V.9-31G114
formation Note Q90776

LARS In
g NASA CR-
s _15//00
293 ST
gi?%.
= 9 .
~2EB
= e U
Eﬁggé
2E3E%
=8ss*®
gafﬁa
2552
FEE55
T = g& 8

Analytical and Experimental
Design and Analysis of an
Optimal Processor for
Image Redgistration

by Martin svediow,

-

C.D. McGillem, &

P.E. Anuta
(E77-10114) ANALYTICAL AND EXPERIMENTAL N77-18527
DESIGN AND ANALYSIS OF AR :OETIMI;L'.PR'OCEQSOB .
FOR IMAGE REGISTRATION {(Purdue Univ.) 179" p .
HC A09/MF a01 L , CSCL 14E + Unclas

' G3/43 00114

The Laboratory for Applications of Remote Sensing
Purdue University West Lafayette, Indiana

1976



! T-1314/3

LARS Information Note 090776

ANALYTICAL AND EXPERIMENTAL DESIGN AND
ANALYSIS OF AN OPTIMAL PROCESSOR

FOR IMAGE REGISTRATION

Martin Svedlow
C.D. McGillem
P.E. Anuta

Published by the
Laboratory for Applications of Remote Sensing (LARS)

Purdue University
Lafayette, Indiana 47907

Quiginal photography may be purchasel frona
EROS Data Center ‘
10th and Dakota Avenue
Sioux Falls, SD 57193

This work was éponsored by the National Aeronautics and Space Administration
(NASA) under contract NAS9-14016,



TABLE OF CONTENTS

LIST OF TABLES v v o o o o o o = = = o o o =
LEST OF FIGURES. v @ o & o « « = = o o « o o »
ABSTRACT - - l.w - - » L ] [ ] - - - L ] - - L ] - - L ] L]

CHAPTER ] - IQNTRODUCTION " s v s s w e s e e m

1.1
1.2 Previous Investigations. . + . . « &
1.3 Outline of Investigation . . . . . .

CHAPTER 2 - VARIANCE OF THE REGISTRATION ERROR

2.1 Method 1 @ e v v o v v v v v 0 v o™
2'2 MethOd 2 - - - . - - - L - - - L - L
2.3 Conclusion « v ¢« ¢ o v o o o o o o =

CHAPTER 3 ~ IMPLEMENTATION OF A MATCHED FILTER

FOR

Ld - -
a & s

IMAGE

REGISTRATION o & v v ¢ ¢ v 4 v o0 o o o o o &

CHAPTER L ~ CHANGES IN THE OUTPUT SIGNAL-TO-NOISE RATIO
DUE TO RELATIVE SPATIAL DISTORTIONS BETWEEN

IMAGES « & &+ ¢ v v v v v 4 4 o & &

Noise Ratio Due to Different Types of Spatial
Distortion L] L] - - - - - - - L . . . - - L] - - -

4.5.1 Linear Scale Distortion. . .

[ -

L.1 White Noise With No Relative Spatial Distortion. .
4,2 White Noise With Relative Spatial Distortion . . .
4,3 Nomwhite Noise With No Relative Spatial Distortion
4.4 Nonwhite Noise With Relative Spatial Distortion. .
4.5 Examples of the Loss In The Output Signal-To-

« =+ =

4,5,2 Rotation Distortion. « « « « o o « &
L.5.3 Distortion Model For Temporally Differing
LANDSAT | Images « o o & o o & s o & = « &
4,6 Conclusion . . . . . .
[} .
i RRETIN < B S
RAGENGC - :‘
1

PRECED

AN 0 FILIAED
MG FAGﬁAB;AhK.uDT ST

*» 5 " @

General Discussion . . v v « v« o s = s = « = = = = =« = = =

Page

Lh

47
48
51
54

58

59
69

79
96



iv’

CHAPTER 5 - TEMPORAL CHANGE PROPERTIES . . . + «w & ¢ o &

5.1 Probability Density Function of the Temporal
ChangesS. w « o o o » = a s 2 2 o« = = a s o »

5.2 .Autocorrelation Function of the Temporal " .
CRENGES. o o o o o o « o o o s o o o o o s o o

CHAPTER'6 = EXPERIMENTAL INVESTIGATION OF SIMILARITY
MEASURES AND PREPROCESS ING METHODS USED
FOR IMAGE REGISTRATION . . . « « + o o« o

1. Introduction « « o 4 ¢ ¢ 4 o o o o s o 2 & o
2 Similarity MeasuresS. « « « o o o o o s s s o &
3 -Preprocessing Methods. . + « ¢« « ¢ ¢ &« & &« &+ &
L Performance of an Operational Algorithm Which

Utilizes Gradient-Type Preprocessing « . + . .

~

BIBLIOGRAPHY = & @& & & & 3 " % e & e & W® & & & a f" L]

APPENDIX A: PROOF THAT THE MATCHED FILTER MINIMIZES THE

REGISTRATION ERROR VARIANCE . « o + . « . . .

UITA 4« & & »2 @& & 8 &8 & = & & ¥ % F ¥ 2 & & & @ 3 s+ v '

.t

Page
97

198
115

131
131
138
1h5
154

158

162

169



Table

-1

LiST OF TABLES

2T yielding the maximum SNRN and the maximum VSNRN
for different values of l%lu s e 4 e e e s e e s

2T vyielding the maximum SNRN for different
rotation angleSe « v « « o s ¢ « » s ¢« & o & & » o

Maximuﬁ‘VSNRN for different rotation angles. . . .

LANDSAT I'fmages registered and the corresponding

" distortion coefflclents. v o o v o v 0 = o = o o =

Test sites éor temporal change investigation . . .
Kansas ;h..i e s s s e s o e s e s e e s e
Hill County, Montana . ¢« « « & & = = = # o« + « « =
MISSOUTT o o o o o o « o o = o s 0 a o o s o o & s
Tippecanoe_ESahty, INATANE « o o o o o o o o o o =
Equations for the cotrelation coefficient,
correlation function, and sum of the absolute
values of the differences similarity measures. . .
Test site area in Missouri + + « o v o o ¢ ¢ o v s

Test site area in Kansas . o v« « o ¢« o s o s s « =

Percent {number) of acceptable registration
atte]npts L ] _‘-. . - - - o . L] - - - . - * Ll - L] » L ] - -

Test site area in Indian@. « « « « + « ¢« ¢ s o » &

- Test site area In Hill County, Montana . « « « o »

"Percent (number) of acceptable registration

attémpts......n.............-

Page

65

75
75

82

- 99

93

101
102

104

139
142
142

144
150

150

151



Figure

1-1

1-2

b3

bl

4-5

vi

LIST OF FIGURES

LANDSAT | .imagery over Tippecanoce County, Indiana. . . .
LANDSAT | imagery over Hill County, Montana. .’. « s = .
LANDSAT | imagery over Kansas. v v« o« « o + & s 2 o ¢ o =
LANDSAT | imégery over Missouri. o« o « o ¢ o o« o o o o &
Component representation of matched filter . + « + « « &
Block di;gram after prewhitening . « . &+ ¢« ¢« o« s o s o &
Block diagram of matched filter. « v 4 ¢ o o a a o » o &
Prewhiteﬁing‘representation of matched filter. . « . « .
(Normalized output signal-to-noise ra*.:io)”2 fo

di fferent values of iinear scale distortion vs.
(integration area) 172,

r
. - . L] - L] L4 - - - L] (1) L] L] L] L -

(Integration area)”2 yielding the maximum normalized
output signal-to~noise ratio vs. linear scale distortion

Maximum of (normalized output sign:—,ﬂ--to--noise)]/2 VS,
linear scale diStOrtion. « v o« « « o o = o » v = o s « o

{Normalized output signal-to-noise ratio)llz for
different integration area sizes vs. linear scale
dIStOl‘tion.‘..................mo-.

(Normalized output signa]-—to-noise_ratio)”2 for]/i

different rotation angles vs. (integration area)

(F = 2.0) e 4 4 o @ o o o o « s ¢ s ¢ o 8 s 2 e 2 s 2 s s

(Normalized output signal-to-noise r‘atio)]/2 for”2

_ different rotation angles vs, (integration area)

(F = 50000 o o o o o o o o s o o o o a s o a8 as oo a

. 1 . . . .
(Integration area) /2 yvielding the maximum normalized
output signal-~to=noise ratio for different values of r
VS-rOtation’angle-‘oo.-coooooo-o--cl.

Page

37
38

33
4o

62

- 6h

64

68

71

72

74



Figure

4-8
4-9

4-10

b-11a
L~11b
h-12a
L-12b
#"IBa
h-13b
h-Tha
L-14p
L-154
4-15b
5~1

5-2

5-3

5-4

Maximum (normalized output signal-to-noise rat:i.t:\)]/2
for different values of r vs. rotation angle . . . .

(Normalized output signal-to-noise ratlio)
different integration area sizes vs. rotation angle..

/2 for

(Normalized output signal-to-noise rat‘io)”2 for
different values of r vs. (integration area) /
(L"ANDSATIimagES)t-o--ooao-G---.-

Autocorrelation
the gradient of

Autocorrelation
of the gradient

Autocorrelation
the gradient of

Autocorrelation
of the gradient

Autocorrelation
the gradient of

Autocorrelation

of the gradient

Autocorrelation
the gradient of

Autocorrelation
of the gradient

Autocorrelation
the gradient of

Autocorrelation
of the -.gradient

Difference image with single mode pr

function « « « &

Difference image with single mode probability density

function « + o o

Difference /image with dual mode probability density

function « o «

Difference image with nondistinct dual mode probability
density funCtion « o o« o « « o o o o o o o & v e e e e

surface for the magnitudé of
the iMagee o ¢« « o« o o o o s o o »

surface contour for the magnitude
of the image . « . + v &+ s & « « =

surface for the magnitude of

‘the iMAgee « o « o « o o o o o o o

surface contour for the magnitude
of the Image « « v« o« 4+ o o o & o o

surface for the magnitude of
theimage-.-o--uu-o-to

surface contour for the -magnitude
Oftheimage............o

surface for the -magnitude of
the image. + ¢ « ¢ o 4 o ¢ o & «

surface contour for the magnitude
of the image « « = o ¢« o « « ¢ + &

surface for the magnitude of
the image. « « « ¢« 4 ¢ o s o o o &«

surface contour for the magnitude
of the iMage v « o o o o « = » « o

* e e s % & s & & @« 4 & 8 2 * O &

. - L3 a - - L] - L3 » L] o L] - - - -

obability density

.

Page

74

78

83

86

87

88

83

90

91

92

93

94

95

109

110

111

112



Figure

5-5

5-6a
5-6b
5~7a
5-7b
5-8a
5-8b
»-9a
5-9b
5-10a
5-10b
5-11a
5-11b°
61

6-3
6-4
6~5

Difference.

function .
Difference
Difference
Difference
Differegce

Difference

Difference

Differenée
Differenge
Differqgge
Difference
Difference

Difference

image

image
image
image
image
{mage

image

image

image

image

image
image

image

viii

with multimodal probability density

*® ®§ & ®»& @& & ® & ® O & B O 8 2

autocorrelation surface . . . . . .
autocorrelation surface contour . .
adtocorrelation surface « . +« + + .
autocorrelation surface contour . .
autocorrelation surface « « « « «
autocorrelation surface contour . .
autocorrelation surface « « o « « &
autocorrelation surface contour . .
autocorrelation surface « o + o « &
autocorrelation surface contour . .
autocorrelation surface « o« o « o &

autocorrelation surface contour . .

LANDSAT Iﬁimagery over Tippecanoce County, Indiana. .

LANDSAT | imagery over Hill County, Montana., . . . .

LANDSAT |

LANDSAT- |

imagery over KansasS. « « « o o« s o o o « »

imagery over Missouri. v o o« ¢ « « « s « &

Examplies of "images resulting from different pre-
processing techniques. « « ¢« & 4+ 4 & ¢ « « « « o s &

Page

113
117
118
119
120
121
122
123

124

125

126
127
128
133
133
134
13h’

148



ABSTRACT

Svedlow, Martin, Ph.D., Purdue University, August 1976, Analytical
and Experimental Design and Analysis of an Optimal Processor for Image
Registration. Major Professor: Clare D. McGillem.

The registéation of temporally differing images is defined in a way
that allows jts analysis via parameter estimation theory. Assuming
spatial congruencé between the images, one image is defined as the signal
and the second image is assumed to be the signal plus additive noise,
where the noise is comprised of the temporal changes and any additional
noise Tntroduced by the sensor system. The parameters to be estimated
are the relatige translations between the Imzages.

With this formulation, a quantitative measure of the performance of
the registration ﬁrocessor is defined which leads to the derivation of an
optimum processor- that yields the best possible performance in terms of
the criéeria chosen. The performance measure used is the variance of the
registration error, where the error is the spatial differencé between the .
registration position indicated by the processor in the presence of
noise and the-true overlay location. With this performance criterion
the optimum p?ocessor is that which minimizes the variance of the regis~
tration error. Derivation of the processor which satisfies this criterion
shows it to be the matched filter, which also maximizes the output signai-
to-noise ratio. Substitution of this processor into the general expres-

sion for the variance of the registration error yields a compact
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expression in terms. of the effective bandwidth and signal-to-noise ratio.

Given the matched filter processor, two methods of implementation
are shown. In the first approach the second image (signal plus noise) is
passed throuéh a single filter where the position at wh?ch1the output is
a maximum is téken as the indicated registration poéftion. For the
second technique of implementing the matched filter both of the images
are passed through a prewhitening filter and the resulting outputs are
crosscorrelated, where the prewhitening filter is designed so as to pre-
whiten the input noise (temporal changes). Again-the indicated regis-
tration position is the location of the max imum. of the output. This
second method is. the one that finds itself appl?cabie to imadge registra-
tton algorithms that have been implemented by other investigators in the
form of utilizing a preprocessing operation on the images prior to over-
laying them.

Actual determination of the matched filter processor to be used in
a particular situatfon requires a model of the autocorrelation function
of the noise (temporal changes). For application of this type of regis-
tration processor to LANDSAT | satellite imagery an egtimation procedure
for determining a model of the autocorrelation function is carried out.
it is found that for the imagery examined, the autocorrelation function
of the temporal changes is of an exponential form. Utilizing this para-
metric form for the autocorrelation function an example is presented in
which the maéehgd filter is evaluated. It is found that with the pre-
whitening followed by crosscorrelation approach to implementation of the
matched filter, that the preprocessing or prewhitep{ng filter applied to
both images is a derivative type operator. This result indicates that a
derivative type preprocessor should be applied to both images prior to

overlaying them.
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One of the basic assumptions made in the derivation of the optimdm

processor is that_the images be spatially congruent. However, this is

not necessari{y ékue when given two sets of actual imagery due to unavoid-
able perturbations in the scanner viewing platform oéientation. An
analysis is presénted in which the loss in the outﬁut signal-to-noise
ratio due to the violation of the spatial congruency assumption is shown.
The results Shaw that in fhe presence of relative spatial distortions
which are inc;easing in image, size, such as a‘linear-gca1e change, that
there is an optimum integration area size for the créss correlation stage
of the processor which yields a maximum output signa&-to-noise ratio.
Determ’inationrof this optimum integration area size is a straightforward
procedure which’ is shown in a series of examples illu;tréting several
types of relative_spatiai distortions, In two of the examples, models
.of the distortions ohserved hetween temporally diffgring-LANDSAT | jmages
were used. In th}s way it is shown how the optimum integration area

siée for the registration of images in practice may be found in a straighé-
forward manner-. i

Finai]y,‘ap experimental comparison of the techniques used in

several registrgﬁion algorithms proposed or implemented by othér investi-
gaters is‘preéented. This study provides both an objective,combarison

of thé differenf‘aigorithms plus a corroboration of the analytical re-
sults derived in- the earlier sections. It is found that preprocessing
the imgges via a gradient type operator, which is a derivative type

operation, improved the overall performance'of the registration processor.
5 This agrees with the preprocessing stage of the optimum filter derived in
the aﬁplipation of the matched filter to the registration of images where

the preprocessing.filter is found to be a derivative type operator.



CHAPTER 1

INTRODUCT I ON

1.1. General Dlscussion

Image regist;ation is a topic that has become important with the
advent of satellite borne sensors capable of producing iarge quantities
of multitemporal imagery. Analysis of the differences between images
taken at different times requires that the images be matched spatially
so that it can be determined how the corresponding data points change
with time. This spatial alignment or overlaying of images is what is
meant by image registration.

One of the primary objectives for overlaying temporally differing
images is to provide the capability of utilizing the time dependent
characteristics of a scene for its analysis. For example, imagery of
agricultural areas are subject to change from one season!to the next due
to the growing cycle of the crops., If the classification of different
crop species is the purpose of a project and the crop types of concern
are indistinguishable spectrally at a particular time, then their growing
cycles might provide the necessary information for separating one from
the other.

Various Investigations. have been carried out attempting to determine
what type of additional information is obtainable from the use of the
time as well as spectral dimensions of the imagery. Several studies
involve use of imagery taken by the multispectral scanner aboard the

LANDSAT | satellite which orbits at an altitude of approximately 600



miles, The multispectral scanner opérates in four spectral bands (0.5 -
0.6 um, 0.6 - 0,7 um, 0.7 = 0.8 um, and 0.8 - 1.1 um) and has- a resolu-

tion of approximately 50 meters along the scan sweep:Sy 80 meters along

the satellite's path.. ’

Utilizing LANDSAT | imagery, Anuta and Bauer [.5] have pérférmed an
investigation of the use of multitemporal data fér the recognition of
different crop cover types and agricultural and urSan feature change
detection. With access to multitemporal imagery over the same-area it
was found that classification performance for diffe}ent crop species
could. be improved during certain growing seasons. This study also showed
that the automatic identification of urban change was promising but re-
quired further investigation. Another study also concerned with the
problem gf automatic crop identification is discussed in references [10]
and [19].. Part of this investigation involved the effect of the use of
multitemporal data as opposed to a single time data set on the performance
of correctly. recognizing particular crop types.

Design of-a—processor to carry out the overlay of images- requires a
certain amount of information about the spatial reiationships of the
imagery to be registered. If the images are spatially congruent, then
the processor need only find the relative translation between the images.
For images that differ not only by translation, but which are also dis-
torted spatially relative to each oéher, the processpc'must be capable
of determining the spatial distortions as well as the translation.

These are the classes of imagery addressed in this study, with the
primary emphasis- on spatially congruent images. The processor-under
investigation is that designed to find the: relative translation: between

the Images, assuming that no relative spatial distortions exist.. Such



an analysis is directly applicable to a particular class of imagery which

is currently available in large volume. The multispectral scanner data
acquired by the LANDSAT | satellite has the property that the relative
distortions between multipass imagery over the same area are minimal,
which may be attributed to the stability of the viewing platform. Thus,
as a first approximation, for small enough subimages the assumption of
spatial congruence is reasonable.

Figures 1-1 through 1-4 contain examples of several sets of multi-
temporal imagery taken by the LANDSAT | multispectral scanner. Each of
the figures displayed is from the 0.6 - 0.7 um spectral band. Figure 1-1
shows two images over Tippecanoe County, Indiana which were taken in
September and November of 1972. A scene from Hill County, Montana for
two times during the spring and summer seasons is pictured in Figure 1-2,
Figure 1-3 illustrates an example of a year's span over western Kansas
where the data was taken in July of 1973 and 1974. And two temporally
differing data sets over Missouri are shown in Figure 1-4. Note that
although each of the scenes are recognizable from one time to the next,
temporal changes are evident. Also observe that the spatial scale of
both images in each time pair appears to be the same with little relative
distortion. This supports the spatial congruence assumption for small
subimages.

The assumption of spatial congruence for small subimages underlies
several registration algorithms that have been proposed and implemented
[1,3,8,9,11,30]. This approach allows the overlay of a sample of
corresponding subimages from each image assuming no relative spatial dis-
tortions exist for the small subimages. In the absence of spatial distor-

tions each of the subimage registrations can be accomplished by a
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9/30/72 11/29/72
LARS Run # Spectral Band Lines Columns
72053603 0.6 - 0.7 um (500,750) (575,825)

Figure l-i. LANDSAT | imagery over Tippecanoe County, Indiana.

5/5/73 7/16/73
LARS Run # Spectral Band Lines Columns
73124700 0.6 = 0.7 um (110,360) (110,360)

Figure 1-2, LANDSAT | imagery over Hill County, Montana.
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7/6/73 7/1/74
LARS Run # Date Data Taken Spectral Band Lines Columns
73046000 7/6/73 0.6 - 0.7 um  (175,425)  (275,525)
74024200 7/1/74 0.6 = 0.7 um (275,525)  (175,425)

Figure 1-3. LANDSAT | imagery over Kansas.

8/26/73 10/1/72
LARS Run # Spectral Band Lines Columns
72033804 0.6 = 0.7 um (375,625) (475,725)

Figure 1-4. LANDSAT | imagery over Missouri.
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relative translation. However, since the original images may be spatially
distorted, all of these relative translations of the subimages may not

be the same, so that the registration of the total image (full frame)
cannot be accomplished by a simple translation. Therefore, given the
translations for each of the corresponding subimages, a spatial warping
or coordinage transformation is applied to one of the images so as to
align all of the subimages simultaneously.

Once the relative spatial characteristics of the temporally differ-
ing images have been established, (which in this case is the spatial
congruency of small subimages), a determination must be made of the re-
maining parameters required to achieve registration. For example, since
registration is, by definition, a spatial matching, it requires a quanti-
tative measure of the similarity between two images so that a determina-
tion can be made as to whether the match has been achieved or not. Thus,
one requirement that must be met is that an appropriate similarity measure
be chosen. A second parameter that must be considered is the temporal
change that has occurred, since it is this change that contributes
largely to the uncertainty in the registration of the images. Although
the change at a particular data sample is unpredictable, a model of the
overall characteristics and the spatial correlation of the temporal
changes will increase the information available for the processor to use.

Another consideration that should be taken into account is the
performance of the registration processor. Ultimately, the optimum
processor is that which yields the best performance. This necessitates
the development of a quantitative measure of the performance so that the
optimum can be defined in terms of this measure. One example of such a

criterion is the variance of the registration error, where the error is




the spatial difference between the true registration location and the
position indicated by the processor. This error arises due to random
differences in the images resulting from temporal changes that have
occurred, In this case, the optimum processor is that which minimizes
the variance.

The presence of the need to develop a processor capable of register-
ing imagery has provided the impetus for research in the attempt to find
a solution to_ﬁhis problem. The following section briefly outlines some

of the previous developments and analyses that have been carried out.

1.2. Previous Investigations

With the ava}labiiity of large volumes of multitemporal images ac=
quired by the LANDSAT | multispectral scanner several image registratjon
algorithms have been proposed and Implemented. As mentioned in the
preceeding section, the minimal relative spatial distortion between
multitemporal imagery gathered by LANDSAT | has made feasible the design
of processors based on the assumption that small subimages are spatially
congruent, With this assumption a sampling of subimages from each of
the images to Be overlayed may be registered and the corresponding’
}elative translation recorded for each subimage. Since the entire images
may not be spatially congruent, all of the translations need nct be the
same, so that a spatial warping of one of the images is required to
simul taneously aI}gn all of the subimages., Therefore, this minimal
relative spatial distortion aliows the registration process to be broken
down into two s&ages. The first is that in which the spatially congruent
subimages are registered and the second is that in which the spatial

warping Is carried out.



First consider those algorithms concerned only with images that are
not relétively distorted spatially. Although all of these methods are
similar in the fact that each performs a search for a given subimage in
a larger background image containing the temporal changes, the actual
procedure for carrying out this overlay and criteria for determining
when the registration is achieved are different. The LARS registration
system [ 1, 5] uses the correlation coefficient as the similarity measure
(Table 6~1), where a maximum of its magnitude indicates the overlay
Tocation. A complete search is made over all possible registration lo-
cations, computing a value for the correlation coef%icient at each
translation, .

A second algorithm which comes under the heading of sequential
similarity detection algorithms (SSPA*s) [8, 9], uses a different simi~-
larity measure at orily a sample of points for each translation. The

.similarity measure used is the sum of the absolute values of the differ-
ences between the corresponding subimage data samples at each traﬁs!ation
(Table 6-1). With this measure a minimum value indicates registration.

Another algorithm employing a similarity measure like the correla-
tion coefficient plus saving computational time in a manner similar to
the SSDA's, performs a preprocessing step prior to 6ver1éying the imagery
[30]. Instead of uéing the original imagery for regi;tration, a gradient
type operation is applied to each of the images fiést: then they are
thresholded to produce binary images (images having values éf only zero
or one). Finally, these binary images are used to estimate the correct
registrafion position,

Once a set of subimages has been registered a spatial warping of one

of the images may be performed to match all of these subimages at the
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same time. The algorithms developed to haﬁd]e this part of the processor
differ primarily in the amount of spatial warping necessary to adeguately
model the relative spatial distortions. The system at LARS [1 ,5 ] is
set up to haﬁdle,a second order two-dimensional polynomial transformation
over an entire image. This may be refined by using a biquadratic warp-
ing over smaller subimages and then fitting the subimagéé back together
[46], which in effect accommédates a higher order spatial warping. A
further extengion is made by an algorithm designed to accommodate spatial
distortions on-g line by line basis [12, 20,22, 25, 26, 33, 42].

A second‘qrea of study has concerned analyses of the different
aspects of th§ image registration problem as opposed.to the development
of specific alggrithms for registering images. One series of .investi-
gations invo]veé‘fhe distinguishability of the output of the processor at
the correct r693§¥}ation_location compared with the output at all sur-
rounding locgﬁions {6 ,16,32]. With the basic design criterion that
the processor yield a maximum output at the correct registration posi-
tion, a proces;o}.has been designed to maximize the ratio of the output
at the correct registration position to the variance of the output at
‘all surrounding Pésitions. in this manner, the output at the correct
registration Eoéition is made more easily distinguishable- from that at
thg surroundingllocations.

. Another study examines the pull-in range of a processor, where the
processor s s%mpiy a product correlator [13,14]. This analysis concerns
the abi]}ty to determine the correct direction of movement in the search
_fo} phé:registration location; so that it ¥s not necessary to search all

-prospective registration positions.
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With regard to the situation in which the images to be registered
are spatially distorted relative to one another, geveral studies have
been made to determine ways .of estimating this distortion. One approach
uses the properties of the Fourier transforms of the images [16,17]1, and

a second utilizes a least squares estimation procedure [45].

1.3. Outline of Investigation

The development of a registration processor is begun by first de-
fining the image and temporal change properties in such a way as to form
a foundation from which a solution may be approached in an organized
fashion. For purposes of the present study one of the images to be
registered is considered as the signal, while the second image is assumed
to contain all of the temporal changes and is defined as the signal plus
additive noise, where the temporal changes are modeled as additive noise.
In this fashion the registration of the images ma9 be approached as a
parameter -estimation problem in the presence of noise. "The parameters
to be estimated are the relative translations between the images. The
noise is the temporal change and any measurement noise that may be
present in the system.

Given this definition of how the images and temporal changes are to
be treated, it is possible to determine a quantitative measure of the
processor performance. This is done in Chapter 2 where an expression
for the variance of the registration error is derived. The error is the
difference between the correct registration position, and that position
indicated by the processor which is operating in the presence of temporal
changes. Alternatively, a second criterion which may be used to evaluate
the processor is the output signal-to-noise ratio of the processor at

the correct registration location.
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Either of these quantitative -criteria now may be utilized to define
an optimum procéssor. For example, when considering. the output signal-
to-noise ratio, -the optimum processor is that which max%hizes it at the
registration position. Alternatively, an optimum processor can be de-
fined as the one that minimizes the variance of the registration error.
Both of these considerations are explo;ed and related in Chapters 2, 3
and Appendix A.. In Chapter 2, where.an expression fof the registration
error variance }; derived, it is found that use of a filter which maxi;
mizes the output ;igna]-to-noise ratio, the matched filter (2-36), leads
to a compact expression for the variance., While in Appendix A it is
shown that givén-ghe general expression for the registration error
variance, theiprocessor which minimizes this variance is the same as the
one which maximizes the output signal-to-noise ratio. Therefore, the
definition of opt%mum in terms of registration error variance minimiza=-
tion is equivalent to defining optimum in terms of output signal-to-
nof;g maximizapién since both yield the same processor, which is the
matched fiiter;

Using thége results, Chapter 3 presents the method by whicﬁ the
matched filter.may be found and implemented. An example is given
illustrating this. The particular example cﬁosen is designed to conform
with experimental observations of autocorrelation function estimates
for the temporal changes found between LANDSAT | images described in
Chapter 5, which indicate that the autocorrelation function of the
. temborgl changés is of an exponentially decaying form, This functional
form for the autocorrelation function is the model chosen for the
example. Thus, the example in Chapter 3 derives an optimum processor

applicable to the registration of images in practice.
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in Chapter 4 the effect of relative spatial distortions on the
performance o% a processor designed to operate on spatially congruent
imagery is discussed. This degradation of performance-is found in terms
of the loss in signal-to-noise ratio as a result of the spatial distor-
tions, where the relationship between performance and signal-to-ndise |
ratio is given in Chapter 2 in terms of the variance of the registration
error. One of the purposes of this section is to determine the optimum
size of the images to be registered. For spatially congruent imagery it
is readily shown that the largest possible image should be used for
registration. However, this is not necessarily true when relative
spatial distortions exist, since the spatial distort%ons cannot be re-
moved'by translation only, For the situation in which the distortions
are increasing with image size (as for a constant scale factor change)
it is shown that there is a particular image size which yields a maximum
output signal-to-noise ratio. Determination of the optimum area size is
a straightforward procedure which may be accomplished directly by evalua-
tion of an integral expression. This is illustrated in section L4.5
where the expression for the output signal-to-noise ratio is evaluated
by a numericé] integration method for several different types of spatial
distortions. Two general linear spatial distortions are presented as
well as two examples using models of the spatial distortions observed
for temporally differing LANDSAT | images. In thege last two examples a
straightforward method of applying the ana]ytica} results to practical
image registration is illustrated.

In Chapter 5 the experimental analyses are begun. This chapter
concerns the experimental estimation of the temporal change properties

which are pertinent to the development of an optimum processor for
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practical imaqe registration. The derivation of an optimum processor
presented in 6hapt§r 2 is formulated via two approaches -both of which
require knowlé&ge.about certain properties of the temporal changes. The
first method of solution necessitates the assumption that the probability
density function of the temporél-chanées is Gaussian. Further examina-
tion of this.%oymulation also shows that a model of the autocorrelation
function of the_&emporal changes is required. This latter requirement

is inherent iq the Gaussian density function assumption. The second
method of solution requires knowledge of only tﬁé temporal change auto-
correlation fpnctjon. Therefore, the two properties of concern are the
probabhility den;}ty function and autocorrelation function of the temporal
changes. The purpose of this chapter is to provide a model of these
properties for-LANDSAT | imagery so that an optimum registration processor
may be designed for the overiaying of LANDSAT | images in practice. An
experimental procedure is carried out for estimation of a general model
Fér both of these:properties. The first part of the study concernslthe
probability d?néity function and the second part is concentrated on the
autocorrelatioﬁ function estimate. The general model observed for the
auﬁocorrelatiqﬁ function indicates that it is of an exponentiial form.
This observatibn:ponforms with both the analysessin Chapters 2, 3, and
Appendix A, and ghéir application to the results of the experimental
investigation carried out in Chapter 6.

Chapter 6 presents an experimental comparison of several different
types of regisération algorithms that have been proposed and implemented
by ;ther investigators {1,3,8,9,11,30]. The impetus for such an
investigation 1ie$ in the fact thaé each of these aigorithms had been

developed and tested independently of one another, thus leaving the
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potential user at a loss to objectively compare their performance. This
study {s directed towards the relative evaluation of the techniques
utilized in these registration algorithms for accomplishing the overlay
of images. The techniques of concern are the similarity measure, the
criterion used to measure the spatial matching betwgen the images and
and therefore indicate the registration location, and the effect of
different preprocessing techniques on the registration performance. In
this analysis it is found that the results support the combined analytical
findings of Chapters 2, 3, and Appendix A in which it is found that the
optimum precessor is a matched filter, and the experimental findings of
Chapter 5 where ‘the autocorrelation function of the temporal changes is
observed to be exponential. The processor that experimentally yielded
the best performance utilized a gradient preprocessing operation on the
images prior to overlaying them, which approximates the derivative type
preproc;ssing operation derived in the example of Chapter 3 where a
matched filter is used in the presence of exponentially autocorrelated
noise or temporal changes.

Overall, the thesis provides an analytical and experimental investi-
gation into the design of an optimum registration processor. Using the
fundamental assumption of spatial congruity between the images, the
design problem is approached via parameter estimation theory, where the
parameters to be estimated are the relative translations between the
images. In this way it is possible to define optimum in terms of a
quantitative measure, as in the minimization of the registration error
variance of the maximization of the output signal-to~noise ratio. Once
the Optiﬁum processor has been derived, an analysis of the loss ‘incurred

by a deviation from the spatial congrulty assumption is performed, since
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this is the situation encountered in practice where relative spatial
distortions arise due to perturbations in the viewing position of the
scanner from oﬁe time to the next. Application of the analytically
derived optimum p;ocessor to the overlay of images in practice is pro-
vided by the fir;t experimental analysis in which a model is developed
for the temporal-change properties required for evaluation of the
optimum processor. Finally, this is followed by the experimentail com-
parison of several algorithms for registering }mages which acts both to
provide a relative performance rating of algorithms implemented by other

investigators, plus to give an experimental evaluation of the analytical

results found in the derivation of an optimum processor,



16

REPRODUCIBILITY OF TEZ
SRIGINAL PAGE IS POOR

CHAPTER 2

VARIANCE.OF THE REGISTRATION ERROR

An importantipart of the development of a registration processor is
the ability togquantitativeiy characterize the registration probiem in
some manner. Inkthis way, one may utilize this measure of performance to
design an optimué processor which maximizes the performance according to
the criterion chos;ann One such measure of performance is the tolerance
to within which one Is able to register two images.

This sectjoh concerns the derivation of an expression for the
variance.of thé_registration error, where the error s the discrepancy
between the obse}ved registration position and the true registration
Tocation. Two &odels for the variance of the error in the registration
of two different'images of the same scene are developed. The method of
solution employed is analogous to that used for the determination of the
error in the measured delay time in a radar system. For purposes here
the radar systéﬁ model assumes that the returned signal is a delayed
version of the oriéina] signal corrupted by additive noise. jAs adapted
to the reg?strat}9n4of two images, the noise is'defined as the difference
between the two- images at the correct registration position,.and is
‘therefore additiﬁé. The time delay corresponds to a spatial translation
iér‘displacement._ . '

' Several analyses of the radar problem have been carried out based

upon différeﬁt premises [151,[29],[44]. These approaches may be
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categorized as those which use the probability density function of the
noise directly and those whicir do not. The first case utilizes maximum

a. posteriori probability, maximum 1ikelihood, or minimum mean square error
estimates.- ATl three estimators are based upon knowledge of the noise
probabitity density function. The second case is based only upon the
output of a filter which gives a maximum output at the corréct time delay

when the input is noise free.

An analysis of this sort should prove useful in several respects.
The results should give an indication of the best possible registration
of two images given the models of the data and noise. Once the models
of the parameters involved have been found or assumed, an optimum processor
to implement the overlaying procedure may be developed. Comparison of
existing registration systems with the results obtained herein may also
be performed. However, one must keep in mind the assﬁmptions the entire
analysis. will be based on, for different assumptions may yield different
results.

It is assumed in the following invegtigation that the useful signal
is present, reducing the problem to one of estimation only rather than
detection as well as estimation. it I's further assumed that the signal
shape is known and nenrandom, although the parameter that is to be measured
is a random variable. Since the original signal is known, it does not
have a probability density function. However, the second signal does
contain noise and possibly other perturbations and is therefore a sample
function of a random process., The problem will be approached with this

in mind.
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2.1. Method 1

The solution to the problem of the first case, in which the prob-
ability density function of the noise is directly involved, depends upon
the cost function which is assigned to the error and the‘a posteriori
distribution;:;f[m(f)], of the signal as a function of a parameter, m(t},
given the received signal, f. A minimum mean sguare error estimate is
the mean of pé[m(r)]; an absolute value cost function gives the median
of the probabilit§ function; the maximum a posteriori estimate yields
the maximum of Rflm(r)]. Thé maximum 1ikellhood estimate may be viewed
as the same as'the maximum a posteriori estimate when there is no prior
knowledge of ﬁhé_density function of the parameter, pim{(t)], or pIm(z)]
is assumed uniform over the entire range of interest. All four of the
above cost funqtibns will yield the same solution when p[m(t}] is uniform
and the conditiohé] density function pm[T(f)] is symmetric and unimodal
[43]. A Gaussian distribution which has been assumed -for pf[m(r)] in
several analyses; is a member of this latter class,

There are'two basic reasons for the choice of this particular type
of probability ﬁénsity function., The first is the availability of a
closed form anéTyELcal solution. The second is that a Gaussian density
function is the-moéel that has been used to represent each of the
classes which comprise the total image [36,37].

This deri?aifon of the variance of the registration error is an
adaptation of £he solution obtained by Zubakov and Wainstein [40]. In
this problem ong.gssumes that the additive noise is jointly Gaussian with
zero mean., It is aiso assumed that the density function of the parameter
{i.e., the misregistration or displacement of the images) s uniform in

the range of interest.
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With these assumptions one may construct ‘the likelihood function

and then find its peak to determine the optimum estimator: -

(e e ) = bl 5.0 = bl yry S
-A.(.‘tx-"'cy' = pg 1;x,:ry). = p. 'Tx"‘Ty')‘ TR S (2-1)
where,
At ,T) . likelihood function of the -displacement
v parameters, T and T ;
X y .
plt ) ) conditional density function of T and T
%y given f{x,y); X 4
p(Tg,F;) density function of the parameters T, and Ty;
prx,r {(f) conditional density function of f{x,y) given
Y the trans]ation-parameﬁers T and,ty;
p(f) density function of f(x,y);
m{x+t_,y+T ) known signal as. a function of the spatial
X Y coordinates and the displacement parameters;
T ;t“ translation parameters
x* Ty _
Fx,y) m(x,y) + n{x,y) = received signal;
n(x,y) additive noise; assumed independent of the

signal.

Since: the data: that are being analyzed are discrete, it [Is. con-
venient to use integer subscripts rather than continuous spatial coordi-
nates. A further notational savings is realized by combining. the double
subscnipts~?nto a single supscrfpt. A two_dimensional array mfﬁ’ i=1,
eenyn P3J = 1y eeey G, i5 converted to a one dimensional data set m, s h =
T, «eo, Pq.  This conversion loses. nothing from the standpoint of the
results to be derived.

In this discrete case a continuous fdnctfon has béen sampled and

may be: denoted,
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mhﬁtf,ry) = m(xi+Tx,yi+Ty)
nh:F\p(xi,yj)
f

h = FOqgayy) =m

:[, ..l,H

i

H pd:= total number of samples.

To arrive:aé‘an analytical result, the probabjility density function
of the noise-ﬁust be known. Because of the many independent contributions
to the diffefgqces between images being registered, it is reasonable to

approximate the density function as being Gaussian. The probability

density function of the noise is therefore given by

= 1 L1 T~ _
p.rl(E) — (ZF)H/Zl_R_l]/Z exp ( 2 nk E) o (2-2)

where R is the covariance matrix of the noise, Rgh = E[ngnh]° The

density functijons in the likelihood equation then become,

Pr ,u (f) = Pn(f-[n('rx,ry))
X ¥ —_
T _
f - (f]’ AL fH)
T
- p o= (m‘, coes mH).

The 1ikelihood function is then

A, ) = plr.,1.) [=rer * ] ]
Tx Ty PAT T: p(f) (Z‘H‘)H/ZIBII/Z

,-%xp

1
2

[0 B oy M 4

Qghmg(Tx’Ty)mh (TX’TY)

n M
0o M

th 1

element oF_Ef . - (2~3)
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Since it is only the maximum of A(TX,Ty) which is desired, the
problem can be reduced even further., Let P(Tx,Ty) be a uniform distri-
bution over the area of interest. This is a reasonable assumption since
there is no a priori knowledge about the actual distribution. With this
assumption, examination of (2-3) shows that the only factor whicﬁ is not

a constant with respect to T, and T fis,

\/t
HoH _
¢ = I E O Fm (1,07, (2-4)
g
since,.
H H
3 i Qghmg(Tx,Ty)mh(Tx,Ty) (2~5)

and p(Tx,Ty) are constants for all values of T, and‘Ty, and p(f) does not
depend upon Ty and Tyo Therefore, the maximum of A(Tx,Ty} is determined
solely by the maximum of ¢. The optimum processor is then the one which
finds the maximum of ¢é. This type of processor may be viewed as a cor-
relator which is weighted according to the inverse noise covariance
function,. Qgh' For the case in which the noise is white with spectrum
NO/Z, the covariance. matrix becomes (NO/Z)J (l=identity matrix}, and the

optimum processor is simply a correlator.
9 H
¢ =3 E fhmh(rx,fy) E (2-6)

Given that the maximum point (this translation position is denoted
by (%x,%y)) of.thé Tikelihood function -has been found, a measure of the
accuracy of the estimate is necessary so that the performance of the
estimator may be evaluated. One such measure is the variance of the
est?mate.about'the maximum point of A(Tx,xyy; For this analysis it Is

convenient to use ln[A(Tx,Ty)] which is a monotonic function of A(Tx,Ty).
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The logarithm of the likelihood function is expanded in a second
order Taylor series as a %unction of the delay parameters about its peak
in the x-axis'and y-axis directions separately. It is assumed that
]n[A(Tx,Ty)]E;éh be approximated by a second order polynomial around its
peak.

Only the reéhlts in the x-axis direction are givéa since the y-axis

direction results are completely analogous,

In=A(Tx,Ty) = In A(Tx,Ty)

3 In A(T T )
+ At (1 -7 ))
X X

97 Tn(A Tx,Ty)

(1,7) 2 (2-7)

1
2 eT
X

where

3 In A(Tx,Ty) 3 In A(Tx,ry)
. ToT 3T
X x

N
T
X X

T

T =1
Y Y

A necessary condition for the maximum point of 1In A(Tx,Ty) is that,

3 In A(TX,Ty) o 3 In A(Tx,Ty) (2-8)
9T 3t
"X . y

The Taylor serié; expansion may then be reduced to
1n A(Tngy) = In A(Tx,Ty)
2 P Eal
3" 1n A(Tx,'ry)

] a2
5 5 (TX'TX) . (2-9)
.BTX

Rearranging.fhis equation one obtains,



23

~ 2
~ ” ~ I (TXHTX)
A(Tx,ry) = A(Tx,ry) exp |- 5 —5——|. (2-10)
X
where
-1
R LWYCHE )1
AT = - 5 + = variance in the x-direction- (2~11)
® GTX J

Assuming pmﬁTx’Ty) to be uniformly distributed,

[ HH o om (% ,7)
—_—=5 £ Q , [m {(t ,T)=F}
82 g p 9 XY g g2
X X
H H om (T_,7) om (T_,7)
vz ro, —L- Xy _h Xy (2-12)
gh 3T T
g h X X
if one further assumes a large signal-to-noise ratio, then
1 H H Bmg(Tx,Iy) Bmh(xx,ty) i
=z zQ - (2-13)
2 gh 3T 3T
Ax g h X X

since [mg(%x,%y)wfgl is dependent only upon the noise and is small com-
pared to mg(Tx?Ty)'

Greater insight into the solution may be obtained by ‘Tooking at the
result in the frequency domain as opposed to the spatial domain. The

transformation yields an interesting answer. The variance becomes,

Ai = 27 (2-14)
wau
where
.AWi effective bandwidth in the x-axis direction;

K. signal-to-noise ratios;
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P q M(LI V) 2 -
u =3 Il (2-15)
u v R
P g 2 2
‘ hel y 3 Y [M(u,v) |
2 u v SR U,V
MW = 7 (2-16)
X P9 I1M(u,v)
Eoz S,lu,v
u v "R
M(u,v) . Fourier transform of the known signal;
SR(u,v) noise spectrum.
In the spatial domain,
’Hi H . N :
u o= g }Z] Qghmg('rx,ry)mh('rx,ry) : (2-17)
) g" g . Smg(Tx,Ty) amh(rx,Ty)
2 . g h gh BTX a'l'x ’
B = T —— — . (2-18)
g ;: Qgﬁmg(Tx’Ty)mh(Tx’Ty)

With the above assumptions the variance has been reduced to a
‘function of the effective bandwidth and sighal-to-noise ratio which are
expressed .in the frequency domain by equations (2~15) and (2-16), and in
the spatial doﬁafn‘by equations (2-17) and (2-18). %his implies that if
one can estimate the effective bandw}dth and the signa}-to-poise ratio
in the x-axis and y-axis directions, then the variance of the registration
error can be estimated. |

Now consider the second derivation for the variancé which is based

upon different"assumptionsu

2.2. Method 2

" A second derivation of the variance of the registration error is

developed in this section. In this case, the only assumption about the
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signal and processor is that in the absence_of noise, the output of the
processor will be a maximum at the correct trans]atién[%S]. No assump-
tions about the probability distribution of the noise are needed. As will
be seen, the results of this derivation are similar to those obtained in
the previous derivation, even though the two approaches are quite unalike.

The signal corresponding to the image to be overlayed is modeled as
having two components, the desired signaj and additive noise., This signal
is passed through a filter and the -position where the maximum of the out-
put signal oceurs is taken to be the correct regigfrgtion position,
However, siﬁce the filter is designed to yield a maximum at the correct
delay only in the noise free case, this observed registration position
may differ from the true registration location. The discrepancy between
these two positions is the registration error.

First consider the parameters involved.

fx,y) signal;

m(x,y) . additive noise;

fix,y) + mkx,y) data-set to be registered;

h{x,y) _ filter impulse response;

g{x,y) .- f(f,y) * h(x,y) = output signal in the absence of
noise; '

n(x,y} _ m{x,y) * h{x,y) = output due to the noise input;

z(x,y) g(x,y) + n{x,y} = composite oﬁtput signal used to
estimate the correct registration positién;

(x,¥) true registration positiong

(§,§) estimated registration position.

The derivation proceeds as follows. First expand g(x,y) in a second

order Taylor series about (x,v).
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g(6y) = 9(R,7) + g (K7) el + g (K,9) [y-51]
-+ g (V) eI Dy-71 + % g, (R,§) [xeR1

) ~ ~_2
o+ 3 g (x,y) Iy-yl (2-19)
T yy

where the subscripts denote the partial derivatives with respect to the

corresponding variables,

ax

gx(i,é);= 9{x,y). y .
. X=X, y=Y

This subscript notation is used for the remainder of this section.

Assume that (XT;) and (y-y) are small enough so that all higher order

terms may be nedlected.

m

Note thaf a necessary condition for a maximum is

29 Gu) _ o - 29Gef)
ax ay )

Substitute this result into the equation for z(x,y).
z2(x,y) = 9(x,¥) + g, (X,¥) [x-x][y-y]
43 g ) k2
xx?
Lt gyy(i,i)[y-§]2 + n(x,y) v : (2~20)
Again use the néce%sary condition for an cbserved maximum,

3z{x,¥)/ox = 0 = 3z(x,y) /3y,

2, (a9) = 0= g, (3) [§-y]
o _gxx(ii,\'i) [%-X1 + n_(%,¥) (2-21)

_“zy(SE,{;) =_0'% 3, (;;fi}) [x-x]
g, W) [yy] + 0 (%,9). | (2-22)
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Arrange these equations in terms of (X-x%) and (y-y}, the error in

the registration.

. g h-=g -nx
Oex) = R (2-23)

gxxgyy-gxy
“ o~ g n -g n
Ixyy Ixy
where the arguments, (;,?) and (;,§) have been left out for notational
convenience.

One can now find the variance of the error by taking the expectation

of (§-§)2 and (Q-G)z, where it is assumed that E[;rg] =0 = E[\?-;f]o

Var[x-%] = E[(3=%)?] = (x~%)2 (2-25)
i 4\-.-.2 A~2
VarTy-yl = El(y=y)"] = (y-y) (2-26)
92:2--29 g 'n_T-i- 92;1?
~ D
(xm) 2 = XYY : XY“YY Y ; > YY_ X (2-27)
Iuxdyy ~ Iy
92 ;E-- 2. g nn_ + 92";5 :
Ai\-'z
(y-y)© = XLX [ WYX 2 XX Y (2-28)
T la Sy T Gy

One may use these equations ‘to calculate the vatfance of the error,
but in doing so, it is found that a filter function must be specified
first. This is intrinsic in the parameters in these equations, which is
seen more clearly if one writes these terms as a function of the filter

(wide sense stationarity is assumed).
e _ PO A A
ny('x’Y) = f.”’f hy (X-G,Y“B)hy (x=v,y-2)

- Rm(u"Y,B—l)da dg dy dA (2-29)

TE L
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Il

n, Go9)n Go9) =[] b Geo,i-8)

h. (x=v,y=2A) Rm(a-Y,B-A)

do dg dy dh : (2-30)

. “i{§»§? = [I] b Ge,§-8)h (x-v,9-3)

* R_(o=y,8-A)da dB dy dA (2-31)
0, (%:¥) = [[ h (=, §~8) F(o,8) da dB (2-32)
gyy(i,i) = [ by, (=a,y-6) Fla,8) do d8 (2-33)
gxy(¥,§5 = [f h (xa,y-8) F(o,8) du dB (2-34)
where
Rm(a;v; BA) = TE, BTmCY; %) (2-35)

One now has an expression for determining the registration error
variéﬁce. Equations (2-27) and (2-28) will allow one to find the
variance of the error for any filter function; however, they seem to
bear little ré§emblance to the results in the first section. To obtain
a particular sofution, a specific filter function must be chosen., The
" one that has been picked is intuitively pleasing in two ways: it is an
optimum type filter in that it maximizes the signal-to-noise ratio; and
it yfelds an answer in terms pf theisignal bandwidth and signal-to-noise
ratio. In Append}x A it is also shown that this filter m}nimizes the
error variancet_ This filter is the éo called "matched filter,"

Let ,

F*(U,V) exp (-jZTI’(;U + i\f)) . (2'36)
S (u,v) |

H{u,v) =
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Sm(u,v) Fourier transform of Rm(x,y);
Fu,v) Fourier transform of f(x,y);
H(u,v) Fourier transform of h{x,y).

Substituting this filter function into equations (2-27) and (2-28), the

results simplify to,

[ 2 1=
a o~ 2 _ gx _ _
(x=x)“ = —j’; 9 (2-37)

- 2 T-1
g

h-vz x
- = 12X - -38
(y-y) 5, %y (2-38)

This simplification is seen more easily if one first converts equations
(2-29) through (2-34) to the frequency domain and then inserts the
matched filter.,

One obtains the final result by converting these last.two equations
to the freguency domain. They then become,

_ 2 -1
— 9
(x=3) 2 ) A Bi SNR (2-39)

1

§-97 = |- =2 + B> IR (2-40)

where

[ 2 Ti72
b /I u? l§£%ﬁ!%+- du dv ‘
B = | L (2-41)

2
F
I S;”;Yi du dv

B effective bandwidth of input signal in the x-axis
direction;
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1172
w1 SE 0

By = {2-42)
- ”JF—(U(L)#dudv
) u,v
B . _effective bandwidth of input signal in the y-axis
Y " direction;
SNR = jj F(“uvi du dv (2-43)
SNR = output signral-to-noise rati0.|

It is seen.that the variance of the error is again expressible in
terms of the effective signal bandwidth and signal~to-noise ratio. These
results are simi}ar to those obtained in the first section, but the re-
lationships aré'nqt quite as simple,

A further siﬁplication can be obtained by making some additional
assumptions. .The error variance expressions then will be the same as in
" the first metﬁodu' These assumptions concern the term gg&(i,?) in equations
(2-39) and (2450). If this term equals zero, then the desired result is-
obtained. Suéh a condition involves the quantity []F(u,v)[zl/[smﬁJ,v)]
since gxy(;’;) i; a function of this quantity. Let K{u,v) =
[[F(u,v)[z]/[sm(u{v)] for notational convenience. Since K(u,v) is an
even function of u and v, in order for gxy(i’;) to equal zero it is
sufficient thgt,

K{u,v) = K(-u,v) ' (2-44)

or necessary and sufficient that,

Io Io uﬁ‘K(u,v) du dv = fo fo uv K{~u,v} du dv, (2-45)

The expressions then become
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(332 = =l (2-46)
B_SNR
X

9% == ©(2-47)
BySNR

which are completely analogous to thé results obtained by the first
method. .

An example of when these last assumptions migﬁt.épﬁly is the follo-
ing situation. Let F(u,v) and Sm(u,v) be bandlimited to wx and WY in the
respective axis directions. And let [[F(u,v)]z]/[sm(u,v)] equal a con-
stant. This would occur when the noise sPectrum-has.a shape similar to
the signal spectrum. In this case, it might be advantageous to model the
two spectra as differing only by a constant factor for simplicity in

estimating the variance to be expected. This may be written,

2
ifj%i!l4—- = ¢, a constant. (2-48)
Sm U,V

From Equation (2-43)

W W )
SNR=c [ * [ dudy. (2-49)
-W ~W
Yy ¥
So,
<= e - (2~50)
Xy
Then from equations {2-41), (2-42) and (2-43),
: Tou3
yaAl)
2 o2 X -
B SNR = hn” ¢ [—3—} (2wy) (2-51)

ZWB
2 SR = hn” c(M) |—L (2-52)
By SNR = 41" c(2 « 7
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Substituting in the expressions for ¢, the variances are,

Fd

T 2.

3

(x~x)° = (2-53)
4ﬂZWiSNR ’

~=7 3

(y-y)© = —-g— (2-54)
MTZWf,SNR

The respective standard deviations then are,

‘l H H 6-~ el --I—- i -
Standard deviation of (x-x} = zﬂwx,fsNR (2-55)
H H A—” - ...—]..._. --.3_ -
Standard deviation qf (y-y) = ZﬂWy SR (2-56)

One may~9b£ain a quantitative-feel for the values of these expres-
sions by using the sampling intervals for the LANDSAT-1 data in this
example. Thé";ampling interval is about 60 meters along the columns and
about 80 meters #]ong the tines. Substituting these values in equations
(2-55) and (2-56), one finds that,

Standard deviation of_error long the

lines = ——— meters . " {2-57)
vSNR
Standard deviation of error along the
columns = 33.1 meters. (2-58)
YSNR

These results indicate that with the chosen filter, the standard

deviation of the‘registration error is quite small.

2.3. Conclusion

" A quantitative measure of the registration processor accuracy in

terms of the variance of the error of the registration has been derived.
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With the appropriate assumptions, the. wvariance ‘is shown to be inversely
proportfonal to the square of the effective'bandwiﬂth times the signal-
to-noise ratio. The Tinal expressions are presented again to emphasize

both the form and simplicity of their representation.

" 1
Var [(x=x}] = ————
B SNR

X

Var [(-)1 =
BysNR

This derivation should prove useful in several respects. First of
all it may be a basis for the anaiysis of differéqt ;égistration systems
by providing a.way to esfimate the expected accuéaqy of the system.
Secondly, it provides a straightforward way of estimating this error.

As a final .consideration the basic assumptigﬁqinéeded fof the two
methods are listed. These assumptions are importan;qgnd must be
realized fu]Iy to be 'sure that they apply to the situation in which they
will be Utilized. For the first method these assumbgions are: ‘the noise
is additive and independent of the signal; the jéfht probability density
function of .the noise is Gaussian; the a priori d}§;éibution of the delay
parameters Is gniform over the range of interest; the variance may be
modeled in the x-axis and y-axis directioﬁs separately; the final result
is dependent upon a large signal-to-noise ratio [cf. étep from equation
(2-12) to (2~13)]. The basic assumptions for the second method are: the
noise is additive and independent of the.signdl; the ﬁoise spectrum must -
be known; the choser filter is the I.‘rr.la’cc:hecl filtef%ﬁ to obtain results
completely analogous to the first method there is one further assumption
that must be‘ﬁéde about the ratio t|F(u,V)|2]/[Sm(u,Y)} [cf. equations

(2~44) and (2-45)].
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In particy}ég, note the assumptions related to the probability
density functiép and the spectrum of the noise. The vglidity of assuming
a Gaussian density function and of assuming a particular type of auto-
correlation (or spectral density) function is pursued further in succeed-
ing sectionsJ'IThé discussions approach these issues along both analytical
and experimental Tines, the first to provide a theoretical basis for what

should occur,:énd the second to provide confirmation of these assumptions.
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CHAPTER 3

IMPLEMENTATION OF A MATCHED FILTER FOR IMAGE REGISTRATION

In the prgv}ous sections it was indicated that the registration
processor perforﬁance improved as the output signal-to-noise ratio (SNRO)
increased. For example, the variance of the registrgtion error is shown
to decrease with an increase in the SNRO, thus providing a greater regis-
tration accuracy (Chapter 2)., This result prompts an investigation to
find the processor which maximizes the SNRO thereby improving the system
performance. Such an analysis is carried out in this chaﬁter.

The geneéal'form for the processor chosen is that of a linear filter
whose- input i; fhe known signal plus zero mean, additive noise, and whose
output is designed to yield a maximum at the correctfrégistration lo-
cation in the gbsence of noise., For completeness, a detailed derivation
of the filter y&hich yields the maximum SNR_ is provided first. These
findings are then utilized in an example illustrating the optimum filter
one obtains Iﬁ_the presence of a particular type of noise, where the
type of noise'}éésonabiy models that observed experimentally (Chapter’5).
The analytical apﬁroach to this problem is stressed in'this section,
while its agreement with experimental observation is discussed in Chapters
5 and 6. ‘

‘ %he output Eignal-tOHnOISe-ratio at the translation (Tx,Ty) is

¥

defined -as follgws.
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T blrmxm s (x,y) dxdyl?
SHR | = —= (3-1)

o«

E{Lff h(rx'x,'fy-y)n(x,v) dxd‘/]z}

-0

h{x,y) = processing filter

known signal

it

s{x,y)

]

n{x,y) = additive noise

Or equivalently,

S hlrmx =y)s(x,y) ‘dxdyl?

)

3NR_ =
(o]

[- I -]

-',g_.‘};f h(rx"x,rry“y)h('rx“a,"ry-s)Ri;l(x_-a,v-B) dxdy dadB
(3-2)
Where E{-} denotes expectation and;Rn(Tx,Ty) is the autocorrelation function
of the noise.

The filter which maximizes this expression is derived In two basic

steps. Let,

h(x,y) = ff h (x=a,y=g)h_(a,8) do d8 - (3-3)
where h (*,*) is a prewhitening filter; i.e., for,

nw(x,y) = ff hw(x-a,V"B)n(u,B) do dB . (3~4)
choose h (x,y} such that, |

E[nw(x,y) n(e,8)] = 6(§-u,y-8) - 3-5)

and hm(',') is the filter which maximizes the SNR;_with the prewhitened
noise and signal. The'uﬁderlying reason for this approach is that in the
presence of white noise, the Sehwartz Inequality may be applied directly

to arrive at the desired filter function in a simple manner. Schematically,

the composite filter is as shown Pn Figure 3-1.
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Figure 3~1. Component representation of matched filter.

Since,

E[nw(x,y)nw(afﬁ)] = [ [f hw(x-a,v-ﬁ)hw(a'Y,b"E)Rn(é'T,B-E)dadBdeﬁ

(3-6)
and
E{nw()-(??)nw(a’b)] = 5(X‘a,‘/’b)
'EW(X,Y) is found by solving the integral equation,
8(x-a,y-b) = [[ [ h (x=0,y-B)h (a-y,b-E)R (a-v,B-E)dodBdyde  (3-7)

* =mgn =0 H
.

which may be eqhivalent]y expressed as,

=]

.

§{x-a,y-b) = [{ Hw(u,v)Hw(-u,--v)Sn(u,v)éJ

-0

2"Tt“(x"a)""v(ymi:')]dudv (3-8)

where,
Hw(u,v) = Folrier transform of hw(x,y)

Sn(u,v) = Fourier transform of Rn(T »T ), or the spectral density
of the noise v

The solution to this integral equation is,
Hw(u,V)HQ(-u,-v)Sn(u,v) =1 ' _ (3-9)

f? 1 - e_121T(ux + vy)

-0

since S(X,y) = dudv, by the properties of the

Fourfer transform.
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In the case of a real Ffilter function, which is the situation en-
countered with the registration of imagery, then,
Hw(-u,~v)'=‘Hw"(u,v) ) . _(3-10)

so that the solution becomes,

|Hw(u,v.)|2 = E—T%TVT (3-11)

n

Once the nolse has been prewhitened, the problem reduces to,

5, (%a¥) 4*(-?——> h (x,y) > output

n,(x,y)
Figure 3-2. Block diagram after prewhitening.

s,,(%¥) = ff h (x~a,y-8)s{a,8) dadg

n,,(x,y) =_J;{ h (x=a,y=8n («,8) dads

where one must find the fi]ter,‘hm(x,y), which maximizes the SNRO.

[=+]

EL! hm(Tx-x;ﬁy-y)sw(x,y)=dxdy]2

SNR = (3-12)

[+l

E{E£! hm(Tx-x,Ty-y)nw(x,y)dxdy]z}'—

Utilizing ‘the whiteness property of nw(x,y), the SNRO_becomes,

{i! hm(Tx-x,Ty"Y)sw(x,y) dxdy}2 . |
Mo == ‘ (3-13)

1 hi(Tx‘X,Ty'Y) dxdy

This expression then has an upper bound which is foﬁnd by applying the

Schwartz inequality.
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SNR <. [ sz(x,Y) dxdy (3-14)
(&) i W .
with equality fqr,
hm('fx"X,ty"Y) =k s _(xy) (3-15)

where k is an arbitrary constant. Letting k = 1, the maximum SNRO is

achieved for,
hm(?x-x,Ty-y) =s_(x,7) (3-16)

or equivalently in the frequency domain,

) ~ji2nfur + vt ]
Hm(u,v) = Sw(-u,—v)e X Y

(3-17)

and

[Hw(u",v)|2 - ST . (3-18)

n
The block diagram in Figure 3-1 may now be replaced by its equivalent
form, combining .the cascaded filters hm(x,y) and hw(x,y), as shown in

Figure 3-3.

s(x,y)-——’(;)r—~“*~i- H{u,v) > output

ri{x,y)
“ Figure 3~3. Block diagram of matched filter.

where H(u,v) is the Fourier transform of h{x,y) and,
H{u,v) = Hw(u,v)Hm(u,v) - (3=19)

Substitution of the expressions for Hm(u,v) and Hw(u,v) in conjunction

with the identity,

Sw(u,v) = Hw(u,v)S(u,v) (3-20)
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S{u,v) = Fourier transform of s(x,y)
and the assumption of a real valued signal, .aliows one to ohtain the
final express’ion for the filter which maximizes the SNRO.

s (u,v) ‘"JZ“IUTX + vry]

H(u,v) ='§;TE:VT e - {3-21)

Note that the desired filter depends only upon the signal, 5Cu,v),
and the spectral density, Sn(u,v), or autocorrelation function, Rn(Tx,Ty),
of the noise. Since the signal is known, the only adgitional knowledge
required is the noise autocorreTétTon function.

Before proceeding with the example, first consider an equivalent
form for the block diagram of Figure 3-3. Observé tﬁat in Figure 3-3
the entite processing Filter s lumped under the heading of H(u,v). An
equivalent operation is to prewhiten the received signal, prewhiten the

known signal, and then crosscorrelate the two. This Is illustrated in

Figure 3-k.
s(x,y)+n(x,y) —— hw('x-:'f')—““—"‘(;}—**' f ——— output
hw(>_<,.y)
5(x,y)

Figure 3-4. Prewhitening representation of matched fitter.

The reason for viewing the operations in this manner is because it is
analogous to the preprocessing state of image registration, where the two
images 'to be overlayed are first preprocessed and then registered via a

crosscorrelation technique.


http:crosscorr-elati.on

I

The folfow{ng exaﬁp]e provides an illustration of the filter re-
quired to achie%e the maximum SNRO for noise with a specific type of auto- _
correlation function. The particular parametric form for the autocorreia-
tion function used was chosen because it was found to.provide a reasonable
model of the éutqcorrelatlon function encountered experimentally (Chapter
5} The interpréﬁation of the operations will follow the biock diagram
of Figure 3-4, whére a prewhitening operation is applied to both the

received and kriown signals. Let,

, el ] - sl

an(%kféy) = a2 o (3-22)

Then,

o -alt | - 8|t | -j2wlur, + vt ]
Sn(u,\]) =[] AZe X e x 4 d'rxd'ry (3-23)

Carrying out the ‘integration one obtains the following expression for the

spectral densfty._

2 200 1} 28 1
S (u,v). = A [ (3-24)
SR e N vy
Since,
-"':_2__ ]
|Hw(u,v)l 85 {u,v
n
it follows that.
(W) |2 = =t [+ hn2?] 162+ 4V (3-25)
W ha%ap

ﬂ;(u,v) is found by.factoring the above expression which is of the form

Hw(u;v)Hw(—u,~v)5' Carrying out the factoring operation gives

1
28VaB

Hw(u,p) = [a + j2wu] [B + j2mv] (3-26)



42

At this point one may evaluate H (u,v} via two .different approaches:

a single two-~dimensional filter, or two cascaded one~-dimensional filters.

Single Two-Dimensional Filter

2
H (u,v) = faB + Bj2wu + aj2mv = b uv]
W 2AYaB
Cascaded One-Dimensional Filters-

H (u,v) =H (u) H (v}
w W, W,
H (u) = —eela + j270]
Y Y20l
H, (v) = I (B + j2av]

v Y2BA

In the spatial domain these filters become,

Single Two-Dimensional Filter

h (x,y) = [aB §(x,y) + B d L -4 ¢* ]
] - ’ — —— —
w IAYal dx dy  dxdy
Cascaded One-Dimensional Filters
1 d
h, (x) = fo 8(x,y) - -
“x  /2ah dx
: 1 d
h (y) = [B 8(x,y) = —1]
Wy V2BA dy

(3-27)

(3-28)

(3-29}

(3-30)

(3-31)

(3-32)

(3-33)

The important point to be noticed here is that the prewhitening filter is

a derivative type processor. This indicates that when one is registering

two images by first preprocessing each image and then crosscorrelating, a

derivative type operator in the presence of noise with an exponential



autocorrelation function will maximize the SNR0 and thus improve the.-
expected regfstration performance. This prediction is corroborated by

experimental observations which are discussed in Chapter: 6.,

43
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CHAPTER 4

CHANGES IN THE OUTPUT SIGNAL-TO-NCISE RATIO‘DUE TO
RELATIVE SPATIAL DISTORTIONS BETWEEN [MAGES

In the fpljowjng analysis the change in the output.signal-to-noise
ratio (SNR) is‘computed, for the situation in which the images to be
registrated afefq}storted spatially with respect to each other. The need
for such an igvestigation is prompted by the fact that in the case of
LANDSAT'imagery;'small relative spatial distortions exist between images
taken on differept orbits over the same area. The probable cause of
this lies in small unavoidable perturbations in the satellite's orbit
such as aItitGﬁé, heading, and pitch. Similar, but more pronounced spatial
‘distortions aiép,occur in aircraft scanner imagery.

When the Fégistratton problem is modeled as passing the background
image containing Fhe temporal changes. {received signal plus additive
noise) through_gﬂfi]ter so0 as to maximize the SNR at the correct regis-
tration position; the processor used essentially correlates a filtered
version of the:baekground image (signal plus noise) with a filtered ver-
sion of the réfgrence image (signal), where the two images to be regis-
tered are denoted as the background image and the reference image. The
background imagé°?s a temporally differing and spatially distorted
Qersion of the re%erence imége corrupted by additive noise. One of the
parahéters thaf must be chosen in this correlation is the area over which

the integration is carried out. For geometrically congruent imagery it
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intuitively follows that a larger observation area yields a higher SNR.
However, this is not the case when relative spétial distortions dependent
upon image 3ize exist between the images. For the case in which the dis~
tortion increases with size, as in a simple difference in scale, it is to
be expected that beyond a certain image size the SNR will decrease due to
the fact that the images cannot be simultaneously mgtched at widely sepa-
rated points by translation only. Therefore, when relative distortions
exist it should be expected that there is an optimum integration area
size which realizes a maximum SNR. This is the problem that is examined
in this chapter.

The derivation is divided into two major categories: white noise only
is present; or nonwhite noise is present, Within each category an ex-
pression for the SNR as a function of the integration area size is derived
for both relatively nondistorted and distorted spatial scales between the
reference and background images.

The procedure for comparing these two situations involves using the
filter which maximizes the SNR when the spatial scales are the same (the
matched filter), and then using a distorted spatial scale version of this
same filter to obsefve the effect on the SNR due to relatively distorted
spatial 'scales. The choice of which spatial coordinate system is dis-
torted, reference or background image, is arbitrar& since the distortions
are only relative. The reason for proceeding in this fashion is that
this models quite well what actually happens in practice. Since the
relative distortion is unknown beforehand, it cannot be corrected for

prior to protessing the images, so that the relatively distorted ‘images

must -be dealt with as they exist.

REPRODUCIBILITY OF T%.
HRIGINAL PAGE IS POOR
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For two=dimensional signa]s; in this case imagery, the output s}gnal-

to~nojise ratio and related parameters are defined as follows.

X ] Tx Ty 2
,‘{E[H?rir—-f f h(Tx-x,Ty-y)s(x,y)dxdy]}

xy =T =T
SR = - T T (k1)
- . N "
Bl [ 7 hle % T, ~Y)n(x,y)dxdy]”)
X -T_~T
Xy
Where,
SNR = output signal-to~noise ratio

s(x,y) = signal; reference image

I

n(x,y) = additivé zero mean noise

h(x,y) = processing filter

hTXT observation area size

b4

(TX,TY)

1l

translation

In this expreég?on the SNR is defined as the ratio of the square of the
expected va}ue;gf the output due to the signal and the variance of the
output due to’tﬁé noise. The SHNR is a function of the cobservation area,
thTy, througﬁ thé:integratioﬁ Timits.

To p%oceed,‘}f is necessary that the signal and noise properties be
defined more coﬁbletely to allow for evaluation of the SNR. The necessary
assumptions fofjéh}s analysis are, -

(i) s(x,y) and n{x,y) are independent

(i1) 'Rg(x-a,y-b) s{x,y)s(a,b)

N
§(x-a,y=b) ; white noise

]

o
BRI : 7
(iif) R (x-a,y=b) = nlx,y)n(a,b) =< y
-él 6(x-—a,y-b)+Rn (x~a,y-b);
[

nonwhite noise

It is importanﬁito note that assumption (iii} states that in the presence



b7

of nonwhite noise, the noise is. comprised of a white noise component with
K.
autocorrelation function TT'G(X- ,¥~b), and a colored noise component with

autocorrelation function Rni(x«agy-b). The Pnclusion of the white noise
c
component is realistic as regards practical measdrements and also avoids

the possibiTity of singular detection, Later on in the analysis it is
seen that this assumption leads to a solution employing a prewhitening

filter as a .component of the matched filter for nonwhite noise.

k.l. White Noise With No Relative Spatial Distortion

ln this section the SNR will be evaluated for the case where white
noise only is present,,

N.
= _9 = -
RH(TX’T‘,’) =3 S(TX,TY‘)' (l'} 2)

and no relative spatial distortions exist between the background and
reference: images. For evaluation. of the SNR {eq. 4~1) a filter must be
chosen.. In keeping with the analyses of Chapters 2, 3, and Appendix A,

a matched filter is employed. In the presence of white noise this filter

has an impulse response of the following form,
h(Tx"x,Ty'v) = s(x,y) | (4-3)
Substitution of this into the expression for the SNR yields,

{E[hT = f f ys (x,y)dxdy]}

X'y -Tx -1,
SNR, = (4-4)
B I f IY 5 (x,y)nlx,y) dxdy]%}
Xy -T HTY

where the subscript w denotes white noise.. Evaluation of SNRw is carried

out as follows,
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Tyz' 2 1 T ——
{E hT T f ¥ s%{x,y)dxdy]}" = {MT T f f Y 5 (x,y) dxdy}

=TT 7T
xy Ty xy T y
- ! y 2
= 7 [*] R, (0, o)dxdy}
xy =T -Ty
(4-5)
= Rs(o,o)
T 2
E{[J{_T T f‘x f Y S(X,Y)n(x’Y)dXdY] }
Xy -Tx_-T .
= I ) ff ffy s(x,y}s(a,b) n(x,y)n(a,b) dxdy dadb
(hT T )
1 N
= — Ux ffy R, (x~a,y~b)— &(x~a,y= b)dxdy dadb
(hT T )
1 NO
= 2‘2—f J'YR(oo)dxdy
(4T T ) “T =T
XY Y
o No ’
= WT RS(O-,O) (’4'6)
Ry
The SNR is therefGre,
: ZRS(O,O)
SNRﬂ B qTxTy N (5=7)

8]
Note that SNRQ'isnproportional to the integration area. This is exactly
what is to be éxbécted since a larger integration area allows access to

more signal information,

k.2, White Noise With Relative Spatial Distortion

As in thé jast section the noise is assumed to 'be white. [t is also
assumed that relative spatial distortions exist between reference and

background images. Thus, since only a spatially distorted version of the
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signal Ps present and the distortions are unknown, the filter is matched

to this time distorted signal., The filter is represented as,

e 7,7, oY) = sIxtp(x,y) ,y+q(x,y) ] (4-8)

where p(x,Y) and q{x,y) are functions of x and y that mpdel the relative

.Spatla] dlstortion° Wi th thls filter the SNR becomes

-EE[L}T T J' J'Y s [xtp (X, ), y+q (x,y)] s (x,y) dxdy1?)

XY —T =T,
SNR = — : (4-9)
E{{-ﬁ—f x i Yy sIx+p(x,¥) ,y+q(x,y)] nx,y) dxdy]’}-
xy ~T -T - . .

Y

This'éxpression may be evaluated as follows

T T S
(Bl [ % [ Y s Derploy) ,y+alxoy) Ts(x,y) dxdy]}2
Xy ~T. -T ) -

= {41' f / K sDp OGY) Y H Gy 15 06 Y) dxdy }2
T n-
: Ty

{4T 7 J' I" R Ip(x,¥) 1qlx,y) ] dxdy} o (4-10)
Xy -T ~T

{E[T;-]'-'LT"'I x-f Y s[x+p(x,y) ,y+a(x,y) In(x,y) dxdy]?3
xy =T -Ty : .

‘—]—*)"5 ffx .UY Slx‘*‘P(X,Y)sY+q(x,Y)]S[a+p(a BY;5%5(=,b) ]
. (h'r T _ "

. n(x,y)n(a B) dadb dédy

. N ’
w2 ffx f.fy Ry Ix+p(x,y)-a-p(a,b) ,y+q(x,y) ~b~q(a,b)]

(‘ﬂ‘ Ty ) =T "Ty * §(x-a,y=b)dadb dxdy
- 'T ) _29.:( Y R_(0,0) dxdy
(hT y
,ON .
- O R (0’0) . . (1}-1})

liTxTy 2
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The output signai-to-noise ratio is then,

T R:[p{x,y),q(x,y)]
Y _S dxgy}z (b-12)

2R5(0,0) . Tx
SNR,,. = 4T. T { - .
WD X'y No lrrxTy "Tx _TY Rs(o,d)

There are several important properties of this expression that should

with T and T .
X Y

be noted. First, observe the variation of SNRWD

e 2R5(0,0)
Tim SNR._ = lim BTT ————— =9 (4-13)
7,0 Y0Ooog 1.0 XY N C
X’y X’y

Furthermore, if p(x,y) and q(x,y) are increasing‘in £, that is, if,

lim |p(x,y)] == Tim  ql,y)| o (4=14)
Xy > -7 Xy * @ - .
then,
Tim’ g;g =0 :
T T e WD C (4-15)
Xy .
since,

m Ré[ﬁ(x,v),q(x,y)]
R (0,0)

dxdy < = (4-16)

—co
Therefore, wheni(h-]h) is trué, SNRWD has a maximum for some finite inte-
gration grea.?jChoice of this integration area will‘give the maximum
possi@le SNng.'"

Secbndly; noéice the way in which the SNR is a%fected by the‘spatial
distortions. ,Aahéxpression equivalent to (4~{2) is, g
Ty R P06y} salx,v)]

X
e M-y )
X'y -Tx v 5

SHR,p = sNRﬁ,{ dxdy}z (4=17)

y

Therefore, the Signal-to-noise ratio using the spatially distorted filter
is less than .SNR ' using the nondistorted filter by the factor of,

{ ] TX TYRS[P(X,Y),CI(X,Y)]
thTy it R_{0,0)
. be y

dxdy}? <1 (4-18)



Y
This follows from (4-17) since,
[r_Ip(x,¥) 06,9} 1| < R (0,0) (4-19)

for all x and y. Note that this reduction is just the square of the
normalized average -area under the signal autocorrelation function
Rs[p(x,y),q(x,y)] with a spatially distorted scale.

This result indicates that the reduction in the output signal-to-
noise ratio for different values of Tx.and TY can be easily estimated with
a given distortion model by evaluating the reduction factor given in
{4-18). Finally note that SNR, reduces to SNR,, when there are no relative

épatia] distortions, i.e., p{x,y) and q{(x,y) equal zero.

4.3, Nonwhite Noise With No Relative Spaéial Distortion

Analysis of the SNR for nonwhite noise,

N

=2 ' -
Rn(Tx’Ty) > G(Tx,ry) + Rnc(tx,Ty) (4-20)

requires one more step than in the white noise case. This is embodied in
the formulation of the matched filter and involves incorporation of a pre-
whitening gperation into the optimum filter. A derivation of this imple=-
mentation of the matched filter s given in Chapter 3 where a block
diagram (F}g. 3-4) {1lustrates its construction. The prewhitening
operation refers to the filter designed to whiten the input noise.
Addition of the prewhitening filter converts the problem into that
where white noise has been assumed. The particular form for this filter
depends upon the noise autocorrelation or spectral density function. The
background image is passed through the whi‘tening filter and then a second
filter is chosen to maximize the SNR of the prewhitened signal plus noise.

These two filters in cascade form the matched filter (Fig. 3-3j.
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This approach requires an alteration of the SNR formula. [t is
assumed that the received signal plus noise has already been processed by
the whitening filter so that it is necessary to deal only with white noise

in the choice 0f~the maximization filter.

T
2
{E[hT = f ITY h(TX-x,Ty-y)sw(x,y) dxdyl}

Xy -T . .
SN, = L (4-21)
E{IMT Rl J' {Ty hit -x,t "Y)n (x,y) dxdy]?}
y

Where,

sw(x,y) = [f hw(x-a,y-b)s(a,b) dadb prewhitened signal (L-22)
nw(x,y)‘= If hw(x-a,y-b)n(a,b) dadb prewhitened noise {4~23)

The prewhitening filter, hw(x,y), is designed such that,

N
n (x,y)n (a,b) = 7? §(x~a,y-b) (4-24)

that is, n, (x,y) is white noise. Conversion of (4-24) to the Fourier
transform domain ylelds the following relationship between the power

transfer functaon of the whitening filter and the noise spectrum,

N
o 1
]H (u v)! = -é—-sn =" (4-25)
wherg,
Hw(u,v) = transfer function of the prewhitening filter
Sn(u,v) = noise spectrum

Note that inclusion of the white noise component in the‘expression for the
autocqrrelatioq;fuhction, eq. (4-20), insures that |Hw(u,v)|2 < « for all
-frequencies. This avoids the singular detection problem.

As before,:. for white noise the filter is matched directly to the

signal, which has been passed through the whitening filter in this case.
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h(Tx"x’Ty7Y) = s, bx.y) ' (4-26)
With this filter the expressionm for the SNR becomes,

Ty 2 faa 2

{Ef !ﬂ' Ty fT [T sw(x,y)dxdy]}

SNRy,, = H : (4-27)
E{[L}T = IT f Yy s, (xsy)n (x, v) dxdy1%}

xY Ty

which may be.evaluated as follows,

T T —y
{E.[,_}TI'T [xry si(x,y)dxdy]} = {l}T T f f Y s (x,y) dxdy}

xy =T, —Ty’ xy =T, Y
1 Tx T 2
= {777 [ > R, (0,0) dxdy}
xy =T _-T w
x oy
- R* (0,0) (4-28)
SW .
where,
BT " ,
RSW(O,O) = sw(x,y) = f{ij hw(a,b)hw(c,e)Ré(a-c,b—e)dadbdcde (4-29)

is the energy in.the. prewhitened signal.

] Tx Ty N
E{ [l}T'_T f f Sw(x,v)nw(x,y)dxdy] }
x y: =T =T

'(:—L_)"f”x Hy S (x,y)s (a,b) n (x,y)n {a,b) * dxdydadb
T T =T

i o

- ——— jfx ij s 06,y)s, (a,b) §(x-a,y-b) dxdydadb
wr1)> % AT
xy' o Y

N  P—
——-]m----z-?-f j'Y s (x,y) dxdy
(4T, T ) -T, T,
1 N T T
—--—-—-—-———*--9-]’ IYR (0,0) dxdy

1
A
[

N
- SR (0,0) (4-30)
2 s

PIOD A Ty
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The SNR is then,

SNRy\ = AT T —_— ) (4=31)

NW ¥ N0

Note that SN_RN is proportional to the integration area, kaTy. This

W
is what is to be expected. Comparing this expression with that obtained
for the white noise situation, it is found that the two are analogous,
differing only by the signal energy used. For the nonwhite ngise case

the prewhiteﬁeé:signa¥ energy is used as opposed to the original signal

enargy.

L.4. Nonwhite Noise With Relative Spatial Distortion

When spatial distortions are present, instead of being able to use
s{x,y} in forminé the receiving filter, it is necessary to use
s[x+p(x,y),y+§(x,y)], a spatially distorted version of the signal, where
p(x,y) and q(x,y}-functionally model the distortions. In this case the
prewhitening filtgr again is used. However, instead of passing s(x,y)
through the whiteqing filter, slx+p(x,y),y*q(x,y)] is input té the
whitening filter., This corresponds to the situation faced In practice
where the time distorted signal is the only version available. The

processing filter then is matched to the whitened distorted signal.

f

h(rx-x,Ty-y)'= z(x,y) ffhw(x—a,y-b)s[a+p(a,b),b+q(a,b)]dadb (4~32)

z(x,y) = prewhitened spatially distorted signal
For convenience in the derivation, the following equivalent relation for
z{x,y) 1s used.

[

z(x,y) = ffhw(a,b)s[x-a+p(x"a,y*b),Y“b+q(x"a,v-b)]dadb' (4-33)
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Substitution of z{x,y) into*ﬁhe expression for the SNR yields,

'{ETAT f f 2(x,y)s (x,y) dxdy]}
x -T -T
SNR, - = = — (4-34)

NWD 5
E{[hT T I f z(x,y)n (x,y) dxdy]”}
V

Evaluation of this expression gives,

T
{E[hT f J Ty Z(x,y)s, (x,y)dxdy]}? X1y z(k,y)swﬁx,dexdy}z
x Y -T -T -
2
__{HT T f I y R (x,y) dxdy} (4-35)
X'y —T =T
Y

vhere,-

R o (K,y) = Iffﬁhw(a,b)hw(c,e)s[isa?p(x-a,y;b),Y-b+q(x-a,v-b)]5(x-c,y-e)
w )
. dadbdcde

ffffh (a,b)h (c,e)R_[a-c=p(x-a,y-b) ,b~e~q(x=a,y~b)]dadbdcde
(4-36)

is the crosscorrelation function between the prewhitened distorted signatl

and the prewhi tened drigfna] sighal.

E{ [ssmm— Ty 2(x,y) 1 (x,y) dxdy1%}
41_ Ty :[T .J:T X n X X

E;—l;fg—-ffx ij z(k,y)z(a b) n, (X,Y)n {a,b) dxdydadb
T -T

N
= -——l—éé—— ° ffx ffy z(x,y)z(a bY §{x-a ,Y~b) dxdydadb

WT T ) =T, -T
(T Y
.1 No X py 7
=-—-—--————i—f f ! 27 (x,y) dxdy
(4T T ) =T -T
Xy X Y

I No 1 Tx ITy ( ] (4-37)
=2 [ R_(x,y) dxdy] - =37
v 2y ITv T, ©

W
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Rz(x,y)=ffff§T2-a+p(x—a,y-BT;y~b+ﬁTk-a,y~b)]s[x~c+p(x~c,y-e),y~e+q(x-c,y-e)]

-

. hw(a,b)hw(c,e) dadbdcde

= [{]] RS[a-c-p(x-a,y-b)+p(x—c,y~e),b~e-q(X~a;y%P)+q(x-c,y—e)]

—-cg

: hw(a,b)hw(c,e)‘dadbdcde

E (4-38)

is the energy in the prewhitened spatially distorted signal. Note that

e 1
the independence of z{x,y} and nw(x,y) in the first step of eq. (4-37)

follows from the-fact that z(x,y) depends only upon s(x,y} and nw(x,y)

depends only upon‘n(x,y). Also note that Rz(x,y) Is not a function of x

and y for a linear distortion (i.e., p{(x,y) and q{x,y} are first order

polynomials).

The SNR becomes,

ZRSVG(O,O) t ITx Ty
SNR,, =A4T T - —
NWD  x ¥y NO__ thTy -Tx -Ty

-

—~t

1 Tx Ty R (x,y)dxdy
AT T [ Sy
R_(x,Yy) x'y =T -Ty
Z dxdy =
R (0,0) 1 Tx TY .
Sw Eﬁﬁ?ﬂ'] j RZ(X,Y)dXdY
X Y'”Tx -Ty

L

(4-39)

There are several important properties of this expression that should

be observed. fhe expression can be rewritten in the following equivalent

form,
TOT R_(x,y)
- 1 pxpy_z°°
SNRNWD—SNRNW[I}T T I ;[ R_ (0,0)
X y--Tx Ty Sw

' 2
X [y stw(x,y)dxdy

G

x.y
dxdy
!

%
-Tx

=
[Y Rz(x,y)dxdy
T (4-40)

It is evident from (4-40) that use of a spatially distorted signal results

in the reduction of SNRNw

relative to the undistorted caseby a factor of,
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- T TZ
T JxpY R, (x,y)dxdy
L T Ty Ry ETxT -Tx -Ty N
W Ty ot er' ®,_0,0 : (b-41)
y 4T = f f R (x,y) dxdy
X ¥ -T ~-T y

The inequality follows from examination of the expressions for RZs (0,0),
W

Rz(x,y), and-st%(xﬁy).

IRZ(X,¥)| < R, (0,0) for all x,y (4-42)
w -

T T T T

1J X [Y R (x,yddxdy| < | * [ ¥ R (x,y)dxdy| for all T_ and T (4-43)

S -l iy oz _ X y
O 4

This result shows ‘that the reduction in the output signal-to-noise ratio

with a given distortion model for different values of'Tx and Ty can be

estimated by evaluating the reduction factor, (4-41). 1t should also be

noted that SNR D reduces to SNR‘NW when ho distortions are présent {i.e.,

p(x,y) and q(x,y) equal zero).

Next to be considered is the variation of SNR,;, with T and T .
NWD X Y.

lim  SNR_ _ = O o (4-bh)
TT =0 NWD
Xy
since- lim SN = 0 and SNR, . < SNR. .
o MR i = >Ny
Xy
Also, if [p(x,y)| and |q(x,y)| are increasing in x and y., that is
Vi [p(x,y})| === 1lim [q{x,y)] (4-45)
XyY @ Xyy > ®
then,
Tim  SNR,,. =0 (h-46)
T NWD

If R (x,y) i's not a constant Functlon of x.and y, then (4-46) follows since

T Zy
J* VR (x,y)dxdy and f f y R (x,y)dxdy are finite. If R_(x,y) is
T T, T T, P “
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.a constant with respect to x and y, then (4-46) is also true since

T T . T T
[*] YR xy)dxdy < @ for all T_and T, while lim x5y

"T "'T W TT+°°"T "T
X oy ] x'y Y
Rz(x,y) = o,
Since SNRNWD'IS nonnegative for all Tx and Ty, theﬁ it (4-45) 1s
true then there must be a maximum of SNR for some finite integration

NWD

area. These choices of Tx and Ty will yield the maximum SNRN . Given

WD
a model of the distortions, these values of Tx and Ty may be found by
carrying out the required integration in eq. {4-39)

4.5, Examples of the Loss in the Output Signal-To-Noise Ratio
Pue to Different Types of Spatial Distortion.

In this section several examples are given illustrating the loss in
the output signal-fo-noise ratio when a processor designed to register
spatially condkﬁent imagery is operating in the presence of spatial dis~
tortions. Theiloss in the output signal-to-noise ratio }s examined for
three types of distortion: the first is a Iinear scale distortion; the
second is the situation where the two images are rotateq_éeiative to one
another; and the third is one in which relative distortions representative
of those observéq between multitemporal LANDSAT | images -are considered,
The first two_éxaﬁp!es concern general types of distortion. However, the
last set of eiahpigs where the observed distortions between LANDSAT |
images are considered, provides a means of applying the analytical ex-
presgions for the loss in the output signal-to~noise ratio to the over-
laying 'of images in practice.

For the e;amples_presented the noise (temporal change) is assumed

to be.white s0 that the expressions developed in Section 4.2 may be

used. Equatioﬁ-(h-IZ) is used in a slightly rearranged form to evaluate
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the normalized output signal-to-noise ratio (denoted by SNRN in this

section). This equivalent fomm is,

OO = AT | 0,0 dxdy (4-47)
5 2 o 1}T2 -T -T E-
where, .

X Y

and the signal-to-noise ratio has been normalized by ZRS(O,O)MNO.

In order to evaluate {4-47), it is necessary that a model of the
signal (image) autocorrelation function be .chosen. - For these examples
an exponential .autoceorrelation function was used.

R.(x,y) = R_{0,0) exp {--LiL -.LXL} (4-48)
.S s r r
where,
r = characteristic length of the autocorrelation fuhction

Substitution of this expression into (4~47) yields,

SNRWD 21 9 T T |, ( 2
= .. _ IpGey! - falx,y) ]
ZRSIO,OSKHZ‘ = 4T QTZ £T.[? exp [ " - Tdxdy (4-49)

Given a model of the distortions, p{x,y) and q(x,y), (4~%9) can be

evaluated to determine the SNRN,

4.5.1. Linear Scale Distortion..
The first type of spatial distortion examined is that of a linear

scale distortion. In matrix notation this 1Is represented as,

x! i +c 0 1ox
y! Tl 0 1+c 1|y (4-50)
where,,

‘REPRODUCIBILITY OF Tiii
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(x,y} = reference image coordinate system

{(x',y'} = coordinate system of image to be overlayed on reference
image
¢ = scale factor distortion
Since, —
x' = x + ﬁ(k;y) = x + ex (4-51)
gt = =y 4oy (4-52)

y *+ q{x,y)
from the definition of p(x,y) and q(x,y) in Section 4.2, then,

ex : {4-53)

il

p{x,v)
alx,y) = ey : (4-54)
Substitution of these expressions for p{x,y} and q(x,y) into (4-L9]) yields

the equation for the SNR in the presence of a linear scale distortion.

ma—?%%u—-?‘ﬁz Ly IT fT exp [- J%lel - J%Llylld.xdy] 2 (4-55)
5 0 T =T =T .

Note that the ENRN is dependent upon two parameters: hTZ! the integration

area; and 1$J5‘£he ratio of the scale distortion factor to the character=

istic length $f~thq signal {image) autocorrelation function.

Evaluation of (4-55) was carried out by a numerical fntegrat?on'
method. Simpson;s‘rule for approximating the integral of-a function by
the piecewise integrals of quadratic polynomials was used [40]. This
procedure proVéd both straightforward and accurate. With a division of
the interval, 2T, tntc 100 increméﬁts_it_was found that a tolerance of
gbout 0.005% wéé observed., Al50, use of this method of integration was
not time consumiég and was easy to implement since it only involved cal-
cuiation-oé a weighted sum of the integrand at each of the increment end=
pointsi . The gene;al formuta for integration via Simpson's rule is shown

below for a double integral. The integration is carried out by first
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T
f f f(x,y) dxdy-—ff gly) dy (4-56)
-T -T -T
where,
T
gly) = [ f(x,y) dx {(4-57)
=T
Using Simpson's rule the approximate integral is,
N~1 N-2
f j fx,y)dxdy = P s gt- T+1h)+2 T g{~ T+|h)+g( T) + g{T)} (4-58)
T - 3 = =
T -T i=1 =2
i odd i even
where,
h N-1 N-2
gly) = 3- {4 E f{-T+jh,y)+2 b f(~T+jh,y) + F(~-T,y)+f(T,y)} {4-59)
Jj odd j even
and,
N = number of divisions of the 1nterva1 .2T; must be an even
number
h = 2T/N, the increment length of each division

For this computation the same number of increments are used for both

variables -of integration.

Figures 4-1 through 4-4 illustrate the -relationship between the

SNRN,

b-1a and k-1b show the square root of the SNR (denoted by #SNRNJ

the integration area, and the linear scale distortion. Figures

for different values of scale distortion as a function of 2T, the square

root of the integration area. The reason for this particular -choice for

ordinate and abscissa is that the VSNRN in the absence of spatial dis~

tortions is linear in 2T with a slope of one. This is evidenced by

letting p{x,y) and q(x,y) equal zero in (4-47). |In this way it is

possible to plot the results on a linear scale.
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Two_separate figures are presented so as to illustrate the distor-
tion factor effect over a wide range of values. |In Figure 4-la the
/§ﬁﬁ;'versus 27 curves are given for Jfﬁ—equa] to 0, 0.01, 0.05 and 0.1,
In Figure 4=1b lEL equals 0, 0.001, 0.0025 and 03065. There is consider-
able coévenience in being able to represent the scale factor, c, and the
characteristic length, r, in a single term. In thi§ way each curve 1s
representétivé of a family of values of ¢ and r. ﬁoq example, a value of
léi-= 0.01 can correspond to a value of 0.01 for |c| énd 1.0 for r as
well as the combination of 0.02 for [c| and 2.0 for r.

As ﬁredicted by the derivation in Section h.é, in the presence of a
scale distortion there is a finite integration area which yields a
maximum_putput signal-to-neoise ratio. This is i]]u;;rated by the occur-
rence of a peak in the curves for nonzero c. This reéu]t indicates that
there is an optimum integration area size to use in the presence of a
linear scale distortion when the registration processor is designed for
spatialtly congruent imagery. Given the scale distortion, the optimum

choice of integration area size is that which yields the maximum SNR

N°
For example, with a distortion of-l%l-; 0.05, the maximum SN-RN is
found for 2T = 50.

Several other osservations also may be made from Figures L-1a and
4-1b. Again as predicted by (4-47) the /§ﬁﬁ;'is linear in 2T with a

slope of one for no scale distortion. Also note that a Iarge% distortion

factor requires a smaller integration area to yield the maximum SNRN,

. cl _ .
For example, with l;i-— 0.9] the 2T for a maximum SNRN is 252, whereas

for l%l-= 0.05, the 2T for a maximum SNRN is 50.

Figure k-2 follows from the observations made in"the first figure.

- Figures 4-Ta-and 4-1b illustrate that given the scale distortion factor,
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Table 4-1.

0.001
0.0025
0.005
0.01
0.05

0.1

2T yielding the maximum SNR

N

and the maximum

QSNRN for different values of i‘.

2T for
max SNRN

2513
1005
502
252
50 ’
26

max SNRN

814.5
325.8
162.9
81.5
f:s.s
8.1
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there is an optimum integration area size yielding the maximum SNRN.
This suggests‘fhat given the scale distortion, it is possible to find
that integratién,area giviné the maximum output signal-to-ncise ratio.
Table 4=1 lists a sample of values of the scale distortion and the cor-

responding 2T yielding the maximum normalized SNR These values were

N.
used to generate Figure 4-2 which is a plot of the value of 2T yielding

the maximum SNR ?versus the linear scale distortion. MNote that the

N
function is linear on a log-log plot. This indicates that the relation-

ship is of the following form,

B
2T =a [J-c—q (4-60)

-
where o and B may be determined from the curve or Table 4~1. The values
found for o ana_B are,
¥ 2,52
g= -1
Therefore,

2T for max SNRN

. - .
% 2.52[-[—]‘,:{' (k-61)
This result sugge;ts that given the {inear distortion factor, the area
yielding the magimum output signal-to-noise ratio can be easily computed
from (4-61}

Figure 43 is a plot of the maximum /gﬁﬁa'versus the linear scale
distortion. The values in Table 41 were used to generate this curve.
This graph displays the maximum attainable /gﬁﬁ; in the presence of a
given scale distortion. As in Figure 4-2, the relationship is linear in

a log-log plot which indicates that the maximum SNRN varies with the

scale distortion in the following manner.
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8
/SNRN = aM (4-62)

or equivélentiy,
B2

SNRNﬂ{aI;LCr—I-:'} - C (4-63)
where o and 8 may be found directly from the curve or Table 4-1. ‘

o = 0.8145

B= -l

Substitution .of these values into (4-63) yields,

-1
SNR,, = (0.8145 [li;l] 12 - (4-61)

Therefore, the maximum possible SNRN for a given scale distortion may be
found directly from (4~64). This provides a straightforward way of esti-
mating the best possible performance in the presence of a given scale
distortion.

A third means of analyzing the relationship between the SNRN and
scale distortion is provided ‘in Figure 44, This figure is a graph of
the ¢§ﬁﬁ;'for different integration area sizes versus.the linear scale
distortion. Figure A4~ka illustrates ‘the relationship for 2T equal to 30,
50 and 100, while Figure 4-4b shows the corresponding results fér 27 equal
to 250, 500 and 1000. For design purposes this may be utilized in the
following fashion. 1f the integration area is given, then the maximum
allowable distortion can be determined once a loss.criterion Tn terms of
the reduction in the SNRN due to spatial distortion is decided upon. For
example, if an integration area size with 2T = 100 is chosen with a toler~
able loss of 19% in tﬁe‘SNRN, then the maximum al]ow;b]e distortion is

l%l x 0.002. This is found directly from Figure 4-ka, Since a loss of
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19% in the SNR, is-equivalentt to. (0.81) SNRN, this corresponds to 0.9#SNRN.

N
With 2T equal to 100, the.fgﬁﬁ;;has a maximum of 100" (i.e., for c = 0),

so that 0.9¢§ﬁ§;1=-902 Determination of the scale éistortion for a value
of Jgﬁﬁ;l= 90 on the 2T = 100 curve yields l%i.z 0.002.

One other property of the curves may be observed. Note that the
curves cross at specified values of linear scale distortion. For example,
beyond a certain value of l%#—the«/gﬁﬁg for 27°= 100 is less than that
for 2T = 50. This. follows: from the results obtained in Figure 4-1,
where it is shown that for a given distortion there is a value of 2T
yielding the maximum SNR&;.a1] other values: of 2T yielding a lesser SNRN.

Figures 4-1 through 4-% corroborate the analytical results derived
in section 4.2, By utilizing them as outlined above, they provide a

means- of choosing the optimum integration area size in the presence of

linear scale distortion.

4.5.2.. Rotation Distortion.
The" second general type of distortion examined is that where the
two images are rotated relative to one another. This spatial relation-

ship is represented in matrix form by,

x! 1"+ {cos®-1} sine X
y'! = sin@ 1 + (cos8-1) |{y. (4-65)
where,

(x,y) = reference image. coordinate- system

il

coordinate system of image to be registered with the
reference: image

(xlns"/")

8 = angle of rotation between the images

Since,

T
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n

x' = x + p(x,y)
y' =y + qlx,y)
from the derivation in section 4.2, therefore,

p(x,y) = x(cose-1) = y sin® {4-66)

]

q{x,y) x sin® + y(coso-1) ) (4-67)
Substitution of p(x,y) and g(x,y) into (4-49) yields the expression for

the SNRN in the presence of an angular distortion.

SHR T T .
WD 2f 1 | x(cos6=1)=-ysing|
ROV 4 %= [ [ exp [~
2R 0,0 /No ‘[;TZ -T -T d
- 2 :
_ |xs:n8+y£cose-l)lidxd¥] . (4-68)

Note that the’SNRN is dependent upon: hTz, the integration area; 68, the
angle of rotatﬁoﬁ; and r, the characteristic length of the image auto-
correlation fﬁnét{on.

As in sect}on.h.s.i the integration of (4-68) was carried out by
using Simpson's rule approximation to the integral. "Refer to 4.5.1 for
a description othsw this is implemented.

The re]aiibnghips between the SNR , the integration area and angular

N
distortion are‘}]lustrated in Figqures 4-5 through 4-8. , The contention
made in section‘h.z that there is an integration area yielding a maximum
output signal-£0130ise ratio for a given distortion .is borne out in

Figures 4-5 anq‘4r6. Both figures show the /§ﬁﬁ; as a function of 2T,
Figures h-53 and b-ch Pi1lustrate this relationship for several different
angular rétatiéné where the characteristic length, r, is equal to 2.
Figure 4-6 illﬁsérates the same relationship with a characteristic

length of r = 5,7 In both cases the results reduce to the expected linear
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relationship between the Jgﬁﬁa'and 2T for no angular distortion, i.e.,

8 = 0. As was observed for a linear scale distortion, there is an inte-
gration area yielding a maximum SNRN in the presence of an angular dis-
tortion, as is evidenced by the peak in each of the curves with nonzero
8. For example, with a rotation angle equal to 1°; a value of 2T =z 290
achieves the maximum SNRN.

For design. pruposes in choosing an optimum integration area size,
the relationship between the value of 2T yielding the maximum SNRN versus
the angular distortion Is given in Figure 4-7. Using this figure, it is
a straightforward procedure to choose the integration area size which

allews the maximum SNR,, given the value of the angular distortion. This

N
relationship is illustrated for two values of the characteristic length,
r=2and r =5, Note that each is Tinear on a log-log plot for the
values of 6 chosen (0 < @ < 18°). This indicates tha& the relationship
is of the following form for this range of 6.

2T for max SNR = urGBr ; 0 <8< 10° (4~69)
where o and Br depend upon r. The data samples used to generate the

curves in Figure 4~7 are listed in Table 4-2. Using these values, o

and Br become,

Gy = 288 By, = -1
op % 720 55 = =1
Therefore, for r = 2,
2T for max SNR = 288 o1 {4~70)
0 <8 <10°

and for r = 5,

720 87V ; 0 < 8 < 10° (4-71)

R

2T for max SNRN
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Table 4-2, 2T yielding the maximum SNR,, for
different rotation angles.

o= 2 Cor=5
o 2T for max SNR 2T for max SNR

0.25 ‘ 1152 .. 2879 -
0.5 576 1440
0.75 384 ‘ " 960
1.0 288 . - " 720
2.0 144 360
3.0 96 250
5.0 58 - 144
10.0 23 .72

Table 4-3., Maximum #SNRN for different

rotation angles.

r=2 =5

8° max YSNR max.Jgﬁﬁg
0.25 373.3 933.4

0.5 186.7 k6.7
0.75 12h 4 311.1
1.0 93.3 . 233.3
2.0 h6.7 C 116.7
3.0 31.1 . "77.8
5.0 18.7 T

10.0 9.3 < T 23.b
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Extrapolation of these last expressions resuits in a éeneral approximate
formula for aéiermining 2T corresponding to the largest SNRN in the
presence of angular distortion for small values of 8.
2T for. max SNR = 144 r(e-]) {4-72)
0 < é-ﬁ 10°
This was shown to be true by evaluating (4-~72) for different values of r
and observing'ﬁﬁé;her the indicated value coincided with that observed.
in all cases they agreed. This result indicates that gliven the angular
distortion and:gharacteristic length of the image autpcorre]ation func-

tion, the area*yjelding the maximum SNR, can be computed from (4-72)

N
for small values of o, _
Figure 4-8 15 a plot of the maximum ¢§ﬁﬁ; versus the angular distor-
tion for two vaiues of the characteristic length. These curves were
generated from_th; sample values listed in Table 4-3, This graph displays
the maximum aitqiqab!e ¥§ﬁﬁ; in the presence of a given angular distor-
tion. As in Figure 4~7 the relationship is linear in a log-log plot for

both values of r over the range of & used. This indicates that the

maximum JSNRN vafigs with the rotation angle in the following manner.

B

/sm{N_.-. @ 0 r (4-73)

0 <8< 10°
or equivalently,
L B2
?PfRN ® [are ] (4-7h)
0<9<10°
where . and Br'depend upon the characteristic length. The values of e,

and B} may-be found from Table 4-3 or Figure 4-8.
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@, = 93.3 By = -1
o =;233.3 By = -1
Therefore, for r = 2,
max SNR, = [93.3 9-112 ' (4-75)
o‘< 8 < 10°
and for- r = 5,
max SNRN z [233.3 6-1]2 (4-76)

0 <6< 10°
These last two expressions may be extrapolated to‘gjvé the following
general expression for the relationship betweén the maximum SNRN and the
angle of rotatlon for small angular distortions. -

max SNRy 5 [46.65 r (0~ )] - (4-77)

0 <6< 10°
This expre;sign was corroborated by evaluatiné (4?77j'for different
values of r ana testing whether the resulting valﬁe for the QNRN was
indeed a maximum. In all cases it was.

Figure 49 provides a series of curves representihg the Vgﬁﬁ_ for a
given |ntegrat10n area size as a function of the angular distortion.
Figure k—9a :llustrates this re!atlonship for a character:stlc length of
r =2, while a value of r = 5 was chosen for Figureuk-Sb. Curves for
2T = 50, 100, ?00 and hOOlare displayed for both figures. This represen-

tation of the fqnctiopa]~ré1ation§ﬁip between the SHNR,, and angular dis-

N
tortion may be used for design of the registration processor in the
following méﬁder. Given the inéegration area and éeréentage loss in the
SNRN that is écceptéble, the maximhm gllowable rot?tion may be found from
the curve correéponding to the apgropriate intégréfién area. For exanmple,
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if the éharacterLstib length is 5 and a loss factor of 0,81 for the SNRN
is acceptable when operating with 2T = 200, then the maximum .allowable
rotation is 0.15°. This is found directly from Figure 4~9b, A loss

factor of 0,81 for the SNR, corresponds to a loss factor of 0.9 for

N
vVSNR,,.. For 2T -= 200, the maximum VSNRN without any angular distortion

N
is.200, so that a reduction -of 0.9(200) equals 180. The maximum allow-
able rotation is -that angle corresponding to a /gﬁﬁg of 180, which is
0.15°, |

This concludes the .general -examples for examining the effect of
spatial distortions.on the ocutput signal-to-noise rvatio. The illustra-
tions presented in Figures 4-1 through 4~9 verified the derived results
obtained in section 4.2. 1t was found that in the presence of a given
linear scale or rotational distortion, there is a’uﬁique Integration
area size which yields a maximum output signal-td;noLse ratioc. Figures
4=1, 4-5 and 4-6 illustrate this while figures 4-2, 4-3, k-7 and 4-8
.present a -straightforward way of determining the optimum integration area
size and maxiﬁum SNRN achievable. The next section proceeds in a similar
fashion with spatial distortions modeling those observed for .LANDSAT |

images. In this way the method for applying the results of section 4.2

is illustrated for a practical image registration model.

4.5.3. Di'stortion Model for Temporally Differing LANDSAT | Images.
In thi; section the distortion model employed in £he LARS registra-
tion syst;m [ 1,51 for overlaying LANDSAT 1 images is used to evaluate
the expressibn for the SNRN in the presence of spatial distortions. For
mul titemporal LANDSAT | images a biquadratic polymomial of the following

form is used as. the distortion ‘model.
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1
x' ]+c]] 12 13 S S5)l% (4=78)
=
YT [S21 1*Cp3 S23 Con Sogl||Y
2
X
2
y
[ XY ]

where,

(x,¥) = reference image coordinate system

(x*,y") = coordinate system of image to be régistered with the
reference image -
and,
cij = distortion coefficients; i = 1,2,; ] = 1,44¢4,5

The values of the coefficients are determined by-a least squares procedure.
The approach followed in the LARS registration system [ L; 5] is to over-
lay a sample ‘of subimages from each full image assuming spatial congruence.
This registrat{on of each of the subimages is accomp]ished by a simple
translation beca&sé of the assumption that no relative ééatial distor=-
tions exist between the subimages. However, because. the FL]] images are
relatively distorted, all of the translations for the subimage overlays
are not the same. A least square estimate using a biguadratic polynomial
(eq. (4-78)) then’'is used to find that spatial transformation between the
full images whics best fits all of the subimage translations simultaneous-
1v.

With this modéT of the spatial distortions, the functions p{x,y} and

q(x,y) used in the expression for the output signal-to-noise ratio become,
p(x,¥) = e X + cy +c %+ YZ + € XY (4-79)
! 11 12 13 14 15

q{x,y) = X+ Cop¥ * CyaX Fooyy Co 5%V (4-80)
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Substitution of these expressions for p(x,y) and q(x,y)} into equation
(4-49) aTlows for the evaluation of the SNRy+ In this case, since the
specific’ distortion” i's given, the SNRN depends upon two parameters: the
integration area, 4T2; and the characteristic length of the image auto-
correlation function. Again evaluation of (4-49} was performed by using
Simpson's rule approximation to the integral.

Two sets  of distortion.parameters-were used in £his evaluation of
the SNRN for LANDSAT | imagery. The 'coefficient sets chosen were those
used in the operatiorial registration of images. In this way the method
of using the analytical results of section 4.2 for the situation en-
countered in practice is exemplified. The LANDSAT | imagery registered
and corrésponding di'stortion coefficients for the two overlays are listed
in Table h-4,

The relationship between the /gﬁﬁg and the ?nteénation aréa for
diffefent values of the characteristic length is displayed in Figures
4-]0a-and'h-10b. Figure 4-10a contains the results for the first set of
coefficierits.and Figure 4-10b for the second set. HNote that for each
¢urve in Both figures there is a value of 2T vielding a maximum SNR, -
This indicates that thefe is an optimum integration area where a maximum
SNRN is realized in the: presence of the distortion éode]s choserm.

In each figureé the series of curves illustrates the dependence of
the integration area size yielding the maximum SNRN on the characteristic
length of the Image autocorrelation function. For example, when the
first distortion model is used (Fig. 4-10a), a value of 2T = 70 will
give the makimum SNRN for r = 2, whereas for r = 5§ 3 bé]ue of 2T = 180
must be chdsén. Therefore, chéice of an optimum integration afea size is

determined by the value of r,



Table 44,

LANDSAT | images registered and the
corresponding distortion coefficients.

Set 1
LARS Run # Lines Columns
Referehée run 72053602 (1350,2200) (1350,2250)
Overlay run 73070100 (1450,2340) (1650,2700)
Distortion cocefficients
¢ = ~0.05694005 c,q = =0.02044661
c:]2 = 0,01516939 c22 = ~0,08017300
c]3 = 0,00001908 c23 = =0,00000123
Clh = -0,00000280 c24 = 0.00001501
c.‘5 = -0,00000445 025 = 0,00001334
Set 2
LARS Run # Lines Columns
Reference run 72053602 (1350,2200) (1350,2250)
Overlay run 75009000 (1490,2340)  {1425,2325)
Distortion coefficients
¢y = -0.08289302 c,, = 0.01898512
c:]2 = =-0,02288279 c22 = ~0.11859888
c}3 = (,00000824 c23 = (,00000147
C]h = =0,00001332 ) CZH = 0,00003922
CIS = 0,00003550 c25 = =0.00007333
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This dependeﬁce upon r required that an estimate of the image auto-
correlation function be made so that a value of r could be determined.
This was carriéq out by first picking several test sites from the images
to be registere&.: The subimage size chosen for each of these test sites
was 111 1ines by 111 columns.

The next step in estimating the image autocorre]atién function re-
quired a prepracéssing operation on the images. Since the examples in
this section are applications of the analysis in sectiop 4,2, it is
necessary that the noise (temporal changes) be white. In Chapter 5 it
is experimentail; observed that the noise is nonwhite with an exponential
autocorrelation function. In this situation it is necessary that the
images first be passed through a filter designed to whiten the noise and
then these preprocessed images be registered (refer to Figure 3-4),

With an expoqgnf%al autocorrelation function for the temporal changes it
is shown in thgfexamp]e in Chapter 3 that a derivative type operator must
be applied in' the preprocessing stage. In compliénce—with this analytical

result a gradient operator was applied to each of the images, where,
1/2
(4-81)

]Gradient_X}_jl {(x - X, . ])2 + (X, -x,_ b

i,J+l 1,]= +1,] i=1,]

" Xi 1 image sample value at coordinate (i,]j)
: 3
The autocorrelation function estimate then was made from the gradient
images. The following expression was used to estimate the autocorreiation

function.

kTR I (Xie s - X - X (4-82)
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where,
X = mean of the image
xi,j = image sample value at coordinate «(i,])
N =" number of data points in the image’

M = maximum shift for the autocorrelation function estimate
Figures 4-11 through 4-15 contain examples of the resulting auto-
correlation surfaces and contours of these surfaées: In Figures h-11a
through "4k~15a each of the autocorrelation surfaces are displayed, where
each n&mber denotes a value of the surface at the corresponding shift
position and the (0,0) lag position is in the center of the .displayed
surface. The scale for each of the surfaces has heen normalized by the

factor 100/30,0.

Although Figures k-11a through 4~15a present the complete surfaces,
the -general shape of the surfaces is better illustrated by the .contour
plots .in Figures 4-11b through 4-15b. In these figures, contours at

-],.and R z are displayed. In this way it is a

0,0° "0,6° 0,0°

straightforward procedure to determine whether the surfaces are of

levels R R
exponential form, and if so, what is the characteristic length, r. If
the conéours are equally spaced, then the'surface_?s exponential and
the characteristic length is the :distance between the contours. From
these figuées‘it i's seen that an exponential model for the autocorrelation
surface'is-a reasonable model with -a characteristic length ranging
between 1 and 3.

Using this range of r and the curves presented-in Figurg§fh~10a and

4-10b, the rénge for 2T yielding the ‘maximum SN%N is,

40 < 2T < 110 for distortion coefficient set I
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and,

30 < 2T.< 70 for distortion coefficient set 2
Therefore, it ig_possibfe to éhoose an optimum integ}ation area size for
the registration brocéssor based upon the distortion model and image
autocorrelation function characteristics observed for actual satellite

images.

4.6, Conclusion

In the situation where relative spatial distorEions exist between
images to be registered, expressions have been derived %or estimating
the loss in the output signal-to~noise ratio due to these spatial distor-
tions. These results are in terms of a reduction factor {eqs. (4~18) and
{4-41)) applied .to the SNR had the spatial distortions not been present.
For distortions that are increasing with image size (eqs. (4-14) and
(4-45)) there is a finite integration area that yields the maximum SNR.
Determination of this integration area may be found by evaluating ex-
pressions (4-12) and (4-39) with an appropriate model of the distortions.
This eva]uati@n'is a stra;;g;fonward procedure which may be accomplished
by numerical {ntegration methods as is shown in section 4.5. This is
performed for béEQ'generaI linear distortions such as a scale change or
rotation, plus two distortion models for LANDSAT | images. These latter
égamples iilu§£ratg the direct application of this analysis to practical

image- registration.
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CHAPTER 5

TEMPORAL CHANGE PROPERTIES

In one important application of image registration, onexudﬁld like
to match spatiaily as close as possible two temporally differing images
of the same scéne-go that they may be compared on a point by point basis.
Assuming that tHeré are no relative spatial distortions between the images,
the registrationmprocess reduces to finding the relative translation between
the images. However, since the images have been taken at different times,
cne can expect'tﬁat changes In the scene have occurred, 56 that the two
images will vary in the intensity levels as well as their relative trans-
lation. This variation in intensity levels contributes significantly to
the uncertainfy.in finding the relative translation.

in the development of a registration processor, these changes have
been modeled as a&&itive noise. One image is assumed to be the signal
and the second image the signal plus noise (temporal changes).

Several approaches to the image registration problem have utilized
statistical pa}éﬁetgr estimation theory, where the paraméters to be esti-
mated are the translations along the respective coordinate axes (Chapter
?) . A central part of this type of analysis is that one be able to
characterize the noise properties, where the properties in guestion are
determined by the particular approach that is taken. This is illustrated
in Chapter 2 where an expression for the ;ariance of the error of the

registration processor is derived. Two lines of approach are presented,
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both of wﬁoée valgdiiy.depqus upon certain assumptions. The first
method requires knowledge of the probability density function of the
noise and the second assumes that the autocorrelation function or spectral
density of the nofse s known.

Thesé requlrements'proﬁpted~the development of a model of the temporal
change ‘characteristics. The particular properties of concern .are those
that have been .encountered in the analysis and development of a registra-
tion processsr. These are the probability density function and the auto-

correlation or spectral density function of the noise.

¢ 5,1. Probability Density Functiqp of the Témporal,Changes

,The-firgt,aﬁalysis‘i; ééat ;F the probabilit& dénsity function of
the goise. Since the noise is defined as being ﬁhe additive-change that
has occurred between registered. images, this investigation necessitated
the (egistfation of a.series of images and then'$ subtract1on of the
image pairs to generate the difference image, .or édditive noise, for each
time pair. .Test sites for this study were chosen from LANDSAT imagery
over.Kaésas, Montana, Missouri, and Indiana, and qfe tabulated.in Table
5-1. These.particular test sites were picked.beéa;se mu]i%temporal

imagery that had been previously registered {35]iwas readily available.

The probability density function of the noise for each test site
was estimated by generating a histogram of each of the correéﬁonding
difference images and then normalizing the -histogram-by dividing by the

total number of points in the difference image to'obtain .an approximation

to the probability density function.
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TabiQ‘S-I.. Test sites for temporal change investigation.

a. Kansas

LARS

Run # 73046000 73064000 74024100 74024200

Date Data B

Taken 7/6/73 8/29/73" 5/26/74 7/1/74

Area Ling Column Line Column Line Column Lire Column
# Center Center Center Center Center Center Centér.lenter

ala

L3k 445" 116° 389 29k 393 218 336

E3

I - 115 389" 293 392 218 336

29k 3927 218 336

116 570 121 514 300 518 223 k62

2 . 121 514 293 518 223 463
300 518 224 462

211 435 216 380 395 383 318 327

o

3 _ 216 380" 395 384 317 327
‘ 396 384 319 327

111 14950 120 i4ho 297 1hh7 219 1398

i 120 1440° 298 1447 219 1398

Sa— 298 1447 219 1398

352 210 358 15k 537 157 459 99

wle
T

5 . 358 154 537 157 459 98

538 157 459 98

100 1700 1ok 113 282 116 206 57

6 ‘ o5 114 283 116 208 58
284 118" 208 .59

100 - 310 104 254 282 257 207 193

7 : 10 254 284 257 207 199

e

28k 258 208 200




“Table 5-la, cont.
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LARS ; i
Run # 73046000 73064000 740254100 74024200
Date Data
Taken 7/6/73 8/29/73 5/26/74 7/1/74
Area Line -Column Line Column Line Column Line Column
# Center Center -Center.Center Center Center Center Center
250 170" 255 © 114 B34 117 356 60
8 255 1147 k34 117 357 57
' - 434 118~ 357 59
250 3100 255 255 434 258 357 200
9 255 254" 43k 257 356 199
V 434 258" 356 200
400 _'360* 407 _' 304 586 308 507 250
10 4os 304" 58k 307 505 250
584 308 505 250
400 sio* 407 455 587 459. 507 403
11 4Lo5 hsh~ 584 458 505 402
) 501

584 h58° 504

“Reference location for corresponding line-and column
centers which are tabulated to the right.

R EPRODUCIBILITY OF TEie
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5-1b.

LARS Run Number 73124700

Hill County, Montana

LARS Channel

#is 1-4 21-24 _17-20 9-12 5-8
DaféiData P, o ] -' . :
- Taken 5/5/73 5/23/73 " 6/10/73 T/6/73 8/3/73

Area Line Column Line Column Line Column Line Column Line Column
# Center Center Center Center Center Center Center Center Center Center

110 510" 110 k10 110 409 109 Lio 110 k10

110 410" 110 409 109 410 110 410

! 10 410" 109 411 110 412

110 410" 111 410

170 130" 170 129 170 129 170 128 170 128

170 130" 170 130 170 129 170 129

z 170 130 170 130 170 129

170 130" 170 130

B15 150 515 150 515 149 B 149 §15 148

435 150" Lig 149 L5 150 Lig 148

3 415 150" 415 150 §15 149

415 150" 415 149

Ao

centers which are tabulated to the right.

Reference location for corresponding line and column

1¢1



&£5-1c., Missouri

LARS Run Number 72033804

102

LARS Channel

9-12

#is 1-4 5-8
Date Data

Taken _ 9/13/72 8/26/72 10/1/72
Area Line Column Line Column Line Column
# i - Center Center Center Center Center Center

] 200 200" 201 200 201 200

200 200" 199. 201

) 200  Loo~ 202 399 201 400

: 200 4oo” 199 401

3 . 200 600" 202 599 201 599

' 200 600 199 601

; 200 800" 202 799 200 800

200 800" 199 800

5 200 1000" 201 1000 200 1000

_ ‘ 200 1000 200 1000

6 500 200" 501 199 K01 200

: Loo 200" 400 200

7 ' 400 400 K01 399 500 400

400 Loo~ 400  hOi

8' 500 600 501 600 500 600

oo 600 400 601

9 hoo 800 4071 800 400 . 800

400 800" 399 800

0 400 1000 501, 999 400 . 999

400 1000 399 . 1000

" 600 200" 601 200 600 600

) 600 200" 599 . 199




Table 5-1c¢, cont.
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LARS Channel

# is 1-4 5-8 9-12
Date Data )

Taken . 9/13/72 8/26/72 10/1/72
Area Line €olumn Line Column Line Column
# Center Center Center Center Center Center

. 600" k0o~ S 601 - 400 600 400

600  hoo~ 599 400

'3 600 600 601 599" 600 601

600 600 599 601

" 600 800" 601 800 600 800

: 600 800" 599 800

15 600 1000 600 1000 600 1000

600 1000 600 1000

6 80 200" 800 200 800 200

800 200" 800 200

17 " 800 400* 800 400 800 401

800 40O 800 400

8 800 600" 800 600 800 601

800 600" 799 601

19 800 800" 801 800 799 800

’ 800 800" 799 800

20 800 1000° 801 1000 800 1001

800 1000 799 1000

ala

Reference location for corresponding line and column

centers which are tabulated to the right.



5-1d. Tippecanoce County, Indiana

LARS Run Number 72053603

104

LARS Channel

1-4 g-12
Date Data .
Taken 9/30/72 10/19/72 11/29/72
Area Line Column Line Column Line Column
# Center Center Center Center Center Center
] 200 200" 199 201 199 203
) 200 200" 200 202
, 200 400" 199 4oi 200 402
200 oo~ 200 Lot
3 200 600" 200 601 200 602
.. 200 600" 201 600
, 200 800" 200 801 199 799
200 800" 201 801
5 S hoo 200" 399 200 398 201
400 200" 399 200
¢ 500 400" 400 401 399 401
400 400 399 400
; 500 600 500 600 399 600
Loo 600" 400 600
K3
8 oo 800 400 800 501 800
400 800 401 799
9 600 . 200" 599 200 599 200
600 200" 599 200
0 600 40O 599 k0o 599 399
600  Loo~ 599 399
N 600 600" 600 . 600 599 599
600 600" 599 599




Table 5-1d, cont.

LARS Channel

# is i-4 5-8 9-12
Date Data
Taken 9/30/72 10/19/72 11/29/72
Area Line Column Line Column Line Column
# Lenter Center Center Center Center Center
12 600 800" 600 800 600 799
600 800 600 799

37

"Reference location for corresponding line and column
centers which are tabulated to the right.
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No. of points in the difference
image having value x _

Total no. of points in the
difference image

i

Pr[Difference image.has valie x]

These probability.dens.ity. functions were then plotted for a visual com-
parison. For the initial phase of this examination ; samplie size of 111
lines by 111 columns:was chosen for sach test site.'

Before examining" the resulting probability deﬁsity functions, first
consider some of the types of density functions that one might.expect.
Referring to Chapter. 2"where an expression for the variance of the regis-
tration error is derived, the first method of approaching the problem,
that.is, via a maximum. a posteriori estimate of the transliation parameters,
requires. the assumption that the noise be normally:distributeda In the
lTight of this method. of analysis, a Gaussian disgribution would be highly
desirable.

in ;revious analyses of multispectral imagery,.-[36,37] an image is
modeled as being comprised of different. Homogeneous classes, each of
which is. normally distributed.. Thus when considering two temporally
di ffering images,. the difference. image is composed of the change that has
occurred for each of the different classes. $Since each class.has a
Gaussian distribution, the change for each:-class is also normally dis-
tributeds This follows from the' property. that the difference- of two
normally di;tributed:data sets also has a Gaussian distributian.

One may formalize this line:of reasoning in the following manner.
Let D be the entire difference image, andei be the additive noise for
the ith class. Since the nol'se for a particular class is Gaussian, the

probability density function of'D? is,


http:resulti.ng
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pp (X) = exp {~ ———g— (5-2)

where,

pDFQXJ = pp(x]0.) (5-3)

the probability density of the difference image given that one considers
only the Dith class. The probability density of the entire difference

image is then,

Ppx) = il PDi(X) Prip,] (5-4)

which is a weighted sum of Gaussian density functions, where Pr[Di] is the

probability of occurrence of the Dith class and,

2 Prlp.] =1 ' (5~5)
i

Given this‘fprmulation, what are reascnable forms for pD(x)? First

consider the case where all the Di are identically distributed. Letting,

o = Var[p,]
no= E[Dil
then,
_ 1 (x -~ u)?
p.(x) = {- 2t -
0 e TP T (5-6)

so that D has a Gaussian distribution., This simplistic assumption yields
a straightforward and compact expression for the difference image density
function, however, it is not a reasonable assumption in many instances.

In these cases one must retain the weighted expression for pD(x)° For
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example, one class may decredse in‘ref1ectivity'ovér a period of time
while a-second.class may incredse inm its:reflectance., Underlying reasons
for this will dépend upon the type of imagery thét_i§‘being considered,
With agricultural data, the classes being different crop types, one type
of crop may reach maturity in a given time period whi?e a second cover
type has’ not changed iin aﬁpearance;- Another exaﬁp!e would be: that of
different Harvést?n§~¥imes for different crops. Or if one is:examining
a scene ccontaining a ‘body of water, the changes oye} the water may be
indépéndent of those over the surrounding land, so %hat the two classes,
watér’ and land, will not necessarily have the same amount of change over
the same period of time.

This latter formu¥ation for the probability density function more
closely coincides: with- experimental observation;’whére'the density function
is modeﬂéd‘as a weighited sum of Gaussian -density ?uﬁctions. This is borne
out by examination' 6f the probabitity density function estimates of the
generated difference images. In comjunction with the examination of the
histogram plots, also consider examples of the'corre5ponding difference
images. By observation of these images one- can obtain a better feeling
for the resulting probability density function estimates. Thé particular
examples given représerit a éross section of thoSé;déngity funcitions en-
counteréds, ‘F?g;res 5=T through' 5-5 -contain examples of the d?$¥erence
images and their corresponding probability density function eétTmates.
Note that tﬁey are categorized accordiﬁg tc the obse;ved dens}ty function
estimates. | :

Figures é-l and 5-2 contain examples of difference image§ whose

probability density functions have a single mode. Referring Back to the



mEAN ¢ 4D - 3 310 DEV
=3.37 328 -12.1% 10 .40

PROMAGILETY
| &

i se
......................

DIFFEMENCE ImAue WALUT

a. Difference Image b. Probability density function

VALUL JUMSER POINTS VALUE NJUMBER POINTS

=59 2 1 1130
-18 4] 2 424
il 8 4 1 3 b4d
le i o 462
-15 ] 5 3{5
-16 Z B
-13 3 T 116
12 3 [} 69
s ; 13 ]
v g L
-3 19 il 17
-8 iz 12 14
-7 ol 13 B
-6 112 14 10
= 426 15 9
-4 ab9 s T
-3 1474 17 14
-2 LoV 18 ]
=k LiTS 19 &
0 1564 20 1

c. Histogram listing

Original Imagery

LARS Run # Channel Spectral Band Area
73064000 4 0.8 = 1.1 um Line(65,175) ,Column(1385,1495)
74024100 L 0.8 = 1.1 um Line(2h3,353),Column(1392,1502)

Figure 5-1. Difference image with single mode

probability density function.
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c. Histogram listing
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LARS Run # Channel Spectral Band
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73124700
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Area
Line(55,165),Column(355,465)
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Figure 5-2. Difference image with single mode
probability density function.
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c. Histogram listing

Original Imagery

LARS Run # Channel Spectral Band Area
73064000 L 0.8 - 1.1 um Line(161,271),Column(325,435)
74024200 L 0.8 = 1.1 um Line(262,372),Column(272,382)

Figure 5-3. Difference image with dual mode
probability density function.
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LARS Run # Channel Spectral Band Area
73064000 L 0.8 = 1.1 um Line(350,460) ,Column(249,359)
74024200 4 0.8 - 1.1 um Line(450,560) ,Column(195,305)

Figure 5-4.

Di fference image with nondistinct
dual mode probability density function.
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c. Histogram listing

Original Imagery

LARS Run # Channel Spectral Band Area
72033804 4 0.8 - 1.1 um Line(545,655) ,Column(945,1055)
72033804 8 0.8 = 1.1 um Line(545,655) ,Column(945,1055)

Figure 5-5. Difference image with multimodal
probability density function.
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equation form for the density function, this indicates that the mean of

the noise for each of the classes is the same, i.e.,

1 B u)? :
PD(X) =L PI‘[Di] -;/_-T-T_'—U— exp { —"——202 (5-7)

Observe that while the field structure of the scene is visible, there is
little differentiability between the fields in terms of the gray level
representation of each. It is this non-uniqueness of the gray level in-
tervals for each class that yields the single mode probability density
function.

Figure 5-3 illustrates the situation where the density function is
dual modal. This type of density function is indicated in the difference
image by the predominance of essentially two gray levels. Alsonote that
the difference image contains the field structure of the scene, which
supports the hypothesis that the temporal change is somewhat class de-
pendent.

Figures 5-4 and 5-5 contain other examples of the types of density
functions encountered. A multimodal example is presented in Figure 5-4,
and Figure 5-5 illustrates a case in which the modes are not separated.

Although each of these examples differs in the type of density
function observed, they all have a common factor. The basic field struc=
ture of each of the scenes is still intact in the difference images. The

conclusion one may draw from this observation is that the temporal changes

are dependent in part upon the different classes within the scene.
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5.2.: Autocorrelation Function of the: Temporal Changes

In the e&r[ier analysis (Chapter 2) it was found that a suitable
model of theféﬁﬁocorrelation function was required in the derivation of
a registratiénfprocessor. Both approaches to the problem necessitated
knowledge of tg{% nature. The probabilistic approach based upon the
premise of norma{iy distributed noise inherently requires a model of the
autocorrelatioq”fhnction simply by the functional form of the probability‘
density function.

75 exp {= g ' n} (5-8)

P (“) = M/zI
5T @n )

n’=-noise; assumed zero mean here

.

£_=:autocorrelation function (matrix),of the noise
Note that the.autocorrelation matrix and autocovariance matrix are the
same for zero mean noise,

One alsoiéomes across the need for an autocorrelation function model
while approacﬁ{ﬁé‘the registration problem via the second method. The
basic design criterion utilized in this approach is that the processor be
a linear filter ﬁhich yields a haximum output at the correct registration
position in thé ébsence of noise. In order to obtain the compact expres-
sion for the_iarfance of the registration error, i.e., as the reciprocal
of the outpuéTsignaI-to-noise ratio times the square of the effective
bandwidth (Equétions 2-46 and 2-47)}, a particular form for the processing
filter was chbééﬁ, the matched fi]te}, which maximizes the output signal-
to~noise ratio (Eéuation 2-36). Wheﬁ one examines the expression for
this type of filter in the frequency domain, one Findsaphat It depends
upon the reciﬁrédai of the spectral density function of the noise which

is determined.uniquely by the autocorrelation function of the noise.
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Therefore, one again finds athat knowledge of the.autocorrelation function
of the noise is essential,

Determination of an approximate functional form for the autocorrelation
function was carried out by experimentally estimating the autocorrelation
functions of the series of difference images which were generated for
the prohability density function estimates (cf. TaB{e 5~1 for the areas
used) ., -Since ‘the noise is modeled as being additive; it is Just the
difference between two registered images. The following expression was
used to estimate the autocorrelation functions. Note that it is an

asymptotically unbiased estimator.

; N-2 Nk ) L
R =32 ST g ) (5-9)
£ =0, b, ceoy L
k=10,1, oo, K
Where,
'Rz,k = autocorrelation function estimate at shift {f,k)
xi,j = (i,]j) th element of the difference image
X = mean of the difference image
L,K = maximum shift along the lines and columns respectively
er = numbetr of data samples in the diffefence imaqep

The results obtained are best illustrated by viewing several examples
of the estimated autocorrelation surfaces. Figurgs 5-6a throtigh 5-11a
contain several different surface estimates. The sémp!e image size chosen
is 111 lines by 111 columns with a maximum shift sf 16 lines or columns.
The amplitude of the surface is represented on a norm;lized scale, where
zero on the scale corresponds to a value of zero for the autocorrelation

function estimate, and the scale fncrement is l@O/mafog kl'
H]
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Figure 578b. Difference image autocorrelation surface- contour..
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One may no@ observe the characteristics of the-surfaces. First note
that the surfaces are smooth and nonincreasing for shifts around the
central peak. A violation of this nonincreasing property occurs énly
for small values of Rg,k’ and may be attributed to the property that the
displayed surfaces are only estimates of the actual autocorrelation
functions, Fthﬁermore, by close examination, the surfaces appear to be

exponential in nature. This last observation is best.illustrated by

plotting equiamplitude contours for each of the autocorrelation surface

estimates. Figures 5-6b through 5-11b contain such equiamplitude con-

tours for the corresponding surfaces, where the contour levels have

—], and R euz.
0,0

been chosen at R , R e
0,0’ 0,0
This particular choice of contours levels in terms of an exponentially
decreasing function was prompted by the initial observation that the
surfaces seemed to be exponential in form. Confirmation of this expo-

nential property is achieved if the radial increment of the contours for

each surface is a constant. From examination of these surface contours,

it is seén that_ihe radial increments are indeed approximately constant
for each sﬁrface, so that the noise autocorrelation function is exponen-
tial in nature:'

Now that oné:may reasonably model the autocorrelation surface of the
temporal changes as exponential in form, one can use this model for the
design of a registration processor. An example o% an-optimum processor
based on an exponential autocorrelat}on functton for the noise was given
in Chapter 3.° The reason for inclusion of thig particular example in

the previous chapter is now clear, 1t was in anticipation of the experi-

mental observations that the example was chosen. It was presented in
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the context of .illustrating the method by which one-solves for the processor
based'uﬁon the noise autocoregelation characteristics. However, the example
is directly applicable to the practical situation where an autocorrelation
function-of an exponential nature is actually observed.

Before applying the technique of the example to the experimentally
determined .autocorrelation surfaces, 1t i1s necessary to carfy out an
additional step. The example presumed the following functional form for

the autocorrelation surface.

~alt_| - 8]t,|
R(Tx,Ty) = Aze x Y (5-10)

Note that this requires the major axes of the correlation surface to co-
incide with the x and .y.coordinate axes, Unfortun;tely, the experimentally
observed surfaces do not comply with this assumption, However, this dis-
crepancy is remedied quite easily by providing a linear spatial trans-
formation to the correlation surnface to adjust the major axes so that they
are aligned with the x and y coordinate axes, solving for the filter
function as'is done in the example, and then applying the inverse of the
tinear spatial transformation to return to the original coordinate system.
Again referring to the example solution (Equation; 3~31 to 3-33), one

finds that the prewhiitening operation becomes a derivative type operator,

This result suggests that the performance of the registrat}on‘processor
may -be improved by first preprocessing the imagery via a derivative type
operator followed by -a-crosscorrelation operation instead of’just cross-
correlating the imagery directly, The experimental study discussed in

the next chapter supports this hypothesis, where it is found that pre-
processing the imagery via a gradient type operator (which s @ derivative

operation) does increase the relfability of the registration .processor.
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CHAPTER 6

EXPERIMENTAL INVESTIGATION OF SIMILARITY MEASURES AND
PREPROCESS ING METHODS USED FOR IMAGE REGISTRATION

6.1. Introduction

The study described in this chapter is the experimental examination
of several di%ferent processors designed to overlay digital imagery {a
more detailed:discussion of this study is presented in [35]). The
impetus for such an investigation was provided by the development of
several differeqf registration algorithms that had evolved and been
tested independently of one another [1,2,3,8,9,11,30], thus leaving
the potential user at a loss to objectively compare the different methods.
This study iétdesigned to allay this problem of choice by an experimental
comparison of the -basic techniques used in each of these algorithms to
spatially maéch'two temporally differing images. The approach taken Is
to record the performance of each of the techniques over a series of
selected test sites where multitemporal Imagery was readily accessib]e:
In this way a quantitative measure of the performance of the various
algorithms on a comparative basis would-be made available,

The images used In this investigation were taken by the LANDSAT |
satellite multispéctra] scanner which operates in four spectral bands:
0.5-0.6 um, 0.6-0;7 um, 0.7-0.8 um, and 0.8-1.1 um. Orbiting at an
altitute of about 600 miles, the recorded data samples have a resolution

of approximately 50 meters along the scanner sweep by 80 meters along
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the satellite's path, so that a full frame -consisting of about 2340 lines
by 3240 columns covers an area; of about 100 by 100 miles. Multitemporal
coverage of the same area is. accomplished by the ofbital paﬁh of the
sateFi%te‘whi;h'cycﬂﬁcarly répeats itself about e&efy 18 days. ‘

Figures 6-1 through 6-4 contain several examples of multitemporal
images over the same .area. The images have been -chosen from ‘the general
test site areas-used in th;s investigation and aég’typical of iﬁose
utilized for the experimental analysis. All of ;hésé{picturgs were
taken by the LANDSAT | multispectral scanner and are }n the 0.8~1.1 um
spectral band. Figure 6-1 shows two images .over Tibpécanoe County,
tndiana, which were taken in September and November qf 1972, A scene
from Hill County, Montana over two times during the spring and summer
seasons is pictured in figure 6-2. An example of an area over a year's
span Is jllustrated in Figurg 6-3 where data over wegiern Kansas is
shown for Julf of 1873 and IB]#: And two temporal differing data sets
over Missouri are shown: in Figure 6-4. Notice that‘ih all of the
examples the areas for each time pair are recogn{zébie as the same,
however, changes that have occurred are evident.. —Also observé that the
spatial scale of both im§ges in each time pair appears to be the same,
with litﬁle relative digtortion. This property of the imagesg?s derived
from the stability of the satellite viewing platform which incurs minimal
perturbations fn its orbit. Such small fluctuations in scanner position
over an area from one time to the next provides the approximate spatizl
congruence between the temporally differing imageé.“

This.investigatiyg comparison experimentally explores the basic
concgpts}which underlie these algorithms to provide an objective way of

judging the performance of the different registration processors. All
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i 9/30/72 11/29/72
LARS Run # Spectral Band Lines Columns
72053603 0.8 = 1.1 um (500,750) (575,825)

Figure 6-1. LANDSAT | imagery over Tippecanoe County, Indiana.

5/5/73 7/16/73
‘ LARS Run # Spectral Band Lines Columns
73124700 0.8 - 1.1 um (110,360) (110,360)

Figure 6-2. LANDSAT | imagery over Hill County, Montana.
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7/6/73 7/1/74
LARS Run # Date Data Taken Spectral Band Lines Columns
73046000 7/6/73 0.8 = 1.1 um (175,425) (275,525)
74024200 7/1/74 0.8 - 1.1 um  (275,525) (175,425)

Figure 6-3. LANDSAT | imagery over Kansas.

8/26/73 10/1/72
LARS Run # Spectral Band Lines Columns
72033804 0.8 - 1.1 um (375,625) (475,725)

Figure 6-4. LANDSAT | imagery over Missouri.
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of the algorithms operate in the same fundamental manner. With the
minimal relative spatial distortions between temporally differing LANDSAT
| images, the first assumption made is that no relatiQe.Spatial distor-
tions exist for small images. Therefore, registration of these small
images requireé only an estimation of the relative translation between
the images. ‘é;ven the two images to be ovérlayed, a search procedure 1s
performed to find this relative translationl One image is shifted about
over a larger teﬁpora]ly differing image and a measure of the similarity
is computed at each shift position.” The tran;Iation at which this
measure indicatés‘the most similarity is designated as the registration
position, Thisiis the fundamental procedure utilized in each of the.
registrationfaigorithms, however, the different methods depart from one
another in the gimi[arity measﬁre employed and the type of images used.
The first part of the study examines the criteria used to measure
the similarity Qetween two images. This is an important part of the
registration processor since the spatial matching of the imagery requires
a quantitative ﬁeasure of their similarity. Three different similarity
measures, which ére representative of those used in the aigorithms of
interest, are evaluated in this investigation. The first is the correla-
tion coefficiené which is the measure presently being used in the LARS
regisération system [1,5]. Second is the éum of the absclute values of
differences, the measure utilized in an algorithm which comes under the
heading of seéuent?a] similarity detection algorithms (SSDA's) {8,9].
Finally the correlation function, an unnormalized version of the corre-
lation coefficient is compared. The expressions for each of these
measures are contqined in Table 6~1. HNote the varying complexity of the

computational requirements of each. The correlation coefficient requires



136

the operations multiplication, division, subtraétion, and addition, while
the correlation function uses multiplication and addition only. And the
sum of the absolutezdifferences requires only subtraction and addition.
These coﬁbutatioﬁalﬁFEQUirements are reflected in the amount of opera-

tional time needed to evaluate each of the measures.

Seébnd]y,‘préﬁrocessjng of the imagery prior to.the -actual registra-
tion and'its effect.on the overlay results is examined. Several incentives
prompted this-area of investigation. The first is-éhat of improving the
performahceé of the registration processor,.and the second of reducing the
operational time and storage allocation needed to -implement the overlay
algorithms. .

Two' approaches leading to the same type of preprocessing operation
have- been suggested for improvings the performance of the registration
processor over that when the original imagery is use&i The. fiirst Tine of
reasthng:copcernS the enhancement of the boundaries of an image. In
many'tybes-of'scenes the basic geometrical structure of the scene is
contafined in the boundaries {e.g., agricultural scenes or imaggs contain-
ing roads). S}nce registration is a spatial matching of the images, it
inherently uses the gebmétrfc structure of the scene. 'ThereﬁOEe,
processing the images via an algorithm which accen;;ates this. geometrical
structure prior to overlaying the Images intuitively suggests that an
improvement is possible. One such method of perfo}ming this boéundary
accentuation is by a dradient type Operator.: Thi§ wés.the method proposed
in sévera[ registration algorithms implemented by preQious investigators
(115301, - - ‘f ' :

Another dpproach to the use-of preprocessing for perfo}mance improve-

ment s presented in Thapters 2, 3, 5 and Appendix A of this ﬁﬁyestigation.
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In Chapter 2 and Appendix A an optimum registration processor is designed
utilizing the sfgtisticai properties of the temporal changes, which are
defined as addi&ive noise in the context of parameter estimation theory.
It is shown tﬁéﬁ use of a matched filter processor both maximizes the
output signal;ko-noise ratio and minimizes the variance of the registra-
tion error. A mexhod for implementing this type of processor is given in
Chapter 3 whereby a preprocessing operation (the prewhiﬁening filter) is
used, Therefére, this suggests using a preprocessing operation conforming
to that which:i§ﬂpart of the matched filter processor. From the temporal
image statisfiéal properties observed in Chapter 5 and the example given
in Chapter 3, it is shown that this preprocessing operation utilizes a
derivative type operator which may be approximated by the gradient
operator suggested above.

The second_fyﬁe of preprocessing concerns reduction of operational
time and storagé'é]]ocation needed to register two sets of images. This
may be achieved by converting the images to a binary foémat (having
intensity level values of only zero or one). In this Qay a storage
savings is rea&ﬁzeq since each data sample has been converted to one bit
of information. ‘Secondly, operational time may be reduced by using
logical operatiogs'as opposed to arithmetical operations in the computer,

Three typgs-of preprocessing were selected. The first is computing
the magnitude:éf the gradient of the images (equation 6~1). From a
visual standpoinf this accentuates the boundaries within the images.
Plus, it is a‘deriéétive type operator which is the optimum preprocessing
operatioﬁ deriveq-in the example in Chapter 3 for temporal changes with
an exponential.autocorrelation function, the model observed for the

temporal changeskin Chapter 5. The second preprocessing operation is
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thresholding the images at their medians (all values greater than or equal
to the median are set equal torone, and all else set equal to zero).
Finally, the.magnitude of the gradient of the images is computed and then
thresholded at an arbitrary level to be determined experimentally. Again
this particular choice was made to approximate the preprocessing methods

that had. been propoesed and implemented by other investigators.

6.2, Similarity Measures®

An important decisiion that must be made in carrying out image regis-
tration is what criterion should be used to evaluate the similarity
between two images. That is, what similarity measure should be selected.
The similarity‘measures.being considered can be divided into two general
classes. The first class provides a measure on an absolute scale. An
example of this is the correlation coefficient which is the similarity
measure Eresent]y being used in the LARS registration system [1,5]. The
values of the correlation coefficient range between blus and minus one,

A value of one indicates that the two images are identical or.differ by

a positive constant factor about their means. A value of minus one
indicates that the two images differ by a negative constant factor about
their means. When using the correlation coefficient; the registration
position is indicated by the maximum of its absolute value which is
computed for each of the possible registration locations. [t is necessary
to consider the absolute value since it is possible tﬁat the temporal
changes may cause a shift about the mean of the images which would result
in a negative vaiué for the correlation coefficient. Another feature of
the correlation coeffictent is that not only is its scale limftedm but

its value on that scale gives an indication of how good the images are
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Table 6-1. Equations for the correlation coefficient, correlation
. function, and sum of absolute values of differences
similarity measures.

A. Correlation Eoefficient, Pok’
o = N Xlok T X Ve , correlation
gk — —_ ' coefficient at
z2 2 =2 2 2 -2 /2
(v x XYWy~ v d? shift (&,k}
where,
— N N
ok T jil SEREA
_ NN
XxX= I I x_,
i=1 j=1 1]
NN
Yok~ izi j£] Tien, J¥k
— N N
x? = L I x%.
=t j=1 Y
— N N
7 2
Yok T I Vi, e
B. Corre]athq'Functlon, rgk:
= g g _ correlation function
Yok T ek %13 Yi+a, jrk’ at shift (4,k)

i=1 j=1

€. Sum of Absolute Values of Differences, A’

N
I x
i‘j=]

sum of absolute values of

gk ii Tive, j+k|; differences at shift (2,k)
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linearly related. The expression for the correlation coefficient is
given in Table 6-1.

The second-class. indicates the registration posiéion by a maximum
or minimum value at the registration location. Two examples of this are
the correlation function, which is an unnormalized versicn of the correla-
tioh coefficient, and the sum of the absolute values of the differences
between the twe'images, the similarity measure used in a registration
algorithm which comes under’ the heading of sequent}al similarity detection
algorithms (SSDPA's) [8,9]. The expressions for these similarity measures
are-listed in Table 6~1. For the correlation function, the registration
position is indicated by a maximum or minimum value which is computed
for each-of the possible overlay locations. For the sum of the absolute
differences measure the registration position is indicated by a minimum
value. In these examples there is no absolute saaie, so that the value
of this-maximum or minimum by itself will not give a good indication of
how closely the two images match. The exception to this occurs in the
absolute vé]ye of the differences case when the two images match
perfectly. However, if the difference between the two images i's modeled
as additive noise, a confidence interval cam be established in the
absolute véﬂue of the difference case by using the resulting minimum
value in conjunetion with the probability distribution of thg_noise [9 i.

The choice that must be made with regard to the similarity measures
is influenced by considerations. such as the following. (1) Howrwell do
the different methods perform? Is there a way to theoretically predict
this perfdrmance, and if so, what are the results? Also included in
this question-is whether there exists some sort of confidence measure so

that the results may be evaluted quantitatively. (2} What opetations are
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involved for each éf the methods, and what are the comparative times
needed? {3) If it has been determined that several methods of registra-
tion yield reason;ble results with respect to the ability to find the
correct registration position, then what are the tradeoffs between the
accuracy and the time and number of operations involved? For example,
it one method yields the correct registration position in 95% of the
attempts but requires twice the operational time as a method which is
able to find the correct location 75% of the time, which method should be
used? One criéerion that is essential for this decision is whether the
occurrence of a false indicated registration position i{s known to be
false when it appears.

For the experimental analysis, test sites were chosen from LANDSAT |
imagery over Missouri and Kansas. Tables 6-2 and 6~3 contain listings of
the dates the data‘were taken and the approximate location of the LANDSAT
I frame centers for the data. A complete tabulation of these sites is
given in [35]. The spectral bands chosen for this analysis were 0.8~1.1
um for the Misso&ri data and 0.6-0.7 um for the Kansas images. The sub-
images used to e&aiuate the registration algorithms were 51 lines by &1
columns in size. Typical pictures of these general areas are shown in
Figures 6-3 and 6-4.

Evaluation of the results is in terms of the percentage of acceptable
registrations out of a given number of attempts. The nonacceptable
attempts are thése where the indicated régistration location was known to
be false. Such a'criterion clearly requires some a priori knowledge of
the relative translation between the images in question. For the Missouri
imagery three tempo}ally differing sets of data had been previously regis-

tered to within a few pixels via the LARS registration system [35].
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Table 6-2.. Test_ site area in Missouri.

Approximate location of frameicenter: . lLatitude:  37°24'N
Longitude: 8B8°45'Y

-LARS ‘Run Number: 72033804

'Date Corresponding Channels
patgiTakep ~_in Run 72033804
9/13/72 | 1-4
B#26/72 5-8
10/1/72 912

Table 6-3. Testsite area in Kansas.

Approximate location -of -frame center: -latitude: 37°28'N
) Longitude: -100°31'W

Date
LARS Rg?'# - Data Taken
73046000 7/6/73
73064000 8/29/73
74024100 . 5/26/7%

750214200 7/1/74

RODUCIBILITY OF i
gg@mw PAGE 1§ POOR:
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Therefore, anyxsubstantial deviation from this was taken as an unaccept~
“able attempt.. For the Kansas data this a priori information was supplied
by careful visual checking of the imagery.

The overall acceptability comparisons are listed in Table 6-4. The
results are tabu{ated for bofh the original and preprocessed imagery so
that a particular similarity measure may be crossreferenced among the
different types.of images registered. For examp]e,lwith the correlation
coefficient theré is a 90% acceptability using the ériginal images, 100%
for the magnitude of the gradient of the images, 65% for the images
thresholded at:tﬁeir median, and 90% with the magnitude of the gradient
of the images ;hresho]ded at an appropriate tevel.

Between the three similarity measures examined, the correlation
coefficient conéistent]y yielded the highest percentage of acceptable
registrations. This is evidenced by the range of percent acceptabilities
within each column. For example, when the magnitude of the gradient of
the images were rggistered, there was a 100% acceptability for the corre-
lation coefficiert measure, 74% with the correlation function, and 92%
acceptability with the sum of the absolute values of the differences
measure. Therefcore, on a performance-wise basis, these resuits indicate
that the correla;ion coefficient should be chosen as the similarity
measure. |

However, the question of the tradeoff between operational time re-
quired and perforﬁance must still be examined, Is there a measure which
reduced the reliability only slightly while accompanied by a large time
savings? Refer-to‘the percentage acceptable registrations in Table 6-4
for the magnitude of the gradient of the imagery. Note that while there

was 100% acceptability using the correlation coefficient, there also was



. Table 6-4. Percent (Number) of Acceptable Registration Attempts
Magni tude Thresholding Thresholding the
Original of the at the Magnitude of the
Imagery . Gradient Median Gradjent
Total ,
Similarity [Number of 90 66 66 30
Measure Attempts '
Correlation Coefficient 90% (81) 100% (66) 65% (43) 30% (27)
Correlation Function 38% (34) 74% (49) 55% (36) 87% (26)
.Sum of Absolute Values . ‘ ) , . T
of Differences 69% (62). 92% (61). 62% (41) 87% (26)

7l
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a 32% perférmancg-with the sum of the aEsqute difference measure. This
result in conjuﬁction with the reduction in the numgef oé computations_
and thus, time savings achieved, by using this latter measure.(Table 6-1},
indicates that in a time-performance evaluation, it might be more advan-
tageous to use tH; sum of the absolute difference meaéure as 6pposed to
the correlation coefficient.

OVera]i;.the best performance was achieved by the corréiation co-
efficient using the magnitude of the gradient of the imagery. Therefore,
if percent acceptability is of prime importance, this preliminary com-
périson indicates that preprocessing the imagery via a gradient type
processor enhances the ability to find an acceptable registration position.

The next section concerning the effects of preprocessing prior to regis-

tration pursués this observation in more depth.

6.3. Preprocessing Methods

In the searqh-for an optimum processor for image registration it
has been proposed that preprocessing of the data prior to the actual over-
laying procedure may be a step towards the solution of this problem. There
are several unéeri&Ing reasons for this suggestion. First, preprocessing
may yield a greater reliability of the system's registration performance.
This is supportéd by the analyses in Chapters 2, 3, 5, and Appendix A.
In Chapter 2 and Appendix A Tt is shown that the optimum processor
utilizes the statistical properties of the temporal changes. In particular,
the optimum proce;sor is a matched filter which requires knowledge of the
spectral density function or autocorrelation function of the temporal
changes. Chapter 3 presents a method of impiementing the optimum pro-

cessor using a preprocessing operation which is analegous to the
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experimental investigation i this section. ‘TheFefore, once a model of
the autocor}elation function 0f the temporal changes is determined, the
preprocessjné épenation.correSponding to that for the optimum processor
may be found. ‘In the .experimental investigation discussed in Chapter 5,
the results indicated that an exponentially decay{ﬂé'autocorﬁe1ation
function is a reasonable model for the autocorre]gt{qn function of the
temporal chanées, When this model is used it is Foﬁnd in the :example of
Chapter 3 that a .derjvative type preprocessing operation will yield the
optimum processor. Thus, implementation of a preﬁro&gésing operation of
this form should improve -the registration performance.

Secondixp the time and operations ‘required may be substantially re~
duced. An example of this is conversion of the original imagé into a
binary imaée (data values of only 0 or 1} so that logical operations may
be emplo&ed in the computer instead of arithmetical operations.

Thé study undertaken here is an experimental examination of several
preprocessing techniques and their effects on image registration. Three
basic methods were chosen. The fir;t method utilizgs the magrittude of
the gradientuﬁf the imagery given by, |
2 1/2

Y2 4 o(x. - X, )%

[Gradient of xi,j, = {(xi+l,j - Xi"],j I,j%].- P

(6-1)
where xi,j is the image intensity -at coordinate (i’j)fz Since ?he gradient
operation js'a-aeriVatiue type operation, this method of prepr@cessing
conformsiio'fﬁe 6ptimum approach derived using the ogsérved autocorrelation
function of the fempora] changes of Chapter 5 In tﬁe example of Chapter 3.

Therefore, based on this analysis, use of the gradient preprocessing opera-

tion should improve the registration processor performance.
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The second method consists of thresholding the imagery at its median
(all values greater than or equal to the median are set equal to one, and
all else set equal to zero). And the third method computes the magnitude
of the gradient of the imagery and then thresholds it at an appropriate
level.

Typical images resulting from carrying out these pfeprocessing
operations are shown in Figure 6-5. Figure 6-5a is the original image
taken by the LANDSAT multispectral scanner over Hill County, Montana.
Thresholding the original image at its median results in Figure 6-5b.
Note that although the thresholded image contains only two levels (0 and
1), it represents the field structure of the scene quite well.

The magnitude of the gradient of the image is illustrated in Figure
6-5c. Note that boundaries between the fields have been accentuated by
the gradient operation. This is the expected result. The gradient is a
derivative type operator, so its magnitude at a point increases with the
slope at that point. Since the boundaries of the scene indicate an
increase in slope, the magnitude of the gradient at the boundaries is
large.

Figure 6-5d shows the resultant image after the magnitude of the
gradient has been computed for the original image and then thresholded
at an appropriate level. This is a binary image containing value of
only zero and one. Again the basic field structure is represented quite
well,

LANDSAT imagery over Hill County, Montana, Tippecanoce County,
Indiana, and Kansas were used for the analysis. The ready availability
of multitemporal data prompted these particular choices. A listing of

the dates the data were taken and the approximate location of the LANDSAT




a. Original LANDSAT | image over b. Original image thresholded
Hill County, Montana. at its median.

c. Magnitude of the gradient d. Magnitude of the gradient that
of the original image. has been thresholded at an
appropriate level.

Original Image

LARS Run # Date Data Taken Spectral Band Lines Columns
73124700 5/5/73 0.8 = 1.1 um (329,451)  (80,206)

Figure 6-5. Examples of images resulting from different
preprocessing techniques.

L wpnODUCIBILITY OF THE
S ~1AT, PAGE IS POOR
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| frame centers are shown in Tables 6-2, 6-3, 6-5 and 6-6. . For a com-
plete tabulation of the test sites refer to [35]. The actual subimage
sizes that were to be registered for these comparisons were 51 lines by
51 columns.

Again, evaluation of the performance is in terms of the percent of
acceptable registration attempts. Like the similarity measure‘comparisons,
visual examination or previous rggistration to within a few pixels pro-
vided the a priok[ information for determining the acceptability of an
indicated registration position. Also, in order to provide a common
basis for comparison, the correlation coefficient was chosen as the
similarity measure for all of the attempted registrations.

The accepéabie-unacceptab1e attempts are tabulated in Table 6-7.
Note that the re§u1ts have been divided into three sectiéns: (1) the
cases where the mggnitude'of the cor;e]ation coefficient (|p|) for the
original imagery is greater than or equal to 0.5, (2) the |p| for the
original imagery -is less than 0.5, and (3) the overa]].resu1£s. The
underlying reason for this-partition is to examine the relative per~
formance for the high correlation cases (|p] > 0.5) and the ltow correla-
tion cases {|o] < 0.5) separately, as well as for the overall results.

First consider, the overall results, Preprocessing the imagery via
the magnitude of the gradient yielded the highest per;ent acceptability
with 100%. Also, thresholding the magnitude of the gradient performed
very well (97%). The important point to note, aside from the best per-
formance, is thét on an overall basis preprocessing of the imagery with
a gradient type transformation boosted the performance over that utiliz-
ing the original imagery. This result supports the analysis of Chapters

2, 3, 5, and Appendix A where the optimum processor in the presence of
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Table 6-5. "Test site area in Indiana.

Approximate location of frame ,center: -Latitude 40°20'N
4 ‘Longi-tude 86°21'YW

LARS Run-Number: 72053603

.Date Corresponding Channels
?a?arquen‘ in Run 72053603
9/30/72 1-4
10/19/72 5-8
11/29/72 9-1%

Table 626. Test site .area in Hill County,- Montana..

LARS Run Number: 73124700

Date Cérrespondingnﬁhanne]s
DaFa Tagen in Run_ 73124700
5/5/73 - 1-4
5/23/73 21-24
6/10/73 17-20
7/16/73 9-12

8/3/73 5-8



Table 6-7. Percent {Number) of Acceptable Registration Attempts

Magnitude of the

Thresholding at

Thresholding the
Magnitude of the

Original lmagery ‘ Gradient the Median Gradient
Acceptable Total # | Acceptable Total # jAcceptable Total #}Acceptable Total #
Attempts Attempts | Attempts Attempts | Attempts Attempts| Attempts Attempts

lo| > 0.5
for
Original Imagery

100% (75) 75

100% (75) 75

96% (72) 75

100% {64) 64

——

[pl < 0.5
for
Original Imagery

65% (37) 57

100% (57) 57

61% (35) 57

89% (25) 28

Overall

132

85% (112)

1003 (132) 132

81% (107) 132

97% (83) 92

1§l



152

exponentially aut@correlated.tempora]-changes=utilkzes a derivative type
operator In the ppeprocessingsstage. .The analysis is also corroborated
for the .other: similarity measures in Table 6~4. Comparison of the per-
centage. of acceptable registrations for the gradient type preprocessors
shows a-subséantia].improvement in performance over both the original
imagery..and the images.thresholded at their median for each:of the
similarity -measures. This Indicates that choice of a preprocessing
operation conforming-to that derived via the matched filter (Chapter 3)
may indeed-provide a more,reliable registration processor.

‘Several questions may be asked about this obéervation. I's there
any trend _to this Increased reliability? Are there any image characteris-
tics which seem to.contrlbute to these observations? One answer to these
questions is embodied . in . the partitioning 6f the overall results into
the high-and iow correlation_cases.

Examination -of .the high.correlation instances (]b| > 0.5%for the
original data) shows that &ll of .the.preprocessing methods pefformed ex-
ceedingly well with 96% acceptahility for thresholding the data.at its
median.and 100% for the rest. "This indicates thatlwhen the ofiginal
imagery is highly correlated, any.of the preprocessing methods works
equatly welf. In this.case no-advantage'is gained performancerwise by
preprocessing the jmagery prior <to-registration.

The most striking -result came with the low co}relation cases (o] <
0.5 for the original data). For .these cases a marked advantagervover
.using the original imagery was obtained by preprocessing the data via a
gradient type processpr., -Use of :the magnitude of £Ee gradient «wof the
imagery provided a 100% acceptability compared with the 65% péerformance

for sthe ariginal data. Thresholding the magnitude of the gradient also
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indicated a disiihct increase in reliability. These results suggest that
a substantial in?rease in the rellability of the registration processor
may be achieved when the original imagery is not highly correlated by
‘preprocessing the imagery prior to registration via an operation con-
forming with the preprocessing operation derived from the matched filter
configuration of the registration processor {Chapter 3).

Earlier, it was mentioned that a priori information was used to
determine the acceptability of indicated registration positions. For
imagery that had not been previously registered this took the form of
visual examination for an individual test site. Such a procedure is
quite time conﬁuming and does not lend itself readily to an automatic
mode of operationl However, while attempting the registrations at the
selected test sites it was found that retative spatial'information could
be used for several test sites located in the same general area, or the
same test site for over several different times. For example, if several
different test sites indicated the same relative translation for regis-
tration, while the registration position of another test site within the
same general areé indicated a substantially different translation, then
this Tatter registration attempt would be unacceptable. Similar reasoning
fo!lowé for several time pair registration attempts for a_sing!e test
site.

Another observation which may be made directly from Table 6-2 also
suggests a.way.Ey which a partial acceptability decision might be made
automatically. This approach is in terms of an absolute scale confidence
measure. Since the value of the correlation coefficient (p) indicates
the linearity of the relationship between two images, possibly a range

of values for p exists which could be used to determine acceptability.
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This is suggested Iin the fifst line of Table 6~7 where the results when

the magnitude of the correlation coefficient is greater than or equal to
0.5 for the original imagery are listed. For the-o§igina{ data there is
a 100% acceptability for this range of p. fhis suggésts that the value

of the correlation coefficient may be used to help in the determination

of the acceptability of an indicated registrétionuposition.

6.4, Performance of an Operational Algdrithm Whichr
Utilizes Gradient-Type Preprocessing

The -observation made in sections 6-2 and 6-3 suggested that an
improvement-in the>performance of the registration processor could be
realized by first preprocessing the images via a:é}adﬁent type processor
andﬂthenregispering these. gradient images. |t was also foundithat use
of’ the correlation coefficient aszthe.simiiérity—measure yielded the
highest percentage acceptability of the three\meagdres compared. |nde-
pendent of this experimental study, but-at'apﬁroxiﬁqte]y the same tiﬁe,
an algorithm designed to-register LANDSAT |- images Qas develoPed at
Computer Sciences Corporation [30], which utilizes both a grédﬁent type
prgprocessihg-of the_images and’a: similarity ‘measure closely approximat-
ing the~c0rre;ati0n coefficient.. The availability of this algorithm
made [t possible to experimentally observe the extghsion of thes results
obtgined.-in the similarity measure=and,préprocessiqg comparisons to an
algorithm designed for operational %mage registration: .

The fundamental operation-of this algorithm is ﬁhé same és:that for
the other registration processors compared in thi§ chapter. The images
are assumed to be.spatially congruent thereby reducing the registration

operation to that of finding the relative: translation between the images.

The translation is found by shifting one image {the. overlay image) over
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a larger temporally differing second image (the reference image) comput~
ing a value ;f the similarity measure at each shift position. The shift
position at which the similarity measure indicates the best spatial

match is taken as the registration position. In this case the images

used for registration are the original images from two spectral bands

that have been passed through a gradient type processor, thresholded at
an appropriate level, and then combined to form a composite image. The
similarity meésure used is an approximation to the correlation coefficient

designed Specffically to operate with binary images.

The gradient type preprocessing operation is expressed as follows,

Kip = Mg = N g b e T =
L PR IL N PR I [ VRV PSR (6-2)
where,
H ;- original image intensity value at coordinate (i,])
'Y .
Xi " intensity value of image sample at position (i,j) after
r

preprocessing

After an image Eas been passed through this gradient type operation it
is thresholdedAaf the level which is exceeded by only fifteen percent of
the data values. In this way the original image is converted to a
binary image having values of only zero and one, with a prescribed per-
centage of pointé having the value one.

These gradienf and threshold operations are applied to two spectral
bands of each image set. The two binary images from each spectral band
then are combined via a logical ‘or! operation to produce a single image
to be used for éhe registration, the resulting image coqtaining between

5% and 30% values of one. In this fashion it is possible to use
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information from more than one spectral band simultanecusiy for the
overlay processor.-

The- similarity- measure used to determine the-relative translation
between these preprocessed imgges is defined as the ratio of number of
coincident points between the overlay and reference image having the
value of 1 divided-by the total number of points having value 1 in that

portion Bf'the'reference_image.being tested as the registration location.

N N
oL Y, .
o1 jil Xi,5 i, g
p = . ’
"ok : Y
. i+, jtk
l=]‘
Where,
pN = yalue o? the similarity measure at shift {2,k)
2k
X, . = value (either 0 or 1) of the overlay image at codrdinate
I (,9) ~
i+2 kT value (either 0 or 1) of the reference image at coordinate
T (i+2, j+k) , :
N = number of Tines and columns in- the 6verlay image

Once the preproceéssing has:been completed, two-methods cé‘operation
may: be émployed. The first approach is to compute -fully thervalue of
the sim?iarity measure at all of the shift positions. The second method
involves. partial computation of Py the value of pNifs fully computed
only if its estimated magnitude exceeds a certain level. For a com-
plete discussion of this latter approach refer tO'ﬁahk {30] where the
algorithm is discussed. Use of this latter method finds its advantage
in terms of the time savings achieved by estimat%ng Py rather than com-
puting it fully at all shift positions. -

This investigation entailed iﬁplementation of'tﬁis algori‘thm over

the same test sites. used for the similarity measure-and preprécessing

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR
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analysis. Since the primary objective of this section is to relate the
overall performance of this registration processor to the results obtain-
ed in the pré&ious two sections, the performance of ﬁhe processor when

Py is fully caiculated at all shift positions is discussed here. For a
discussion of the results when the estimation procedure was also utilized
refer to [35].

For a meaningful comparison the size of the test éites and the
acceptability-unacceptability criteria rémained the same. The test
sites chosen'coyered all of those used %or the similarity measure and
preprocessing method comparisons. These were from Kansas, Missouri,
Indiana, and qutana. The general areas are listed in Tables 6-2, 6-3,
6-5, and 6-6, while a complete tabulation of all of the test sites is
given in [35];3

Since a singte method of registering the images was tested, the
performance res;]is may be summed up in terms of the percent acceptable
registrations out of the total number attempted. The overall tabulation
showed that 196‘0ut of 192 registration attempts were successful, which
is a 99% success.rate. This result is in close agreement with the
previous findingﬁ‘of sections 6.2 and 6.3, where preprocessing via a
gradient operator followed by use of the correlation coefficient vielded
the highest performance (Table 6-4)., This high performance rate also
corroborates the éna]ysis presented in Chapters 2, 3, 5 and Appendix A,
where it Is shown that preprocessing via a deffvative type operator

yields an optimum registration processor.
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APPENDIX A

PROOF THAT THE MATCHED FILTER MINIMIZES
THE REGISTRATION ERROR VARIANCE

In section 2.3 an expression for the variance of the registration
error is deriveﬂ, The basic design criterion for this méthod of approach
is that the second image (misregistered image plus noise) be passed
through a filter whose output is a maximum at the correct registration
position in the absence of noise. General relations for the variance
are given by equations (2-27) and (2~28) where the variance may be
evaluated by inserting a particular filter function.J At that point the
matched filter Qés used to evaluate these expressions, which leads to
compact formulas er the variance of the registration error along the x
and y coordina£é*axes. In this appendix it is shown that not only does
the matched filter prgvide the maximum output signal-~to~noise ratio at
the correct reéistration location and compact expressions for the variance,
but it is the optimum filter in the sense that it minimizes the variance
of the error. - .

To begin the proof one starts with the general expressions for the
variance of tﬁe registration error along the coordinate axes, equations

(2-27) and (2~28)}, which are repeated here.

2 7 2 77
27 Sy Ty T 290N T 9y Ty
x=-x}" = b 5 (A-1)
9.9 -4 1
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——— g2 n -29.9 nn + g2 n2
P 2 s ) 7 x -
(y-y)° = Xy X XKy~ x z x2 : XX Y (A-2)
[gxxgyy - gxyl

Note that thése relations are greatly simpiified when the term gxy equals

zero. In this situation the variance expressions become,

-

a w2 nlx" .

(x=x)" = —— (A-3)
Fxx

S

G- = ¥ (A=)

y=y) =3 A
Syy

It is convenient'tp,determiné.the conditions under which the term gxy(;,;)
does equal zero. Since:g(x,y) is modeled as a second order polynomial in
x andi vy about the true registration locatiom, and is a maximum at this
positiom, one may apply a linear spatial transformation to the (x,y)
coordinate system so that In the new coordinate system, say (xk,y]), the

term gx y(§,§) wi'll equal zero. One may then solve for the filtter which

)
minimizes the registration error variance in this new coordinate system.
Once this filter is found, the inverse linear spatial transformation may
be applied to return to the original coordinate system. Therefore, no
generality s lost by assuming gxyig’;) equals zero; so that one: may begin
with expressions (A-3) and (A~4).

The equations for the variance may be expressed in their equivalent

integral form (equations (2-29), (2-31), (2~32), and (2-33)),

'(1_:')"2’ I nla,gdhly, )R, (omvsB8-£) dadBdyde s
X-x) < = 2 -
[T hle,8) (%o, 5-B)dad]
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- IS hle, By, E0R | (amy, B~ ) dodadyds

~ - 2 (A"6)
[f] h{a,B) fyy(x-a,y-s)dads]

where R(x,y) is the autocorrelation function of the input noise, f(x,y)
is the known signal (first image), and subscripts again denote the partial
derivatives with respect to the corresponding variables.

Given these expressions for the variance, one would like to find the

filter h(x,y) which minimizes (§~§)2 and (?-?)2. For this derivation the

problem will be broken down into two parts, first the minimization of

(§-§)2, then of (;-;)20

To begin, first restate the problem in an equivalent form. Minimiza-

tion of (Q—i)z-may be stated in the following equivalent form.

Minimize

It

1(0) = [[f] h(a,B)nly, DR (a-y,E-E) dadpdyde (A7)

Subject to

2

. (A-8)

i

Jh) = 1) hla,8) f (ia,5-8)dads]? =k

where K] is a coﬁstant and I(h) and J(h) are functionals of the filter
h{x,y).

The method of solution employed will follow that presented by
Franks [18]. However, before solving the problem several notational con-
ventions that aré used must be defined., The first is that of an inner
product and the second that of an operator. Given two functions, g(x,y)

and h{x,y), the inner product, <g,h», is defined by,

<g,h>= [[ g(x,y) hix,y) dxdy (A=9)

and an operator, A(x,y}, on a function h(x,y) is defined as,

Ah = ff A(x-a,y-B)h(a,B)dedB (A-10)
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Note that A h is a functionyof the variables x.and y.
With these integral representations, I(h} and J(h) may be expressed

in terms of operations in Hilbert space as

1) = & b, > | (A-T1)

3h) = <h,5>” (A-12)
where,

s = s{x,y} = fxx(g‘X,Q"V) (A-13)

Since .each of the functions, Rxx(x,y), h(x,y), and f(x,y) are real, and
I(h) and J(h) are quadratic functionals, it is shown in Franks [18] that

the filter which minimizes |(h) subject to J(h) = K? is the solution to,

| - A% =0 {A-14)

where A] is a Lagrange multiplier and VIl and VJ .are the gradient vectors

corresponding to I(h) and J(h). These gradient vectors may be found from

evaluating the directional derivatives of I(h) and J(h) which are defined

as follows,
lim 1(h +eu) - t(h)

D, Mh) =e+0 = =<Vl,u> (A-15)
Tim J(kh +gu) - J(h)
b Jh) =er0 —— ; - =<V, (A-16)
where,
b 1 (h) = directional -derivative of I(h) with respect to u
Dud(b) = directional derivative of J(h) with respect to u

and u 1s an arbitrary function with the property that,

CUyU = ffvua(x,y)dxdy = (A-17)

Substitution of equations (A-11) and (A-12) into (A-15) and £A-16), and
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using the inner product properties for real functions g(x,y), h(x,y) and

A(x,y), with A(x,y) an even function,

<g ,_I-_l> = <!],9>
<A g,h> = <A h,g>

yields,

I

<Vl, u> = <2 R s U

]

VJ, u> = <2 <h,s>s, u>

or equivalently,

<¥l, u>= (2 8 _h, u)
<¥Jd, u>= (2¢ s, u)

since <b,§>'=_KI.

From these expressions one obtains the gradient vectors,

i=2R h
=2k s

Then from equation (A-14), one must solve,

2 Bxxb - l]ZK'] s=20

Rewriting this in integral form,

2 [[ R (x~o,y=B)h(a,B)dadp = 24 K, T, (x=x,y=y) =-0

sa that,

ff Rxx(x-a,y-s)h(u,s)dads = AIK] fxx(;-x’g-Y)

(A=18)
(A~19)

(A~20}

(A-21)

(A-22)

(A=23)

(A-24)

(A-25)

{A-26)

(A=27)

The solutjon to this equation is found by taking the Fourier transform of

both sides.
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1! Rxx(x-a,y~8)h(a,B)e'jz“(UX+VY)dadsdxdy

= MK [ﬁxx(g—x,;-y)e-JZH(UX+vY)dxdy (A-28)

Which becomes,

~ln?y? s (u,v) H(u,v) = ~hw2q?ATK1F"(u,v)e"JZ“(x”+yV) (A~29)
. where,
Smﬂu,v) = Fourier transform of R(x,y)
H{u,v) = Fourier transform of h{x,y)
F(u,v) = Fourier transform of f(x,y)

Rearranging this expression in terms of the filter, H(u,v), one obtains,

* - j2m (xutyv)
Hiu,v) = A K, © (u,v)e

™ 5 (u,v) (A-30)

which 1s the definition of the matched filter multiplied by an arbitrary

constant factof, ATKI' Thus, the filter which minimizes the variance

along the x-axis is the matched filter.

Alternatively, minimization of (;-;)2 may be done in the same manner
where the problem is equivalently stated as,

Minimize

n§ = J.-”‘J‘ h(u’B)h\(Y’g)Ryy(d’Y,B- E)dadsdydg (A...3'[)

Subject to

2 =

oy Iff h(a,e)fyy(i—a,g-s)duds]z = k%, a constant (A-32)

g X

Since the problem i's now in terms analogous to the minimizatiom of

(§-§)2, one may follow the same steps which result in the following

solution for H{u,v).
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% - j2r {Xu+yv)
_ F.(u,v)e J -
H{u,v) = A,K, SR (A-33)

where Az is the corresponding Lagrange muitiplier. Therefore, the filter

which minimizes (?-;)2 is the matched filter.

Since the constants K] and Kz are arbitrary, one may choose KI and

Ky such that A,K, =1 =12,K. Thus (%-%)% and (?—?)2 are minimized

simultaneously by using,

F*(u’v)e~j2w(;u+;v)

H(U:V) = Sm(u,\’) . (A"3h)

which is the matched filter. Therefore, use of the matched filter not

only maximizes the output signal-to-noise ratio at the correct registra-
tion location and yields compact expressions for the variance, but it

also minimizes the varfance of the registration error,



