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ABSTRACT
 

Svedlow, Martin, Ph.D., Purdue University, August 1976, Analytical
 
and Experimental Design and Analysis of an Optimal Processor for Image
 
Registration. Major Professor: Clare D. McGillem.
 

The registration of temporally differing images is defined in a way
 

that allows its analysis via parameter estimation theory. Assuming
 

spatial congruence between the images, one image is defined as the signal
 

and the second image is assumed to be the signal plus additive noise,
 

where the noise is comprised of the temporal changes and any additional
 

noise introduced by the sensor system. The parameters to be estimated
 

are the relative translations between the images.
 

With this formulation, a quantitative measure of the performance of
 

the registration processor is defined which leads to the derivation of an
 

optimum processor that yields the best possible performance in terms of
 

the criteria chosen. The performance measure used is the variance of the
 

registration error, where the error is the spatial difference between the
 

registration position indicated by the processor in the presence of
 

noise and the-true overlay location. With this performance criterion
 

the optimum processor is that which minimizes the variance of the regis­

tration error. Derivation of the processor which satisfies this criterion
 

shows it to be the matched filter, which also maximizes the output signal­

to-noise ratio. Substitution of this processor into the general expres­

sion for the variance of the registration error yields a compact
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expression in terms of the effective bandwidth and signal-to-noise ratio.
 

Given the,matched filter processor, two methods of implementation
 

are shoWn. In thefirst approach the second image (signal plus noise) is
 

passed through a single filter where the position at which- the output is
 

a maximum is taken as the indicated registration position. For the
 

second' technique of implementing the matched filter both of the images
 

are passed through a prewhitening filter and the resulting outputs are
 

cross-correlated, where the prewhitening filter is designed so as to pre­

whiten the input noise (temporal changes). Again-the indicated regis­

tration position is the location of the maximum of the output. This
 

second method is the one that finds itself appltcable to image registra­

tion algorithms that have been implemented by other investigators in the
 

form of utilizing a preprocessing operation on the'lImages prior to over­

laying them.
 

Actual. determination of the matched filter processor to be used in
 

a particular situatTon requires a model of the,autocorrelation function
 

of the noise (temporal changes). For appl'ication of'this type of regis­

tration processor to LANDSAT I satellite imagery an estimation procedure
 

for determining a model of the autocorrelation function is carried out.
 

It is found that for the imagery examined, the autocorrelation function
 

of the temporal changes is of an exponential form. Utilizing this para­

metric form for the autocorrelatton function an example is presented in
 

which the matched filter is evaluated. It is found that with the pre­

whitening-followed by crosscorrelation approach to implementation of the
 

matched filter, that the preprocessing or prewhitening filter applied to
 

both images is a derivative type operator. This result indicates that a
 

derivative type preprocessor should be applied to both images prior to
 

overlaying-them.
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One of the basic assumptions made in the derivation of the optimum
 

processor is that-the images be spatially congruent. However, this is
 

not necessarily true when given two sets of actual imagery due to unavoid­

able perturbations in the scanner viewing platform orientation. An
 

analysis is presented inwhich the loss in the output signal-to-noise
 

ratio due to the violation of the spatial congruency assumption is shown.
 

The results show that in the presence of relative spatial distortions
 

which are Increasing in image size, such as a linear scale change, that
 

there is an optimum integration area size for the cross correlation stage
 

of the processor which yields a maximum output signal-to-noise ratio.
 

Determination of this optimum integration area size is a straightforward
 

procedure which is shown in a series of examples illustrating several
 

types of relative spatial distortions. In two of the examples, models
 

of the distortions observed between temporally differing. LANDSAT I images
 

were used. In this way it is shown how the optimum integration area
 

size for the registration of images in practice may be found in a straight­

forward manner. 

Finally, an experimental comparison of the techniques used in
 

several registration algorithms proposed or implemented by other investi­

gators is presented. This study provides both an objective.comparison
 

of the different algorithms plus a corroboration of the analytical re­

sults derived in the earlier sections. It is found that preprocessing
 

the images via a gradient type operator, which is a derivative type
 

operation, improved the overall performance of the registration processor.
 

This agrees wjth the preprocessing stage of the optimum filter derived in
 

the application of the matched filter to the registration of images where
 

the preprocessing filter is found to be a derivative type operator.
 



CHAPTER 1
 

INTRODUCTION
 

1.1. General Discussion
 

Image registration is a topic that has become important with the
 

advent of satellite borne sensors capable of producing iarge quantities
 

of multitemporal imagery. Analysis of the differences between images
 

taken at different times requires that the images be matched spatially
 

so that it can be determined how the corresponding data points change
 

with time. This spatial alignment or overlaying of images is what is
 

meant by image registration.
 

One of the primary objectives for overlaying temporally differing
 

images is to provide the capability of utilizing the time dependent
 

characteristics of a scene for its analysis. For example, imagery of
 

agricultural areas are subject to change from one season to the next due
 

to the growing cycle of the crops. If the classification of different
 

crop species is the purpose of a project and the crop types of concern
 

are indistinguishable spectrally at a particular time, then their growing
 

cycles might provide the necessary information for separating one from
 

the other.
 

Various investigations, have been carried out attempting to determine
 

what type of additional information is obtainable from the use of the
 

time as well as spectral dimensions of the imagery. Several studies
 

involve use of imagery taken by the multispectral scanner aboard the
 

LANDSAT I satellite which orbits at an altitude of approximately 600
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miles. The multispectral scanner operates in four spectral bands (0.5 ­

0.6 jim, 0.6 0.7 0.7 - 0. im,and 0.8 1.1 pm) and has a resolu­- °m, ­

tion of approximate-ly 50 meters along the scan sweep by 80 meters along
 

the satellite's path..
 

Utilizing LANDSAT I imagery, Anuta and Bauer [.5] have performed an
 

investigation of the use of multitemporal data for the recogni't'ion of
 

different crop cover types and agricul'tural and urban feature-change
 

detection. With access to multitemporal imagery over the same-area it
 

was found that classification performance for different crop species
 

could,be improved during certain grow-ing seasons. Thi's study also showed
 

that the automatic identification of urban change was promising but re­

quired further investigation. Another study also concerned with the
 

problem of automatic crop identification is discussed in references [10]
 

and [19].. Part of thrs investigation involved the effect of the use of
 

multitemporal data as opposed to a single time data set on the performance
 

of correctly recognizing particular crop types.
 

Design of-a-processor to carry out the overlay of images-requires a
 

certain amount of information about the spatial relationships of the
 

imagery to be registered. If the images are spatially congruent; then
 

the processor need only find the relative translatio6 between the images.
 

For images that differ net only by translation, but which are also dis­

torted spatially relative to each other, the processor must be capable
 

of determining the spatial dis-tort:ions as well as the translation.
 

These are the classes of imagery addressed in this study, with the
 

primary emphasis,on spatially congruent images. The processor-under
 

i'nvestigation is that designed to find the relative translation-between
 

the images, assuming that no relative spatial distortions exist . Such
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an analysis is directly applicable to a particular class of imagery which
 

is currently available in large volume. The multispectral scanner data
 

acquired by the LANDSAT I satellite has the property that the relative
 

distortions between multipass imagery over the same area are minimal,
 

which may be attributed to the stability of the viewing platform. Thus,
 

as a first approximation, for small enough subimages the assumption of
 

spatial congruence is reasonable.
 

Figures 1-1 through 1-4 contain examples of several sets of multi­

temporal imagery taken by the LANDSAT I multispectral scanner. Each of
 

the figures displayed is from the 0.6 - 0.7 pm spectral band. Figure I-1
 

shows two images over Tippecanoe County, Indiana which were taken in
 

September and November of 1972. A scene from Hill County, Montana for
 

two times during the spring and summer seasons is pictured in Figure 1-2.
 

Figure 1-3 illustrates an example of a year's span over western Kansas
 

where the data was taken in July of 1973 and 1974. And two temporally
 

differing data sets over Missouri are shown in Figure 1-4. Note that
 

although each of the scenes are recognizable from one time to the next,
 

temporal changes are evident. Also observe that the spatial scale of
 

both images in each time pair appears to be the same with little relative
 

distortion. This supports the spatial congruence assumption for small
 

subimages.
 

The assumption of spatial congruence for small subimages underlies
 

several registration algorithms that have been proposed and implemented
 

[1 ,3 ,8 ,9 ,1,30. This approach allows the overlay of a sample of
 

corresponding subimages from each image assuming no relative spatial dis­

tortions exist for the small subimages. In the absence of spatial distor­

tions each of the subimage registrations can be accomplished by a
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9/30/72 11/29/72 

LARS Run # Spectral Band Lines Columns 

72053603 0.6 - 0.7 pm (500,750) (575,825) 

Figure 1-1. LANDSAT I imagery over Tippecanoe County, Indiana.
 

5/5/73 7/16/73 

LARS Run # Spectral Band Lines Columns 

73124700 0.6 - 0.7 Pm (110,360) (110,360) 

Figure 1-2. LANDSAT I imagery over Hill County, Montana. 



5 j EVSODUCiBILITY OF THA 
ItTCNA.L1 PAGZ IS PoII 

7/6/73 7/1/74
 
LARS Run # Date Data Taken Spectral Band Lines Columns
 

73046000 7/6/73 0.6 - 0.7 um (175,425) (275,525)
 

74024200 7/1/74 0.6 - 0.7 Jm (275,525) (175,425)
 

Figure 1-3. LANDSAT I imagery over Kansas.
 

8/26/73 10/1/72 

LARS Run # Spectral Band Lines Columns 

72033804 0.6 - 0.7 pm (375,625) (475,725) 

Figure 1-4. LANDSAT I imagery over Missouri. 
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relative translation. However, since the original images may be spatially
 

distorted, all of these relative translations of the subimages may not
 

be the same, so that the registration of the total image (full frame)
 

cannot be accomplished by a simple translation. Therefore, given the
 

translations for each of the corresponding subimages, a spatial warping
 

or coordinage transformation is applied to one of the images so as to
 

align all of the subimages simultaneously.
 

Once the relative spatial characteristics of the temporally differ­

ing images have been established, (which in this case is the spatial
 

congruency of small subimages), a determination must be made of the re­

maining parameters required to achieve registration. For example, since
 

registration is, by definition, a spatial matching, it requires a quanti­

tative measure of the similarity between two images so that a determina­

tion can be made as to whether the match has been achieved or not. Thus,
 

one requirement that must be met is that an appropriate similarity measure
 

be chosen. A second parameter that must be considered is the temporal
 

change that has occurred, since it is this change that contributes
 

largely to the uncertainty in the registration of the images. Although
 

the change at a particular data sample is unpredictable, a model of the
 

overall characteristics and the spatial correlation of the temporal
 

changes will Increase the information available for the processor to use.
 

Another consideration that should be taken into account is the
 

performance of the registration processor. Ultimately, the optimum
 

processor is that which yields the best performance. This necessitates
 

the development of a quantitative measure of the performance so that the
 

optimum can be defined In terms of this measure. One example of such a
 

criterion is the variance of the registration error, where the error is
 



the spatial difference between the true registration location and the
 

position indicated by the processor. This error arises due to random
 

differences in the images resulting from temporal changes that have
 

occurred. In this case, the optimum processor is that which minimizes
 

the variance.
 

The presence of the need to develop a processor capable of register­

ing imagery has provided the impetus for research in the attempt to find
 

a solution to this problem. The following section briefly outlines some
 

of the previous developments and analyses that have been carried out.
 

1.2. Previous Investigations
 

With the availability of large volumes of multitemporal images ac­

quired by the LANDSAT I multispectral scanner several image registration
 

algorithms haVe been proposed and implemented. As mentioned in the
 

preceeding section, the minimal relative spatial distortion between
 

multitemporal imagery gathered by LANDSAT I has made feasible the design
 

of processors based on the assumption that small subimages are spatially
 

congruent. With this assumption a sampling of subimages from each of
 

the images to be overlayed may be registered and the corresponding'
 

relative translation recorded for each subimage. Since the entire images
 

may not be spatially congruent, all of the translations need not be the
 

same, so that a spatial warping of one of the images is required to
 

simultaneously align all of the subimages. Therefore, this minimal
 

relative spatial distortion allows the registration process to be broken
 

down into two stages. The first is that in which the spatially congruent
 

subimages are registered and the second is that in which the spatial
 

warping is carried out.
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First consider those algorithms concerned only with images that are
 

not relatively distorted spatially. Although all of these methods are
 

similar in the fact that each performs a search for a given subimage in
 

a larger background image containing the temporal changes, the actual
 

procedure for carrying out this overlay and criteria for determining
 

when the registration is achieved are different. The LARS registration
 

system [1, 5] uses the correlation coefficient as the similarity measure
 

(Table 6-1), where a maximum of its magnitude indicates the overlay
 

location. A complete search is made over all possible registration lo­

cations, computing a value for the correlation coefficient at each
 

translation.
 

A second algorithm which comes under the heading of sequential
 

similarity detecti,on algorithms (SSDA's) [ 8, 9 ], uses a different simi­

larity measure at only a sample of points for each translation. The
 

.similarity measure used is the sum of the absolute values of the differ­

ences between the corresponding subimage data samples at each translation
 

(Table 6-1). With this measure a minimum value indicates registration.
 

Another algorithm employing a similarity measure like the correla­

tion coefficient plus saving computational time in a manner similar to
 

the SSDA's, performs a preprocessing step prior to overlaying the imagery
 

[30]. Instead of using the original imagery for registration, a gradient
 

type operation is applied to each of the images first: then they are
 

thresholded to produce binary images (images having values of only zero
 

or one). Finally, these binary images are used to estimate the correct
 

registration position.
 

Once a set of subimages has been registered a spatial warping of one
 

of the images may be performed to match all of these subimages at the
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same time. The algorithms developed to handle this part of the processor
 

differ primarily in the amount of spatial warping necessary to adequately
 

model the relative spatial distortions. The system at LARS [1 ,5 J is
 

set up to handle a second order two-dimensional polynomial transformation
 

over an entire image. This may be refined by using a biquadratic warp­

ing over smal.ler subimages and then fitting the subimages back together
 

[46], which in effect accommodates a higher order spatial warping. A
 

further extension is made by an algorithm designed to accommodate spatial
 

distortions on a line by line basis [12,20,22,25,26,33,42].
 

A second area of study has concerned analyses of the different
 

aspects of the image registration problem as opposed to the development
 

of specific algorithms for registering images. One series of -investi­

gations involves the distinguishability of the output of the processor at
 

the correct registration location compared with the output at all sur­

rounding locations [6 ,16,321,. With the basic design criterion that
 

the processor -yield a maximum output at the correct registration ppsi­

tion, a processor has been designed to maximize the ratio of the output
 

at the correct registration position to the variance of the 'output at
 

all surrounding positions. In this manner, the output at the correct
 

registration position is made more easily distinguishable-from that at
 

the surrounding locations.
 

Another study examines the pull-in range of a processor, where the
 

processor 'issimply a product correlator [13,14]. This analysis concerns
 

the ability to determine the correct direction of movement in the search
 

for the :registration location, so that it is not necessary to search all
 

-prospective registration positions.
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With regard to the situation in which the images to be registered
 

are spatially distorted relative to one another, several studies have
 

been made to determine ways of estimating this distortion. One approach
 

uses the properties of the Fourier transforms of the images [16,17], and
 

a second utilizes a least squares estimation procedure [45].
 

1.3. Outline of Investigation
 

The development of a registration processor is begun by first de­

fining the image and temporal change properties in such a way as to form
 

a foundation from which a solution may be approached in an organized
 

fashion0 For purposes of the present study one of the images to be
 

registered is considered as the signal, while the second image is assumed
 

to contain all of the temporal changes and is defined as the signal plus
 

additive noise, where the temporal changes are modeled as additive noise.
 

In this fashion the registration of the images may be approached as a
 

parameter estimation problem in the presence of noise. The parameters
 

to be estimated are the relative translations between the images. The
 

noise is the temporal change and any measurement noi-se that may be
 

present in the system.
 

Given this definition of how the images and temporal changes are to
 

be treated, it is possible to determine a quantitative measure of the
 

processor performance. This is done in Chapter 2 where an expression
 

for the variance of the registration error is derived. The error is the
 

difference between the correct registration position, and that position
 

indicated by the processor which is operating in the presence of temporal
 

changes. Alternatively, a second criterion which may be used to evaluate
 

the processor is the output signal-to-noise ratio of the processor at
 

the correct registration location.
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Either of these quantitative -criteria now may be utilized to define
 

an optimum processor. For example, when considering- the output signal­

to-noise ratio, -the optimum processor is that which maximizes it at the
 

registration position. Alternatively, an optimum processor can be de­

fined as the one that minimizes the variance of the registration error0
 

Both of these considerations are explored and related in Chapters 2, 3
 

and Appendix A., In Chapter 2, where-an expression for the registration
 

error variance is derived, it is found that use of a filter which maxi­

mizes the output signal-to-noise ratio, the matched filter (2-36), leads
 

to a compact expression for the variance0 While in Appendix A it is
 

shown that given the general expression for the registration error
 

variance, the processor which minimizes this variance is the same as the
 

one which maximizes the output signal-to-noise ratio. Therefore, the
 

definition of optimum in terms of registration error variance minimiza­

tion is equivalent to defining optimum in terms of output signal-to­

noise maximization since both yield the same processor, which is the
 

matched filter.
 

Using these results, Chapter 3 presents the method by which the
 

matched filternmay be found and implemented. An example is given
 

illustrating this. The particular example chosen is designed to conform
 

with experimental observations of autocorrelation function estimates
 

for the temporal changes found between LANDSAT I images 'described in
 

Chapter 5, which indicate that the autocorrelation function of the
 

.temporal changes is of an exponentially decaying form. This functional
 

form for the autocorrelation function is the model chosen for the
 

example. Thus, the example in Chapter 3 derives an optimum processor
 

applicable to the registration of images in practice.
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In Chapter 4 the effect of relative spatial distortions on the
 

performance of a processor designed to operate on spatially congruent
 

imagery isdiscussed. This degradation of performance-is found i-n terms
 

of the loss in signal-to-noise ratio as a result of the spatial distor­

tions, where the relationship between performance and signal-to-noise
 

ratio is given in Chapter 2 in terms of the variance of the registration
 

error. One of the purposes of this section is to determine the optimum
 

size of the images to be registered. For spatially congruent imagery it
 

is readily shown that the largest possible image should be used for
 

registration0 However, this is not necessarily true when relative
 

spatial distortions exist, since the spatial distortions cannot be re­

moved by translation only. For the situation in which the distortions
 

are increasing with image size (as for a constant scale factor change)
 

it is shown that there is a particular image size-which yields a maximum
 

output signal-to-noise ratio. Determination of the optimum area size is
 

a straightforward procedure which may be accomplished directly by evalua­

tion of an integral expression. This is illustrated in section 4.5
 

where the expression for the output signal-to-noise ratio is evaluated
 

by a numerical integration method for several different types of spatial
 

distortions. Two general linear spatial distortions are presented as
 

well as two examples using models of the spatial distortions observed
 

for temporally differing LANDSAT I images. In these last two examples a
 

straightforward method of applying the analytical results to practical
 

image re4istration is illustrated.
 

In Chapter 5 the experimental analyses are begun. This chapter
 

concerns the experimental estimation of the temporal change properties
 

which are pertinent to the development of an optimum processor for
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practical image registration. The derivation of an optimum processor
 

presented in Chapter 2 is formulated via two approaches'both of which
 

require knowledge about certain properties of the temporal changes. The
 

first method of solution necessitates the assumption that the probability
 

density function of the temporal changes is Gaussian. Further examina­

tion of this formulation also shows that a m6del.of the autocorrelation
 

function of the temporal changes is required. This latter requirement
 

is inherent in the Gaussian density function assumption. The second
 

method of solution requires knowledge of only the temporal change auto­

correlation function. Therefore, the two properties of concern are the
 

probability density function and autocorrelation function of the temporal
 

changes. The purpose of this chapter is to provide a model of these
 

properties for-LANDSAT I imagery so that an optimum registration processor
 

may be designed for the overlaying of LANDSAT I images in practice An
 

experimental procedure is carried out for estimation of a general model
 

for both of these properties. The first part of the study concerns the
 

probability density function and the second part is concentrated on the
 

autocorrelation function estimate. The general model observed for the
 

autocorrelation function indicates that it is of an exponential form.
 

This observation conforms with both the analyses in Chapters 2, 3, and
 

Appendix A, and their application to the results of the experimental
 

investigation carried out in Chapter 6.
 

Chapter 6 presents an experimental comparison of several different 

types of registration algorithms that have been proposed and implemented 

by other investigators [I , 3, 8, 9,11,30]. The impetus for such an 

investigation lies in the fact that each of these algorithms had been 

developed and tested independently of one another, thus leaving the 

http:m6del.of
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potential user at a loss to objectively comparetheir performance. This
 

study is directed towards the relative evaluation of the techniques
 

utilized in these registration algorithms for accomplishing the overlay
 

of images. The techniques of concern are the similarity measure, the
 

criterion used to measure the spatial matching between the images and
 

and therefore indicate the registration location, and the effect of
 

different preprocessing techniques on the registration performance. In
 

this analysis it is found that the results support the combined analytical
 

findings of Chapters 2, 3, and Appendix A in which it is found that the
 

optimum processor is a matched filter, and the experimental findings of
 

Chapter 5 where the autocorrelation function of the temporal changes is
 

observed to be exponential. The processor that experimentally yielded
 

the best performance utilized a gradient preprocessing operation on the
 

images .prior to overlaying them, which approximates the derivative type
 

preprocessing operation derived in the example of Chapter 3 where a
 

matched filter is used in the presence of exponentially autocorrelated
 

noise or temporal changes.
 

Overall, the thesis provides an analytical and experimental investi­

gation into the design of an optimum registration processor. Using the
 

fundamental assumption of spatial congruity between the images, the
 

design problem is approached via parameter estimation theory, where the
 

parameters to be estimated are the relative translations between the
 

images. In this way it is possible to define optimum in terms of a
 

quantitative measure, as in the minimization of the registration error
 

variance of the-maximi~zation of the output signal-to-noise ratio. Once
 

the optimum processor has been derived, an analysis of the loss incurred
 

by a deviation from the spatial congruity assumption is performed, since
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this is the situation encountered in practice where relative spatial
 

distortions arise due to perturbations in the viewing position of the
 

scanner from one time to the next. Application of the analytically
 

derived optimum processor to the overlay of images in practice is pro­

vided by the first experimental analysis in which a model is developed
 

for the temporal change properties required for evaluation of the
 

optimum processor. Finally, this is followed by the experimental com­

parison of several algorithms for registering images which acts both to
 

provide a relative performance rating of algorithms implemented by other
 

investigators, plus to give an experimental evaluation of the analytical
 

results found in the derivation of an optimum processor.
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REPRODUCIBILITY OF THE 
QRItINAL PAGE IS POOR 

CHAPTER 2
 

VARIANCE.OF THE REGISTRATION ERROR
 

An important part of the development of a registration processor is
 

the ability to!quantitatively characterize the registration problem in
 

some manner. In this way, one may utilize this measure of performance to
 

design an optimum processor which maximizes the performance according to
 

the criterion chosen0 One such measure of performance is the tolerance
 

to within which one Is able to register two images.
 

This sect)on concerns the derivation of an expression for the
 

variance of the registration error, where the error is the discrepancy
 

between the observed registration position and the true registration
 

location. Two models for the variance of the error in the registration
 

of two different images of the same scene are developed. The method of
 

solution employed is analogous to that used for the determination of the
 

error in the measured delay time in a radar system. For purposes here
 

the radar system model assumes that the returned signal is a delayed
 

version of the original signal corrupted by additive noise. IAs adapted
 

to the registration of two images, the noise is defined as the difference
 

between the two- images at the correct registration position, and is
 

-therefore additive. The time delay corresponds to a spatial translation
 

or displacement.
 

Several analyses of the radar problem have been carried out based
 

upon different premises [15],[29],'[44]. These approaches may be
 

http:VARIANCE.OF
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categorized as, those'which use the probability density function of the
 

noise directly and those whichrdo not. The first case utilizes maximum
 

a posteriori" probability, maximum likelihood, or minimum mean square error
 

estimates. All three,estimators are based upon knowledge of the noise
 

probability density funct.ion.- The second case i's based only upon the
 

output of a filter which gives a maximum output at the correct time delay
 

when the input is noise free.
 

An analysis of thins sort should prove useful in several respects.
 

The results should give an indication of the best possible registration
 

of two images given the models,of the data and noise. Once the models
 

of the parameters i-nvolved have been found or assumed, an optimum processor
 

to implement the overlaying procedure may be developed. Comparison of
 

existing registration systems with,the results obta'ined herein may also
 

be performed. However, one must keep in mind the assumptions the entire
 

analysis,will be based'on-, for different assumptions may yield' different
 

resu lts.
 

It is assumed in the following investigation that the useful signal
 

is present, reducing the problem to one of estimation only rather than
 

detection as well as estimation. It is further assumed that the signal
 

shape is known and nonrandom, although the parameter that is to be measured
 

is a random variable. Since the origi'nal si'gnal' is known, it does not
 

have a probability density function., However, the second signal' does
 

contain noise and possibly other perturbations and is therefore a sample
 

functi'on of a random-process. The probl'em will be approached with this
 

in mind.
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2.1. Method 1
 

The solution to the problem of the first case, in which the prob­

ability density function of the noise is directly involved, depends upon
 

the cost function which is assigned to the error and the a posteriori
 

distribution;:Pf[m(r)], of the signal as a function of a parameter, m(T),
 

given the received signal, f. A minimum mean square error estimate is
 

the mean of pf[mr(T)]; an absolute value cost function gives the median
 

of the probability function; the maximum a posteriori estimate yields
 

the maximum of pf[m(T)I. The maximum likelihood estimate may be viewed
 

as the same as the maximum a posteriori estimate when there is no prior
 

knowledge of the density function of the parameter, p[m(T)], or p[m(t)]
 

is assumed uniform over the entire range of interest. All four of the
 

above cost functions will yield the same solution when p[M(T)] is uniform
 

and the conditional density function pm[T(f)] is symmetric and unimodal
 

[43]. A Gaussian distribution which has been assumed for Pf[m(T)] in
 

several analysds; is a member of this latter class.
 

There are'two basic reasons for the choice of this particular type
 

of probability density function. The first is the availability of a
 

closed form analyti.cal solution. The second is that a Gaussian density
 

function is the model that has been used to represent each of the
 

classes which comprise the total image [36,37].
 

This derivation of the variance of the registration error is an
 

adaptation of the solution obtained by Zubakov and Wainstein [40]. In
 

this problem one assumes that the additive noise is jointly Gaussian with
 

zero mean. It is also assumed that the density function of the parameter
 

(i.e., the misregistration or displacement of the images) is uniform in
 

the range of interest.
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With these assumptions one may construct the likelihood function
 

and then find its peak to determine'the optimum estimator.
 

A CT " )= fC ( sY = x --- -- r-xY . (2-1)
-xY f-xy PUYj 

where,
 

A(txT-) 	 likelihood functi'on of the-displacement 
parameters, -r and T ; -.X y 

pf(-,.)-r ) - conditional density function of Tx ygiven f(x,y); 	 and T
 

p(Tx i 	 density function of the parameters T and
x 


PT ,Ty(f) 	 conditional density function of f(x,y) given

the translation- parameters Tx and,­

p(f) 	 density function of f(x,y);
 

m(x+-r Y+T,) 	 known signal as. a function of the spatial

coordinates and the displacement parameters;
 

TXZ. translation parameters
 

f(x,y) m(x,y)' +-n(x,y) = received signal;
 

n(x,y) addrtive noise;, assumed independent of the
 
signal'.
 

Sincet the data; that are being analyzed:are discrete, it Fs con­

venrent to use- integer subscripts rather than continuous spatial coordi­

nates-. A,further notati'onal savings is realized by combining,the double
 

subscripts- into a single subscript. A two dimensional array m.,, 
 i = 1, 

.. o,, p';j' l-. , q, is converted to a one dimensional data set mh, h = 

1', pq. This conversion loses- nothing-from the siandpoint of the 

results to be derived.
 

I-n this discrete case a continuous function has been sampled and
 

may be denoted,
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mh!t ,Ty) = m(x.+tx,,Y.+ty) 

M.(TkTy
mXi + x t i + y
 

n (xiYj
 

f = f(xiYj) = mh + nh
 

h i j Hh
h=1, ...,H
 

H pq = total number of samples.
 

To arrive.at an analytical result, the probability density function
 

of the noise must be known. Because of the many independent contributions
 

to the differences between images being registered, it is reasonable to
 

approximate the density function as being Gaussian. The probability
 

density function of the noise is therefore given by
 

p (n) 1.p T--2T 
n .(27)H/21R 1/2 exp - R jj) - (2-2) 

where R is the covariance matrix of the noise, Rgh = E[ngnhl The
 

density functions in the likelihood equation then become,
 

pT (f) = pn (f-m(T ,T)) 

- = (f ' f)
 

T(ml, .,mH)
 

The likelihood function is then
 

A(Tx,Ty) = P(Txty) [pF • 2 /X (27) H/21/2 

i"exp E E Qghf gM ,T ) 

H H
 

2gE hE Qghm 9(txTy)mh(T]xy
 

Qg ghSghth element of R-i. - (2-3) 

http:arrive.at
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Since it is only the maximum of A(TxTy) which is desired, the
 

problem can be reduced even further. Let p(TxTy) be a uniform distri­

bution over the area of interest. This is a reasonable assumption since
 

there is no a priori knowledge about the actual distribution0 With this
 

assumption, examination of (2-3) shows that the only factor which is not
 

a constant wi-th respect to r and T is,
x
 

H. H
 

Z= Z QghfgMh(TxTy) (2-4)
 

g h
 

since,. 

HH 

SEQ Mg(TxTy)mh(Tx T ) (2-5) 

g gh 

and p(r x ) are constants for all values of Txand, and p(f) does not 

depend upon Tx and T o Therefore, the maximum of A(TxTy ) is determined 

sole:ly by the maximum of 4o The optimum processor is then the one which 

finds the maximum of 4. This type of processor may be viewed as a cor­

relator which is weighted according to the inverse noise covariance
 

function,, Qgh" For the case in which the noise is white with spectrum
 

N /2, the covariance matrix becomes (N /2)l (I=identity matrix), and the
 

optimum processor-is-simply a correlator.
 

2H
 
N r f (2-6)hfhmh (Txy) 
N h
 

Given that the maximum point (this translation position is denoted
 

by (STx).) of the likelihood function-has been found, a measure of the
 

accuracy of the esti'mate is necessary so that the performance of the
 

estimator may be evaluated. One such measure is the variance of the
 

estimate.about the maximum point of A(Txr,Ty). For this analysi-s it is
 

convenient to use ln[A(Tx,y)] which is a monotonic function of A(TxTy).
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The logarithm of the likelihood function is expanded in a second
 

order Taylor series as a function of the delay parameters about its peak
 

in the x-axis and y-axis directions separately. It is assumed that
 

In[A(T ,c )]can be approximated by a second order polynomial around its
 
xy
 

peak.
 

Only the results in the x-axis direction are given since the y-axis
 

direction results are completely analogous.
 

In.A(r,) = in A(xrT) 

3 In A(TXT) 

x x 
x
 

2T
 
n(A y) (T ~,2 (2-7) 

x 

where
 

0 I A( x )_ a In A(T ,T ) 
at- aTa 

xx T Tx 
T T 

y y 

A necessary condi-tion for the maximum point of In A(Trxr) 'isthat,
 

a In A(TXT) a In A(^Tx,Ty
 

DT X o = T (2-8) 
x y 

The Taylor series expansion may then be reduced to
 

in A(Tx T) In A(Txty) 
a2 lnA) 

2n ( x-1) . (2-9)

2
raan 2 x x
 

Rearranging. this equation one obtains,
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exp r^ 2- [ (2-10)
X = X 2 A2 

x 

where
 

F2 n ^ 
A2 -_ = variance in the x-directi-on" (2-11) 

Assuming pm(TxTy) to be uniformly distributed,
 

2^
 

H(=hH x ) 

2zEQ% [m ( , )-f 1 2ix'
A 'hg h gh g(xy g] t 2 

H H am ( x'y amh(^ y (2-12)
 
gh x x
 

If one further assumes a large signal-to-noise ratio, then
 

x(-13
1 H H am my6in( 

z QghA-2g= g 9 h (2-13)DTx DTx
 

x
 

since [m (X , )-f ] is dependent only upon the noise and issmall com­

pared to mg (T ,9 ).
 

Greater-insight into the solution may be obtained by looking at the
 

result in the frequency domain as opposed to the spatial domain. The
 

transformation yields an interesting answer.. The variance becomes,
 

A2= ' (2-14)
1'
A2 


where
 

.AW2 effective bandwidth in the x-axis direction;
 

p. s-ignal-to-noise ratio; 
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_p 	 q2 
Z qIM(u~v) 1 (2-15) 
v SR(U'V)u 

122 p q u2 1m(uv)
2W
 z SR(U'V) 

MW = uv R 2 
(2-16) 

x p q

' ES
 

zz 	Mu,v1
SR 	UV)
v 

M(u,v) - Fourier transform of the known signal; 

SR(uv) noise spectrum. 

In the spatial domain, 

H H 
= Qghm 9 ( XTy)mh(T y) (2-17) 

u 


H HZ__E.E Qg am(Ty)9 y amhh ,) 

AW 
x 

h 
HH 

X x (2-18) 

g h 
gh g( x'y(x'y) 

With the above assumptions the variance has been reduced to 
a
 

function of the effective bandwidth and signal-to-noise ratio which are
 

expressed in the frequency domain by equations (2-15) and (2-16), and in
 

the spatial domain by equations (2-17) and (2-18). This implies that if
 

one can estimate the effective bandwidth and the signal-to-noise ratio
 

in the x-axis and y-axis directions, then the variance of the registration
 

error can be estimated.
 

Now consider the second derivation for the variance which is based
 

upon different assumptions.
 

2.2. Method 2
 

A second derivation of the variance of the registration error is
 

developed in this section. In this case, the only assumption about the
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signal and processor is that in the absence of noise, the output of the
 

processor will be a maximum at the correct translation [29]. No assump­

tions about the probability distribution of the noise are needed. As will
 

be seen, the results of this deri'vation are similar to those obtained in
 

the previous derivation, even though the two approaches are quite unalike.
 

The signal corresponding to the image to be overlayed is modeled as
 

having two components, the desired signal and additive noise. This signal
 

is passed through a filter and the position where the maximum of the out­

put signal occurs is taken to be the correct registration position.
 

However, since the filter is designed to yield a maximum at the correct
 

delay only in the noise free case, this observed registration position
 

may differ from the true registration location0 The discrepancy between
 

these two positions is the registration error.
 

First consider the parameters involved.
 

f(x,y) signal;
 

m(x,y) additive noise;
 

f(x,y) + m(x,y) data-set to be registered;
 

h(x,y) filter impulse response; 

g(x,y) f(x,y) * h(x,y) = output signal in the absence of 
noise; 

n(x,y) m(x,y) * h(x,y) = output due to the noise input; 

z(x,y) g(x,y) + n(x,y) = composite output signal used to 
estimate the correct registration position;
 

(x,y) true registration position;
 

(x,y) estimated registration position.
 

The derivation proceeds as follows. First expand g(x,y) in a second
 

order Taylor series about (x,y).
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g(x,y) = ,9(;)+ gx(,y) [x-x] + g y [y-51 

+ gxC,y)[x-x][y-y] + i gxx(x<, )[x-<] 2 

xy
 

j g+gyy(,y)[y-] 2 (2-19) 

where the subscripts denote the partial derivatives with respect to the
 

corresponding variables,
 

( x ' y = gx - ag(xy) 

This subscript notation is used for the remainder of this section.
 

Assume that (xr&) and (y-) are small enough so that all higher order
 

terms may be negiected.
 

Note that.a necessary condition for a maximum is
 

ax ;;y "
 

Substitute this"result into the equation for z(x,y).
 

z(x,y) g(G,9) + g - ­

+ gxx(Xy)[x- 2 

+ gyy( ,9)[y_]2 + n(x,y). (2-20) 

Again use the necessary condition for an observed maximum, 

az(x,y)/ax = 0 = qz(xy)/ay, 

zx(Xy) = 0 xy( ,f)[9- ] 

•"+ gxx( X,I-] + nx,) (2-21) 

A) -21 

zy(Xy) =0 gxy(y)[x-x]g 

+ gy , [ Ay-y] + n X P -(2-22) 
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Arrange 'these equations in terms of (-) and (9-y), the error in 

the registration. 

g n-g Yn 

- (2-23) 

xx yy xy 

g 
ny-g nx
(-y) Xxx (2-24)

= 2
 

gxxgyy-g
xy 

where thearguments, (;,y) and (x,y) have been left out for notational 

convenience. 

One can now find the variance of the error by taking the expectation 

of (C.&)
22

and (-y) , where it is assumed that E[-] = 0 = E[y-y]o 

Var[x-x] = EE(x-x) I (x-x) (2-25) 

Var.9-9J = ) Cy) (2-26)E [ Y 
2 2 2 22 

X Yg n x +gyynx (2-27) 
(x-x) y 9g1 2 

yy -xy
 
2 2 222
 

^-2 gxynx -2g2 xygxxnynx + 
gxxny (2-28)
y-y) = __22 y nn (-8 

gxxgyy "gXY 

One may use these equations to calculate-the variance of the error,
 

but in doing so, it is found that a filter function must be specified
 

first. This is intrinsic in the parameters in these equations., which is
 

seen more clearlyif one writes these terms as a function of the filter
 

(wide sense stationarity is assumed). 

nXy)= fff hy (;-y-)hy (X- y-X) 

Rm(a-y,O-X)da dO dy dX (2-29)
 

TflkJ 
,EPRODUCIBILfYOF 

OIGINAL PAGE IS POOP 
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n y (C,)nx(X,9).= ffff hy( -ay-a)
 

y x 
 * x yh (x-r,y-A)Rm(ct-y,s-A)
 
xm
 

* d d dy d.A (2-30)
 

nx(x,Y) = ffff hx(X-,Y-)h (X-y,9-) 

Rm(a-y,o-X)da dS dy dX (2-31)
 

gxX ff hcxx-CY- ) f(a,g) dct dS (2-32)
 

gyy ) ff hyy -) f(a,0) da d0 (2-33)
 

g9(X,) : ff h (X-a,y-0) f(a,S) da do (2-34) 

where
 

R(a-y, o-x) m(,i)m(y,A) (2-35)
 

One now has an expression for determining the registration error
 

variance. Equations (2-27) and (2-28) will allow one to find the
 

variance of the error for any filter function; however, they seem to
 

bear little resemblance to the results in the first section. To obtain
 

a particular solution, a specific filter function must be chosen. The
 

one that has been picked is intuitively pleasing in two ways: it is an
 

optimum type filter in that it maximizes the signal-to-noise ratio; and
 

it yields an answer in terms of the signal bandwidth and signal-to-noise
 

ratio, In Appendix A it is also shown that this filter minimizes the
 

error variance. This filter is the so called "matched filter."
 

Let
 

H(u,v) F (u,v) exp (-j2Tr(xu + yv)) (-36)

Sm(U,V)
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S	m(u,v) Fourier transform of Rm(x,y);

F(u,m), Fourier transform of f(x,y);
 

H(u,v) Fourier transform of h(x,y).
 

Substituting this filter function into equations (2-27) and (2-28), the
 

results simplify to,
 

( ) -	 (2-37) 

- x -y (2-38) 

Lxx 

Thi's simplification is seen more easily if one first converts equations
 

(2-29) through (2-34) to the frequency domain and then inserts the
 

matched filter.
 

One obtains the final result by converting these last.two equations
 

to the frequency domain. They then become,
 

2
2-2
 

(xx)2 = xy + B SN (2-39)
BSNR x 

j
(9_2= [BSNR y 	 (2-40)
 

where 
w e 2 ff u2 IF v 2 du dv 1/2 

x 	 2 d
ff ~IF(u,v)ll
B S1m UV) 	 (2-41)
ff du dv
 

B effective bandwidth of input signal in the x-axis
 
x direction; 
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472 f2Juv2 d u dv 1/2 

B , m,1, (2-42) 
~v Fy 2j

ff I du dv 

-effective
B bandwidth of input signal in the y-axis
 
y 'direction;
 

F''v~ 2
SNR if du dv (2-43) 
m UV 

SNR = output signal-to-noise ratio. 

It is seen that the variance of the error is again expressible in
 

terms of the effective signal bandwidth and signal-to-noise ratio. These
 

results are similar to those obtained in the first section, but the re­

lationships are not quite as simple.
 

A further simplication can be obtained by making some additional
 

assumptions. The error variance expressions then will be the same as 
in
 

the first method0 These assumptions concern the term g-(x,y) in equations
 
xy
 

(2-39) and (2-40). If this term equals zero, then the desired result is­

obtained. 
 Such a condition involves the quantity [IF(u,v) 12]/[Sm(u,v)] 

since gxy(;,y) is a function of this quantity. Let K(u,v) = 

[IF(u,v)1 2 ]/[SM(uV) for notational convenience. Since K(u,v) is an 

even function of u and v, in order for g xy) to equal zero it is 

sufficient that, 

K(u,v) = K(-u,v) (2-44) 

or necessary and sufficient that, 

fo ufouv K(u,v) du dv =fo fo uv K(-u,v) du dv. (2-45) 

The expressions then become 
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X)2 1 	 (2-46) 

B SNR
 x 

- 2 (2-47) 

B SNR 
y
 

which are completely analogous to the results obtained by the first
 

method.
 

An example of ,when these last assumptions might apply is the follo­

ing situation. Let F(u,v) and Sm(u,v) be bandlimited to W and W in the
x y 

respective axis di.rections. And let [IF(u,v) l2]/[Sm(uv)] equal a con­

stant. This would occur when the noise spectrum has-a shape similar to
 

the signal spectrum. In this case, it might be advantageous to model the
 

two spectra as differing only by a constant factor for simplicity in
 

estimating the variance to be expected. This may be written,
 

2
 
= c, a constant. 
 (2-48)
 

From Equation (2-43)
 

W W 

SNR = c 	 f x f Y du dv. (2-49) 
-W -W 

y y 

So, 

'SNR (2-50)
c=4W W
 

xy 

Then from equations '(2-4,1), '(2-42) and (2-43), 

2 2 (2c 2-W 
B2 2 c L [±] 	 (2-51) 

B SNR = Airc(2W) 3 " 	 (2-52) 



32 

Substituting in the expressions for c, the variances are,
 

-2 3 
(x-x) 3 (2-53) 

4i2W2SNR 

-4ir
 
2W2SNR (-4 

y
 

The respective standard deviations then are,
 

Standard deviation of (c-x) = SNR (2-55) 
x
 

Standard deviation of (9-y) =2irW SNR3-- (2-56)R 

One may obtain a quantitative-feel for the values of these expres­

sions by using-the sampling intervals for the LANDSAT-l data in this
 

example. The sampling interval is about 60 meters along the columns and
 

about 80 meters along the lines. Substituting these values in equations
 

(2-55) and (2-56), one finds that, 

Standard deviation of-error long the 

44-i 
lines'= L meters (2-57) 

Standard deviation of error along the
 

columns =3 meters. (2-58)
 

These results indicate that with the chosen filter, the standard
 

deviation of the registration error is quite .small.
 

- - 2.3. Conclusion 

"A quantitative measure of the registration processor accuracy in 

terms of the variance of the error of the registration has been derived. 
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With the appropriate assumptions, the-variance is shown to be inversely
 

proportional to the square of the effective 'bandwidth times the signal­

to-noise ratio. The final expressions are presented'aga.in toemphasize
 

both the form and simplicity of their representation.
 

Var [X-X)] 2
 
B SNR x
 

Var [(-y)1 =.2I
 

B2SNR
 
y
 

This derivation should prove useful 'inseveral respects. First'of
 

all it may be a basis for the analysis of different registration systems
 

by providing a way to estimate the expected accuracy of the system.
 

Secondly, it provides a straightforward way of estimating this .error.
 

As a final consideration the basic assumptions needed for the two
 

methods are listed. These assumptions are important and must be
 

realized fully to be sure that they apply to the situation in which they
 

will be utilized. Fbr the first method these assumptions are: the noise
 

is additive and independent of the signal; the joint probability density
 

function of.the noise is Gaussian; the a priori distribution of the delay
 

parameters is uniform over the range of interest; the variance may be
 

modeled in the x-axis and y-axis directions separately; the final result
 

is dependent upon a large signal-to-noise ratio [cf. step fromi equation
 

(2-12) to (2-13)]. 'Thebasic assumptions for the se'cond method are: the
 

noise is additive and independent of the.signal; the noise spectrum must'
 

be known; the chosen filter is the "matched filter,;" to obtain results
 

completely analogous to the first method there is one further assumption
 

that must be made about the ratio tIF(u,v) I (uv)] [cf. equations
 

(2-44) and (2-45)].
 

http:presented'aga.in
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In particul;§r,, note the assumptions related to the probability
 

density function and the spectrum of the noise. The validity of assuming
 

a Gaussian density function and of assuming a particular type of auto­

correlation (or spectral density) function is pursued further in succeed­

ing sections] The discussions approach these issues along both .analytical
 

and experimental lines, the first to provide a theoretical basis for what
 

should occur,. and the second to provide confirmation of these assumptions,
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CHAPTER 3
 

IMPLEMENTATION OF A MATCHED FILTER FOR IMAGE REGISTRATION
 

In the previous sections it was indicated that the registration
 

processor performance improved as the output signal-to-noise ratio (SNRo)
 

increased. For example, the variance of the registration error is shown
 

to decrease with an increase in the SNR0, thus providing a greater regis­

tration accuracy (Chapter 2). This result prompts an investigation to
 

find the processor which maximizes the SNR thereby improving the system

0 

performance. Such an analysis is carried out in this chapter.
 

The general. form for the processor chosen is that of a linear filter
 

whose- input is the known signal plus zero mean, additive noise, and whose
 

output is designed to yield a maximum at the correct registration lo­

cation in the absence of noise. For completeness, a detailed derivation 

of the filter which yields the maximum SNR is provided first. These 

findings are then utilized in an example illustrating the optimum filter 

one obtains In the presence of a particular type of noise, where the 

type of noise reasonably models that observed experimentally (Chapter'5). 

The analytical approach to this problem is stressed in this section, 

while its agreement with experimental observation is discussed inChapters 

5 and 6. 

The outpu't signal-to-noise ratio at the translation (T ,T-) is
 
xY
 

defined-as follows.
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[ff h(T-x,-r-y)s(x,y) dxdy]
2
 

, 2 (3-1) 
E{[J h(Tx-X,ty-y)n(x,y) dxdy] } 

h(x,y) = processing filter
 

s(x,y) =known signal
 

,n(x,y) additive noise
 

Or equivalently,
 

[ff h(xt-Xt -y)s(x,y) dxdyl 2
 

SNR
 
0 

ff;ff h(T-xTy-y)h(-r-aty-)Rn(x--a ,Y-) dxdy dadS
 

(3-2)
 

Where E{-Idenotes expectation and .R(T',T ) is the autocorrelation function 

of the noise. 

The filter which maximizes this expression is derived in two basic 

steps. Let, 

h(x,y) fJ -hwX(x-a,y-)hI(a,) da da (3-3)
 

where h (*,-) is a prewhitening filter; i.e., for,
w 

n (x,y) =ff hw(x-a,y-0)n((,5) da rd5 (3-4) 

choose hw(x,y) such that,
 

E[n (x,y)n(,)] = (x-a,y-8) (3-5)
W w
 

and hm(,) is the filter which maximizes the SNR with the prewhitened
 

noise and signal. The underlying reason for this approach is that in the
 

presence of white noise, the Schwartz inequality may be applied directly
 

to arrive at the desired filter function in a ,simple manner. Schematically,
 

the composite filter is as shown Fn Figure3-1.
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S(xY) + I h (t) h output 

} ~ h(t) 
n (x, y) 

Figure 3-1. Component representation of matched filter. 

Since, 

E[nw (x,y)nw (a,b)] =J ff hw (x- a, y- ) hw(a-yb-g) Rn (a-y, - )dad dydE­

(3-6) 
and
 

E[nw(x,y)n (a,b)] = 6(x-a,y-b)
 

hw (x,y) 
is found by solving the integral equation,
 

d(x-a,y-b) ff ff hw(x-a,y- )hw(a-y,b-E)Rn (a-y,a-E)dad~dydE (3-7) 

which may be equivalently expressed as, 

S(x-a,y-b) = Hw (u,v)HwUrv)S (U,v)J2rtu(xa)+v(yb)]dudv (3-8) 

where, 

Hw(U,V) =Fodrier transform of hw (x,y) 

S (u,v) Fourier transform of R (Ctyr or the spectral density
n of the noise n x y
 

The solution to this integral equation is,
 

- = (3-9)
Hw(U,V)H'(-u,-v)S (U,V) 1 

since 6(x,y) = )f,1 •e-j 2 (ux + vy) dudv, by the properties of the
 

Fourier transform.
 



38 

In the case of a real filter function, which is the si'tuation en­

countered with the registration of imagery, then,
 

Hw(-u,-v) -H w (u,v) (3-10)
 

so that the solution becomes,
 

(u, 1 (3-1 ) 

IH~(~J = S4 v 

Once the noise has been prewhitened, the problem reduces to, 

Sw(X,) x youtput 

nw(X,Y) 

Figure 3-2. Block diagram after pr.ewhitening.
 

sw(X,Y) = 3f hw,(x-ay-3)s(a,S) dadS 

nw(x,y) = ff hw (x-a,y-)n(a,0) dado 

where one must-find the filter, ,h(x,y),which maximizes the SNR
 

[ff hm(T-X,'T-Y)Sw (x,y) dxdy] 2 

- - SNR (3-12) 

E{[ff hm(Tx-XTy-) w (x,y)dxdy]21 

Utilizing'the whiteness property of n (x,y), the SNR becomes,
 
w 0­

[-[ hm(Tx-X,Ty-Y) w(Xy) dxdy]
2
 

SNR (3-13)

ff h2 ( x-X,T -y)dxdy
 

This expression then has an upper bound which is found by applying the
 

Schwartz inequal.ity.
 



39 

SNR s2(xy)dxdy (3-14) 

with equality for, 

hm(T -X," -y) = k sw (x y)  (3-15) 

where k is an arbitrary constant. Letting k = 1, the maximum SNR is 
0
 

achieved for, 

h (Tx-xTy-y) = sw(X,y) (3-16) 

or equivalently in the frequency domain, 

= -j2w[UTx + Vty(317 

Hm(uv) Sw(-u,-v)e x y(3-17) 

and 

IHw(u~v)12 = (3-18) 
n 

The block diagram in Figure 3-1 may now be replaced by its equivalent
 

form, combining the cascaded filters h (x,y) and hw(x,y), as shown in
 
m
 

Figure 3-3.
 

S(X,y)- output
+'H(u,v) 


ni(x,y) 
$ Figure 3-3. Block diagram of matched filter. 

where H(u,v) is the Fourier transform of h(x,y) and, 

H(u,v) = H (u,v)Hm(uv) (3-19) 

Substitution of the expressions for Hm (u,v) and Hw(u,v) in conjunction 

with the identity, 

Sw(u,v) = Hw(u,v)S(u,v) (3-20) 
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S('u,v) = 'Four'ier transform of s(x,y)
 

and the assumption of a real valued signal, ,allows one to obtain the 

final express'ion for the filter which maximizes the SNR o , 

S*v -2 '[uT + Vt y 
(3-21)
-H(u,) S (UIV) e 

n 

Note that the desired filter depends only upon the signal, S(u,v), 

and the spectral density, Sn(u,v), or autocorrelation function, Rn,(TxIT), 

of the noise. Si-nce the signal Is known, the only additional knowledge 

required is the noi-se autocorre'lat'ion -function. 

Before proceeding with the example, first ,consider an equivalent 

form for the block diagram of F-i.gure 3-3. Observe that in Figure 3-3 

the entire processing filter 'I-s "l.umped under the head'ing of HI(u,v). An 

equivalent operation is to prewhiten the received signal, prewhiten the 

known s:ignal,, and then crosscorrelate the two. This is illustrated in 

Figure 3-4. 

x output
s(xy)+n(x,y) h (-X,y) f 


Figure 3-4,. Prewhitening representation of matched filter.
 

The reason for -viewing the operations i-n thins manner is because it is
 

analogous to the preprocessing state of image registration, where the two
 

images to be overlayed are first p'reprocessed and then registered via a
 

crosscorr-elati.on techni-que.
 

http:crosscorr-elati.on
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The following example provides an illustration of the filter re­

quired to achieve the maximum SNR for noise with a specific type of auto-
O
 

correlation function. The particular parametric form for the autocorrela­

tion function used was chosen because it was found to.provide a reasonable
 

model of the autocorrelatlon function encountered experimentally (Chapter
 

5). The interpr.etation of the operations will follow the block diagram
 

of Figure 3-4, where a prewhitening operation is applied to both the
 

received and known signals. Let,
 

Rn( ., y A 2 e-rXI - 01-y (3-22)
 

Then,
 
2 - Tx I-
a fI'IyIy-J 2[Urx dT d (3-23) 

Sn u,V4 ff A2 e e X e dYxyd' (323 

Carrying out the integration one obtains the following expression for the
 

spectral density..
 

S (u,v). A2 [-- -2 - (3-24)
 

Since,
 

IHCu,v)i12
 

it follows that­

IHw(Uv)l2 =----I 2+ [2 + 42v2] (3-25)
.. 4A2 0
 

Hw(u,v) is found by factoring the above expression which is of the form
 

H (U,V)H (-u,-v).,- Carrying out the factoring operation gives
 
w w -

S-(UV) - - [a + j2nu][0 + j2v] (3-26) 

2Av- ­
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At this point one may evaluate H (uv) via two.different approaches:
 

a single two-dimensional filter, or two cascaded one-d'imensional filters.
 

Single Two-Dimensional Filter
 

2
'.1
Hw(u,v) = - [(a + Rj2Tu + aj27rv - 47T uv] (3-27)w ~2A -a 

Cascaded One-Dimensional Filters­

Hw(u,v) = Hw (u) Hw (v) (3-28)
 

H (u) = 1 [a + j2wu] (3-29)
Wur2
 

H (v) =- [ + j2v] (3-30)
 

In the spatial domain these filters become,
 

Single Two-Dimensional Filter 

h(X,y) = I [a 6(x,y) + R d + a +d 2 (3-31) 

W 2AVa- dx d+ dxdy1 

Cascaded One-Dimensional Filters
 

h (x) = [ 6(x,y)S - 4 (3-32)
w xT27dx
 

h(Y)hwy = A2_a [a 6(x,y) - dyd ] (3-33) 

The important point to be noticed here is that the prewhitening filter is
 

a derivative type processor. This indicates that when one is registering
 

two images by first preprocessing each image and then crosscorrelating, a
 

derivative type operator in the presence of noise with an exponential
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autocorrelation function will maximize the SNR
 ° and thus improve the­

expected registration performance. This prediction is corroborated by
 

experimental observations which are discussed in Chapter6.
 



44 

CHAPTER 4
 

CHANGES IN THE OUTPUT SIGNAL-TO-NOISE RATIO DUE TO
 
RELATIVE SPATIAL DISTORTIONS BETWEEN IMAGES
 

In the follow.ing analysis the change in the output.signal-to-noise
 

ratio (SNR) is computed, for the situation in which the images to be
 

registrated are'distorted spatially with respect to each other. The need
 

for such an investigation is prompted by the fact that in the case of
 

LANDSAT'imagery; small relative spatial distortions exist between images
 

taken on different orbits over the same area. The probable cause of
 

this lies in small unavoidable perturbations in the satellite's orbit
 

such as altitude, heading, and pitch. Similar, but more pronounced spatial
 

distortions alsooccur in aircraft scanner imagery-.
 

When the registration problem is modeled as passing the background
 

image containing the temporal changes.(received signal plus additive
 

noise) through a filter so as to maximize the SNR at the correct regis­

tration position, the processor used essentially correlates a filtered
 

version of the-background image (signal plus noise) with a filtered ver­

sion of the reference image (signa-l), where the two images to be regis­

tered are denoted as the background image and the reference image. The
 

background imageis a temporal.ly differing and spatially distorted
 

version of the reference image corrupted by additive noise. One of the
 

parameters that must be chosen in this correlation is the area over which
 

the integration is carried out. For geometrically congruent imagery it
 

http:temporal.ly
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intuitively follows that a larger observation area yields a higher SNR.
 

However, this is not the case when relative spatial distortions dependent
 

upon image size exi:st between the images. For the case in which the dis­

tortion increases with s-ize, as in a simple difference in scale, it is to
 

be expected that beyond a certain image size the SNR will decrease due to
 

the fact that the images cannot be simultaneously matched at widely sepa­

rated points by translation only. Therefore, when relative distortions
 

exist it should be expected that there is an optimum integration area
 

size which realizes a maximum SNR. This is the problem that is examined
 

in this chapter.
 

the derivation is divided into two major categories: white noise only
 

is present; or nonwhite noise is present. Within each category an ex­

pression for the SNR as a function of the integration area size is derived
 

for both relatively nondistorted and distorted spatial scales between the
 

reference and background images.
 

The procedure for comparing these two situations involves using the
 

filter which maximizes the SNR when the spatial scales are the same (the
 

matched filter), and then using a distorted spatiaI scale version of this
 

same filter to observe the effect on the SNR due to relatively distorted
 

spatial scales. The choice of which spatial coordinate system is dis­

torted, reference or background image, is arbitrary since the distortions
 

are only relative. The reason for proceedlng in this fashion is that
 

this models quite well what actually happens in practice. Since the
 

relative distortion is unknown beforehand, it cannot be corrected for
 

prior to processing the images, so that the relatively distorted images
 

must be dealt with as they exist.
 

REPRODUCIBITIRY OF T.-
ORIGINAL PAGE IS POOR 
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For two-dimensional signals, in this case imagery, the output signal­

to-noise ratio and related parameters are defined as follows.
 

T T 
{E[4T_. I f X " 4T -x7ty -s(x,y)dxdyll 

SNR x y (4-I) 
SR=T T2 

SE{k4T f h(T -x t -y)n(x,y)dxdyl 2 

.xy -T -T x 
x y 

Where, 

SNR = output signal-to-noise ratio
 

s(x,y) = signal; reference image
 

n(x,y) = additive zero mean noise
 

h(x,y) = processing filter
 

4T T = observation area size
 
xy
 

(-,t) = translation
 

In this express'ion the SNR is defined as the ratio of the square of the
 

expected value: pf the output due to the signal and the variance of the
 

output due toIthe noise. The SNR is a function of the observation area,
 

4TxTy, through the integration limits.
 

To proceed,'it is necessary that the signal and noise properties be
 

defined more completely to allow for evaluation of the SNR. The necessary
 

assumptions forthis analysis are,'
 

(i) s(x,y) and n(x,y) are independent
 

(ii) Ri'(x-a,y-b) = s(x,y)s(a,b.)
"N
 

0_ C(x-a~y.,b); white noise
 

(iii). Rn(x-a,y-b) = n(x,y)n(a,b) { N n 6(x-a'y-b)+Rn (x-a,y-b);

2 n c 

nonwhite noise
 

It is important-to note that assumption (iii) states that in the presence
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of nonwhite noise, the,nois is.compri-sed of a,white.noise component with
 
N,
 

autocorrelation function -26(x-a,y-b), and a colored noise component with 
2 

autocorrel'ati0on function R (x-a,y-b). The Fnclusion of the white noise 

component is rea-li:Ustic as regards practical measurements and also avoids 

the possibi'l'ity of s-ingular detection. Later on in the analysis it is 

seen that thi-s assumpti'on leads to a solution employing a prewhitening 

filter as a component of the matched filter for nonwhite noise. 

4.3]. Whi-te, Noise With No Relative Spatial Distort-ion
 

In thi:s section the SNR wil' be evaluated for the case where white
 

noise only' is present,
 

N'
 
R (T IT) -2 &Qrx IT)
n(xy 2 xy (4-2)
 

and no relative spati'al distort-ions exist between the background and
 

reference images. For evaluation.of the SNR (eq. 4-1±) a filter must be
 

chosen., In keeping with the anal'yses of Chapters 2, 3',and AppendixA,
 

a matched filter is employed. In the presence of white noise this filter
 

has an impulse response of the fbllowing form,
 

hx- X, Y-y) = s (x,y) (4-3) 

Subst:itution of this into the expression for the SNR yields, 

I T 

{E 4T- X fTY 2(x,y)dxdy]l 
x y -T x -TyV(44 

SNRw = T T (4-4) 
x
E{[ f- f Y s(x,y)n,(x,y)dxdyl I 

x y-T -Tx y 

where the subscript w denotes white noise., Evaluation of SNR is carried
 
w 

out as follows,
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1 /T T T T T dd}
 

{E[4T' f X f Y s2(x,Y)dxdyll2 -{4TTTI f X s2(x,y) dxdyl2
 

x y -Tx -Ty x y -T_x -Ty
 

T T2
 

T= f X f4T"Y Rs(0,O)dxdy}2
 

x y -T -T
x y
 

= 'R2(0,0)2 (4-5)
 
S 

E{[4T-T- f' f 'Y s(x,y)n(x,y)dxdy] 2 }
 
x y -T -T
x- y
 

"-"T T
 

_ 2ffx ffy sxysa,b nxynab dxdy dadb
 
x y 
 Tx -Ty
 

T T N
 
_21x ffy R (x-a,y-b)-2 (x-a,y-b)dcdy dadb
 

(4TT) -T -Ty
 
-xy x y
 

I N T TY
2 f x yf Rs(0,0) dxdy
 

(TxTy 
 -Tx -Ty
 

N

T R (O'0) 
 (4-6)
 

x-y
 

The SNR is therefore,
 

2R (o,o) 
=
SNR 47T s (4-7)
w "xy N
 

0 

Note that SNR< is proportional to the integration area. this is exactly

w
 

what is to be expected since a larger integration area allows access to
 

more signal info.rriation.
 

4.2'-White Noise With Relative Spatial Distortion
 

As in thdilast section the noise is assumed to 'be white. It is also
 

assumed that relative spatial distortions exist between reference and
 

background images,. Thus, since only a spatially disto-ted version of the
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signal i's present and the distortions are unknown; the filter is matched
 

to this time distorted signal., The filter is repiesented as,
 

h(Tx-X,zy-y) s [x+p(.x,y),y+q(x,y)] 
 (4-8)
 

where p(x,y) and q(x,y) are functions of x and y that mpdel the relative
 

spatial distortion. With this fil-ter the SNR becomes,
 

T -T 
ET - f x f Y sx+p(x',y),y+q(xy)]s(x,y) dxdy] I 

x y.-T -T 
SNRw T T (4-9) 

E.b[yTI- f x f Y s[x+p(xy),y+q(x,y)] n(x,y), dxdy]2 " 
x y-T -T
 

x y
 

This expression may be evaluated as follows
 

T T 
- 2fE[4Tjj_ - f x f'y s[x+p(x,y),y+q(x,y)Js(x,y) dxdy]1
 

x y-T -T 
 -
x y
 

T Ty
{E fTX" f y s[x+p(xy),yiq(xy)Js(xy) dxdy2
 
-T -T
 
x y 

T Ty
{lf s- x R[p(x,y),q(x,y)] dxdy}2 (4-10) 

x y -Tx -Ty 

fE[4Tf x fry sbx+p(xRy),y+q(xy)n(xy) dxdy] 21
 
x y -T -T
 

x y
 
(4Txy) fy
.f 11 s [x+p(x,y) ,y-sq (x,y)Jsja+p a,b) ,b+q [a,b) JN T T
 

•n(x,y)n(a,b)" dadb dxdy­

2 No ffx fy Rs[xIpx,y)_a-p(a,-b),y+q(x~y5_b-q(a,b)]
 
('iT Ty) "T o"T d(-a,y-b)dadb dxdy 

xTxy
 

Ni Rs(O,O) 
(-l4T-y 2-( 


- 1
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The output signal-to-noise ratio is then,
 

(0,0) T211 T T R-[p(x,y),q(x,y)]
SNRWD 4T TY N - f R (0,0) dxdy} 

2 
(4-12) 

o xyTx Ty-


There are several important properties of this expression that should
 

be noted. First, observe the variation of SNRWD with T and Ty
 

2R (0,0) 
iim SNR = r T s 0 (4-13)

,T +0 WD T ,T -0 x y N 

Furthermore, if p(x,y) and q(x,y) are increasing in t' that is, if,
 

Jim p(X,y) l lir lq(x,y)l (4-14) 
x,y co -'" xy
 

then,
 

lim SNR = 0
 
TxTy WD(4-15)
 

since,
 
oR_ [lO(X,y),q(x,y)]
 

f (0,0) dxdy < (4-16)
 

Therefore, when (4-14) is true, SNRWD has a maximum for some finite inte­

gration area. "Choice of this integration area will give the maximum
 

possible SNPwb.
 

Secondly, notice the way inwhich the SNR is affected by the spatial
 

distortions. An expression equivalent to (4-12) Is,
 

= S'NRzwSN {4T-- / TxJ R [p(x,y),q(x,y)] dxdy} 2 (4-17)SrN'Rw T f T R (,y 

-% 1TT- R (0,0)
 

x y -T -T s
 
- XV 

Therefore', the s'ignal-to-noise ratio using the spatially distorted filter
 

is Vess than.SNRW'using the nondistorted filter by the factor of,
 

T 
f
Ty .R [p(x',y),q(x,y)]
•4T T p s R(0) dxdy} 2 < 1 (4-18)
 

x y -T -T R (0,0)7
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This follows from (4-17) since, 

IRs[p(x,y),qkx,y)Yl f Rs(0,O) (4-19) 

for all x and y. Note that this reduction isjust the square of the 

normalized averagearea under the signal autocorrelation function 

Rs[p(x,y),q(x,y)] with a spatially distorted scale. 

This result indicates that- the reduction in the output signal-to­

noise ratio for different values of Tx and Ty can be easily estimated with 

a given distortion model by evaluating the reduction factor given in 

(4-18). Finally note that SNRWD 'reduces to SNRW when there are no relative 

spatial distortions, i.e., p(x,y) and q(x,y) equal zero. 

4.3. Nonwhite Noise With No Relative Spatial Distortion
 

Analysis of the SNR for nonwhite noise,
 

N
 
R(xt) = + R (T ,Ty) (4-20)- 2 S(T ,T) 

n Y 2 x y ncx 

requires one more step than in the white noise case. This is embodied in
 

the formulation of the matched filter and involves incorporation of a pre­

whitening operation into the optimum filter. A derivation of this imple­

mentation of the matched filter is given in Chapter 3 where a block
 

diagram (Fig. 3-4) illustrates 'its construction. The prewhitening
 

operation refers to the filter designed to whiten the input noise.
 

Addition of the prewhitening filter converts the problem into that
 

where white noise has been assumed. The particular form for this filter
 

depends upon the noise autocorrelation or spectral density function. The
 

background image is passed through the whi'tening filter and then a second
 

filter is chosen to maximize the SNR of the prewhitened signal plus noise.
 

These two filters in cascade form the matched filter (Fig. 3-3).
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This approach requires an alteration of the SNR formula. It is
 

assumed that the received signal plus noisd has already been processed by
 

the whitening filter so that it is necessary to deal only with white noise
 

in the choice of the maximization filter.
 

{E[j yf X TY h(-r -xy -y)s Cx,y) dxdy]1 2 

-T -T 
SNRNw - X (4-21)

"E[ f x fTY h(t -x'r yn (x,y) dxdy] 
x y -T -T X y w 

x y
 

Where,
 

sw(x,y) = ff hw(x-a,y-b)s(a,b) dadb prewhitened signal (4-22)
 

nw(X,y) = ff hw(x-a,y-b)n(a,b) dadb prewhitened noise (4-23)
 

The prewhitening filter, hw(x,y), is designed such that,
 

N
 
nw(xy)nw(ab) -2-6(x-a,y-b) (4-24) 

w w 2 

that is, nw (x,y) is white noise. Conversion of (4-24) to the Fourier 

transform domain yields the following relationship between the power
 

transfer function of the whitening filter and the noise spectrum.
 

(utv)-1 = 0 1 (4-25) 

where,
 

Hw(Uv) = transfer function of the prewhitening filter
 

Sn(uv) = noise spectrum
 

Note that inclusion of the white noise component in the expression for the
 

autocorrelation fuhction, eq. (4-20), insures that IHw(U,v) I2 < for all
 

:frequencies. This avoids the singular detection problem.
 

As before,: for white noise the filter is matched directly to the
 

signal, which has been passed through the whitening filter in this case.
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(4-26)
h(tx-X,t yY) = sw O,y) 

With thi§-filter the expression for the SNR beconies,
 

{E[1j y ffX fY s2(xy)dxdy]}2 
x.y -T -TI 

SNR - x y (4-27)
NW IE T T 2 

EET _f x f y sws(x,y)nw(x,y)dxdy] } 
x y -T -Ty 

which may be..evaluated as follows,
 

j y

{E. f x f y s (x,y)dxdy : {T T s (xy) dxdy}2 

x y -T x -T' y x y -Tx -Ty 

T T 2{4TT- Tx fTY R (0,0) dxdy} 

xy -T w 

R2 (0,0) (4-28) 
s 
w 

where,
 

R (0,0) sw(x,y) = JJJJ hw(a,b)hw(c,e)Rs(a-cb-e)dadbdcde (4-29)-

w ­

is the energy in-the prewhitened signal.
 

T T 

s (X,y)nw(X,y)dxdy] nf 
x y:-Tx -T y 

-____T T 

I x fly (X,y)S(aa,b) • dxdydadb 
(TxTy) 2 _T -T 

N T T 
= --_ 2-ffx SSY Sw(X'y)Sw(a'b) 6(x-a'v-b)dxdvdadb 

(0T) -T -TyT fT 

1 _ [X f ys 2 (x,y ) dxdy 

(4TxT ) -T -T
 
x y x y 

N 
R (0,0)' (4-30) 

4T Ty)2 sw 
_-___a 

IEPRODUCIBftIIY OF THI 
lRtGINAL PAGE IS POOR 
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The SNR is then, 
2R S (0,0) 

SNR 7 4TxT
NW. _xy 

w 
N 

(4-31) 

Note that SN.RNW is proportional to the integration area, 4TxT . This
• xy
 

is what is to be expected. Comparing this expression with that obtained
 

for the white noise situation, it is found that the two are analogous,
 

differing only by the signal energy used. For the nonwhite noise case
 

the prewhiteied. signal energy is used as opposed to the original signal
 

energy.
 

4.4. Nonwhite Noise With Relative Spatial Distortion
 

When spatial distortions are present, instead of being able to use
 

s(x,y) in forming the receiving filter, it is necessary to use
 

s[x+p(x,y),y+q(x,y)], a spatially distorted version of the signal, where
 

p(x,y) and q(x,y) functionally model the distortions. In this case the
 

prewhitening filter again is used. However, instead of passing s(x,y)
 

through the whitening filter, s[x+p(xy),y+q(x,y)] is input to the
 

whitening filter. This corresponds to the situation faced in practice
 

where the time'distorted signal is the only version available. The
 

processing filter then is matched to the whitened distorted signal.
 

=
h(r-X-, y-y) =z(x,y) ffhw(x-a,y-b)s[a+p(a,b),b+q(a,b)]dadb (4-32)
 

z(x,y) = prewhitened spatially distorted signal
 

For convenience in the derivation, the following equivalent relation for
 

z(x,y-) is used.
 

z(x,y) ffhw(a,b)s[x-a+p(x-a,y-b),y-b+q(x-a,y-b)]dadb (4-33)
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Substitution of z(x-,y) into~the expression for the SNR yields,
 

T t
 
f{Ei[4T-Tf x f Y z(x,y)s w(x,y) dxdy]}2.

x y -T -T 
SNR.. x y 2 (4-34)SNWD 1=- T 

Ef{[ f X f Y zXy)n (xy) dxdy]2} 
x y -T -T w 

x y 

Evaluation of this expression gives,
 

s (x,y)dxdy]s2 =i{(x,.YTf X fTY zFx sW(xy)dxdy}2
 {E-4TxT X fTy 	
y
 

xy "T -T 	 x y -T -T 

4T x f Y R (x,y) dxdy}2 (4-35) 

x yT -T ZSw
x y 

where-,,
 

RzS('x,y) = Jfff.hw(a,b)hw(c,e)s [xLa+p(x-a,y-b),y-b+q(x-a,y-b)Js(x-c,y-e) 
w -o 

dadbdcde
 

= fffhw(a,b) w(c,e)Rs [a-c-p(x-a,y-b) ,b-e-q (x-a,y-b)]dadbdcde 
-W 


(4-36)
 

is the crosscorrelation function between the prewhitened distorted signal
 

and the prewhitened 6riginal signal.
 

Ef[4 	 T T f x fTy z(x,y)hw(x,y) dxdy]21 
x y -T -Tx y 

(4TT fX fJY Zyab n(x,y)n(a,b) dxdydadb 
x -Tx -Ty 

N T T 
. 0 ffx ffy ±(xy)za,b) 6(x-a,y-b) dxdydadb 

(4Tx)2 2 -T -T 
x y x y
 

o T T 
4T T f f Y Rz(x,y) dxdy] (4-37) 

x y -T -Td 
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where,
 

Rz(X,y)=ffffsLx-a+p(x-a,y-b),y-b+q(x-a,y-b)Js[x-c+p(x-c,y-e),y-e+q(x-c,y-e)]
 

hw(a,b)hw(c,e) dadbdcde
 

ffff Rs[a-c-p(x-a,y-b)+p(x-c,y-e),b-e-q(x-ay4b)+q(x-c,y-e)] 

hw(a,b)hw(c,e)-dadbdcde I (4-38) 

is the energy in the prewhitened spatially distorted signal. Note that
 

the independence of z(x,y) and nw(x,y) in the first step of eq. (4-37)
 

follows from the fact that z(x,y) depends only upon s(x,y) and nw(x,y)
 

depends only upon n(x,y). Also note that R (x,y) is not a function of x
 

and y for a linear distortion (i.e., p(x,y) and q(x,y) are first order
 

polynomials).
 

The SNR becomes,
 

SfTx Ty R (x,y)dxdy 2 

SNR 
2R 

NW Txy N=No. 

0 T T R (x,y) 
T=4TTfx yz 

,4 T T-x00-Tx -Ty Rsw 

dxdy 
x y -T -T 

x 
T Y Rz(x,y)dxdy 

x -(4-39)
 

There are several important properties of this expression that should
 

be observed. fhe expression can be rewritten in the following equivalent
 

form. T T (x,y)dxdy 2
 

f X f y dxdSNR =SNR

NwD=SNNWL4Ty-T RT (0,0)
[ xTY-T-Ty SW Yj x f y R,(x,y)dxdy
 

.xy -Tx -T (4-40)
 

It is evident from (4-40) that use of a spatially distorted signal results
 

in the reduction of SNR w relative to the undistorted caseby a factor of,
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T f y R (x,y)dxdy 2 1,T 

w
 

T T R (x,y) 1 .xy-T -T 

-T T 0 lR7 xf/x f$ R .7 dxdy T. Ty < I 
x
Ly w f'x f Y R (x,y) dxdy (4-41) 

x y -T -T z 
x y 

The inequal i'ty, foIfows from examination'of the exptessions for R (0,0),
 
zs
 

Rz(X,y), and Rzs" (xy)
 

W 
IR (x,,y)I R. (0,0) for all x,,,y (4-42) 

T T T T
 
IfX f Y R (x,.y):dxdyl < Ifx f Y R_(x,y)ldxdyJ for all T and T (4-43)
-T -T zSw -T - x yx y x y
 

Th.is result shows that the reduction i-n the output signal-to-noise ratio
 

with a-gliven distort-ion model for di'fferent values of T and T can be
x y
 

estimated by eval.ua-ti:ng the reduction, factor, (4-41). It should also be 

noted that SNRNw D reduces to SNR'NW when -no d'is,tortions are present (i.e., 

p(x,y) and q,(.x,y) equal, zero). 

Next to be,cons-idered is the vari:a-tion of SNRNWD with Tx and T 

lim SNR = 0- (4-44) 
0 NWDTT 

xy
 

sVince- Iimm SNRwD = 0 and SNRNWD < SNR-NW
 
TTT + 0
 
x y
 

Also, ,if Isp(x,y) andq(x,yj ar increasnd.ng inx and y, that Ps 
II 1p (x, y)I =l im lq(x,y)l (4-45) 

x,y - Xty 0 

then,
 

I'im SNR~w 0 (4-46)
 
T T +WD
 
x y
 

If RZ(x,y,) U~s not a constant. funct'ion of x, and y, -then (4-46) folTIlows since 

T zT T T 
f x f Y R'(x,y)dxdy and f x f Y R. (x,,y,)dxdy are finite. I-f R (x,y) 'is 
-T -T -T -T ZSw x y x y
 

http:increasnd.ng
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x 

a constant with respect to x and y, then (4-46) is also true since
 
T T T T
f X f Y R (x,y)dxdy < - for all T and T while lim f x f Y 
-T -T Zw x y T T -T -T 

y xy x y 

R (x,y) = c. " z 

Since SNRNwD is nonnegative for all Tx and Ty, then if (4-45) is
 

true then there must be a maximum of SNRNWD for some finite integration
 

area. These choices of Tx and T will yield the maximum SNRNWD. Given
 

a model of the distortions, these values of T and T may be found by
x y
 

carrying out the required integration in eq. (4-39)
 

4.5. 	 Examples of the Loss in the Output Signal-To-Noise Ratio
 

Due to-Different Types of Spatial Distortion.
 

In this section several examples are given illustrating the loss in
 

the output signal-to-noise ratio when a processor designed to register
 

spatially congruent imagery is operating in the presence of spatial dis­

tortions. The loss in the output signal-to-noise ratio is examined for
 

three types of distortion: the first is a linear scale distortion; the
 

second is the situation where the two images are rotated relative to one
 

another; and the third is one in which relative distortions representative
 

of those observed between multitemporal LANDSAT I images -are considered.
 

The first two xamples concern general types of distortion. However, the
 

last set of examples where the observed distortions between LANDSAT I
 

images are considered, provides a means of applying the analytical ex­

pressions for the loss in the output signal-to-noise ratio to the over­

laying of images in practice.
 

For the examples presented the noise (temporal change) is assumed
 

to be.white so.that the expressions developed in Section 4.2 may be
 

used. Equation (4-12) is used in a slightly rearranged form to evaluate
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the normalized output signaW-to-noise ratio (denoted by SNRN in this
 

section). This equivalent form is,
 

SNRwo 2 T R [p(x,y),q(x,y)].1
WD4T T 


4T 2 T (0,0) dxdy (4-47)
2R (00)/No -T -Ts
 

where,
 

T T = T
 
x y
 

and the signal-to-.no;iTse ratio has been normalized by 2Rs(0,0)1No.
 

'inorder to evaluate (4-47), i't is necessary that a model of the
 

signal (image) autocorrelation function be chosen. For these examples
 

an exponential .autocorrelation function was used.
 

Rs(x,y) = Rs(0,0) exp {- xL -- IL (4-48)
5 r r 

where, 

r = characteristic length of the autocorrelation function 

Substitution of this expression into (4-47) yields, 

SNRD 2[ 1 T fT Xp(,y)L q 2 
R (N
2'Rs(0,0)/N °0 = 4 7 f exp [-- rr - ]dxdy (4-49) 

S 0 4T T -T 

Given a model of the di-stortions, p(x,y),and q(x,y), (4-49) can be 

evaluated to determine the SNRN-


4.5.1. Linear Scale Distortion.. 

The first type of spatial distortion examined is that of a linear 

scale distortion.. In matrix notation this is represented as, 

[ = 0 ] [K (4-50) 

where,,, 

'REPRODUCIBILITY OF 1it.§RIGNAL PAGE IS POore 
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(x,y) = reference image coordinate system
 
(x,y') = coordinate system of image to be overlayed on reference
 

image
 

c = scale factor distortion
 

Since,
 

x1 = x + p(X,y) = x + cx (4-51) 

y, = y + q(x,y) = y + cy (4-52) 

from the definition of p(x,y) and q(x,y) inSection 4.2,_ then,
 

p(,y) = cx (4-53)
 

c(x,y) = cy (4-54) 

Substitution of these expressions for p(x,y) and q(x,y) into (4-49) yields 

the equation for the SNR in the-presence of a linear scale distortion.
 

N
 

21sR(00)/N00/o T24 'V I -Tf T -Tf exp [- J'lIxIrr - lYl-vI]dxdyj (4-55) 

Note that the SNRN is dependent upon two parameters: 4T
22 , the integration
 

area; and IcsL, the ratio of the scale distortion factor to the character­
r 

istic length 6$-the signal' (image) autocorrelation function.
 

Evaluation of (4-55) was carried out by a numerical integration
 

method. Simpson.'s rule for approximating the integral of-a function by
 

the piecewise integrals of quadratic polynomials was used [40]. This
 

procedure proved both straightforward-and accurate. With a division of
 

the interval, 2T, into 100 increments it was found that a tolerance of
 

about 0.005% was observed. Also, use of this method of integration was
 

not time consumihg and was easy to implement since itonly involved cal­

culation-of a weighted sum of the integrand at each of the increment end­

points. The general formula for integration via Simpson's rule is shown
 

below for a double integral. The integration is carried out by first
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integrating with respect to x and thenwith respect to y, i.e.,
 

TT T 
f f f(x,y) dxdy =( g(y) dy (4-56) 
-T-T -T 

where, 
T 

g(y) = f f(x,y) dx (4-57) 
-T 

Using Simpson's rule the approximate integral is,
 

T T N-i N-2
f f f(x,y)dxdy Z12 {4 g(-T+ih)+2 Z g(-T+ih)+g(-T) + g(T)1 (4-58) 
-T -T i-=l i=2 

i odd i even 

where,
 

N-i N-2 
g(¥) - {4 E f'(-T+jh,y)+2 E f(-T+jh,y) + f(-T,y)+f(T,y)} (4-59) 

j=l 
 j=2
 
j odd j even
 

and,
 

N = number of divisions of the intervalb2T; must be an even
 
number
 

h = 2T/N, the increment length of each division
 

For this computation the same number of increments are used for both
 

variablesof integration.
 

Figures 4-1 through 4-4 illustrate the-relationship between the
 

SNRN, the integration area, and the linear scale distortion. Figures
 

4 -la and 4-lb show the square root of the-SNRN (denoted .by Y§IF) 

for different values of scale distortion as a function of 2T, the square
 

root of the integrat-ion area. The ,reason for this particular choice for
 

ordinate and abscissa is that the /§NR in the absence of spatial dis­

tortions is linear in 2T with a slope of one. This is evidenced by
 

let-ting p(x,y) and q(x,y) equal zero in (4-47). In this way it is
 

possible to plot the results on a linear scale.
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Figure 4o1. (Normalized output signal-to-noise ratio) for
 

different values of linear scale distortion vs.
 
1/2


(integration area)
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Twoseparate figures are presented so as to illustrate the distor­

tion factor effect over a wide range of values. In Figure 4-la the
 

SNRN versus 2T curves are given for Icl equal to O, 0.01, 0.05 and 0.1.
 
N r 

In Figure 4-lb i-cI equals 0, 0.001, 0.0025 and 0.005. There is consider­
r 

able convenience in being able to represent the scale factor, c, and the
 

characteristic length, r, in a single term. In this way each curve is
 

representative of a family of values of c and r. For example, a value of
 

c.-L= 0.01 can correspond to a value of 0.01 for Icl and 1.0 for r as 
r 

well as the combination of 0.02 for Icl and 2.0 for r.
 

As predicted by the derivation in Section 4.2, in the presence of a
 

scale distortion there is a finite integration area which yields a
 

maximum output signal-to-noise ratio. This is illustrated by the occur­

rence of a peak in the curves for nonzero c. This result indicates that
 

there is an optimum integration area size to use in the presence of a
 

linear scale distortion when the registration processor is designed for
 

spatially congruent imagery. Given the scale distortion, the optimum
 

choice of integration area size is that which yields the maximum SNR
 

For example, with a distortion rfCl 0.05, the maximum SNRN is
= 


found for 2T = 50.
 

Several other observations also may be made from Figures -4-la and
 

4-lb. Again as predicted by (4-47) the v NF is linear in 2T with a
 
N
 

slope of one for no scale distortion. Also note that a larger distortion
 

factor requires a smaller integration area to yield the maximum SNRN.
 

For example, with -LL= 0.01 the 2T for a maximum SNRN is 252, whereas
 
is 50.
 

= 0.05, the 2T for a 
maximum SNRN 


for IC I 

r
 

Figure.4-2 follows from the observations made in'the first figure.
 

- Figures 4-la and 4-lb illustrate that given the scale distortion factor, 
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Figure 4-2. (Integration area) yielding the maximum normalized output
 

si'gnal-to-noise ratio vs. linear scale distortion.
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 Figure 4-3. 	Maximum of (normalized output signal-to-noise ratio)
 
vs,. linear scale distortion.
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Table 4-1. 2T yieldingthe maximum'SNR and the maximum 

SNIi for di.fferent values of rL• 
N r 

ICI 2Tfor 
r max SNRN max . 

0.001 2513 814.5 

0 0025 1005 325.8 

0.005 502 i62.9 

0001 252 81.5 

0.05 50 16.3 

0.1 26 8.1 
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there is an optimum integration area size yielding the maximum SNRN.
 

This suggests that given the scale distortion, it is possible to find
 

that integration, area giving the maximum output signal-to-noise ratio.
 

Table 4-I lists a sample of values of the scale distortion and the cor­

responding 2T yielding the maximum normalized SNR These values were
 

used to generate Figure 4-2 which is a plot of the value of 2T yielding
 

the maximum SNF3N versus the linear scale distortion. Note that the
 

function is linear on a log-log plot. This indicates that the relation­

ship is of the following form,
 

2T = a [hI (4-60)
 

where a and 0 may be determined from the curve or Table 4-I. The values
 

found for a andS are,
 

a 2.52
 

08= -1 

Therefore, - 1 

2T for max SNR N z 2.52 ICI (4-61) 

This result suggests that given the linear distortion factor, the area
 

yielding the maximum output signal-to-noise ratio can be easily computed
 

from (4-61)
 

Figure 4-3 is a plot of the maximum vSNNR versus the linear scale
 

distortion. The values in Table 4-1 were used to generate this curve.
 

This graph displays the maximum attainable VSNR in the presence of a

N
 

given scale distortion. As in Figure 4-2, the relationship is linear in
 

a log-log plot which indicates that the maximum SNRN varies with the
 

scale distortion in the following manner.
 



67 

aSNiNr (4-62)
a 


or equivalently,
 

SNRN {ai } (4-63)
 

where a and 0 may be found directly from the curve or Table 4-1. 

a z 0.81-45 

Substitutionof these values into (4-63) yields,
 

SNR =0.8145 }2 (4-64) 

Therefore, the maximum possible SNRN for a given scale distortion may be
 

found directly from (4-64). This provides a straightforward way of esti­

mating the best possible performance in the presence of a given scale
 

distortion.
 

A third means of ana-lyzing the relationship between the SNRN and
 

scale distortion is provided 'in'Figure 4-4. This figure is a graph of
 

the SNN for different integration area sizes versus the linear scale

N
 

distortion. Figure,4-4a illustrates 'the relationsh'ip for 2T-equal to 30,
 

50 and 100, while $Figure4-4b shows the corresponding results for 2T equal
 

to 250, 500 and 1000. For designipurposes -this may be utilized in the
 

following fashion. -if the integration area is giv&n, then the maximum
 

allowable distort-ion can be determi-ned once a loss criterion in terms of
 

the reduction in the SNR N due to spatial distortion is decided upon. For
 

example, if an integration area 'size with 2T = 100 'ischosen with a toler­

abie loss of 19% in the'SNRN , then the maximum allowable distortion is
 

_iLz 0.002. This is found directly from Figure 4-4a. Since a loss of
 
r 
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Figure 4-4. (Normalized output signal-to-noise ratio) 1/2 for
 
different integration area sizes vs. linear scale
 

distortion.
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19% in the SNR is-equiva:lentto (0.81) SNRN, this corresponds to 0.9/S§N.

NWN
 

With 2T equal to log., theA RNi',has a maximum of ]O0'(i.e., for c = 0), 

so that O..v-'-. Determination of the scale distortion for a value 
N_ 

of VIiN = 90 on the 2T = 100 curve yields = 0.002.
N r 
One othe'r property of the curves may be observed. Note that the
 

curves cross at specified values of lihear scale distortion. For example,
 

beyond a certa'in value of .cL the vSNR.. for 2T'= 100 is less than that
 r N 

for 2T -50. This. follows-from the results obtained in Figure 4-1, 

where it is shown that for a given distortion there is a value of 2T 

yielding the maximum SNR', aill other va-lues:'of 2T'yielding a lesser SNRN' 

Fi.gures 4-1 through 4-4, corroborate the analytical results derived 

in sectibn 4.2-. By utilizing them as outlined,above, they provide a 

means-of choosing the optimum integrat.ion area'stize in the presence of 

linear scale dis-trtion ­

4.5.2._ Rotation Di'stortrion. 

The'second general type of dis-tortion examined is that where the
 

two image's are rotated relativa to one another. This spatial relation­

ship i's represented in matrix form' by, 

[X' V+ (cos'B-1) sin8 

S= [sine 1 + (cos-i-'1) (4-65) 

where,
 

(x,y) = reference image, coordinate- system 

(x",y' ) = coordinate system of image to be registered with-the
 
reference'image
 

0 = angle of rotation between the images, 

Si nce, 

OF T" .itAPRODUCTBT 

,ijpNaAL PAGE IS POO'4 
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x1 = x + p(x,y) 

y = y + q(x,y) 

from the derivation in section 4.2, therefore, 

p(x,y) = x(cose-1) - y sine (4-66) 

=q(x,y) x sine + y(cose-1) (4-67)
 

Substitution of p(x,y) and q(x,y) into (4-49) yields the expression for
 

the SNRN in the'presence of an angular distortion.
 

SNRWD 4T 2 [ I TfT ix(cose-I)-ysinO I 

2RT (0,0)/N 0 4 T Tr 

_ Ixsine+y(cose-l) Ildxd (4-68)
 
r Y
 

Note that the SNRN is dependent upon: 4T2 , the integration area; 0, the
 

angle of rotation; and r, the characteristic length of the image auto­

correlation f6nction.
 

As in section 4.5.1 the integration of (4-68) was carried out by
 

using Simpson's rule approximation to the integral. Refer to 4.5.1 for
 

a description of how this is implemented.
 

The relatibnships between the SNRN, the integration area and angular
 

distortion are'illustrated in Figures 4-5 through 4-8. 1 The contention
 

made in section 4.2 that there is an integration area yielding a maximum
 

output signal-to-boise ratio for a given distortion is borne out in
 

Figures 4-5 and 4r6. Both figures show the as
S/S-NR.a function of 2T.
 
N
 

Figures 4-5a and 4-5b illustrate this relationship for several different
 

angular rotations where the characteristic length, r, is equal to 2.
 

Figure 4-6 illustrates the same relationship with a characteristic
 

length of r = 5°" In both cases the results reduce to the expected linear
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for different rotation angles vs. (integration
 

area) 1/2 (,r = 2.0).. 



72 

1000- E= 00 
6 0.250 

SNRWD 

2Rs (0,0)/N o - 0 

o = 0.50 

0 = 0.75' 

6 1= 

-I I 

0 2000 
1000 3000. 

2T 

Figure 4-6. (Normalized output signal-to-noise ratio)1
/2 

for different rotation angles vs. (integration 

area) 1/ 2 (r = 5.0). 



73 

relationship between the v WR and 2T for no angular distortion, i.e.,
 

o = 0. As was observed for a,linear scale distortion, there its an inte­

gration area yield'Ing a maximum SNRN in the presence of an angular dis­

tortion, as is evi,denced by the peak in,each of the curves with nonzero
 

0. For example,, with a rotation, angle equal. to 10;, a value of 2T Z 290
 

achieves the maximum SNRN '
 

For design pruposes in choosing an optimum integration airea size,
 

the relationship between the.value of 2T yielding the maximum SNRN versus
 

the angular distortion is given in Figure 4-7. Using this figure, it is
 

a straightforward procedure to choose the integration area size which
 

a-ll-ows the maximum SNRN given the value of the angular distortion. This
 

relationship is illustrated for two values of the characteristic length,
 

r = Z and r = 5. Note that each is linear on a log-log plot for the
 

values of 0 chosen (0 < 6 < lO)o This indicates that the retationship
 

is of the following form for th~is range of 0.
 
8 

2T for max SNRN Z ar0 r ; 0 < 0 < 10,0 (4-69) 

where a and r depend upon r. The,data samples used to generate the
 
r r 

curves in Figure 4-7 are listed in Table 4-2. Using. these values, a 

and $ become,r 

a2 288 02
 

a5 720 5 1
 

Therefore, for r = 2,
 

2T for max SNRN = 288 &"l (4-70) 

0 < 0 < 100 

and for r = 5,, 

ZT for max SNRN = 720 0- ; 0 < 0 < 100 (4-71) 
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Figure 4-7. 	 (Integration area) 1/2 yielding the maximum normalized
 
output signal-to-noise ratio for different values
 
of r vs. rotation angle.
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Figure 48. Maximum (normalized output signal-to-noise ratio)1/2
 

for different values of r vs. rotation angle.
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Table 4-2. 	 2T yielding the maximum SNR for
 
d'ifferent rotation angleso:
 

r=2 r=5 
80 2T for max SNRN 2T for max SNRN 

0.25 1152 	 2879
 

0.5 576 	 1440
 

0.75 384 	 960
 

1.0 2887 	 720
 

2.0 144 	 360
 

3.0 96 	 240 

5.0 58 	 144
 

10.0 28 	 72
 

Table 4-3. Maximum vSTNR for different
 
N
 

rotation angles.
 

r=2 r=5 

Go max SNN max.A§N
N 	 N 

0.25 373.3 	 933.4
 
0.5 186.7 	 466.7
 

0.75 124.4 	 311.1
 

1.0 93.3 	 233.3
 

2.0 46.7 	 116.7
 

3.0 31.1 	 -77.8 
5.0 18.7 	 46.7 

10.0 9°3 	 23.4
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Extrapolation of these last expressions results in a general approximate
 

formula for determining 2T corresponding to the largest SNRN in the
 

presence of angular distortion for small values of 0.
 

2T'fbr.max SNR N z 144 r(O- ) (4-72) 

0 < e-< 100 

This was shown to be true by evaluating (4-72) for different values of r
 

and observing whether the indicated value coincided with that observed.
 

In all cases they agreed. This result indicates that given the angular
 

distortion and characteristic length of the image autocorrelation func­

tion, the area~yielding the maximum SNR can be computed from (4-72)
 

for small values of e.
 

Figure 4-8 is a plot of the maximum sNr.N versus the angular distor­

tion for two values of the characteristic length. These curves were
 

generated from the sample values listed in Table 4-3. This graph displays
 

the maximum attainable vSiR. in the presence of a given angUlar distor­
- N 

tion. As in Figure 4-7 the relationship is linear in a log-log plot for
 
Z. 

both values of r over the range of 0 used. This indicates that the
 

maximum /SNR varies with the rotation angle in the following manner.

N
 

r 
r -. a r (4-73) 

.N r
 

0 <-e < 10*
 

or equivalently,
 

SNRNz [ae r]2(-4
 

0 < e< 1O
 

where ar and Br depend upon the characteristic length. The values of ar
 

and r maybe found from Table 4-3 or Figure 4-8.
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a2 = 93.3 2 1 

'5 5"5
 
Therefore, for r 2,
 

6"11max SNRN =[93.3 (4-75) 

0 < e < 100 

and for-r = 5, 

max SNRN [233.3 0 (4-76)
 

0 < 0 < 100
 

These last two expressions may be extrapolated to give the following
 

general expression for the relationship between the maximum SNR and the
1, - N 

angle of rotation for small angular distortions.
1 2 
max SNR - [46.65 r (0-111 (4-77) 

° 0 < a 10 

This expression was corroborated by evaluating (4-77) for different 

values of r and testing whether the resulting value for the SNR was
N
 

indeed a maximum. Inall cases itwas. 

Figure'4-9 provides a series of curves representing the V NW for a 
N
 

given integration area size as a function of the angular distortion. 

Figure 4-9a illustrates this relationship for a characteristic length of 

r = 2, while a value of r = 5 was chosen for Figure.4-9b. Curves for 

2T = 50, 100, 200 and 400-are displayed for both figures. This represen­

tation of the functional-relationship between the SN N and angular dis-N
 
tortion'may be used for design of the registration processor in the
 

following manner. Given the integration area and percentage loss in the
 

SNR that is acceptAble, the maximum allowable rotation may be found from

Nh
 

the curve corresponding to the appropriate int~gratlon area. For example,
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for different integration area sizes vs. rotation
 
angle.
 



'79
 

if the characterist ic length is 5 and a loss factor of 0.81 for the SNRN
 

is acceptable when operating with 2T = 200, then the maximum .allowable
 

.
rotation is 0.15' This is found directly from Figure 4-9b. A loss
 

factor of 0.81 for the SNRH corresponds to a loss factor of 0.9 for
 

ASi-M. For 2T = 200, the maximum S N without any angular distortion
 
N N 

is200, so that a reduction -of 0.9(200) equals 180. The maximum allow­

able rotation [s-that angle corresponding to -a ANN of 180, which is
 

0.150.
 

This concludes the .general'examples for examining the effect of
 

spatial distortions-on the output signal-to-noise ratio. The illustra­

tions presented in Figures 4-I through 4-9 verified the derived results
 

obtained in section 4.2. Itwas found that in the presence of a given
 

linear scale or rotational distortion, there is a unique Integration
 

area -size which yields a maximum output signal-t-noise ratio. 'Figures
 

4-1, -4-5 and 4-6 illustrate this while figures 4-2, 4-3, 4-7 and 4-8
 

,present a -straightforward way of determining the optimum integration area
 

size and maximum SNRN achievable. The next section proceeds i-h a similar
 

fashion -with spatilal distortions modeli-ng those observed for.AANDSAT I
 

images. In thislway the method for applying the results of section 4.2
 

i-s illustrated for a practical image registration model.
 

4.5.-3. Distortion Model for Temporally Differing LANDSAT I Images.
 

In this section the distortion model employed ih the LARS registra­

tion system [ 1,51 for overlaying LANDSAT I images 3-s used to -evaluate
 

the expression for the SNRN in the presence of spatial distortions. For
 

multitemporal LANDSAT I images atbiquadratic polynomial of the following
 

form is used as the-distortion-model.
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' 

[Ly'jc 

I+c11 

21 

c 12 

I+c2 

c 13 

c 2 3 

c14 c5 
C24 c.5j 

x (4-78) 
(7 

2 x 
2 
y2Y= 

where,
 

(x,y) = reference image coordinate system
 

(x',y') = coordinate system of image to be ridgistdred with the
 
reference image
 

and,
 

ci = distortion coefficients; i = 1,2,; j =,...,5 

The values of the coefficients are determined by a least squares procedure. 

The approach followed in the LARS registration system [ 1-,5] is to over­

lay a sample'of subimages from each full image assuming spatial congruence. 

This registration of each of the subimages is accomplished by a simple 

translation because of the assumption that no relative spatial distor­

tions exist between the subimages. However, because-the full images are 

relatively distorted, all of the translations for the subimage overlays 

are not the same. A least square estimate using a biquadratic polynomial 

(eq. (4-78)) then is used to find that spatial transformation between the 

full images which best fits all of the subimage translations simultaneous­

ly. 

With this model of the spatial distortions, the functions p(x,y) and 

q(x,y) used in the expression for the output signal-to-noise ratio become, 

2 2 
p(x,y) = cllx + c12y + c13x2 + c14Y + c25xy (4-79) 

q(x,y) = c21x + c22Y + c232 + c24 25x (4-8o) 



81 

Substitution of these expressions for p(x,y) and q(x,y) into equation
 

(4-49) al-lows for the evaluation of the SNR . In this case, since the
 

specific'distortibnri' given-,- the 5NR N depends upon two parameters: the
 

integrati'on area, 4T2; ahd the characteristic length of thelimage auto­

correl-ation function. Again evaluation of (4-49) was performed by using
 

Simpson's'rule apprbximation to-the integral.-


Two sets-of distort on,parameters-were used in this evaluation of
 

the SNR N for LANDSAt I imagery. The-coefficient sets chosen were those
 

used fn the operational registration of images. In this way the method
 

of using the analytical results df section 4.2 for the situation en­

countered in practiee is exemplified. The LANDSAT I imagery registered
 

and' cdrresponding dfiftort'ion coefficients for the two overlays are listed
 

in Table 4-4.
 

The rel-ationship between the SNRN and the integration area for

N
 

diffei ntvalues of the characteristic length is displayed in Figures
 

4-10a-and 4-10b. Figure 4-!Oa contains the results for the first set of
 

coefficienits-and Figure 4-10b for the second set. Note that for each
 

durve in both figures there is a value of 2T yielding a maximum SNR N
-


This indicates that thee is an optimum integration area where a maximum
 

SNRN i-s realized in the-presence of the distortion models chosen,.
 

I'n each figure the series of' curves illustrates the dependence of
 

the ir'tegrati-on, area si'ze yieldin'g the maximum SNR N on the characteristic
 

length of the !mage'autocorrelatiton function. For example, when the
 

first dist6rtion model is used (Fi'g. 4-10a), a-value of 2T = 70'will
 

9fve the maximu SNR N for r = 2, whereas for r = 5 a value of 2T = 180
 

must be chosen. Therefbre, chdice of an optimum integration afrea size is
 

determined by the value of r.
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Table 4-4. 	 LANDSAT I images registered and the
 
corresponding distortion coefficients.
 

Set I
 

LARS Run # Lines Columns
 

Reference run 72053602 (1350,2200) (1350,2250)
 

Overlay run 73070100 (1450,2340) (1650,2700)
 

Distortion coefficients
 

011 -0.05694005 	 c21 = -0.02044661 

012 = 0.01516939 	 = -0.08017300c2 2 


c13 = 0.00001908 	 c23 = -0.00000123 

C14 = -0.00000280 	 c24 = 0.00001501
 

Ol5 = -c00000445 	 c25 = 0.00001334 

Set 2
 

LARS Run # Lines Columns
 

Reference run 72053602 (1350,2200) (1350,2250)
 

Overlay run 75009000 (1490,2340) (1425,2325)
 

Distortion coefficients
 

Cil = -0.08289302 = 0.01898512 

C12 = -0.02288279 c22 = -0.11859888 

c13 = 0.00000824 c23 0.00000147 

C14 = -0.00001332 c24 = 0.00003922 

c15 = 0.00003550 	 c25 = -0.00001333 

c2 1 
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This dependence upon r required that an estimate of the image auto­

correlation function be made so that a value of r could be determined.
 

This was carried out by first picking several test sites from the images
 

to be registered. The subimage size chosen for each of these test sites
 

was Ill lines by 311 columns.
 

The next step in estimating the image autocorrelation function re­

quired a preprocessing operation on the images. Since the examples in
 

this section are applications of the analysis in section 4.2, it is
 

necessary that the noise (temporal changes) be white. In Chapter 5 it
 

is experimentally observed that the noise is nonwhite with an exponential
 

autocorrelation function. In this situation it is necessary that the
 

images first be passed through a filter designed to whiten the noise and
 

then these preprocessed images be registered (refer to Figure 3-4).
 

With an exponential autocorrelation function for the temporal changes it
 

is shown in the example in Chapter 3 that a derivative type operator must
 

be applied in'the preprocessing stage. In compliance with this analytical
 

result a gradient operator was applied to each of the images, where,
 
z 2 1/2 

IGradient ij = {(Xi,j+l - Xij-l2 + (Xi+,j - X i-lj) }/ (4-81) 

X. = image sample value at coordinate (ij) 

The autocorrelation function estimate then was made from the gradient
 

images. The following expression was used to estimate the autocorrelation
 

function.
 

RZ,k.. 
k
RN-kN-k(Xi+,j+E x c - X)(Xi, j - R) (4-82) 

N i=l j=l 

= 0, 1, ..., M 

k 0, 1, o..., M 
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where,
 

X = mean of the image
 

X = image sample value at coordinate (ij)
 

2
'N = number of data points in the image 

M maximum sh.ift for the autocorrelation function estimate
 

Figures 4-I through 4-15 contain examples of the resulting auto­

correlationsurfaces and contours of these surfaces. In Figures 4-11a
 

through '4-15a each of the autocorrelatioh surfaces are displcayed, where
 

each number denotes a value of the surface at the correspondi.ng shift
 

position and the (0,,0) lag pos'ition is in ,the center of the d.isp-layed 

surface. The scale for each of the surfaces has been normalized by the
 

factor lO/R
 
'0,0
 

Although Figures 4-11a through 4-15a .present the complete surfaces,
 

the general shape of the surfaces is better ilustrated 'by the contour
 

plots in Figures 4-1lb through 4-15b. In these figures, contours at
 
Ro~o-1, -'2 

eves Ro,,O, e ., and Rooe are displayed. In this way it is a 

straightforward procedure to determine whether the surfaces a&e of 

exponential form, and if so, what isthe characteristic length., r. If
 

the contours are equally spaced, then -the surface i's exponential and
 

the characteristic length is the distance between the contours. From
 

these figures ,t is seen that an exponential model for the autocorrelation
 

surface is a reasonable model wi'th a characteristic length ranging
 

between l and 3.
 

Us'ing this range of r and the curves presented- in Figures 4-10a and
 

:4-10b, the range for 2T yielding the maximum SNR is,
 

40 < 2T < 110 for distortion coefficient set I 

http:correspondi.ng
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magnitude of the gradient of the image.
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AUTOCORRELATION IUNCTION ESTIMATE
 

-100000001D0-1-10122233 333333320000-1
 

-1 0 0 0-1-1-1 0 100-l0ot1 12 34 3 33344 322 0 02 00
 

0000-1-1-1. 0O00001245432345322210 -1-I
 

100 C--I-I 000000134544 3334332100-10
0 


0 0 -1 -2 -2 -1 -lI 0 0 0 0 1 0 1 2 3 5 5 5 4 4 4 4 3 3 2 1 1 0 0 0 0 -I
 

0 0-1-2-3-2- 00011113456666653321000u -I
 

u-I-I-2-2-2-1 0 J0 02-3445689875A432 100000
 

0-1-2-200- 012456689109754432100000 0
 

-1-1-I 00-100-Il 346899101088654342100100
 
000000-,1-111-14569101110981 54232210O00
 

0 0 0 0 L 0 0 0 0 3 2 4 71 10101213121110 7 6 5 3 1 1 2 1 1 0 0 0
 

1 1 1 2 2 1 0 0 1 1 3 6 81012 13 15 15 14 310 9 7 5 2 0 0 0 1 0 U 0 0
 

2 2 3 2 2 2 1 3 1 3 4 7 1012 14 17191917 13 11 9 7 5 2 0 0 0 0 1 0 0 0
 

3 3 2 3 3 3 2. 2 1 3 5 9 II I5182327261914 12 10 7 4 2 0 0 0 0 0 0 0 0
 

22 3 4 3 2 1 2 2 35 9 121623 13734 24 1713 10 7 4 2 1 00 1 0 0 0 0
 

1 3 3 3 3 2 2 2 2 2 5 9 13 19 29 46 57 49 29 19 14 11 7 4 1 1 0 1 2 2 1 1 0
 

2 2 2 2 2 1 t 1- 2 3 7 10 14 20'30 60100 60 30 20 14 10 7 3 2 1 1 1 2 2 2 2 2
 

0 1 1 2 2 1 0 1 1 A 7 11 14 19 29 49 57 46 29 19 13 9 5 2 2 2 2 2 3 3 3 3 I
 

0 0 00 1 0 0 1 2 4 7 10 13 17 24 34 37 31 23 16 12 9 5 3 2 2 1 2 3 4 3 2 2
 

3 0 0 0 0 0 0 0 2 4 7 10 12 14 19 26 27 23 18 15 11 9 5 3 3 2 2 3 3 3 2 3 3
 

0 0 0 1 0 0 0 0 2 5 7 9 Ii 13 17 19 19 17 14 12 10 7 4 3 I 1 1 2 2 2 3 2 2
 
0 0 0 0 1 0 0 0 2 5 7 9 30 13 14 1S 15 13 1230 8 6 3 1 1 0 0 1 2 2 1 1 1
 

0 0 0 1 1 2 1 1 3 5 6 7 10 12 13 12 101010 7 2 0 0 0 0 0 1 0 0 0 0
 

0 0 0 t 2 2 3 2 34 5 7 8 9101110 9 9 8 5 4 i-11-1 0 0 0 0 00
 

00100124 34568 81010 9986431-100-10 0-1-1--1
 

000000 2 34 457 910 9866 5 42 100 0-1 '0 0-2-2-1 0
 
0000001't2344518986 54" 43 20001-2 -2 -2 -3-10
 

-1 0 0 0 0 0 1 2 3 3 5 6 6 6 6 6 5 4 3 1 1 I 1 0 0 0-1-2-3-2-1 0 0
 
-1000011233444555321010000-1--2--100I
 
00 - 001 23 43334 4 5 4 3100000001 0 -11 000 1
 

-- 10 0 1 2 '2 2 3 5 4 3 2 3 4 5 4 2 1 0 0 0 0 0 1 0-1-1-1 0 0 0 0
 

00 o 02234 433333 21 1 0 0 10-1-1-1000-1
 

-10000233 33333322210--1 0030000 0 00 -1 

NORMALIZED SCALE ACTUAL VALUE SHIFI POSIIION (LINE,COLUMN)
 

MAXIMUM 100 74.923 1 0, 0)
Al
 
MINIHUM - -0.801 I 11 12)
 

SCALE CONVERSION - I UNIT NORMALIZED SCALE - '.249 UNITS ACTUAL SCALE
 

0 ON NORMALIZEU SCALE = 0 ON ACTJAL SCALE
 

Original Imagery
 

LARS Run # Channel Spectral Band Area
 

72053626 .8 0.8 - 1.1 pm Line(l0h,216),Column(304,416)
 

Figure .4-13a. Autocorrelation surface for the magnitude
 
of the gradient of the image.
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AUTCCURRELAIIUN FUNCIION ESIIMATE
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Figure '4-14a. 	Autocorrelation surface for the magnitude
 
of the gradient of the image.
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AUTOCORRtLATIUN f-UCIO(N tSTItATL
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Figure 4-15a. 	Autocorrelation surface for the magnitude
 
of the gradient of the image.
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and,
 

30 < 2Ts 70 for distortion coefficient set 2 

Therefore, it is possible to choose an optimum integration area size for 

the registration processor based upon the distortion model and image 

autocorrelation function characteristics observed for actual satellite 

images.
 

4.6. Conclusion
 

In the situation where relative spatial distortions exist between
 

images to be registered, expressions have been derived for estimating
 

the loss in the output signal-to-noise ratio due to these spatial distor­

tions0 These results are in terms of a reduction factor (eqs. (4-18) and
 

(4-41)) applied to the SNR had the spatial distortions not been present.
 

For distortions that are increasing with image size (eqs. (4-14) and
 

(4-45)) there is a finite integration area that yields the maximum SNR.
 

Determination of this integration area may be found by evaluating ex­

pressions (4-12)-and (4-39) with an appropriate model of the distortions.
 

This evaluation is a straightforward procedure which may be accomplished
 

by numerical integration methods as is shown in section 4.5. This is
 

performed for both general linear distortions such as a scale change or
 

rotation, plus two distortion models for LANDSAT I images. These latter
 

6xamples illustrate the direct application of this analysis to practical
 

image- registration.
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CHAPTER 5
 

TEMPORAL CHANGE PROPERTIES
 

In one important application of image registration, one would like
 

to match spatially as close as possible two temporally differing images
 

of the same scene-so that they may be compared on a point by point basis.
 

Assuming that there are no relative spatial distortions between the images,
 

the registration process reduces to finding the relative translation between
 

the images. However, since the images have been taken at different times,
 

one can expect that changes in the scene have occurred, so that the two
 

images will vary in the intensity levels as well as their relative trans­

lation. This variation in intensity levels contributes significantly to
 

the uncertainty-in -finding the relative translation.
 

In the development of a registration processor, these changes have
 

been modeled as additive noise. One image is assumed to be the signal
 

and the second image the signal plus noise (temporal changes)0
 

Several approaches to the image registration problem have utilized
 

statistical parameter estimation theory, where the parameters to be esti­

mated are the translations along the respective coordinate axes (Chapter
 

2). A central part of this type of analysis is that one be able to
 

characterize the noise properties, where the properties in question are
 

determined by the particular approach that is taken. This is illustrated
 

in Chapter 2 where an expression for the variance of the error of the
 

registration processor is derived. Two lines of approach are presented,
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both of whose validiy. depends upon certain assumptions. The first 

method.requ.ires knowledge of,he probability density function of the 

noise and thesecond assumes that the autocorrelation function or spectral 

density of the noise is known. 

These requirements prompted the development of a model of the temporal
 

changecharacteri~sticso The particulpr properties of concern.are those
 

that have beenencountered in the analysis and development of a registra­

tion processor. These are the probability density function and- the auto­

corre lati.on or spectral density function of the noise.
 

5.1. Probability Density Function of the Temporal Changes 

.The-first analysis is that of the probabilit'y density function of 

the poise. Since the noise is defined as being the additive change that 

has occurred between registered images, this investigation necessitated 

the regist ation of a.series of images and then-a subtracti.on of the 

image pairs to generate the difference image,,or addi-tive noise, for each 

time pair. -Test sites for this .study.were chosen from LANDSAT imagery 

over .Kansas, Montana, Missouri, and Indiana, and are tabulated-in Table 

5-]. These.particular test sites were picked because multitemporal 

imagery that had been previously registered (-35] was readily available. 

The probability density function of the noise for each test site 

was estimated by generating a histogram of each of the corresponding 

difference images ad then normalizing the-histogram-by dividing by the 

total number of points in the difference image to'obta'in -an approximation
 

to the probability density function.
 

http:subtracti.on
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Table 5-1.. Test sites for temporal change investigation.
 

a. Kansas
 

LARS
 
Run # 73046000 73064000 74024100 74024200
 

Date Data
 
Taken 716/73 8/29/73' 5/26/74 7/1/74
 

Area Lind Column Line Column Line Column Line Column
 
# Center Center Center Center Center Center Centef.Center
 

11' 445" 116' 389 294 393 218 336
 

115 389" 293 392 218 336
 

294 392 218 336
 

116. 570 121 514 300 518 223 462
 

2 121 514 299 518 223 463
 

300 518" 224 462
 
211 4653
 

211 435 216 380 395 383 318 327
 
3216 	 380" 395 384 ,, 317 327 

396 384" 319 327
 

111 1495 120 1440 297 1447 219 1398
 

4 120 1440 	 298 1447 219 1398
 
298 1447 219 1398
 

352 210 358 154 537 157 -459 98
 

5 358 154" 537 157 459 98
 

538 157 459 98
 

100 170 104 113 282 116 206 57
 

6 105 114" 283 116' 208 58
 

284 118 208 .59
 

100 -310 i04 254 282 257' 207 199
 

7 104 254 284 257 207 199
 

284 258* 208 200
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,'Table 5-la, cont.
 

LARS 
Run # 73046000 73064000 74024100 74024200 

Date Data
 
Taken 7/6/73 8/29/73 5/26/74 7/1/74
 

Area Line -Column Line Column Line Column Line Column
 
# Center Center -CenterCenter Center Center Center Center
 

250 170 255 114 434 l17' 356 60
 

8 255 114 434 117 357 57
 

434 118* 357 59
 

250 310 255 255 434 258 357 200
 

9 255 254" 434 257 356 199
 
434 258* 356 200
 

40 360* 407 304 586 308 507 250
 

10 405 304" 	 584 307 505 250
 
584 -368" 505 250
 

400 510- 407 455 587 459- 507 403
 

11 405 454* 	 584 458 505 402
 
584 -'458" 504 401
 

Reference location for corresponding line'and column
 
centers which are tabulated to the right.
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5-lb. Hill County, Montana
 

LARS Run Number 73124700
 

LARS Channel
 
# is 1-4 21-24 17-20 9-12 5-8
 

Date Data
 
Taken 5/5/73 5/23/73 '6/10/73 -7/16/73 8/3/73
 

Area Line Column Line Column Line Column Line Column Line Column
 
# Center Center Center Center Center Center Center Center Center Center
 

110 410 110 410 110 409 109 410 110 410
 

110 410" 110 409 109 410 110 410
 
1 110 410 109 411 110 412
 

110 410 111 410
 

170 130 170 129 170 129 170 128 170 128
 
170 130* 170 130 170 129 170 129
 

2 130 170 130 170 129 170 129 

170 130 170 130
 
415 150 415 150 415 149' 414 149' 415 148
 

415 .150 415 149 415 150 415 148
 

4 415 150 415 150 415 149
 

415 150 415 149
 

Reference location for corresponding line and column
 
centers which are tabulated to the right.
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55-1c. Missouri
 

LARS ,Bun Number 72033804
 

LARS Channel
 
# is 1_-4 5-8 9-12
 

Date Data
 
Taken 9/13/72 8/26/72 10/1/72
 

Area Line Column Line Column Line Column
 
# Center Center Center Center Center Center
 

200 201 	 200
1 '200 200 	 201 

200 200 199- 201
 

201 400
2 200 400* 	 202 399 

200 400* 199 401
 

3 200 600 	 202 599 201 599
 

200 600 "- 199 601
 

4 200 800 	 202 799 200 800 
200 800 199 800 

200 1000 	 201 1000 200 1000
 

'200 1000 200 1000
 

400 200 	 401 199 401 200
6 

400 200 400 200
 

7 400 AoD 	 401 399 400. 400
 

400 400* 400 401
 

8 400 600 	 401 600 400 600 

400 6oo 400 601 

9 400 800. 	 401 800 400 800
9. 	 ,
 

400 800 	 399 '800
 

400 1000 	 4ol. 999 400 999 

400 1000 399. 1000 

600 200 	 601 200 600 600
 

600 200 " 599- 199
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Table 5-1c, cont.
 

LARS Channel
 
# is 1-4 5-8 9-12
 

Date Data
 
Taken 9/13/72 8/26/72 10/1/72
 

Area Line Column Line Column Line Column
 
# Center Center Center Center Center Ceiter
 

12 600 400 	 601 400 600 400
 

600 400" 599 400
 

13 600 600 	 601 599 600 601

13­

600 6oo 599 601
 

14 600 800 	 601 800 600 800
 

600 800 599 800
 

O00 	 100
15 600 1000 	 600 600 


600 1000 600 1000
 

16 800 200* 	 800 200 800 200
 

800 200 800 200
 

17 800 400 	 800 4oo 800 401
 

800 400 800 400
 

18 800 600" 	 800 600 800 601
 

800 600* 799 601
 

19 800 8oo" 	 801 800 799 8OO
 
800 800 799 800
 

20 800 1000 	 801 1000 800 I01
 
800 1000 799 1000
 

Reference location for corresponding line and column
 
centers which are tabulated to the right.
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5-1d. Tipecanoe County, Indiana 

LARS RUA Number 72053603 

LARS Channel 
# is - - L-4 5-8 9-12 

Date Data 
Taken 9/30/72 10/19/72 11/29/72 

Area Line Column Line Column Line Column 
# Center Center Center Center Center Center 

200 2Q0 199 201 199 203 

200 200 200 202 

200 400* 199 401 200 402 
200 400* 200 401 

3 200 600* 200 601 200 602 

200 600 201 600 

4 200 80O 200 801 199 799 

200 8o0 201 801 

5 40 200 399 200 398 201 

400 200 399 200 

6 400 400 400 401 399 401 
400 400 399 400 

7 400 6oo* 400 600 399 600 

400 60O 400 600 

8 400 860 - 400 800 401 800 

400 800" 401 799 

9 6 o0 200 599 200 599 200 

600 200 599 200 

10 60o 400 599 400 599 399 

600 .400 599 399 

11 600 600 600 600 599 599 

600 600 599 599 
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Table 5-1d, cont.
 

LARS Channel
 
# is 1-4 5-8 9-12
 

Date Data
 
Taken 9/30/72 10/19/72 11/29/72
 

Area Line Column Line Column Line Column
 
# Center Center Center Center Center Center
 

12 6oo 800 	 600 800 6oo 799
 
6oo 800 60O 799
 

Reference location for corresponding line and column
 
centers which are tabulated to the right.
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No. of points in the difference 

Pr[Difference image.has valse x] image having value x-
Total no. of points in the 
difference image 

These probability~density,functions were then plotted for a visual com­

parison. For the initial phase of this examination a sample size of Ill 

lines by Ill columns-was chosen for each test site. 

Before examining-the resulti.ng probability density functions, first 

consider some of the types of dens-ity functions that one might-,-expect. 

Referring to Chapter.2"where an expression for the variance oi'the regis­

tration error is derived, the first method of approaching the problem, 

that.is, via a maximum-a poster-ioni estimate of the translation parameters, 

requires-the assumpt-ion that the noise be normally,distributed,. In the 

light of this method.of analysis, a Gaussian distribution would be highly 

desi;rable. 

In previous analsres of multispectral imagery,.-[36,37] an image is 

modeled as being comprised of'different.homogeneous c-lasses, each of 

which ik.-normally dist'ributed.. Thus when cons-idering two temporally 

differing images.,, the difference. image is composed of the change that has 

occurred for each of the different classes. Since each classhas a 

Gaussian distribution, the change for each-class is also normally dis­

tributed This follows f-rum the property,that the difference-o, two 

normally distributed:data sets also has a Gaussian-distributibn-. 

One may formalize. this lina:of reasoning in the following,manner. 

Let D be the entire difference image, andD i be the additive noise for 

the ith class. Since the noi-se fbr'a particular class is Gauss'ian, the 

p'robab i1-ty density function of* D is, 

http:resulti.ng
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)2 

PD.() exp { 2 
T2 I. a 

where,
 

PD.(X PD (x Di)  (5-3)W 

the probability density of the difference image given that one considers
 

only the D.th class. The probability density of the entire difference
 

image is then,
 

PD(X) = p(x) Pr[D] (5-4)
 

which is a weighted sum of Gaussian density functions, where Pr[D.) is the
 

probability of occurrence of the D.th class and,
 

Pr[D.] = 1 (5-5)

I-


Given this fbrmulation, what are reasonable forms for PD(x)? First
 

consider the case where all the D. are identically distributed. Letting,
 

2
 
G = Var[D.] 

= E[D
 

then,
 

p1x)_-L.. -xp)2 

PD W e= 202(ex (5-6)
 

so that D has a Gauss-ian distribution. This simplistic assumption yields
 

a straightforward and compact expression for the difference image density
 

function, however, it is not a reasonable assumption in many instances.
 

In these cases one must retain the weighted expression for pD(x). For
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example, one class may decrea'se in-ref-lectivity over a period of time
 

while a-secondc.las's may ,incre#se -in' Underlying reasons
its, reflectance. 


for this wi-l'd&pend upon the type of imagery that is being cbnsidered.
 

With agricultural data, 'the,classes being different'crop types, one type
 

of crop may reach maturity in a given time period while a second cover
 

type 'Has not changedi i,n appearance.- Another example would be that of
 

different fia:rvdsti'nM--tiIes for di'fferent crops. Or if one is examining
 

a scene containiig a body of water, the changes over the water may be
 

inde6ndent of those over the surrounding land, so that the two classes,
 

wa6ef'and'land, willtl not ne:essari:ly have the same amount of change over
 

the same period of t-ime.
 

This latter'formuleation for the probability density func.i'on more
 

closely coincides-with- experimentdi observation, whre'the density function
 

is mode'i f as a weighited sbm of Gaussian-densi-ty functions. HLti-s
is borne
 

out by exami:nation' 6f the probab'ili-ty- density function estimates-of the
 

generated difference images. In conjunction with the examinatfon of the
 

histogram plots, also consider examp'les of the corresponding difference
 

images. .By observatio of these images one- can obtain,a better feeling
 

for the resulti'ng prbbability density'function estimates. The'particular 

examples given reIreit a cross secti'on df those density func:t-ions en­

counteredo Figures 5-f through,5-5 -contai'n examp'les of the di-fference 

images-and their correspondi-ng prbbability density function estimates. 

Note that they are categorized according td the observed density function 

estimates-. 

Figures 5-1 and 5-2 contain examples of difference images whose
 

probab'ili'ty density functions have a single mode. Referring back to the
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a. Difference Image b. Probability density function
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c. Histogram listing
 

Original Imagery 

LARS Run # Channel Spectral Band Area 

73064000 4 0.8 - 1.1 pm Line(65,175),Column(1385,1495) 

74024100 4 0.8 - 1.1 Pm Line(243,353),Column(1392,1502) 

Figure 5-1. Difference image with single mode
 
probability density function.
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a. Difference Image 	 b. Probability density function
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c. Histogram listing
 

Original Imagery
 

LARS Run # Channel Spectral Band 	 Area
 

73124700 4 0.8 - 1.1 pm Line(55,165),Column(355,465)
 

73124700 20 0.8 - 1.1 pm Line(55,165),Column(354,464)
 

Figure 5-2. 	 Difference image with single mode
 
probability density function.
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a. Difference Image b. Probability density function
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c. Histogram listing
 

Original Imagery
 

LARS Run # Channel Spectral Band Area
 

73064000 4 0.8 - 1.1 pm Line(161,271),Column(325,435)
 

74024200 4 0.8 - 1.1 pm Line(262,372),Column(272,382)
 

Figure 5-3. Difference image with dual mode
 
probability density function.
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a. Difference Image b. Probability density function
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c. Histogram listing
 

Original Imagery
 

LARS Run # Channel Spectral Band Area
 

73064000 4 0.8 - 1.1 Pm Line(350,460),Column(249,359)
 

74024200 4 0.8 - 1.1 pm Line(450,560),Column(195,305)
 

Figure 5-4. Difference image with nondistinct
 
dual mode probability density function.
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a. Difference Image b. Probability density function
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2t 4a: S6 
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-16 50 4 14 

-16 II L2 
IN it 

-1 13 

12933 
Oricn 5 It:1, .46 Ii 
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LARS Run # Channel Spectral Band Area 

72033804 4 0.8 - 1.1 urn Line(545,655) ,Colunn(945, 1055) 

72033804 8 0.8 - 1.1 urn Line(545,655),Column(945,1055) 

Figure 5-5. Difference image with muimodal
 
probability density function.
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equation form for the density function, this indicates that the mean of
 

the noise for each of the classes is the same, i.e.,
 

1 (x - ) 57 

PD(x ) = E Pr[Oi] - exp { 2 

Observe that while the field structure of the scene is visible, there is
 

little differentiability between the fields in terms of the gray level
 

representation of each. It is this non-uniqueness of the gray level in­

tervals for each class that yields the single mode probability density
 

function.
 

Figure 5-3 illustrates the situation where the density function is
 

dual modal. This type of density function is indicated in the difference
 

image by the predominance of essentIally two gray levels, Also note that
 

the difference image contains the field structure of the scene, which
 

supports the hypothesis that the temporal change is somewhat class de­

pendent.
 

Figures 5-4 and 5-5 contain other examples of the types of density
 

functions encountered. A multimodal example is presented in Figure 5-4,
 

and Figure 5-5 illustrates a case inwhich the modes are not separated.
 

Although each of these examples differs in the type of density
 

function observed, they all have a common factor. The basic field struc­

ture of each of the scenes isstill intact in the difference images. The
 

conclusion one may draw from this observation is that the temporal changes
 

are dependent inpart upon the different classes within the scene.
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5.Z.t Autocorrelation Function of the-Temporal Changes 

In the earlier analysis (Chapter 2) it was found that a suitable
 

model of the-autocorrelation function was required in the derivation of
 

a registration processor. Both approaches to the problem necessitated
 

knowledge of this nature0 The probabilistic approach based upon the
 

premise of normally distributed noise inherently requires a model of the
 

autocorrelation'function simply by the functional form of the probability
 

density function.
 

p(( N/21/2 exp {-In TA 1n} (5-8)

N/ AI'l
-(2yr) 

n'- noise; assumed zero mean here
 

A ='autocorrelation function (matrix) of the noise
 

Note that the autocorrelation matrix and autocovariance matrix are the
 

same for zero mean noise.
 

One also comes across the need for an autocorrelation function model
 

while approacing'the registration problem via the second method. The
 

basic design criterion utilized in this approach is that the processor be
 

a linear filter which yields a maximum output at the correct registration
 

position in the absence of noise. In order to obtain the compact expres­

sion for the variance of the registration error, i.e., as the reciprocal
 

of the output-signal-to-noise ratio times the square of the effective
 

bandwidth (Equations 2-46 and 2-47), a particular form for the processing
 

filter was chosri, the matched filter, which maximizes the output signal­

to-noise ratio (Equation 2-36). When one examines the expression for
 

this type of 'fil:ter in the frequency domain, one finds' that it depends
 

upon the reciprodal of the spectral density function of the noise which
 

is determinediuniquely by the autocorrelation function of the noise.
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Therefore, one again finds that knowledge of the.au.tocorrelation function
 

of the noise is essential.
 

Deternrinat'ion of an approximate functional form for the autocorrelation
 

function was carried out by experimentally estimating the autocorrelation
 

functions of the series of difference images which were generated for
 

the probability density function estimates (cf. Table 5-1 for the areas
 

used). :Since-the noise is modeled as being additive, it is just the
 

difference between two registered images0 The following expression was
 

used to estimate the autocorrelation functions0 Note that it is an
 

asymptotically unb'iased estimator.
 

N-Z N-k 
R 2TZ (xij-x)(xi+%j+k-x) (5-9)

N
N, I=1j=i 
 j 

= 0, 1.,o L 

k =0, I, .., K 

Where, 

RX, k = autocorrelation function estimate at shift (tk) 

x. . (i,j) th element of the difference imageI,J
 

x = mean of the difference image
 

L,K = maximum shift along the lines and columns respectively
 

=
N2 number of data samples in-the difference image,
 

The results obtained are best illustrated by viewing several examples
 

of the estimated autocorrelation surfaces. Figures 5-6a throgh 5-11a
 

contain everal different surface estimates. The sample image size chosen
 

is Ill lines by III columns with a maximum shift of 16 lines 6r columns.
 

The amplitude of the surface i's represented on a normalized scale, where
 

zero on the scale corresponds to a value of zero for the autocorrelation
 

function estimate, and the scale iEncrement is 1.0/maxRkI.
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Original Imagery
 

LARS Run # Channel Spectral Band Area
 

73046000 .4 0.8 - 1.1 pm Line(56,166),column(390,500)
 

73064000 4 0.8 - 1.1 pm Line(61,171),Column(334,444)
 

Figure 5-6a. Difference image autocorrelation surface.
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Figure 5-6b. Di'fference image autocorrelation surface contour.
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Figure 5-7a. Difference image autocorrelati6n surface.
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72033804 12 0.8 - 1.1 pm Line(745,855),Column(145,255) 

Figure 5-lIa. Difference image autocorrelation surface.
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Figure 5-lib-. Difference image autocorrelation" surface contour.
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One may now observe the characteristics of the-surfaces0 First note
 

that the surfaces -are smooth and nonincreasing for shifts around the
 

central peak. A violation of this nonincreasing property occurs only
 

for small values of R,k, and may be attributed to the property that the
 

displayed surfaces are only estimates of the actual autocorrelation
 

functions0 Furthermore, by close examination, the surfaces appear to be
 

exponential in nature0 This last observation is best.illustrated by
 

plotting equiamplitude contours for each of the.autocorrelation surface
 

estimates. Figures 5-6b through 5-11b contain such equiamplitude con­

tours for the corresponding surfaces, where the contour levels have
 

been chosen at Ro Rooe-, and Ro o e
-2
 

This particular choice of contours levels in terms of an exponentially
 

decreasing function was prompted by the initial observation that the
 

surfaces seemed to be exponential in form. Confirmation of this expo­

nential property isachieved if the radial increment-of the contours for
 

each surface is a constant0 From examination of these surface contours,
 

it is seen that the radial increments are indeed approximately constant
 

for each surface, so that the noise autocorrelation function is exponen­

tial in nature.
 

Now that one'may reasonably model the autocorrelation surface of the
 

temporal changes as exponential in form, one can use this model for the
 

design of a registration processor. An example of an optimum processor
 

based on an exponential autocorrelation function for the noise was given
 

in Chapter 3, The reason for inclusion of this particular example in
 

the previous chapter is now clear. It was in anticipation of the experi­

mental observations that the example was chosen0 It was presented in
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the context of illustrating the method by which one-solves for the processor
 

based upon the noLse autocorr lation characteristics. However, the example
 

is directly applicable to the practical situation where -an autocorrelation
 

function-of an exponential nature is actually observed.
 

Before applying the technique of the example to the experimentally
 

determinedautocorrelation surfaces, it is necessary to carry out an
 

additional step0 The example presumed the following functional form for
 

the autocorrelation surface.
 

R(T2xTY) = A2e-Il xl - 01TryI (5-10)
 

Note that this requires'the major axes of the correlation surface to co­

incide with the x and y~coordinate axes. Unfortunfately, the experimentally
 

observed surfaces do not comply with this assumption. However, this dis­

crepancy is remedied quite easily by providing a linear spatial trans­

formation to the correlation surface to adjust the major axes so that they
 

are aligned with the x and y coordinate axes, solving for the filter
 

function as is done in the example, and then applying the inverse of the
 

linear spatial transformation to return to the origi-nal coordinate system.
 

Again referring to the example solution (Equations 3-31 to 3-33), one
 

finds that the prewhi;tening operation becomes a derivative type operator.
 

This result suggests that the performance of the registration processor
 

maybe improved by first preprocessing the imagery via a derivative type
 

operator followed by-a -crosscorrdlation operation instead of j.ust cross­

correl-ating the imagery di-rectly. The experimental study discussed in
 

the next chapter supports this hypothesis, where Ft is found that pre­

processi'ng the imagery via a gradient 'type 'operator (whi-ch i:s a derivative
 

operation) does increase the rel:lability of the registration processor.
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CHAPTER 6
 

EXPERIMENTAL INVESTIGATION OF SIMILARITY MEASURES AND
 
PREPROCESSING METHODS USED FOR IMAGE REGISTRATION
 

6.1. Introduction
 

The study described in this chapter is the experimental examination
 

of several different processors designed to overlay digital imagery (a
 

more detailed-discussion of this study is presented in [35]). The
 

impetus for such an investigation was provided by the development of
 

several different registration algorithms that had evolved and been
 

tested independently of one another [ , 2, 3, 8, 9 ,11,30], thus leaving
 

the potential user at a loss to objectively compare the different methods.
 

This study is designed to allay this problem of choice by an experimental
 

comparison of the-basic techniques used in each of these algorithms to
 

spatially match two temporally differing images. The approach taken is
 

to record the performance of each of the techniques over a series of
 

selected test sites where multitemporal imagery was readily accessible.
 

In this way a quantitative measure of the performance of the various
 

algorithms on a comparative basis would-be made available.
 

The images used in this investigation were taken by the LANDSAT I
 

satellite multispectral scanner which operates in four spectral bands:
 

0.5-0.6 pm, 0.6-0.7 um, 0.7-0.8 um, and 0.8-1.1 pm. Orbiting at an
 

altitute of about 600 miles, the recorded data samples have a resolution
 

of approximately 50 meters along the scanner sweep by 80 meters along
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the satellite's path, so thalt a full frame consisting of about 2340 lines
 

by 3240 columns covers an areazof about 100 by 100 miles. Multitemporal
 

coverage of the same area is-accomplished by the orbital path of the
I ­

satelli-te which- cyclically -repeats itself about every 18 days. 

Figures 6-1' through 6-4 contain several examples of multitemporal 

images Over the same.area. The images have been-chosen from the general 

test site areas-used in this investigation and are'typical of those 

utilized for the experimental analys.is. All of these- pictures were 

taken by the LANDSAT I multispectral scanner and are in the 0_.8-1.1 pm 

spectral band. Figure 6-1 shows: two images ,over Tippecanoe County, 

Indiana, which were taken in September and November of 1972. A scene 

from Hill County, Montana over two times during the spring and summer 

seasons is pictured in Figure 6-2. An example of an area over a year's 

span is illustrated in Figure 6-3 where data over western Kansas is 

shown'for July of 1-973 and 19,74. And two temporal differing .data sets 

over Missori' are shown in Figure 6-4. Notice that ih all of the 

examples the areas for each time pair are recognizable as the same, 

however, changes that have occurred are evident., Also observe that the 

spatial scale of both images in each ti'me pair appears to be the same, 

with little relative distortion. This property of the images is derived 

from the stability of the satellite viewing,piatform which incurs minimal 

perturbations in its orbit. Such small fluctuatiois -inscanner-position 

over an area from one time to the next provides the approximate spatial 

congruence between the temporally differing images.-

This investigative comparison experimentally explores the basic 

concepts which underlie these algorithms to provide an objective way of 

judging the performance of the different registration processors. All 

http:analys.is
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9/30/72 11/29/72 

LARS Run # Spectral Band Lines Columns 

72053603 0.8 - 1.1 pm (500,750) (575,825) 

Figure 6-1. LANDSAT I imagery over Tippecanoe County, Indiana.
 

5/5/73 7/16/73 

LARS Run # Spectral Band Lines Columns 

73124700 0.8 - 1.1 pm (110,36o) (110,360) 

Figure 6-2. LANDSAT I imagery over Hill County, Montana.
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LARS Run # 

73046000 

74024200 

7/6/73 

Date Data Taken 

7/6/73 

7/1/74 

Spectral Band 

0.8 - 1.1 pm 

0.8 ­ 1.1 pm 

7/1/74 

Lines 

(175,425) 

(275,525) 

Columns 

(275,525) 

(175.425) 

Figure 6-3. LANDSAT I Imagery over Kansas. 

8/26/73 10/1/72 

LARS Run # Spectral Band Lines Columns 

72033804 0.8 - 1.1 pm (375,625) (475,725) 

Figure 6-4. LANDSAT I imagery over Missouri. 
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of the algorithms operate in the same fundamental manner. With the
 

minimal relative spatial distortions between temporally differing LANDSAT
 

I images, the first assumption made is that no relative spatial distor­

tions exist for small images. Therefore, registration of these small
 

images requires only an estimation of the relative translation between
 

the images. Gi-ven the two images to be overlayed, a search procedure is
 

performed to firjd this relative translation. One image is shifted about
 

over a larger temporally differing image and a measure of the similarity
 

is computed at each shift position. The translation at which this
 

measure indicates the most similarity is designated as the registration
 

position. This is the fundamental procedure utilized in each of the,
 

registration"algorithms, however, the different methods depart from one
 

another in the similarity measure employed and the type of images used.
 

The first part of the study examines the criteria used to measure
 

the similarity between two images. This is an important part of the
 

registration processor since the spatial matching of the imagery requires
 

a quantitative measure of their similarity. Three different similarity
 

measures, which are representative of those used in the algorithms of
 

interest, are evaluated in this investigation. The first is the correla­

tion coefficient which is the measure presently being used in the LARS
 

registration system [1,5]. Second is the sum of the absolute values of
 

differences, the measure utilized in an algorithm which comes under the
 

heading of sequential similarity detection algorithms (SSDA's) [8,9].
 

Finally the correlation function, an unnormalized version of the corre­

lation coefficient is compared. The expressions for each of these
 

measures are contained in Table 6-1. Note the varying complexity of the
 

computational requirements of each. The correlation coefficient requires
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the operations multiplication, division, subtraction, and'addi.tion, while
 

the correlation funct'ibn uses multiplication and addition only. And the
 

sum of the absdlutdifferences requires only subtraction and addition.
 

These coMputatiorfal-reiui-rements are refl-cted inthe amount of opera­

tional time needed'to evaluate each of the measures.
 

Secondly, pi-erocessing of the imagery prior to-the actua:l registra­

tion and'its effkct.on the-overlay results is examined. Several incentives
 

promptedthis-area of investigation. The first is that of improving the
 

gerformahcd df the registration processor,. and the second of reducing the
 

operational time and storage allocation needed to implement the overlay
 

algdrithms.
 

Two'approaches leading to the same type of preprocessing operation
 

hav& been suggested for improving the performance of the registration
 

processo' over that when the original imagery is used. The first line of
 

reasohning concerns the enhancement of the boundaries of an image. In
 

many types, of scenes tIe basic geometrical structure of the scene is
 

contained in t6e bdundaries (e.g.,.agricultural scenes or images contain­

ing roads), Since registration Vs a spatial matching of the images, it
 

inherently uses- the geometric structure. of the scene. Therefore,
 

processing- the images via an algorithm which accentuates this geometrical
 

structure prior to overlaying the images Intuitively suggests that an
 

improvement is possible. One such method of performiing this boundary
 

accentuation is by a gradient type operator. This was the method proposed 

in several registration algorithms implemented by previous investigators 

Ii ]. 

'Andtler approach to the use-of preprocessing for performance improve­

ment 'ispresehted in hapters 2, 3, 5 and Appendix A of this Tihvestigation. 

http:effkct.on
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In Chapter 2 and Appendix A an optimum registration processor is designed
 

utilizing the statistical properties of the temporal changes, which are
 

defined as additive noise in the context of parameter estimation theory.
 

It is shown that use of a matched filter processor both maximizes the
 

output signal-to-noise ratio and minimizes the variance of the registra­

tion error. A method for implementing this type of processor is given in
 

Chapter 3 whereby a preprocessing operation (the prewhitening filter) is
 

used. Therefore, this suggests using a preprocessing operation conforming
 

to that which is part of the matched filter processor. From the temporal
 

image statistical properties observed in Chapter 5 and the example given
 

in Chapter 3,it is shown that this preprocessing operation utilizes a
 

derivative type operator which may be approximated by the gradient
 

operator suggested above.
 

The second type of preprocessing concerns reduction of operational
 

time and storage'al location needed to register two sets of images. This
 

may be achieved-by converting the images to a binary format (having
 

intensity level values of only zero or one). In this way a storage
 

savings is real'ized since each data sample has been converted to one bit
 

of information. Secondly, operational time may be reduced by using
 

logical operations'as opposed to arithmetical operations in the computer.
 

Three types of preprocessing were selected. The first is computing
 

the magnitude:of the gradient of the images (equation 6-1). From a
 

visual standpoint this accentuates the boundaries within the images.
 

Plus, it is a derivative type operator which is the optimum preprocessing
 

operation derived in the example in Chapter 3 for temporal changes with
 

an exponential.autocorrelation function, the model observed for the
 

temporal changes in Chapter 5. The second preprocessing operation is
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thresholding the images at their medians (all values greater than or equal
 

to the median are set equal toaone, and all else set equal to zero).
 

Finally, tKe.magnitude of the gradient of the images is computed and then
 

thresholded at an arbitrary level to be determined experimentally. Again
 

this particular choice was made to approximate the preprocessing methods
 

that had. been proposed and implemented by other investigators.
 

6.2. Similarity Measures'
 

An important decision that must be made in carrying out image regis­

tration is what criterion should be used to evaluate the similarity
 

between two images. That is, what similarity measure should be selected.
 

The similarity measures.being considered can be divided into two general
 

classes. The first class provides a measure on an absolute scale. An
 

example of this is the correlation coefficient which is the similarity
 

measure presently being used in the LARS registration system [1,5]. The
 

values of the correlation coefficient range between plus and minus one.
 

A value of one indicates that the two images are identical or-differ by
 

a positive constant factor about their means. A value of minus one
 

indicates that the two images differ by a negative constant factor about
 

their means. When using the correlation coefficient, the registration
 

position is indicated by the maximum of its absolute value which is
 

computed for each of the possible registration locations. It is necessary
 

to consider the absolute value since it is possible that the temporal
 

changes may cause a shift about the mean of the images which would result
 

in a negative value for the correlation coefficient. Another feature of
 

the corre-lation coefficient is that not only is its scale limited, but
 

its value on that scale gives an indication of how good th6 images are
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Table 6-l.i 	 Equations for the correlation coefficient, correlation
 
function, and sum of absolute values of differences
 
similarity measures.
 

A. Correlation Coefficient, P~k:
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linearly related. Theexpression for the correlation coefficient is
 

given in Table 6-1.
 

The setbond.class. indicates the registration position by a maximum
 

or minimum value at the registration location. Two examples of this are
 

the correlation function, which is an unnormalized version of the correla­

tiob coefficient, and the sum of the absolute-values of the ddfferences
 

between the two'images, the similarity measure used in a registration
 

algorithm which comes under the heading of sequential similarity detection
 

algorithms (SSDA's) [89] The expressions for these similarity measures
 

are-l'isted in Tabl 6-I. For the correlation function, the registration
 

position is indicated by a maximum or minimum value which is computed
 

for each-of the possible overlay locations. For the sum of the absolute
 

differences measure the registration position is indicated by a minimum
 

value. In these examples there is no absolute scale, so that the value
 

of thismaximum or minimum by itself will not give a good indication of
 

how closely the two images match-. The exception to this occurs in the
 

absolute value of the differences case when the two images match
 

perfectlf. However, if the difference between the two images is modeled
 

as additi've noise, a confidence interval can-be established in the
 

absolute value of the difference case by using the resulting minimum
 

value in conjunct-ion with the probability dFstri'bution of the noise [9 l-


The choice that must be made with regard to the similarity,measures
 

is influenced by considerations, such as the following. (I) Hbw,well do
 

the different methods perform? Is there away to <theoretically predict
 

this performance, and if so, what are the. results? Also included in
 

this question iswhether there exists some sort of confidence-measure so
 

that the results may be evaluted quantitatively. (2), What opeira,tions are
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involved for each of the methods, and what are the comparative times
 

needed? (3) If it has been determined that several methods of registra­

tion yield reasonable results with respect to the ability to find the
 

correct registration position, then what are the tradeoffs between the
 

accuracy and the time and number of operations involved? For example,
 

if one method yields the correct registration position in 95% of the
 

attempts but requires twice the operational time as a method which is
 

able to find the correct location 75% of the time, which method should be
 

used? One criterion that is essential for this decision iswhether the
 

occurrence of a false indicated registration position Is known to be
 

false when itappears.
 

For the experimental analysis, test sites were chosen from LANDSAT I
 

imagery over Missouri and Kansas. Tables 6-2 and 6-3 contain listings of
 

the dates the data were taken and the approximate location of the LANDSAT
 

I frame centers for the data. A complete tabulation of these sites is
 

given in [35]. The spectral bands chosen for this analysis were 0.8-1.1
 

pm for the Missouri data and 0.6-0.7 pm for the Kansas images. The sub­

images used to evaluate the registration algorithms were 51 lines by 51
 

columns in size. Typical pictures of these general areas are shown in
 

Figures 6-3 and 6Th.
 

Evaluation of the results is in terms of the percentage of acceptable
 

registrations out of a given number of attempts. The nonacceptable
 

attempts are those where the indicated registration location was known to
 

be false. Such a criterlon clearly requires some a priori knowledge of
 

the relative translation between the images in question. For the Missouri
 

imagery three temporally differing sets of data had been previously regis­

tered to within a few pixels via the LARS registration system [35].
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T-ble'6-2., Test sbte area in Missouri.
 

Approximnate locatijn of framecenter: .Latitude: 3724'N
 

Longi-tude: 88'45'W 

-tARS -Run Number: 72033804 

'Date Corresponding Channels 

Data Taken in Run 72033804 

9/1I3/-72 1-4 

:8,26/72 58 

10/1/72 9-t2 

Tabl.e6-3, Test tsite area in Kansas.
 

Approximate lpcation of frame center: 

LARS Run .# 

.Lai+tude: 

.Longitude: 

37°28'N 

100031'W 

Date 

Data Taken 

73046000 .7/6/73 

73Q64000 8/29/73 

74024100 5/26/74 

7-4624200 7/1/74 

REIPRODUIBILITY OF It" 

OpIINAL PAGE IA PO 
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Therefore, any substantial deviation from this was taken as an unaccept­

able attempt. For the Kansas data this a priori information was supplied
 

by careful visual checking of the imagery.
 

The overall acceptability comparisons are listed in Table 6-4. The
 

results are tabulated for both the original and preprocessed imagery so
 

that a particular similarity measure may be crossreferenced among the
 

different types of images registered. For example, with the correlation
 

coefficient there is a 90% acceptability using the original images, 100%
 

for the magnitude of the gradient of the images, 65% for the images
 

thresholded at their median, and 90% with the magnitude of the gradient
 

of the images thresholded at an appropriate level.
 

Between the -three similarity measures examined, the correlation 

coefficient consistently yielded the highest percentage-of acceptable 

registrations. This is evidenced by the range of percent acceptabilities 

within each column-. For example, when the magnitude of the gradient of 

the images were registered, there was a 100% acceptability for the corre­

lation coefficient measure, 74% with the correlation function, and 92% 

acceptability with the sum of the absolute values of the differences 

measure. Therefore, on a performance-wise basis, these results indicate 

that the correlation coefficient should be chosen as the similarity 

measure.
 

However, the question of the tradeoff between operational time re­

quired and performance must still be examined. Is there a measure which
 

reduced the reliability only slightly while accompanied by a large time
 

savings? Refer -to the percentage acceptable registrations in Table 6-4
 

for the magnitude of the gradient of the imagery. Note that while there
 

was 100% acceptability using the correlation coefficient, there also was
 



Table 6-4. 


Total
 
Similarity Number of 

Measure Attempts
 

Correlation Coefficient 


Correlation Function 


.Sum of Absolute Values.
 
of Differences 


Percent (Number) of Acceptable Registration Attempts
 

Magnitude Threshold'ing Threshoiding the
 
Original of the at the Magnitude of the
 
Imagery Gradient Median Gradient
 

90 66 66 30
 

90% (81) 100% (66) 65% (43) 90% (27)
 

38% (34) 74% (49) 55% (36) 87% (26)
 

69%'(62), 92% (61). 62% (41) 87% (26)
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a 92% performance.with the sum of the absolute difference measure. This
 

result in conjunction with the reduction in the number of computations
 

and thus, time savings achieved, by using this latter measure.(Table 6-1),
 

indicates that in a time-performance evaluation, it might be more advan­

tageous to use the sum of the absolute difference measure as opposed to
 

the correlation coefficient.
 

Overallf the best performance was achieved by the correlation co­

efficient using the magnitude of the gradient of the imagery. Therefore,
 

if percent acceptability is of prime importance, this preliminary com­

parison Indicates that preprocessing the imagery via a gradient type
 

processor enhances the ability to find an acceptable registration position.
 

The next section concerning the effects of preprocessing prior to regis­

tration pursues this observation in more depth.
 

6.3. Preprocessing Methods
 

In the search for an optimum processor for image registration it
 

has been proposed that preprocessing of the data prior to the actual over­

laying procedure may be a step towards the solution of this problem. There
 

are several underlying reasons for this suggestion. First, preprocessing
 

may yield a greater reliability of the system's registration performance.
 

This is supported by the analyses in Chapters 2, 3,5, and Appendix A.
 

In Chapter 2 and Appendix A it is shown that the optimum processor
 

utilizes the statistical properties of the temporal changes. In particular,
 

the optimum processor is a matched filter which requires knowledge of the
 

spectral density function or autocorrelation function of the temporal
 

changes. Chapter 3 presents a method of implementing the optimum pro­

cessor using a preprocessing operation which is analogous to the
 



146 

experimental -nvestigationirn this section. -Therefore, once a model of
 

the autocorrelation functionopf the temporal changes Vs detdrmined, the
 

preprocessing dperat'ion.corresponding to that for the optimum processor
 

may be found. In the eperimental investigation discussed in Chapter 5,
 

the results indicated that an exponentially decayi~g' autocorre'lation
 

funotion is a reasonable mode] for the autocorrelation function of the
 

temporal changes-. When this model is used it is found in thexexample of
 

Chapter -3that a derivative type preprocessing operatfon will yield the
 

optimum processor. Thus, implementation ofa preprocessing operation of
 

this ,form should improve-the registration performance.,
 

Secondly,, the time and operat-ions requ'ired may be substantially re­

duced. An example of this is conversion of the original image into a
 

binary image (data yalues of only 0 or 1) so that logical operations may
 

be employed in the computer instead of arithmetica.l operations.
 

The study undertaken here is an experimental examination of several
 

preprocessing techniques and their effects on image registration. Three
 

basic methods werp .chosen. 'The first method utilizes the magriiitude of
 

the gradient of the imagery given:by,
 

2 1/2
2 + (X- X. 

= {(XI X
Gradient of X. . 

I ,j i+l,j i-1,j i~j+l ' ,j 1 (6-1) 

where X. . is the image intensity-at coordinate (i,j)-. Since the gradient
 

operation Js'a derivative type operation, this method of preprbcessing
 

conforms to'the optimum approach derived using the observed autocorrelation
 

function of the temporal changes of Chapter 5 in the example of Chapter 3.
 

Therefore, based on this analysis, use of the gradient preprocessing opera­

tion should improve the registration processor performance.
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The second method consists of thresholding the imagery at its median
 

(all values greater than or equal to the median are set equal to one, and
 

all else set equal to zero). And the third method computes the magnitude
 

of the gradient of the imagery and then thresholds it at an appropriate
 

level.
 

Typical images resulting from carrying out these preprocessing
 

operations are shown in Figure 6-5. Figure 6-5a is the original image
 

taken by the LANDSAT multispectral scanner over Hill County, Montana.
 

Thresholding the original image at its median results in Figure 6-5b.
 

Note that although the thresholded image contains only two levels (0 and
 

1), it represents the field structure of the scene quite well.
 

The magnitude of the gradient of the image is illustrated in Figure
 

6-5c. Note that boundaries between the fields have been accentuated by
 

the gradient operation. This is the expected result. The gradient is a
 

derivative type operator, so its magnitude at a point increases with the
 

slope at that point. Since the boundaries of the scene indicate an
 

increase in slope, the magnitude of the gradient at the boundaries is
 

large.
 

Figure 6-5d shows the resultant image after the magnitude of the
 

gradient has been computed for the original image and then thresholded
 

at an appropriate level. This is a binary image containing value of
 

only zero and one. Again the basic field structure is represented quite
 

well.
 

LANDSAT imagery over Hill County, Montana, Tippecanoe County,
 

Indiana, and Kansas were used for the analysis. The ready availability
 

of multitemporal data prompted these particular choices. A listing of
 

the dates the data were taken and the approximate location of the LANDSAT
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a. Original LANDSAT I image over b. Original image thresholded
 
Hill County, Montana. at its median.
 

c. 	Magnitude of the gradient d. Magnitude of the gradient that
 
of the original image. has been thresholded at an
 

appropriate level.
 

Original Image
 

LARS 	Run # Date Data Taken Spectral Band Lines Columns 

73124700 5/5/73 0.8 - 1.1 pm (329,451) (80,206) 

Figure 6-5. 	 Examples of images resulting from different
 
preprocessing techniques.
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I frame centers are shown in Tables 6-2, 6-3, 6-5 and 6-6. - For a com­

plete tabulation of the test sites refer to [35]. The actual subimage
 

sizes that were to be registered for these comparisons were 51 lines by
 

51 columns.
 

Again, evaluation of the performance is in terms of the percent of
 

acceptable registration attempts. Like the similarity measure comparisons,
 

visual examination or previous registration to within a few pixels pro­

vided the a priori information for determining the acceptability of an
 

indicated registration position. Also, in order to provide a common
 

basis for comparison, the correlation coefficient was chosen as the
 

similarity measure for all of the attempted registrations.
 

The acceptable-unacceptable attempts are tabulated in Table 6-7.
 

Note that the re~ults have been divided into three sections: (1) the
 

cases where the magnitude of the correlation coefficient (Ipl) for the
 

original imagery is greater than or equal to 0.5, (2) the IpI for the
 

original imagery is less than 0.5, and (3) the overall results. The
 

underlying reason for this-partition is to examine the relative per­

formance for the high correlation cases (IpI > 0.5) and the low correla­

tion cases (Ipl < 0.5) separately, as well as for the overall results.
 

First consider the overall results. Preprocessing the imagery via
 

the magnitude of the gradient yielded the highest percent acceptability
 

with 100%. Also, thresholding the magnitude of the gradient performed
 

very well (97%). The important point to note, aside from the best per­

formance, is that on an overall basis preprocessing of the imagery with
 

a gradient type transformation boosted the performance over that utiliz­

ing the original imagery. This result supports the analysis of Chapters
 

2, 3, 5, and Appendix A where the optimum processor in the presence of
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Tabl-e 6-5. -Test si'te area in Indiana.
 

Approximate locati.ojn of frame. enter: .Latitude 40°20'N
 

-Longi-tude 86021'W
 

LARS' Run-Numbern:: 72053603
 

.Date Corresponding'Channels 
Data'Taken in Run 72053603 

9/30/72 1-4 

1011.9/72 5-8 

1,1/29/72 9-12 

Table,66. Test site area in Hill County,-Montana..
 

.LARS Run Number: 73124700
 

Date CorrespondingcChannels
 
Data Taken in Run 73124700
 

5/5/73 1-4
 

5/23/73 21-24
 

6/10/73 17-20
 

7/1 6/i3 9-11
 

8/3/73 5-8
 



p1 > 0.5 
for 


Original Imagery
 

IPI < 0.5 
for 


Original Imagery
 

Overall 


Table 6-7. Percent (Number) of Acceptable Registration Attempts
 

Thresholding the
 

Magnitude of the Thresholding at Magnitude of the
 
the Median Gradient
Original Imagery Gradient 


Acceptable Total # Acceptable Total # Acceptable Total # Acceptable Total #
 
Attempts Attempts Attempts Attempts Attempts Attempts Attempts Attempts
 

l00% (75) 75 100% (75) 75 96% (72) 75 100% (64) 64
 

65% (37) 57 100% (57) 57 61% (35) 57 89% (25) 28
 

85% (112) 132 100% (132) 132 81i (107) 132 97% (89) 92
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exponentialiy autocorrelated .temporal-changes utilizes a derivative type
 

operator in the preprocessing stage. The analysis is also corroborated
 

for the..other-s'imi]lIrity measures in Table 6-4. Comparison of the per­

centage,of acceptable registrations for the gradient type preprocessors
 

shows a-substantial.improvement in performance over both the original
 

imagery,.and the images.thresholded at their median for eachtdf the
 

simijaritymeasures. This indicates that choice of a preprocessing
 

operation conforming-to that derived via the matched filter (Chapter 3)
 

may indeed.,provide a more,-reliable registration processor.
 

-Several questions may be asked about this observation. Is there
 

any trend to this :ncreased reliabili-ty? Are there any image characteris­

tics which seem to.cortribute to these observations? One answer to these
 

questions is embodiedin.the partitioning 6f the overall resul-ts into
 

the hi.gh-and low correlation.,cases.
 

Examination ,of-the high, correlation instances (I1> 0.5Yfor the 
original data) shows that all of the,preprocessing methods peFformed ex­

ceedingly well with 96%.acceptability for thresholding the data.at its
 

median.and 100% for the rest. 'This indicates that when the oeLginal
 

imagery is highly correlated, any-of the.p'reprocessing methods works
 

equal-ly well. In thi-s.case-noadvantage'is gained performance-wise by
 

preprocessing the imagery pri.or -to-registration.
 

The.most striking -result came-wi-th the low correlation cases (1pI < 

0.5 for the original data).. For-these cases a marked advantagerover
 

.using the original imagery-was obtained by preprocessing the data via a
 

gradien- type processpr. -Use of :the magnitude of the gradietnof the
 

imagery provided a 100% accepta6ility compared with the 65% petformance
 

forwthe qriginal data. Thresholdi:ng the magnitude of the gradi:ent also
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indicated a distinct increase in reliability. These results suggest that
 

a substantial increase in the reliability of the registration processor
 

may be achieved when the original imagery is not highly correlated by
 

preprocessing the imagery prior to registration via an operation con­

forming with the preprocessing operation derived from the matched filter
 

configuration of the registration processor (Chapter 3).
 

Earlier, it was mentioned that a priori information was used to
 

determine the acceptability of indicated registration positions. For
 

imagery that had not been previously registered this took the form of
 

visual examination for an individual test site. Such a procedure is
 

quite time consuming and does not lend itself readily to an automatic
 

mode of operation. However, while attempting the registrations at the
 

selected test sites it was found that relative spatial information could
 

be used for several test sites located in the same general area, or the
 

same test site for over several different times. For example, if several
 

different test sites indicated the same relative translation for regis­

tration, while the registration position of another test site within the
 

same general area indicated a substantially different translation, then
 

this latter registration attempt would be unacceptable. Similar reasoning
 

follows for several time pair registration attempts for a single test
 

site.
 

Another observation which may be made directly from Table 6-2 also
 

suggests a way by which a partial acceptability decision might be made
 

automatically. 
This approach is in terms of an absolute scale confidence
 

measure. Since the value of the correlation coefficient (p) indicates
 

the linearity of the relationship between two images, possibly a range
 

of values for p exists which could be used to determine acceptability.
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This is suggested iln the fi~st line of Table 6-7 where the results when
 

the magnyitude of'the correlatian coefficient is greater than or equal to
 

0.5 for the ori'ginal imagery'are listed. For the original data there is
 

a IOO% acceptability for this range of p. This suggests that the value
 

of the correlation coefficient may be used to help in the determination
 

of the 	acceptability of an' indicated registration position.
 

6.4. 	 Performance of an Operational Algdrithm Whichi'
 

Util'izes Gradient-Type Preprocessing
 

The-observation made in sect-ions 6-2 and 6-3 suggested that an
 

improvement-in thee p'erformance of the reg'istratidn processor could be
 

realized by first preprocessing the images via a.-graient type processor
 

and't thenregistering these.gradient images. It was also, foundithat use 

of'the correlation coefficient as.the similbri'ty measure yielded the 

highest percentage acceptability of the threemeasdres compared. Inde­

pendent of this experimental study, but at'approximately the same time, 

an a-lgorithm desigrfed to-register LANDSAT I images was developed at 

Computer S-ciences Corporation [30]., which utilizes both a grad'ient type 

preprocessihg of the images and'a's'imilarity'measure closely approximat­

ing the correlation coefficient., The availability of this alg9rithm
 

made it possible to,experimentally' observe the extension of the results
 

obta-ined-in the similarity measure- and.preprocessing comparisons to an
 

algorithm designed for-operational image registration..
 

The fundamental'operation'of this algori'thm is the same as: that for
 

the other registration-processors compared in this chapter. the images
 

are assumed to be, spati,'ally congruent thereby reducing the reg~istration
 

operation to that of finding the relat.ive'translation between the images.
 

The translation is found by shifti.ng one image (the,overlay iihage) over
 

http:shifti.ng
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a larger temporally differing second image (the reference image) comput­

ing a value of the similarity measure at each shift position. The shift
 

position at which the similarity measure indicates the best spatial
 

match is taken as the registration position. In this case the images
 

used for registration are the original images from two spectral bands
 

that have been passed through a gradient type processor, thresholded at
 

an appropriate level, and then combined to form a composite image. The
 

similarity measure used is an approximation to the correlation coefficient
 

designed specifically to operate with binary images.
 

The gradient type preprocessing operation is expressed as follows,
 

Xij = i+lj 1i-I,jl + [Il,j+l ij-l1 

+ Ili+ I - lilj+ll + lli+ ,j+l - li- Ij-1l (6-2)
 

where, 

I = original image intensity value at coordinate (ij)
 

X. 	.= intensity value of image sample at position (i,j) after
 
Xij preprocessing
 

After an image has been passed through this gradient type operation it
 

is thresholded at the level which is exceeded by only fifteen percent of
 

the data values. In this way the original image is converted to a
 

binary image having values of only zero and one, with a prescribed per­

centage of points having the value one.
 

These gradient and threshold operations are applied to two spectral
 

bands of each image set. The two binary images from each spectral band
 

then are combined via a logical 'or' operation to produce a single image
 

to be used for the registration, the resulting image containing between
 

15% and 30% values of one. In this fashion it is possible to use
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information from more than one spectral band simultaneously for the
 

overlay processor..
 

The-sirmilarit.y'measure used to determine the relative translation
 

between these preprocessed images is defined as the ratio of number of
 

coincident points between the overlay and reference image having the
 

value of'l divided-by the total number of points having value I in that
 

portion of'the reference image being tested as the registration location.
 

N, N-

V E X.,j Yi+,j+k 

•PN = 
 N
 
z Yi+j,j+k
 

i=l 

Where, 

pN = value of the simila'rity measure at shift (z,k)Nj;k
 

X.Xi;j = value (either 0 or 1) of the overlaj image at coordinate(0,j)
 

YI ,j+k = value (either 0 or-]) of the reference image at coordinate
 

Y(ij , k)
 

N " number of lines and' columns in'the overlay image
 

Once the preprocessing has:been completed, two methods of operation
 

may, be dmployed. The fi-rst approach is to- compute -fully the- value of
 

the similarity measure at all of the shift positions. The second method
 

involves- partial computation of pN; the val'ue of PN'is fully gomputed
 

only if its estimated magnitudeexceeds a certain level. For a:com­

plefe discussion of thi's latter approach refer to-Nack [30] where the
 

algorithm is discussed. Use of this latter method finds its advantage
 

in terms of the time savings achieved by estimati'ng pN rather than com­

puting it full'y at all shift positions.
 

This investigation entailed implementation of'this algorithm over
 

the same test sites. used for the slimilarity measute-and preprocessing
 

REPRODUCIBIJITY OF THE 
ORIGINAL PAGE IS POOR, 
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analysis. Since the primary objective of this section is to relate the
 

overall performance of this registration processor to the results obtain­

ed in the previous two sections, the performance of the processor when
 

PN is fully calculated at all shift positions is discussed here. For a
 

discussion of the results when the estimation procedure was also utilized
 

refer to [35]. 

For a meaningful comparison the size of the test sites and the
 

acceptability-unacceptability criteria remained the same. The test
 

sites chosen covered all of those used for the similarity measure and
 

preprocessing method comparisons. These were from Kansas, Missouri,
 

Indiana, and Montana. The general areas are listed in Tables 6-2, 6-3,
 

6-5, and 6-6, while a complete tabulation of all of the test sites is
 

given in [35]...
 

Since a single method of registering the images was tested, the
 

performance results may be summed up in terms of the percent acceptable
 

registrations out of the total number attempted. The overall tabulation
 

showed that 190 out of 192 registration attempts were successful, which
 

is a 99% success rate. This result is in close agreement with the
 

previous findings of sections 6.2 and 6.3, where preprocessing via a
 

gradient operator followed by use of the correlation coefficient yielded
 

the highest performance (Table 6-4). This high performance rate also
 

corroborates the analysis presented in Chapters 2, 3, 5 and Appendix A,
 

where it is shown that preprocessing via a derivative type operator
 

yields an optimum registration processor.
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APPENDIX A
 

PROOF THAT THE MATCHED FILTER MINIMIZES
 
THE REGISTRATION ERROR VARIANCE
 

In section 2.3 an expression for the variance-of the registration
 

error is derived. The basic design criterion for this method of approach
 

is that the second image (misregistered image plus noise) be passed
 

through a filter whose output is a maximum at the correct registration
 

position in the absence of noise. General relations for the variance
 

are given by equations (2-27) and (2-28) where the variance may be
 

evaluated by inserting a particular filter function. At that point the
 

matched filter was used to evaluate these expressions, which leads to
 

compact formulas for the variance of the registration error along the x
 

and y coordinate axes. In this appendix it is shown that not only does
 

the matched filter provide the maximum output signal-to-noise ratio at
 

the correct registration location and compact expressions for the variance,
 

but it is the optimum filter in the sense that it minimizes the variance
 

of the error.
 

To begin the proof one starts with the general expressions for the
 

variance of the registration error along the coordinate axes, equations
 

(2-27) and (2-28), which are repeated here.
 

" 2 2 2 2
 
(_2(x)= gxyy ny -2g g nn +ggyyx(A)n
2gxyyynynx 


[g g _ g y2
 
xx yy xy
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2 22 2 n2 
(A_ )2= gx nqxx 2 xxy (A-2) 

yyIxy 

Note that these relations are greatly simplified when the term gxy equals
 

zero. In this situati6n the variance expressions become,
 

2­
.2 x, (A- 3)
 

2 = (A-4) 

9'yy 

It is convenient to, determi.ne. the conditions under which the term gxy(XY)
 

does equal zero. Since' g(x,,y) is modeled as a second order polynomial in
 

x and y about the true registration location,, and is a maximum at this
 

position, one may appl.y a linear spatial transformation to the (x,y)
 

coordinate system so that in'the new coordinate system, say (xp,,YI), the
 

term gx, (x,y) wi'll equal zero. O'he may then solve for the filltter which
 

mi'nimizes, the registration. error variance in this new coordinate system.
 

Once this filter is found,, the inverse linear si5atial transformation may
 

be applied to return to the orig.nal' coordinate-system. There-fhre, no
 

generality is lost by'assuming gxy(X,y) equals zero, so that one may begin
 

with expressions (A-3) and (A-4).
 

The equations for the variance may be expressed in their equivalent
 

integral form (equations (2-29),, (2-31), (2r32), and (2-33)),
 

2ff h (c,h) fxx (2,-)dd (A-5) 

http:determi.ne
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(A_)2 =ffff h(a, )h(yg)R (a-yg- dadodydg
 
(A-6)[ff h(a,O) fyy 

yy
(X-ay-$ldad ]2
 

where R(x,y) is the autocorrelation function of the input noise, f(x,y)
 

is the known signal (first image), and subscripts again denote the partial
 

derivatives with respect to the corresponding variables.
 

Given these expressions for the variance, one would like to find the
 
,^ 2 2
- ,^ . 

filter h(x,y) which minimizes (x-x) and (y-y) . For this derivation the 

problem will be broken down into two parts, first the minimization of
 

2 -2 
(x-x) , then of (y-y) 

To begin, first restate the problem in an equivalent form. Minimiza­

tion of (%-_).may be stated in the following equivalent form.
 

Minimize
 

=
I(h) ffff h(a,)h(y,E)Rxx(a-y, -E)dadsdydE (A-7)
 

Subject to
 

J(b) = [ff h(c,B) fxx(X-a,9-)ddB] 2 2 (A-8) 

where K is a constant and I(h) and J(h) are functionals of the filter
 

h(x,y).
 

The method of solution employed will follow that presented by
 

Franks [181. However, before solving the problem several notational con­

ventions that are used must be defined. The first is that of an inner
 

product and the second that of an operator. Given two functions, g(x,y)
 

and h(x,y), the inner product, <s,h>, is defined by,
 

=
<gh> ff g(x,y) h(x,y) dxdy (A-9)
 

and an operator, A(x,y), on a function h(x,y) is defined as,
 

b = ff A(x-a,y-S)h(a,S)dad (A-l0) 
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Note that A h is a functionof the variables x-and y.
 

With these irttegral repcesentations, I(h) and J(h) may be expressed
 

in terms of operations in Hilbert space as
 

I(h) <Rxxh, h> (A-I)
 

J(h) <h,s> 2 (A-12)
 

where,
 

s =(x,y) = fxx(X-X,y-y) (A-13) 

Since.each of the functions, Rxx(X,y), h(x,y), and f(x,y) are,real, and 

I(h) and J(h) are quadratic functionals, it is shown in Franks [18] that 

2

the filter whichminimizes I(h) subject to J(h) = K is the solution to,
 

?l =VI - 1 'J 0 (A-14) 

where XI -isa-Lagrange multiplier and VI and VJ.are the gradient vectors
 

corresppnding to I(ii) and J(h). *These grad'ient vectors may be found from
 

evaluating the diractipnal derivat.ives of I(h) and Jih) which are defined
 

as follows,
 
Iim I(b +sd) - t(h) 

u 1(h) = e .0 = <Vl,u> (A-15) 

lim J(h +gu) - J(h) 
SJ(h) = e , 0 = <VJ,u> (A-16) 

where,
 

Du(h) =directional.derivative of l(h) with respet to u
 

DuJ(h) = directional derivative of J(h) wi.th respect to u
 

and u is an arbitrary function wi-th the proper.ty that,
 

<u,u>= ffu 2 (x,y)dxdy 1 (A-17)
 

Substitution o.f equations (A-11) ,and (A-12) into (A-15) and (A-16), and
 

http:proper.ty
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using the inner product properties for real functions g(x,y), h(x,y) and
 

A(x,y), with A(x,y) an even function,
 

<gh> =<h,2> (A-18)
 

<A S,. = <A h,2> (A-19) 

yields,
 

<VI, u> = <2 Rxxh, u> (A-20) 

<VJ, u> = <2 <h,s>s, u> (A-2I) 

or equivalently, 

<VI, u> (2 R xxh, U) (A-22) 

<VJ, u> (2K s, u) (A-23) 

since <h,s> K
 

From these expressions one obtains the gradient vectors,
 

VI = 2 R h (A-24) 

VJ = 2 Kl s (A-25) 

Then from equation (A-14), one must solve, 

2 R h XI2K s=O (A-26) 

Rewriting this in integral form, 

2 ff Rxx (x-a,y-)h(,s)dadg - 2X IK1 fxxx-xy-y) = (A-27) 

so that, 

ff Rxx(X-,y-)h(a,)da XIKI fxx(X<-X'Y) 

The solution to this equation is found by taking the Fourier transform of 

both sides. 
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ffff Rxx(X-a,y-)'h(a, )e-J2r(ux+vY)daddxdy
 

AlK 1 ffrxx-xy-;j21(uxvy)dxdy (A-28)
 

Which becomes,
 

22 S4r2u2X 1KIF*(u,v)e J2(xu+yv) (A-29)
 

where,
 

Sm(u,v) = Fourier transform of R(x,y)
 
H(u,v) = FourMer transform of h(x,y)
 

F(u,v) = Fourier transform of f(x,y)
 

Rearranging this expression in terms of the filter-, H(u,v), one obtains,
 

X1K F*(uv)F*(uv)eJ21(xu+v) (A-30)
S vm(UV)
 

which is -the definition of the matched filter multiplied by an arbitrary
 

constant factor, X K Thus, the filter which minimizes the variance
 

along the x-axis is the matched filter.
 

a-,2
 
Alternatively, minimization of (y-y) may be 'done in the same manner 

where the-problem is equivalently stated as., 

Minimize 

nny ffff h(c,S)h'(y, )Ryy (a-y,s-)dadadydgyy (A-31)
 

Subject to 

2 = f ~,) a 2 2
9yy = [ff h(,fyy)dd] K, a constant (A-32)
 

Since the problem is now in terms analogous to the minimizati'on of
 

( , 
one may follow the same s'teps which, result in the foll'bwing
 

solution for H(u,v).
 



F'u -j2 r(Xu±Yv)

H~u~= 222 Sm(U,V )( u v
H(uv) K , v 2 V (A-33)
 

where X2 is the corresponding Lagrange multiplier0 Therefore, the filter
 

which minimizes (y-y) is the matched filter.
 

Since the constants K and K2 are arbitrary, one may choose K, and 

K2 such that XI K 1 1 = A2K2. Thus (x-x) and (9-) are minimized 

simultaneously by using, 

H (* v)-j2(u+yv),(u

H~u,v) u (u'v4)
 

which is the matched filter. Therefore, use of the matched filter not
 

only maximizes the output signal-to-noise ratio at the correct registra­

tion location and yields compact expressions for the variance, but it
 

also minimizes the variance of the registration error0
 


