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ABSTRACT

The dirgatal computer has become an important tool in the on-line
optimal control of large systems. Because computers are discrete-time
in nature, 1t 1S necessary to select an interval of discretization when
controlling a continuous—-time system; this aintroduces another parameter
over which to optimize.

In this thesis, we discuss how the characteristics of a particular
computer, such as multiplication time, will determine the range of
choice for this parameter, and how such a choice will affect system per-
formance. We also discuss how a suboptimal control, involving less
computation, will allow us to control the system at more frequent inter-
vals and thus, in some cases, lead to better results than :1f we used the
usual optimal control.

We begin by making a formal statement of the optimal control prob-
lem which includes the interval of discretization as an optimization
parameter, and extend this to include selection of a control algorithm
as part of the optimization procedure. We show how the performance of
the scalar linear system depends on the discretization interval. We go
on to develop discrete-time versions of the output feedback regulator
and an optimal compensator, and use these results in presenting an
example of a system for which fast partial-state feedback control better
minimizes a quadratic cost than either a full-state feedback control or
a compensator.
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Chapter T

Introduction

1.1 Motivation

The digital computer has become an essential tool in the solution
of practical optimal control problems. Even "simple" lower—order sys-—
tems regquire an inordinate amount of computation (such as in the solu-
tions of the Riccati and Kalman Filter equations in [1] and [4]) in
order to achieve the optimal trajectory. For a large-scale system, the
problems are even greater. In particular, it may be desirable to use
the computer "on-line" to control the system, that 1s, to include the
computer in the feedback loop 1tself,

Naturally, an arrangement of this kind gives rise to new problems
and limitations, stemming directly from the special nature of the com-
puter 1tself. For example, let us consider the deterministic- linear

regulator problem [3]1, in which the system is described by the equations

x(6) = E(B)x(t) + G(t)ult) (1.1)

ylt) = HE)x(E), (1.2)

in which we wish to determine

u(t) = gly(t)) (1.3)

in order to minimize a given functional J(x(-), tO' tl)’ where [to, tl]

represents some interval of time. Often, the functional form of g{-)



in {1.3) w2ll also be restricted. In any case, the state x(t) of the
system will have a constantly changing value, and consequently, so will
the optimal control w*(t). This cannot be reconciled with the discrete-
time nature of the.computer; the machine can in no.way continuously
monitor the output y(t), nor can 1t continuously change the anput.

The usual solution to this problem 1s to sample the plant output
at a certain select interval A of time, and similarly, calculate ;
control at intervals, using an external device to hold the actual input
constant over each period of time. This i1s 1llustrated in Figure 1.

In a sense, what we need to do i1s construct a discrete-time

system

L =__t?_(k)§k +_I‘-_&_(k)gk (1.4)

¥, = Cx (1.5)

for which the behavior of X, 1s 1n some sense "close" to the behavior
of x(t) when the value of x_1s compared directly with that of x(kA).
A system in which the states of (1.1) and (1.5) are equal at these
points 1s in fact determined by Levis [10].

aIt should not be surprising, though, that the selection of the
sampling interval A will affect the performance of our on-line control,

This thesis will discuss ways in which the best choice for A depends on

the characteristics of the computer facility upon which the contrel is

implemented, and how this dependence in turn affects the choice of a

-control algorithm,



u(kA) | SAMPLE 1 y(1) SYSTEM | ¥(1) y(kA)
HOLD
e | COMPUTER |7k
FACILITY
Fig.1 Inclusion of the Computer in the Feedback Loop



1.2 Qptimization on the Digital Computer

When an optamal control for a discrete-time system is determined
on-iine by a computer, there is a certain computation time associated
with the calculation of each step. Thus a certain minimal interval of
discretization can be associated with a given control algoraithm. For
exXample, suppose a computer takes T seconds to perform any simple compu-
tation (like multiplication), and for a particular algorithm, n simple
computations are needed to compute the optimal control. If we use A to
symbolize the interval of discretization for a discrete-time model,
then for the aforementioned algorithm, the mrnimum A that 1s physically
possible 1s A, = nT seconds. If we denote the control algorithm

min

as 1, the possible range for A 1s [A ®),

min (1}’
For the remasinder of this work, we will restract our attention to~
time-invariant” systems, and consider only steady-state controls. This
gives us the advantage of being able to associate with each algorithm
a very simple parameter set. For example, in such a case, the feedback
matrix given by the familiar Riccatil eguation becomes an algebraic
equation with a constant matrix solution, rather than one that 1s a
function of time.
Let us state this in a precise manner. Henceforth, for conven-
ience, we will no longer underline vectors and matrices. The reader
should assume all upper case Greek and Roman letters to be matrices and

all lower case letters to be vectors, except for units of time (such

as A or t), indices (1, 3j, k), or where otherwise specified.



We will consider deterministic systems of the form

x(t)

n

fF(x{t), ult), t) {1L.6)

L]

y(t) = hix(t), ) (r 7

a feedback control algorithm 1 will be of the form
u(t) = g (z(t ) K), (1.8)

for tk L£t< tk+l' where A = tk+1 - tk, K 15 the set of constant para-
meters that we are to optimize over in the control law, and z(tk} i1s
the information that may be cbtained from y(t), for t b

Now let CQ be an i1ndex set of control laws. We can characterize
the usual optimization problem [10] as follows. If we are given

i€ dﬂ, and a particular A £ [A ®}, find the K that minimizes

min(1)’
a given cost functional J(1, A, R), where K 1s a parameter set as
mentioned above.

Using this format to state the problem suggests a generalization
that will be the crux of this thesis. In the case of the linear system
with quadratic cost, where the control 1s based on a full state obser-
vation, and is a linear feedback law, Levis [10] has raised the guestion
of how to determine the optimal interval of discretization for a given
control algorithm. He has pointed out that for some systems, costs
do not decrease monotonically as A decreases (see Chapter II for a
further discussion); an fact, he was unable to determine the optimal A

for the problem he considered. Let us state this guestion as follows:

suppose we are able to minimize J(1, A, K) by finding a suitable K = K*,
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as in the problem just mentioned; since this is for a particular 1 and 4,
let us then say that K* = K*{1, A). In other words, for a given i and
A, there 1s a "best" K, X*¥(2, A). Then for a given 1 e:tﬂ , we wish to

find the A & [A @)  that minimizes

man{1) "

J{1, A, K¥(1, A)). {1.9)

Now since A 1s certainly a function of 1 alone (for a

mart (1)

given computer), the A that minimizes equation (1.9) 1is also a function

of 1, that 1s, A = Af {as we shall see 1in Chapter II, 1t 1s not

(1)

always true that A ). Then the crucial question becomes:

£(1) Amln(l)
what is the control algorithm 1 that minimizes the cost? In other words,

find the 1 € JL that minimizes

r K*(2, A 1. (1.10)

J{z, £(2)

A
£(1)

At this time, there does not appear to be a neat general approach to the

solution of thas problem. The purpose of this work is to provide an

mmpetus and suggest a start for investigation along this line.

1.3 The Scope of this Work

Because this area is extremely broad, too broad, in fact, to
develop a unified theory, we will be content in this document mainly
to 1llustrate some of the points mentioned in the previcus subsections.
In Chapter II, we will discuss the selection of the optimal sampling
rate for a full-state feedback law, and present, as an example, a

simple class of systems for which the optamal A can be solved for
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explicitly. 1In Chapters III and IV, we will derive the sampled-data
versicns of two alternative control laws, expressing each as a function
of the sampling rate A. In particular, Chapter III will deal with
partial-state linear feedback controls, while Chapter IV will garve
results on cptimal reduced-order compensators. In Chapter V, we will
glive a specific example of a system for which, due to our greater freedom
of choice i1n selecting A that results from computational considerations,
we actually are able to decrease a system cost by choosing a "suboptimal”

control algorithm over an "optimal" one.



Chapter TI

Oh Choosing the Optimal A for a Given Algorxthm-

The Scalar Case

For a gaiven control algorithm, 1t 1s clear that the continuous
controller (i.e., A - 0) will minimize the system cost better than any
particular discrete-time controller, Thus 1t might appear that the
problem of selecting an optimrzing A for a computer control is trivial,
that the best choice 15 A = Am;n' As Ievis [10] has shown, this may

not always be the case. For the second order system

q 0 1 0
3T () = x(t) + u(t), (2.1)
-1 © 1

which 1s completely controllable, sampling rates with periods that are
multiples of T lead te mncontrellable discrete fime .systems, while .all
other sampling rates lead to controllable systems. Thus, plotting J*
as a function of A would give something like Figure 2.

Even for such a system, decreasing the sampling period will

sometimes give improved results. It i1s true that

J*{continuous time} = lim ainf J*(A), {(2.2)

that 1s, for any A > 0, there exists a Al < A such that J*(A;) < J*(A).
A
In particular, 1f n 15 a positive integer, then J*(;ﬁ_j_J*(A), sance

the control which optimizes the system for A is also available when

-12-
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Not all systems .are as 1ll~behaved as that of Figure 2. For
‘the scalar case, that i1s, the system in which u € R and x Eﬂz : wWe
can actually determine the interval of discretization A which minimizes
Jd. If J*(Al) 1s the minimal value of J for a given A = Al, then we

can show that-

3J* (A)
== el s "
SA 0. (2.3)
Thus, the optimal value of A as Amln' Since in this case, the ‘feedback
matrix 1s a scalar, our online computation inveolves .only one multipla-
cation. Thus, A ="T_, where T, 1s the time needed for a single

min M M

multipiication.

We discretize the .system

f—% x(£) =.ax(t) + bu(t), x(0) =.x., (2.4)

with cost functional

T
J = 1im % f (qx2 + ruz)dt, (2.5)
T > w 4]

where g, r > 0, according to the solution of Levis [10]. For a given A,

holding u constant over each interval, J in (2.5) becomes

N-1
J = lim %-:z: [(x(kA))zg + 2x(kA)Mu{kd) + (u(kA))zR]f
N = « k=0 (2 .6)

where Q, M and R are scalars as follows:

A
Q = f 22t gat = %; e® 4+ 1y e® - 1 (2.7
(8]



where

and

~]5~

o
il

A t as 2
f ir + glb f e ds) ldt
0 0

2 2 2
an(EEAE, 4 SBo (2 3) (o - 1)

a Za

The state eguation becomes

Xeey T 0% F Dy

]
I

A
f o(t,00bat = 2 (22 1y,
0 a

Now 1n steady state, the Riccati equation becomes

0 = _ﬁz[q, - P.bilzpz + (b - D—M-)z(R + Dzﬁ)ﬁ
R R

A 2 ~

KR + D°R) + (Q - 39 (R + DR),

!

which simplifies to

If

then

0= -D2ﬁ2+ ((¢2—1)R - 2DMé + QDz)Iz + (OR - Mz) .
B = (§2~1)R ~ 20Mp + oD2,

(2.9)

(2.10)

{2.11)

(2.12)

(2.13)

(2.14)

{2.15)
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2 (42-1)R - 2DMb + OD° +f§2 + AD2QR ~ 4M°D°
2p° ~ap®
Now
A 2
B _ _(¢-1)rR _Mp . Q
2 2 3 2]
2D 21)_2_ ( ¢—1)2
a
_22@H)R _ _ba(¢-1% |, g(d-1)
2b2(qb-l) 2a° g— (p-1) 4a
2. .2 2
_ (¢+1) {ra®+gb’ (ah) + g(é+l) ($=3)  g(d™-24+1)
(¢-1) 2ab2 da 4da

2 2
— {d+1) (ra +gb ) (ad) - %

($-1) 2ab2

If we denote

the second term in (2.16} by Vﬁf, then

2 2. 2.2 2 2. .2
T o= (¢H—l)2 (ra +gp ) (aA)z N 35 _ q{¢+1;(;A)(ra +gb”)
(p~1) 2ab a a"b” {¢-1)
2 2 2, 2
9 a2 5y L28) (ra+gb™) | gTh" 2 _ _
. 2a(¢ 1} =3 + s (d°=-1) ($-3) (¢-1)
2
b 2
= (¢-1)
a
2 2
24 ¢-n*
_ 4a
2
b 2
=3 (¢-1)
a
. (ra +ab ) (¢+1)2 (aA)z + gi _ qua2+qb2)(¢+l)(aﬂ)
2ab° (-1)° a? a’b? (¢-1)

(2.18)

(2.17)
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+ q(ra2+q_b2 (p+1) (ah) + q2 (¢+1) (¢-3) + q2(¢-l)2

2b%a’ (p-1} 4a° aa?

- (ra2+qb2)2 (¢+l)2 (aA)2 _ q(ra2+qb2) ($+1) (ad)

. (2.18)
2ab2 | (9-1)° 28262 (¢-1)
Note that
(ad) >
g-l_eaAl _ (Ltald+ === 4 L) -l=1+—-—+ (aA)2+
ah ah - ah 21t 31 o
{(2.19)
which 15 1 when adA = 0. Thus,
2 2
1im ® = ra2+gb2 _ 9. j ra‘2+2gb2 _ g(r;. Zgbz)
A>0 ab> & ab a‘b
ra ., r a2 g
===+ = |—+ (2.20)
b b b2 r
which 1s the continuous time solution derived in [1].
Now 1t 1s well known that
3* () = = % (0)K. (2.21)
It 1s straightforward to show (see Appendix A} that
0K
— 2.22
5 0 (2.22)
and so, by (2.21),
*
97X A) » 0 (2.23)

b
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for all A > 0.

We have shown, then, that for the scalar system described in

egquations (2.4) and (2.5), the optimizing A is Amln‘ Since the feed-

bhack control law 1s cof the form
u = -kx, {2.24)

Amln 1s just the time a controlling computer needs for a simple multi-

plication, Ty In other words, A = TM'



Chapter III

The Discrete Time Ouitput Regqulator

In order to optimize a cost functional over a class of control
algorithms, as discussed in Chapter I, it 1s, of course, necessary to
develop the appropriate set of algoraithms. The most basic such control
that comes to mind 1s the linear, full-state cbservation, sampled-data

control developed by Levis [10]. His solution 1s to control the system

x(t) = Ax(t) + Bult): x(t,) = %, (3.1)
in order to minimize the functional
o0
J =f (x'0x + u'Rudt (3.2)
o]
by approximating (3.1) by a discrete-time system of the form
Xppl = @xk + Duk {3.3)
u, = -Gx (3.4)
with cost functional
(=]
= 1 1 1
) Z (lexl + wRu -+ 2leul) (3.5)

1=0

where ul u(1d) and x, = x(1A) for a given A, and where the parameters

¢, D, 0, R and M are given as follows

o = eAA . (3.6)
A

D=f eAtht (3.7)
0

-19-
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A
0= & Foeltet (3.8)
0
A At £
R = RA + B' f {J et sds]A[f MSastae-B (3.9)
o o 0
Aot
M =f P tg[f %asiBat. (3.10)
0 0

Levis found that the optimal value for G is given by

1

G-= R IM' + (R + D'KD) 1D'R(® - DR M') (3.11)

where

K = iim X, (3.12)

k +r

1s the steady-state solution of

_ - -1 T - ' -1 %
K = [ - DR M) (K41 Ky PRADIR . D) DK 4]
[& - DR-IM'] + [0 - MR™IM'] (3.13)
with boundary condition
Kg = 0- (3.14)

The cost in thais case 1is %-xO'KxO.

Now 1f u eR™ and x £ R n' and TM and TA are the times needed
“for a computer to perform an elementary multiplication and addition,
respectively, then the minimum online time needed to perform the vector
multiplication G-xl is mnTM + m(n-l)TA, which 13 approximately mnTM
1f TM >> TA (we are assuming, of course, that all of the elements of G
are non-zero - as they would usually be). Thus the minimum interval

of discretization is A = mnT_.
min M

Let us consider the controllable 2Z-dimensional system



=-21-

. -1 & 0
x(t) = x(t) + u{t). {3.15)
0 1 1

We might suspect that 1f € 13 sufficiently small, the behavior of thas

system would resemble that of

. -1 0 0
x(t) = x(t) + u(t) (3.16)
0o 1 1

whaich is uncontrollable, but which can be stabilized. If we define

xl(t)
X(t) = ’ (3-17)
xz(t)

then 1n system (3.16), x. will decay to zero regardless of input, while

1
x, will behave lake the scalar system

ézct) = x,(£) + u(e), (3.18)

and, as was shown in Chapter II, a decreasing A will result in a mono-
tonically decreasing cost associated with xz(t). Thus, the optimal

lineax control for (3.16} will be of the form
u =k x,(), (3.19)

and the optimal A 1s A = Amln' In the case of system (3.15), for a
given A, the optimal contreol will involve two multiplications; as we
shall prove an Chapter V, however, a better result can be cbtained by
implementing the one-multiplication law of (3.19), 1f £ 1s sufficiently
small.

Clearly, then, 1in some systems many of the optimal gains are

small, and in higher-dimensional systems a great deal of computaticnal
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simplicity may be obtained by setting these gains to zero. Thus,
excellent performance can sometimes be obtained by feeding back only a
subset of the states, and, given the simpler form of the controller,
using a much smaller A in order to achieve performance superlor to the
"optimal®. With this motivation, we will develop an optimal constant
discrete-time partial-state feedback control.

The following results are parallel to the continuous-time work

of Levine [2]. We include a complete derivation. The egquations defining

the solution are (3.42)-(3.44).

Given the system

Hep = 9%+ DUy (3.20)
¥ = Cxps (3.21)
we wish to select F in the feedback law
w = ~Fy, (3.22)
in order to minimize (3.5), whach leads to a cost
o
J(F) = -21- tr{ ZEJ (¢,7) ' [Q-2MFC + C'F'RFC]d)Ol}, (3.23)
1=
where ‘
¢, = ¢ - DFC. (3.24)

We use the "trace" form in (3.23) to avoid developing a feedback law
that depends on the initial state of the system; our solution will be

optimal in an "average" sense ([6], [71, [91).


http:3.42)-(3.44

“23

We will find the following identity, Gue to Kleinman [5] useful.

If we have a function J{F) whaich satisfies the condition

J(F + eAF) - J(F) = etr[M(F)AF] + ole}, {3.25)
then,

T(F) _ .,

e M'(F}. (3.26)

We proceed as follows. for small £ we have en'aso for n > 2, so we may

approximate

J(F + €AF) z%— 3 tr{[¢0 - gpAFC] 't .
1=0
[0-2M(F+EAF) C+C'F*REC + £C'F'RAFC + £C'AF'RFC] [¢O—€DAFC]1}.

(3.27)

To first order, for 1 > 1,

i 1 1-1 1i-2 1-1
by - EDAFC]™ =z by " e{qao DAFC + ¢, DAFCo, *...+ DAFC¢0 }

(3.28)
(The expression in (3.28) is the identity when 1 = 0.}
We will call the expression on the right hand side ¢01 - EAl.
Now we rewrite (3.27) as
L]
J(rredR) = 2 [ Y tr{[¢ L - ea_]'[0-2MFC+C'FRFCl$ .~
2 4] 1 0
1=1
+ ecbol[-zMAFc + C'F'RAFC]A1}+ tr{Q-2M(F+AFE)C
+ C'FRFC + EC'F'RAFC + ec'AF'RFc}, (3.29)

S50,
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fee]
J(F + gAF) - J(F} = % Z tr{-EAl[Q - 2MFC + C'F'RFC]qBOl
1=1

l'

+ €6, [-2MAFC + C'F'RAFC + C'AF'RFC}¢01

l!

- £¢, [Q - 2MFC + C'F'RFC]A:L}
+ tr{e(~-2MAFC + C'F'RAFC + C'AF'RFC)1}]. (3.30)
Now, 1f we let
Qp = Q - MFC - C'F'M' + C'F'RFC, (3.31)

and use the trace property tr{XAFY¥} = tr{yXAF} to get each term to end

in AP, we get

J(F + eAF) - J(F) = -E-tr{-ZCMAF + 20C'F'RAF}

2]
E 1, 1' 1, 1,
+ = tr {lg -2c9, ¢, MAF + 204 79" C'F'RAF]

OO
1 _ 1 -
2 2, C(I)Ol ropol oar + c¢0¢01 Qotbll 2pAF
=1

1-1
0

2, 1 1-3 1!
+ c¢0 cbo Qoq)l DAF +...+ Co ¢0 QODAF)

It

e tr {2, {C(bolcbolIC'F'RAF - c¢01¢0’"'MAF]

1=0
= = hA 1~1-
-2 2 o IpArF}, (3.32)
S & oo *o%

S0

'l'J'QOq:O ¢03 o, (3.33)
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Now, let
o0 P
i
L_ Z ¢O ¢0lland
1=0
hnd 1 4
_ 1 1
K= 2: ¢O Q0¢0 » So that
1=0
¢0L¢0' =L - I, and

99 Kby = X = Q-

Then 1f we set aJ = 0 in order to find the minimum for J,

oF

equation {(3.33) becomes

(3.34)

(3.35)

{3.36)

(3.37)

(3.38)

o

0 = RFCLC' ~ M'LC' - 2. §: D (9,77 10,8, (9,7) T
0 0
1=1 3=0
But s

= 1-1- 1 {(1-1-9)"
) (0,7 rg 0,7 (9, = > % b Qb (g
1=1 j=0 1=0 l—-:|+l

_ 5 = {2-1-3)" (2-3), 3,4 Iy

If we let k = 1-3-1, then (3.39) becomes

<o >+

(3.39)

T2 90,0, (W)-E(da 0k+12¢3(¢33'

73=0 k=0 7=0
= K¢, L.
Then substituting in equation (3.38) gives

0 = RFCLC' - M'LC' - D'K¢0Lc'

= RFCLC' - M'LC' ~ D'K¢LC' + D'KDFCLC',

(3.40)

(3.41)
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so the solution 1s

F= (R+ D'KD) 1(M' + D'K)LC' (czc') T, (3.42)
where
o) l'
L
K= 2. & 90, (3.43)
1=0
and
= H
L= 2, by 0y (3.44)
o]
1=0
where
¢, = ¢ - DEC (3.45)
and
Qo = Q-— MFC - C'F'M®* + C'F'RFC. (3.46)

As we note 1n Appendix C, edquations (3.42)-(3.46) reduce to the usual

discrete~time soluticn [10] when C = I.

Now, the optimal cost for the partial-state feedback controlier

is

J% =

[N ] o

tr {xO'Kxo}, (3.47)

where K 15 as given in (3.37). We might choose to compare the full- and
partial-state feedback laws by calculating 9§, D, 9, R, and M for a

given A, solve for the optimal full-state feedback solution, re-calculate
the parameter set for appropriately reduced values of A {reflecting the
reduced computation time), and determine the optimal part~state solution

for these values of A.

i SIBILITY OF THE
. :‘l(j}":i v AGE IS POOR

%
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Chapter IV

The Discrete Optimal Minimal-Order Compensator

One technique used to stabilize a plant system for which only
bart of the state can be observed 1s the construction of a dynamic
compensator ([2], [12], [13]), 2r.e., a system that estimates the unknown
part of the plant state based on the entire past history of plant cobser-
vations. In some cases [2], the plant 1s not output stabilizable, and
use of a compensator 1s a necessity. If the system i1s output stabali-
Zable, though, we may choose either a simple output feedback controller
or a more computationally complex compensator. We would like to know,
then, when to use the "faster” output feedback or the "more accurate"
dynamic compensation.

First, however, we must develop a discrete~time version of the
optimal compensator. Our work here parallels the continuous—-time
"@erivation of Blanvillain [2]. "The results are summarized 1n equations
(4.51)~-(4.55).

Let us consider the system

x{k+1) = Ax(k) + Bu(k) {4.1) ~
with observation

vk} = Ccx(k} (4.2)

where the vectors and matrices are defined as

-27-
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L (4.3)

-m
szm,x EIIRn r

* with xl 5
C=1|I 0 ’ (4.4)
mzn mx {n-m}
A a
a= ¥ 12}, (4.5)
R By
m nm n-m n-m n-m m
wmh%lER xR ,%2€R xm ,%28R xR R
m n-m
B, eR T xR,
B
p=| 11}, (4.6)
B,

with B) eR™, B, eR ™M,

In the above, we have assumed a canonical form for the system, i1nsisting
that the observation matraix 1s of a particular form, as in (4.4). 1In
fact, Blanvillain has shown, for continuous—time, that every linear
system 1s indeed equivalent to a system of this form, 1f one eliminates
redundant observations. The argument 1s easily extended to the discrete-
time case.

We would 1like to choose a cost fanctional to minimize, using a
linear feedback contreol. Unfortunately, as in the continuous-time case,

using a cost of the form
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2 (x(1)'Qx(1) + u(z) ‘Ru(z) - 2x(1) 'Mu(1)) (4.7)
=0

would lead to a control law that depends on the 1natial state x(0) = Xqe
that 1s, the optimal linear control would not be a strict feedback law.

We use instead a cost that leads to a feedback law that 1s optimal over

the average of a set of possible 1nitial states; 1t 1s of the form

[+=]
T = B{Y (x(1)'Qx(1) + ulz)'Ruly) - 2x(1) 'Mu(1))}. (4.8)
i=0
We will addationally treat X, as a random variable with statistics
E = ; B L . .
{x,3 =0 {x %'} 0 (4.9)

Now, 1t should be noted that the system (4.1)={(4.8) can be written

as follows-

xl(kf;) = Al X (k) +-A12x2(k) + B u(k) (4.10}
xz(k+l) = 21 l(k) + A22x2(k} + B u(k) (4.11)
y(k) = Xl(k). (4.12)

Since xl(k) can be observed exactly, and u(k) i1s known, we may consider

the input to be

v(k) = A21 l(k) + B u(k) {(4.13)
with observation -
yz(k) = xl(k+l) - All l(k) - Blu(k) {4.14)

so the system (4.1}-(4.2) may be written as
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xz(k+l) = A22x2(k) + w{k) (4.15)

v,k = A%, (x). {(4.16)

If we assume the compensator is of the form
§2<k+1) = F,y (k) + Lv(k) + Hy, (k) (4.17)
then we choose [12] L = I, and

F=23 ~ HA (4.18)

22 127
where H 1s a design matrix; it can be shown ([21,[12}) that the error

~
e = X, = X, 18 described by

e(k+l) = ( - HAlz)e(k} = Fe(k), (4.19)

o2
and thus H may be adjusted [15] for arbitrary error dynamics {assuming

observability of the original system).

Now one prcblem wath the formulation (4.17) is that yz(k) 15 a

e

function of the future state xl(k+l) {see 4.14}. To eliminate this, we

instead use for our compensator system the variable
z2(k) = %,(k) - Hx (k), so (4.20)
z{k+1) = Fz{k) + le(k) + Du(k), {4.21)
where F 18 as in (4.15), and

P

I

FH - HAll + AZl, (4.22)

B, - HB.. (4.23)

D=8, 1

"

This 1s in fact the minimal Luenberger obgerver. To optimize the
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cost (4.8) over H, we will for the sake of computational simplicity

reconsider this in terms of the augrented state

x(k) xo
s(k) = ' 8g = (4.24)
e (k) &g
where
e(k) = xz(k) - xz(k) = xz{k) - Hxl(k) - z(k). (4.25)

We will assume at this point that a "separability" property

holds, 1.e., that 1f u{k) 1s to depend on xl(k) and §2(k), as in
u(k) = Gx(k), (4.26)

then the optimal values for G and H may be designed independently of
each other. This means, then, that the optimal feedback G* 1s exactly
the optimal feedback matraix for the system (4.1) when the full-state

1s observed. Blanvallain [2] justaifies this assumption by showing that
1t leads to an optimal compensator design matrix H* that 1s independent
of Q0 and R, two matrices on which G* explicitly depends. We feel,
however, that this argument 1i1s circular, and much prefer the reasoning
of Miller [13], who shows that for any given H¥*, use of any other feed-
back matrix will lead to an increase in cost. The proof i1s mechanical,
and easily extends to the discrete~time case; we will dispense with 1t

here.

We may now express the input as

ulk) = G*x(k) - G*Ne(k), (4.27)



_32_

where

N = mx(n=m) : (4.28)
I }
i (n=m) x(n-m)
The closed loop system may be ithen described
sOctD) = Tx(k) = s, (4.29)
where
A + BG* ~BG*N |
T' = (4.30)
o] F
The cost (4.8} 1s rewritten as
00
Jm = e{), s'@esk} (4.31)
0
in which
Q + G*'RG* + MG* + G*'M' -G*'RG*N ~ MG*N ] .
1 = (4.32)
-“N'G*'RG* -~ N'G*'M! N'G* 'RG*N
If we let EO = E{soso'}, then the cost becomes
o0
J(H) = tr{§: P'kQPkEO}, (4.33)
o
which suggests a Lyapunov equation; so 1f A 1s the solution of
T'AT + 2 = A, (4.34)

then the cost becomes

Ty = er(AZ). (4.35)
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From this point, the derivation of conditions for an optimal H*
is fairly mechanical, and we will present only the skelgton of the
argument. For a more detailed exposition, see Appendix B.

Our atrategy will be to isolate the portions of (4.35) that

depend explicitly on H. From equations (4.9) and (4.25) we can show

that
z =
5 = {0 12 (4.36)
0 =z
12 0
where
= rl t - - 1 H
EO-E{eOeO} —-HEllH + I, Hzlz 2121{ (4.37)
when ZO 15 written
Z E
N R (4.38)
O s x
12 22

Although both 512 and EO are functions of H, 1t will be seen that 512
does not contribute to the cost (4.35).

As to the solution of Lyapunov equation (4.34), that 1s,

A
I H! 12 (4.39)

Ai2 A22

1t 15 trivial to show that All 1s the usual Riccatl solution K of {3.14),

A

given our earlier assumption of separability. This i1s rather unsur-
prising in light of the fact that our assumed feedback G* 1s dependent

only on K and the system parameters (see (3.12)}. Thas result leads to
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the eguation for AlZ reducing to

A12 =, (A" + G*‘B')AlZF, (4.40)

and i1f we assume that G*¥ is chosen for a stable plant, and H¥, upon

which F depends {((4.18)}, is chosen to stabilize the error {(4.19)),

then

[1A,1] = 0. (4.41)

This enables us to rewrite the cost (4.35) as

J(H) = tr(KzO) + tr(A22EO), (4.42)
where A22 turns out to be
Tkt 1 N * T o=
N'G*' (B'KB. + R)G*N + F A22F A22. (4.43)

Since only the second term of (4.42) 1s dependent on H, we will minimize
the added cost
J(H) = tr(Azon)' (4.44)
If we write (4.43) as
t -
M, +F A22F A22, {4.45)

noting that MO 18 independent of H, then since Azz 1s the soluticon of

a Lyapunov equation, (4.44} becomes

J(H)

1

tr {0 ) (5 "M FHE)}
1=0

el 3 5 v 1) (4.46)
1=0 0
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As we intend to minimize J according to

aJ
Pudvd = O' (4047)
| 1

we may again, as in Chapter III, make use of Kleinman's lemma ((3.6)-
(3.7)) by getting an expression for J(H + £€AH) - J(H) an the appropriate

form. It then turns out that

-1
* = 1 1 t
BY = (g, + B WA ) (B + A WAL, (4.48)
where W 1s the expression
[+5]
W= 2, FlEO(Fl)', (4.49)

1=0
which naturally appears in (4.46); by substituting H* into the Lyapunov

equation associated with (4.49), we get

-1
= t ' ' t g
W= R, WAy = (B + Ry WAL ) (D) + A WA, ) TR WAL+ T,

+ 222 {4.50)

Thus, the minimal increase in cost due to the compensator 1s

* = * * 4-5
J tr(A22E0 )Y, { 1)
wherea
= ® 1 - o — ! * 1
EO H EllH + 222 2 212 Elzﬂ ’ (4.52)
— ® L3 1 - 1 ® 1 ”*
(Ryp = H¥A IS, (A5, = BILEEY) + A,
= N'K(B'KB + R)KN (4.53)

-1
* = L] ] ]
H (212 + A22WA12) (Ell + A12WA12) R (4.54)
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and

-1
—_ ' - t ' 1
W=Ra, WA, +L,,- (I, R WAL (), + 2 WA )

'(AlZWAéz + 212) (4.55)

These equations, of course, may all be solved offline. However,
the online construction of the state estimate ﬁ, needed to implement a
feedback control, may be very time consuming. An examination of
equations (4.20)-(4.23) show that (n-m} (n+m+l) multiplications will be

needed for state reconstruction, in addition to n for feedback; only m

will be needed for partial-state feedback.
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Chapter V

An Example+ Full- vs. Partial-State Feedback

As we noted in Chapter III, we may sample outputs, and calculate
optimal controls, at a greater rate when we use a partial-state feedback
algorithm than when we use full-state feedback. In other words, even
1f we are physically able to observe the full state of a system, we
might feed back a function of only part of the state, hence simplifying
computation. In such a case, we will lose knowledge of part of the
state that would have been available at a slower rate; in return, how-
ever, we gain more freguent knowledge of the part of the state that we
do access.

Kokotovic [8] describes a class of systems, called "e-coupled",
which provide %'number of 1llustrative examples. A large system 1s
said to be e-coupled 1f 1t splits into several independent subsystems
when a scalar parameter € 1s zero. As Kokotovic maintains, the amount
of computation for continucus—-time control 1s greatly reduced 1f we
calculate the optimal regulators for the decoupled subsystems rather
than for the full system; moreover, the performance of the suboptimal
control 1s fairly near that of the optimal. Since we are in fact
concerned with a sampled-control, however, the suboptimal contrel will
lead to a shorter possible sampling period and perhaps a better result

than in the full system control.

-37=
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In particular, 1f decoupling of a completely controllable system
results in one subsystem that 1s uncontrollable but stable, and one that
1s controllable, then it might be advantageous to feed back only the
states that belong to the latter subgystem. We will cénsider a simple

2-dimensional example of thas. We lock at the system

. -1 € 0
x(t) = x(t) + u(t), {5.1)
0 1 1

vhach 1s controllable for all € # 0. If € 1s very small, we might

expect that (5.1) will act very much like

. -1 0 o}
x{t) = x(t) + u{t). (5.2)
0 1 1

In fact, this new system (5.2) 1s output stabilizable; 1f we let

xl(t)
x(t) = . (5.3)
xz(t)

then xl(t) tends to zero regardless of the input, while the behavior of
xz(t) 1s described by the scalar eguation

:Ezm = x(t) + u(t), (5.4)

which is obviously controllable.
Since only the cost associated with xz(t) 15 determined by the

feedback law, the cost criterion, of the form

o 1 0
g = J- ix'{t) x(t) + ru(t)zldt, (5.5)
0 o 1
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w1ll be minimized by choosing as fast a sampling rate as possible: it
follows from Chapter II that J will be a monotonic function of the
sampling interval A. What we will show 1s that 2f € 1in system (5.1)

1s sufficiently small, the sampling interval chosen in order to minimize
a cost of the form (5.5) should alsoc be as small as possible.

We will assume for the sake of computational simplicity that

€2 = 0., We define the matrices
-1 €
0 1
and
0
B = R (5.7)
1
and using the usual series definition
2 3 4

AT T 2 T 3 T 4

e =I+TA+-2—TA +'§TA +'Z!—'A + .. (5.8)
we cobtain

1 o -1 € 21 o 3[-1 e
AT o + T +~r‘§-;- +-§-!- N
o 1 0o 1 o 1 lo 1
e €g1nhT
= . 5.9
T (5.9)
L0 e
Now using the definitions of (3.7)-(3.11l}, we have
e gsinhA .
5 = P , (5.10)

0 eA
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gcoshA
D= A ' {5.11)
e -1
1-¢72 € (2A+e-2A—-l)
. 2 2 2
5 = (5.12)
g(z.ﬂ_fs_'_zf:_l.) A
L2 2 2
- -2/
€ ({2A+1-e
'2"( 2 )
M= , {5.13)
1 A 2
l*--é- {e 1)
and
A A .
R o= (relyd + 8 '1;(3 =3) (5.14)

We should. note that the discrete: time system
x(k+l) = dx(K) + Du(k) {5.15)

is completely controllable, gince

. (5.186)

[%(e-ﬂcosha + eASthA — sanhA)
op =
eA(eA-l)

S0

det[@D @] = g{l-cosh(2A)}), (5.17)

which 1s nonzero when € # 0 and A # 0.
Now suppose we would like to determine the form of the minimal

cost 1Lf we feed back only part of the state, r.e., X In thais deriva-

9°
+i1on and the one that follows we will make liberal use of the approxima-

tion
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z _ z{a-gb) .  =za-czb

ateb 2 22 2 (5.18)
Looking at (3.23), 1f we let
ol , (5.19)
k2 k3
then the expression D'KD becomes
D'KD = 2ek,coshA (e -1) +k, (e -1) 2, (5.20)
and B'K® 1s the matrax
DK = [;kle—AcoshA + kz(l-e-A) Ekz(eZAslnhA) + k3(e2A- eA)].
(5.21}
Then,
e -:—:-L- (1+e™28y + ————2"‘"3;%*1 , ety (e~ s1anA))
= i
wee e = i, (1™ T (eA;l)z .
{5.22)
Now of course we can define
c =10 1] (5.23)
for use in equation (3.23). If we define
L = S , (5.24)
22 23
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et (et = |43 (5.25)

We can develop a property of L which will simplify thaings con-

siderably. We know from eguation (3.23) (repeated here) that

F = (R + D'KD) "F(M' + D'RO)LC’ (CIC') +

: (5.26)
and in this case, F will be a scalar. Then
A

@0 = & - DFC (5.27}

becomes
=4
e g(sinhA ~ FcoshA)
& = ' (5.28)
0 0 el - F(eA - 1)

the defination of L in eguation (3.15),
x

L= 2. (@01) (@01)', (5.29)
1=0

1t 1s easily determined that

Lo=1+e 2B L s (5.30)
e—2A

and that 22 may be written as

£2 = 622, (5.31)

~
where £2 15 a function of A; that 1s, we will be able to make the
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approximation

el = 0. (5.32)

- Moreover, we can derive a simllar property for K. Recalling that

the definition (3.16) is

[++]
kK= 2 (3.h'od?t, (5.33)
= Yo’ Fo%

where

Q = Q - MFC - C'F'M' + C'F'RFC
. oA
e E aate A1 poat1-e72y
2 4
£ -2A -2A ~ 24 2A-1) A2
7 [2Ate “T-l-F(2A+1-e"“%)]  RFC4=SE -F(e -1)
(5.34)
we can readily see that
-24 -24
kf(é-ze——) Qe a2 o2
2(1~e “7)
(5.35)}
and ,
k, = €k, ¢ (5.36)

where k2 15 not a function of €.

Now we maintain that k3 is the solution of the Riccati-like

-~

equation assoclated with discrete-time linear control of the scalar

system
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x(t) = x(£) + ult) , y(&) = 2(), (5.37)

with cost functional

J2 =f {x(t)2 + ru(t)2]dt. {5.38)
0

By setting b = g = a = 1 1n equations (2.5)-(2.10), the form of the

Riccati-like equation (2.12) becomes

Q
n

1% 4 1oy (e +-§- (e2-1y (&l-3y)

-1 38 4 Hehen (P Pk

+-§- @21y (e D) A + -;— b1y (Po3y1 - i— o1y 4, (5.39)

or,

A

0= -(r—zﬁ\‘--l)k2 + [(r+1)A(eA+l) - 2{e -1)1k + % (eA+1) (r+1)A+eA-l.

(5.40)

In the two-dimensional case, the equation describing k3 that results

from the Lyapunov egquation
] = -
¢0 K¢0 K -9 (5.41)

is

k, e - FrEeP112 k. - 862+ %—(1-9_2’-‘ A

2
3 -1)<, (5.42)

Y + e

where R 1s as in (5.14).
Usang the rules z‘-:k2 = 0, €,Q.2 = 0, and k2,Q,2 = 0, we can make the

approximations from (5.20) and (5.22),

R + D'KD ® {r+1)}A + (eA—l) 2k3 + %'-(eA-l) (eA-B) ' (5.43)
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=24 ; A 4,2
M' + D'K¢ z[e(——-———m*e 3 ) + kz(l-e—A) { k3eA(eA—l) e e ] ,

4 2
(5.44)
and so, from (5.26),
ke ehn + 2 ehny?
P (5.45)

(z+1) A+ (el1) [%‘(eA—3)+(eA-l)k3]

Now direct substitution of (5.45) into (5.41l) would give us a
cublc expression 1n k3; we notice, however, that in the subexpression

k3F2(eA-l)2 + fp2 = FZ‘(k3(eA—1)2 + R, (5.46)

the coefficient of F2 1s just the denominator of F; in fact, (5.46) 1s

Just

F(k3eA(eA-1) + —;— (e2-1y2y . (5.47)

Equation (5.42) 1is then just

k3e2A - 2k3F(eA-1)eA+ F(k3eA(eA—l) + %{&—1}2)

=k, + -;— (1-e2dy + Fel-1)? (5.48)

which simplifies to

24 A, A _
k3(e -1) - Fk3e (e =1) =

A

(1 - 28 +% (ef-1) %%, (5.49)

IS

If we divide by (eA-l), and substitute (5.45} into (5.49), we have
w21 k1t a2 P efea - 3 febn?

+ % P41y (112 + —i— (e2_1) (eB-3) + %‘-k?’(eA-!-l) (e?-132

A~1)3 _Ll A

2
2 73 )

1 A
- Z(e (e -1
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= ki(eA—l) + k3[(eA+1) {(r+l)A - 2(eA—1}]

+ %-(eA+l)(r+l)A -1+ eA = 0, (5.50)

which 1s exactly the expression in (5.40). Thus, 1f we let k(A) be the

solution of (5.40), the matrix K becomes

1 ~
2 ek,

K = . (5.51)
ek2 k(A)

and 1f the i1nitial state 1s ga¥ven as
x(0) = oy (5.52)

the resultant cost is

1|1 2 2 .
T8 =3 [:ExOl + 26k, XXy * k(A)xOZ]. (5.53)

We now go to the case of full-state feedback control. Here, F¥,

the feedback matrix, will be 2-dimensional, e.g.,

£1; (5.54)

* =
F [fl 517

we will also denote the steady-state solution of the discrete Riccat:

equation (3.14) as
k % X _%
x# =] L 2 1. (5.55)
* *
k2 k3
Unfortunately, in this case we will not have any terms that are

zero 1n the closed loop transition matrix, unlike the previous case of



partial-state feedback. Thus, a direct attempt to solve (3.14) will
result in three coupled non-linear equations. We can, however, make

the simplifyving approximations

o T ~
Kl a.kl + ekl (5.56)
*xk, + ek 5.57
K, k2 ek2 ( )
* X K (5.58)
2 + .
K3 3 Ek3,
where Ei, kl, Eé, k2, EA, ﬁ3, are independent of £, and need to be

determined. These follow from the Taylor series expansions

¥, o2 a2kl
kl(E) = kl(O) + esg— {Q) + 3T 382 (0) + ... {(5.59)

and our assumption that el ~ 0 for 7 > 2. Note that we are implicitly
assuming that ki(e) is analytic in some region around € = 0 (see Com-

ment 1 at the end of this chapter).

—

- - — 1
In fact, saince k1 = kl(O), we can easily see that kl =3 k2 =0,

=

and Es = k(A). Then the resultant cost becomes

21 1 2 ~ 2
Jf(A) =3 [( 3 + sﬁl)x01 o+ 2e£2x01x02 + (k(A) + eks)xoz]. (5.60)

We can now compare costs (5.53) and (5.60). First we make the
reasonable assumption that we have preselected a maximum sampling
period, that i1s, A 1s bounded above as well as below for both the full
and partial-gtate feedback algorithms. Then, since the discrete time
system (5.15) 1s controllable for all A # 0 and € # 0, we know Iﬁll'
Iﬁzl, |£3[ and |§2| each have an upper bound over the acceptable range

of A. Suppose, then, that the sampling rate for full-state feedback 1is
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A* and that for part-state feedback is %&*. Then the difference in the

two costs 1s

1 L.~ 2 ~ ™ A 2
* — * e -
Jf(A ) JP( —Az ) 2[€k1x01 + 2€(k2 k2)x01x02 + Ek3x02

+GeAn) = k(5895 ] (5.61)

Now, as we showed in Chapter II,

k(A%) - Xk( -21-A*) > 0; (5.62)
we will define
6 & xany - x(2am. (5.63)

2

Thus, for any sampling period A* and any bounded get of initial states

such that for some system of the form (5.1) we have

2
ek, 2=+ 2R -k) L+ <8, (5.64)
1 % 2 22 X5 3
02
we may conclude that
1
{ %) — g %
Te(A%) — a,( SA%) > 0. (5.64)

In other words, there will be some system (characterized by €) for which
{5.65) holds. Of course, £ must be sufficiently small for our approxima-

tion €2 =~ 0 to hold.

Comments
1. Our assumption that K(€) is analytic 1s indeed justified.
Results of thas nature for the dafferential Riccati equation follow

directly from a theorem of Pontryagin [14] (pp. 170-1Bl; algo see
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Kokotovic [8]). We may extend these results as follows: consider the

discrete-time equation (3.14) to be of the form Kl = f£(K y. Then

1+l

~

K= f(ﬁ) 1s the steady state solution. Now consider the equation

(£)
at

= £{K(t)) - K(t). From Pontrvagin's conditions, each solution
K(t} of this equation 1s an analytic function of £. But surely one
solution i1s K(t) = ﬁ, that 1s, K(t) is constant. Thus, K 1s an analytic

function of €.

2. The conclusion of this chapter can be extended to the more

general system

. b £ 0
x(t) = x(t) + u(t),
o a 1

where b < 0., Then, the new ® matrix takes on the form

bA

e gef(a,b,d)
i (L\.) = r
0 eaA
N Jbb__ah
where £(a,b,A) = T sinh(ah), 1f b = -a, and flab,A) = =5 — v 2f
!bl ¥ |a!. In either case,‘the reasoning of this chapter holds up

in every detaail.

3. In fact, there are apparently n-dimensional analogues of
this example. We will return to this in Chapter VI. The example of
this chapter 1s also relevant to the dynamic compensator of Chapter IV,
1f we suppose that, for (5.1), we are only able to observe x2(t). In
this case, partial-state feedback i1s still superior to c¢ompensation, as

compensation could not give us even as good a result as the optimal



full-state feedback law.
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Chapter VI

Conclusion

The main contribution of this thesis, in our opinion, has been to
formally state how the fundamental characteristics of.algltal computation
cause the sampling interval A, as well as the usual feedback matrix, to
be an optimization parameter. In this light, we have developed several
on-line control algorithms, particularly a partial-state feedback law
{Chapter III), and an output compensator {Chapter IV). We were able to
explicitly state how, due to the gquestion of relative computational
complexity, one algorithm might be preferable to another; we derived an
example (Chapter V) of a system where-thls was clearly i1llustrated,
in order to justify our general point of view.

Since this work is intended mainly to provide a framework for
further research, perhaps 1t is more appropriate to discuss the key
questions that remain to be considered. In particular, we have not
been able to devise a method for selecting the optimal sampling interval
A = A* for a general class of systems, even for a part:icular control
algorithm. One reason for this, as we have mentioned i1s the non-mono-
tonicity of cost with respect to A. While this fact 1s disappointing,
howaver,,lt is not a fundamental obstacle to solution of the above

problem, In many situations that occur in the theory of optamal control,

i1t 1s possible to optimize a control over two parameters; we do not

-51~
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usually depend on the fact that the optimal choice for one parameter is
an extremum of 1ts permissible range, A far more sSerious question is
that of “separability". The technique used to develop the optimal com-
pensator (Chapter IV), for example, relied on the fact that the observer
and feedback parts could be designed independently. In the case of A
and ¥, however, 1t 1s foolish to talk about separability; the optlmal F
fundamentally depends on our choice of A,

The example of Chapter V, however, does suggest how we might
extend this work to produce some useful results. Let us consider the

general e-coupled system of Kokotovic {81 in the partioned form

% A ea % B. €B u
.1 _ 1 12 1], "1 121% | 6.1)
X, e ) € By [[%

where %, and x, are n, - andtnz—dlmenSLOnal substates, n., + R, = 0y and

1 2 1 1
ul and gz.are rl- and rz—dlmen51onal sbcontrols, rl + Ty = r. Then,

the discrete optimal full-state feedback control (3.6)}-(3.14) will

involve rn online multiplications (and r(n-1) online additions, which

we Wi1ll 1gnore). If we were merely to consider the systems
*y0 = 2¥10 ¥ Bi%o (6.2)
X20 = By¥ao * ByUgor (6.3)

we would find that the optimal control would involve .only rlnl +‘r2n2
multiplications, which is less than rn. We suggest that, using the
assumptions and techniques of Chapter vV, that for any A, the difference

between the costs resulting from optimally controlling (6.1) or con-
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trolling (6.2)-(6.3) 1s a linear function of €. Note, however, that
unlike the example of Chapter V, this does not demonstrate the super-—
1orxrity of the suboptimal control over the optimal; the earlier example
depended on the fact that the costs of the decoupled subsystems were
monotonic functions of A. Thus, this approach will not be helpful in
controlling (6.1) unless we know something of the behavior of (6.2)
and (6.3), and are able to study system performance as a function of A.
In conclusion, 1t 1s clear that the use of digatal computers in
controlling large-scale systems will require the examination of issues
such as those outlined in this thesis. It 1s hoped that our efforts

will provide some useful insights for future researchers in this area.
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We heréin prove that

oK (A) -
2 >0, (2.1)

for all A > 0, where K 1s given in equation (2.14).

If we define

A(¢+l)(ra2+qb2) 2.2)
2b2a(¢‘l¥

G{A) =

we see immediately that
G(4) > o, (2.3)

for all a, and

Rty = act) ~ L+ Jowratasw) - D . (2.4)

Moreover, since the scalar system (2.4) 1s cbviously observable, the
solution (A.4) must be positive definite (see [10]) and thus the radical

u1mA)qubemﬂq1£”
c(h)a(acd) -3 >0, all a. (A.5)

Now we calculate

1 2
R 2 6" (8) [2aG(A)-q)
BB - act) + 2 (3.6)

JaZetmy? - qen

This will have the same sign as

REPRODUCIBILITY OF THE
QRIGINAL PAGE IS POCH
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F(A) = aG'(A)[: a2G(A)2—qG(A) + aG(A) - gﬁ;] (8.7)
where
2 2 2
G (A) = {ra +qb2)(¢ —22A¢—1) (2.8)
2b%a(¢-1)
and aG'({A) will have the same sign as
L(ad) = ¢° - 2aAd- 1. (3.9)
Then, we calculate
L _ 306 - tno - 1) (A.10)
% n ' .
2
1—2-—2(1 "‘%')r (A.11)
3
82L
and note that -56 =0atal =0 (¢ =1). Since NEY takes on the same
CL
- 9L L
sign as ah, Bcb has a minimum at aL\.—O, and thus 3¢>O' and Balo‘

But since L(0) = 0, L{aA) will take the same sign as aA. Then aG'(A)
must have the same sign as aA, and G'(A) > O.

Now, suppose a < 0; then

/2 - - 9.
G~ (A) gG(A) + aG({A) om

= —aG(A) [Jl - q/a G(A) - 1+ ——-;L——:I (a.12)
2a°G{A)
If we denote
X(A) = -—23——— , (A.13)
a G(h)

then (A.12) becomes



=Cf=-

-aG(A) [,/1—}{ -1+ %—] {a.14)

Clearly X(A) will be at a maximum for the value of A > 0 for which G(A)

1s minamal; since G'(A) > 0, this point occurs at

2 2
G(o) = f2¥ab

(A.15)
r
azbz.
and thus
b2
X(8) ¢ —F——— <1 for all a, all A > 0. (A.16)
ra +gb
Since G(A) > 0 for all ah,
X(0) >0, all a, all A > 0. {(r.17)
p
We can use the Taylor Series expansicon
2 3 4
—_ . _X_ X 3 15%°
ViR = 1 -5 I@En TEBD C Te@n  CtC (2.18)
and note that, for all a and all A > 0O,
X
J1-x -1 + 5 < 0. (A.19)
Thus (2.12) and (A.14) are negative. Since for aA < 0,
aG'(A) < 0, we can conclude that F(A) >0, for a £ 0, and
SR (A)
9 2O (A.20)

for a < O.

Now suppose a ~ 0. Then {A.12) becomes

aG(A) [,/1—:{ + 1 - «ﬂ {a.21)
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Since 0O _'_<_

N pe

i%— ; the expression in (A,21) 1is now positive,.

Since aG'(A) > 0, we may then conclude

9K (A) .
- 20 (A.22}

for all a, and all A > 0.



Appendix B

We f£111 in the gaps in the deriwvation of Chapter IV.

B.l Evaluation of A.

If we define
A A
¥ L]
A12 A22
then the Lyapunov equation of eguation (4.34) 1s equivalent to

(A" 4+ G*'B')A), (B + BG*) + Q + GH'RG* + MG* + G*'M' = A

(B.1.2)
-(A* + G*'B')AllBG*N + (A" + G*'B')AJ_ZF - G*'RG*N
- MG* = Alz (B.1.3)
N'G*'B'AllBG*N - F'AizBG*N - N'G*'B'Ale + F'A22F
+ N'G¥'RG*N = A__. {B.1.4)

22

o

Now, comparison of (B.l.2) with equation (3.13) shows that All 1s
indeed the steady-state solution of the full-state output regulator
equation. We will denote All as K. Then from (3.11) we see that

1 1

B'K[A - BR M']. (B.1.5)

1

G¥ = R M' - (R+ B'EKB)

Then, {B.l.3) may be rewritten, using (B.1l.5)}

=58~
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- (A'+G*'B')KBG*N + (A'+G*'B')A12F - MR M

=
i

12

1z (reB'xB)

1

(A'-MR VB ') KB (R+B'KB) B'K{A-BR TM')N

1 1

M(R+B'KB) YB'K(A~BR "M')N - (A'-MR_ls')KB(Rm'KB)" M'N

1

+ MR “M'N + M[R+B'KB]"lB'K(A—BR“lMl)N, (B.1.6)

which through judicious substitution of (B.1.5) and several cancellations

simplifaies to

_ fo_nt =
AlZ = (~A'+MR

1 xBE*N + (af-Mr1R')KB(R+B'KB) “IB'KBGHN

Ire*y, (B.1.7)

+ (a+G*'B)A F + (A'-MR “B')KB(R+B'KB)
and 1f we recognize the pattern

(A'—MB—IB')K(—B+B(R+B'KB)-lB'KB - B(R#B'KB)—lR)G*N

1t

(A'-MR 1B ') K (~B+B (R+B'KB) "L (B 'KB+R) ) G*N
=0, (B.1.8)
then (B.1.7) becomes

A12

it

' ! ‘ Dl‘
(A'+G*'B )Ale. {B.1.9)

If we assume that H* 1s restricted to values for which the error e
(4.16) 1s stable, then ||F|| < 1; 1f G* 1s chosen for stability of the

plant, then ||A'+G*'B'I| < 1; thus,

Al

1A

[amseerm || (=l 1Al < Al (5.1.10)

unless ||A

12[| = 0; therefore, I]ﬂ12|| = 0.

Eguation (B.l.4) may now be simplified to
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1 H I = .1.
N'G*' (B'KB+R)G*N + F A22F A22, {(B.1.,11)

giving us

XK 0
A= (B.1,12)

0 Ay

so 1n fact the total cost 1s

tr(KEO) + tr(Azon) . (B.1.13)

B.2 (Choice of H*,
Clearly, we want to choose H to manimize the added cost

g = tr(ﬂziEo) . We set

adJ,

|, (B.2.1)

H*

and noting that !A22 15 the solution of Lyapunov equation {B,1.1l1l), we

see
@ 1
1
Ay, = 22 FN'GH'(B'KBHR)GHNF . (B.2.2)
1=0
If we let
MO = N'G*' (B'KB+R) G*N, (B.2.3)

then we may rewrite tr(Azon) as

Jm = triy, >, F(H)"EO(H)F(H):L'}. (B.2.4)
=0

Again, as in Chapter III, we will make use of Kleinman's lemma summarized
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in (3.25)-(3.26) to determine

B (HtehH) = Eg(H) + eAH(D  H'-L ) + e(I  H'-L;,) 'AH"

Il

F (H+eAH) F(H)—eAHAl

-
Since
==
- - 1 _
3 (arebn) = triM EE% (F-€AHA, ;)" (B +eAR(Z, H'-E) )
" _ L) - “,1t
+ e(L,,H'-I,,) "AR'(F-eAHA, ) 1,
using the approximation
i 1 = 1-1-
(F~edHA, ) = F - € Y. F O JAHA, P
12 =0 12

when 2 # 0 (and is the identaity when 1 = 0), we may rewrite

Jurehn) ~ telM. 2 [(F'-eT )E (F)) ' - eF'E

T L
1
0 1=0

0

x [ [ - ' 1 it
+ F E(AH(EllH 212) + (EllH le) AHDYF 1},

where
1-1 1=1-9 : 1-1 J 1-1-7
T o= 32) F Amn F = J,_Z:o FIAHA, F ;, 1>0

(Tl = 0 when 1 = 0).

Using trace properties we can write

(B.2.5)

(B.2.6)

(B.2.7)

(B.2.8)

(8.2.9)

(B.2.10)

o0
_ _ i1 . it _
J(H+eAH) ~T(H) = tr{sM Z [ T EJF" ~FE Tl + F (AH(EllH 212)

0] 120 0 o

[ ' 1 1! =
+ (3 qH'-E ) "M FT )=

12
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=4

1 | - - t 1] l'
tr{em, 2, FUAH(I H'-I, ) + (E  H'-T, ) ‘0H')F

1l

1=0
[++3 1-1 (l—l—]) 1 . \ jl . ll’
- &M ].2_:1 3}_: [(F A MH'FY ) 'EF

+ FlEO(F(l"l'J)AHAnFJ) 1}

[ 1! 1
etr {2, 2(%, B'-L )F M F AR

1=0
_ 7 (1~1=3) (1-1-7) Lt 3
. E: Z (A FIE F MOF AE + A F E,F M F7 AH]).
(B.2.11)
We may now apply the Kleinman lemma to get
L gm =2 Z:F MF(Z (H'-I )
dH
=0
S (1-1-3) ', _(1-1-) "
-y T B F M F I e F Tyl 1al,
1=1 =0
1
=2 2 F R FN(I, H-L)
1=0
o (1-1-73) *
-2 2, Z M P B, F =477 181, (B.2.12)
Now we can make the manipulation
- -l 3! 1 {2-1-9)° i < 3! 1 {z-1-7}'
); Z: (r) M FEF 1=2. 2 F M FEF
=1 73=0 3=0 1=3+1

z Z TR SRl R (E FJMFJ)(ZF Ky

3=0 (B.2.13)



—-53=-

If we let

and set %E-J(H*l = 0, {(4.63) becomes

= 1.1’ 1. T _ 1
0=1(2 ), FF ) [(E, B*'=L )" - Fwa

1=0

so 1n fact

* | R | . < IT® 1
H*L z FWA (A22 H Alz)WA

11 %12 12 12°
Solving this for H¥*, we see

war )t

% o ' T
H (212 + A_ WA )(le + Al2 12 .

22 12
We may then rewrite (B.2.18), using (B.2.15),

A__WA! - H*A WA!_ + H*A! WA! H¥'

" 2222 1222 12 712

i1

* LI & ] &1
+ H EllH 822 +H 212-+ ZlZH

Sl

to obtain

- H F]
A22WA12H

(B.2.14)

(B.2.15)

(B.2.16)

(B.2.17)

(B.2.18)

{B.2.19)

+ 212)

= A22WA£2 - H*(A12WA52 + 212) + H*(A12WAi2H*’-¥Ell)H*'
- (A22WAi2 + EiZ)H*' + 222
SO
W= R WAL, = (Bgp + By WA ) (2 4 A12WAJ'.2)-1(A12WA52
+ I

22

(B.2.20)
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and we get the results of eguations (4.51)-(4.55).


http:4.5l)-(4.55

Appendix C

Reduction of Results of Chapter III to the Full-State Solution

Here, we let C = I 1in equations (3.42)-(3.46) and show the
results agree exactly with the work of Levis {[10].

Equation (3.42) becomes
F= (R+ D'KD) T(M' + D'K¢) (c.1)

which implies

(R + D'KD)F = M' + D'Ko
1 ' -1 1 T -1 t
= M' + D'KDR "M' + D'K$ - D'KDR M
= (R + D'KD)R 'M' + D'K(d - DR 1My, (c.2)
S0
S R -1,
F=R M + (R + D'RD) "D'K{$ - DR "M"). {C.3)

Moreover, equation (3.37) becomes

K

n

¢, K¢y + Q4 = (¢ - DF)'K($ ~ DF) + Q

(¢ - DR™IM') "K(¢ - DR M')

1

((¢ -~ DR IM') 'RD(R + D'KD) "~ DK - DR L")

(¢ - DR M") "K(D(R + D'KD) "'D'K(¢ - DR M')) + Q,

({d - DR IM') 'KD(R + D'KD) TD'KD(R + D‘KD}_lD'K(cb - DR M)

4

Q0 *+ (¢ - DR IM') ' [K - 2KD(R + D'KD) *D'K

If

+ KD(R + D'KD) “1D'KD(R + D'XD) “TD'K] (¢ - DR FH) (C.4)

-55—-
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Now QO i1s

Oy = Q - MF - F'M' + F'RF

1 1

D'K($ - DR IM')

lM' _ MRflM‘

M' - M{R + D'KD}

Q - MR

(¢ - DR TM') 'KD(R + D'KD)~
1

1

3

M' + M(R + D'KD) ~D'K(¢ - DR Iyty

1

+ MR

# (¢ - DR IM') "KD(R + D'KD) M’

+ (§ - DR IM') 'KD(R + D'KD) R(R + p'xp) “Ip'K($ - DR M)
=0 - MR N 4 (¢ - DR™M') "KD(R + D'XD) TR(R + D'KD) D'K
< ($ - DR"IM'), _(c.5)

Now, to combine Q0 with the third term in brackets in {(C.4), we note

XD(R + D'kD) TR(R + D'KD) 1p'K

+ KD(R + D'KD) *D'KD(R + D'KD) 'D'K

= KD(R + D'KD) }(R + D'KD) (R + D'KD) “D'K

-

XD(R + D'KD) TD'K (C.6)

which we may combine with the remainder of (C.4) to show

K= (¢ -~ DR *M") '[K - KD(R + D'KD) 1D'KI(d - DR M)

+ (0 - MR M), (.7

Eguations {C.3) and (C.7) agree exactly with the results of

Levls.
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