- hg mJ dk F[rl + mj + t
+ st(ql nydy Flp; +m +

+q; pJ dk F(p1 + PJ + t

hy n dk F(ml + rJ + t

kT LSty

s; + Sj + uk})

x - w4 a, tuo- 1}

t - i, n, + Sj + uk)

tes S5 % qj - 1)

§i + sj + uk)

k" 1, qi + nj *u - 1)

tk’

k’qi+sj+uk-l)

k”l’si"nj’““k))

t - 1, n, + nj +u, - 1)

k

K " 2, n, + qJ + uk)

hLPdekF(ri-!-pJ+tk-1,sl'l:q3+uk)

n. mj dk F(ml + mj oty - 1, n_+ nj Ty - 1)

9)

x " 1, n + j + uk)

x? Sy tntu - 1)

t, sy * Sj + uk)

ke By + SJ +tu - 1)

+ nJ + uk)

tk -1, q, * s, * uk)

k" 1, S; * n3 + uk))

tk’ q; * nJ tu - 2)

x " 1, a, + qJ + U, - 1) (contanued)



hs 9 dk F(pi + rJ T, q; ¢t sJ +u

- 1)

- hg n3 dk F(rl + mj + by, s+ nj - 1)
- hg P, d F(r, + Py o+ Yy - 1, s; + a5 * uy )
+ 2hs hg dk F(rl + ot s, ¥ sJ + uk)
+n, qJ dk F(m1 + pJ + tk’ n, o+ qJ + Uy - 2)
- hg ny dk F[mi + rJ + tk’ n_ + sJ - 1)
+piq3dkF(pl+pJ+tk-l,ql+q3+uk-1)
- hg P, dk F(pi + rJ oty - 1, q *+ s+ ukJ
- hg qJ dk F(rl + Pj + T, s; + qJ + Uy - 11)]
+ 3 ié ﬁi [—l- df d' d' (Gy; r. r. (r
K21 152 k5 12 Ky ko kg 1L T3 %y 4R
. F(ri + rJ + ti + tiz + tia - 4, s, * sJ * uil
+ G2z s: sJ (sl - 1)(5J - 1) F(r1 + rJ + til + tﬁz
+s 4 s3 + uﬂl + u' + uis - 4)
+(4633 T, TS, sJ+G12{rls (ri-l)(sj-l)
+ s, (rj - 1)(5l - 1)}) F(rl + T + til + tiz
+ 51 + sJ + uil + uiz + uﬁs - 2}
+ 2G13{r1 T, s, () - 1)+ Ty TS, (r:l - 1)} F(rl
+ til + t' + ti3 - 3, s+ sJ + uil uk2 + u'
+ ZGza{rJ Sy S, (s, -1+ s, s (sJ - D} F(r,
+ til + tiz + tia -1, si + SJ + ui + uk2 + u;3

- 1](1'J

+

-+

1)

+ !

k)

uT
ka (9)

t! (concluded)

k3’

. -2,

3)]
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The generalized stiffness matrix can be transformed to the element and global
coordinates by transformations similar to those for TRIM6 and TRPLTI elements.
4.87.23.4 Mass Matrix Calculation for the TRSHL Element (Calculated in the
stiffness subroutine KTSHLS and KTSHLD)

Two different mass matrices are calculated: Ilumped mass and consistent

¥
mass. The calculations are the same as for TRIM6 and TRPLTI.

4.,87.23.5 Structural Damping Matrices for the TRSHL Element

The calculations are similar to those for TRIM6 and TRPLT1 elements.

4,87.23.6 Stress and Element Force Calculations for TRSHL Element (Subroutines
STRSL1, STRSLV and STRSLZ of module SDR2)

The calculations are similar to those of TRIM6 and TRPLT1 elements.

4,.87.2%.7 Thermal load Calculations for the TRSHL Element (Subroutines TLADSL
of module SS5G1)

The calculations are similar to those for TRIM6 and TRPLT1 elements.

4.87.23.8 Differential Stiffness Matrix Calculations for the TRSHL Element
{Subroutine DTSHLD of module S5G1)

The steps leading to the calculations of the differential stiffness matrix
are given in section 7.3.6 of the theoretical manual (pages 66 to 70 of this

report).
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Demo Problem 1.3-4(a)

Analysis of a Free Rectangular Plate with thermal loading using higher
order triangular membrane TRIM&6 element The quarter section of the plate
shown in figure 1, 1s discretized usaing TRIM6 element. Discretization 15 given
on page 1.3-4(b), figure 3(a).

The graphs for the measured stresses O, and o at x = 1.5 shown on
pages 1.3-5 and 1.3-6, The results obtained by this analysis are not included
in the same graph, since for the chosen mesh the stresses are evaluated at

locations different from those shown in the graph. However, good agreement

15 seen for the stresses for the chosen mesh.

1 3-4(a) (1/1/77)
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Figure 3(a). Model of free rectangular plate using TRIM6 element.
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Demo Problem 1.7-5

Triangular Shallow Shell Element

Two problems, (1) that of a spherical cap, and (2) that of a cylindrical
shell roof, are considered. These are the same two example problems analyzed

in reference 23.

(1} The spherical cap, with finite element discretization is shown in

figure 5. Due to symmetry, only one fourth (quarter) of the cap was analyzed.

Good agreement in deflections at the center of the cap i1s obtained even
with relatively coarse mesh sizes as shown in Table 1. Even though the results
appear to be oscillating about the exact value, the percentage error in the

converged solution 1s very negligible,

(2) The shell is shown in figure 6 along with pertinent dimensions and
associated material propertzes. The finite element discretization for the shell
1s shown 1n the same figure. Due to symmetry, only one fourth (quarter) of
the shell was analyzed.

Results for the shell roof problem and the exact solution reported by
Cowper et al (ref. 23) are given 1n Table 2. Reasonable agreement 1s seen

between the finite element and the exact solutions.

The values given in Table 2 are obtained from a stand-alone program wherein
the global stiffness matrix had 5 d.o.f., per grid-point, viz., u, v, w,
a and B . This is consistent with shallow shell theory. In NASTRAN, the
global stiffness matrix has 6 d.o.f. per grid pownt, viz., u, Vv, W, a ,
g and ¥ . It 1s necessary therefore to constrain the sixth degree of freedom
at all grid points where all the elements connected to that grid point are in
the same plane. This requirement is to ensure that the global stififness matrix
1s nonsingular for a given sufficiently supported condition of the structure.
Theoretically, however, the above requirement 1s equivalent to the introduction
of additional constraints on the problem and hence the solution obtained from
NASTRAN will be lower bhounds to the actual values obtained from the stand alone

program and given in table 1. The values obtained from NASTRAN and CTRSHL elements

1.7-5 (1/1/77)
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are given in table 2. For shells that are strictly shallow, the solution from
NASTRAN will approach that obtainable from stand alone programs based on a strict
applacation of shallow shell theory.

An alternative to solve problems where shell i1s only marginally shallow,
as the example discussed herein, is to use combination of TRIM6 and TRPLT1
elements. The result of using a 2 x 4 and 3 x 3 mesh of CTRIM6 and CTRPLT1 elements
from NASTRAN 1s given in table 4. Note that the values are very close to the

exact values.

1.7-6 (1/1/77)
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Table 1.

Center deflections for spherical cap problem.

-

Etw
Deflection 6 = ——=

P R?

0
Finite
Element Rt _ 5.02 Rt _ 0.00s
Grad L2 12
1x1 1.15107 1.13951
2 x 2 1.00774 0.99178
3 x 3 1.00452 1.00177
4 % 4 1.00437 1.00084
Exact 1.00978 1.00043

1.7-7 (1/1/77)
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9ST

(LL/T/1) 8-L°1

Table 2.

Results for a cylindrical shell roof

from stand-alone program (values are in element

coordinates).
ginlte 1OuA wB 10VB IOWC 10"3NxxB 10—3MyyC 10"'2MxxC
ement
Grids {(1n.) (in.) (in.) {1n.) (Ib./1n.) (1b. in./1n.) (1b. in./in.)
1 x1 -0.45168 -0,29100 -2.48424 -4,0700 2.4659 , 0.7685 2.8520
2 x 2 -0,7812 -12516 -4,77312 -2.1344 4,2801 ~-0.9395 -0.8896
I x 3 ~1.09590 -2.49876 -7.12872 -1.3606 5.4948 ~-2.0283 -1,1136
4 x 4 -1.2939 -3,4332 -8.57580 2,2224 6.0277 -2,3828 -1,7912
2 x4 -0.9041 -2.2815 -6.15 0.888 5.1312 -1.415 -2.0196
Ix6 -1.1244 -3.6227 -8.5968 3.1031 6.1862 ~1.9414 -1,8912
4 x 8 -1.3845 -4,1526 -9,5295 3.9238 6.4839 -2.0459 ~-1.6724
5x 5 ~1.4160 -3.88152 -9.29000 2.8182 6.3279 -2,3538 -1.9770
6 x 6 -1.4733 -4.09176 -9.76992 3.0900 6.4444 -2,3242 -2.0638
Exact -1.51325 -4.,09916 ~8,76147 5.2494 6.4124 -2.0562 -0.9272




Table 3, Results for cylindrical shell roof from NASTRAN using
CTRSHL elements (values are in global coordinates).
Finite
B lement U, (n.) Wy (m.) v, (in.) W (n.)
2 x4 -0.0945 -1.6437 -0.5181 0.1938
3 %3 -0.09054 -1.7309 -0.4801 0,3813
Exact -0.151325 -3.70331 -1.96372 0.52494

17-9 (1/1/77)
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Table 4. Results for cylindrical shell roof from NASTRAN using
CTRIM6 and CTRPLT1 elements (values are in global
coordinates).

Finite

Element .

Grids UA {in.) WB (1n.) VB (in.) WC (1in.
2 x4 -0.1233 -3.4162 -1.7445 0.4287
3 x 3 -0.1335 -4.2560 -2.1226 1.1007
Exact -0.151325 -3.70331 -1.96372 0.52494
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Faigure 5.
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DIAPHRAM
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DIAPHRAM

3.0 x 108 ps1 (2.068 x 1011 N/m2)
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<
1]
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ct
i

shell werght = 90 1b./sq. ft. (4.309 x 103 N/m?)

Figure 6. Geometry of cylindrical shell roof and finite element
idealization
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A,

Demo Problem 1.8-5

Analysis of a Beam Using TRIM6

Description

The cantilever beam shown on page 1.8-4 1s modeled with the NASTRAN TRIM6
element as shown in figure 2, page 1.8-7. This problem demonstrates the

analysis of a beam subdivided into the six noded triangular membrane elements.

The loads were chosen to approximate the stress distribution due to a

moment on one end of a heam. The other end 1s constrained to resist the moment.
The plane of symmetry is not used.

B.

C.

Input

Parameters Simrlar to those listed on page 1 8-1.

Boundary Constraints. on x = 0 plane, u, = uy =0
Loads- total moment = My = 2.048 x 10° . This moment will produce

bending about the z-axis. It is modeled by a set of axial loads at

x = 2 which, 1n turn, represents an axzal stress distribution:

g = 1.5 .
X Yy

Subcase - 1  Consistent loading.

Subcase - 2: Lumped loading.

Considerang strip near extreme fiber

F = %—(1.5 x 6+ 1.5x8) 2 4=84

Analysis and Results
Analysis. refer to pages 1 8-1 and 1.8-2

Results

1.8-5 (1/1/77)
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Comparisons of Displacement

Theory (10-%) [Consistent Loading| Lumped Loading
R Mx? -l L
Grid Pts. Y = 3ET Subcase 1 (1077} | Subcase 2 (10~7%)
3 0 0 0

13 .0625 .0515 .0523

23 .25 L2377 .2467

33 .5625 .549 .5744

43 1.0 .985 1.0172

+

Comparisons of Stress

Figures 3(a) and 3(b) show stresses obtained from the analysis.

Referring to figure 3a, subcase 1, we have stress at

Grid point 5 = 9.567 (C)
Grad poant 5 = 2002 LA 13y 4 (g
Grid point 1 = 117 > 15.46 _ 1358 (1)

Referring to figure 3b, subcase 2, we have stress at

Grad point 5 = 9.87 (C)
Grid point 3 = 1.64 + 1'§5 * 135 1.48 {C)
Grid point 1 = 221 u 15.98 _ 14,03 (1)

If the cantilever beam is discretized with the same type of mesh and the same

nutber of elements, but the diagonal oriented in the opposite direction to
figure 2, 1.e., as shown i1n figure 4, then the stresses for subcase 1, at

grid points 5, 3, and 1 would be

Grad poant 5 = 13.58 {0)
Grid poant 3 = 1.4 (C)
Grad point 1 = 9.567 (T)

1.8-6 (1/1/77)
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Therefore the stresses at grid points 5, 3, and 1 are taken as the average

of the two types of meshes (i.e., figure 2, and figure 4).

Therefore, for subcase 1, we have stresses at

9.567 + 13.58

Grid point 5 = 5 = 11.575 ()
Grid point 3 = LZ_I# = 1.4 (C)
6rid point 1 = 13:°8 ; 9:387 _ 11.575 (1)

Conclusion

NASTRAN
Stresses at Grid Point Theory TRIMG
5 12 11.575
3 0 1.4
12 11,575

1.8-7 (1/1/77)
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Subcase 1+ Consistent Loading
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Subcase 1

Subcase 2

1.31

15.96 - 11

Faigure 3a Figure 3b
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Demo Problem 1.9-4

Thermal and Applied Loads on TRIM6 Elements

A. Descraiption

This problem demonstrates the use of the TRIM6 elements.

membrane elements are used to model a 2 x
boundary conditions are shown in figure 2.

axial stress and thermal expansion.

Ten triangular
1 % 10 beam. The dimensions and

Two loading conditions are applied:

Symmetry boundary conditions are used.

B. Input
1. Parameters. similar to those listed on page 1.9-1.
2. Boundary Constraints: u_ = uy =0 at x=0, u.y =0 at y=20
3. Loads: Subcase 1, consistent loading
Fx = 24 x 103 (total axial force)
Total force on symmetric part = 5 = 12
—1
Force divided into the ratio of
' >4 1 x 12 4 x 12 1x 12
1:4 1, 1.e., 3 s 3 2 3
—_——— ——1
Subcase 3, Lumped loading
e ]
Force divided into the ratio of
| 2 2 2
1 x 12 2 x1 1x1
] 1 12.1, 1.e., 7 s ) , 7

Subcase 2, Thermal loading

T = 60° (Uniform temperature field)
T, = 10° (Refgﬁggge temperature)

£
LY

&

-2 %

1.9-4 (1/1/77)
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C.

Analysis and Results

Analysis: tefer to page 1 9-2.

Results:
TRIM6 Sol.
X (1073) Subcase 2
Exact Sol. Subcase Subcase
(10-3) 1 3 Exact Sol. TRIM6 Sol.
0 0 0 0 0 0
2 1 0.98 0.98 0.1 0.109
4 2 1.98 1.98 0.2 0.2093
6 3 2.98 2.981 0.3 0.3093
8 4 3.98 3.98 0.4 0 4093
10 5 4,98 4,981 0.5 0.5093
12 6 5.98 5.981 0.6 0.6093
14 7 6.98 6 98 0.7 0.7093
16 8 7.98 7.98 0.8 0.8093
18 9 8.98 8.99 0.9 0.9093
20 10 9.98 10.026 10 1.00937

Graph is given on pages 1.9-7 and 1 9-8

Conclusion

The results of all three subcases are exact to the single precision

limits,

Displacement (Ux)

1 9-5 (1/1/77)
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Figure 2.

Model of Cantilever beam using TRIM6 element.
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Deflection Ux for subcase 2.
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Demo Problem 1.11-4(a}

Analysis of a simply supported rectangular plate with a thermal gradient
using higher order triangular bending TRPLT1 elements: The quarter section of
the plate is discretized using TRPLT1 element. Discretization is given on
page 1.11-4(b), figure 2.

For input and theory, refer to pages 1.11-1, 1.11-2, and 1.11-3.

Result:

The maximum displacement obtained was 0.5935, a difference of about 5

percent from the analytical value. A more refined mesh is likely to yield
closer values to the exact ones,

The graph for the moments Mx s My and Mxy obtained by analysis
at x = 0.5 1s shown on page 1.11-6. The results obtained by this analysis
is not included in the same graph, since for the chosen mesh the moments are
evaluated at locations different from those shown in the graph. However, good

agreement is seen for the moments for the chosen mesh.

1.11-4(a) (1/1/77)
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Figure 2. Model of simply supported rectangular plate using
TRPLT1 element.
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Demo Problem 1.11-8

Deflectzon of Thick Rectangular Plate Using TRPLT1 Element

The TRPLT1 element is used for solving moderately thick to thick plate where

the effects of transverse shear are present.

The rectangular plate in figure 1, shown on page 1 11-11, is discretized
by using higher order triangular bending element TRPLT1. Because of symmetry,
the quarter section of the plate 1s discretized and details of the discretization

are given in the same figure.

Four different mesh sizes are used for Q-mesh and P-mesh  The result is
tabulated for the simply supported and clamped edge with two different %-ratios,
on page 1.11-9 and 1.11-10 respectively.

Input:
E = 3.0 x 107 1bs/in.? (Young's modulus)
v =0.3 (Poisson's ratio)
q = 1000 1bs/in.2 (Uni.form distributed load)
g = 1000 Ibs. (Concentrated load 2t center)
g-z 2 (Length/width)
t = 1.0 1n. (Thackness of the plate)

1.11-8 (1/1/77)

175



Table 1. Central deflection of simply supported rectangular plates
(Q-mesh) 1including the effects of transverse shear.
Number Concentrated Load Uniformly Distributed
of at Center Load
Elements
S1de T 100 T 4 T 100 T 4
N
2 21.3373 22.22 10,983 11.2651
4 17.7854 20.0133 10.2084 10.5612
8 16.9276 19.4859 10.1396 10.4831
12 16.73 19.5322 10.1330 10.5468

176
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Table 2.

Central deflection of clamped rectangular plates (Q-mesh)
including the effects of transverse shear.

Number Concentrated Load Uniformly Distributed
of at Center Load
Elements
per a_ 2. a_ a_
S1de s 100 < 4 * 100 7 4
N
2 10.4330 12.5582 3.942 4.5086
4 8.4230 10.565 2.7932 3,133
8 7.6283 10 0845 2,5953 2.9375
12 7.4336 10.1791 2.561 2 9475

111-10 (1/1/77)

177



Modeling Errors in the Bending of Plate Structures.
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Figure 1. Discretization and schedule of rectangular plate.
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Demo Problem 1.11-12

Analysis of Rectangular Plate Using TRPLT1 Element

This probtlem demonstrates the accuracy of TRPLTI element 1n the evaluation

of moments in rectangular plate.

The rectangular plate with discretization, shown on page 1 11-9 (figure 1),
is analyzed.

Two different mesh arrangements are used, 1.e., Q-mesh and P-mesh. The
result 1s tabulated for the points marked on x- and y-axis, as shown in
figure 2, page 1.11-17.

Input:
E = 3.0 x 107 1bs/1in.2 (Young's modulus)
v=20,3 (Poisson's ratio)
q = 1000 lbs/an.? (Uniform distributed load)
§'= 2 (Length/width)
t = 1.0 in. (Thickness of the plate)
N =12 (No. of_elements per side)

1.11-12 (1/1/77)
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Table 1. Numerical factor B' 1in the equation My = B! q§ for bending moments
of simply supported rectangular plate under uniformly distributed load

(along y = 0).

NASTRAN-TRPLT1
B o=09 ] Exact

X Q-mesh P-mesh Average g
0.5a (center) 0.1001332 0.1022486 0.1012 0.1017
0.416667a 0.105326 0.1070887 0.10620733 0.098875
0.33333a 0.099048 0.10247159 0.100759796 0.09075
0.25a 0.087942 0.0923552 0.0901486 0.076875
0.166667a 0.0710574 0.0751297 0.07309355 0.058
0.083333a 0.04853 0.0393438 0.0439369 0.032
0a (end)} 0.022253 0.0254971 0.02387506 0.0

1.11-13 (7/1/76)
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Table 2. Numerical factor 87 1n the equation My = 8] q; for bending moments
of simply supported rectangular plate under uniformly distributed load
(along y = 0).

NASTRAN-TRPLT1

Bi =10 Exact

b3 Q-mesh P-mesh Average B]
0.5a (center) 0.046605 0.0470838 0.0468444 0.0464
0.416667a 0.047194 0.0474771 0 0473355 0.045
0.33333a 0.0432597 0.0441237 0.04369171 0.0410625
0.25a 0.0369394 0.0379362 0.037438 0.0344375
0.166667a 0.0280123 0.02855153 0.028282 0.0252
0.08333a 0.01630765 0.0100907 0.0132 0.013875
O0a (end) 0.006676 0.01902541 0.0128507 0.0

1.11-14 (7/1/76)
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2
Table 3. Numerical factor A" 2in the equation My = B" qgz for bending moments
of simply supported rectangular plate under uniformly distributed load
(along x = 0). -

NASTRAN-TRPLT1
B (x = 0) Exact
y Q-mesh P-mesh Average g"
0.5b (center) 0.1001332 0.1022486 0.1012 0.1017
0.416667b 0.103584 0.1087446 0.1061643 0.099625
0.33333b 0.0969304567 | 0.1131157037 | 0.1050231 0.09025
0.25b 0.0850907 0.1218893745 | 0.10349 0.080625
0,1666667b 0.0674407 0.14173259 0.1045866 0.06175
0.08333b 0.04365204 0.1811511029 | 0.1124016 0.033625
0.0b (end) 0.01275513 0.037393 0.025074 0.0
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Table 4. Numerical factor B8} 1in the equation M, = BY qi for bending moments

of simply supported rectangular plate under uniformly distributed load
(along x = 0).

NASTRAN--TRPLTI1
By &x=0) Exact

¥y Q-mesh P-mesh Average B"}
0.5b (center) 0.046605 0.0470838 0.0468444 0.0464
0.416667b 0.0486921 0.05105566 0.049874 0.04€5625
0.33333b 0.049534 0.057433 0.0534835 0.0465625
0.25b 0.049873 0.0679783 0 05892565 0.0460625
0.166667b 0.04794 0.0850651 0.06650255 0.041125
0.083333b 0.03933845 0.109444 0.0743913 0.0288125
0.0b (end) 0.001104162 0 01272338 0.0069137754( 0.0

1.11-16 (7/1/76)
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Demo Problem 3.1-6

Vibration of Tapered Rectangular Plates

This problem demonstrates the use of the higher order triangular benéing

element CTRPLT1 to solve problems in vibration of thin isotropic plates.

The structural problem consists of a linearly tapered rectangular plate
with two different support conditions, namely (i) simply supported and

(ii) cantilever.

{2} Linearly tapered simply supported rectangular plate The model as
shown in figure 4a uses only half of the plate due to symmetry. The plate

thickness 1s given by:
= E:S
t=t, (I+x3) (1)

where «k 15 a constant determining the rate of taper. Two different mesh sizes
of the finite e¢lement model, 1 x 2 and 2 x 4, are used. Nondimensional
fundamental frequencies for rectangular plates for three different aspect

ratios %- and x = 0.5 and 0.8 are presented in table 2.

The frequency parameter is defined as-

e ENT (2)

where ® 15 the circular frequency, a is the length, o 15 the mass density,
t, is thickness and D0 1s the bending rigidity. Analytical results from

reference 20 are also sHown for comparison.

(11) Lanearly tapered cantilever rectangular plate The plate 1s
idealized with a mesh size of 2 x 4 or 16 elements, as shown in figure 4b.
Results of frequency parameters Rmn as defined in equation (2}, vhere m
and n represent the number of nodal lines perpendicular and parallel to
the support, respectively, using TRIA2 and TRPLTl are shown in table 3

3.1-6 (1/1/77)
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Constant thicknesses of 0.0405 in. (0.1029 cm) and 0.1215 in. (0.0386 cm) were
used when modeling with TRIAZ element. Experimental data obtained by Plunkett

in reference 21 are also glvén.
Tables 2 and 3 show that very good results have been obtained using the

higher order plate element.
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Table 2. Fundamental frequency for linearly tapered rectangular
plates simply supported on all edges® v = 0.3,

Frequency Parameter
pt, 1/2
NASTRAN Q = wa? (_.__)
Aspect TRPLTL Dy
Ratio Finite
a Element Taper Rate Taper Rate
b Layout x = 0.5 k = 0.8
0.5 1 x 2 14.662 16.242
Theory 15.304 16.994
10 1x 2 24,171 26.901
2 x 4 24,454 ——
Theory 24,556 27 354
2.0 1x 2 58.560 64.770
2 x 4 60.346 -——-
Theory 60.982 67.500
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Table 3. Frequency parameters for a linearly tapered rectangular
cantilever plate; v = 0.3.

Ptgy 1/2
Frequency Parameter @  =uw a2 ( ﬂz
Mode NASTRAN
n n TRIAZ TRPLT1 Experiment
0 0 2.28 2.25 2.47
1 0 9.8 10.0 10.6
0 1 14.5 13.6 i4.5
1 1 23.8 27.0 28.7
0 2 135.9 32,8 34.4
0 3 51.5 47.3 47 .4
2 0 31.0 53.3 52.5
1 2 64.0 57.7 54.0
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X

1 x 2 Layout 2 x 4 Layout

(a) Simply supported plate.

AR

2.5 in.
(6.35 cm)
5 in.
T (12,7 em) ™

(b) Cantilever plate

Figure 4. Plate geometry and finite elment
1dealization for the TRPLTI element
test problems.
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Demo Problem 5.1-5

Bucklaing of Columns and Plates

The out-of-plane buckling of plate elements i1s evaluated from the
differential stiffness matrix of bending plate element TRPLT1 due to membrane
prestress effects obtained from a membrane analysis using TRIM6 elements.

To solve out-of-plane buckling of plates, a membrane-bending combination
element is necessary. TRSHL 1s such a combination element with the added
feature of membrane bending coupling for shell problems; where the curvature
is zero, there is no coupling between membrane, and bending effects, and TRSHL
for such cases reduces to a combination element. The results for problems

in this section have been obtained using TRSHL elements.

Three buckling problems were investigated using the triangular plate and
membrane elements. Following are the three different problems: (i) Buckling of
a tapered column fixed at the base 1s shown in figure 3a. The area moment of
inertia at any cross section can be expressed in the form

L

I, =11 (3) (1)

where I; is the moment of inertia at the top of the column (x = a). Results
for the buckling factor for a tapered colummn of I;/I, = 0.2 have been obtained
from NASTRAN usang TRIAZ and TRSHL, and an analytical solution from reference

22 is given in table 1 for comparison. (ii) Buckling of a simply supported
square plate subjected to uniform compression in one direction. Owing to
symmetry, only one quarter of the plate (modeled with 2 x 2 mesh size) 1s used
as shown in figure 3b. Results of the buckling factor from NASTRAN TRIAZ and

TRSHL elements and the exact solution are shown in table 2.

The nondimensional buckling factor A 1s represented by the formula:

2
= D (4)

cT b2
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(121) The third problem considered is buckling of simply supported rectangular
plate of aspect ratio a/b - 0.8 wunder in-plane bending loading shown in
figure 3c. Due to symmetry, only half of the plate 1s used in the analysis.
NASTRAN results using TRIAZ and TRSHL with different mesh sizes are shown

in table 3, along with analytical results from reference 22. Table 3 clearly
shows that the TRSHL elements gave a much better prediction of the critical

buckling load than the TRIAZ elements.
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(c) Samply supported plate under
in-plane bendang.

Figure 3. Column and plate geometry for TRSHL element buckling
test problems,
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Table 1.

Buckling factor for a tapered column.

Buckling Factor A

P 12
cr
EIl,

Finite Element Layout

TRIA2 1.4242 1.3618 1.3420
TRSHL 1.6437 1.6050 1.5853
Theory 1.5065

Table 2. Buckling factor for simply supported
square plate uniformly compressed in
one direction; v = 0.3.
N, b2
Buckling Factor A =
72D
TRIAZ 4.0356
TRSHL 3.9779
Exact 4.0000
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Table 3. Buckling factor for a simply supported rectangular plate
of aspect ratio 0.8 under in-plane bending, v = 0.3.

2
(NOJ CI‘b

2D

Buckling Factor X =

Finite Element Layout

TRIA2 29.7815 35.3289 23.8702
TRSHL 24,5507 24.1103 24,1708
Theory 24.4

5.1-9 (1/1/77)

194




20.

21.

22.

23.

Leissa, A. W. "Vibration of Plates," NASA SP-160 pp. 285-297,
1967,

Plunkett, R.- ''Natural Frequencies of Uniform and Non-Uniform
Rectangular Cantilever Plates," J. Mech. Engr Sci., Vol. 5,
pp. 146-156, 1963.

Timoshenko, S. P. and Gere, J. M.. "Theory of Elastic Stability,"
McGraw H1l1l, pp. 125-132, and 372-379, 1961.

Cowper, G. R., Lindberg, G. M. and Oison, M. D.. "A Shallow Shell
Finite Element of Triangular Shape,'" Int. J. Solads and Structures,
Vol. 6, pp. 1133-1156, 1970,

1.1-2 (1/1/77)

195



APPENDIX E

The NASTRAN source code subroutines that
need to be modified or added for
inclusion of TRIM6, TRPLT1 and TRSHI. elements
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The NASTRAN Subroutines that are modified to add the TRIM6, TRPLTI1

APPENDIX E

and TRSHL elements are

N
. B

Ww 0~ 1 B 1

.

b=
o

=
-t

b
8]

ju—)
93]

[
N

1.

precision version,

2.

bs1
DS1A
EDTLZZZ
ELELBL
EMGPR#
GPTABD
IFP
IFs1P
IFX1BED
IFX2BD
IFX3BD
IFX4BD
IFX5BD
IFX6BD

KTRM6S:

KTRM6D :

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28,

New Subroutines Added

IFX7BD
LDg1
LDg2
LD@3
LDg4
LD@5
LDg6
LDg7
LDg8
LDg9
LD10
LD11
D12
LD13

Staffness and mass matrix generation subroutine, single

for element CTRIMSG.

Stiffness and mass matrix generation subroutine, double

precision version, for element CTRIMG.

3.

4.

5.

6.

version (without the effects of transverse shear), for element CTRPLTI,

7.

version (without the effects of transverse shear), for element CTRPLTI.

< -

TLADMG :
STRM61
STRM62:

KTRPLS

KTRPLD

PRECEDING PAGE BLANK NOT FILMJE

29,
30.
31.
32,
33.
34.
35.
36.
37.
38.
39.
44,
41.
42,

LD14
LD15
Lb21
Lb22
LD23
LD34
LINEL
$FFP1A
gFP1BD
gFP5BD
#F1PBD
@pF5SPBD
SDR2B
SDRZE

Thermal load vector calculation for element CTRIMG.

Stress data recovery, Phase I for element CTRIMG.

Stress data recovery, Phase II for element CTRIMS.

Stizffness and mass matrix calculations, single precision

Stiffness and mass matrix calculations, double precision
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8. TSPL1S. Transverse shear calculations, single precision version,
for element CTRPLT1. This subroutine performs the mumerical integration to
obtain the contribution to the generalized stiffness matrix due to transverse

shear effects.
9, TSPLID. Same as TSPL1S, double precision verszom.

10. TSPL2S Calculations, single precision version, to obtain the matrix,
B relating curvatures to generalized coordinates (in the eguation
21 » 5 g G

{Xl} = [Bz] {a}).
11. TSPL2D: Same as TSPL2S, double precision version.

12, TSPL3S Calculations, single precision version, to obtain the matrix,
fB1] , vrelating transverse shear strains to the generalized coordinates (in the

equation {y;} = [B1] {a}) for use in the TSPL1S subroutine.

13. TSPL3D- Calculations, double precision version, to obtain the matrix
{B1] , as in TSPL3S, for use in the TSPL1D subroutine.

14. TLADT1l: Thermal load vector calculations in the absence of transverse
shear effects for element CTRPLTIL.

15. TLgDT2: Numerically integrated contribution to the thermal load

vector for element CTRPLT] due to transverse shear effects.

16. TLgDT3. Calculations to obtain the matrix, [B;] , relating trans-
verse shear strains to the generalized coordinates (in the equation
{vy1} = [B;] {a}) for use in the TLEDT1 subroutine.

17. STRP11l: Stress data recovery, Phase I, for CTRPLT1 element.

18, STRPTS: Calculations to evaluate matrices for recovery of shear
forces for CTRPLT1 element.

19. STRP12 Stress data recovery, Phase II, for CTRPLTLI element.

20. KTSHLS Stiffness and mass matrix calculations, single precision

version, for triangular shallow shell element CTRSHL.

21. KTSHLD: Stiffness and mass matrix calculations, double precision

version, for triangular shallow shell element CTRSHL.

22. TL@DSL Thermal laod vector calculations for element CTRSHL,
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23, STRSL1- Stress Data Recovery, Phase I, for element CTRSHL.

24, STRSLV  Calculations to evaluate matrices for recovery of shear
forces for CTRSHL element.

25, S8TRSL2- Stress Data Recovery, Phase II, for element CTRSHL.

26. DTSHLD. Differential Stiffness Matrix generation, double precision

version, for element CTRSHL.
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