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ABSTRACT
 

The digital computer has become an important tool in the on-line 
optimal control of large systems. Because computers are discrete-time 
in nature, it is necessary to select an interval of discretization when 
controlling a continuous-time system; this introduces another parameter 
over which to optimize.
 

In this thesis, we discuss how the characteristics of a particular 
computer, such as multiplication time, will determine the range of 
choice for this parameter, and how such a choice will affect system per­
formance. We also discuss how a suboptimal control, involving less ­

computation, will allow us to control the system at more frequent inter­
vals and thus, in some cases, lead to better results than if we used the
 
usual optimal control.
 

We begin by making a formal statement of the optimal control prob­
lem which includes the interval of discretization as an optimization
 
parameter, and extend this to include selection of a control algorithm
 
as part of the optimization procedure. We show how the performance of
 
the scalar linear system depends on the discretization interval. We go
 
on to develop discrete-time versions of the output feedback regulator
 
and an optimal compensator, and use these results in presenting an
 
example of a system for which fast partial-state,feedback control better
 
minimizes a quadratic cost than either a full-state feedback control or
 
a compensator.
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Chapter I
 

Introduction
 

1.1 Motivation
 

The digital computer has become an essential tool in the solution
 

of practical optimal control problems. Even "simple" lower-order sys­

tems require an inordinate amount of computation (such as in the solu­

tions of the Riccati and Kalman Filter equations in [] and [4]) in
 

order to achieve the optimal trajectory. For a large-scale system, the
 

problems are even greater. In particular, it may be desirable to use
 

the computer "on-line" to control the system, that is, to include the
 

computer in the feedback loop itself.
 

Naturally, an arrangement of this kind gives rise to new problems
 

and limitations, stemming directly from the special nature of the com­

puter itself. For example, let us consider the deterministic-linear
 

regulator problem [3], in which the system is described by the equations
 

x(t) = F(t)x(t) + G(t)u(t) (1.1) 

x(t) = H(t)x(t), (1.2) 

in which we wish to determine
 

u(t) = j(y(t)) (1.3)
 

in order to minimize a given functional J(2(-), t0, tl), where [to, tl]
 

represents some interval of time. Often, the functional form of g(-)
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in (1.3) will also be restricted. In any case, the state x(t) of the
 

system will have a constantly changing value, and consequently, so will
 

the optimal control n*(t). This cannot be reconciled with the discrete­

time nature of the-computer; the machine can in no-way continuously
 

monitor the output y(t), nor can it continuously change the input.
 

The usual solution to this problem is to sample the plant output
 

at a certain select interval A of time, and similarly, calculate a
 

control at intervals, using an external device to hold the actual input
 

constant over each period of time. This is illustrated in Figure 1.
 

In a sense, what we need to do is construct a discrete-time
 

system
 

(1.4)

2+1 = (k) +M W(k) 

(1.-5)Yk'= C(k 

for which the behavior of k is in some sense "close" to the behavior
 

of x(t) when the value of i
Is compared directly with that of x(kA).
 

A system in which the states of (1.1) and (1.5) are2equal at these
 

points is in fact determined by Levis [10].
 

It should not be surprising, though, that the selection of the
 

sampling interval A will affect the performance of our on-line control.
 

This thesis will discuss ways in which the best choice for A depends on
 

the characteristics of the computer facility upon which the control is
 

implemented, and how this dependence in turn affects the choice of a
 

-control algorithm.
 



u( 	 AMPLE u(t) SYSTEM y(t)
AND -n -o T SENSORHO LDPL 

NE 

Uk ICOMPUTER *[Yk 

FACILITY 

Fig.1 Inclusion of the Computer in the Feedback Loop 

l 
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1.2 Optimization on the Digital Computer
 

When an optimal control for a discrete-time system is determined
 

on-line by a computer, there is a certain computation time associated
 

with the calculation of each step. Thus a certain minimal interval of
 

discretization can be associated with a given control algorithm. For
 

example, suppose a computer takes T seconds to perform any simple compu­

tation (like multiplication), and for a particular algorithm, n simple
 

computations are needed to compute the optimal control. If we use A to
 

symbolize the interval of discretization for a discrete-time model,
 

then for the aforementioned algorithm, the minimum A that is physically
 

possible is Ain = nT seconds. If we denote the control algorithm
 

as i, the possible range for A is [Amn(i) C)" 

For the remainder of this work, we will restrict our attention to 

time-invariant-systems, and consider only steady-state controls. This
 

gives us the advantage of being able to associate with each algorithm
 

a very simple parameter set. For example, in such a case, the feedback
 

matrix given by the familiar Riccat: equation becomes an algebraic
 

equation with a constant matrix solution, rather than one that is a
 

function of time.
 

Let us state this in a precise manner. Henceforth, for conven­

ience, we will no longer underline vectors and matrices. The reader
 

should assume all upper case Greek and Roman letters to be matrices and
 

all lower case letters to be vectors, except for units of time (such
 

as A or t), indices (i, 3, k), or where otherwise specified.
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We will consider deterministic systems of the form
 

x(t) = f(x(t), u(t), t) (1.6) 

y(t) = h(xt) , t) ; (1 7) 

a feedback control algorithm i will be of the form 

u(t) = gI(z(t k ) ; K), (1.8) 

for t < t < tk+l where A = tk+1 - tk , K is the set of constant para­

meters that we are to optimize over in the control law, and z(tk) is 

the information that may be obtained from y(t), for t < tk. 

Now let d be an index set of control laws. We can characterize 

the usual optimization problem [10] as follows. If we are given 

i e t , and a particular A C [A mn(i), w), find the K that minimizes 

a given cost functional J(i, A, K), where K is a parameter set as 

mentioned above. 

Using this format to state the problem suggests a generalization 

that will be the crux of this thesis. In the case of the linear system 

with quadratic cost, where the control is based on a full state obser­

vation, and is a linear feedback law, Levis [10] has raised the question 

of how to determine the optimal interval of discretization for a given 

control algorithm. He has pointed out that for some systems, costs 

do not decrease monotonically as A decreases (see Chapter II for a 

further discussion); in fact, he was unable to determine the optimal A 

for the problem he considered. Let us state this question as follows:
 

suppose we are able to minimize J(i, A, K) by finding a suitable K = K*,
 



-10­

as in the problem just mentioned; since this is for a particular i and A,
 

let us then say that K* = K*(i, A). In other words, for a given i and
 

A, there is a "best" K, K*(i, A). Then for a given i Cte , we wish to
 

find the A e [A ) ) that minimizes 

J(i, A, K*(i, A)). (1.9)
 

Now since Amin(i) is certainly a function of i alone (for a
 

given computer), the A that minimizes equation (1.9) is also a function 

of i, that is, A = Af(i) (as we shall see in Chapter II, it is not 

always true that Af(l) = Amn(a)). Then the crucial question becomes: 

what is the control algorithm i that minimizes the cost? In other words, 

find the i E:4 that minimizes 

J(i, AffW K*(i, Af(3))). (1.10) 

At this time, there does not appear to be a neat general approach to the
 

solution of this problem. The purpose of this work is to provide an
 

impetus and suggest a start for investigation along this line.
 

1.3 The Scope of this Work
 

Because this area is extremely broad, too broad, in fact, to 

develop a unified theory, we will be content in this document mainly 

to illustrate some of the points mentioned in the previous subsections. 

In Chapter II, we will discuss the selection of the optimal sampling 

rate for a full-state feedback law, and present, as an example, a 

simple class of systems for which the optimal A can be solved for
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explicitly. In Chapters III and IV, we will derive the sampled-data
 

versions of two alternative control laws, expressing each as a function
 

of the sampling rate A. In particular, Chapter III will deal with
 

partial-state linear feedback controls, while Chapter IV will give
 

results on optimal reduced-order compensators. In Chapter V, we will
 

give a specific example of a system for which, due to our greater freedom
 

of choice in selecting A that results from computational considerations,
 

we actually are able to decrease a system cost by choosing a "suboptimal"
 

control algorithm over an "optimal" one.
 



Chapter II 

On Choosing the Optimal A for a Given Algorithm-

The Scalar Case
 

For a given control algorithm, it is clear that the continuous
 

controller (i.e., A - 0) will minimize the system cost better than any 

particular discrete-time controller. Thus it might appear that the
 

problem of selecting an optimizing A for a computer control is trivial,
 

that the best choice is A = A As Levis [10] has shown, this may 

not always be the case. For the second order system
 

r~~t)= [-0 0J2t) + [ 1 u~t21 

which is completely controllable, sampling rates with periods that are
 

multiples of W lead to uncontrollable discrete time -ystems, while all 

other sampling rates lead to controllable systems. Thus, plotting J*
 

as a function of A would give something like Figure 2. 

Even for such a system, decreasing the sampling period will 

sometimes give improved results. It is true that
 

J*(continuous time) = lim inf J*(A), (2.2)
 

A 

that is, for any A > 0, there exists a A1 < A such that J*(AI) < J*(A). 

A 
In particular, if n is a positive integer, then J*(-) < J*(A), since
 

n ­

the control which optimizes the system for A is also available when 

A1 = A­
n 

-12­
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I I 
0 " 2" A 

Fig.2 Possible Optimal Cost of the Harmonic Oscillator as a Function of the Sampling Period 

(see ref [I01 ) 

I 
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Not all sys~tems ,are as tll-behaved as that of Figure 2. For
 

,the scalar case, that is, the system in which u E R and x EIR , we
 

can actually determine the interval of discretization A which minimizes
 

J. If J*(A ) is the minimal value of J for a given A = A1 , then we
 

can show that­

aJ*(A) (2.3)
> 0.(2.3 

Thus, the optimal value of A is A m n . Since in this case, the feedback 

matrix is a scalar, our online computation involves .only one multipli­

cation. Thus, Amin = TM , where TM is the time needed for a single
 

multiplication.
 

We discretze the system
 

d
d- x (t) = .ax t) + hu(t) , x(0) =.x0,, (2.A) 

with cost functional
 

J=lm 1 f T (qx2 ru2)dt,(2.5) 

where q, r > 0, according to the solution of Levis [10]. For a given A,
 

holding u constant over each interval, J in (2.5) becomes
 

N-1
 

j r = [(x(kA)) 2 Q + 2x(kA)Mu(kA) + (u(kA))2R], 
N - w k=0 (2.6) 

where Q, M and R are scalars as follows:
 

Q = Ae qdt = (e a A + l) (e a " - 1) (2.7) 
e qat 2a
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M = bq e [ easds~dt = bq (eaA_ ) (2.8)
 
2 

2a
 

R = 0A [r + q(bf teaSds) 2 ]dt
 

2
2+ b2

2 2
= aA (+Eb + 9.- (e a - 3) (e - 1) (2.9) 

2a 3 
a 

The state equation becomes 

Xk+l = #k + Duk , (2.10) 

where 

= e,(2.11) 

and 

D A(t,0)bdt b (eaA_ 1). (2.12)J0 a 

Now in steady state, the Rlccatl equation becomes 

DM-2 2 DM 2 2 ^ 

0=-K t-- -] D + ( -- ) (R + D K)K
 

M2
2 +A 2^
 
K(R+KCR+D2K) + (Q- -)(R + D2K), (2.13) 

which simplifies to 

0=-D2 K2 + ( 2-1)R- 2DM + QD2 )K + (QR - M2 ). (2.14) 

If 

A 2_ 2
B= (2-1)R - 2DM + QD (2.15) 

then 
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2()R - 2DM 

2D2 

+ QD2 +/ 2 + 4D2QR 

-4D2 

- 4MD2 

Now 

B 

2D2 
2D 

2( -1)R 
2b2 

b 
a 

2 

MO + Q 

D 2 

a 2(+1)R
2b 2 (0 ­1) bq(4-1)2 4)2a 2 b 

a 

+ c2 -1)4a 

= + ) 
_ 

('-1)\ 

-(k-ii)ra 
( -) 

r a 2 g2 (aA) 

2 

2 22 
)b (at)

2ab 2 

+ q(q) +l )-3) 
4a 

2 a 

- ()-24+i) 
4a 

2.17( . 7 

If we denote the second term in (2.16) by TT, then 

+ 

____(4-i)2 

((i2_i) 

2a 

____(ab2 

( 

(at)(a) 2 + a 

(ra2 +qb2 + 2-2 

a 3 2)+ 4ab--

a7 4aJ 
b2 

b-_ 
(0_1)22 

2 
a 

C') 

2 

2-i 

a 2 b 2 (4-i) 

)-3)(-i 

b2q2 (0_1)4 

4a 4 

2
-T (4)-i)2 

a 

(2ab 
2b2 

22 22 
1(-

(01)2 2(aA)2
a2 2 

2 
22ab (CL) 

a b2 (0-1) 
) 
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q2 ( + )( 3) +
(+1) aL) + 2 

+ g(ra2+qb 
4a 2 4a2

2b2 a 2 (-1) 

Ira 2 +qb 2 2 (l) 2aA)2 g(ra2+qb) ()+i) (aA) 
k2ab2 ) (0_1)2 22 2 (2.18)ab (4-l)22a b 2 (4-i) 

Note that
 

-i e aA-i -e-2!=(l+a6+ -+ ... )a6 1a) 1 + -+ + ,--+.. 
2+ 31 

(2.19) 

which is 1 when aL = 0. Thus, 

im =(6zra2+qb _ a+q+ 2 b2 2 2 
A 0 ab2 a ___2a 2b2 

ra a ( ) 

a b + (2.20) 

2 b 2 r 

which is the continuous time solution derived in []. 

Now it is well known that
 

J*cA) 12 (2.21)
 

It is straightforward to show (see Appendix A) that 

> 0, (2.22) 

and so, by (2.21), 

(A) > 0 (2.23)
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for all A > 0. 

We have shown, then, that for the scalar system described in 

equations (2.4) and (2.5), the optimizing A is Amln . Since the feed­

back control law is of the form 

u = -kx, (2.24) 

A is just the time a controlling computer needs for a simple multi­
pa tn 

plication, TM. In other words, A = T .
 



Chapter III
 

The Discrete Time Output Regulator
 

In order to optimize a cost functional over a class of control
 

algorithms, as discussed in Chapter I, it is, of course, necessary to
 

develop the appropriate set of algorithms. The most basic such control
 

that comes to mind is the linear, full-state observation, sampled-data
 

control developed by Levis [10]. His solution is to control the system
 

x(t) = Ax(t) + Bu(t); x(t 0 ) x0 (3.1) 

in order to minimize the functional 

fo 

by approximating (3.1) by a discrete-time system of the form
 

(3.3)
= Zxk + Du, 

uk =-x (3.4)
 

with cost functional
 

J = (x'Qx, + u'Ru + 2x'Mul) (3.5)0 ~ ii i
1=0I
 

where u = u(iA) and x = x(iA) for a given A, and where the parameters 

4, D, Q, R and M are given as follows 

0 = e (3.6) 

D = eAtBdt (3.7) 

-19­
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AtQeAtdt
Q= e (3.8) 

0
 A t t 

B' Af eA'ds]A[0 eAsds]dt.B (3.9)
te 
0 J 

M f eA'tQ[ eAsds]Bdt. (3.10) 

Levis found that the optimal value for G is given by 

G- R-1M' + (R + D'D)- D'K( - DR -M') (3.11) 

where 

X = lam K (3.12) 
k
 

is the steady-state solution of
 

K = P - DR-IM']'[K+-Kk+ID(R+D'Kk+D)-iD'Kk+l] 

[(b - DRI1M '] + [Q - MR-IM'] (3.13) 

with boundary condition 

K= o. (3.14) 

The cost in this case is t0'x 

Now if u A m and x S n, and TM and TA are the times needed 

-for a computer to perform an elementary multiplication and addition, 

respectively, then the minimum online time needed to perform the vector 

multiplication G-x is mnTM + m(n-1)TA, which is approximately mnTM 

if TM >> TA (we are assuming, of course, that all of the elements of G 

are non-zero - as they would usually be). Thus the minimum interval 

of discretization is A 
 = mnT 

minc n 

Let us consider the controllable 2-dimensional system 
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x(t) = x(t) + [u(t). (3.15) 

We might suspect that if 6 is sufficiently small, the behavior of this 

system would resemble that of: ]x(t) + [lu(t)x~) ,(3.16) 

which is uncontrollable, but which can be stabilized. If we define 

x(t) = , (3.17) 
x 2 (t)] 

then in system (3.16), x will decay to zero regardless of input, while
 

x2 will behave like the scalar system
 

x2 (t) = x2 (t) + u(t), (3.18) 

and, as was shown in Chapter II, a decreasing A will result in a mono­

tonically decreasing cost associated with x2 (t). Thus, the optimal
 

linear control for (3.16) will be of the form
 

u = k x 2(t), (3.19) 

and the optimal A is A = A . In the case of system (3.15), for aThin
 

given A, the optimal control will involve two multiplications; as we
 

shall prove in Chapter V, however, a better result can be obtained by
 

implementing the one-multiplication law of (3.19), if S is sufficiently
 

small.
 

Clearly, then, in some systems many of the optimal gains are
 

small, and in higher-dimensional systems a great deal of computational
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simplicity way be obtained by setting these gains to zero. Thus,
 

excellent performance can sometimes be obtained by feeding back only a
 

subset of the states, and, given the simpler form of the controller,
 

using a much smaller A in order to achieve performance superior to the
 

"optimal". With this motivation, we will develop an optimal constant 

discrete-time partial-state feedback control. 

The following results are parallel to the continuous-time work 

of Levine [9]. We include a complete derivation. The equations defining 

the solution are (3.42)-(3.44).
 

Given the system
 

(3.20)
Xk+l = tk + Duk 

Yk = CXk' (3.21) 

we wish to select F in the feedback law
 

=-7k (3.22)
 

in order to minimize (3.5), which leads to a cost 

± 3c 
J(F) = 1 tr ( 0 i') [Q-2MFC + cF'BFCJ40 j (3.23) 

where
 

(3.24)
0= - DFC. 


We use the "trace" form in (3.23) to avoid developing a feedback law 

that depends on the initial state of the system; our solution will be 

optimal in an "average" sense ([6], [7], [9]). 

http:3.42)-(3.44
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We will find the following identity, due to Kleinman [5] useful. 

If we have a function J(F) which satisfies the condition 

J(F + EAF) - J(F) = Etr[M(F)AF] + O(C) , (3.25) 

then, 

@J(F) = M'(F). (3.26) 

n
We proceed as follows, for small e we have es 0 for n > 2, so we may
 

approximate
 

J(F + EAF) ; 1 tr [ 0 - EDAFC]'
2 3-=0 Lf 

[Q-2M(F+eAF)C+C'F'RFC + sC'F'PRAFC + EC'AF'RFC] EO-DAFC 1}. 

(3.27)
 

To first order, for i > 1,
 

1 -
Nc0 - EDAFc] ii0 - { 0 
- 1DAFC + 401-2DAFt* +. ..+ DAFCc0 l} 

(3.28)
 

(The expression in (3.28) is the identity when i = 0.) 

We will call the expression on the right hand side 'P - E0 

Now we rewrite (3.27) as
 

J(F+EAF) s. 1 [ E tr kP0 I - CA['0[Q-2FC+C'FFC]*j 

+ 0i [-2MAFC + C'F'RAFCA } + tr{Q-2M(F+AF)C 

+ C'FRFC + SC'F'RAFC + £C'AF'RFC} (3.29) 

so, 
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0,
'C'tr{-EA [Q - 2MFC + C'F'RFCJ@0 

J(F + EAF) - J(F) = 2 1 

+ E0 [-2MAFC + C'F'RAFC + C'AF'RFC])0 

-- 0 [Q - 2NFC + C'F'RFCJA } 

+ tr{E(-2MAFC + C'F'RAFC + C'AF'RFC)}]. (3.30)
 

Now, if we let
 

Q0 = Q - MFC - C'F'M' + C'F'RFC, (3.31) 

and use the trace property tr{XAFY} = tr{YXAF} to get each term to end 

in AF, we get 

J(F + LAF) - J(F) = tr{-2CMAF + 2CC'F'RAF} 

2 

trf 0o 24j) lI 1 I 
tr { ) C'F'RAFJ-2CO0 10 1MAF + 2C0o) 0 

1=2.
 

- 2oZ 0 0 00 DAF + Co00itQ 1-2DAF0 


A1- C40
+ CO020 Q0 DAF +...+ 10 Q0DAF)
 

1 
= tr cECi=0 

[0)11 C'F'RAF - CO) 0 4 0 MAFJ 

=C4o o Qo4) DAF, (3.32)
 

so 

aa= (tFCo oC' - M1 0 I oC
 
=0
 

-, D'40)-l-'e00 3C'. (3.33)
 

i=l n=0
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Now, let
 

L= _ 0 0, and (3.34)
 

1=0 

x Z 4=0 Q0A)j. so that (3.35) 
170 

4OLO' = L - I, and (3.36) 

of'40 = K - Q0 * (3.37) 

Then if we set 2- = 0 in order to find the minimum for J, 

equation (3.33) becomes 

-
0 = RFCLC' - M'LC' - (0'J) I)'Q A 43)C'c (3.38) 
2i-l 3=0
 

But
 

'
K (c -13J)'Q 0 =:0 o - Q0o(o) 
.L:I 3=0 3=0 I-3+i 

(i-l-)'0 (I-) ](03), (3.39) 

3=0 1=3+1 

If we let k = i-j-l, then (3.39) becomes 

YE (4 k) IQ ) ~ 4 J(,t J = F0 ok)Qo k+l 5 O0(0) ' 0] ( Aok'Qo~k~ 0 (*0 (4
k=0 3=0
j=O k=0 

= K40L. (3.40) 

Then substituting in equation (3.38) gives 

0 = RFCLC' - M'LC' - D'K)0LC' 

= RFCLC' - M'LC' - D'KLC' + D'KDFCLC', (3.41) 
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so the solution is 

I
F = (R + D'KD)- (M' + D'K)LC' (CLC')- , (3.42)
 

where
 

7
K = Z 4)1QA4 (3.43) 
1=0 

and
 

L -E cif
01 0 "(3.44)
 

1=0
 

where
 

= 4 - DFC (3.45) 

and 

Q0= Q - MFC - C'F'M' + C'F'RFC. (3.46) 

As we note in Appendix C, equations (3.42)-(3.46) reduce to the usual
 

discrete-time solution [10] when C = I.
 

Now, the optimal cost for the partial-state feedback controller
 

is 

J* = !Ltr Ix0'Xx0, (3.47)
2 00 

where K is as given in (3.37). We might choose to compare the full- and
 

partial-state feedback laws by calculating D, D, Q, R, and M for a
 

given A, solve for the optimal full-state feedback solution, re-calculate
 

the parameter set for appropriately reduced values of A (reflecting the
 

reduced computation time) , and determine the optimal part-state solution
 

for these values of A.
 

. 1 'IBILITY OF THE 
hGEi PsOOR 

http:3.42)-(3.46
http:4)1QA4(3.43


Chapter IV
 

The Discrete Optimal Minimal-Order Compensator 

One technique used to stabilize a plant system for which only
 

- part of the state can be observed is the construction of a dynamic 

compensator ([2], [121, [13]), i.e., a system that estimates the unknown
 

part of the plant state based on the entire past history of plant obser­

vations. In some cases [2], the plant is not output stabilizable, and 

use of a compensator is a necessity. If the system is output stabili­

zable, though, we may choose either a simple output feedback controller
 

or a more computationally complex compensator. We would like to know,
 

then, when to use the "faster" output feedback or the "more accurate"
 

dynamic compensation.
 

First, however, we must develop a discrete-time version of the
 

optimal compensator. Our work here parallels the continuous-time
 

derivation of Blanvillan [2]. The results are summarized in equations
 

(4.5l)-(4.55). 

Let us consider the system
 

x(k+l) = Ax(k) + Bu(k) (4.1) 

with observation
 

y(k) = Cx(k) (4.2) 

where the vectors and matrices are defined as
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x 1 (4.3) 
Ix 2
 

Mm,x2 EjRn-mwith x1 

C = [1. 0mx(n-m] (4.4), 

A = A(4.5) ,

rAN21 
 A 221 

with A1 1 E R x R, A22 jRn-m xRn-m, A1 2 Rn-m xRM, 

A21 E m x n-m, 

B 1 ,(4.6) 

B2
 

- m E n-m 
with B1 ,JR2 r 

In the above, we have assumed a canonical form for the system, insisting
 

that the observation matrix is of a particular form, as in (4.4). In
 

fact, Blanvillain has shown, for continuous-time, that every linear
 

system is indeed equivalent to a system of this form, if one eliminates
 

redundant observations. The argument is easily extended to the discrete­

time case.
 

We would like to choose a cost fanctional to minimize, using a
 

linear feedback control. Unfortunately, as in the continuous-time case,
 

using a cost of the form
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(x() 'Qx(3) + u(1) 'Ru(3) - 2xi) 'Mu(i)) (4.7) 
'=0
 

would lead to a control law that depends on the initial state x(0) = x0
 

that is, the optimal linear control would not be a strict feedback law.
 

We use instead a cost that leads to a feedback law that is optimal over
 

the average of a set of possible initial states; it is of the form
 

= E{ (x(1) 'Qx(1) + u(i) 'Ru(i) - 2x(1) 'Mu(1))}. (4.8) 
1=0
 

We will additionally treat x0 as a random variable with statistics
 

E{x } = 0 ; E{x x -0'1Z0" (4.9) 

Now, it should be noted that the system (4.1)-(4.6) can be written 

as follows­

x 1 (k+l) = A1 1 x1 (k) + A1 2x 2 (k) + B1 u(k) (4.10) 

x2(k+l) A21xl1kW + A2 2x2 (k) + B2u(k) (4.11) 

y(k) = x1 (k). (4.12)
 

Since xl(k) can be observed exactly, and u(k) is known, we may consider
 

the input to be
 

v(k) = A2 1x1 (k) + B2 u(k) (4.13) 

with observation 

Y2 (k) = x1 (k+l) - A1 1 xI(k) - Blu(k) (4.14) 

so the system (4.1)-(4.2) may be written as 
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x2 (k+l) 	= A2 2 x 2 (k) + v(k) (4.15) 

Y2 (k) 	 = A1 2 x2 (k). (4.16) 

If we assume the compensator is of the form 

x2 (k+l) = F 2 (k) + Lv(k) + HY2 (k) (4.17) 

then we choose [12] L = I, and 

F = A22 - HAl2' (4.18) 

where H is a design matrix; it can be shown ([2],[12]) that the error 

A 

e = x2 	- x2 is described by 

e(k+l) = (A2 2 - HA 12)e(k) = Fe(k), (4.19) 

and thus H may be ad3usted [15] for arbitrary error dynamics (assuming 

observability of the original system). 

Now one problem with the formulation (4.17) is that y 2 (k) is a 

function of the future state x1 (k+l) (see 4.14). To eliminate this, we 

instead use for our compensator system the variable 

z(k) = x2 (k) - Hx1 (k), so (4.20) 

z(k+l) = Fz(k) + Px1 (k) + Du(k), (4.21) 

where F is as in (4.15), and 

P = FH - HAll + A2 1 , (4.22) 

D = B2 - HB (4.23) 

This is in fact the minimal Luenberger observer. To optimize the 
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cost (4.8) over H, we will for the sake of computational simplicity
 

reconsider this in terms of the augrented state
 

Fx (kc)1
s(k) =e(k)] so = (4.24) 

where
 

e(k) x2 (k) - x2 (k) = x 2(k) - Hx 1(k) - z(k). (4.25)
 

We will assume at this point that a "separability" property 

holds, i.e., that if u(k) is to depend on x1 (k) and x2(k), as in 

u(k) = Gx(k), (4.26) 

then the optimal values for G and H may be designed independently of
 

each other. This means, then, that the optimal feedback G* is exactly
 

the optimal feedback matrix for the system (4.1) when the full-state
 

is observed. Blanvallain [2] 3ustifies this assumption by showing that
 

it leads to an optimal compensator design matrix H* that is independent
 

of Q and R, two matrices on which G* explicitly depends. We feel,
 

however, that this argument is circular, and much prefer the reasoning
 

of Miller [13], who shows that for any given H*, use of any other feed­

back matrix will lead to an increase in cost. The proof is mechanical,
 

and easily extends to the discrete-time case; we will dispense with it
 

here.
 

We may now express the input as
 

u(k) = G*x(k) - G*Ne(k), (4.27)
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where
 

NY0x(n~m 1 (4.28) 

i(nm)x(n-m) 

The 	 closed loop system may ,be then described 

s(k() =xk) = rt+ls0 , '(4.29) 

where
 

r= 	 + B 
 (4.30)

0 

j
 

The cost (4.8) is rewritten as
 

J()= {,s'(k)Qs(k)} 	 (4.31) 

0 

in which 

[QN+ G*'RG* + MG* + G*'M' -G*'RG*N - MG*N] (4.32) 

L-N'G*'RG* - N'G*'M' N'G*RG*N 
 J 
If we 	let E0 0s0'},s then the cost becomes
 

J(H) = tr{ r'krk0}, (4.33) 
0 

which 	suggests a Lyapunov equation; so if A is the solution of
 

rIAF + 	R = A, (4.34)
 

then the cost becomes
 

J(H) = 	 tr(Ao). (4.35)
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From this point, the derivation of conditions for an optimal H*
 

is fairly mechanical, and we will present only the skeleton of the
 

argument. For a more detailed exposition, see Appendix B.
 

Our strategy will be to isolate the portions of (4.35) that
 

depend explicitly on H. From equations (4.9) and (4.25) we can show
 

that
 

= [1 t2](4.36) 

where 

E0 = E{e0e0} = HZllH' + E22 - HE12 - Z12H' (4.37) 

when Z0 is written
 

z0=111 E121 (4.38) 

12 22 l
L 


Although both and B0 are functions of H, it will be seen that -12 

does not contribute to the cost (4.35). 

As to the solution of Lyapunov equation (4.34), that is, 

A =[1 2 (4.39)
 

it is trivial to show that A is the usual Riccati solution K of (3.14), 

given our earlier assumption of separability. This is rather unsur­

prising in light of the fact that our assumed feedback G* is dependent 

only on K and the system parameters (see (3.12)). This result leads to
 

http:t2](4.36
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the equation for A1 2 reducing to 

A12 =.(A' + G*'B')A 1 2F, (A.40) 

and if we assume that G* is chosen for a stable plant, and H', upon 

which F depends ((4.18)), is chosen to stabilize the error ((4.19)), 

then 

!1A1 2 11 = 0 (4.41) 

This enables us to rewrite the cost (4.,35) as 

J(H) = tr(KZ ) + tr(A22E0), (4.42) 

where A22 turns out to be 

N'G*'(B'KB,+ R)G*N + F'A22F = A2 2 " (4.43) 

Since only the second term of (4.42) is dependent on H, we will minimize 

the added cost 

J(H) = tr(A 2 2 E0 ). (4.44) 

If we write (4.43) as 

M0 + F'A22F = A 22 (4.45) 

noting that MO is independent of H, then since A22 is the solution of 

a Lyapunov equation, (4.44) becomes 

J(H) = tr {( , (Fi) 'M0Fi)E 0 
i=0 

= trM 0 	 E FiE0 (Fi)'} (4.46) 
i=0 
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As we intend to minimize J according to
 

Di (4.47) 

we may again, as in Chapter III, make use of Kleinman's lemma ((3.6)­

(3.7)) by getting an expression for J(H + EAH) - J(H) in the appropriate 

form. It then turns out that 

(E'I+ A WA Z A ) 12 

H* = ( + A22WAI2) (II + AI2WA' (4.48)
 

where W is the expression
 

' W = Z FiE0 (F) , (4.49) 
3=0
 

which naturally appears in (4.46); by substituting H* into the Lyapunov
 

equation associated with (4.49), we get
 

W A A WA )- (A WA' +E

22A22 12 2 2WA{2) 1 12 22 12
1 2 


+ E22 (4.50) 

Thus, the minimal increase in cost due to the compensator is
 

J* = tr(A0* , (4.51) 

where
 

* ' 
E0 = H'E11H + E22 - 12- 12*', (4.52)
 

(A2 1"222 2 22(A2 H*A )A* (A' -A'H*')12 22 22 12 *) +2A 

SN'K(B'KB + R)KN (4.53) 

2) - I 'H*= (12 + A22WAI )(Zl + A2WA (4.54) 
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and 

W =A WA' +S -(EA W')( A)22 22 22 12 + A22WA12) (1I1 + '12'12 

. (AI2WA;2 + E12) (4.55) 

These equations, of course, may all be solved offline. However,
 

the online construction of the state estimate , needed to implement a
 

feedback control, may be very time consuming. An examination of
 

equations (4.20)-(4.23) show that (n-m)(n+m+l) multiplications will be
 

needed for state reconstruction, in addition to n for feedback; only m
 

will be needed for partial-state feedback. 

http:4.20)-(4.23


Chapter V
 

An Example- Full- vs. Partial-State Feedback
 

As we noted in Chapter III, we may sample outputs, and calculate 

optimal controls, at a greater rate when we use a partial-state feedback 

algorithm than when we use full-state feedback. In other words, even 

if we are physically able to observe the full state of a system, we
 

might feed back a function of only part of the state, hence simplifying
 

computation. In such a case, we will lose knowledge of part of the
 

state that would have been available at a slower rate; in return, how­

ever, we gain more frequent knowledge of the part of the state that we
 

do access.
 

Kokotovc [8J describes a class of systems, called "c-coupled",
 

which provide a number of illustrative examples. A large system is
 

said to be s-coupled if it splits into several independent subsystems
 

when a scalar parameter s is zero. As Kokotovic maintains, the amount
 

of computation for continuous-time control is greatly reduced if we
 

calculate the optimal regulators for the decoupled subsystems rather
 

than for the full system; moreover, the performance of the suboptimal
 

control is fairly near that of the optimal. Since we are in fact
 

concerned with a sampled-control, however, the suboptimal control will
 

lead to a shorter possible sampling period and perhaps a better result
 

than in the full system control.
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In particular, if decoupling of a completely controllable system
 

results in one subsystem that is uncontrollable but stable, and one that 

is controllable, then it might be advantageous to feed back only the
 

states that belong to the latter subsystem. We will c6nsider a simple
 

2-dimensional example of this. We look at the system
 

x(t) x(t) + u(t) , (5.1)I 
which is controllable for all C yd 0. If c is very small, we might 

expect that (5.1) will act very much like 

[x(t) x(t) [ ] u(t). (5.2) 

In fact, this new system (5.2) is output stabilizable; if we let
 

x(t) = 1 (5.3)
 

then xl(t) tends to zero regardless of the input, while the behavior of 

x2 (t) is described by the scalar equation 

x2(t) = x(t) + u(t), (5.4) 

which is obviously controllable.
 

Since only the cost associated with x2 (t) is determined by the
 

feedback law, the cost criterion, of the form
 

S= f [x'(t) x(t) + ru(t)2 ]dt, (5.5) 
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will be minimized by choosing as fast a sampling rate as possible; it 

follows from Chapter II that J will be a monotonic function of the 

sampling interval A. What we will show is that if c in system (5.1) 

is sufficiently small, the sampling interval chosen in order to minimize 

a cost of the form (5.5) should also be as small as possible. 

We will assume for the sake of computational simplicity that
 

*2 _ 0. We define the matrices
 

A = (5.6) 
0 1 

and
 

B = [0](5.7) 

and using the usual series definition
 

2 T4
3 A4
AT 2 

+- +... (5.8)
e =I+ TA + A +-

2T 3! 4!
 

we obtain
 

eA 	 1= 0 + T [l 6+ Z2-[1 + T3.[1 "'" 
0 1 01 2!0 1 3 

e-T 	 sinhT] (5.9)T 


Now using the definitions of (3.7)-(3.11), we have
 

-A 

a = A (5.10)
eA
0 


http:3.7)-(3.11
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EcoshA
 

le_2A (2A+e -1
2t2 2_x2Z2 

-fl e -1 I-12)
 
2
 

= 
a 2(5.13) 

and
 

(5.14")
R (r+lyA + (e 2( 

We shourd.note that the discrete time system
 

(5.15)
x(k+l) = x(k) + Du(k) 


is completely controllable, since
 

(e-AcoshA + eAsinhA - sinhA) 

4D = LeA(eA-l) (5.16) 

so
 

det[ kD 0] = E(l-cosh(2A)), (5.17)
 

which is nonzero when E 7 0 and A 3 0. 

Now suppose we would like to determine the form of the minimal 

cost if we feed back only part of the state, i.e., x2. In this deriva­

tion and the one that follows we will make liberal use of the approxima­

tion 
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z z(a-sb) _ za-szb (5.18) 
a+eb a2_e2b2 a2 

Looking 	at (3.23), if we let
 

(5.19)
 
[ k, 


then the expression D'KD becomes
 

A- A_ 2
 
D'KD = 2k2coshA(e -1)+k 3 (eA-) (5.20)
 

and D'K' is the matrix
 

2AsnhA) + k3 (e2A_ eA)J.
D'K = 	[sk1e-AcoshA + k2 (1-e
-A) k2(e
 

(5.21)
 

Then,
 

s
k' 	 E(k2 (e 2A_
2(1+e-2A) + 2A-e-2A+l1 


M' + D'K4 = 
A 2 

-A3 	 -(e "(e-1)].
eA 


(5.22)
 

Now of 	course we can define 

C = 0 1] (5.23) 

for use 	in equation (3.23). If we define
 

L = 2] J5.24) 
t2 

3
 

then 
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LC'(CLC')- = 23• (5.25) 

11 

We can develop a property of L which will simplify things con­

siderably. We know from equation (3.23) (repeated here) that 

-F = (R + D'KD)-1 (M' + D'R4)LC'(CLC') , (5.26) 

and in this case, F will be a scalar. Then 

A 
(D= - (5.27)0 DFC 

becomes
 

[CA-n c(sinhA - FcoshA)1 
(D0 eA - F(eA -l) (5.28) 

and using the definition of L in equation (3.15), 

L E ) R ) ', (5.29)OD(@00
 

i=0
 

it is easily determined that
 

-+ 1e2A + e-4A + 
£11-e-- , (5.30) 

and that 92 may be written as
 
A 

2 = s2' (5.31) 

where 2 s a function of A; that is, we will be able to make the 
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approximation
 

EY2 ; 0. (5.32) 

Moreover, we can derive a similar property for K. Recalling that
 

the definition (3.16) is
 

K (0 ) 'Q0(0 (5.33) 
1=0 

where
 

Q0 = - MFC - C'F'M' + C'F'RFC 

1e-2A C [2 A+e-2A- l-F(2 A+I-e-2A)H 
2T 

E -2A_ -2A A 2 AA2 (e 2A-1) 2
S[2A+e -l-F(2A+l-e H] RP 1 2. -F(e -1) 

(5.34)
 

we can readily see that
 

2 A ­k 1 1-e (1 + e + e 4A += e 1 
= 1 - 2A )2(l-e 

(5: 35)
 

and
 

k2 =Ek2 (5.36)
 

where k is not a function of E.
 

Now we maintain that k3 is the solution of the Riccati-like
 

equation associated with discrete-time linear control of the scalar
 

system
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x(t) = x(t) + u(t) , y(t) x(t), (5.37) 

with cost functional 

12 [x(t)2 + ru(t)2Jdt. 	 (5.38)=f 

By setting b = q = a = 1 in equations (2.5)-(2.10), the form of the 

Riccati-like equation (2.12) becomes 

0 = -(eA-1) 2k 2 + [(e2A-1) ((r+l)A + (eA -1) (e -3)) 

-(e A-1) 3eA + 1(e +) (e -l) 3]k
1. 	2 i 1 A 4 

4+ e2Al)[(r+l)A + eA-1) (eA-3)] - (e -1) , (5.39) 

or, 

0 -(eA-l)k 2 +(r+1)A(eA+1)2(e-l)Jk + (eA +1)(r+l)A+eA-1.+ 	 ­

(5.40) 

In the two-dimensional case, the equation describing k3 that results 

from the Lyapunov equation 

0'10 = K - Q0 (5.41) 

is 
A )]2 k 2 1 2A) )2, (5.42) 

k [e F(e1J ~k - RE +-1(1-e ) +F(e-1),(.23 	 3 2 

where R is as in (5.14). 

Using the rules Ck2 ;Z 0, Pi2 z 0, and k2k2 - 0, we can make the 

approximations from (5.20) and (5.22), 

'A_ 2 A_ A_R + D'KD (r+l)A + (eA-1) k3 + (e -1) (eA-3) 	 (5.43)
3 2 

http:2.5)-(2.10
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-2A 3 - A (eA-, 21 
M4' + D'14 - (A+e +3 1- ( A 1 C-) 

3 2 

(5.44) 

and so, from (5.26),
 

2
eAA- 2~C A_
A ( e A _ l )kr- -L A-(eA_l)
 
Fe e:-) 1 (545)
 

Cr+1)+ (eA-1) [e3+ eA-1k 3 ] 

Now direct substitution of (5.45) into (5.41) would give us a
 

cubic expression in k3; we notice, however, that in the subexpression 

k 3E2CeA-)2 + 2 A(eA2+ R), (5.46) 

the coefficient of F2 is just the denominator of F; in fact, (5.46) is 

just 

F(k 3 eA (e -l) + (eA-1)2). (5.47) 

Equation (5.42) is then just 

k 3 e - 2k3F(e -l)eA+ F(k eA(e -l) + -(eA-1)2)3 2 

kk 3 + 1 (le 2 A) + F(eA_1)2 (5.48) 

which simplifies to 

=AA1 e2A) 1 A 

k(e2A-l) - Fk eA(eA-1) (+ A) (5.49)- (eA-1)2F. 

If we divide by (eA-1), and substitute (5.45) into (5.49), we have
 
2AA1 2A A 1A 2
 

2]
3 3 2 2

-k 2(eA-l) + k (eA+l)(r+l)A + - (e 2A-l) (eA-3) - - e -(eiA_)

leA 3 1 AA 2
-Z - k3 e e -)- 1 
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S23 (eA-1) + k [eA+l) (r+l)A - 2(e -1)]
3 3 

+ j (eA+l] (r+l)A - 1 + eA = 0, (5.50) 

which is exactly the expression in (5.40). Thus, if we let M(A) be the
 

solution of (5.40), the matrix K becomes
 

K = [, (5.51) 
'i2 k (A)] 

and if the initial state is given as 

x(0) = [xcl] , (5.52)'X02] 
' 

Lx2

the resultant cost is
 

S(A) = + 26k2 xX 0 2 + k(A)x 0 (5.53) 

We now go to the case of full-state feedback control. Here, F*,
 

the feedback matrix, will be 2-dimensional, e.g.,
 

F* = Ef11 f 2 ] ; (5.54) 

we will also denote the steady-state solution of the discrete Riccati
 

equation (3.14) as
 

kl k2 
K* k1. (5.55) 

[2* k3 * 

Unfortunately, in this case we will not have any terms that are
 

zero in the closed loop transition matrix, unlike the previous case of 



-47­

partial-state feedback. Thus, a direct attempt to solve (3.14) will
 

result in three coupled non-linear equations. We can, however, make
 

the simplifying approximations
 

l*1 +sk (5.56) 

K* k 2+sck2(5.57)
 

*3 S k3' (5.58)
 

A
 

where -l k, A l' k
-

2 ' k
A 

2 ' k
-

3 ' k3' are independent of e, and need to be 

determined. These follow from the Taylor series expansions
 
3kI2 82 2kl
 

k(e) = k (0) + (0) + -- (0) + (5.59) 
i10 aT 0 2! a 2 

and our assumption that E , 0 for 3 > 2. Note that we are implicitly 

assuming that k (s) is analytic in some region around E = 0 (see Com­

ment 1 -at the end of this chapter). 

-In fact, since ki = kc (0), we can easily see that = = 0' 

and k3 = k(A). Then the resultant cost becomes 

J f(A) = ( + shx0 1 x20 + (k(A) + . (5.60) 

We can now compare costs (5.53) and (5.60). First we make the 

reasonable assumption that we have preselected a maximum sampling 

period, that is, A is bounded above as well as below for both the full 

and partial-state feedback algorithms. Then, since the discrete time 

system (5.15) is controllable for all A 3 0 and C 3 0, we know ikll, 

Ik2 1, Ik 3! and Ik 2! each have an upper bound over the acceptable range 

of A. Suppose, then, that the sampling rate for full-state feedback is
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A* and that for part-state feedback is ..A*. Then the difference in the
2 

two costs is
 

J (A*) l 2 ^^ 2 
j - J 2 23lkx 01 + 2(k2-k2)x 0x02 k+3x02 

(5.61+ (k(A*) - k( ] 

Now, as we showed in Chapter II, 

k(A*) - k( -A*) > 0; (5.62) 

we will define 

6 A k(A*) - k( 2*). (5.63) 

Thus, for any sampling period A* and any bounded set of initial states
 

such that for some system of the form (5.1) we have
 

2kl X0l ^1x0
 
-- + 2(k2-k + 3 ) <k , (5.64)
12 2 2 x 302 

we may conclude that 

Jf(A*) - jp1(2=*) > 0. (5.64) 

x02  


In other words, there will be some system (characterized by e) for which
 

(5.65) holds. Of course, E must be sufficiently small for our approxima­

tion 62 _ 0 to hold.
 

Comments 

1. Our assumption that K(S) is analytic is indeed justified. 

Results of this nature for the differential Riccati equation follow 

directly from a theorem of Pontryagin [14] (pp. 170-181; also see 
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Kokotovic [8]). We may extend these results as follows: consider the
 

discrete-time equation (3.14) to be of the form KI = f(K +l). Then
1l 

K= f(K) is the steady state solution. Now consider the equation 
dKjt) = f(K(t)) - K(t). From Pontryagin's conditions, each solution 

at 

K(t) of this equation is an analytic function of E. But surely one
 

AA
 

solution is K(t) = K, that is, K(t) is constant. Thus, K is an analytic 

function of E. 

2. The conclusion of this chapter can be extended to the more
 

general system
 

X(t) =x(t) + []u(t), 
where b < 0. Then, the new 'I matrix takes on the form 

Ae f(a,b,A) 

bA aA 
=1 Ii e -e 

where f(a,b,A) = 1 sinh(aA), if b = -a, and f(a,b,A) =e b-ae if 
a b-a 

lbI y jal. In either case, the reasoning of this chapter holds up 

in every detail. 

3. In fact, there are apparently n-dimensional analogues of
 

this example. We will return to this in Chapter VI. The example of
 

this chapter is also relevant to the dynamic compensator of Chapter IV,
 

if we suppose that, for (5.1), we are only able to observe x2(t). In
 

this case, partial-state feedback is still superior to compensation, as
 

compensation could not give us even as good a result as the optimal
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full-state feedback law. 



Chapter VI
 

Conclusion
 

The main contribution of this thesis, in our opinion, has been to
 

formally state how the fundamental characteristics of digital computation
 

cause the sampling interval A, as well as the usual feedback matrix, to
 

be an optimization parameter. In this light, we have developed several
 

on-line control algorithms, particularly a partial-state feedback law
 

(Chapter III), and an output compensator (Chapter IV). We were able to
 

explicitly state how, due to the question of relative computational
 

complexity, one algorithm might be preferable to another; we derived an
 

example (Chapter V) of a system where this was clearly illustrated,
 

in order to 3ustify our general point of view.
 

Since this work is intended mainly to provide a framework for
 

further research, perhaps it is more appropriate to discuss the key
 

questions that remain to be considered. In particular, we have not
 

been able to devise a method for selecting the optimal sampling interval
 

A A* for a general class of systems, even for a particular control
 

algorithm. One reason for this, as we have mentioned is the non-mono­

tonicity of cost with respect to A. While this fact is disappointing,
 

however,,it is not a fundamental obstacle to solution of the above
 

problem. In many situations that occur in the theory of optimal control,
 

it is possible to optimize a control over two parameters; we do not
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usually depend on the fact that the optimal choice for one parameter is
 

an extremum of its permissible range. A far more serious question is
 

that of "separability". The technique used to develop the optimal com­

pensator (Chapter IV), for example, relied on the fact that the observer
 

and feedback parts could be designed independently. In th@ case of A
 

and F, however, it is foolish to talk about separability; the optimal F
 

fundamentally depends on our choice of A.
 

The example of Chapter V, however, does suggest how we might
 

extend this work to produce some useful results. Let us consider pe
 

general c-coupled system of Kokotovic [8] in the partioned form
 

12] [ 

E L 1 BJ1[l B 2f u 3 
 (6.1)

L: 2 A21 A 2 Lx211 B 21 B 2 
u 2 u 

=
where x and 2 are n1 - and,n2-dimensional substates, n1 + p2 n, and
 

nI and u, are rI- and r2-dimensional spbcontrols, r, + r2 = r. Then,
 

the discrete optimal full-state feedback control (3.6)-(3.14) will
 

involve rn online multiplications (and r(n-l) online additions, which
 

we'will ignore). If we were merely to consider the systems
 

=
10 Alx10 + BlU10 (6.2)
 

'20 = A2x2 0 + B2 u2 0 (6.3) 

we would find that the optimal control would involve only r1n1 + 2n2 

multiplications, which is less than rn. We suggest that, using the
 

assumptions and techniques of Chapter V, that for any A, the difference
 

between the costs resulting from optimally controlling (6.1) or con­

http:3.6)-(3.14
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trolling (6.2)-(6.3) is a linear function of C. Note, however, that
 

unlike the example of Chapter V, this does not demonstrate the super­

iority of the suboptimal control over the optimal; the earlier example 

depended or the fact that the costs of the decoupled subsystems were 

monotonic functions of L. Thus, this approach will not be helpful in
 

controlling (6.1) unless we know something of the behavior of (6.2)
 

and (6.3), and are able to study system performance as a function of A.
 

In conclusion, it is clear that the use of digital computers in
 

controlling large-scale systems will require the examination of issues
 

such as those outlined in this thesis. It is hoped that our efforts 

will provide some useful insights for future researchers in this area.
 



.i 

Appendix A
 

We herein prove that
 

DK(A) > 0
aA >_ ,( 

for all A > 0, where K is given in equation (2.14).
 

If we define
 

G(A) = A(4+I) (ra2+gb2) (A.2)
 

2b2a (4-l)­

we see immediately that 

G(A) > 0, (A.3) 

for all a, and 

K(A) = aG(A) - + G(A)a(aG(A) ()(A.4) 
a a 

Moreover, since the scalar system (2.4) is obviously observable, the 

solution (A. 4) must be positive definite (see [i0]) and thus the radical 

in (A.4) must be real, i.e., 

G(A)a(aG(A) - a) > 0, all a. (A.5) 

Now we calculate 

G'(A) [2a 2 G(A)-q
A = aG'(A) + 

(A.6)
 

ja2G(A)2 - qG(A) 

This will have the same sign as 
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[F(A) aG'(A) a 2 G(A) 2 -qG(A) + aG(A) (A.7) 

where 

-G' (A) = (ra2 +b 2) ( 2-2aA I ) (A.8)2
 
2b2a(4-l)
 

and aG' (A) will have the same sign as
 

L(aA) = 42 _ 2aA4- 1. (A.9) 

Then, we calculate
 

3L
 
2(¢ - -1),)1n (A.10)
 

D2L 1
 
2-= ( ,(A.ll) 

DL 2 Land note that =0 at aA=O (4= 1). Since- takes on the same 
9L 9L
 

sign as aA, -Lhas a minimum at aA = , and thus >0, and > 0.3)- 3 a -

But since L(O) = 0, L(aA) will take the same sign as aA. Then aG'(A) 

must have the same sign as aA, and G' (A) > 0. 

Now, suppose a < 0 ; then 

a2G(A) - qG(A) + aG(A) ­
2a
 

= -aG(A) [ 1 - q/a 2 G(A) - 1 + 1 (A.12)
2a2G(A)] 

If we denote 

x(A) = 2 , (A.13) 
a G(A) 

then (A.12) becomes
 



-a()-1 + (A.l14) 

Clearly X(A) will be at a maximum for the value of A > 0 for which G(A) 

is minimal; since G'(A) > 0, this point occurs at 

G(0) = 	ra +gb (A.15)
 

and thus 

b 2  X(A) <- r 2 < 1 for all a, all A > 0. (A.16) 
Sra2+qb 

Since G(A) > 0 for all aA, 

X(0) > 	0, all a, all A > 0. (A.17)
 

We can use the Taylor Series expansion
 

X2 3X3
= 1 	 X 15X4 

2 4(21) 8(31) 16(41) (A.18) 

and note that, for all a and all A > 0,
 

-X- 1 +I <0. 	 (A.19) 

Thus (A.12) and (A.14) are negative. Since for at < 0, 

aG'(A) < 0, we can conclude that F(A) > 0, for a < 0, and 

aK(A) (A.20) 
DA > 0,( 

for a < 0. 

Now suppose a > 0. Then (A.12) becomes 

aG(A) [i'37i + 1 - X(A.21) 
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X < 1 the expression in (A.21) is now positive.
 Since 0 -< <_ ,t 

Since aG'(A) > 0, we may then conclude 

3 > 0 (A.22) 

for all a, and all A > 0. 



Appendix B
 

We fill 	in the gaps in the derivation of Chapter IV.
 

B.1 Evaluation of A.
 

If we define
 

then the Lyapunov equation of equation (4.34) is equivalent to
 

(A' + G*'B)A 1 1 (A + BG*) + Q + G*'RG* + MG* + G*'M' = All 

(B.1.2)
 

-(A' + G*'B')A 11BG*N + (A' + G*'B')A 2F - G*'RG*N
 

- MG*N = A12 (B.1.3) 

N'G*'B'AIIBG*N - WA' BG*N - N'G*'B'A F + V'A F
1112 	 12 22
 

+ N'G*'RG*N = A2 2. (B.1.4)
 

Now, comparison of (B.1.2) with equation (3.13) shows that All is
 

indeed the steady-state solution of the full-state output regulator
 

equation. 	We will denote A as K. Then from (3.11) we see that 

G* = R-1M' - (R + B'KB)-B'K[A - BR-MJ. (B.1.5) 

Then, 	(B.1.3) may be rewritten, using (B.1.5)
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A12 	= (A'+G*'B')KBG*N + (A'+G*'B')A1 2F - MR-IM'N 

- (A'-MR-B')KB(R+B'KB)-IR (R+B'KB)- B'K(A-BR- M')N 

- M(R+B'KB)- B'K(A-BR-IM')N - (A'-MR-IB')KB(R+B'KB)-IM'N 

+ MR-IM'N + MER+B'KB-IB'K(A-BR1M1)N, (B.1.6) 

which through judicious substitution of (B.1.5) and several cancellations 

simplifies to 

A12 = (-A'+LM- 1 B')KBG*N + (A'-MR-B')KB(R+B'KB)-'B'KBG*N 

+ (A+G*'B)A1 2F + (A'-MR-lB')KB(R+B'KB)-RG*N, (B.1.7)
 

and if we recognize the pattern 

(A'-MR-IB')K(-B+B(R+B'KB)-B'KB - B(R+B'KB)-R)G*N 

(A'-MR-B')K(-B+B(R+B'KB)-(B'KB+R))G*N
 

0, 	 (B.1.8) 

then (B.1.7) becomes 

A12 = (A'+G*'BI)A1 2F . (B.1.9) 

If we assume that H* is restricted to values for which the error e 

(4.16) 	is stable, then i FIi < 1; if G* is chosen for stability of the 

plant, then IIA'+G*'B'il < 1; thus, 

11A 1211 < jiA'+G*'BII iFiI lAl< 1211' (B.10)A121i 


unless 	 ilA1211 = 0; therefore, 1lA12 11 = 0. 

Equation (B.1.4) may now be simplified to 
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N'G*'(B'KB+R)G*N + FA 2 2 F = A2 2 , (B.1.11) 

giving us 

A = [K (B*I12)
 

0 A22
 

so in fact the total cost is
 

tr(K 0 ) + tr(A2E). (B..1.13)
 

B.2 Choice of H*. 

Clearly, we want to choose H to pinamize the added cost 

J = tr('A 22E 0 ). We set 

*= 0, (B.2. 1) 

and noting that A22 is the solution of Lyapunov equation (B.1.11), we 

see
 

Co i 

A2 2 = F NG*'(B"B+R)G*NFi. (B.2.2)
1=0 

If we let
 

M0 = N
'G*1(B'KB+R)G*N, (B.2.3)
 

then we may rewrite tr(A2 2E0) as'
 

J(H) = tr{M > F(H)VE0 (H)F(H)I'}. (B.2.4) 
I=0
 

Again, as in Chapter III, we will make use of Kleinman's lemma summarized 
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in (3.25)-(3.26) to determine
 

E0 (H+eAH) = E0 (H) + SAH(E 1 1H'-EZ1 2 ) + E(ZIIH'-FI2) 'AH' (B.2.5) 

F(H+AH) = F(H)-eAHA1 2. (B.2.6) 

Since 

0, 

J(H+EAH) = tr{M0 > (F-SAHAI2)l (E0+EAH(ElH'-X12)1=0
 

+ ( 11iiH'-Z 1 2 ) 'AH')(F-EAHA 1 2 )'} (B.2.7) 

using the approximation 
i-i
 

I
(F-cAHA 2) 1 - E: Fl-I-3AHA2 F3 (B.2.8) 
3=0 

when i 3 0 (and is the identity when i = 0), we may rewrite 

0o 

J(H+SAH) ; tr{M0 1: [(Cr-ET,)E0( 1 ) - EF'EoTI '
 

i=0 

+ FIE(AH(Z H'- 12) + (zIH'-SI2) 'AH')Fl]}, (B.2.9) 

where
 

-i i-1 1--3 
1T. = , F- -)AHAI2 F3 = , F3AHAIF'- , n > 0 (B.2.10) 

3=0
 

(Ti = 0 when i = 0).
 

Using trace properties we can write
 

3=0 


=0J(H+aAH)-J() =trfMO L [-TEOF" -'ET + FI(A-CE 11-12 

+ (E 1 1 H- 1 'AH')F'J}= 

http:3.25)-(3.26
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tr{EM0 1 I-Z12 + (E1 1H'-Z 1 2 'AH')F 
1=0 

EM [(F('-l- tAH )Fj'E
F'
 
1= 0 F 12 0 

+ 	 F E0 (F(i--)AF) 1 1
 

Etr { 2(Z1IH'-'12 )F MoF'AH
 
110
 

ittj4j
3-
E 0 F'MoF3 A jI,.
 [A 	2F3E oF MoF('-- AH + A1 2F
i--i 3=0 

(B.2.11)
 

We 	 may now apply the Kleinman lemma to get 

o 

dH 	J(H) =22 FMoFI(IIH'I2) ,
 

1 2 
-	 2 :[FME F M (-- ) + F-- E F' MF ] AF0= 3=0 0 

2Eo 
 11 MOFI( .llH'-Z12) 
'
 

M 1- 1 

12 E [FjM=0 0 1F]Ai2 (B.2.12)
3 -l J=0 

Now we can make the manipulation 

- - ] 	 -l '
L f3 [F'MOF'E0F ' '-	 M FIE F 
ii 3=0 	 3=0 1=3+1 0 0 

CO Co 	 CO CO 

E0 (2 j MoF )( k+ E0Fk,
] MFJ 


y=O k=0 0= 0 k=0 (B.2.13)
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If we let
 

W= Fk 0 (.2.14) 
k=0 

so that 

FWF' = W - E0, (B.2.15) 

and set d J(H*) = 0, (4.63) becomes 

0, 

0 = (2 Z IMF'F')(11 H*-E12 EWA' ], (B.2.16) 
=0121 

so in fact 

H* - = FWA'2 = (A22-H*A 2)WA'2. (B.2.17) 

Solving this for H*, we see
 

H* = (E' + A WA'2) (Z + A 2WA' ) (B.2.18)

12 22 12 11 12WA12
 

We may then rewrite (B.2.18), using (B.2.15) , to obtain 

W = A22WA'2 - H*A2WA' + H* A'~1H* - A WA' H*' 
k22A22 *12' 22 12'12' 22 12
 

+ H*E H*' - E +H*EI+ l 2H*' 
11 22 12 12 

H * ' = A2 2 WA' - H* (A1 2WA 2 + Z12
) + H*(A1 2WA +5 )EH*' 

- (A22'12 + '.2)H*' + Z'22 (B.2.19) 

so 

W =A22WA - (E2 + A22WA12)(Sll + A 2WA (A 2WA + 12 ) 

+ 22 (B.2.20) 
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and we get the results of equations (4.5l)-(4.55).
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Appendix C
 

Reduction of Results of Chapter III to the Full-State Solution
 

Here, we let C = I in equations (3.42)-(3.46) and show the 

results agree exactly with the work of Levis [10]. 

Equation (3.42) becomes 

F = (R + D'KD)- (M' + D'K) (C.1) 

which implies 

(R + D'KD)F = M' + D'K* 

' '
 = M' + D'KDR-1 M + D'K4 - D'KDR-IM
 

= (R + D'KD)R-M' + D'K(@ - DR-1M'), (C.2) 

so 

' F = R-IM + (R + D'KD)-1D'K( - DR-'). (C.3) 

Moreover, equation (3.37) becomes
 

=
K = 0 'K 0 + Q0o DF)'K( - DF) + gO
 

-
= -DR M')'K( -DRN') 

- (( - DRM ' ) 'D(R + D'KD)-ID')K(5 - DR-IM') 

- (4 - DR-1M') 'K (D(R + D'KD)-D'K( - DR-1 M')) + go 

+ ((4 - DR-M') 'KD(R + D'KD)- 1 D'KD(R + D'KD)- 1 D'K( - DR-IM')) 

= go + ( - DR- 1 M') '[K - 2KD(R + D'KD)-lD'K 

+ KD(R + D'KD)-ID'KD(R + D'KD)- D'K] (4 - DR-IM ') (C.4) 

-65­
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Now 	Q0 is 

Q= - MF - F'M' + F'RF
 

= Q - MR-1M' - M(R + D'KD)-ID'K(4 - DR-IM')
 

'
 
- (4 - DRIM')'KD(R + D'KD)-IM' - MR-IM
 

+ -IM' + M(R + D'KD)-lD'K(4 - DR-M'Y
 

+ (4 	 - DR-M') 'KD(R + D'KD)-IM' 

+ (4- DR- M ') 'KD(R + D'KD)-IR(R + D'KD)-ID'K( - DR-1N') 

= 	 Q - MR-IM' + (4 - DR-IM') 'KD(R + D"ID)-IR(R + D"KD)-ID'K 

- DR-1'), (C.5) 

Now, to combine Q0 with the third term in brackets in (C.4), we note
 

KD(R 	+ D'KD)-IR(R + D'KD)-ID'K
 

+ KD(R + D'KD)- D'KD(R + D'KD)-ID'K 

= KD(R + D'KD)- (R + D'KD)(R + D'KD)- D'K 

= KD(R + D'KD)-D'K (C.6) 

which we may combine with the remainder of (C.4) to show
 

I M ') ' 
K = 	( - Di- [K - KD(R + D'KD)-ID'K] ( - DR-1M')
 

+ (Q- MR- I4). 	 (C.7)
 

Equations (C.3) and (C.7) agree exactly with the results of
 

Levis.
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