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Introduction: Point of View, Goals, and Overview

This report has grown out a series of discussions over the past
year between the author and Prof. Alan V. Oppenheim of M,I.T. These
talks were motivated by a mutual belief that there were enough similari~
ties and differences in our philosophies, goals, and analytical tech-
niques to indicate that a concerted effort to understand these better
might lead to some useful interaction and collaboration. In additron,
1t became clear after a short while that one could not accomplish thas
by txying to understand the two fields in the abstract. Rather, we felt
that 1t was best to examine several specific toprcs in detail in orxder
to dewvelop this understanding, and i1t i1s out of this study that thas
report has emerged.

Thus the goal of this report is to explore several directions of
current research in the fields of digatal signal processing and modern
control and estimation theory. Our examination will in general not be
result-oriented. - Instead, we are most interested in understanding the
goals of the research and the methods and approach uged. Understanding
the goals may help us to see why the technigues used in the two disci-
plines differ. Inspecting the methods and approaches may allow one to
gee areas in which concepts in one field may be usefully applied in the
other, The report undoubtedly has a control-oriented flavor, 31ncé\lt
reflects the author's background and alse saince the original purpose of
this study was to present a control-theorist's point of view at the 1976

Arden House Workshop on Digital Signal Processing. However, an effort
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has been made to explore avenues 1in both disciplines ain order to encourage
researchers in the two fields to continue alona these lines,

It 1s hoped that the above comments will help explain the spirit in
which this report has been written. In reading through the report, the
reader may find many comments that are either partially or totally unsub-
stantiated or that are much too black and white, These points have been
included in keeping with the speculative nature of the study. However,
we have attempted to provide background for our speculation and have
limited these comments to questions which we feel represent exciting
opportunities for interaction and collaboration. Clearly these 1ssues
must be studied at a far_deeper level than 1s possible in this initial
survey—o¥1ented aeffort. Also, we have not been so presumptucus as to
attempt to define the two fields (although some may feel we come danger~
ously close}, since we feel that a valid mutual understanding can and
will grow out of closer examination of the directions we describe, To
this end, we have included an extensive bibliography which should help.
the interested readexr to make inroads into the various areas.

The followang 1s an annotated list of the topics considered in the
following sections. Sections are denoted by capital letters, and, for
ease of reference, the bibliography is coded similarly (e.g., [B=21] 1s
the 21st reference for Section A ~-~ Stability Analysis). Due to variations

in the author's expertise, maturity of the subject areas, and nature of

the questions, the sections vary greatly in depth and style. Some sec-

tions are very specific, while others are more philosophical and speculative,
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Stability Analeysas -~ In this section we discuss methods used

in both drsciplanes for the study of stability characteristics

of systems. In digital signal processing one is primarily con-
cerned with the possibilaity of limit cycles caused by the effects
of finite arithmetic in digital falters. In control theory, one
18§ often concerned with determining conditions for stability of
feedback systems, The technigues used 1n the two disciplines
have many similarities. Lyapunov theory, frequency domain
methods, and the concept of passivity are widely used by
researchers in both fields. We speculate on a potential research
topic —— the effects of finite arithmetic on digatally imple-

mented feedback control systems.

Parameter Identification, Idnear Prediction, Least Sguares, and
Kalman Filtering -- Identification of parametric models arises
in a variety of problems, from digital processing of speech to
adaptive control. Using the speech problem as a focus, we
explore several methods for identification. We examine the

autocorrelation method for linear prediction and relate 1t to
the determ;ﬁation of the time-varying weighting pattern of an
optimum predictor. We also discuss the efficient Levinson
algorithm and 1ts relationship to recently developed fast algor-

ithms for determining optimum time-varying Kalman filter gains.

The covariance method for linear prediction is discussed, as are
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1ts relationships with the Kalman f£ilter structure of recursive
»
least squares., Using thas frameworﬁ, we speculate on potential
recursive methods for identifying time-varying models for speech.
We also discuss the relationship between the parametric identi-
fiecation problem and the problem of stochastic realization.
Crucial differences in the underlying assumptions are brought
out, and we speculate on the utility of a stochastic realization
approach for the identification of pole-zero models of speech.
We also discuss other pole-zero identification techniques inclu-
ding recursive maximum likelihood methods, which resemble recur-

sive least squres (and hence the covariance method) both in form

and spairit.

Synthesis, Realigation, and Implementation -- We discuss state
space models and realization theory and the uses of such realiza-
tions for direct synthesis and for "indirect synthesis", in
which a state space model of a process of interest allows one

to apply state space methods to synthesize systems for estima-
tion, ;tablllzatlgn, optimal control, etc. We also explore the
key i1ssues involved in the design of digrtal filters meeting
certain design spe01ficat10nsi_ We discuss several filter design
methods, but the major emphasis of our examination of this

topic 1s on filter structures. Minimality --— the key concept in

state space realization theory ~- 1s only one of several issues.

Sensatavity and behavior in the presence of perturbations caused
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by finite arathmetic are crucial questions as well, Here we
find some limtations of state space methods. A1l minimal
structures cannot be cbtained from straightforward algoraithmic
interpretations of different state space realizations. We specu-
late on some recent work indicating that state space methods

may be useful in analyzing the performance of different struc-
tures, that certain factorizations of state space realizations
include all structures, and that state realizations combined
with an understanding of structures issues may lead to useful
zmplementations for multivariable filters., Finally, we specu-
late on the possibility of designing controllers, filters,

or other svstems by directly taking the constraints of digital
implémentation into account from the start. This area contains
some 1intriguing, potentrally very useful, and extremely difficult

problems.

Multiparameter Systems, Distributed Processes, and Random
Fields -- We explore a number of the issues that arise in
studying systems defined with two or more independent variables.
We see that the issues of recursion, causality, and the
secquencing of the required computations for a filter become ex-
tremely complicated in this setting. We find that a precedence
relation among the computations exists and is of the same form

and spirit as the precedence relatien arising in multi-deciszon-~
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maker control problems. A number of relationships with one-
dimensional concepts are explored. Speclfically a multidimen-
sional system can be made into a (often quite complex) one-
dimensional system by totally ordering the computations in a way
that 1s compatible with the precedence relation. We also dis—
cuss the possibility of transforming distributed or multivariable
gystems to scalar, multidimensional systems, and we speculate

on the utility of such an approach. The algebraic difficulties
that arise in multidimensional problems lead to complications

in areas such as stability analysis and spectral factoraization,
and we also point out that similar algebraic problems arise in
considering lumped-distributed systems, certain time-varying
systems, and specific classes of nonlinear systems. A number
of design methods are discussed, and many of these are closely
related or i1n fact rely on one~dimensional methods. We also
describe a number of state space models for multidimensional
systems, and we run into many of the same dlfflcultiés-——
causalaty, nonfactorizability, ete. We speculate on the utility
of state models for stability and roundoff noise analysis and
for multidimensional recursive Kalman filtering. We discuss a
number of statistical and probabilistic approaches to multa-
dimensional filtering and analyze their utility in the context
of the problem of image processing. We also speculate on the

utility of the two~dimensional stochastic:framework for the
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consideration of space~tame and decentralized control problems.
This section offers some of the most exciting and dafficult

potential research directions.

E. Some Issues in Nonlinear System Analysis: Homomorphic Filtering,
Bilinear Systems, and Algebraic System Theory —- There has been
subgstantial work an both disciplaines in analyzing and synthesizing
nonlinear dynamic systems that possess certain types of algebraic
structure, We consider the work in digital signal processing on
homomorphic systems and filter desagn, and we relate thas to
some work on state space models that possess related algebraic

properties,

Finally, we make some concluding remarks, summing up our feel}ngs
about the relationship of the two fields and the possibility of increased
interaction. From the point of view of Prof, Oppenheim and the author,
this study has been a success, since we are convinced of the benefit of
such interaction. This report will be a success 1f we can convince

others.
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A. Stabilaty Analysas

Of all of the topics that we have investigated, i1t 1s in this area that
we have found some of the clearest areas of intersection and interaction
between the disciplines. In the field of digital sagnal processandg, stability
issues ariSe when one considers the consequences of finite word length in
digital f£ilters. Two problems arise (not mentioning the effects due to finate
accuracy in filter coefficients [A-12,C~1]). O©On the one hand, a digital falter
necessarily has finite range, and thus overflows can occur, while on the
other, one 1s inevitably faced waith the problem of numerical quantization ~-
roundeff or truncation. Since the filter has fainite range (it 1s after all a
finite~state machine) the guestion of the gtate of the filter growing without
bound 1s irrelevant, However, the nonlinearites in the filter, introduced
by whatever form of firite arathmetic 1s used, can cause zero-input limit
cycles and can also lead to discrepancies between the 1deal and actual res-
ponse of the filter to certain inputs. Following the discussions in [A-3,15],
the typical situation with which one i1s concerned is depicted in Figure A.l.

The filter i1s described (in state~variable form) by equations of the form

x(n+l) = Ax(n)} + Bu(n)

It

yv{n) Cx{n)

¥{n) = N{x(n)) (x.1)

where N 1s a nonlinear, memorvless function that accounts for the effects of
overflow and gquantization., If these effects were not present —- i.e, 1f N
were the identity function -~ equation (A.l) would reduce to a linear equation.

If one assumes that this associated linear system 1s designed to meet certain
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specifications, one would like to know how the nonlinearity N affects overall
performance. In particular, one important question 1s: assuming that the
linear system 1s agymptotically stable, can the nonlinear system (A.l) sustain
undriven oscillations, and will its response to inputs deviate significantly
from the response of the linear system? We will make a few remarks about this
question in a moment. We refer the reader to the survey papers [A-3,5] and
to the references for more detailed descriptions of known results.

In control theory the question of system stability has long plaved a
central role in the design and analysis of feedback systems. Following
[A~42]1, a typical feedback system, depicted in Fiqure A.2, 1s described by

the functional equations

e = ul—y2 , e, = u2+yl
(2.2}
¥ 7 9% ' Yy T 6%
vhere ul, uz, el, ez, yl, and y2 are functions (of time -- discrete or
continuous) and G1 and G2 are operators (possibly nonlinear) describing the

dynamics of the forward and feedback paths, respectively. In control theory
one 1is interested either in the analysis or the synthesis of such systens.
In the synthesis prcblem one 1s given an open loop system Gl and 1s asked to
define a feedback system (A.2) such that the overall system has certain

desirable stability properties. In the case of stability analysis, with which

we are most concerned here, one may be interested either in the driven or
the undraiven (u1=0) characteristics. In the driven case one wishes to determine,
for example [A-~42], 2f bounded inputs lead to bounded outputs and 1f the input-

output relationship 15 continuous -- 1.e, 1f small changes in the u's lead to
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() Linear Discrete-=Time
G—u n System

y(n) >

X x(n)

¥

Figure A.l: Illustrating a Digital Filter wath Quantization and
Saturation Nonlinearaties

Figure A.2: Illustrataing a Typiréal Feedback Control System
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small changes in the y's. In the undriven case, one wishes to determine
1f the system response decays, remains bounded, or diverges when the only
perturbing influences are ainitial conditions. B2Again, the literature in
this area is quite extensive, and we refer the reader to the texts
[A-42,44,47], the survey paper [A-43], and to the references for more on
these problems.

From the above descriptions one gets a clear indication about some of
the similarities and differences in the two tOplCSl. In both areas one
wants the answers to sonme qualitative guestions ==~ 1s the system stable; is
1t asymptotically stable; is the system continuous [A-42] or does it exhibit
"Jumps" when one makes small changes in the inputs [A-32,43]. In addition,
one often wants some quantitative answers., In digital failter design one is
often interested in determining bounds on the magnitudes of limit cycles
and in fainding out how many bits one needs to keep the magnitudes of such
oscillations within tolerable limits, In the study of feedback control
systems one 1s interested in measures of stability as provided by guantities
such as damping ratios and eigenvalues (poles). In addition, one 1s often
interested in the shapes of these modes ~- 1.e. in determining the state

2
elgenvector corresponding to a particular eigenvalue.

lOne of the most trivial of these is the fact that control theorists put minus
signs 1in their feedback loops, while there are none in the nonlinear digital
filter of Figure l. The reader schould be careful to make the proper changes
of sign in switching between results.

2This is of interest, for example, in the design of stability augmentation
systems for aircraft. In this case one is quite interested in the shape of
modes such as "Mutch roll", which involves both the bank and sideslip angles
of the aircraft [a-71].
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In addition to the similar goals of the two problem areas, as we shall
see, people in each area have obtained results by drawing from very similar
bags of mathematical tricks. However, there are differences between the
methods used aﬁd results obtained in the twe areas. In the analysis of di-
gital filters the work has been characterized by the study of systems containing
quite specific nonlinearities. In addition, much of the work has dealt with
specific filter structures. In particular, second-order filters have received
a great deal of attention [A-2,3,11,15,18,31] saince more complex filters can
be built out of series =~ parallel interconnections of such sections. Also,
the class of wave digital filters [A-6,7,8,2,10] have been studied in some
detail. Studies in these areas have vielded extremely detailed descriptions
of regions of stability in parameter space (see, for example, [A-3]) and
numerous upper and lowar bounds on limit cycle magnitudes (see [A-3,4,20,26,31,
35,56,59,60,63]).

In control theory, on the other hand, the recent trend has been in the
development of rather general theories, concepts, and techniques for sta-
bilaity analysis. A number of rather powerful mathematical techniques have
been developed, but there has not been as much attention paid to obtaining
tight bounds for specific problems., In addition, problems involving lzmit
cycles have not recerved nearly as much attention in recent yvears as issues
such as bounded~input, bounded-output stability and global asymptotic stability
(although there clearly 1s a relationship between these issues and limit cycles)

In the rest of this section, we briefly discuss.the relationship between

some of the results in the two fields, Our aim here 1s to point out areas in
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which researchers have used similar techniques, obtained similar results,

or relied on similar concepts.

A.1 The Use of Lyapunov Theory

The technique of constructing Lyapunov functions to prove the stabilaty
of dynamical systems has been used by researchers in both fields, The basic
1deas behind Lyapunov theory are the following {see [A-47,48,52,64] for

details and further discussions): consider the dynamical system

x(k+l) = f(x(k)), £(0)=0 (A.3)

(where x 1s a vector). Suppose we can find a function V(x) such that

V(0)=0 and the first difference along solutions satisfies

Av{x) év(f(x)) - V(x) <W(x)<0 (A.4)

Such a function 1s called a Lyapunov function., If this function has some

additional properties, we can prove stability or instabilaty of (A.3).

Examples are (see[A~47,48]for proofs) :

Theorem A.l: Suppose V is guch that
(1) It 1s positive definite -- 1.,e, these exists a continuous,

nondecreasing scalar function ¢, such that 0.(0)=0 and

vix) > allx|)>0 V x#0 (a.5)
{11} a(]x]|)»>o when || (a.6)
(111) AV 1s negative definite -- 1.e. there exists a continuous,
nondecreasing scalar function ¥, such that

Mw(x) < - v(|x])<o (2.7)
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Then all solutions of (A.3) converge to O,

Tn this result, we can think of V as an "energy" function, and (A.5),
(A.6) essentially state the intuitive idea that the larger the system state,
the more energy that 1s stored in 2t, With this interpretation, the theorem
states that 1f the system dissipates energy (equation (A.6)), the state will
converge to 0. If we allow ourselves to consider "energies" which can take

on negative values, we can get instability results, such as

Theorem 3.2: Suppose V satisfies (A.4) and suppose there exists an %, such

that V(x0)<0. Then the system 1s not asymptotically stable in the large
since the solution starting at xo does not converge to 0,
1

The point here 1s that since energy decreases, once we arrive at a ne~
gative energy state, we can never reach the zZerxo energy state. -

As mentioned earlier, ILyapuncv stability has been used by many researchers,
A crucial advantage of Lyapunov-type results 1s that the hypotheses for re-
sults such as Theorems A.l and A.2 can be checked using the function V and £
only —— 1.e. one does not have to construct explicit solutions to difference
or differential eguations. However, the major problem with the theory 1is

the dafficulty in finding Lyapunov functions in general. For linear systems,

however, a theory exists, and one can always find a quadratic Lyapunov function
Vix) = x'0Ox (A.8)

that will determine 1f the system 1s asymptotically stable (in fact a constructive

procedure using the Lyapunov equation [A-47,48] can be used). For nonlinear
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systems the construction of Lyapunov functions i1s much more difficult (see
[a-47,48] for several techniques).

With respect to the limit cycle problem, Willson [A=2,13] has utailized
Lyapunov functions (and essentially Theorem 1) to determine conditions under
which second order dagital filters will not have overflow limit cycles and
will respond to "small™ inputs in a manner that is asymptotically close to
the 1deal response. Parker and Hess [A-26] and Johnson and Lack [A-59,60]
have used Lyapunov functions to obtain bounds on the magnitude of lamit
cycles. In each of these the Lyapunov function used was- a quadratic form
which in fact proved asymptotic stability for the ideal linear system,

In Willson's work [A~13], he was able to show that his results were in some
sense tight by constructing counterexamples when his condition was violated.

In [a-26,59,60] the bounds are not as good as others that have been found,

and, as Parker and Hess state, this may be due to the diffaiculty of determining
which quadratic Lyapunov function to use. As poainted out by Clasazen, et.al.,
[a-3], 1t appears to be difficult to find appropriate Lyapunov functions for
the discontinuous nonlinearities that characterize gquantization (see

Appendix 1 for an example of the type of result that one can find).

There 1s a class of digital filters -- wave digital filters (WDF) [a-6,7,
8,9,10] ~- for which one can use Lyapunov technigques to prove stability, Such
filters have been developed by Fettweis so that they possess many of the
properties of classical analog filters. Motivated by these analogies,
Fettweis [A~8] defines the notion of "instantaneous pseudopower", Wh;ch is a

particular quadratic form in the state of the WDF. By defining the notion of
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"pseudopassivity” of such a filter, Fettweis introduces (in a very natural

way for this setting) the notion of dissipativeness. With this framework, the
pseudopower becomes a natural candidate for a Lyapunov function, and in [a-10],
Fattweis and MeerkStter are able to apply standard Lyapunov arguments to obtain
quite reasonable conditions on numerical operations that guarantee the asym-
ptotic stability of pseudopassive WDF's. The introduction of the concept of
dissapativeness in the study of stability 1s an often-used idea (see the note
of Descer [A-36]), and a number of important stability results have as their
basis (at least from some points of view) some notion of passivity. We will
have a bit more to say about this in the next subsection. We note here that
the use of passivity concepts and the tools of Lyapunov theory appear to be

of some value in the development of new digital filter structuresz that behave
well in the presence of quantization. As an example, we refer the reader to
the recent paper [A-1l] in which a new second order filter structure 1s de-
valoped and analyzed using pseudopower-Lyapunov arguments,

Lyapunov concepts have found numerous applications in control theory.
Detailed studies of their use in system analysis are described in the important
paper of Kalman and Bertram [A-48] and the texts [a-47], [A-52], and [A-64],
aAs mentioned earlier the construction of quadratic Lyapunov equations for linear

systems 1s well understood and 1s described in detail in these texts, The key

result in this area 1s the following:

Theorem A.3: Consider the discrete-time system

x{k+1) = nx(k) (2.9}
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This system 1s asymptotically stable (1.e. all of the eigenvalues of A lie
inside the unit circle in the complex plane) i1f and only 1f for any positive

definite matraix L, the solution Q of the (discrete) Lyapunov equation

A'QR - Q = ~L {(A.10)

1s alse positive definite. 1In this case the function
vix) = x'0Ox {A.11)

1s a Lyapunov function satisfying the hypotheses of Theorem 2,l -«- 1,e. it
proves the asumptotic stabilaity of (a.9).

The equation (A.10) and its continuous~time analog (see [A-471) arise in
several contexts in control theory, and we will mention it again later in a
different setting. Also, note that Theorem A.3 provides a variety of choices
for Lyapunov fﬁnctlons(we can choose any I>C in (A.10)). Parker and Hess
[A.26] obtain bounds on the magnitude of lamit cvcles by choosing I=I (here
(A.9) represents the ideal linear model)., Tighter bounds might be possible
with other choices of I, but, as they mention, 1t 1s not at alI_;iear how one
would go about finding a "better™ choice (other than by traial and error). We
also refer the reader to the paper of Kalman and Bertram [A-48] ain whaich they
use ILyapunov techniques to bound the magnitude of solutions of difference
equations perturbed by nonlinearities.

For specific applications of Lyapunov theory to lainear and nonlinear

systems, we refer the reader to the references or to the literature {(in par-

ticular the IEEE Transactiong on Automatic Control). In the remainder of

this subsection we concentrate on another use of Lyapunov concepts -- as
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intermediate steps in the development of other results in control theory.

An example of this occurs in the analysis of optimal control and estimataion

systems [A-64,65,66,67]., Consider the linear system

x(k+1) = ax{k) + Bulk)

(R.12)
y(k) = cx(k)
and suppose we wish to find the control u that minimizes the cost
[+
J = :E: v {)y(x) +u"(1)ulx) (2.13)

1=0
This 1s a special case of the output regulator problem [A-66], Here the cost
(A.13) represents a tradeoff between regulation of the output (the y'y term)
and the conservation of control energy (the u'u term}. The following 1s .

the solution for a particuylar case:

Theorem A.4: Suppose the system (A.12) 1s completely controllable (any
state can be reached from any other state by application of an appropriate
input sequence} and completely observable {the state can be uniguely deter-—
mined from knowledge of the input and output sequences). Then the optimal

control in feedback form is

a(k) = - (R+B'KB) T BrERA x(k) (A.14)

where K 18 the unigque positive definite solution of the algebraic Riccati

-

equation

K = A'Ra+CiC - A'KB(R+B'KB)_1 B'KA {(a.15)
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One proof of this result proceeds along the following lines. Suppose

we are presently in the state x. We can then define the optimal cost to go,

V{x}, as the.minimum ©of J in (A.13) when we start in state x. With the aid of

dynamic programming methods [A-661, one can show that V has the form

Vix) = x'Kx (A.16)

where K satisfies (A.15). The finiteness of V is proven using controllability,
while observability guarantees that if x#0, then vy and u cannot hoth he
1dentically zZero and thus J>0. As a final important guestion, consider the
closed loop system (2.12), (A.l4). B&As discussed in [A-66] one can show that
this system 1s asymptotically stable, and, in fact, the cost~to~go function
V({x) 1s a Lyapunov function which proves this result. Observablllgy and
controllability (and somewhat weaker counterparts -- detectability and stabi-

lizability) are important concepts in the development of this result and may

others. In fact, the concept of observability allows one to prove [A-51].

Theorem A.5: Consider the system (A.9) and the function V(x) = x'Ox.
S;ppose
(1) >0
(12) v(Ax}-V(x} = x'[A'0p-Qlx<x'C'Cx
(111) The system (A.9) 1s observable from the cutput
y (k) = cx(k)

Then {(A.9) 13 asymptotically stable.
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Comparing Theorems A.3 and A.5, we see that we have replaced the
negative defimiteness of A'QA-Q with negative semidefinitess and an cbserva-
bality condition. The intuitive i1dea 1is the following: negative definiteness
makes 1t clear that V{x(k)) strictly decreases along solutions whenever x(k)#0,
and from this we can deduce asymptotic stability; negative semidefiniteness
only says V does not increase. However, 1s it possible that V can remain
stationary indefinitely at a non—zZero value? The answer is no, since 1f at
did, we would be able to conclude that Cx(3)=0, 3=k, k+l, k+2,..., and cbser-
vability would require x{k)=0. Thus V must decrease (not necessarily at
every single step), and we can again deduce asymptotic stabality.

Thus, we see that Lyapunov concepts, when combined with ideas from the
theory of state~space models, :can lead to important results concerning optimal
designs of controllers .and estimators. See [A-64,65,66,67] for continuous
time analogs of these results and dual results for estimators (the reader is
also advised to examine [A~681 in which the interplay of many of ‘these 1deas
18 dascussed).

In addition to uts use in studyang design .methods such as the regulator
problem, Lyapunov theory has been .used as a framework for sthe development of
many more explicait stability criteria (recall, Lyapunov theory in pranciple
requires a search for an appropriate function}. Examples of these are a number
of the frequency domain stabilaty criteria that have been developed in the last
10 to 15 years (see [A-1,21,22,23,24,33,37,38,39,43,44,45]. Several of these
results have analogs for the limiyt cycle problem. For example, Tsypkin's

criteria [A-33,21,2] and [A-44, p.194], which are analogs of the circle and
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Popov criteria in continuous time (see [A-43,44]), have counterparts in the
theory of lamit cycles {A~15,16]. We note also that instability counterparts
of the Tsypkin-Popov type of result have been developed from a Lyapunov point
of wview [A-1,39], and a thorough understanding of the basis for these results
may lead to analogous results for limit cveles in digital filters.

We defer further discussion of these results to the next subsection, in
which we are interested in examining the interplay among a number of stabilaty
concepts (passivity, Lyapunov, Tsypkin, frequency domain analysis, positive
real functions, etc.). The key point 1s that many stability results can and
have been derived in a number of different ways, and an examination of these
various derivations reveals an interrelationship between the various methods
of stability analysis, Some of the most fundamental work that has been done
in this area has been accomplished by J.C. Willems [A-49,50,69], and the reader
is referred to his work for & more thorough treatment of these issues and for

further references.

2.2 Frequency Domain Criteria, Passivity, and Lyapunov Functions

We have already mentioned that the notion of passivity is of importance
in stabilaity theory and have seen that Fettweis and Meerkotter have been able
to utilize passivity notions to study certain digital filters via Lyapunov
techniques. The relationship between passivity, Lvapunov functions, and
many of the frequency domain criteria of stabalaity theory is quite deep, and
in this subsection we wish to 1llustrate some of these 1deas., The interested
reader is referred to the references for more details.

In recent years the concept of passivity has become one of the fundamental
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notions in éhe study of feedback stability. This notion, which is very much an
input/output concept, 1s developed in detail by J.C. Willems [A-41,42,50,6%3],

We follow {A—42,69]3. Let U and ¥ be input and output sets, respectively, and
let U and Y be sets of functions from a time set T into U and Y (T may be con~

tinuous or discrete, as discussed [A-69]). Let G: U»Y be a dynamic system,

mapping input functions ueU into output functions GueY (we assume that G 1s

a causal map [A=69]). Intuitively, stability means that small inputs lead to

small ocutputs, and the following makes this precise,

Definition A,l: Let.a; ?’be subspaces of {| and YV, respectively (these are

our "small signals™). The system G 1s I/0 stable 1f udz implies Gué?.

Furthermore, 1f {I, ¥ are normed spaces, then G 1s finite gain I/0 stable 1f

there exists K<= such that
leu[| < x||u]] vuell (a.17)

A typical example 1s the case T=positive integers, U=Y= all real sequences
of numbers, U=Y= all square-summable sequences. 1In this case I/0 stabilaty

means (y=Gu)

) 2 ) 2
<o => <
E u, < E y, (1.18)
i=1 - 1=1

3Our development 1s: by no means complete, as-our intention 1s to relate several
1deas and not to prove theorems. Thus, the reader is referred to the references
{xn particular to [A-42]) for a thorough treatment and for precise statements of
the results described here (for example, we have not included a discusszion of
system well-posedness, which bears some similaraties to the constraints on
feedback paths imposed by Fettweis in his development of wave digital filters).
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and finite~gain I/0 stability means

) ) 1_/2 d 1/2

z w? <@ => z v <X z u (A.19)
L 1 -_— Ll

1=1 i=1 =1

Note one property of this example. Let PT be the operator

x{t) &<
(PTX) (&) = (a.20)
)] +>T

Then for any uell, ve¥, we have PTusﬁj PTyE?: In this case ([, V are called

Pt

L d
(causal) extensions of U, ¥, and we assume this to be the case from now on.

We now can define passive systems,

~

Definition A.2: Let (=Y, and assume that ﬁ;y is an innér product space. Then

G 1s passive 1f

<PT11 ’ PTGu> >0 - Vugu LET (A.21)

and strictly passive 1f there 1s an £>0 such that

2
<Pu, B Gu> > el |PTuH (n.22)

In terms of our example, G 1s passive 1f and only 1f (y=Gu)
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N

>
Z wy 20 vu /N {n.23)
1=1

and 1s strictly passive 1f and only if there exists an £>0 such that

N N
2
E uy >¢g E u u SN (A.24)
11 — 1 1
1=1 =1

Much as with Fettwels's pseudopassive blocks, passive systems can be
interconnected in feedback arrangements and remain passive, The following

result is of thas type, and 1t, in fact, 1s one of the cornerstones of feed-

back stability theory [A-69].

Theorem A.6: Consider the feedback system of Figure A.2 waith all inputs and
|
outputs elements of the same space U (for simplicity). The feedback system

1s strictly passive and finite gain I/0 stable if

(1) Gl i1s stractly passive and finite-gain input/output
stable

(21) G, is passive

As outlined by J.C. Willems in [{A-69], there are three basic stabzlity -

principles ~- the one above, the small loop gain theorem (stability arises

1f the gains of Gl and G2 are each less than unity -- a result used in the

digital filter context in [A-72] and the next result, which depends upon

the following
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Definition A.3: Same condations on U, ¥ as in Defainition A.2. Let a<b

be given real numbers. Then G is inside (outside) the sector [a,bl if
<(G-aIlu, (G-bD)u> < 0 (>0) yuel (2.25)

It 1s strictly inside the sector [a,bl 1f there exaists an £>0 such that

<(e-allu, (G-bI}u> <~gl|u| ]2 el fu Iz) wuell (A.26)

We now state a variation of Willems' third stability condition (see

[a-42]).
Theorem A,7: Consider the feedback system of Figure A.2. This system 15

fanite gain stable if G2 1s LapschitZ continuous —-- 1.e.

- < - uéa‘
and 1f for some a<b>0, GZ 1s strictly inside the sector [a,bl, I + %{a+bJG1

has a causal inverse on U (not necessarily U), and G1 satisfies:

() a<0 => Gl 1s inside the sector [- %’,- %] on U

{11) a>0 => Gl 1s outside the sector [~ iy* %4 on U

(121) a=0 => Gl + %-I 1s passive on {[.

As develop by J.C. Willems [A-42,69], this result leads to the circle
criterion (in continuous time). ILet us examine the third case in the Theorem

in order to sketch the deravation of one of Tsypkin's criteria. Consider the
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system in Pigure A.3. Here G2 1s a memoryless nonlinearity, and we assume
that £ 1s in the sector [0,k]. We also take U= all square summable sequences.
The system Gl 1s a linear time~invariant system characterized by the transfer

function G(z), whaich we assume to be stable, Condition (111) of Theorem A.7

then says that (Gl + %0 must be passive on U, and, as developed 1n [a-42,69],

this will be the case if and only 1f G(z) + %- 1s positive real:

Re(G(e™)) + %‘>0 ywe [0,2%) (.27} »

which 1s precisely Tsypkln;s condition [A-331. The fact that 1 + g-G 1s

invertible can be obtained by analogy with the continuous time results in
[a-42, Chapter 5] (in fact, this result i1s a simple consequence of the Nyquist
criterion when we observe that G 1s stable and take {(A.27) into account).
Consider the feedback system in Figure A.2, It 15 clear that the input-
output behavior of this system is the same as that for the system 1n Figure 3.4,
where M and N are operators (not necessarily causal). 2as discussed in [2a~42,447,
one can often find appropriate multipliers so that the modified forward and
feedback systems satisfy the criteria of Theorem A,7. This 1s in fact the basis
for Popov's criterion [a-37}, for its generalizations [A-38,39,40,42,43,44,45],
and for Tsypkin's discrete-time version [A=-23,44].
Consider a nonlinear feedback system as in Figure A.3 but in continuous—~
time (1.e. replace G(z) with G(s)), and again suppose £ 1s strictly inside the

sector [0,k]. Using the multipliers

1
NI, M= T8
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Figure A.3: Linear System with memoryless nonlinear feedback



Figure A.4:

& Feedback System with Mwltipliers
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we can chow that the feedback path i1s also strictly inside the sector [0,k]
and hence the modified forward loop must satisfy a passivaty condition.
Specifically, we obtain Popov's condition {see [A~381) that the feedback
system 1s finite gain I/0 stable 1f G 1s stable (all poles in the left-hand
plane) and 1f (140s)G(s) + L 1s posative real for some ¢>0 -- 1.e, of

k

Re[(L+a3w) G(3w)] + & >0 vw

fo obtain Tsypkin's result [A-23,43], we must in addition assume that £ i1s
nondecreasing. In this case, the discrete-time system i1s finite gain L/0
stable 1f there exists aap such that

Re[(14a(l~e 7)) e(e?™ ] + % >0 we [0,21) (2.28)

As mentioned esarlier, a number of extensions of Popov's criterion in
continuous—~time are avallable, and we refer the reader to [A-42,44,45] and
in particular to [A=38]. As we shall see, some of the results on digital

filter lamit cycles resemble Teypkin-type criteria.

Sector nonlinearity characteristics play a major role in the study of
digital filter lamait cycles (see in particular [2-15]1). Specifically, con-
sider the roundoff guantizer in Figure A,5. This function i1s inside the

sector [0,2] (see [A-3,15] for other quantizers and their sector characteristics).
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Using simply the sector nature of a nonlinearity, Claasen, et.al. [a-15]

pProve the following

Theorem A.B: Consader the feedback system of Figure A.3, where £ 1s in the

sector [0,kl. Then limit c¢ycles of period N are absent if

i/
2T 4 L s (3.29)

Re(G(e T

for £=0,1'...'N_l.

If one also takes the nondecreasing nature of £ into account, we cbtain

[A-15]1:

Theorem A.9: If £ 1s inside the sector [0,k] and alsc is nondecreasing,
then limit cycles of period N are absent from the system of Figqure A.3 1f

there exist apzp such that

N-1
5 .
Re }J1 + 2 o (1-e72MRR/N) | g 32T/, L g {2a.30)
p k
p=l
If we take aN-l to be the only nonzero aP, we obtain the condition

deraived by Barkan [A-16] which i1s quite similar to Tsypkin's criterion (A.28).
Note also the relationship between (A.29) and (A.27). The proofs given in
[A-15] xely heavily on the passivity relations {&.29)},(A.30). Theorem A.8

then follows from an application of Parseval's theorem in order to contradict


http:A.29),(A.30

-4}-

e

Figure A.5:

A Roundoff Quantizer
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the existence of a limit cycle of period N. This last step involves the
assumed -periodicity in a crucial way, but the application of Parseval and
the use of the positive real relationship (A.29) 1s very reminiscent of
stability arguments in feedback control theory [A-42]. In the proof of
Theorem A.9, the monotonicity of £ 1s used in conjunction with a version of

the rearrangement inequality [A-40,42].

Theorem A.10: Tet {xn} and {yn} be two sequences of real numbers that are

similarly ordered -i.e.

< => < o3
*n~n Ynm (8.31)

Then 1f T 1s any permutation

zxnyn z Ex’rr () ¥n a.32)

n n

Corollary [A-40]: If f 1s a monotone function, -then for any sequence

{xn} and any permutation T

Set) tx w1720 (3.33)
n
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We note that Theorem A.9 bears some resemblance to the multiplier—-type results
of Popov and Tsypkin. In addition, Willems and Brockett [A-40,42] utilize the
rearrangement inequality to obtain a general multiplier stability result for
discrete—-time systems with single monotone nonlinearities. A thorough under-
standing of the relationships among these results would be extremely useful, as
it might lead to new results on nonexistence of limit cyecles. 1In addition,
Claasen, et.al. [A~15] have developed a further improvement over {A.,30) 1f £ is
in addition antisymmetrig (£(-x) = -£(x)), and have devised linear programming
technigues to search for the coefficients ap 1n (A.30). fThis algorithmic con~
cept may prove to be of use in developing search technigues for other, more
complex multipliers. Also, Cook [A-70] has recently reported several criteria
for the absence of limit cycles in continuous time systems. His results bear a
strong relationship to those of Claasen, et.al., [a-15]. In particular, passivity
conditions and Parseval's theorem are used in very similar ways in the two
papers.

We now turn our attention to the relationship between input/output concepts
and questions of internal-stability, {1.e. the response to initial conditions).
Intuitively, 1f we have an internal, state space representation of a system with
specific input/output behavior G (warh G(0)=0), we clearly cannct deduce
asymptotic stability from input/output stability without some conditions on the
state space realization. For example, the map GE0 i1s input/output stable but

the realizations

x(t) = x(t), y(t) = x(t) (n.34)
and

x(t) = x(£) + u(t), v () =0
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are clearly not asymptotically stable. 1In the first case the state space has

an unstable mode, but 1f we start at x(0)=0 (as we would to realize G), we can
never excite this mode. Hence, I/0 stability can tell us nothing abouit it.

In the second case, we can excite the mode but we cannot cbserve 1t. These are
precisely the difficulties that can arise; however, 1f one imposes certain
controllability and observability conditions on the realization, one can deduce
asymptotic stability from I/O stability. Thus, controllability and cbservability
play a crucial role in translating from I/0 results to Lyapunov-type stability
results. For a precise statement of the relationship between the two, see
[a-49,69].

Having established the above relationship, i1t 18 natural to discuss the
generatien of Lyapunov functions (which deal with internal stabilaty) for
systems satisfying some cype of passivaity condition. Some of the most important
work in this area is that of J.C, Willems [A-49,50,69]. In [n~49,69], Willems
discusses the generation of Lyapunov functionsfor I/0 stable systems. For passive
systems he defines the notions of available and required energy as the solution
of certain variational problems., If one then has a state space realization
satisfying certain controllability and observability qpndltlons, one can use
these functions as Lyapunov functions. This very general, physically motivated
theory 1s further developed in [A-50]. Dissipative systems and the associated
notions of storage function (an internal variable) and supply rate (input/output
quantity) are defined, and, much as with Fettweils' pseudopassivaity, dissipative
systems have many appealing properties (such as preservation under intercon—

nections). We refer the reader to [A-50,69] for details of topics such as the
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construction of storage functions and their use as Lyapunov Functions.

As menticned at the end of the preceding subsection, many freqguency domain
results can be derived with Lyapunov-type arguments, We have also seen in thais
subsection that many of these results can be derived via passivaty arguments,
Clearly the two are related, and the crucial result that leads to this rela-
tionship 1s the Kalman-Yacubovich-Popov lemma [A~61,62,69], which relates the
positive realness of certain transfer Ffunctions to the existence of solutions
to particular matrix egualities and inequalities, Kalman [2~62) utilized this
result to obtain a Lyapunov-type proof of the Popov criterion, and Szego [A=61]
(see also the discugsion at the end of [A-33]) used a discrete~time version to
obtain a Lyapunov~theoretic proof of Tsypkin's criterion plus several extensions
vhen the derivative of the nonlinearity is bounded. In addition, several
other researchers [A-1,38,39] have utilized similar ideas to relate positive
real functions to the exastence of certain Lyapunov functions. It i1s beyond
the scope of this paper to discuss this problem in depth, but we refer the
reader to the references, since this area of research provides a number of
insights into the relationships among various stability concepts. In addition,
these results provide examples of nonlinear problems for which there exist
constructive procedures for Lvapunov functions. We also note that the positive
realmlemma pPlays a c¢rucial role in several other problem areas including the
stochastic realization and spectral factorization problem [B~21] and the study
of algebraic Riccati equations [A-67].

Finally, we note that many of these passivity-Lyapunov results have ing-
tability counterparts (e.g., see [A-1,39]). We refer the reader to the detailed

development in [A-39] in whach a Lyapunov-theoretic methodology for generataing
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instability results i1s described. Such results may be useful in developing
sufficient conditions for the existence of non-zero, undriven solutions such

as limit cycles.

In this section we have.considered some of the aspects of stability theory
that we feel deserve the attention of researchers in both discaiplines. We have
not, of course, been able to consider all of the possible topics that one -might
investigate. For example, the "Jump phenomenon" in which small changes in
wnput lead to large changes in output s of interest in digatal frlter theory
[A=32] and also'has been considered in feedback control theory [a-42,43]1, where
the concept of feedback system continuity is studied, In addaition, Claasen,
et.al., {A-3I] have introduced the concept of accessible limit cycles, and .its
relationship .to concepts of controllability and also to-the structure of the
state transition function of the filter are intrigquing questions. We also have
not discussed the use of describing -functions in daigital filter analysis. There
have been several attempts:in this area(see ![A~5,29]),.but none.of -these has
proven to be too successful ‘(see cowments in [A-30]). Except for the work of
Parker vand Hess [A-26] and Kalman and Bestram [A-48], we-have not spcken about
bounds on the magnitudes of responses. 'In the digital filtering area these
exist a number of results [a~31,35,56], the latter two of which use an idea of
Bestram's [A-58] as a starting point. In control theory, the notion of /0
gain {[A-42,44] 1s directly tied to response magnitude bounds, although 1t 1s not
clear how tight these would be in:any particular case, Finally, in this section,
we have not discussed stability criteria for systems with multiple nonlainearities,

There do exist some results in thas area for digital filters (see [2-~3,15]1), and
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on the other side, the general framework allows cne to adapt results such as
Theorem A.7 to the multivariable case wath little difficulty (hence one can
readily obtain matrix versions of Tsypkin's criterion involving positive real
matrices). Also, the technigques of Lyapunov theory should be of some use 1n
obtaining stability results much like those an [A-2] for filters of higher
order than the second order section.

As we have seen many of the results in the two disciplines involve the
use of very similar mathematical tools. On the other hand, the perspectives
and goals of researchers in the two fields are somewhat different. The develop~
ment of a mutual understanding of these perspectives and goals can only benefit
researchers in both fields and as in fact absolutely cruciral for the successful
study of certain problems. For example, in the implementation of digital
control systems one must come to grips with problems introduced by gquantization.
Digital controller limit cycles at frequencies near the resonances of the
plant being controlled can lead to serious problems. In addition, the use of
a digital falter in a feedback control loop creates new quantization analysis
problems, Recall that limit cycles can occur only in recursive (infinite im-—
pulée response) filters, while that do not occur in nonrecursive (finite impulse
response) filters. Howaver, if a nonrecursive filter is used in a feedback
control system, guantization errors it produces can lead to limit cycles of the
closed=~loop system [A=72]. How can one analyze thig situation, and how does
ocne take gquantization effects into account in digital control system design?

Questions such as these await further investigation.



B. Parameter Identification, Linear Prediction, Least '‘Squares, and
Ralman Filtering

A problem of great importance in many disciplines is the determination
of the parameters of a model :given observations of the physical process being
modeled, TIn control theory thas problem 1s often called the system identifa-~
cation problem, and 1t arises in many contexts, The reader is referred to the

special 1ssue of the IEEE Transactions on Automatic Control 'TB-15] and to the

‘survey paper of 5str5ﬁ and EykKhoff [B~16] for detailed .discussions and numerous
references in this problem area. One bf the most imporitant applicataons of
identification methods 1s adaptive estimation and control. Consider the situa-
tion depicted in Figure B.l. Here we have a physical process that i1s to be
controlled or whose state 1s to be estimated. Many of the most widely used
estimation and control teochniques are based on a dynamic model (transfer
function, state space description, :etc.) for the system under consideration.

Hence 1t as necessary to obtain .an appropriate model in order sto apply these

techniques. Often, one can perform tests on the process Jbefore designing ‘the
system and .can -apply an 1dentification procedure to determine the system. On
the other hand, there are many occasicns in which the values of certain system
parameters cannct be determined a pricr:i or are known to vary during system
operation. In such cases, one may often design a contrcller or estimator
"which depends explicitly on these parameters. In this manner we can adgust
the parameters on-line as we perform real time parameter identification. A
nunber of methods of this type exist, and, in addition to the two survey

references [B-15,16], we refer the reader to [B~-80,81,98] for other examples.
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The last of these, [B~-98] i1s of interest, as 1t‘§on51sts of a variety of
adaptive control techniques all applied to the control of the ¥-8C alrcraft}
and thus provides some insight into the similarities, differences, advantages,
and disadvantages of the various techniques.,

A laittle thought about the adentification problem makes it clear that
there are several issues. Before one c¢an apply parameter identification
schemes, one must have a parametric model, and the determination of the appro-
priate structure for such a model 15 a complex guestion in itself. We wall
not consider thas issue i1n much detail in this paper, and we refer the reader
to the references for details (see several of the papers in [B-15] on canonical
forms and identifiability; also see the work of Rissanen and Ljung I[B-79]).

Parameter identification problems also arise in several digatal signal
Processing applications. Several examples of such problems are given in the
special issue of the Proceedings of the TEEE [B~99], and these include (see
[B-26]) seismic signal processing and the analysis, coding, and synthesis of
speech. This latter applacation has received a great deal of ;ttentlon in the
past few years [B~24-26,28-30,44~55,69-71,74]), and we will use this problem as
a basis for our discussion of the identafication question., We follow the work
Atal [B-48], Atal,and Schroeder [B-70], Markel and Gray [B-44], and Makhoul [B-26].
Our presentaticn 1s necessarily brief and intuitive, and the reader is referred
to these references for details.

As discussed in [B—-44] a popular and widely accepted model for a discretized

speech signal {y(k)} 1s as the output of -a linear system, which, over short

1

4ll of these projects were sponsored by NASA Langley., This MFly-by-wire"
adaptive control program is still in 1ts evolutionary stages, and new methods
and concepts are still being developed.
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enough antervals of time, can be considered to be time-invariant
v(z) = g(z)u(z) (B.1)

where G represents the overall transfer function and U{z) is the z-transform
of the input, which 1s often taken as a pericdic pulse train (whose period 1is

the pitch period) for voiced sounds and as white noise for unvoiced sounds,

,

In addition, a common assumption 1s that G i1s an ali-pole filter

Glz) = 1 (B.2)

P -—
1+ E:azz
k=1

This assumption has been justified in the literature under most conditions,
although strong nasal sounds require Zeroes [B-44]. HNote that under condi-

tion (B.2), equation {B.l) represents an autoregressive (AR} process

yik) + aly(k—l)+...+apy(kvp) = ulk) {B.3)

The problem now is to determne the coefficients al,...,ap. Having
these coefficients, one 1s ain a position to solve a number of speech analysis
and communication problems. For example, one can use the model (B.2) to
estimate formant freguencies and bandwidths, where the formants are the
resonances of the wocal tract [B-55]. In addition, one can use the model
(B.3) for efficient coding, transmission, and synthesis of speech [B-701.

The basic 1dea here is the following: as the model (B,1)-(B.3) indicates,
the speech signal y(k) contains highly redundant information, and a straight-

forward transmission of the sagnal will require high channel capacity for



~52u

accurate reconstruction of speech. On the other hand, rearranging terins in

{B.3)

b

y) == 2 aylk-1) +uk (B.4)
1=]

we see that (B.4) represents a predictor, in which

P

YW == 3 a vlk=1) (B.5)
=1 1

15 the one-step predicted estimate of y. As discussed in [B-70]1, one often

(and, in partaicular, in the speech problem) requires far fewer bits to code the
prediction error u than the original signal y. Thus, one arrives at an efficient
transmission scheme (linear predictive coding ~~LPC}: given y, estimate the

al, compute u, transmit the al and u., At the receiver, we then can use

(B.4) to reconstruct y (6f course, one must confront problems of quantization,
and we refer the reader to the references (e.g., [B-119]) for discussions of
this problem). An alternative interpretation of this procedure is the following:
gives y, éstimate G 1n (B.2), pass y through the inverse, all zero (moving
average ~—- MA) filter 1/G(2), transmit the coefficients in G and the output of
the inverse filter, At the receiver, we then pass the received signal through

G to recover y (thus this procedure is causal and causally invertible).
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The question remains as to how one estamates the al. The most widely

used technique in the literature is linear prediction. Using the inter-

pretation of 1 - as a one-step predictor for the signal y, we wish to

G(z)
choose the coefficients al""'ép to minimize the sum of sguares of the pre-

diction errors
2
J = Z e”(n) (B.6)

el(n) = y(n)-§(n)

Here we assume that we are given v{(0),...,y{N-1)., Also, the range of n in

the defination of J can be chosen in different manners, and we will see in

the following subsections that different choices can lead to different results
and to different interpretations. A number of these interpretations are

given in [B-26,44], and we wall discuss several of these as we investigate

this problem somewhat more deeply. Specifically, in the next two subsections
we consider two linear prediction methods -- the autocorrelation and covariance
methods -- and we relate them to several statistical notions of importance in
control and estimation applications. Followaing this, we will discuss several

other identification methods and their relationship to the speech problem.

2 We note that one can modify the linear prediction formulation in order to take
nto account- the guasi-periocdic nature of speech for voiced sounds. We refer the
reader to [B-70] 1in which such a procedure i1s developed in which one also obtains

an estimate of the pitch period, An alternative approach to this problem 1s to
solve the linear prediction problem as outlined in the next two subsections, pass
the speech through the inverse filter, and analyze the resulting signal to determine
the pitch [B-25,44]. Recently, Steiglitz and Dickinson [B-100] have described a
method for improving pole estimation by completely aveiding that part of a voiced
speech signal that is driven by glottal excaitation.
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Before beginning these investigations, let us carry out the minimizZation
required in linear prediction. Taking the first deraivative of J with respect

to the z-:L:L and setting these equal to zero, we obtain the normal equations

P
z alclk = —cok r k=l'.o.’P (Bo7)
=1
where
Sk = 2 vy (n-1)y (n—-k) (5.8)

n

These equations are typical of the types of equations that arise in linear,
least~squares problems, and their efficient solution has been the topic of
many research efforts, This issue 1s the central focus 1n the next two
subsections.
B.1 The Autocorrelation Method, Kalman Filtering for Statiocnary

Process, and Fast Algorithms

Suppose we consider minimizing the sum—-squared error in (B.6) over the
infinite interval, =-w<n<w, Here, we define y(n)=0 for n<0, n>N, In this

case, we find that

N=1-]1-] X

c_ = s(n)s(n+]|1-7]) = r(|1-j|) (B.9)
1]

n=0
and the normal eguations become

Ta = ¢ (8,10}
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where a' = (al,...,ap), e = {~r(l), =2(2) seec.,~r(p)), and T 1s a symmetric

Toeplitz matrax [B-37,84,91] (r.e. the 13th element depends only on |1—3[):

r{0) r(l} .... r{p-1)

o = r{l) x(0) .... r({p-2) {B,11)

r(2) (i) ... r(p=3)

L_r(p-l) r{p-2) . r(0)

Before we consider the solution of {B.10), let us derive equations of the
very same form from a probabilistic point of view (here we follow [B-26]).
Suppose that y i1s a stationary random process, and, instead of (B.6), we are

interested in minimizing

7 = 22 (n) (B.12)

where e and §'are defined as before (although they now are random processes

themselves)., Differentiating (B.1l2) as before, we obtain the normal equations

~

~
Ta =¢

where o' = (=rR(1) ,=R(2) ..., R(P)), T 1s the symmetric Toeplitz matrix whose

17th element 1s R(|1-3|), and R{1) is the autocorrelation

R(1) = E{y(n)y{nti)) (B.14)

Examining (B.9)-(B.14), we see that the two formulations are strikingly similar,

and, one can view (B.9) as a method for estimating the autocorrelation of
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an ergodic, stationary process [B-26] (1f we normalize (B.9) appropiately)}.
This statistical point of view 1s extremely usefu in order to obtain certain
insights into the approach and also in order to allow us to connect this method
with certain recent results in linear estimation theory (see [B-44] for several
other interpretation of this method).

The solution of equations such as (B,10) and (B.1l3) has been the subject
of a great deal of attention in the mathematical, statistical, and engineering
literature [B-4,7,26,34,35,36,37,50,72,84,91,94,95,96]. An efficient
algorithm was proposed by Levinson [B-34], improved upon by Durbin [B-94], and
studied 1n the speech processing context by several authors, including Itakura
and Saito [B~50]1(a version of this algorithm 18 given later in this subsection).
As discussed in [B=-26,44], the method essentially consists of solving forward
and backward prediction problems- of increasing SiZe 1N a recursive mamer and
18 known to be extremely efficient. That is, the algorithm computes the coef~

ficients a(l[1),...,a(a{1) for the best prediction of y(n) based on

y(n=1) ,ee.,y{n-1) and the coefficients b{l|1),...,b(2|1) for the best prediction
of y{n~i~1) based on y(n—i),e..,v{(n-1). The algorithm iterates on 1, As a
part of this algorithm, one computes the prediction error (for both forward and
backward prediction), and thus one can determine when to stop based on the sizZe
of this guantity. Also, we must compute a coefficient kl, which 1= known as the

partial correlation coefficient between the forward and backward prediction

errors (see [B-26,44,50]). We will mention thas quantity again at the end of

this subsection.

Let us now examine what this algorithm means from a statistical point of
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view., The first stage of the algorithm produces a(lll) and b(lll), which

are the coefficients of the best one-step predictors

$(1) = -a(1|Dy(0)
y{0) = =b(1]1)y (1}
At thenext stage, we have a(l]Z), a(2|2), b(1]2), b{(2]2)
¥(2) = —a(1|2)y (@) - a(2]|2)¥(0)
n (B.16)
v(0) = -b(1]2}y(1) - B(2]|2)y(2)
Continuing, we find that after 1 steps we have the predictors
1
y(i) = - z a(j]:.)y(a.-j) {(B,17)
J=1
1
7(0) = - 2 b2}y () " (B.18)
=1

Thus, we can think of the linear prediction solution as providing us with

the time-varying coefficients of the weighting pattern of the optimal one-step

predictor (B.l7) or of the optimal anitial time smoother (B.18). Note that
these coefficients are, in general, time vakying in the following sense:

from (B.17), we see that a(j|1) 1s the coefficient that multiplies the data
point that occurs j units of time before the one whose wvalue we wish to predict,

If the filter were time-~invariant, this would not depend on 1. The reason
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for the time~varying nature of the predictor coefficients is that, although
the v's are a statilonary process, the mechanism of prediction is time-varying
when one bases the prediction on only a finite set of data (recall that the
time-invariant Wiener filter assumes an infinite record of observations).

What does this mean as far as all~pole modeling via linear prediction
goes? The answer to that as not much, In the all-pole modeling prcblem, we
are equivalently only interested in designing a FIR filter -- 1.e. a prediction
filter that produces the best estimate of y(n) gives the "data window"
v{n=1) ;ees,¥{n-p). The coefficirents of such a filter are precisely .
a(llp),....,a(p]p), and 1t doesn't matter (except from a computatiohal point
of wview) that these coefficients were generated as part of a time-varyaing
filter weighting pattern.

On the other hand, the time—varying weighting pattern interpretation ais
extremely important from a statistical point of view, especially 1f one
wishes to design recursive predictors that are capable of incorporating all
past measurements and not just a data window. Clearly one inefficient way to
do this i1s to implement a nonrecursive filter that stores all past data ,
v(0)seeo,y(n-1), multiplies by the appropriate a(1[n), and combines to form
§(n). This requires gorwlng memory and is hardly appealing. How can one avoid
such difficulties? 2An answer that is popular in state-space control and

estimation theory arises if y has a Markovian representation3

x{k+l) = Ax{k) + wik)
{B.19)

y{k) = e'x(k)

3
We will briefly discuss the problem of finding such a representation later
in this section.
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where x 1s a random n-vector (x(0) i1s assumed to be zero mean), A is a cons-
tant nxn matrix, ¢ 1s a constant n-vector, and w 1s a zero-mean uncorrelated

sequence (uncorrelated wath x({0)) with
Ew{klw'(k)) = 0Q (B.20)

The correlation coefficients of y can be computed from the equations

E{v(kK)y(1)) = c'E{x(k)x"{7))c (B.21)
2 In(y) k>7

Elx(k)x'(3)) = {B.22)
[B{x(j)x"(k))1"' k<3

where P i1s the covariance of x, which satisfies
P(3+1) = AP{3)A' + Q (B.23)

Note that in general E{y{k)y{(3))} w1ll not depend on {(k-j) alone. This will

occur 1f and only 1f A 1s a stable matrix and P=P(0) satisfies the Iyapunov

equation

APA' — P = —Q {B.24)

{in whach case both x and y are stationary).

Suppose now that (B.24) holds and that

R{|2-3|) = c'All_ijc (B.25)

where the R{1} are the quantities defined ain (B.13)-(B.14). We now wish to
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design an optimal predictor for estimating (recursively} y(n) given
v(0),...,v(n=1), This 1s a standard state-space estimation problem [a-65]

and the solution is the Kalman filter (whach actually produces a prediction

for the wvector x(n)):

c'§(n)

§(n)

2(n) = a%x(n-1) + AK(n-1)Y(n-1)

(B.26)

v(n-1) = y{n-1) - §(n—l)

%(0) =0

where the time-varying gain satisfies

_ P{njn~l)c
xw = e (&.27)

ey
Here P(n]n—l) 1s the covariance of the prediction error x(n) - x(n),

p(n+l]n) = AP(nln—l)A' +0- AP(n]n—l)cc'P(QJn-l)A- (B.28)

c'P(n|n—l)c
Let us make a few comments about these equations. WNote that the filter
innovations Y(n) i1is precisely the prediction error, and its covariance is
c'P(n|n—1)c, which 1s nothing more than (B.12), 2lso, recall that in the
all-pole framework, we could alternatively view the prediction filter as

specifying an inverse filter, which took the y's as inputs and produced the

4

Note that we require c'P(n|n—l)c#0. As discussed in [B-67}, this recquires the
positivity of the covariance R(:), which 1s clearly related to the statement
that v(n) s not a deterministic functions of v(0),...,v(n~1) for any n.
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uncorrelated sequence of prediction errors as the output. In the context

of the Kalman filter, the analogous filter 1s the innovations representation

(see representation IR-1 of [B~67]), ain which we view the output of (B.26)

as being Y(n). Finally, note that one can compute the predictor coefficients

a(j{i) as the weighting pattern of the filter:

a{l|1) = c'aK(0)

a(l[2) = ~c'AR(1) a(2|2) = -c-AZK(o) + o'AK(1)c'aK (D) {B.29)

The Kalman filter and innovations representations have been the subjects of
a great deal of research in the last 15 years, and the technigue descraibed
above has been studied in discrete and continuous tlmés, for multiple output
systems, for time-varying systems, and for systems in which the actual obser-

vations are noisy versions of the v's
z{n) = y(n) + vin) {B.30)

We refer the reader to the many references on this subject, ancluding [a-65]1,
[B~7,58,67].

Examining (B.26)-(B.28), we see that the computation of the recursive
filter coefficients requires the solution of the (discrete times) Riccati

equation (B.28)., TIf x is an n-vector, then {using the fact that P is symmetric),

swe note that in continuous time one has a somewhat more difficult time —-1.e.
we don't consider "one-step" prediction and in fact run into difficulties if
we assume we observe y as opposed to a noise~corrupted version., We refer the
reader to [B=67] and to the references therein for more on this problem.
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(B.28) represents Ei&gl) equations, For reasonably lavrge values of n, this

can be an extreme computational load, especially given that all that 1s needed
for the filter is the gain matrix X, which in the scalar output case 1s an
n-vector. Also, 1f there are m outputs, X 1s nxm, and, as 1s often the case,
the number of parameters in K is much smaller than the number in P(i.e, m 18
substantially smaller than n}, Thus, the question of computing K without P
arises quite naturally, and this issue =~ in both continuous and discrete time,
1n stationary and in some nonstationary cases -~ has been the subject of
numerous papers in the recent past [B-1-8,23,39,40,56,60,64-66,72,73,77].

It 15 not our intention here to daiscuss these technigues in detail. What
we do want to do 1s to point out that the underlying concepts that have led
to these "fast algorathms" {at least in the stationary case) are the same as
those that lead to the Levinson algorithm, For some historical and mathematical
perspective on this subject, we refer the reader to [B-4,7,63, and 66]. In
particular, the extension of the Levainson algorithm to the multivariable case
is digcussed in these papers (see also references [B-35,36]). 3In this case,
the matrix T in (B.10} or (B.12) is block-Toeplitz, and the extension to this
case is decidedly nontrivial (for other methods for handling equations involving
block~Toeplitz matrices, we refer the reader to [B-37,56,84,91,95,961}. aAlso,
in [B-4], the derivation of the Levinson type algorathms and Kalman gain equa-
tions in discrete and continuous time are shown (1n the stationary case) to
rely on the simultaneous solution of forward and backward filtering problems
{thus 1néroduc1ng a "backward innovation process,” representing backward

prediction errors). It is also shown that both continuous and discrete algorithms
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are obtainable from the Bellman-Krein formulas [B-4,7,42,43,64,65,66], which
describe the evolution of the weighting pattern of the optimal estimator of a
stationary process. From this, one can obtain the Levinson algorithms (and its
continuous analog) and some well-known relationshipswith orthogonal polynomials
[B-4,41]1. If one knows that the process y has a Markovian representation, one
canl then take the Levinson-type eguations together with the state space repre-
sentation and obtain fast algorithms for the Kalman gain. An excellent treatment
of this is given in [B-4], and it 18 recommended that the reader compare the dis-
crete~time results here to those in [B-26,44] in order to sgee the relationship
between the linear prediction eguations and the version of the Levinson algorithm
derived in [B-4], For a thorough historical perspective, we recommend the
survey paper [B-7].

In this paper we will limit ourselves to a brief outline of one of the
derivations in [B=-4]1. ILet y{n) be a vector stationary, zero mean process with

covariance

R{t=-s) = E(y{tly(s}") (B.31)

We observe the prc:ces;s‘.3
z(n) = yv(n) + win) {B.32)

where w 1s a Zero mean, uncorrelated process, uncorrelated with y, with

covariance
E{w(n)w(n) '}=1 (B.33)

~n -
Let y(t|r) denote the wide sense conditional mean of y{t) gaven z(0),...,z{r),

then [B-4]

6 ' .
As before, one can take w=0 1f R 18 positive definite. Iindguist discusses this
in [B-4].
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r

Fe]n) = :E; Gr(t,S)Z(s) (B.34)
a=

‘where the weighting pattern is defined by
G (t,s) = EF (|0 Fs|r) ] = ¢ (s,0) 7 (B.35)

(here §(1|j) 15 the estimation error y(i) = §(1|j). Also, the Gr satisfy the

(Toeplitz) equations

X
Gr(tys) + ;é; Gr(t,l)Ril—s) = R{t=-s)
{B.36}
X
"G (t,s) + z rR(t=1)G_(2,s) = R(t-s)
r 120 xr

Note-that §(t|t—1) 1s the one-step prediction estimate, and from (B.34) we

can i1dentify {(in the scalar case)

G__q (Ers) = —alt-sft) (B.37)

Comparing (B.36),(B.37), we see that we have simlar equations (the first

term on the left-hand side of' (B.36) comes from the presence of &, bﬁt these
equations can also be obtained when w=0 1f we can write R=R + €T for some
positive semidefinite R -~ see [B-9]). Also, as poinfed out in [Bs#l, the
Toeplitz equations are the counterparts of certain Fredholm resolvent eguations

that arise in the continuous case [B-64,65],
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Lindquist's deravation of the fast algorithms for computing Gt_l(t,s)
(one-step prediction) and Gt(t,s) (filteraing estimate) begins with the Bellman—

Krein formulas

Gr+l(t,s)

Gr(t,s) - Gr+l(t,r+1)Gr(r+l,s)

Gf+l(t's) = Gr(t,s) - Gr(t,r+1)Gf+l(r+l,s)

We next define the "backwards weighting pattern"
*
G, {t,s) = Gr(r-t,r—s) (B.38)

and the matrix polynomials

t
s %
$,.(z} = I - Z z G, (s=1,-1) (B.39)
s=1
t
¢z{z) = zt I - ;z;z—st_l(s—l,-l) {B.40)

As pointed out in [B-4], in the scalar case these polynomials are related to
the Szegd polynomials. Also, 1f we let ¢t N denote the coefficient of z  1in
r
%
¢ (similariy for ¢ ), and 1f we use (B.34), (B.35), (B.38}-(B.40) we obtain the

prediction and smoothing equations

Jﬁh note that the existence of two such formulas 1s related to the existence of
both a one-step prediction and a filtering estimate, which 1s in clear distinction
to the continuocus-time case, in which we only have one such formula and filter.
Indeed, the discrete time problem leads to a number of different types of innovations
representations (see digcussion in [B=67]) and also leads to more complex equations
to be solved for the weighting pattern and gain., We refer the reader to [B-4,67,
101,102] for more on the differences between the continuous and discrete time cases.
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t-1

! z (i)

I\( l

¢
1=0

£l .
g DN Py (1)
yi-1|t-1) = - (d)t' t_l__l) z (1

l=

(B.41)

(B.42)

%
Thus, 1f we can recursively compute ¢ , ¢t' we can recursively solve for the

t
weighting pattern of the desired predictor. Utilizing the Bellman-Krean

equations, Landquist derives these recursions, which yield the multivariable

Levinson eguations:

* *
bpgp (B) = 0. (2) - 20 (2T, 9o (2)=T
* ( * r *
¢t+1 z) = z¢t(z) - ¢t(z) ¢0(z)—I
L}
- _ I' * *I'*
Rt ™ R (t) Rele
* E 3 1'!
Rewr = Re = TRy
-1
S, = R(t+1) - ;o R(E-2)6, _, (1,~1)

I'* L * T _
t Ry =5 = Rtrt

(B, 43)

(B.44)

{B.45)

(B.46)

{B.47)

(B.48)

*
Here, R, plays the rele of forward prediction error, R_ is the backwards error,

t

*
and Pt, Pt are the multidimensional analogs of the partial correlation

coefficient introduced earlier. These relationships can be seen much more
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eastly 1f one looks at the scalar case and uses the following speciral relationships

that hold in this case (note that these include the fact that in the scalar case the

forward and backward predictors are essentially the same —-- a statement that 15 not

true in the vector case):

£.* -1
¢.(2) =279 (z ), r =T (B.49)

Then, the algoraithm becomes

¢t+l(2) = z¢ (z) -z ¢ (27t t (B.50)

R = R (1—P2) {B.51)

T+l t .
t-1

F = |R(t+l) = Z R(t"'l)G (1,-1) /R {(B.52)

t 1=0

and the comparisons with the usual Levingon equations (equations (38a)-
{389 1n [B-26]} are clear.

Following this development, Landquist next considers the case in which
the ¥'s have a Markovian representation. Using the algorithm (B.43)-(B.48)}, .
he 1s able to obtain a fast algorithm for the Kalman gain. For the details
of this derivation, we refer the reader to [B-4].

Finally, we note that there are numerous physical and mathematical
relationships between fast algorithm that have been derived in a number of
disc¢iplines. As discussed in [B-26,44], the auxiliary variable k:L in the

8
scalar Levinscon algorithm  has an interpretation as a reflection coefficient,

SWe note that in the multivariable case, the k have two matrix counterparts
(P and P in {B~4]) whach in general coincide only in the scalar case. This 1s

due to the fact that the covariance matrix R 1s only block Toeplitz., This also
leads to the differences between the forward and backward predictors, which in
turn leads to an increase in computational complexity in the vector case).
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and thas fact has been utilized in speech processing, in which these coef=-
ficients specify certain parameters an an acoustic model of the speech process
[B-26,44], TIa addition Casti and Tse [B-40] Kailath [B~6,7] and Sidhu and
Casty [B-11] have shown that the fast Kalman gain algorithms are closely related
to the work of certain astrophysicists, 1in particular Chandrasekhar [B-38],

who devised algorithms for solving finite time Wiener-Hopf equations arising in
radiatave transfer. Also, relationships between linear filtering and scat-

tering theory have been brought to light in the recent papers [B-77,101,102],
And finally, for a good overview of some of the mathematical relationships,
we refer the reader to Genmain and Kamp [D=145]. These ideas are of interest in

that seeing these algorithms from several perspectives allows us to gain insaight

into their properties, potentials, and limitations.

B.2 The Covariance Method, Recursive Least Squares Identification,
and Kalman Filters

Censider again the normal equations (B.7),{B.B). We now consider the
range of n to be only as large as the actual data allows —— i.e., in equation
(B.3) we will regunire that k, k=l,...,k=p all be within the range 0,.,..,N-1.

.This leads to the following range for n
p<n<N-1 (B.53)

Note that in this case the normal equations become

Sa = ~d ) (B.54)

01

element as clj. Note that clJ 1s not in general a function of i~j, and thus

where d' = (¢ 'c02""'cOp)' and S 1s the symmetric matraix whose i19th

S 1s not Toeplatz,
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We note that this method also has several interpretations., As discussed
by Makhoul [B=26], one can cbtain equations of adentical form as the linear
least squares predictor for a nonstationary process, In addition, as discussed
in [B-44], if one makes a Gaussian assumption, then the covariance method
produces the conditional maximum likelihood estimate of a, given v(0),...,¥(p~1}.
We refer the reader to IB-44] for several other interpretations of the cova-
riance method.

Turning to the solution of {B.54), we find that the fast methods described
an the preceding section do not carry over gqurte so nicely, since S 1s not
Toeplitz. In [B=44], however, a method analogous tc the Levinson routine,
in that 1t iterates on the oxder of the predictor filter and computes forward
and backward pre?lctors simultaneously, 1s described. This method is not
nearly as efficrent as in the autocorrelation case, and this can be traced to
the fact that (B.49) does not hold in this case (even for the one-dimensional
problem). As discussed in [B=44], the solution to the autocorrelation and
covarliance equations can be viewed as performing a Cholesky decomposition,
or equivalently a Gram—-Schmidt orthogonalization, of T and S. In the Toeplit=z
case, very fast algorithms exist for Cholesky decomposition (see the previous
section and [B~37})}, while thas procedure is somewhat slower for symmetric,
non-Toeplitz matrices. Recently, however, Morf, et.al. [B~71] have obtained
fast algorithms %or the covarlanée method by exploiting the fact that, although
8 1s not Toeplitz, it 1s the product of Toeplitz matrices {see equations (B.56)-
(B.59)). We refer the reader to [B-71] for the details of several algorithms
that essentially involve embedding the original scalar prediction problem into
a multidimensional one to which the fast vector Levinson algorithm can be

applied.
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Let us take a look at the covariance method from a slightly different
point of view. Recall that the algorithm mentioned above and the one in the
preceding subsection involve recursions on the order of the filter given a
fixed set of data. Suppose now we consider a recursion for updating ccefficirents
of a fixed order filter given more and more data. To de this) we refer to the
survey paper [B-16], where the covariance method, termed the "least squares
9

method" 1s dascussed °., Given the data v{0)},...,v(N~1), the covariance method

attempts to find a least sguares fit to the eguation

Tge1® = fy1 (B.55)
where
. v T
~y{p=1} ~v{p=2) ... =-y(0)
In1 %) y@) my(pel) ee. -y(D) (B.56)
~y{p+l) ~y(p) eee =y (2)
{_—y(n—Z) ~v(N-3) ... -y (¥-p-1) —
a, v(p)
= £
a=l. ' N-1 =y (p+1} (B.57)
a :
P :
y(¥-1) |

9In this survey paper the autocorrelation method -- called the "correlation
method" -- 1s also discussed and is compared to least squares
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The least -squares solution is given by

' I a =1" " B.5b8
( -1 N-l) a2 =Dy Ty ( !

which can be seen to be identical to (B.54). Thus, the covariance method

computes

-1
a — = ¥ T
SYCE DR AR A B AR (8.59)

Suppose we have a(N-1) and we now obtain the new data point y{N). We would

~
like to update our estimate to a(N) in a manner more efficient than re-solving

{B.58) from scratch. Following standard recursive least squares (RLS) procedures

[B~16], we note that incorporation of v(N) ainto (B.55) adds a new equation

- i.e. it adds a last row to LN-l

2" (N) = ("'Y(N—l) r Y (N"z) '--o'-Y(N"P)) (B.57)

and a last element, v{N), to fﬁ-l' Thus, (B.55) takes the form

L1 fe-1

(B.58)
2 (W) y (N}

and (B.59) becomes

~ . "l
a(N) = [I‘;\I—lLN-J. + 2020 (N)] [J:Jl'\r__lfl\l__:L + R.(N)y(N)] (B.59)
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With the 21d of the matrix inversion lemma [A-65], we can rewrite (B.59)

A = a(N-1) + K(N) [y(N)=L'(M)a(N-1)] - (B.60)
where
K(N) = PN-1) 2 (W) (B.61)

1I+L T (N P{N-1) 2 (W)

and

1 _ pegeny - =L 0N QD P(N-1) (B.62)

('L )
N 1+27 (N) P (N-1) & ()

P(N)

I

Examining these equations, we see that they represent a Kalman filter
(see [B-17]). In fact, »aferring to [B-24,47], we see that these are
precisely the Ralman filter equations used by Melsa, et.al. in speech processing.

Specifically, they consider the dynamic equations

alk+l) = atk) (B.63)

yik) = z"(k)a(k) + v{k) (B.64)
where

z' (k) = =(y(k-1) ,vy{k=2) ,.eue,y(k-p})° {B.65)

and v{k) 1s a Zero-mean, white process with

EGI()) = ¥ (B.66)
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If ¥ 1s set to 1, we obtain the solution to the covariance equations. Also,
in this formulation, P(N) has the interpretation as the covariance of the i
estimation error a—g(N),

Let us note some of the properties of the recursive solution (B,60)-
(B.62). Examining (B.60}, we see that the increment in our estimate 2 1s
proportional to the error {(innovations) in predicting the latest value of y

using preceding values and our previous estimate of a. This suggests that a

monitoring of the residuals

r(N) = y{N) - &' (W)a(N-1) (8.67)

can be used to help detect abrupt changes in the predictor coeff1c1entsloor

the presence of glottal excaitation in voiced sounds. In this manner one may

be able to improve upon the estimation of a. Whether such a procedure would

be of value is a matter for future study. We only note here that such techniques
have been developed and have been successfully applied to a variety of problems
including the detection of arrhythmias in electrocardiograms [B-103,104]. Also,
it is possible to make the filter more responsive to changes in the coefficients
by using one of several methods available for adjusting Kalman filters [a-65],
These include exponentially age-weighting old data in favor of the more recent

pieces of information or the modeling of a as a slowly-varying Markov process

alk+l) = na(k) + wik) (B.68)

where A 1s a stable matrix, and w is zero mean white noise with covariance Q.

In thais case, equation (B.60)~(B.62} become

10

"We note that Bergland [B-124] has suggested monitoring the residuals of a linear
predictor in order to determine when to update the estimates of the predictox
coefficients,
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a(N) = AA(N-1) + KV [y(n) - ' (M)a3 (n-1) (B.69)

Koy = EO[N-1)2(0) (B.70)
1+2.7(W) P (N]n-1) £ (20)

P(N|N-1) = aP(N-1|N-1)a' + O (B.71)

P (N{N~1) £(N) & ' () P(N|N-1) (B.72)
1+2 " () P (W[ N=-1) £ ()

P(N|N) = P(N|N-1) -

Again, the utility of such a procedure i1s not clear, and further thought and
experimentation is necessary.

Let us now consider the computational complexity of (B.60)-(B.62).
First note that one does not have to compute the correlation coefficients
(elements of S in (B.54)). However, one does have to calculate K(N) at every
stage, and 1f one solves for the gain from the Riceatl equation (B.62), one
has on the order of p2 maltiplications per stage. However, Morf, et.al. [B~71l
and Morf and Ljung [B-120] have exploited the structure of the equations to
obtain fast algoraithms for the direct computation of K. Combined with the fast
algorithm mentioned earlier, one now has efficient recursive Procedures for
the covariance method as one increases either the order p of the predictor or
the number N of data points {or both simultaneously). The most efficient
procedure 1s to use p=1 and process the data points successively. At the end
of this procedure, one can then increase P until an acceptable prediction error

1s obtained. We refer the reader to [B~71,120] for details.
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We also note that Gibson, et.al. [B-47]1 have proposed a filter of the
same structure as (B.60)~(B-62) but that requires far fewer multiplications
per stage (the order of p). This procedure is based on stochastic approxi-
mation methods and replaces (B.61)-(B.62) with

_ _gim)
(W) 100+ L () {B.73)

where g 1s a gain to be determined by experimentation (see[B-47I)1l. We
refer the reader to [B-24,47] for detaals and experimental results.

Finally, we turn to one final note concerning the relative merits of
the autocorrelation and covariance methods. BAs pointed out by Makhoul
[B-1151, the autocorrelation method offers the advantage of guaranteering the
stability of the resulting all-pole filter; however, the fact that the method
relies on setting y(i)=0 outside the available range of data leads to spec-
tral dastortion. The covariancs method, on the other hand, avoids the dis~
tortion problem by not considering points outside the gaven range, but i1t need
not lead to a stable filter. As stability for these methods is guaranteed 1f
and only if all of the reflection coefficients have magnitude less than one
[B~-30,115], a number of modified covariance~type methods that have this pro-
perty have been devised. We refer the reader to [B-115] for a dascussion of
the relative merits of several methods and a new fast algoraithm, We also note
that Morf, et.al. [B-71] point out that i1f one considers a hybraid method —-

we define y(1)=0, N+l<i<N+p but do not use y(j), J<0 -- we can guarantee the

AL
“In {B-47] the gain K(N) 1s calculated in a slightly different way because
of the inclusion of gquantization effects.
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stability of the resulting filter and can staill obtain fast algorithms

(due to the product of Toeplitz form of the covariance matrix).

B.3 Design of a Predictor as a Stochastic Realization Problem
A problem that has attracted a great deal of attention in the control

and estimation laterature 1s tle stochastic realization problem [B~7,11,13,

15,20,21,22,37,63,67,72,85,90,1051., Briefly stated, (a special version of)
the stochastic realization problem asks the following: given a stationary
Gaussian random process y (taken as a scalar here for 51mpllclty12) with
correlation function R{n}, find a Markovian representation

x(n+l) = ax(n) + w(n)
(B.74)

y(n) = e'x{(n)
where w 1s a Zero mean white noise process with covarlance Q. Referring to
(B.19]-(B.25), we see that this 1s equivalent to finding a factorization of

R of the form

R(1) = c'Alb (B.75)
where
b = Pe
APA'-P = =Q) (B.76)

Examining (B.75), (B.76), we see that the algorithm falls naturally into
two pieces: (1) find a triple (a,b,c) satisfying (B.75); (2) find P and Q

satisfying (B.76). One of the best-known studies of this problem is that of

2 . N
1 We note that the various algoraithms discussed 1in this section have been eXtended
=~ 1n most cases nontrivially -- to the vector case.
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Faurre [B-21,57,85]. As he pointed out, the farst step of the algorithm is
simply the well-known deterministic realization problem when one 1s given
the "weighting pattern" R{0), R(l), R(2},... » This problem has been widely
studied in the literature [B-9,10,11,12,13,14,72,106,107], and we wall make a
few comments about this aspect of the problem in a few moments. Before dis-
cussing the numeraxcal aspects of the farst step or the details of the second,
let us see what the first part yields in the frequency domain (here we follow
[B-631). Iet us define the power spectral density

oo
5, (2) = z R(1)z

==

(B.77)

Then, using the fact that R(-1) = R{1), we see that the factorization (B.75)

yieldsl3

sy(z) = o' (21-8) "Yab + o' (2 FT-a) Tab (B.78)
Koting the form of (B.78), and defining
oz} = det(zI-a) {B.79)

we see that the first step in the algorzthm yieldsl4

L3¢ we had realized %- R(0) ,R(1) ,R(2) ,¢.., instead of R(0),R(1),R(2)},.e., We

would have a more symmetrical version of (B.78)(see [B-63]). ©Note that equality
of (B.77) and {(B.78) 1s as formal power Series,

14Note the assumption that we can factor R as in (B.75)} implies (and 1is

implied by)the fact that Sy(z) is a rational function.
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s (z) = R (B.80)
a(z)olz )

That 1s, we have obtained a factorization of the denominator of Sy' If we

can also factor the numerator

-1
5 (z) = EBL2IBLZ ) (1>0) (B.81)
-a(z)al(z 7}
- 15

we will have determined the desired transfer function

_ B(=)
G(z) = ol (B.82)

which, when driven by white noise with spectrum ul/z} vields the spectrum
Sy(z). It 15 clear from (B.74) that 1t is this second part of the spectral
factorization that is accomplished by the second step of the stochastic rea-
lization algorithm. Finally, note that the model (B.82) contains both poles
and zeroes (it is an autoregressive~moving-average (ARMA) model).

There are several methods for performing the second step of the algorithm.
Faurre [B-21,85] showed that (B.76) could be solved for any P inside a given

range

<p<p (B.83)

(here 1inequality 1s in the matrix sense)}, and he-identified the smallest such

covariance, P,, as that arising from an innovations representation of Y e l.e.

lswe choose B and o to consist of those poles and zerces of Sy(z) that lie

within the unat circle, This will guarantee the stability of G and of its
inverse (see [B-631).
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a Kalman filter (see Gevers-Kailath [B-67)] for a full description)}. This

representation is of the form

E{n+l) = aAE{n) + Ke(n+l)

(B.84)
y(n) = c'€(n)
where € 1s an innovations process with covariance
RE =c%h - c'P,C (B.8§?
and P, 1s the solution of the algebralc Riccatli eguation
. A[b-P.c] [b-P, c] A’
P, = ARP,A' + (B.87)
c'b-c'P,c
Then the Kalman gain 1s given by
[b-p,c]
K= — o (8.88)
c'b-c'B.c
Comparing this with (B.26), we see several differences. First of all, in
(B.26) we had an equation of the form
~ ~
x(n+l) = Ax{n} + aRe(n)
(B.89)

v(n) = c'g(n) + e(n)
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The differences between (B.84),(B.89) can be explained by noting that (B.84)
represents a representation based on the filtered estimate of x(n) (given

y(0)yeae,y(n)) and (B.89) 1s the one-gtep predicted estimate of x(n} (given

y(0),...,7(n-1)). We also note that it is easy to pass from one of these re-

presentation to the other (see (B-671}.

Thus, examining (B.84)~(B.88), we see that the second step of the
algorithm consists of solving the equations defining a steady-state Kalman
filter, and again the most dafficult step 1s solving for the covariance —-- 1in
this case P,~ from the nonlinear eguation (B.87). However, note that P,
itself 12 not needed 1n (B.84). All we really need are RE and K. Thus, an
alternative procedure is to use the "fast algorithms," as described in Sub-
section B.l (see [B~63,6%9] for the development of this 1dea). These will pro-
duce the time-varying hi tories of K and RE' If we let the transients (due to
the finite data with which the filter must work to produce an estimate) die out,
we will obtain X and Rt' We note that although this approach involves solving
for K and Rt recursively (in time), this procedure may be mucigg;ster than dairect
solution of (B.86)-(B.88).,

Before turning to an alternative approach, let us note that once we have
K, we have in fact determined the optimal recursive predictor or filter (i.e.
comparing (B.26) and (B.89), we can readily turn the innovations representation
into a one-step predictor}. Note also that this model 1s causal and causally
invertible [B-67,69] and hence the method can be interpreted as an i1nverse
filter approach to the identification of G(z)} -~ 1.e. we have eguivalently

determined the optimal predictor or a whitening filter., Also, as mentioned
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before, this methed allows for =zeroces in the model. A method of this type
was proposed in [B-69]., Actually, in that reference i1t was proposed that one
F;ght benefait from the use of the time-varying innovations representation
(before it reaches steady-state}. We refer the readexr to [B-69,721 for more
on the time-varying problem. We will have more to say about the numerical
aspects of the steady-state algoraithm in a moment.

There 1s an alternative approach tc the Kalman filter method for finding
a factorazation of the numerator of Sy(z). Examining (B.80), suppose we pass
the process y through the all zero filter o{z). The resulting process T has
power spectral density p{z} -- i1.e. 1t 15 finitely correlated (moving average

(MA) process. Given its correlation function p(z)}, one wishes to factor i1t

- m m m
p(z)=2 pzl= szl Egz-l
. k1 1 1
1=-m 1=0 1=0
-1 (B.90)
= B(z)B(z )
As described in [B-11,13,37,56], this 18 equivalent to obtaining a
factorization of the infanite symmetric Toeplaitz matrix (with finitely
many nonzZero diagonals)
LR N 2 0 0 L N ]
pG pl Em
Pl PO -es m-l Pm 0 -aw
P = . (B.91)
Pn Pa1 =Py Pp PBg -
O Pp-e Py Py Py oo
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into the product of an upper triangular matrix and its transpose. Recursive
procedures for this are discussed in [B-37], and clearly the Levinson-type
algorithm can be used ain this scalar case, As the recursion proceeds, certain
of the elements of the Cholesky factor converge to the desired Bl (see [B-131).
Clearly an alternative to this procedure 1s to find the innovations represen-—
tation of N using the fast algorithms described earlier. This method zis
closely related to the “fast Cholesky" algorithms, and the reader is referred
to [B-63] for details (see also [B-72]1). For a detailed discussion and new results
on the use of the Riccati equatzon for spectral factorization, we refer the
reader to [B-112].

Let us now turn to the numerical aspects of this two-stage procedure. We
concentrate here on the first stage --~ 1.e. the computation of the factori-
zation (B.75). The algorithms of Rissanen [B~1l] and Ho [B~106] are based on
examination of the Hankel matrix
R(0} R R(2) ....R(N-1)

R(1) R(2) R(3) eess R{N)
N (B.92)

-
-
-

R(N-1)} R({N) R({N+1) .... R{2N=-2)
L.

Tt 1s well-known [B-107] (see also Subsection C,1) that R admits a Tactorization

(B.75) 1f and only 1f there is some integer n such that

rank HN <n VN {B.23)
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Ho%s original algorithm yielded a minimal realization (1.e. dim A an (B.75)
1s a small as possable) 1f & bound n was known in advance. A far more

critical questaion (from a practical point of view) is the partial realization

question, Here we take into account that we only have available a finite
number of correlations R{0), R{1l}),...,R{N-1), and cne would like to obtain
the minimal factorization that matches these. One can use Ho's algoraithm for
this, but it is not recursive -- 1.e. 1f we 1ncorporate R(N)}, we must re-solve
the whole problem. Fortunately, Rissanen [B-11] and Dickinson, et.al. [B-2]
have developed efficient, recursive procedures (the latter of which 1is based
on the Berlekamp-Massey algorithm [B-10], which was developed for the scalar
casel. We note that these algorithms essentrally solve the Pade approximation
problen, and we refer the reader to the references Ffor details.

Thus, efficient algorithms exist for spectral factorization and one would

expect good results 1f the process v truly has a Markovian representation and

if one has the exact values of the correlations. This points out a conceptual

difference between linear prediction and the above stochastic realization
procedure, In linear prediction, no pretense i1s made about exactly matching a
model. AllL that 1s wanted is a least-squares fit, and thus one would expect
this procedure to be relatively robust when one uses a finite record of real -
data tec generate an estimate of the correlation function which i1s then used in
the linear prediction procedure. On the other hand, it can easily be seen

that an infinitessimal perturbation of HN in (B.92) can make 1t have full rank.
In this case, the partial realization procedures -- which 1n essence are looking

to match a model exactly —-- will yield a system of extremely high dimengion.
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Thus, 1t appears that these algorithms are inherently sensitive to errors in
estimates of the correlation coefficients. In addation, if y has no Markovian
representation, the linear pre@lctlon approach will sti1ill work fine, but the
partial. realization procedures, which are based on exact model matching, may
very well run astray as it tries to fit the data "too clbsely",

Does this mean that the above procedure 1s of no use in identifying para-
meters 1n a speech model? The answer to that i1s perhaps not. What 1s needed
15 a modification of the first step of the stochastic realization algorithm,
As the version described here stands, it 1s too sensitive and in fact, Dedong
{B~108] has shown that these methods are numerically unstable in that the
inexact minimal realization supplied by these algorithms, as implemented on a
finite wordlength computer, may not be a "numerical nelghbof'of the sequence
{R(i)} that 1s to be factored. A great deal of the difficulty 1s due to the
1llposedness of the problem of finding the rank of the Hankel matrix. By
rephrasing the algorithm in terms of the £-rank -- the least rank of all sys-
tems within an "e€-~neighborhood" of the given seqguence —— De J;;;_obtalns a
sléwer algorithm that i1s similar to Rissanen's but 1s numerically stable.

This approach is extremely appealing for two reasons: (1) We can, withan thas
framework, seek minimal realizations in the €-neighborhood of a sequence

{R(1)} that itself 1s not realizable by a finite dimensional system; (2) We
can seek the "nearest” reduced-order realization of given 51men51on of a given

system. These two properties may help overcome some of the sensitivity problems

with the two step procedure.
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In additaon to the work of De Jong, a number of other methods have been
proposed for "approximate" Pade approximations, and any of these could be
used as the first step in the algorithm., McDonough and Huggins [B-113] propose

to approximate a time function £{(t) by a sum of (possibly complex)} exponentials

N s t
_ 1
fa(t) = E Ae

1=1

They study numerical methods for the iterative determination of the Ai and
sl that minimizZe

T

J[ ez(tldt
0

where e 1s the signal error

e(t) = £(t) - £_(t)
a

One needs iterationg as this 18 a nonlinear problem. This 1s clearly closely
related to the discrete~time problem of finding {E)b,c} with A nxn (n fixed)

to minimize some Ffunction of the error

e(1) = rR(1) - cA'b

Some effort has been put into this problem in the recent past [B-19,75,110],
and one possibility, of course, is the all-pole approximations -« e.g. we
might perform linear prediction with the R{1} as the obsgerved signal (regarded
as the impulse response of some filter). This would require computing the

correlation of R{1), or, in other words, the correlation of the correlation of
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the v(1)! ©Note that the all-pole assumption for R(1) would not necessarily

lead to an all-pole model for G(z) in (B.82).

Another possible method has been proposed by Burrus and Parks [B-1141,

They consider approximating

R(0) + Rz T + R(z}z_2 Foaea

r(z) =
by
-1 =-N+1
ctz) = a0+alz +...+aN;lz _ alz)
-1 =M+l bz}
1+blz +"'+bM—lz

In addition to specifying some exact realizability conditions on {r() }
(which can easily be reduced to Hankel matraix conditions and statements),
they suggest the following: we would like

a(z)
b{z)

riz) =

Multiplvaing by b(z), we obtain

b(z)lr(z) = al=)

and if we attempt to minimize some norm on the difference betwesen these quan-

tities {called the egquation error), we can obtain linear approximation

algorithms, We refer the reader to [B-114] for details.
We close by noting that initial results ([B-109], [B-111]) utilizing the

two-step procedure indicate the potential of the approach. In particular, the

work at IRTA [B~109] has produced good results for the design of whitening
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(inverse) filters. Given this limited success and the previous discussion,
1t appears that the utility of the two~step stochastic realization procedures

merits further investigation.

B.,4 Some Other Issues in System Identification

It 1s appropriate to mention several other identification procedures.
Recall that in Subsection B.2 we saw that the covariance method was equiva-
lent to a Kalman filter when we recursively update our estimates of the
predictor coefficlents. As discussed in [B-17], several other recursive
identification schemes can also be considered as Kalman filter-type algorithms,

One of these is the instrumental variables approach, which bears some simi-

larity to the least squares algorithm and whaich, in fact, leads to Toeplitsz
equations in the stationary case [B-91]. In that reference 1t 1s pointed )
out how one can devise the Toeplitz Yule-Walker equations to determine the
poles (AR part) in an ARMA mndel.l6 This 1s essence regquires knowledge of

the order of the MA part and thus i1s much more apt to lead to the sensativity
problems that one confronts in using a technigque that 1s based on the assump-
tion that the data obeys certain constraints (as in the first step of the
stochastic realization algorathm of the preceding subsection). In addition,

we no longer are guaranteed that the solution to the Yule-Walker equations leads
to a stable inversge filter,

The methods of least squares (covariance) and instrumental variables, as

described 1n [B-17] are used for all pole models of the noise (prediction error)/

[
This method 1s similar 1n spirit to the Burrus-Parks generalized-Pade—equation-
error apprcoach for the determination of the denominator of a pcle~zero model
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output behavior {(i.e. for AR models). However, both the usual least squares
and the instrumental variables can be easily modified for the identification

of input zeroes -~ 1.e. consider the model

vi{k+i) + aly(k) +aaat aPy(k-pf;) = bou(k) + blu(k-l) teoet bmu(k—m) + e{k)
{B.94)

where we measure both the y's and u's (here £(k) is the driving noise, or

equivalently, the Yequation error™), In this case, let

9' = ("al'oo-p-aprbop-.-,bm) (Bogs}

¢' (k) = (Y (k) Foeose 'Y(k“P'{'l) r u(k) reesgl (k"m) ) (3-96)

A

Then the recursive least squares procedure reduces to a Kalman filter for

the system

0 (k)

it

0 (k+1)
(B.97)

y(k+1l) = ¢" (k)6 (k) + =(k)

Although this input model is not of interest in the speech problem, 1t is of
great i1mportance in control applications in which one is interested in

manipulating the system via the znput u. We refer the reader to [B-17] for

the analogous development for the instrumental variables method.

There are two other algorithms in [B~17] that are of interest. These

-

methods allow zeroes both in the 1nput/output response and in the noise/output
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response =~ 1l,e, they can be used to identify ARMA models. Both of these
algorithms are recursive (in the data), approximate maximum likelihood methods,
and both methods are of the Kalman filter type. The second of these (RML2 1n
[B-17]) 1s discussed in detail in [B-18]. tThe first of these, RML1l 1s, in
some sense, an approximation to RMLZ, and we outline the basic idea., Consider

the ARMA model
vik+l} + aly(k)+...+apy(k-P+1) = a(k) + cle(k-1)+...+cqe(k-q) {B,98)

We can rewrite (B.98) as

8 (k+l) = 8(k}
(B.99)
y k1) = ¢t (k) Bk} + elk)
where
Qr = ("a.lfooo'—app clycoorcq)
(B.100)

¢' (k) = (Y(k)l’"'ry(k_P-‘-l)l e(k—l)p.o-]e(k_q))

Having ¢, one could again devise a Kalman-filter structure for the estimate
0. However, the noises, e, are not known. As suggested in [B-17,82,83] a
natural approximation i1s to replace e{3j) in (B.100) by 1ts estimated value ——

L.e, the residual

£(3) = y{(3+1) - $‘(j)§(]) (B.101)
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If we do this, we obtain the following regursive scheme:

6(3+1) = B(3) + K(z+L)e(3) (2.102)

2()§ ) (8.103)

K(3+1) = = —
140 (5)P () ()

B(341) = P(39) = P(2)¢(3)¢(31'P(3) (B.104)
1+ (7)P(3) ()
$(j)' = (Y(j}'.oory(J—P"‘l)' E(j"‘l);...;Eﬁ(j“q)} (B.J.OS)

We refer the reader to [B-17] for a detailed description of this and the
other algorithms., In additaion, uniqueness of stationary points and the sta-
bility of these algorathms i1s considered in detail in thais reference In
particular, it is shown that RLS 1s stable and has a unique solution, that
RMI,1 and RMLZ have unigue solutions for ARMA models, that RML2 always converdges,
and that RMI.l converges for MA models, for first-order ARMA models, but that
it may diverge in higher-order cases (an example i1s given). The reader 1s
referred to [B-17] for details, further references, and for many insights into
the characteristics of these i1dentafication procedures. BAlsec, we refer the
reader to [B~120] for fast on-line algorithms for these identification schemes.
These methods are analogous to that mentioned earlier for the covariance method.

We note that the methods described abowve and in the preceding subsection in
rrinciple allow ocne to identify poles as well as Zerces. In addaition, several

other methods for zero modelling have been described in the literature [B~26,68,
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100,113,114,123], The method in [B-68] i1s based on cepstral analysis. ILet

Y{z) be the zZ-transform of a signal y, which we wish to model as the response

of an ARMA model:

=

(z) (B.106)

¥(z) = D(z)

Usuval linear prediction {(with care taken to avoid the Zerces [B-26,68,100])

will adentify D. Suppose now we define the complex ceptrum §(n) so that

Q(z) = log ¥(z)

Then the z transform of n§(n) 1s

d¥(z) _ _, D(2)N'(z)-N(z)D' (z)

dz N(z)b(=) (B.107)

and thus linear prediction on n§(n) will identify the zerces (and the poles)

of v. We refer the reader to [B-26,68] for more on this technigue. In
addition, the generalized Pade methods in [B-113,114,123] can also be used for
pole-zZeroc modelang darectly (as well as for the first step of the two~step
procedure of the preceding section). Algo Atashroo and Boll [B-21] have sug-
gested a multi~-step procedure in which one performs linear prediction to obtain
the poles, inverse filters to cbtain a finitely correlated sequence, uses linear
prediction again to obtain a high-order all-pole model of this secquence, and
then performs a third linear prediction to obtain a lower order all-zerc inverse
of the all-pole model.

One further issue that we have not discussed is the determination of an
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appropriate order for the parametric model to be identified, Clearly, as

we allow more and more free parameters, we can get a better and hetter f£it,

but oné would expect a diminishing return beyond a certain number of parameters.
%stram and Efkhoff [B-16] propose one test c¢riterion, while Akaike [B-32,92;
B-15, p.716] (see also [B-26]) proposed an information-theoretic criterion
which provides a direct tradeoff between the value of the log-likelihood func-
tion and the number of free parameters in the model. Recently, Rissanen and
Ljung [B~79] have obtained a related criterion that incorporates the assumed

model structure (as well as the number of parameters).

In this section we have examined a number of aspects of the identification-
estimation problem, and we have pointed out a number of similarities between
the goals and techniques of the two disciplines, We have also seen some of the
differences, but others have not been discussed, In particular, in this section
we have treated identification for identification's sake. BAs pointed out in
[B~16] in control system desaign,, 1dentification 1s often simply a means toward
the goal of efficient control. Thus, 1in many control applications, the wvalue
of 1dent:fication 1s not measured by the accuracy of the parameter estimates,
but rather by the performance of the overall system. This 1s discussed somewhat
an [B-17] and also in the study of "“self-tuning regulators” [B-80,81]. In
addition, in control one has several types of identification problems, since one
has the opportunity to excite the sygtem through inputs. One finds scomewhat
different problems 1f the system 1s operating open Yoop, in a tame-invariant

closed-loop mode, or in an adaptive closed loop mode. We refer the reader
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to [B~15,17] for more on this subject and for further references. Finally, in
the control context, one often deals with systems for which one 1s interested
in determining system structure as well as in identifying the parameters of a
model. The issues involved hare are complex and are discussed in [B-15,161.

On the digital filteraing side, one 1s often interested in the accuracy of
the parameter estimates. This 1s of importance, for example, 1if one 1s at-
tempting to design an all-pole failter that matches a given impulse response in
a least squares sense, or 1f one 1s attempting to estimate formants from
an all-~pole speech model. On the other hand, for linear predictive coding,
the accuracy of the parameters may be of secondary interest, while the primary
concern i1s more efficient coding of speech data. In this case, accuracy 1S
of amportance only in so far as it makes the coding scheme more efficient.

In thas regard, a very important question involves the guantization of the pre-
dictor specifications ~- that is, wpat 1s the most efficient method for trans-
mitting the speélflcatlons of the all-pole model., BAs discussed in [B-119],

the reflection coefficients (from which one can construct the flltér) offer

the most efficient parametrization from a guantization point of view.

We note that the linear prediction approach appears to be particularly
well-suited to the speech problem. The all pole model 1s a good one 1n many
cases (from a physical point of view), the algorithms are fast, the intermediate
variables in the algorithm (1.e. the partial correlation coefficients) have
useful physical interpretations, the linear prediction procedure tends to match
the spectral envelope, etc. (see [B-26] for many of the properties of linear

prediction and [B-1161 for some of 1ts statistical properties). Finally and
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above all, linear prediction has been proven in practice to work well on speech
signals, and further work 1s needed bhefore cone can say with confidence that
any of the other techniques described in this section can improve upon this

performance,

Thus, we see that there are a surprisihg numéer of relationships, simi-
iarltles, and differences among the techniques and goals of researchers an both
disciplines who are concerned with parameter identification., The possibilities
for collaboration and anteraction that will benefit all involwed seem particu-
larly sbundant in this area. In part:icular, we have barely scratched the
surface on the guestion of the relative merits of the various methods or the

issue of precisely what problems a particular method addresses and does not

address. A thorough investigation of questions such as these remains for the

future.
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C. Synthesis, Realization, and Implementation

In this section we consider the questioh of design. However, our discus-
sion will not deal very much with design methods but rathexr with the question
of trying to pinpoint what researchers ain the two disciplines mean by "design"
and what sorts of problems their techniques are equipped to handle. As we
shall see, the i1gsues considered in the two fields are often quite different,
but there are many occasions in which techniques from one discipliine could be
of use in the other. Also, the problem of implementation confronts desagners

in both disciplines,

C.1l State Space Realizations and State Space Design Techniques

State space concepts and methods have a number of uses from a design point
of view, Let us first take a look at realization theory [A-64,68,B-12,C-2-13].
Iet us recall some of the basic concepts from realization theory (see [A-64,
B-12, C-2] for details and for further references). We will follow [B-12] and
will state several results in the continuous=-time framewcork, but analogous re-
sults hold Ffor the discrete-time problem (see the last part of Subsection B.3).

We are interested in time-varving linear system representations of the form

x(£) = A(e)x{t) + B(t)ult), x(t)=x,

(c.1)

v(t) = c(t)x(t)

where x{t)sR?, u(t)sRm, y(t)ERP, and A,B,C are matrices of appropriate dimension,
From an ainput-output point of view, the system (C.l) 1s equavalent to the

representation
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y(t) = c(t)@(t,to)xo + f c(t}®(t,T)B(T)ulT)dt {C.2)

9

where ® 1s the nxn state-transition matrix

d(t,0) = A(L)d(t,0), 3(0,0) =T (C.3)
and the matrix
H{t,T) = c(t)d(t,T)B(T) T (C.4)

1s the impulse response matrix. As pointed out in [B-12]}, in many control and

estimation problems, we are often interested in the weighting pattern matrix

c(t)®(t,T)B(T) t,T {(C.5)

il

K(£,T)

If A,B, and C are constant, then ® and K have particularly nice expressions:

eA (t-~T) eA (t-1) By

&(t,T) = , Klt,T) =cC vt,T (C.B)

and in this case, given the dependence on t-T only, we write K(t,0)=K{t),
H(t,0)=H(t). Also, in this case, an equivalent input-output representation

i1s provided by the Laplace transform of H(t) ~- the transfer function

G(s) = L[E4e)] = c(1s-2) 1B (C.7)

1 As mentioned in [B-12,0~10], 1f K 15 real analytic in t and T (as 1t 1s 1f A,
B,C are constant}, then (C.4), (C.5) are equivalent, since H has a unique extens-
sion to T>t. Otherwise, there can be nonunigque extensions [C-10].
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The realaization problem, then, is to obtain a recursive description of
the form (C.l) when we are given the weighting pattern, impulse response function,
oxr transfer function., Tt can easily be seen that i1if a realirzation exists, then
many solutions exaist. For example, we obtain the same weighting pattern as {c.1)

if we take E=2x to be our state wvariable

E(e) = a(®)E() + 2B(&)ult)
(C.7)
vt} = %— c{t)E(t)
or 1f we take n' = (x,0) as our state
) a(t) o B(t)
ni{t) = nt) + ult) {c.8)}
0 o (t) B{t)
vit) = [c(t),v(t)In(t)

where ¢ 1s arbitrary and either B or Y is identically zero. These two examples
illustrate the two basic issues that arise. In the first case, § and x are 1in
some sense equivalent, since they contain identical information and one can be
cbtained from the other wia an invertible linear transformation. Thais is not the
case i1n the second example, in which T carries superfluous information {(from an

input-output standpoint) in 1ts last component nn+ If f=0, the input can

1.
{a controllability problem), while 1f ¥=0, the output never

never affect
nn+1
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sees nn+ directly or indirectly (since nn+1 18 decoupled from the other state

1
componentsg)-- an observability problem,

Thus, one of the key 1ssues 1n realization theory involves the characte-.
rization of minimal realizations -- those which contain no superfluous infor-
mation in their state variables. We refer the reader to the references {see,
in particular, [B-12]) for the full development of realization theory for time-
invariant multivarisble systems. 2As one might guess from the preceding para=-
graph, the concepts of controllability and observability are very closely tied
to the minimality of a state space realization., For the sake of bravity, we
state the major results only for the tame~invariant case (1.e. stationary

weighting pattern and constant realizations of 1t).

Definition C.1l: A realization (time-~varying or time-invariant) of a

weighting pattern or transfer function 1s minimal 1f any other realization has

a state vector of dimension at least as large.

Definition C.%: A constant linear system in state space form {C.1l) 1s control-
lable 1f for every state xERF and any T>0 there exists an input function

ult), te{0,T] that draives the system from x{0)=0 to x(T)=x.z

Definition C.3: A constant linear system in state space form (C.2) is observable

1f, for any T>0, gaven u(t) and v(t), tE[0,T], we can uniquely determine x(t)

2
an thais intexrval,

Theorem C.l: Suppose we are given a stationary impulse response matraix H{t) or

1ts transfer function G(s)}. This system has a state-space representation of the

form (C.1) 1f and only 1f G(s) 1s a matrix of rational functions of s, each of

2 .
For time~varying systems, the intervals over which one tries to control or
cbserve the system may vary with time (see [2~64,B-12,C~-2,C-101).
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which is proper (degree (denom.)>degree {mmer,)) 3 . In this case, G{s) has

a minimal, constant realization, and, in fact, a realization .

i

Ax(t) + Bu(t)
Cx(t)

x(t)

v (t) {C.9)

]

1s minimal 1f and only 1f 1t 1s controllable and observable. In addition,
any minimal constant realiZzation can be obtained from a given one via an in-

vertible linear transformation of the state variable, &=Px, or equivalently

1

(A,B,c)-—-—*1PAP"1,PB,CP" } (C.10)

Finally, 1f dim x=n, the realization (C.2) 1s controllable if and only if

-

rank B:AB:...:AH-;B] =n (c.11)

=

and 1t i1s observable i1f and only af

—
te g

o":'n"‘l'
rank | C A C J{(A) C {=n (C.12)

We note that essentially the same result holds ain discrete time, in
which we have the (z transform) transfer function G(z) and we wish to represent
it as

clz) = c(Iz-a) 1B (c.13)

which is equivalent to the state space description

x(k+1)

ax (k) + Bu(k)
{c.14)
cx (k)

v (k)

Tt 13 easy to allow deg(denom)=deqg(numi) by including a feedthrough terms
v(t) = c{t)x{t} + D(t)u(t). Thrs 1s readily taken care of and leads to minor
modifications of the results stated here.
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Examining (C.7) and (C.13), we see that any algorithm that realizes the
continuous time system G(s) also 1s a valid realization algorithm for the
discrete-time system G(z) (and vice versa). We thus will turn to the discrete-
time framework for a moment in order to gain some insight into the realization

question.

As discussed in [A-64,B-12,106,107,C-2], there are relatively simple algo-
rithms for obtaining controllable or ohservable realizations of G{z), assuming -
1t 18 gaven in rational form (so that we can compute the least common dencminator
of all of the elements of G). The algorithm of Ho [B-106,107] and that of
Silverman and Meadows [C-13] provide methods for extracting minimal constant
realizations from the Hankel matrix (see Subsection B.3). BRasically, an thas

approach one writes G(z) in series form

<0

Gg(z) = z le—l (c.15)

1=1

and we recognize that {Tl} 1s the impulse response sequence, Referring to

.

(C.13), the realization problem is equivalent to findaing A,B,C so that

-1
T = cat B Vi (C.16)

aAs described in [A-64,B-106,107], one can find such a factorization 1f and

only 1f the ranks of the Hankel matrices

3
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_ =1
T, Ty eeee T,
HResloo T veue T (c.17)
2 3 N
| Ty Ty octer Tapg |

are bounded by some integer {and then the maximal rank of the Hﬁ is the di-
mension of the minimal realization of G). If G is proper rational, one can
show that this i1s indeed the case and, given the degree of the least common
multiple of the denominators of elements of G, can find a particular HN that
achieves the maximal rank. From this matrix, one can then extract the minimal
realization [B-12,106,107,C-13],. However, if we are given G in the form (C.15)
as opposed to in rational form, 1n general one cannot easily determine 1f G

1s rational (or equivalently if the ranks of HN are bounded)., In this case,
the partial realization algorithms discussed in Subsection B.3 are of use.

These algorithms essentially produce minimal daimension systems of the form

(C.14) that match the expansaion (C.15) up to some specified power of (z-l) -

1.e. these systems match the impulse response out to some specified point,

-

As mentioned earlier, these algorithms have numerical difficulties which must
be-overcome. However, 1f G is given in rational form, the algorithms of Ho-
Kalman and Silverman-Meadows provide a procedure for determining minimal

realizations (see also [A-64] for a_ procedure based on partial fraction

expansions) .
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Thus, the realization probklem can, in principle, Solve certain guestions
related to system synthesis. The input-output description (C.2) for continuous

gystems or the analogous one for time~invariant, discrete-time systems

n-1

yint = 3;) Tn_lu(:.) (c.18)

1S non-recursive in nature -~ l.e. equation (C.18} implies an algorathm in
which at each point 1in time the entire past sequence of input vectors

{0} yeea,u{n-1}) are multiplied by the appropriate impulse response matrices
and then summed. Clearly such an approach i1s feasable only if the system to

be implemented has a finite impulse response (FLR —-- Tl=0‘V1>some integer}.

In general, however, (C.18) regquires growing memory, and even in the FIR case,
the nonrecursive implementation may require exorbitant amounts of storage.

In this case, recursive implementations are called for, and the state spce

realization (C.14) provides an answer to this guestion. In fact, the computa-
tion of minimal realizations allows one to find out the minimal amount of
storage that 1s needed in any linear, recursive realization, and one of the most
mmportant aspects of the state-space approach is that it allows one to consaider
multiple input/multiple output systems and time-~varving systems, It i1s this
last point ~-~ the ability to handle multivariable and time-varving systems =«
that 1s one of 1ts most important assets <£rom a synthesis point of view.

One field in which state space realization theory has played a major role is

in network synthesis for both time-invariant and time-varying circuits. A
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number of papers have been wraitten in this area (see [C-3-9} and the referances
therein), and, in fact in some of thas work (see, for example [C~4]1), realiza-
tion concepts are tied together with some concepts concerning dissipative systems
(see Subsection A.2) to yield useful results in network synthesas.

We will not discuss analog network synthesis further, since ocur major
concern is with relationships with the implementation of digital filters. This
topic will be looked at in some depth in the next subsection, and thus we con-
tent ourselves at present with making only a few comments, For discrete—time
systems, the state-space approach tells us the minimal amount of storage — 1.e.
the minimal number of delays -~ that are needed to realize a given transfer
function. In addition, we know how to obtain any minimal state space realization
from a given one -- i.e. we apply (C.10} for any invertible P, and any recursive
linear realization can be written in vector difference equation (1.e. state
space) form by keeping track of all memory updates. Does this mean that state-
gpace realization solvesthe digital filter design question? The-answer to that
is decidely no. As we will discuss in the next section, there are many issues
besides minimal storage involved in choosing a "good" filter structure (1.e.
algorathm). However, we know that one can obtain any minimal state space rea-
lization algorithm via the choice of an invertible matrix P and the applzication
of (C.EO). Does this mean that the selection of a "good" filter structure is
equivalent to finding a “good" P? The answer to this 1is again no, and the pri-
mary rea;on for this 1s dastinction between interpreting a state space realization
as a description of dynamical bhehavior and as an algorithm. We defer the

clarification of this cryptic comment until the next section.
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In control theory, state-space realizations play a major role in a number
of very important design problems, In these problems the part played by rea-
lization theory is indirect, in that it allows one to bring into play some
powerful state—space design methods, We 1llustrate a few of these here. Con-
sider the system pictured in Figure C.l, We are given an open lcocop pxm transfer
function G(z)} and we wish to design a feedback compensator that has certain
properties. For example, one may wish to design a feedback system so that all
of the modes of the closed loop system have time constants in a specified
range., For scalar systems (p=m=1) techniques (in the frequency domain} for the
solution to this problem have been avallable.for a numbexr of years [A-53,C-2],
and f£redquency domain techniques for single input systems are discussed in [C-2].
However, as discussed in [C-2], 1f one uses a state-variable description of the
system, one can obtain a solution in the general, multivariable setting. We
briefly outline a method discussed in [C-14]. Let us suppose G{z) is proper,
rational, and reduced {(no element of G has common poles and zeroces). In this

case, let us find a realization

x (Ie+1) ax{k) + Bu(k)

{C.19)

H;

v (k) cx (k)

and we note that the poles of G(z) are precisely the eigenvalues of A 1f and

only if (C.19) 1s minimal. Suppose we implement a control law of the form

u{k) = -xKx(k) {C.20)
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Figure C,.2: Illustrating an Optimum Filtering Problem
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Then the closed-loop poles are just the eigenvalues of (A-BK}. 2As discussed

in [C-14], we can faind a K to place these eigenvalues wherever we want if and

only 2f {C.19) 15 controllable, A constructive algoraithm 1g given in [C-14],
Suppose we cannot implement (C.20) -~ 1.e. we only have u and y at our

disposal. One might then consider the design of a system that estimates x from

1u:and v. A-natural structure For such an “"cbserver". [C-14,15] 2=

(k1) = A%(k) + Bulk) + H{y(k) - Cx(k)) (c.21)

Note that 1f x{k) = ?{(k), then x(n} = g(n) ’ ¥n>k, and 1f one looks at

Fal
the error elk)=x(k)-x{k), we £find that 1t obeys the equation

2{k+1) = (A-HO)e (k) {C.22)

and the poles of A-HC can be placed arbitrarily if and only 2f (C.19) a1s

4
cbservable, Tf one then implements the control law

ulk) = -Kx (k) (C.23)

one finds that the poles are just the eigenvalues of (A-BK) and (A-HC), and we
have solved the pole placement problem. This procedure 1llustrates one of the
cructal aspacts of -many state space design methods -- the solution to desian

problems is an algorithm, which, with some ¢&Se§; can be implemented on a general

4
Note that (A,C) is obserwvable if -and only 1f (A%,C'} 1s controllable (see (C.11},

(c.12)), and that the eigenwvalues of A~HC are the same as for A'-C'H'. Thus, we
can use the same algorithms for “finding ‘H as that used to find K- (C.20).
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5
purpose computer

Algorithmic, state space solutions exist to a wide variety of other
problems -~ decoupling ("design a feedback law so that the 1th input effects
only the ith output, [C-16]}, invertibility ("when can we design a system that
w1ll take the output of our given system and recover the input [C-17]1), ete.

-- and we refer the reader to the special issue of the IEEE Pransactions on

ZAutomatic Control [A-68] for an overview of the various design methods that

have been developed. One important aspect of some of these techniques ag that
they allow one to solve guantitative optamization problems., The linear-gquadra-
tic optimal control problem is an example of this, as i1s the design of a Wiener
filter as a steady-state Kalman filter [A-65,68,C~18]. Consider the estimation
problem illustrated in Figure C.2. We have a Gaussian, stationary process vy

with given, rational power spectral density @Y(s), and we observe the signal z,

which consists of the sum of y and a Gaussian white noise process v. We wish to

design a causal filter that minimizZes the variance of the prediction error

e(t) = ylt) = v(£) (C.24)

As discussed in [C~18-21], 1f we assume that we have an infinite record length
on which to operate, the solution to this problem ig the Wiener filter, which
can be obtained by performing a certain spectral factorization. We also know,

however (see [C-18] and Subsection B.2), that the Kalman filter can be used to

5The problem of computer design algorithms 1s a very important one at present.
Difficulties with 111 conditioning are present in many of these, and the design of
"robust" algorithms 1s a crucial research guestion in control theory. See [C-22]
for references on this subject.
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solve this pwoblem., Given that y has a rational power spectral density, we

can find a minimal representation ("shaping filter")

x(£) = Ax(€) + w(t)
y(t) = Cxlt) (C.25)
z{t) = y{t) + wv(t)

Here E(w(t)w'(T)) = Q8{t=-T), E(v(t}v' (7)) = RS(t-T}, and w and v are independent.
Also, {assuming stationarity) x(0) is zero mean with covariance PO which

satisfies the {continuous-time) Lyapunov equation

= - 26
AP, + PoAT 0 (C.26)

Then, it 1s well-known [C-18] that the optimal filter is given by

2 = Bx(t) + K(t) [z(k)=Cx ()]

~ " n (C.27)

x(0) = 0, w(t) = cx(t)
where

1

K(t) = P(t)Jc 'R (C.28)
and P is the solution of the Riccati eguation

Bt} = aB(E) + BP(H)A' - P(E)C'R leplt) + O

(C.29)
P(0) = Py

Equivalently, one could use one of the fast algorithms discussed ain the preceding

section to obtain R(t) directly.
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In addition to providing a framework for the specification of designs, the
state space framework allows one to analyze the performance characteristics of
the overall system after it has been implemented. For example, the techniques
described in Section A can be used to study the St?blllty characteristics of
the system. In addition, a subject of much lnteresé 15 the sensitivity of such
designs (see [C-23] and the references in [C=22]). The major emphasis here 1is
that designs that come from state space algorithms are model-based, and deviations
between true and assumed parameter values and the fact that the assumed model
1s often an idealization of true system behavior will inevitably lead to varia-
tions in the performance of the "optimalY design., Issues such as these have
led to sensitivity studies and to the development of design methods which are
adaptive {see the introduction to Section B} or inherently "robust" [C-24,25]
(see also the discussion in [A-65] on the methods that are used to overcome
sensitivity problems for Kalman filters).

Another analvtical tool used to study system performance 1s covariance

analysis. For linear systems, we consider the model

x{k+l) = Ax(k)} + w(k}

(c.33)
vk} = cx(k) + v(k)
where w and v are zZero mean, independent white noises,
1y = "y =
E(wklw(3)") Qﬁkj B{vk)v()") Rﬁkj (C.34)

These noises may represent actual noise sources or the effects of small non-

linearities (such as quantization noise —— see the next subsection}, unmodeled
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Suppose we let % =-- 1.e, we consider the limit of an infinaite record

length. One can show [A-65,C~18] that the algorithms for K{t) (Riccati or the

fast algorithms) will converge to
-1
K = PmC'R (C.30)

where P, 1s the unique positive definite solution of the algebraic Riccati

egquation

1

AP+ P A'- P _C'R "CP_ + Q=0 {(C.31)

Thus, the state space formulation provides several algorithms which solve the
Wiener filtering spectral factorization problem to yvield the optimal transfer

function (from z to ?)

G(s) = C(Ts-a+B C'R ) ' C'R T (C.32)

Thus we see that realization theory ~- in providing a state space model
for the system to be controlled or the signal to be estimated -~ plays an
important role in allowing us to utilize rather powerful state-space algorithms
for the specification of designs that possess certain performance characteristics.
Note that all of these algorithms lead to designs that are specified in state
space (e.g. (C.27)) or transfer function (e.g. (C.32)) terms. One m;st then
face the 1ssue of implementation. If the system is to be aimplemented in digital

form, the issues raised in the next subsection must be considered in evaluating

the performances of the overall system.
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phenomena, etc. A simple calculation yields an equation for the covariances
P({k) and S(k} of x(k) and y(k), respectively (assuming x(0) 1s zero mean with

covariance P{0)):

P(k+l) = AP(k)A;“ + 0
{C.35)

8(k) = cp(k)c' + R
If A 15 a stable matrix, we can evaluate the steady-state covariances P and

. 6
S by solving the Lyapunov eguation

BPA'-P = ~Q (C.36)

In the nonlinear case,; a number of approximate methods ex1st {see [A-65,
C-26]), and we refer the reader to [C~27] for the discussion of one widely
used method based on describing functions,

As mentioned earliex, 1in implementing the designs that arise from state
space methods, one must consider a nuvber of issues that dxgital sigral -
processors have studied an great'ﬁetall. On the other hand, 1t is possible
that some of the analysis methods mentioned above can be of use in evaluétlng

the performance of wvarious system implementations.

C.2 The Implementation of Digital Systems and Filters
As discussed in [C-1], the design of digital systems consists of three
steps

Specaification of desired properties

As mentioned in Section A, this equation appears in several problems in state
space system analysis.
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Approximation or realization of these by a causal,

discrete-~time system
Implementation of the system using finite precision
arithmetic.
From this point of view, the methods of the preceding section deal waith the
first two issues. Desaign procedures such as pole allocation and Kalman fil-
tering specify desired inpuk-output behavior for feedback compensators ox
optimal estimation. Realization procedures clearly play an indirect role in
these techniques in providing the state space models on whaich the design
techriques are based. But what about realizations f£rom the point of view of
system synthesis and implementation? As we shall see, state space realizations
can play some role in implementation, but they are far from providing the
entire solution.,

The digatal filter design techniques we wish to consider are discussed
in great detail in [C-1,28-33,D-2] (see also the many references in these
texts and papers), and the major emphasis of these methods 1s toward the se-
cond and thard tasks in digaital filter design., The technigues for the second
task, as descrabed in [C-1], take as their starting point the specification of
certain frequency response or i1mpulse response characteristics. The role of
the second task 1s then to take these specifications and produce a scalar transfer
function that meets these design specifications. An excellent descraption of
the range of available techniques for this problem 1s given an [C-1l, Chapter 35].
We will mention several of these methods but refer -the .reader to this-and the
other references for a thorough treatment. A number of the methods that exist

are based on transformation of analog filter transfer functions. One of these
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1s the "impulse invariance" methed in whach one samples a continuous-time

impulse respeonse to obtain a discrete-time impulse response. This method -suffers
from al:iasing problems 1f the analog frequency résponse 1§ not strictly band-
limited. A somewhat more complex procedure which avoids the aliasing problem

1s the bilinear transformat:ion.

slz) =k =2 (c.37)

which 1s an invertible transformation of the z-plane into the s-plane which
maps the inside of the unit circle in the z-plane onto the open left-half plane
of the s-plane (thus preserving staBlllty). One can then transform an analeg

transfer function H(s) into a digital function

2(z) 2 n(s(z)) (c.38)

Note also that af H 1is rational, so is ﬁ. Also, this transformation introduce
nonlinear distortion in the frequency domain (the mapping of the unit circle
in z onto the imaginary axis in s), and care must be taken in achieving a design
with the desired frequency response.

In addition to these methods that yield closed form solutions, there are a .
number of computer-aided design methods. These include minimizing the mean-—
squared error between the actual freguency reéponse and the desired response at

~

a geYected (finite) set of frequencies., Also, as mentioned in Section B, one can
use linear prediction to~fit an all-pole model to a desived impulgse response,

In addition, the discussion of the preceding section suggests that the Pade

approximation~partial realization algoraithms described in [B-9-12] can be used
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to find least-order poele-zero transfer functions that match a certain number

of terms of a desired impulse response.

) There are also a number of methods used to design FIR filters. Many of
these involve "windows™, in which one multiplies a desired impulse response by
a finite duration window., The usual rectangular window leads to the well-known
Gibbs phenomenon, and the more sophisticated windows have been devised to reduced
this effect., The reader 1is referred to [C-1l] for more on windowing and computer—

alded methods for FIR filter design. In addition, for a good discussion of the

issues involved in the overall design problem and of the design of optimum

filters that approximate a given frequency response in the Chebyshev (L) sense,

we refer the reader to [D-2]. BAs these references indicate, a number of filter
design methods are algorithmic in nature (much as the state space design methods
discussed in the previous subsection), and the issue of efficient numerical
‘design procedures is of central importance,

Once an IMR or FIR filter has been determined, these still remains the
major problem of implementation —-— the determination of a filter structure
{algorathm) that realizes the given transfer function. One factor that does
enter into this design gquestion i1s the nmumber of storage elements (delays) in
the filter structure. Structures that contain the minimal number of delays are
called "canonic", and this 1s c¢learly the same as the concept of "minimal®™ rea-—
laization. Of course, in dealing with single-input, single-output transfer
functions, one can read off the order of a canonic structure and can construct

several quite easily by simple inspection of the specified transfer function

(ic-1,Chapter 41).
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The determination of the oxrder of a canonic realization and the abilaty to
construct several minimal realizations without much difficulty barely scratches
the surface of the structures problem. That is, the guestion of minimizZing storage
- which 18 essentially what the state space realization problem considers —--— 1s
Just one of several problems in digital filter implementation. As pointed out in
{c-1], the various filter structures available may be equivalent from an input-
output viewpoilnt 1f one dadn't have to worry about computation time, the complexity

Ve

of the digital architecture or algorithm required to implement a given structure,
the effect of finite precision in representing filter coefficients, or the effects
of overflow and quantization. These are the issues that motivate much of the
gtudy of wvarious filter structures. It 1s not our intention to explore all of
the wvarious filter structures and the analytical considerations associated with
them. We will mention a few, howaver, to illustrate several key points and refer

the reader to the references [C-1,28,34] and to the many papers in the IEEE

Transactions on Circuits and Systems.

For FIR filters, a number of methods exist for the implementation of the
finite convolution

-1

y(n) = jz h{k)x (n-k) (c.39)
k=0

{here h is the FIR). Clearly, one can directly implement the preduct by keeping
the last N values of the input in storage, This is the so-called "direct form"
realization [C-1] and requires N multiplications per stage. If one is desig=-
ning a linear phase network, this number can be cut in half by using the

symmetry properties of the ampulse response [C-1]. Also, the convolution (C.39)
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can be implemented using fast Fourier transform /(FFT) techniques, and this 1s
particularly useful when N 18 large in which case one might use a sectioning
algorithm [C-1,32,D~21. In using FFT techniques, one often sacrifices storage
in order to gain computational efficiency —— e.g. we may take N to be a-power
of 2 .or may use overlap sectioning methods [C~1l] for efficient operation when
the length of x 1s long.

FPor TIIR failters, a number of filter structures have been developed. In this

case, we are attempting to realize the transfer function

H(z) = N (C.40)

which 1s equivalent to the difference eguation

N M
y(n) = gn=k) + > b xin=k) (C.41)
Zlak k§=:0 k

The direct implementation of equation (C.41) =~ called the éirect form I

realization -~ requires storage of the last N values of y and the last M values
of u. This structure is far from mainimal, as 1t is easily seen that the minimal
number of delays is max(N,M). However, a slight modification of direct form I

yields the canonic realization direct form IT (see [C-1,p.l150]).
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By examining the transfer functzon (C.40), one can obtain a number of other
canonic structures. For example, 1f H(z) is expanded in partial fraction form,
we can obtain parallel form structures, while 1f we factor H{z) as the product
of simpler transfer functions, we can obtain series or cascade structures. Let
us give an example of the cascade structure. Suppose we have

224 (brd)ztbd | (Libz D) (1+az"D)

2 ={atc)ztac (l—az_l)(l—czhl)

H(z) = {C.42)
In Figure C.3 we have realized this £ilter as the cascade of two first order
filters in direct form IT. Note that the overall filter 1s canonic.

The major questions surrounding the choice of filter structure include
the consideration of computational efficiency, the effects of finite word length
on filter stability and performance, and the effect of finate precision in
representing filter parameters. We have already saxd a few words concerning
computational efficiency, and refer the reader to the references for more on
this issue (in particular, see [C-1,32] for detailled discussiqns and further
references on the use of the FM algorlthmf7. In addation, in Section A we
considered the effects of quantization and overflow on system stability. Aan

alternative, approximate method for evaluating the effect of finite word length

¥
An anteresting question in the area of computational efficiency is the determa-

nation of filter structures that require the smallest number of delays and multi-
plies. For second order transfer functions Lueder [C-50] has shown that there are
precisely 32 such structures, B5&n intriguing related gquestion in the state space
area 1s the determination of a realization in which A,B, and C have as few
elements as possible that are not 0,1, or -1, BAs far as we are aware, no work
exists on this problem.
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Figure C.,4: 2An n~th Oxder Cascade Filter Including Quantization Noise
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on system performance 1s to model each quantization as 1f 1t introduced noise
(representing, for example, roundoff or truncation) into the system. Thas
approach 1s discussed at some length in [A-3,12,C-1,33v37]. The basic idea

1s that whenever a quantization occurs, one replaces it by an "equivalent noise
source". Then, by assuming independence of these various sources —- a rather
strong and many times unjustified assumption {(as the existence of periodic ef-
fects, i.e. limit cycles, indicates) =-—- one can in pranciple evaluate the over—
all noise power at the output, and thus can obtain a measure of the size of
quantization effects.8 As an example, consider the case [C-1] of fixed-poaint
arithmetic and roundoff quantization (Figure A.5) in which the guantization
;At;rval q is 2-b (x.e. the number of bits used to represent fractions is b).9

In this case, the guantization error e introduced by a single multiplication

falls ain the bound

=b

1 1
-52 <es32 (C.43)

If one makes the assumption that e iz uniformly distributed, we find that it has

8Pa.rker and Girard [C-55] have shown how one can take the correlation in these noise
sources into account. Specifically, quantization noises due to multiplication of

the same signal by two different coefficients are correlated, and the correlation

@an be approximated by a function that depends on the coefficients. In addition,
Parker and Girar point out that correlation increases as the number of bits decreases.
We also refer the reader to the work of Eckhardt and Schussler [C-56] on evaluating
quantization error variances.

g“Here, we follow the standard fixed point procedure in whaich all numbers are
represented as fractions. One can also consider noise analysis for floating point
[c-1,33]. See also the work of Fettweis [C-52,53,54]in whach noise analysis is
performed with the aid of certain system sensitivity functions. -
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Zero mean and varirance
-2
"2 = 1 g% (C.44)

Using these assumptions, one can add independent noise sources to falter repre-
sentations to account for quantization effects, For example, in the cascade
example of Figure C.3, one could add one noise source following each of the
four multaiplications (fewer noise sources might result from a different quanti-
zation procedure —- e.g. 1f we add the products bxl and cx2 before quantizing).
Another extremely important issue in filter design is the sensitivity of
filter performance to variation in coefficients. This 1s quite gentral an
issue, since one can only represent coefficients up to a finite degree of ac-
curacy, and hence one cannot obtain filters with arbitrary pole and zero locations.
as described in [C-1(Chapter 4),C=-28,31], the allowable poles. and zeroes and the
sensitivity to variations in parameters depends quite significantly on the
particular structure under consideration., For example, parallel and cascade

structures are often used because of their sensitivity properties, since the

perturbations in the poles are 1isolated from one another [C-1].

A great deal of work [C~1,28-31,33-37] has gone 1into developing methods
for answering a variety of questions concerning various filter structures.
Questions considered include: (1} the determination of the number of bits needed
in a given filter structure to obtain required accuracy in overall performance
both from the point of view of parameter sensitivity and guantization noise; and

(2) determination of "rules of thumb" [C-33,37] for the pairing and ordering of

poles and zerces in a cascade structure in order to minimize the effects of
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guantization noise. The study of questions such as these for large interconnected
networks 1s a complex problem, and efficient algorithms are needed to evaluate
overall sensitivities, effects of noise, etc. One such large=-scale package in-
volves the use of techniques for the manipulation of signal flow graphs. The

use of such techniques is discussed in [C-1,28,31], and a detailed description of
a computer package to perform a number of types of analysis on digital networks

18 contained in [C-28],

For the remainder of this section, we wish to examine the relationship of
state space technigues and concepts to some of the gquestions in digital filter
design. Thas discussion 15 a first attempt to study such relationships, and a
great deal more work is needed hefore the issues can be thoroughly understood.
Let us first examine the use of state space techniques to determine filter struc-
tures. BAs described in the preceding subsection, realization techniques can be
used to obtain minimal realizations -- 1,e, certain canonic algorithms. Consider
the transfer function {(C.42}. 1In this case, state space techniques yield a

variety of minimal -(in this case two-) dimensional realizations of the form

x(k+l) = Fx(k) + qu(k)
{C.45)
v(k) = h'x(k) + u(k)

where

2
2z +(b+d)z+bd
5 (c.46)

z =(atc)z+tac

n' (zI-F) Tg+l =



r 9= ’ h = {(c.47)

Let us interpret (C.45) as an algorithm. Assume we presently have computed

¥{k) and receive the new input u(k)

PART #1: (a)
(b)
{c)

PART #2: (a)
(b)
(c)
(@)
(e}
(£
()
(h)

Multaply h. and xl(k)

L
Multiply h, and x, (k)

Add these, together with u(k} to yield y(k)

Multiply £, and x; (k)

Multiply £ . and %, (k)

21
Multaply £,, and xz(k)

Multiply f.. and xz(k)

22
Multaiply 9y and uf(k)
Multiply = and uf{k)

23 (a),(c), and (e) to yreld x, (k+l)

Add (b),(d), and (£) to yield x,, (c+1)

Clearly a number of these steps can be done in d:ifferent orders, but the above

steps do indicate the basic algorithm implied by (C.45). Note that in geheral,

there are 8 multaplications and € additions required.

Now let us examine the cascade structure of Figure C,3, and let us ainterpret

it as an algorithm:



(a)
(b)
(c)
(a)
{e)
(£)
(g)
(h)

Then

(e)

(g)

(h)

-123~-

Multiply a and xl(k)
Multiply b and xl(k)
Multiply ¢ and xz(k)
Multiply 4 and xz(k)
Add (a) and ulk)
Add (b) and (e)
Add (c) and (£)

add (d) and (g)

xl(k+1)
= xz(k+1)

= y(k)

Note that these algorithm requires 4 multiplications and 4 additiong, but thas

1s not the nost crucial difference between the two algoraithms, since 1t is

possible to obtain realizations (C.45) with some Zero elements in (F,qg,h).

However, the crucial difference is the followaing: i1f one interprets a state

space realization as determining an:algorithm of the type indicated, then there

1s no way that the cascade algorithm is of this type!l This 15 not to say that

one cannot find a state-space descraiption of the cascade realization., In fact

a

x(k+l) =

(ath) ¢ 1

0 1
x{k) + u(k)

(C.48)

y({k) = [(a+b), ctd)Ix(k) + ulk)
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1s such a realization. Note that 1f one takes into account that one doesn't

have to multiply by 1 and that one multiplication is used twice, then (C,48)

requires only 4 multiplications

axl(k)

(a+b)xl(k)

exz(k)

(c+d)x2(k)

and 5 additions,

‘The point made above may, at first glance, seems to be travial, but zt is
not, since 1t points out that although any (infinite precision) algorithm can
be descraibe dynamically in state space terms direct interpretation of a state
space description as an algorithm does not allow one to congider all possible
algorithms. That 1s, it 1s relatively easy to go from an algorithm to a state-
space description == e.g. (C.48)}—- but i1t 1s not at all natural or clear how to

]

go the other way, and hindsight 1s needed in order to interpret the realization

£
i1 0o 1
x(k+1) = x{k) + u(k)
£a1 Tap 1
(C.49)
y(k) = [f21ph2]x(k) + uik)
as a cascade structure with
= =f =~f = =hH = .
a=f ,, b=f, ~f ., c=f, , &=h,-f (C.50)
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Recently, Chan [D=107] defined a unifred framework for the consideration
of all 1-D structures. Chan noted that 1f one viewed (C.45) as a map from present

state and input to next state and present output

% {k+1) o{k) .

"y %) u (k)

then any filter structure can be viewed as a factorization of ® and a change of
basis on x. Specifically, consider the example (C.46), with the realization

(c.48), whach yields

a 8] 1
2= (a+th) o 1

(ath) (c+d) 1

Let us write @:@2@1 r where

5 ]
a 0 1 1 0 o
o, =|p < © r 3,= |1 1 0
0 4 0 |1 1

Then, 1f we interpret this factorization as an algorithm -- perform the operations
andicated by @1 first and then perform those specified by @2 -~ 1t 1s ¢lear that
we esgentially have the cascade algorithm as depicted in Figure C.3. Thus Ch;n's
technique provides a conceptual framework in which to consider structures from a
state point of view. As Chan points out, 1t 1s not yet clear how one can use this

factorization technique in ah adlgorithmic fashion to determine useful new
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structures. At the very least, 1t provides a unified framework for the consi~
deration of questions related to realization structures.

Thus, we see that there are potential limitations to the state space frame-
work for determining new filter structures, although the ideas of Chan may provide
a conceptual unification of these subject areas. In addition to Chan's work, there
appear to be several other structures~related areas in which state space concepts
may play a role. Recall that state space realization techniques allow one to determine
mnimal realizations for systems with multiple inputs and outputs. It is possible
that this fact, combined with a thorough understanding of the relationship between
state-space realizations and various digital system structures will lead to the
development of useful filter structures (possessing desirable storage, computa-
tional, sensitivity, and quantization characteristics) for multivariable systems.
It 1s hoped that the preceding treatment of a gimple cascade example will help
expose some of the i1ssues that need to be understood,

Also, as mentioned in the preceding subsection, the state space framework

1s particularly useful for the analysis of the properties of dynamical systems.
Thus, 1t seems natural to ask 1f these techniques might be useful in the analysis
of various filter structures. We have already discussed this guestion in Section
A with respect to stability analysis techniques, It 1s also possible that state=~
space sensitivity techniques [C-23] could be ugeful in the study of the sensita-
vity of various digital filter structures, but this awairts further study.

Finally, let us examine the utility of state-space technigues in the analysis
of the effect of quantization noise on filter performance. We do this by example,
although 1t should be clear that this approach extends to arbitrary structures.
Congsider the cascade structure in Figure C.4. Here we have included quantization

noise after each multiplication. A state space representation of this filter can

be written down by inspection.
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e, (0] £,00 7]
e(k) =] =+ ;s £k} = .
Len (k) | _wf‘n {k) _

Also, the noises e_jsees,e , £ ,...,fn are assumed independent, identically-

1 n” 1
distributed, zero-mean white processes with variance (C.44). Then, assuming
that A 1s a stable matrix and using the covarlance analysis procedure described

10
in ‘Subsection C.l, we can compute the steady-state covariance E of v

Z = g'Pc + 2-2-2b {C.53)

where P, the covariance ¢ € x, 18 the solution of the Lyapunov eguation

P =aAPA' + %5 2720 [TPrveAAT] (C.54)

Egquataions (C.54) and {C.53) are perfectly suited to computer implementation.

Also, note that the solution of {(C.54) vields the effect of noise throughout

the network. The utilaity of an approach such as this for digital network analysis
needs to be examined more carefully, but it appears that i1t may be computaticnally
superior to other methods, such as those that require computing a number of
partial transfer functions (from each noise source to the output ~- see [C-5]).

We also note that if the nolse sources are correlated, as they are shown to be

in [C-551, one can adapt the preceding procedure by augmenting the filter state

o
Here we have agsumed u=0. The analysis of the deviation of v from the desired
value when u#0 s identical to the above (assuming that e and f£f are independent

of u}.
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equations with a shaping filter that vields the corxrect correlation in the error
sources. We note that Parker and Giraxl [C~55] used Lyapunov-type equations and
analysis quite similar to our development for the evaluation of cutput noise power
due to correlated guantization errors. In addition, similar analyses have been
undertaken by Hwang [C-64], Mullis and Roberts [C-65], and Sripad and Snyder [C-66,
67],Hwang uses Lyapunov-state space equations to study the effects of possible
structure transformations and state—amplitude scalings; Mullis and Roberts use a
simlar framework to study what they call "minimal noise realizZations"; and Srapad
and Snyder develop conditions under which quantization errors are in fact white,
and they alsoc use Lyapunov-type analysis to compare the performance of two different
realizations., These references clearly indicate the potential benefits of this
type of analysis.

Within the framework descraibed above, one can pose a number of other questions.
For example one can perform a similar noise analysis 1f random rounding 18 used.l
Also, Schussler [C~51) has proposed a figure of merit for structures -- the required
number of bits to meet given noise specifications. In terms of (C.53) and (C.54)
this would mean determining b so that the resulting I 1s less than some prescribe
limit. Is 1t possible that we can devise algorithms for the solution of such problems
for this and for more general structures? In addition, in the case of floating point
arithmetic, the quantization error depends on the sizZe of the signal. €an state-
space procedures for analyzing “"state-dependent noise" [C-57,58] be of value here?

Questions such as these awairt future investigation.

C.3 Direct Design Taking Digital Implementation Into Account
As dascussed 1in the preceding subsections, design procedures in both dis-~

ciplines consist of several parts -- determining the desired input/output

llAé Schussler [C-51] points out, one often designs filters with limt cycles, since

filters without limit cycles often have poor noise behavior, and one can overcome
the limit cycle problem by using randomized rounding (hence adding a bit more "noise"

to the system).
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behavior to be synthesized and the design of an algoraithm that approximate

this behavior given the constraints of digital implementation. The procedures

as described up to this point treat these issues separately, but, as discussed

in [D=-2], 1t would be of value to consider overall design methods that take the
discrete nature of the computer into account during the process of developing
desrcn specifications and allow the study of tradeoffs such as performance versus
number of bits used. The development of full-fledged design procedures is
clearly a long way off; however, in recent years some research in control and es-
timation theory has been aimed at developing designs tgat refliect the interaction
of system specification and the limitations and structure of the digital system
that 1s to be used to implement the system.\ We will briefly described several
of these and refer the reader to [C-38~-46,D-85,86,87,88,89,91,92] for details.

Consider the continuous time linear system

x(t) = Ax(t) + Bu(t) (c.55)

.

where XER?, uERm. Suppose we wish to control the system with a digital
. A
control system. Specifically, suppose we can observe x(k) = x(kA), k=1,2,c0.,

and, based on these observations, we feedback a control
uf{t) = uk) kA<t<(k+1}A (c.56)

In addition, suppose we wish to design the control law to minimize

J = f [x?{£)0x(t) + u'(£)Rul{t)]dt {C.57)
0
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For a Fixed value of A, this problem leads to an optimal discrete-time control

problem [C~39] with the feedback law

u(k) = Gx(k) (C.58)
Suppose this law 1s to be implemented in a digital system that takes Tm

seconds to perform a multiplication. Then (assuming add tame 1s negligible),

i general the control law requires
A>nmT {C.59)
ke m

Thus, 1t 1s clear that each control algorithm regquires a minimum time

Amln between successive samples, and the following question arises: suppose

we consider a "suboptimal® control algorithm that can be implemented at a

faster sampling rate than the bound for the "optimal" law an {C.59); is it pos-
sible that such a law can outperform the slower, "optimal® law. This question

15 answered in the affirmative in [C~38], in which a sample example is given and
an indication i1s given that one can achieve performance improvements for a class
of large-scale, "loosely-coupled" systems. One can also interpret these results
as providing a method ﬁor determining the value of a faster computer, as measured
by the accompanying decrease in J -- i.e, for a given control law and two possible
¢ T, (T <T

1" 271 2

interpreted as the amount one would be willing to pay for the faster machine.

maltiplication tames T ) the cost difference J{Tz)—J(Tl) can be

This can provide a basis for a tradeoff analysis —- the cost of a faster compuber

versus achievable performance improvement.
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The question of devising control and estimation designs and digital
architectures that are especially natural for particular applicationsg is
receiving more and more attention as available digital systems are being im-
proved and made less expensive, Specifically, the development of microprocessor
techneology has led to a great increase in the design of control and estimation
systems that involve a number of identical modules, parallel structures, and
distributed pracessing [B-103,104,0-40-46]. 1In the area of decentralized contxrol
[D-85,86,87,88,89,91,92] one often has an extremely large and distributed system
with many inputs and outputs, and one wishes to design a set of "local" controller
-~ l.e, a set of several contrel laws, each of which uses only some of the inputs
and some of the outputs and i1s perhaps implemented on a dedicated processor.
Clearly the architecture of such a system (1.e. who gets to know what) is a major
desaign variable. Again cne can interpret the difference in performance of two
different architectures as a measure of how much more one would be willing to pay
for one system than another. Clearly a totally centralized system would perform
best, but the cost of relayving all information to and from one central location

may be prohibitive.

The study of problems such as this -- 1.e, the interaction of implementation
and architecture issues (parallelism, decentralization) and the design of controel
and signal processing algorithms -- 1s stall in ats infancy, and i1t appears to
offer an extremely promising avenue for research and for applications to problens
in fields such as arrcraft control [C-40,42-44] and nonlinear stochastic filtering
[c-45,46]. We note that architectural issues have received a great deal of at- .
tention in the field of digital signal processing [C-28,31,47,48], and this

appears to be a promising direction for future interaction'and collaboration,
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We also note that there has been work [C-68,69] in digital filter design
aimed at developing structures and design technigues that take the constraints
of finite arithmetic into account at the start. In addition, the restrictions
of fimite arithmetic have, in part, motivated the study of linear systems in
which the vectors and scalars are all integer valued -~ 1.e. linear systems over
rings [E-28-31]. The work to this point has been quite theoretical, and i1ts value
in allowing one to design digital controllers or filters has yet to be established.

Finally, we note that in both disciplines there 1s a great deal of interest
1n the development of fast on~line algorithms. In digital signal processing,
fast Fourier Transform algorithms [C-1,59,60] have been widely used (for example,

!

in the implementation of FIR filters). The FFT has also found use in controel
theory (see, for example, its use in implementing matched filters for detection
of farlures in dynamic systems [C-61] and in designing efficient optimal con-
trollers for certain large intercommected systems that possess some symmetry in
their structure [D-23]1). In addition, motivated by the algebrarc-treatment of
Nicholson [C=60], Willsky [C=62] has developed fast algorithms for several types
of "noncommutative convolutiong" that occur in certain nonlinear filtering problems
(see also [C-63]1). Also, all of the fast Kalman gain algorithms discussed in
Section B are potentially useful in the design of efficient adaptive control
systems., The implementation of systems along these lines and the development of

new efficient on~ and off-line procedures remains an active area of research in

both disciplines,
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D. Multiparameter Systems, Distributed Processes, and Random Fields

A growing interest has developed over the past f;w years into problems
invelving signals and systems that depend on more than one independent wva-
riable. 1In some cases one of these variables 1s time, and the others represent
spatial dimensions -~— as in the study of distributed paramete£ systems
[D-157-1592] or decentralized control [D-=87,88,93,94] — while for other pro-
blems —— such as image processing [D-4,6,7,20,21] -- none of the independent
variables can be thought of as time.

This research area 1s rich in both potential application areas and in
challenging theoretical problems. Among the areas of application are image
processing, seismic signal processing, meteorology, gravity field mapping,
pollution monltoéing and contrel, and inert:ial navigation. On the theoretical
si1de, there are a number of basic conceptual questions. How does one handle
the processing of distributed data in an efficirent manner? What properties
do recursive techniques have in a setting where the recursion is in more than
one dlmeﬁélon? Do causality and state make any sense here? What about
stabilaty? What are the tools for analyzing stochastic processes? How do we
"predict® when the independent variables aren't taime? What role do recursive
estimation techniques play (what are recursive estimation techniques?)? Which
concepts concerning signals and systems in one independent variable carry over
to the multiparameter case? Which do not, and why don't they?

In thas section we consider several problem areas involving multiparameter

signals and systems in order to discuss some of the 1ssues mentioned above 1in

more detail.
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D.1 %Two Dimensional Systems and Filters

Over the past few years, a great deal of work has been done in attempting
to extend one-dimensional filtering concepts to the design and analysis of
systems that process data that is distrabuted in two-dimensional (2-b) arrays.

The consideration of 2-D systems has opened up an entirely new set of )
questions, and in this section we want to explore some of these design and
analysis issues, For an excellent and thorough overview of 2-D digital fil-
tering, we refer the reader to [D-3].

As in 1-D, we can define a linear shift-invariant system (LSI) that
processes 2-D input arrays x(m,n) to produce 2-D output arrays in a linear
fashion and sc that a shift in the "time" origin for the input merely induces

an analogous shxift in the output. Such a system has a convolutional repre-

sentation, much as in 1-D

J00
y(m,n) = E: h{m-k,n-2)x(k,%) = h{m,n)*x(m,n} = x(m,n)*h(m,n) (p.1)
k'£=-m

Here h{j,k} 15 the unit sample response —- 1.e. the response of the system

to the input

x{k, ) = 6k0 6£0 (n.2)

(here 613 18 the Xronecher delta which 1g nonzero and equals 1 only 1f 1=3).

The unit sample regponse is sometimes referred to ag the point-spread function

[D-4], a term used in image processing, where h(j,k) has the interpretation
as the observed image when the input 1llumination is a point source at the

origin.
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Agaln as in the 1-D case we can take z~transforms.. For example, the

system function of (D.1l) 1s

-k £
H(z ,2,) = Z h(k,ﬁ)zl z, (D.3)
k'ﬁ,-.:_oo
and a sample calculation transforms (D.1) into
An important class of LSI systems arises from rational system functions
Az ,2,)
172
H(z_ ,z) = ———m——— {p.5)
1772 B(zl,zz)
Alz,,z,) = 2 a(k,z)zl"kz 2'2
(k,z)erl
. (D.6)
~k =f
B(s,2) = 2 bWz 'z,

(x,%) €1, -

where I_, I, are finite sets of pairs of integers. As a straightforward

1 2

consequence of (D.4)-(D.6), we chtain a 2-D (partial)} difference equation

relating ¥ and X:

2 bik,)ylmk,n-2) = 2 alk,x(mk,n-8) (D.7)
k, 2YeT, (k, Le1,

Up to this point, the mathematical steps taken follow the 1-D steps

very closely, but now we begin to see some of the conceptual as well as
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mathematical difficulties that arise in the 2-D case. Tet us first discuss
the problem of recursion, Given the eguation (D.7), we want to use it to
calculate the next output given previous cutputs and the input. Enbedded in
this statement is the heart of one of the problems. Unlike the 1-D case, in
whach the index n has the interpretation.of time, ain the 2-D case, in general,
it 1s not clear what "next" or "previous" mean.l In fact, just given (D.7)
1t 1s not clear that thexe 1is any definition of next or previous that will
allow us to recursively compute y(m,n). Dudgeon [D-3,5,33] Pistor [D-42],
and Ekstrom and Woods [D-103,119] have studied this problem in great detail,
and we now briefly overview their work.

First note that in the nonrecursive (FiRJ case -— 1.e, when B=1, there
1s no problem in computing (D.7) output point by output point. There is,
howsver, an issue concerning what part of the input must be stored at any one
time. In 1«D, we Just keep the most recent input points (assuming we compute
yv{n) sequentially), but the situation i1s more complex in 2-D. For example,

suppose we have the "nearest neighbor™ filter [D-31]:

I, = {(~1,0),(0,0),(1,0),(0-1),¢(0,1)} (D.8)

then to compute y(m,n) we need x(m+l,n), x(m,n), x{m-i,n), x{mn+l), x(m,n-1)
Conversely, we must hold on to x(m,n) until we have computed y(m-1l,n), y(m,n),
v{mt+l,n), yv{m,n-1), y{myntl}. Thus, depending on the order in which we compute
the y's, we can have very different requirements for._storing the x's. Here we

get our first glimpse at the fact that the required storage dJdepends not only

lUnless one of the two dimensions 1s time and we wish to process the input in
real-time. We will have more to say about this later in this section.
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on the degree of the filter but also on the sequencing of computations. Of

course for FIR filters, as in the 1-D case, we can process inputs in blocks,
using a 2-D FEFT algorithm together with an appropriate method for taking care
of the overlaps in the blocks. Methods along these lines exactly parallel

the 1-D methods, and we refer the reader to [D-31 for further discussion and
references.

Thus, we have that the right-hand side of (D.7} does not raise any
insurmountable obstacles for the sequential processing of inputs (although
there are several interesting questions as we've seen). The situation is far
different in the recursive case (B# constant). Since the right-hand side of
(D.7) causes no difficulties, we assume that 1t 1s trivial (A=1) for conven-

ince. Let us consider one of the most widely used special cases of {D.7):

M N
> 2 bik,Nyln-kmn-2) = x(mn) (D.9)
k=0 £2=0

Assuming that b(0,0) 0, we have

M N
1 1
v(m,n} = = = bk, Vv {m~k,n=2) + =—=—— =x(m,n) {D.10)
S 5 B o
(k,2)#(0,0}

and we immediately see that to calculate y(m,n), we only need the values of

2
outputs to the “southwest" . Figures D.1-D.4 1llustrate the situation.

2
This terminology appears to be due to Pistor [D-42]. It seems to be particularly
appropriate for conveying the gecmetry of 2-D recursions and causality.
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Fagure D.l: Support of a First Quadrant or "Northeast" (NE) Function.
(Possible nongero logations are indicated by solid dots.)

Y( m-M, N) o
o
o
o m
y (m=M,n=N)} ©

Figure D.2- Required Output Points (Open Dots) to Calculate y(m,n) for the
system given by (D.9)
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Figure D.3: Required Boundary Conditions for (D.9) in Order to Calculate
NE guadrant of y.
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Figure D.4: Several Possible Directions of Recursion for (D.9)
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In Figqure D.1, we see that the support of the function b(k,%) 1s in the

first quadrant. We will call such a function a "northeast" (NE) function

for reasons that will become clear shortly. In Figure D.2 we see the set

of data points to the SW that must be stored in order to enable us to calculate
“y(m,n). A consequence of this 1S seen 1n Figqure D.3.- If we are interested
in calculating y(m,n) in the NE quadrant, we must specify initral or boundary
conditions as shown. As we calculate and store some of the cutput points, we
can discard some of the old values, but 1t 1s clear that the amount of storage
needed depends not only on M and N an (D.2) but also on the range of values of
r and n for whaich we want to calculate y., If either of these ranges 1is
anfinite, the storage needed 1s infinite.

In addition to this consideration, we also find that the storage reguire-~
ments depend on the sequencing of the recursion (we had seen this earlier in
the FIR case). Several directions of recursion are indicated in Fiqure D.4.
Here (a) depicts the north recursion, (b) 1is the east recursion, and {¢) 1s a
NE recursiocn, We can generate. other directicons of recursion as long as they
remain within the NE quadrant. Each recursion calls for its own sequence of
data accessing and discarding. The N and E recursions appear to have parti-
cularly simple sequencing rules, but the data must be processed serially.

On the other hand, the NE recursion has a more complex sequencing but leads to
the possaibility of parallel computation, since, for example, points 4,5, and 6
can be calculated simultaneously. The possible directions for recursion and
potential uses of parallel computation can be determined with the aid of a

conceptual device -= the precedence relaztion, which partially orders points
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with the rule

(m,n) 4(2,k) 1f y(mn) 1s needed to be calculated first in order to
be able to calculate yv(%,k) (p.11)

Thus (m,n) =< (2,k) 1f y{m,n) 1s directly needed to calculate y{(%,k) or if it
1s used to calculate some y(r,s) that i1s used dairectly to calculate v{l,k),
e%c. A discussion of this topic has been given by Chan [D-107,152]. We
will come back to this issue later in this section.

Let us now return to the question of recursibility. Clearly the picture
1s symmetric -- 1.e. we can have NW, SE, and SW recursions, with b(k,%) res-
tricted to be a function on the corresponding quadrant. However, as shown by
Dudgeon [D~5,33], this by no means exhausts the possibilities for recursion.
In addition to the one quadrant functions, we can obtain recursive difference
equations with b(k,%)'s that are one-sided [D-5]. To 1llustrate the aidea,

consider the eguation

. M ] N
1 1
v{mmn) = - ———— bk, y (m~k,n~8) - > b{0,8)y (m,n-1)
0(0,0) 1:2-::1 ggV-:JN b(0,0) £ '
1
+bwﬁ)ﬂmm (p.12)

Figure D.3 1llustrates the support of such a function, while Figure D.6
indicates how points are recursed and what initial condaticns are needed.
Here we calculate the data points column by column, using data points to the
gsouth and to the west (not just the sonthwest). Hence the directions of

recursion are far more limited than in the single guadrant case, since-we cannot
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Figure D.5: Support of a One-Sided Function

* o INITIAL CONDITIONS

4

3 © POINTS TO BE
2 1 CALCULATED
1

e e ——— ——

Figure D.6: Illustrating the Required Initial Conditions and the

* Direction of Recursion for the Filter of Equation (D.12).
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move east until agll of the data points required in the present column have
been calculated. For more details, we refer the reader to [D-5,33,100], an
which related issues are discussed, such as the rotation of the support of one-
sided or one-quadrant functions to obtain recursions at various angles.

Thus, we have seen one place in which the 2-D ¢ase 1s more complex than
in one-dimension: the notion of recursibility and some of 1ts geometric
tnterpretations., One can avoid many of these difficulties by sticking to
nonrecursive designs, but recursive techniques offer enough potential ad-
vantages in computation time and storage to warrant further detailed study.

Let us make another connection with 1l-D processing. Suppose that one of
the two 1indices, say m, has the interpretation as time. Then one mrght think
of v{m,n}) and x(m,n) as (1-D) spatially distributed processes that evolve
in time. Temporal causality might then correspond to the support of b in
Figure D,5 being medified by deleting the points on the positive n axis,

vielding a “"strictly" one-sided function. In this case, one cculd define the

"state" of the system, and 1t 1s clear that this "state"™ will be finite daimen~
51ona1,on1y11f the range .of n 1s bounded, which 1s precisely when the-requlred
storage for the 2-D recursion is finite. This clearly shows why the order of
a 2-D filter does not specify the storage requirements by 1tself, but one

must alsoc know the range of m and n. Hence we see that 2-D digital filterang
of scalar (or perhaps vector) variables bears some resemblance to the 1-D

state space framework for multi~ and possibly infanite dimensional systems that
arise in multivariable and distributed system and control theo;y.

An intriguing question 1s: can this interrelationship be exploited to

yvield useful insights and/or results on either or both sides of the coan.
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The answer 1s, of course, ves. Such problems arise in seismic signal pro-
cessing, 1n whaich the data to be processed x{m,n) varies in time (m} and

also i1n array sensor location {(n). We refer the reader to the references for
more on thas problem. Encouraged by this example of the successful exploi-
tation of the 2-D, multivariable 1-D interrelationship, one can ask a number
of rather speculative gquestions, 1In large-scale system theory, we often

have a nunber of subsystems coupled together, and one 1s interested in efficient
processing of data and control of such systems., Viewing the variables as
functions of two independent parameters =-- time and subsystem index --— can we
obtain any insights into the control and processing of large systemswith the
ard of 2-D digital filtering céncepts? Note that this would involve the con-
sideration of feedback for 2-D systems,3 a topic that, to our knowledge, has
never been addressed in the digital filterang context (with good reason -— 1t
1s irrelevant for usual 2D processing problems). We have been somewhat vague
about this topic, but we shall return to this large system 2D_filter idea
several times in this section, as these are a number of interesting insights
and questions that can be raised. Another possible use of 2-D concepts for 1-D
problems 1s in the analysis of time-varying 1-D systems, in which one can
define a system function in two variables -- a transform variable and time.
Such concepts may also have value in developing time-varying linear prediction
algorzthms. On the other side, in order to study questions such as stability
or roundoff noise behavior for 2«D filters, 1s there any benefit in viewing the
2-D filter as a multivariable 1-D system? Capetenakis [D-90] has begqun such

an investigation for NE filters (not straictly one-sided). Although his results

0Of course, causality constraints would have to be built i1n, For example the
feedback from y to x would also have to involve a strictly one~sided recursion.
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do not yield any new results, they are very preliminary, and this also
remains as a possible direction for further work.

As mentioned earlier and as discussed in [D-107,152], the ability to
solve a 2-D dirfference equation recursively leads directly to the definition
of a partial order (D.l1ll} on the part of the 2-D grid over which we wish to
solve the equation. Given thas partial order — the precedence relation —--,
one then has some freedom in deciding how to sequence the calculations.
Specifically, 1f we think of a sequence of calculations as determining a total
order (denoted by f) on the part of the 2-D grid of interest, all we require
1s that this total order be compatible with the precedence relation. That 1s
(m,n) 1s calculated before (%,k) (written (m,n)}<(%,kx)) 1f (m,n}4 (%,k). Manry
and Aggarwal [D-56] have ztudied such order relations for NE recursive filters.
One of their first observations is the following: given a compatible total
order <, the first quadrant can be put 1into a 1l-1, order preserving correspondencl?

with the nonegative integers:

Q(m,n} = r <=> there are precisély (r+l) pornts in the NE
quadrant <{(m,n) (D.13)

Given the function @, one can think of (D.10) as determining a 1-D filter, with
(m,n) replaced by O(m,n), etc. Alternatively, given the ordering (D.13), we can
think of processing the ainput x{m,n) with a linear time-invariant 1l-D filter,
One finds (see also Mersereau and Dudgeon [D-3,55]) that in general neither of
these filters -- the 1-D filter obtained from (D.10) and (D.13) or the 2-D

filter obtained from a given LTI 1-D filter and (D,13)-~ are shift-invariant

invariant (they are, of course, both still linear).
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Let us examine several orders. Manry and Bggarwal suggest the order of
Figure D-4(c), since every point in the NE quadrant is mapped by (D.13) into
a finite integer. The orders suggested by Figure D.4(a) or (b) are well-posed
only 1f the desired range of one of the variables m or n 1s fimite., In this
case, we obtain several possible orders, as given in Figure D.7. In both
cases, the range of valuwes igs limited in the n direction. Manry and Aggarwal
suggest the section-scan of Figure D.7(b). They then show that except for
effects near the bottom line or at the junctions of two-sections, the 1-D
difference equation from (D.10) and” (D.13) looks shift-invariant, They then
show that assuming this shift—invariance holds throughout the entire regaon,
one cbtains a 1-D stable filter, and one can overlap sections in order to
reduce the errors at section junctions, leaving substantial errors only at the
far left and along the bottom. These errors notwithstanding, this method
provides an extremely promising method for using 1-D filter design techniques
to design filters to process Z2-D data. —_—

The "scan” order of Figure D.7(a) has been widely used in processing
images via line by line secans [D-3,21,55,58]. Nahi [D-21,58] has used this
to develop stochastic models for image processaing, and the shift-variance in-
troduced by doing 1-D processing on the scan-ordered data points causes errors
along the bottom (we will have more to say about this in the next subsection).
Mersereau and Dudgeon [D-3,55] point thas out, noting that only periodic unit
sample responses of the form h(m,ni = h(m+l,n~N} can be realized exactly by 2
1-D shift-invariant filter working on the scan-ordered data. They also spend

a great deal of tame studying this order when the data array 1s finite in both
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directions, such as 1t 1s for a 2-D finite impulse response function. As they
point out, an this case the Fourier transform of the 1-D scan signal 1is a

"slice" of the 2~D Fourier transform of the original data array. Since the order
is invertible, we immediately see that we can completely recover the 2-D trans-—

form from this slice (which they term a critical slice because of thais property).

Consequently with the aid of 1-D design methods, one can use this scan-ordering
for 2-D FIR filter desagn: given the Fourier transform of the i1deal 2-D

filter, we take a critical slice, hence cobtaining an ideal 1~D filter; we use
1-D design methods to determine an approximation to this ideal transfer function.
We then either use this 1-D filter to process the scamned data4 or we can invert
the 1-D filter, regarded as a critical slice, to find a 2-D filter which can
operate directly on the 2~D array. For details we refer the reader to [D-3,55].
We also note that a closely related result involves the recovery of 2-D images
from knowledge of 1-D projections of the array. Such a technique i1s of greé; i
interest in biomedical applications such as tomography, and we-refer the reader
to [D-28] for a detairled survey of the theory and available algorithms related
to this subject.

We close our discussion of 2-D ordemsand precedence relations by noting
that these very same 1ssues arise naturally in certain feedback contrcl problems.
Ho and Chu [D-87,88] consider optimal control problems in which one has a set
of decision makers who base their decisions on certain observed data, which

may be affected by the decisions of others. These decisions may be specified to

be made at different points in time and/or by distinct decision makers at the

4One must be careful here to pad the 1-D finate ampulse response and the scan sig-
nal with zerces. This 1s necessary because the extent of the convolution of two
finite 2D arrays 1s larger than the original arrays. In order to be able to in~
vert ("unscan®) the convolved 1~D signal to obtain the 2-D output, we must effec-
tively scan enough Zeroes at the end of each of the original 2-D arrays. See

[D-55]1 for details,
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same points ain time, Ho and Chu define a precedence relation among decisiors

7 41 1f the decaision of 1§ affects the observation of 1 (D.14)

and they assume that this i1s a partial order -- 1,e, that 1f 71, we cannot
have 147 (this 1s precisely the condition needed for recursibility of 2D
filters). Then, under a "partially nested information condition" -- 1f ]‘(l,
then 1's observation includes knowledge of )'s observation -- they solve an
optimal control problems. When the partial order is a total order =-- 1.e. when
Ais really just time ordering, this is the usual optimal control problem. In
the non-total order case, one can have simultaneous -- 1.e. incomparable ——.de-
cision makers who do not affect each others observations.

Witsenhausen [D—93,94] has also studied thas partial order and has raised
issues analogous to those of Chan [D-107,1521, Witsenhausen points out that
the amount of parallelism in the control system i1s essentially a measure of the
mimbey of incomparable decision makers {(this number may vary with time), In
addition, 1f one totally orders the set of decision makers i1n a way compatible
with (D.14), one can then define the state evolution of the system. Hence we
see that there may be many possible sets of states corresponding to different
compatible total orders. In fact, using a generalization of the Nerode notion

of state, Witsenhausen shows that the set of possible states forms a lattice.

SWhen this condition is not satisfied, the problem-1s more difficult -- essentrally
information 18 forgotten. In this case Chu [D-88] discusses some examples in
which the optaimal solution can be found with the aid of the partially nested re-
sult, and he digcusses some suboptimal methods. We refer the reader to [D-88]
for details.
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All of this 1s developed with certain decentralized control problems (1.c.
involving incomparable decision makers) in mind, and Witsenhausen points out
that 1t 1s not clear 1f the notion of state he has introduced will be of use
ain solving such problems(as 1t is in the classical totally ordered case). He
also mentions that the a priori partial order restriction does not hold in some
game theory problems, in which the sequence of future decision makers can be
affected by prior decisions. The drfficulties here, as with those of nonrecur-
sible 2-D filters, are quite substantial.

An important problem in the study or design of 2=D recursive filters is
stability, where, as in [D~3,16,49], we define stability as the absoluta sum-

mabi1lity of the unit impulse response

oo
> |nmm)|< e (D.15)

m,n=—°

This condition is equivalent to bounded-input/bounded-output stability., 2as
one might expect from knowledge of the 1-D case, the stability of a filter might

1

depend on the direction of recursion -- 1.e. the equation

y(mtl,n) = 2y(n,n) + x(m+l,n) (D.16)

1s unstable 1f recursedto the east, bui 1t 1z stable

yv{m,n) = %—y(m+1,n) - %-x(m+1,n) (D.17)

1f we solve to the west. -
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Shanks, Treitel, and Justice [D~49] considered the stability of 2-D
systems with rational transfer functions as in (D.5), (P.6}, wath b a NE
function, as in (P.9). They alsc explicitly considered stabiality of the re-
cursion in the NE direction only —- 1.e. we use (D.10) to compute y(m,n} from

inputs plus outputs to the SW. In thas case, they obtained a direct analog of

the 1~-D stability result:

A rational transfer function H(z ,22) as in (D.5)

with b a NE function is recur51veiy stable in the (D.18)
NE direction 1f and only 1f no zero of the deno- :
minator B(zl,zz) lies in the region

{lzl|_>_1}ﬂﬂz2|_>_1}

As in the 1-D case, we can use a NE b to define a SW recursion -— 1instead of
going from (D.9) to (L.10), remove y(mM,n-N) from the sum in (D.9); we can
then recursively compute this quantity using outputs to the NE, Similarly,

we can pull out the other two “corner" elements to obtain NW and SE recursions.
Hence we have 4 possibilities as opposed to the 2 an 1-p, (D.16), (D.17). &s
in the 1-D case, we obtain different stabilaty conditions for these four cases,
which Huang [D-50] has derived. For example, for the SW recursion, we have

stability i1f and only 1f no zeroes of B(z,,2,) lie in {]zl|f}}r3{[zzlf}}.

Huang showed that at most one of the four directions of recursion can lead to
a stable filter. In addition, Justice and Shanks [D-16] extended these ideas
to recursions in different directions for N=D filters in which B does not
necessarily have to have finite degree in zl,...,zN and zzl,...,z; « We refer

the interested reader to [D-16] for a detailed statement and proof of these

results.
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We now turn our attention to the problem of checking conditions such as
(D.18). As mentioned in [D-3], the problem 1s complicated by the fact that
the zerces of B(zl,zz) are not isolated points, but rather are surfaces. This
makes the direct checking of (D.18) quite difficult (one must map
|zl[z} into the Z, -plane via the implicit relation B(zl,zz)=0; we then have
stability 1f and only 1f the image lies within |zzl59). Fortunately, a num-
ber of simplifications of the criterion (D.18) have been made. Huang {D-50]

showed that (D.18) holds if and only af

B(z, ,)#0 [zllz; (D.19)

Bz ,2,)#0 |zl]=l, |z, |>1 (D.20)

~

A generalization of this type of criterion to N-dimensions has been made by
Anderson and Jury [D-451, .
Let us consider the computationsg ainvolved in (D.192), (D.20). First we

note that the test of condition (D.19) 1s essentially a 1-D stabality test,

since B(z_ ,®) is a polynomial in Zy . On the surface, however, it appears

l.l'

: that (D.20) requires an infinite amount of computation {again we must map

[Zl|=l into the z, -plane via B(Zl,22)=0). Fortunately, there are several

2
finite algorithms for testing for conditions such as (D.20)}. Huang himself
used a 2-D bilinear transformation to modify condition (D.20) an such a manner
that the continuous 2-D parameter results of Ansell [D-64] could be usedG.
Ansell's test consisted of a Hermite test which checks for the positivity of

L)

the principal minors of a-symmetric matrix of polynomials in one variable

6Two variable system functions arise in a variety of problems. We will return
to investigate the connections among these problems at a 1ate5 point in our
discussion.
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(this 1s a positive-real type of test). The positivity tests in turn can be
performed using Sturm tests (we refer the reader to {D-50,54,64] for details).

Anderson and Jury [D=54] suggested another method for checking (D.20}.
Instead of using the bilinear transform plus the Hermite test, one can work
directly with condition (D.20), using a Schur-Cohn test (see [D-125]) that
replaces (D.20) with a check for the positivity of all of the minors of a
certain Hermitian matrix of pelynomials in one variable. Again one can use
Sturm tests on the individual minors. 2An alternative to this approach was
proposed by Maria and Fahmy [D-130] who used a medified version of the Jury
table [D-125] to obtain a finite check of (D.20).

Recently, an algorithm, far simpler than these and also better suited for
computer implementation, was developed by Siljak [D-27]. The key to this
algorithm 1s a powerfu. result [D-122] on the positivity of polynomial matrices,
This result, developed with the applications of multivariable positive real
functions to networks in mind (see, for example, [D-1311), replaces the seguence
of tests of positivaity of principal minors with two tests, lndependént of the
dimension of the matrix. Specifically, one need only test for positivity of
the matrix at a single value of the independent variable and for the positaivity
of the determinant. We refer the reader to [D-27] for details and for further
remarks on the relationship of these stability results to multivariable tech-
niques arising in network synthesis,

We also note that a great deal of work has been done on extending tests
for stability and positivity to the N-D case. Anderson and Jury [D-45] ex-
tended their use of the Schur-Cohn test to higher dimensions, but did not

directly propose a finite algorithm for the positivity tests one must perform
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on polynomials in (N-1) variables (whaich arise as prancipal mincrs from the
Schur-~Cohn test). Bose and Jury [D-57] developed such an algorithm in the 3-D
case, in which the 2-D positivity tests reduce to tests for sign variations
of single-variable polynomials defined on the unit circle in the complex plane.
They also develop an extremely efficient method for computing multidimensicnal
bilinear transformations, which allows them to develop a stability test algo-
rithm for 3-D continuous systems, Subseqguently and with the aid of results
from decision algebra, Bose and Kamat [D-124] devised an algorithm for imple-
menting Jury table calculations for an N-D stabilaity test which involves a
finite number of multivariable polynomial multiplications and a finite number
of single variable polynomial factorizations (a nontrivial numerical problem).
In addition, Bose [D-147,1481 and Bose and Modarressi [D-118,150] have used
concepts from Jury's theory of inners [D-123] for developing tests for positivity,
nonnegativity, and greatest common factors of multivariable polynomials. Such
tests are needed not only in multivariable stability and positivity tests, but
also find applicaticns in applying Lyapunov's direct method to test for the
stability of multi~state-variable, 1-D systems.7 We refer the reader to the
references.

The issue of stability is clearly of great importance in filter design,
but, as Merseregu and Dudgeon [D-3] point out, 1t 1s note enough to have a
stability test. Rather, one wants a procedure for taking given frequency
regponse characteraistics and generating stable, recursive filters that possess

these characterastacs. One approach 1s to take a given transfer function and

7

This leads to the question of extending Lyapunov metheds to systems with more than
1-D time, To do this, requrres the notion of "statd for such systems. We shall
discuss this problem at length later an this section.
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to stabilize 1t by finding a stable system function that has the same magnitude
function for 1ts f£requency response., In 1-D, this process can easily be
accomplished by replacing ‘poles outside the unat circle with poles at conjugate
reciprocal locations. B2An algebraic approach to this problem does not work in
2-D, since in general we cannot factor 2-D polynom:.als.8 However, another 1-~D
approach to performing this stabilization, involving the use of the discrete
Hilbert transform techniques, has been extended to the 2-D case by Read and
Treirtel [D-53]. In this approach, one takes the denominator poiynomial of a
given rational response and :calculates 1ts log-magnitude function. Then the
2=D discrete Hilbert transform can be used to determine the minimum phase
functron associated with the log-magnitude function. One can then exponen-
tiate to cbtain the desired stable denominator. As Mersereau and Dudgeon [D-3]
poant out, one of the difficulties with thais method i1s that the resulting
denominator need not be of finite order. Read and Treitel point out that thas
also can be traced to the lack of a fundamental theorem of algebra.

Another approach to stabilization is to use spectral factorization to
break a given system function into the product of several pieces, each of
which 1s stable with respect to a different direction of recursion. In 1-D,

the fundamental theorem of algebra allows us to write any rational H(z) as

H(Z) = HE(z)Hw(z) {D.21)

where HE has all 1ts poles inside the unit circle {and hence is stable 1f
used to process inputs in the eastern direction) and HW has all 1ts poles

outside the unit circle (stable to the west). Thus, in 2~D, one 1s tempted

A

8
This 1s often referred to as the "absence of the fundamental theorem of algebra'
for multivariable polynomials (see, for example, [D-31).
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to seek one of several such factorizations. All of these involve the use of
2-D cepstral analysis to perform the factorization, and we refer the reader

to [D-33,42,100,119] for results on the existence and properties of 2~D
cepstra. Following [D-100}, let us recall just a few of these properties. .
Given a 2-D signal s(m,n) and 1ts transform S(z ,Z )}, the complex cepstrum

{(1f 1t exists) s(m,n) 1s the inverse transform of ln[S(z )]. Thus, 1f we

are given a rational system function H(z_, ) and wish o break 1t up into the

l
9
cascade of four stable quadrant filters [D-42]

H(zl'zz) HNE(z rZ, (z z )H (zl,z {D.22)

17227 By Bop (21 r25)

or two stable half-plane filters (using Dudgeon's one-sided functions) [D-5,33]

H{zl,zz) = HE(zl,z )Hw(zl,zz) {D.23)

this can be accomplished by additively decomposing ﬁ{m,n) into the"corresponding
pieces."” Thus, we will 1n principle have developed the desired spectral
factorization algorithm once we determine the properties of cepstra of signals
that are "minimum phase", where we define minimum phase in analogy with 1-D,

and we follow [D-100]. Specifically s{m,n) 1s minimum phase with respect to a
gqiven quadrant {NE,NW,SW,SE)} or half plane (E,W) 1f the signal and 1ts inverse
S(m,n) (under convolution) are zero outside the given sector and if s{m,n) and
s{m,n) are the impulse responses of stable fl}ters that are récursively imple-

mented i1n the direction associated with the given sector, Examining (D.22),

)

Since 1t 1s only the denominator of H(zl,zz) = A(zl,z2)/B(z1,zz) that matters

as far as direction of recursibility and stability, one often considers applying
this procedure to 1/B(zl,z2)
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{b.23), the factorizations of interest have the property that the impulse

response for each piece (e.g. hNE(n,m)<—-> HNE(zl,zz)) 1s minimum phase
>1}N >
(HﬁE(zl’ZZ) has no poles Or ZzZerces in {|zl|_}} {|22|_}} and hNE(n'm)'
hNE(n,m) are NE quadrant signals).
One then obtains the desired algorithm by using the following important
property [D-100]:
A signal is mLARum phase with respect to a given

sector 1f and only 1f 1ts 2-D cepstrum 1s zero
outside this sector.

Using thas property, we can derive the 4 piece spectral factorization of
Pistor [D-42] or the 2 piece factoraization of Dudgeon via the following

»

2y
algorithm: Given h(m,n), calculate ﬁ(m,n). Consider the restrictions of h to

the various {4 or 2) sectors of interest, for example

ﬁ(m,n) = ﬁNE(m,n) + ﬁNW(m,n) + ﬁsw(m,n) + ﬁSE(m,n) (D.24)

The desired spectral factors are the complex exponentials of the transforms
of these restrictions. This, in principle, solves the spectral factorization
problem, but unfortumately the fundamental theorem of algebra gets in the way
again. Unlike the 1-D case, the factors in (D.22) and (D.23) need not be
ratios of fanite order polynomials. Hence each prece, in principle requires
an infinite amount of storage (e.g. for a NE filter we must keep all data

points to the SW). Approximations are clearly needed, and we refer the readar

to [D-33, 42] for details.
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An excellent treatment of the use of cepstra for spectral factoriza~
f1ion 1s given in Ekstrom and Woods [D-119}. 1In addition to considering
the 2 and 4 factor cases, they consider an 8 factor case —- 4 factors
corresponding to signals that are strictly in the 4 guadrants (1.e. they are
zero along the coordinate axes) plus 4 factors for the 4 pieces of the axes
(m=0 and n>0, m=0 and n<0, m>0 and n=0, m<0 and n=0). These last 4 pieces
correspond to the separable part of the system function, (H(zl,zz) 1s separable
i1f and only 1f 1t is of the form.Hl(zl)Hz(zz}) while the other 4 pieces can be
viewed as "totally non-separable," Usang this factorization applied to a NE
guadrant filter, Ekstrom and Woods obtain an interesting interpretation of the
two conditions of Huang's [D-50] stability test (D.19), (D.20). Essentially

we factor our system function as follows

BNE(zl,zz) = Bl(zl)Bz(zz)BSNE(zl,zz) {D.25)

where “SNE" means “"straictly NE". Then (D.19) corresponds to bl(m) being
mnimum phase, while (D.20) 1ﬁp11es that bz(n)*bSNE(zl,zz) 15 NE minamum phase.
Ekstrom and Woods also discuss the likelihood that the factors are not of
finite order,and, in fact, 1f one factorization has finite order factors, this
does not imply that either of the other two factorizations do. They also
dascuss the numerical calculation of cepstra and of the spectral factors, and

they in fact propose this as an algorithm to test for stability (B satisfies

(D.192), (D.20) 1f and only af B 1s a NE quadrant function). Such a procedure
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in principle reguires an infinite amount of computation (we must check £=0
over all three other quadrants), but one can obtain a fast approximate test
by looking over a restricted part of the plane.

The guestion of stable filter design to approximate a given frequency
magnitude-response function is considered in [D-119]. They point out that
to do this one needs two one guadrant filters (NE and NW, NW and SW, SW and SE,
or BSE and NE), but one can make the approximation with a single half-plane
fllter.lo Ekstrom and Woods also consider the f£finite order approximation of
the infinite degree rational functions that arise as factors in the spectral
factorization. Intuitively, one wants to window the denominator pPower series
to obtain a finite order series that remains stable. In [D-119] 1t ais shown
that stability 1s preserved 1f one uses an exponential window.

In closing, let us note that in Section B we saw that one could devaise
state space stochastic realization procedures to perform the desired spectral
factorization. As one might expect, in 2-D there are scme difficulties with
this type of procedure, but some results do exist., We will talk about thas
further when we discuss 2~D state space methods.

A final stabilization procedure 1s based on the gquaranteed stability in
1-D of least squares inverses. The least squares inverse (LSI) 1s obtained
using exactly the methodology one brings into play in performing linear prediction

of speech (see Section B}. Given the denominator B and its inverse transform

b, one seecks a finite extent impulse response p that approximates the

0
1 Also, as discussed in [D-49}, 1n order to implement a zero~phase filter by means

of causal, recursive filters, one needs 4 i1dentical quadrant filters —- one for
each direction -~ or 2 identical half-plane filters. This i1s the analog of the
1-D result, in which we realize a zero-phase filter as the cascade of a given
filter, followed by an identical filter going backward in time.
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convolutional inverse of b, One then seeks to choose the coefficients in p

to minimize the sum of the squares of the difference between bxp and the unit
impulse. In 1-D, this leads to the fast algorithms described in Section B, in
which one iterates on the extent of p. One also has the guarantee that p 1s
minimum phase (1.e. that the all pole model 1/P 1s stable). In [D-49] Sganks,
et.al., conjectured that this mnimum phase property holds in 2-D. Under thais
assumption, they proposed the use of a double least squares inverse to stabi-
lize and unstable denominator. That 1s, given b, we calculate 1ts ©SI p, and
we then calculate the LSI S of p. By conjecture this i1s minimum phase, and
E(zl,zz) hopefully 1s a good approximation of B(zl,zz) (at least in magnitude
on le|=|22|=1). Using this design procedure, numercous 2-D filters have been
designed {see, for example, [D-49]}. Unfortunately, Genin and Kamp [D-144,145]
have recently shown that this conjecture i1s false in 2-D. Not only does this
make suspect the aforementioned design procedure, but 1t also makes more dif-
ficult the extension of linear prediction concepts to 2-D, We will have more
to say about this in the next subsection. Suffice it for us to note here that
unlike the 1-D case [B-26], in the 2-D case the linear prediction solution does
not match the first few correlation coefficients [D-66,67,156],

Let us make a few final comments concerning 2-D design and structures
questions, Again, one finds that certain 1-D concepts and techniques do extend,
while others do not. One of the earliest design methods proposed was by
Treitel and Shanks [D-48], in which they suggested—approx1mat1ng a desired

impulse response h(m,n) as a sum of separable terms
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N
h(mn) = 2 £, twg_(n) (D.26)

=1
If h 1s of limted extent one can in principle do this exactly, by viewing h
as a matrix and then finding i1ts spectral representation. In general this lead:
to no efficiencies in implementation unless N is substantially less than the
extent of h. Treitel and Shanks suggest a method for truncating (D.26), es~
sentially keeping only the dominant terms, corresponding to the largest eigen-
values of h'h, and they perform an error analysis for such approximate filters.
Also having a decompos:tion such as (D.26) suggests several interesting struc-
tures. The summation can clearly be realizZed via a parallel arrangement of
the various separable terms, and each separable term i1s a cascade of two 1-D
FiR filters -- one operating vertically, the other horizontally. Thug, each
of these can be i1mplemented with an FFT, or, one might approximate each.l-D
filter by a recursive filter which can be implemented even more efficiently.
Thus we ste that the separable and sum of separable cases can be handled
——egsertially with I-D tecliniques. We will see later that such cases ﬁave
special implications in the state space framework.
Motivated by a similar desire to use 1-D design methods for 2~D problems,
Shanks, et.al., [D-49] considered taking a 1-D continuous time filter F(s),

which can be viwed as either a herizontal or vertical 2-D filter, and rotating

1t by an angle B

F(sl,sz) = F(slc088+5251n8) (D.27)
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thus obtaining a 1~D filter that processes data along Lines at an angle B
with the s, axis. One can then apply the 2-D bilinear transformation to
obtain a 2-D digital filter design. Several examples of such “rotated
designs" are given in (D-49]. In addition, Costa and Venetsanopoulos [D-51]
have considered this design technigue ain more details They note that since

F 15 1D, 1t factors, and thus the stability test for the final 2-D filter
can be reduced to very simple tests on the factors. They find that for given
directions of recursion, there are constraints on the angle B for which the
resulting filter is stable. Of course, other angles are possible 1f one
rotates the data or changes the direction of recursion. In addition, they
consider the design of filters with circular symmetry, obtained by cascading
identical 1-D filters that have been rotated to be spaced evenly between 0°
and 360°, Such designs have the advantages of guaranteed stability, efficient
computer design, and cascade implementation due to the factorizabaility of the
1-D prototype filter.

The use of transformations to take 1-D designs into 2-D designs 18 a
conceptually appealing idea. In addition to the methods mentioned above and
the 1-D projections of Mersereau and Dudgeon [D-55]Hand Manry and Aggarwal
[D=56] discussed earlier, several other methods have been devised for utilizing

1-D falter designs. One of the most powerful methods of this type for

designing 2-D FIR filters involves the zo-called McClellan transformations

[D-2,36,127,128,129], The original algorithm as developed in [D-2,36]1 involves

transforming a 1-D filter of the form

M
G(ejm) = Z b {n) cosnw {D,28)
n=0
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into a 2~D linear phase filter

Jw,  Jw,

~
H(e ) )} = exp{-j(nlml+n2w2)}H(wl,wz) {D.29)
where
n n
2
A le 3w2 1
H(e ~,e °) = Eg% g;% a(k,p)coskwlcospw2 (D.30)

The specification of (D.30) 1s obtained from (D,28) by means of the transfor-

mation

cosw = Acoswl + Bcosm2 + Ccoswlcosm2 + D (D.31)
where choices of A,B,C,D determine the shape of contours where w=constant.
Clearly on such contours |H| 1s constant. For example, the choice A=B=C=-D=1/2
yvields nearly circular contours, and hence one can map a low pass filter G into
a low pasgs circularly-symmetric filter H., Thus, one can use 1-D FIR techniques
to design 2-D FIR filters of high order in a reasonably efficient manner. In
some cases, one can 1in fact show that transformations of 1-D optimal fitlers
(1n the Chebyshev sense -- 1.e, minimizing maximum deviation from a desired

frequency response) are in fact the optimal 2-D desaigns [D-36]. In [D-128] an
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extension of this design criterion was considered, in whach (D.31l) was replaced

by
P Q W, oW
cosw = Z E t(P,q)cospwlcosqw2=Hp(e l,e 2) (D,32}
p=0 g=0

By careful choice of the parameters t(p,q), one can obtain a variety of
contour shapes in the 2-D frequency plane, and [D=128]contains details of
algorithms for choosing these parameters to obtain best approximations to
given desired contours. Having chosen the contours, the second part of the
design procedure involves the design of the 1-D FIR filter, for which there
are numerous procedures [D-2],

One of the nice features of these transformation designs 1s that they
lead directly to efficient structures. The development of these structures
and a study of their relative merits based on number of multiplies, coefficient
sensitivity, and roundoff noise i1s given in [D-127,129]. We briefly illustrate
the 1dea by following the development of Chan and McClellan in [D-127].
Examining (D.28}, we note that

cosny = Tn[cosw] ; (D.33)

where Tn 15 the nth Chebyshev polynomial, which satisfies the recursion

~

I
[
-

To(x) Tl(x) = x

(D.34)

Tn(x) 2x Tn_l(x) - Tn-Z(X)
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Rewriting (b.28) as

M
ae™) = ) bn)T_[cosw] (D.35)
n=0

and replacing cosuw by (D.32), we can directly obtain a realization of

Hie e )} as an interconnection of M copies of Hp(e ,e Y}, where one

uses the recursion (D.34) in interconnecting the copies of HP to obtain rea-

90, JW .
lizations of each of the Tn[HP(e l,e 2)]. We refer the reader to [D~127]

for details.

Another 2-D design method adapted from 1-D was proposed by Shanks, et.al.,
{D-491, who modified the time-domain design technique of Burrus and Parks
{B-114]. As in the 1-D case, given a desired impulse response h(m,n), we
want to find a rational transfer function A(zl,zz)/B(zl;Zz) that yields an
impulse response "close" to h, We first solye for the dencminator B by a
method quite similar to that use i1n computing the least-squares inverse {(and
which evidently will have the same stability problems as those mentioned
earlier}. One can then solvé-for the numerator using the analog of the method
described 1n [B-114] and in Section B.

One of the most widely used FIR design methods in 1-D i1s the optimum
Cheby;hev design method, where the RemeZ exchange algorithm leads to an
extremely efficient computer design technique [D-2]. XKamp and Thiran [D-74]
have extended this algorithm to 2~D, but not without a number of severe com-
plications. Firstly, the Haar condition does not hold in the 2-D case and this

can lead to degeneracies that can keep the algorithm from converging. Also,

unlike the ordered 1-D case in which one can show [D-2] that errors between
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the optimal design and the desired response alternate between + the maximum
error (the Chebyshev norm), in the 2~D case one has no such alternation
theorem, This makes the exchange algorithm far more complex, and this plus
several other factores make the algorithm extremely slow, Hence i1t 1s limated
to low order impulse responses. We refer the reader- to [D-741 for details.

In the 1-D case, one can use the so-called differential correction
method to f£ind optamal Chebyshev rational frequency responses [D=52]1 and thas
method has been extended by Bednar [D=13] to the 2~D case. As pointed out in
{D-31, this method requires a great deal of computation time, and also the
algorrthm produces as 1ts output an optimal rational magnitude-squared frequency
response. Thus, to obtain the actual filter specafication, one must perform
a spectral factorization, which, as we have seen, leads in general to an
infinite order numerator and denominator.

in addition to the design methods mentioned above, a number of other
methods have been proposed. These include windowing [D-133], frequency sampling
{D=134], transformations of (zl,zz) to obtain new designs from old [D—l49];
and the extension of wave digital filters [D=-151] to 2-p, wath all of the
pseudopassivity and stability properties of their 1-D counterparts. We refer
the reader to these references for details,

The Lgsue of 2=D filter structures and of their effects on required storage,
number of multiplies, coefficient sensitivity, and roundoff noise has been
raised several times in this section and i1s clearly of great importance. The

1ssue 1s complicated saignificantly by the fact that one cannot factor general

2~D polynomals. This immediately rules ocut cascade and parallel realizations
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unless one 1s dealing with one of the special classes of filters described
earlier. Mitra, et.a, [D-26]1 show, however that one can write down the ge-
neralizations of 1-D direct form realizations for NE recursions. They also
comment as we did earlier on the dependence of storage reguirements not only
on the order of the filter but alsc on the ouLput array dimensions. In ad-
drition, for several special classes of NE rational filters, they developed
structures based on continued fraction expansions. We refer the reader to
'[D-26] for details.

As in the 1-D case, a critical question in the design of 2-D IXR filters
1s the exastence of limit cycles and the effect of roundoff noise filter output.
Maria and Fahny [D-28,73] have considered the limit cvcle problem for first.order
2-D recursive filters, both singly [D-73] and in cascade [D-28]. The resultg
in [D-28] on the existence of horizontal, vertical, and noninteracting diagonal
limit cycles parallel the results of Jackson [A-20] quite closely, and their
method for bounding the magnitude of limit cycles is quite saimilar to the 1-D
result of Sandberg and Kalser [A-4], although the bounds become far more complex
as one looks at limit cycles on rows or columns other than the first ones.
Open questions involve the extension of this type of result to higher order
filters, In addition, an intriguing question is whether one can extend any of
the other techniques discussed in Section A. Do the passivity-Tsypskin-positive
real-frequency domain results of Claasen, et.al., [A~15] and others extend to
the 2-D case? What about the Lyapunov technigues of Willson [A-2]? Of course

in this case one would need 2-D state space models and a 2-D Lyaputiov theory.
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The analysis of roundoff noise in 2=-D filters can be carried out much as
for 1-D filters, and we refer the reader to the references for examples of this
type of analysis. Another open question concerns the extension of the Lyvapunov
equation-state covariance noise analvsis method described in Section C for 1-D
roundoff analysis. Again one would need a state space model in order to consider
this question. We will come back to this guestion in a moment.

Finally, we note that Chan [D=107] has proposed a unified state space
framework for the study of 1-D and 2-D structures. In Section C we discussed
the 1-D aspects of this approach, in which all structures can be viewed as fac-
torizations of the map that transforms the present state and next input into
the next state and output. In the 2-D case, one must process inputs seguentially
according to any order function that 1s compatible with the recursion precedence
relation (D.11l). BAlso, as we have noted before, the resulting i-D state space
realization 1s finite dimensional 1f'and only 1f the data 1s defined on a domain
that 1s bounded in one direction. Using the scan order described earlier,
Chan develops a time-varying state realization., The time-variations arise for
precisely the reason mentioned earlier-- we must take account of the edge effects
as we finish scanning one line and begin scanning at the start of the next.
Chan develops a realization using the scan order for a general NE recursive filter.
He conjectures that thas realization i1s mimimal in the recursive case, but
shows that 1t 1s not in the FIR case. On the other hand, in the FIR case, we
have mentioned earlier that one can realize the 2-D filter with the scan order

and a time~invariant 1-D filter by padding the ends of each line with zeroes

(this 1s essentially what Mersereau and Dudgeon did in [D-55]). Chan show that

he can do the same in his setting by finding a nonminimal, (caused by padded
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Zeroes) time-invariant realization., This leads to an interesting tradeoff-—-—
nonminimality of one realization versus the more complex control needed in
order to implement the time-varying minimal one. The utility of such 1-D state
space models and the additional degree of freedom one has in cheoosing the order
relation (and hence the state space as Witsenhausen [D-23,%4] pointed out)
makes this an interesting area for further research.

In addition to the above 1-D state space descriptions for recursively
ordered 2~D systems, some work has been done i1n the past few years involving
the definition and analysis of 2-D state space models. Roesser [D-110]

considersNE models of the form

vi{i+l,3) Alv(l,j) + A h(x,3) + le(l,J)

h{1,3+1) AViL,g) + A4h(1,j} + B2x(i,j) (D.36)

3
y(1,7) = 01V(1,3) + C2h(1,3) + Dx(1,3)

e
here x is the input, y 1s the output, and v and h together play the role of a
"state" variable. Here v carries information vertically, and h conveys 1t
horizontally. In addition, Roesser takes (D.36) to be a NE recursion Il,jzp).
Given this model, Roesser considers several issues. He solves (D.36)},
and the solution resembles the variation of constants formula for usual finite-
dimensional 1-D linear systems. The one main difference is that boundary
conditions v{(0,7), 320 and h(1,0), 1>0 must be specified, Roesser also con-
siders a 2«~D version oflfhe Cayley-~Hamilton Theorem. Taking the 2«D transform

of (D.36), we obtain
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-

¥(z,,%,) 2 =8, =B,y B,

[cl,c2] + D {D.37}

—A3 ZzI--A4 B2

it

X(zlrzz)

and hence in this setting the role the characteristic polynomial s played by

1 1 2
pl(z, ,2.) = det
1" 2
—A3 2.21-34
Iet
A A
1 2
A= = Al'o + Ao'l (D.38)
AS A4
where
A A 0 0
1 2
0 0
Al' = A S (D.39)
0 0 , A3 A4

represent the required dynamics to advance the system in the vertical and
horaizontal directions, respectively. We can then define the transition matrix

over a nunber of vertical and horizontal steps
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A = I
- 0 -
Alrj = Al'OAl 1,3 + A rlAlr:l 1 (D.40)
Then, 1f we define ’
. #
E'Fa = FIE'A = 27" (D.41)
b
we have the 2-D Cayley Hamlton theorem

Roesser uses this result o obtain an efficient method for computing the
transition matrix. The result 1s also used to obtain finite rank tests as

in the 1-D case for controllability and observabilaty, which are defined an
analogy with 1-D, Specifically a state (v,h) 1s observable 1f whenever 1t
appears as the inatial state at (0,0), with all other boundary conditions

zero, the resulting output y(i,3), 1,3>0 1s not identically zero when all .
zero inputs are applied. The state 1g controllable if therg 1s some
{1,3)>(0,0) and set of inputs so that (v(x,3),h(1,3}) = (v,h) when the boundary

conditions are all Zero.

Several questions and 1ssues arise in considering Roesser's model. First
of all, not all NE gquadrant rational transfer functions can be realized by
systems of the form (D,36), although this can be remedied by a mddification of
the output equations [D-164], we refer the reader to [D-164] for more on
realization theory and canonical forms for these systems. Also, 1n obtaining
hais algorithm for recursively computing the Al'J via the Cayley-Hamilton theorem,

Roesser used the notion of 2-D eigenvalues in a crucial manner, and in the usual
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non-factorizable case the calculation of zeroes of p(zl,zz) 1s extremely
difficult, This 1s not only complicates his transition matrix algorithm, but
1t makes stability tests more difficult. One must use methods such as Siljak’s
[p=27] on p(zl,zz) or the direct extension of Huang's stability test to the
model (D.36) (see [D~164]1). An interesting open question 15 the developmegnt of
Lyapunov stability methods for (D.36). Furthermore, the model (D,36) 1s li-
mited to gquadrant-causal systems. Thas 1s perfectly reasonable for the study
of quadrant-recursive filters, but i1ts value for the analysis of cther 2-D
signals is unclear. For example, Roesser mentions the possibility of a 2-D
filtering theory based on (D.36). In this case, one would want to model the

observed signal Z as

2(1,3) = y(1,3) + N{x,3) (D.43)

where N 15 noise, and y is generated by a model as in (D.36) with x a noise
process. Thus (D.36) plays the role of a "spatial shaping filter." As
Ekstrom and Woods [D~119]1 point out, one camnot obtain arbatrary spectra from
a NE shaping filter. -Hence, one may need two such filters, as well as a
method for model%lng the spectra of the signal field., Also, the artificially
amposed causality of the model (D.36) and in fact of Egz_state space model

may cause difficulties., For example, 1n an image one would not expect light
intensity as a function of spatial location to have a NE causal structure.

Oon the other hand, 1f a NE causal filter yields the proper shape for the in-
tensity correlation function, there may be no difficulty in u51ng“such a model.

Indeed, as Andrews and Hunt [D-81] point out, the use of such models may be
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of value in leading to efficient recursive filtering methods for image processing,
This remains an open area for Further research, and we will have more to say
about 1t 1nh the next subsection.

Finally, we note that Roesser's "state" {(v(x,3),h{1,3)) might better be
termed a "local state" [D-97,138)]. BAs we saw earlier, in recursively solving
2-D equations, the required amount of storage in general depends on the size of
the arrays of interest (see Figures D.3 and D.6). Hence 1f the array sizes are
unbounded, the regquired memory is infinite., Thus, v and h 1n Roesser's model
do not represent the true state. Rather the model (D:36) can be viewed as
arising by reducing a scalar, high order 2-D difference equation to a vector,
first-order equation. In this way, we see that the dimensions of v and h
correspond to the order of the equations of interest,

Issues of this type have been considered in more depth by Fornasini and
Marchesini [D~97,138]. They consader impulse responses that lie strictly in
the NE quadrant, and for such systems they define a notion of "global state"
using a direct generalization of the theory of Nerode; In order to define the
global gtate as containing all relevant information concerning “past" inputs,
one needs to define "past." The definition of past inputs at the point (1,7)
vs all x(k,2) where eirther k<i or j<& (see Figure D.8). In this way the state
must surmarize all needed boundary conditions, and Fornasini and Marchesini
point out that the state is uspally infinite dimensional.

Attention in [D-927] then shaifts to local NE state space descriptions of

the form



—————
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x(mtl, n+l) = on(m,n) + Alx(m+l,n) + Azx(m,n+l) + Bu{m,n) - (D.44)

v{m,n) = Cx(m,n)

Note here that vertical and horaizontal information is conveyed by a single
state vector, Having this model, 1t 1s then shown that a NE IIR filter can
be realized as an (D.44) 1f and only 1f the transform of the impulse response
15 rational. The "1f" part of this result involves a procedure for construc-
ting a realization in a form that 1s some type of generalization of the 1-D

"standard controllable form".
Having such realizations, attention naturally focusses on minimality--
obtaining a local state space model (D.44) with as small a state space as

possible, This leads d.rectly to the notions of controllabaility and observa—
bility, with finite rank condations for these properties being developed in a
manner analogous to that of Roesser. In fact, a simple proof of the 2-D Cayley-
Hamilton result i1s given in [D-97] for systems as in (D.44). The main mini-
mality result of Marchesin: and Fornasini is that minimality implies local
controllability and observability (an algorithm for reducing the dimension of
uncontrollable and/or unobservable realizations i1s given) but that local
controllability and observabality do not imply minimality. This is done by
means of a counterexample that we will discuss shortly.

It should be noted that the work in [D~97] 1s phrased in terms of the

algebraic notion of formal power series' (essentially (D.3) with no convergence

properties attached to it). The most thorough treatments of the uses of this .

theory to study topics in formal language theory, automata theory, nonlinear
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systems analysis, and 2-B processes are the works of Fliess [D-98,139,140].
Fliess studies the properties of rational power serlesll in- detail using in
prart a generalization of the Hankel matrix, and he shows that the rank of this
matrix equals the dimension of the minimal global state space. This i1s infinite
dimensional, in general, but Fliess notes [D-98] that the global state space is
finite dimensional i1f and only 1f the formal power series i1s "recognizable",
which simply means that it has a separable denominator, As we have seen one
can do a great deal of analysis for separable 2-D systems, since many l1-D cone-
cepts and results directly extend in this case

Attasi [D-6,35,96) has studied such systems in great detail. His basic
modal 1s a special case of (D.44)

x{m+l,n+1) = F_x(m,n+l) + sz(m+l,n) -F

5 sz(m,n) + Gu(m,n) (D.45)

1

y{m,n) = Hx{m,n)

where 1t 1s assumed that

= D.46
Fle F2F1 ( )

With these assumptions, one finds that the impulse response 1s strictly NE,

and 1t and its transform are given by

h{1,3) = HF_ "F

1-1_73-1

_ -1 -1
H(zl,zz) = H(le—Fl) (ZZI—FZ) G {D.48)

Y

llln general the indeterminates in this theory are taken to be noncommuting.

However in the 2-~D case, the two shifts z, and 22 do commute,
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Clearly any FIR filter can be realized as in (D.45), and thus any stable
impulse response can be approximated arbitrarily closely by a system of this
form, This, of course, 1S neither startling nor necessarily very useful, since
the dimension of the resulting state-space system may be extremely large.

Having this framework, Attasi defines dual notions of local controllability
and observability and derives conditions somewhat simpler than in [D-97,110]
because of the special nature of (D.45). Attasi also considers minimal reali-
zations of the form of (D.45), obtains a state space decomposition result and
minimal realization algorathm much like those in 1-D (here the 2-D Hankel matrix
plays a crucial role), and shows that minimality implies controllability and
observability. He also proves the converse of this last result, but this is
only true if one locks for the minimal realization in the class of models given
by (D.45}. Consider the example constructed by Fornasini and Marchesini [D-97]

1

“lz-l(l+z-1+z_ )

z

Hz. ,2.) = 1 2 1 2
12 14z Lty 1t

1 2 1 2

(D.49)
-1 =1 -1 -
zl z, (l+zl +z,,

=1 -1
(l—l-z1 )(l+z2 )

1

The minimal realization of the form of (D.45) is of dimension >3, but one can

find a realization of the form (D.44) of dimension 2. Thas clearly points out

another of the many complications that arises in going from 1-D to 2-D.
Undoubtedly the majox contribution of Attasi™s work is that he did something

12
with his models” . He was able to develop a 2~D-Lyapunov egquation. More

2
1 That may very well be because this 1s the one case in which one can readily
see what to do.



=-179-

specifically, to show northern and eastern asymptotic stabilaty, we simply need
to check the 1-D systems along vertical or horizontal lines. This leads to 1-D
Lyapunov equations and nothing new. However, Attasi did obtain an "invariance
principle" type of result {see Sectrion A): if Fl and F2 are stable, then (D.45)
1s controllable 1f and only 1£ the eguation

1

P-F_PF! - F_PF' + F.F. PP'F! = ga (D.50)

11 272 12712

has a unigue positive definite solution P, The exact implication of thas
result for 2-D stability theory and its potential utility in such areas as
Irmit cycle analysis are at present unclear and remain intriguing questions
for further work.

Attasi algo considers systems as in (D.45) which are driven by white
noise, Again he obtains a 2-D Lyapunov equation for the state covariance,
and this result may be of some value in performing roundoff noise analysis
for 2~D filters (see the analogous 1-D discussion in Section C). Also,
Attasy shows that any 2-D stationary covariance function ¢an be approximated
arbitrarily closely by a system of this type, and he develops a stochastic
realization theory that exactly parallels the 1-D case with one rather surpri-
sing exception. In the 1-D case, there are in general a whole family of
stochastic realizaticons, each of which essentially factors the spectral density
S(z) of the output process y. In the 2-D case, assuming that one can factor
the spectrum S(zl,zz) of vy, the stochastic realization is essentially unique.
This 1s due primarily to the additional constraints on S imposed by the fact

that we use a sangle guadrant shaping filter (D.45). Specifically, in addition
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to the constraints imposed by NE and SW correlations, an additional constraint

-

arises in considering NW and SE correlations. This constraint leads to the

uniguehess result,

We note +that thais stochastic realization- spectral factorization resuli
suffers from all of the numerical problems mentioned in Section B and from
t+he difficulties of 2-D factorrzation. The one novel feature of Attasi's de-

velopment 1s the use and in fact the necessity for using non-square factors --

i1.e. to perform the required factorization

S(Zl'zz) = H(zl,zz)H'(zzl,z;l) {D.51)
where H 1s NE causal and of the form (D.48), one must consider rectangular
factors.13 For example, 1f v 1s a scalar process, then H in general mist be
ixm, and, in fact, the aforementioned uniqueness result fixes the value of n.
We refer the reader to [D-56,35,96].

We remark that the primary motivation for Attasi's work was to develop a
2-D stochastic framework in which to study 2-D Kalman filtering and its appli-
cation to 1mage processing. Sevatral other authors have consider such problems,
and we will consider them in the next subsection.

Recently, Morf, et.al., [D-162,163] have made several noteworthy contri-
butions to 2-D state space theory. In [D-162] they consider the properties of
polynomial and rational matrices in two wvariables, The motaivation for thas
study, which leads naturally to mmlti-input, multi-output 2-D systems, i1s the
generalization of the scalar 2-D polynomial results of Bose [D-147,1661 and the

matrix 1-D pelynomial results of Rosenbrock [p-168] and Wolovich [D-169].

13

Rectangular factors are considered in the general 1-D stochastic realization
theory descrabed in Section B, but they are not necessary in order to factor 1-D
scalar spectra.
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Moxrf, et.al., generalize the scalar notion of primitive factorization to the
matrix polynomial case, and they provide an existence and uniqueness proof

for such a factorization. By regarding a 2-D polynomial p{zl,zz) as a 1-D
polynomial (say in zz) with coefficients that are rational functions in the
other variable and by antroducing several notions from algebraic gecmetry,
they are able to use many 1-D techniques to obtain 2-D generalizations of the
Euclidean algorithm, Hermite and Smith forms, tests for relative coprimeness
of polynomial matrices, matrix fraction descriptions of rational matrices, and
the extraction of greatest common raght divisors. In 1-D Rosenbrock and
Wolovich utilizZe many of these properties to study multi-input, multi-output
state space models. In [D-163] the results of [D-162] are used to study

2-D state space models. The models of Roesser, Fornasini-Marchesaini, and
Attasi are reviewed, and Morf, et.al., argue in favor of Roesser's model.
Their reasoning is that (D.36) is a true first order system, and hence v and h
together comprise a valid local state, The model (D.44), on the cther hand is
not first order, and hence x 1s not a local state -- i.e. the order of the
system (D.44) may be larger than the dimension of x. The importance of this
1s not totally clear, since, asg we've seen, the required storage depends on
more than the order of the system.

The concepts of local controllability and observability for the Roesser
model are explored in [D-163], and the authors point out that these conditions
neither imply or are implied by the minimality of the realization (this 1s
done with several instructive examples). This difficulty can be partially
overcome by redefining local controllability and observabilaity for (D.36) by
requiring these properties to hold separately in the horizontal and vertical

directions (but not necessarily jointly). With this defination, minimality
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implies but 1s not implied by local controllability and observability.

To obtain notions of controllability and observability that are equivalent
to minimalaty, Morf, et.al., generalize the approach of Rosenbrock in which
coprimeness of polynomial matrices plays a crucial role. This leads to the
notions of Egggg:controllablllty and observability and a related concept of
minimality and also allows one to use the algebraic and geometric concepts
developed 1n [D~1621 in order to study the 2-D realization problem. In thais
setting the existence of minimal realiZations becomes a difficult problem,
and one may not even exist 1f we restrict ocurselves to systems with real para-
meters (see [D-163] for an example). In related work, Sontag [D-143,154,E-29]
has also found realizations of lower dimension than those proposed by
Fornasini and Marchesini, and he has shown that minimal realizations need'EQE
be unique up to a change of basis. All of these facts indicate that the 2-D
state space model 1s an extremely complex one and offers some extremely difficult
mathematical and conceptual problems. As with all other topics concerning 2-D
systems, there are many possible ways to generalize 1-D concepts, It remains
to be seen whether any of these state models and realigzation theories can

provide a useful framework for solving 2-D analysis and synthesis problems.

A number of authors have considered state space and other dynamic models
defined with very general independent variables. Motivated to a large degree
by the partially-ordered feedback structures of Ho and Chu [D-87,88] ané
Witsenhausen [D-93,94], Mullans and Elliott [D-95] and Wyman [D-143,160,161]

have considered the development of an algebraic state space theory on partially

ordered sets, In addrtion, Seviora and Sablatash [D-114-116] have placed
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algebralc (specifically, abelian group) structures on the independent variable
in order to consider a generalized transform and digital filter theory with
the aid of tools from the theory of abstract harmcnic analysis. Theirr framework
1s quite ghstract and general, and i1t includes such possible time sets as the
integers, the usual 2-~D plane of integer pairs, and a variety of 'cylindrical
tame sets.” We will have occasion to use such a "time set" in the next section,
Finally, we have noted at several points that the issuwes arising in the
analysis of 2-D discrete time systems have many simlarities with results an
other areas. For example, Ansell [D~64] and ¥Youla [D-77] studred continuous-
time transfer functions in two variables that arise in the consideration of

networks containing lumped and distributed elements. Along similar lines,

Kamen [E-30] has developed an algebraic theory for considering continuous-time

systems that contain time delays. In addation, as mentioned earliexr, Sontag
[D-143,154,E-22] has considered a general algebraic framework of this type and
has tied together some of the time delay and 2-D results.

Other classes of systems have also been analyzZed in a similar mannexr,

Kamen [D=142] has developed a theory for time-varying 1-D systems that bears

—a—

some resemblance to the 2-D theory. Also, Fliess [D-28,139,140], Fornasin
and Marchesina [D~138,E-36], and Bush [D-155] have noted and have taken
advantage of some of the rather striking relationships among certain nonlinear
and 2-D system results. To illustrate the basic i1dea, consider the following

three systems:

Volterra (single input)

gyl = 2, himk,m=2)x & x{) (D.52)
k,%
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Bilinear (two inputs)

ym = ), hlmkm-x (k)x, (L) (.53)
X, 2

Two Dimensional (single input)

v{mm) = 2, himk,n-2)x(k,2) (n.54)
ke

One immediately sees the striking relationship among these three classes of
systems, and 1t 1s not surprising that similar methods of analysis can be
used on all of them. Indeed, Fliess' formal power series formulation leads
directly to a methodology for analyzing algebraic properties of each kind of
system. Also, Fornasini and Marchesini were led to the study of 2-D systems

by their earlier results on bilinear systems, Finally, we note that in his

work on bilinear systems Bush considered the 2-D transform H(zl,zz) of the

weighting function h that appears in (D.53). He showed that 1f one could

write

-1 -1
P(zl 722 )
zZ ) = (Doss)

1’72 -1 -1 -1 =1
ql(z1 )qz(z2 }q3(z

H{=z —
1 %)
where p is a two-varirable polynomial and the q, are polynomials in a single
variable, then the system could be realized by three finite dimensional
linear systems and a single multiplier. Again the fundamental theorem of
algebra makes 1t difficult to find representations as in (D.55) (a condition

slightly weaker than separability). We refer the reader to the references

for detaills of these 1deas.
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In this subsection we have surveyed a large number of i1ssues involving
systems over a 2-D parameter space. Wa have seen that a number of 1-~D con-
cepts can be extended to the 2-D case (e.g. 2-D FIR implementation schemes
using the FFT), while others cannot {(e.g., cascade structures). In many cases
there are several possible extensions from 1-D to 2-D (as with the several
notions of causality and the variety of directions of recursion), and in most
situations the 2-D counterparts of 1-D resulits are far more complex (as with
the 2-D stabilaty tests). We have mentioned several of the reasons for dif-
ficulties in 2=D -~ difficulties in defining notions of causality, recursability,
and "state" (local or global) in 2-D, the absence of a 2-D factorization theorem,

and the absence of the Haar condition. Also we have speculated on a wide range
¢

of open problems in such areas as filter design, filter structures, the
accompanying i1ssues of storage, sensitivity, and rcundoff effects, and the
development of useful state space models and tocls such as the 2-D Lyapunov
equation. In the next subsection we will open up several additional issues

involving 2-D random processes,

D.2 TImage Processing, Random Fields, and Space~Time Systems

Digital processing of images for data compression, noise removal, or
enhancement 1s one of the major areas of applications of 2-D digital signal
procesgsing techniques. In addition, image processing has spurred a great deal
of work in the analysis of spatially-distributed stochastic variables =--

random fields. In thas subsection we will discuss some of the work concerning



-186-

1mage processing and random fields and will poaint out what we consider to
be several particularly intriguing areas for further work. The reader who
1s interested in obtaining a detarled understanding of image formation and
Processing and of the response of the human visual system should consult the
references, In particular, we refer the reader to the survey paper of Hunt
[D-4], the book written by Andrews and Hunt [D~8l]1, and the paper of
Stockham [D-821. We wall refer to these references often as we sketch some
of the 1ssues involved in image processing.

Let g(x,y) denote the image radiant energy as a function of two spatial
variables, where, for the time being, we will assume that the system 1s free
of noise. The i1mage results from an image formation process that transforms

the original object radiant energy £(x,y) into the observed image. A general

model that 1s often used for the image formation process is

4o0 400
glx,y) = ‘jn J[ hix,y,x_,v_ ,£&_ ,v.)dx_dy (D,56)
r J 2 rrr I' 1' 1' l 1 l

Although in some cases the formation process may be nonlinear (see [D-81] for

examples), in many cases it 1s valid to assume a linear model

+00 o0
glx,y) = Jf jf h(X.y,xl,yl)f(xlyl)dxldyl (D57}
-0 -0

Here h(x,y,xl,yl) 1s called the point-spread function (PSF), as 1t represents

the image that results from a point source located at (xl,yl)

(L.e. flx,yv) = 6(x—xl)5(y—yl)).

N
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This function models the smoothing and blur that take place in the image
formation process. Sources of such blur abound. See [D-4,19,24,65,81] for
detailed discussions of some of these., Examples include blur due to motaion,
defocused systems, and the effects of atmospheric turbulence. .

The model (D.57) represents a spatially-varying 2-D linear system. In
some cases, one can take advantage of simplifying assumptions, such as

shift-invariance

h(x.y,xi,yl) = h(x-xl,y—yl) (D.58)
gseparability

h(x'yrxl.yl) = h, (x,xl)h2 (y,yl) (D.59)
or both

hﬁdmr%)=hﬁrﬁﬁbWwf (D.60)

As one might expect, these simplifications lead to gains in analytical
tractability and computational efficiency.

It 1s clear that the continuous-space model of {D.57) 1s inappropriate
for digital storage or processing of images, and one usually obtains a
discrete model by sampling the left~hand side of (D.57) and by approximating
the right-~hand side using some type of quadrature formula (see [D-4,23,81]
for discussions of the errors ainvolved in this approximation). One then

ends up with a model of the form
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g(1,3) = 2, hix,7,k,8)F(k,2) (D.61)
kek
where the g(i,3) form the 2-D image array, the £(k,%) form the object array,
and the h(1,3,k,%) form the discrete pornt-spread function. Note that the
simplifications (D.58)-(D.60) can also be imposed in the discrete domain.

For example, shift invariance yields the 2~-D convolution

glx,3) = Z h(l—k,j—ﬂ)f(k,g,) {D.62)
k,L

Most digital image processing schemes involve the analysis of equations (D.61)
4
or (D.62), and we will spend most of our time with them.l As all images of

interest are of finite extent, we assume that the range of 1,3j,k, and £ 1n

(D.Gl) aI].d (D.GZ) is l,-o-,N.ls

In addition to the image formation process, one mist take inte account

the process of image recordlng and storing. As discussed in [D-4,81,82], twé
well-developed and related image models for photographic images are the

intensity and density images, which are related in an essentially logarithmic
manner, Let gl(x,y) be the intensity of light reflected from a photographic

f1lm on which 1s stored the image represented by the intensity function g(x,v).

14We refer the reader to [D-81] in which a mixed continuous~discrete digital scheme
is discussed. The 1mage g is sampled, but the continuous form of the right-hand
side of (D.57) 1s left intact. Spline approxamations are used to estimate the im—
age between samples.

15 .
There is no loss of generality in assuming a square picture, as we can always
pad a rectangular image array with zeroes i1n order to make it square.
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Then (see [D-4]1) the intensity image model 1is

gl(x,y) = Nl(xpy)[g(x,y)]Y {D,63)

where ¥ 1s known for the given type of falm (1t essentially controls contrast),

and N(x,y) is film grain noise due to random fluctuations of silver density on

the film. On the other hand, the density imade model 1s essentially the

logarithm of (D.63)
g5 (% 7) = Yloglglx,y)] + n_(x,y) (D.64)

As described in [D~4,81], the complexities of these models have been avoided

an most cases. Equation (D.63) has been replaced by an additaive model

gl(x,y) = g(x,y) + nl{X,y) (D.65)

while the low contrast assumption [D-4,81] has been used to justify replacing

(D.64) wath

qd(xpy) = Yg(x,y) + nd(x,y) (D.66)

It 1s not our purpose here to justify these models and assumptions, and we
refer the reader to the references for more details of the modelling of
imaging systems.

Given the above discussion, we now have the following mathematical model:
a discretized object £(1,3) and "norse~free" amage g(1,7), where 1,3=1,0..,N,

and £ and g are related by (D.61l) or (D.62); an observed image

qfz,7) = gl2,3) + viy,7) (D.67)
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where v 1s and additive noise process.16 We now turn our attention to the
analysis of this model. We will return to consider the nonlinear models
(D.63}), (D.64) somewhat later.

At various points in this development, i1t will be more convenient to view

f,9,9, and v as vectors by performing a scan (lexicographic) ordering. For

example
| £(1,1)
£41,2)
. ]
£{1,N)
. N
£(2,n) -
£(N,N)
- -
vwhere f; = (f({1,1}4...,£(2,N)). In this case the relevant equation 1s
q=Hf + v (D.69)

2 2
where H 15 an N xN matrix formed from the PSF. Examination of {D,61) and

(D.68) yields the following form for H

16Thls noise may include more than f£1lm grade noise., Specifically, the effects
of light from sources other than the object can be included in wv.
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N r Hll le IR R RN HlN b

H = H21 H22 censo H2N (D.70)

LN
LN ]

L %1 HN2 csmae HNN"

where Hlj 1s NxN and rts (m,n) element 1s h(i,m,J,n). If the imaging system

1s shift-invariant --~ 1.e. 1f (D.62) holds, it 1s read:ly seen that H 1s

block Toeplitz ==~ 1,.e.

{D.71}
13 =3
R 17
and, in fact, each of the blocks is itself a Toeplitz matrix. This fact

will be extremely important when we discuss the computational aspects of

certain processing algorithms. Note alsc that 1f H 1s separsble, than
= (D.72)
E=2a @ 3,

where C) denctes the tensor or Kronecker product, and Al and A2 are NxN

matrices given by

w7
Note that all that 1s needed for (D.71) 13 “horizontal stationarity"-~1,.e.

h{i,m,3,n) = hi{z-j,m,n). Vertical stationarity in turn implies that each
block 1s Toeplitz.
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- h_ (1,1} h (1,2) .. b (1,N) 7
1 1 1

A o= h (2,1 h (2,2) .. h_(2,¥) (D.73)
1 1 1 1

L h (N,1) h ¥,2) .. h (WN) 4
L 1 1
where
h{z,3,m,n) = hl(l,m)hzlj,n) {D.74)

Note that horizontal stationarity implies that Al 1s Toeplitz, while vertical

stationarity implies that A_ i1s Toeplitz,

2
It is evident from the preceding development that probabilistic and sta-
tistical methods must play some role in image processing. In this context,

f,q,v, and perhaps h are random fields. Such a random £ield s(1,7) 1s

characterized by some type of statistical description —- the joint density of

the values of the field at different points or perhaps a statistical model

such as a 2-~D ARMA model. We will consider some of these more complex des-

criptions at a later point, but for now all we will use 1s the mean and

covarliance
s(1,3) = Els{z,7)] (D.75)

r(z,3,m,mn) = B{[s(a,5)~s(2,7) ] [s(m,n)-5{m,n)]} (D,76)
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18
The field will be called {(wide-sense) stationary i1f
r{1,3,m,n) = r(i-m,j-n) (D.78)
Note that 1f ¢ and s are ordered lexicographically, then

El({s-s) (s-s) '] = R (D.79)

where R 18 the N2 x N2 matrix obtained from r in the same manner that

H 1n (D.70) 1s cbtained from the PSF h. We also ocbserve that R is block
Toeplaitz 1f s 1s stationary in the horizontal direction, and each block is
itself Toeplitz 1f we have vertical (and hence full) staticnarity. In

addition, if the covariance is separable

r(y,3,m,n) = rl(l,m)rz(J,n) (D.80)

we can obtain a representation for R much as the one for H in (D,72). Note
that 1n some sense (D.80) says that correlations ain the data have horizontal
and vertical as "preferred directions". While this may be reasonable in some
cases (perhaps for cases an which one variable i1s space and the other is time)
and may be acceptable in others (because i1t leads to mathematical tractability
and good results), in many cases the assumption of (D.80) may be totally in-

appropriate, We will comment on this further later in this section.

18 —
This 1s not quite standard, since one usually also requires s(i,3j)=constant.

Clearly any process which is stationary in our sense can be transformed into
one in thas stronger sense by subtracting out the mean.
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One important problem in image processing is the efficient representation
of i1mages for storage or transmission [D-4,31,37,76,241]. For such applications,
one wishes to represent the image with as few pieces of information as possible
but with a reasonable level of accuracy. Intuitively, one then wants the
redundancy ain the pieces of information kept to a minimum, Suppose we are
glve; an 1mageslgvnih covariance R. The off-diagonal elements of R tell us
how much correlation there is among the various pixels ("picture elements” -—-
1.e., components of ), and this correlation can be interpreted as a measure
of the redundancy in the picture. One method for cobtaining a less redundant

representation is to transform s

g ="Ts (p.81)

~1
{where T "=T') sco that the covariance of G

L = TRy {D.82)

1s diagonal =- 1.e. T 1s the matrix of eigenvectors of R and the components
of 0 are uncorrelated, This transformation 1is called the Karhunen-Loeve

transform, and 1ts use in efficient coding can be seen as follows (see, for
example, [D-4]). Let us order the eigenvalues of R in order of decreasing

magnirtude, Then we store or transmit only those components of 0 corresponding

19 2
Eirther an NxN array or an N vector. We shall use these two forms inter-

changeably and without comment unless there 1s a chance of confusion.
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2
to the M<N largest eigenvalues. We are guaranteed to have retained those
"coordinates™ of the image that contain the most information, and we can cbtain

an approximate image by inverting the transform:

~ A
g = T'0 (D.83)

N
where U 1s formed by setting to zZero those components of ¢ that were discarded,
We can in fact decide how many terms to keep on the basis of the size of the

reconstruction error
e = s-8 (D.B4)

As discussed in [D-4,37], the Karhunen-Loeve transform leads to a very
efficient coding scheme, However, in general, this transform involves
exorbitant amounts of computation. We must find the eigenvectors and eigen-
values of R (usually just oPce off-line for a class of images-with the same
covariance), and then we must perform the transform coding (D.81) or decoding
(D.83), This can involve a great deal of on-line computation (see [D-4,37]
for estimates), since there 1s no "fast"™ method for performing this transform,
in general. There are, however, several special casesin which this transform
can be calculated efficiently. One of these [D-2411 involves the use of a
more detailed model of the image as a random field, and we will defer discussion
of it until we begin our treatment of more detailed models for fields and
images. Another case, motivated by similar analysis performed by Hunt [D-4,46]
and Andrews and Hunt {D-81], 1s quite instructive, and, as we will use this

1dea on several occasions, we will develop 1t here in detail.
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Suppose that s is stationary. Then R is a block Toeplitz matrix with
Toeplitz blocks. Following [D-8l], suppose further that a particular pixel
is correlated with a number of surrounding pixels, but is uncorrelated with
ones some distance d away (Andrews and Hunt cite d=20-30 pixels as a typrcal

nunber). Then the block Toeplitz covariance matrix takes the form

RO - -»> - [ 3 [ ] - Rd—l 0 - - L ] - - 0
- L ]
Riq . . o
R = . . - (D.85)
0 )
. . . Re-1
: IR . :
0 a ¥ = o . = = 0 Rlﬂ-d - s 8 RO

a-1 :
. . - ‘0
R = 2 . <. (D.86)
1 Byeq - -
"ol . R
9‘ . . d-1
" 1 * 1
0 L - - 0 - - . - » » L ] -
Ri-a Ky
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We now modify R and the Ri to make R block circulant and Ri circulant. A
block circulant matrix is Block_?oeplitz with each row a cyeclic shift to the
right of the preceding one, where the last block on the right of cone row
becomes the first block on the left in the next row._ Fxamining (D.85), (D.88),

we see that this merely means replacing some of the Zeroes with nonzZero entries.

The reasons for doing this and 1ts interpretation can be found in the

following observations:

1. Let Rc denote the circulant approximation to R, and let
Tc be the matrix of eigenvectors of Rb' Then the product
Tcs can be computed efficiently using the fast Fourier
transform., This 1s shown in Appendix 2 and is the reason

for using this approximation.

2, For N large compared to 4, IIRch|| 1s small, where
||'|| 1s any matrix norm. In addition, this error

can be made arbitrarily small by choosing N large

encugh (see [D-81]).

3. Let us see what the circulant approximation means.

For Rc to be block circulant, we must have that

r(y,y,m,n) = r[{i,j)medN,m,n] (D.87)
Intuirtively, instead of thinking of the image as a
flat array, thaink of i1t as a cylinder, so that ho-

rizontal distance matters only modulo N. Furthermore,
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1f we also have that each block is itself circulant,

we should think of the image as the surface of a torus
20

{(connect the two ends of the cylinder). See Figure

D.9 for an i1llustration of this.

As discussed in [D=37] the Karhunen-loeve expansion can also be per-
formed quickly if the covariance is separable, In this case, we perform the
expansion separately in the horizontal and vertical directions —-- essentially
1-D transforms on data records of length N, Hence in the stationary or
separable cases, there appear to be relatively efficient methods to perform
the transform. However, motivated by the complexity of the general Karhunen-
Loceve expansion, researchers have applied other, more efficient transform
techniques such as the FFT and the Hadamard transform to the problem of image

~
compression and coding {see [D-4,37,81]1 for a discussion of several of these}.
Many of these work nearly as well as Karhunen-Loceve [D-4]. This is not sur-
prising given the preceding discussion concerning circulant approximations.

&s discussed in Sectron B, one of the most widely used coding orx
compression schemes for 1-D time series, such as speech, i1s linear predaiction,
in which we design a one-step predictor or'inverse whitening filter (depending
upon your point of view) for the time series. This method has several
appealing features in 1-D —-- 1t 15 efficient (if one uses the Levinson algorithm),
1t leads to recursive coding and decoding algorithms, and i1t yields excellent

performance. In 2-D the satuation is not nearly as clear. What direction

20Sev:l.ora [D-114] and Seviora and Sablatash [D-115] dealt with a general frame-
work that included transforms on cylindrical and toroidal spaces for the purpose

of digital signal processing,
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Figure D.9: Illustrating the Circulant Approximation
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do we predict in and what old data do we use to do the prediction? Genin
and Kamp [D-144,145] have shown that 2-D least~squares inverse filters need
not be stable; can this problem be overcome? Are there efficient 2-b algo-
rithms along the lines of Levinson's method? We will address some of these
questions later as we develop more detarled stochastic models. Let us point
out @ere, however, that for a particular ordering of the points in a 2-D
array, Habibi [D-76] and Habibi and Robinson [D-37] have cobtained encouraging
results using a predictive encoder. In comparison with transform methods,
they found the predictive coding scheme to be superior as far as system com~
Plexity, time delay due to the coding operation, and coding performance at
high bit rates, but the transform methods were more robust to errors in the
knowledge of the image covariance and required lower bit rates, In addition,

Habiba and Robinson [D-37] suggest a hybrid scheme in which we transform
the data horizontally line hy line and then perform 1-D linear éredlctlon on
each column. They report that the performance of this system is excellent.
These promising results and the questions mentioned earlier concerning the
direction of prediction are sufficient to warrant further investigation of
guch methods.

We now turn our attention to the problem of restoring blurred and noise-
corrupted images. Initzally we will concentrate on the linear model (D.61),
(D.62), (D.67) or, equivalently (D.69). For details concerning these methods

we refer the reader to the references and in particular to the survey papers

[D-4,19,38] and the text [D-8ll.
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One of the first methods proposed for image restoration i1s aimed solely
at the removal of the effects of blur and essentially ignores the presence of

additive noise, Thas 1s the inverse filter

t=wg (D.88)

In the space-invariant case, (D.62)}, we can take transforms

~ Q(zl,zz)'
F(z ,2.)) = ————— (D.89)
1772 H(zl,zz)
In addition, in this case H 1s bldéck Toeplitz waith Toeplitz blocks, and
hence we can make the circulant approximation (assuming that the extent of
the PSF i1s much smaller than the sizZe of the picture —- see [D-81]1) and

hence can take the DFT of (D.62}, vielding

_ Fmn) = g—%% (5.90)

where, for example,

Nl :
H(mn) = D, h(k,,Q,)W;]km—'Q'n (D.91)
k., 4=0

Note that as an alternative to making the circulant approximation, we can
use the 2-D version of a standard 1-D 1dea -- we embed the 2~D acyclicr
convolution (D.62) in a larger 2-D cyclic convolution by padding each row

and column with a sufficient number of zerxoes. Equavalently, we intersperse
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Zeroes in the appropriate places in the lexicographically ordered vectors

a, %, etc., and in the block matrix H [D-46]. The resulting matrix H 1s
block circulant with circulant blocks (see Appendix 2 for the correspondence

between circulant matrices and cyclic convolution). Thus, we can directly
apply (DP.20) with no approximation to this padded image.

Let us make several comments concerning the inverse filter. First of
all, the image formation process (D.61), (D.62) may not be invertible, and
thus, we cannot even perform the calculation indicated by (D.88). One might
consider using a pseudo-inverse, and we will discuss this in the context of
another restoration methodology. I; addition, examining the transformed
versions (D.89), (D.90), we see the possibility of two further problems.

The frequency response H usually falls off at high frequencies. Thus, as-
suming that high frequency noise 1s present, we may observe extreme noise
amplifications. In addition, the inverse filter transfer function flows up
at the zeroces of H, and this can cause severe difficulties. Locking at these
equations in the space domain, Sondhi {D-192], Hunt [D-4}, and Andrews and
Hunt [D-81] argue that the difficulty arises due to the severe problems
encountered in a attempting to invert integral eguations such as (D.57). In
the discrete demain, this implies the 1ll-~conditioning of the matrix H, and

thus, even 1f its inverse exists, the solution suggested by (D.88):

a -1
f=f+H v (D.22)

may be dominated by the noise.



=203~

In orxder to overcome difficulties such as these, one must explicitly
take the presence of noise into account. This leads to the discrete Wiener

filter formulation [D-4,17,19,38,40,81], Consider (D,69) with

E(££")=P , E(vv'}=R, E(fv')=0 (D.93)

F
and suppose we wish to choose our estimate £ as the miniwmum mean sguare

error (MMSE) estimate

myn B[ (£-F) ' (£-5) ] (D.94)
b

If we limit ourselves to linear transformations on the data or 1f we assume

2
Gaussian statistics, * we obtain the optimal estimate

£ = pH' (HEH'+R) "1q (D.95)

22
Again let us note that in the space-inwvariant, Zero-mean, stationary case,

21
The Gaussian assumption can clearly only be made for convenience, since we

know a prior: that all components of f must be >0. We note that although
this eliminates the Gaussian assumption in theory, in practice one often makes
1t anyway, since 1t leads to tractable problem formilations and acceptable
system performance (see, for example, [B-104], where the same type of poszti-
vity assumption wasg encocuntered).

22The Zero mean assumption is included to guarantee the block-Toeplitz
structure of P and R. If we have nonzero means for f and v, we can subtract
out their effects from (D.6%) and proceed with the analysis. In this case,
the estimate produced by (D.96) 1s the estimate of the deviation of £ from
1ts a priorli mean.
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we can perform (D.95) in the frequency domain, obtaining an expression ana-

logous to {D.892). 1In addition, in this case all of the matrices are block

Toeplitz, and we can use the same block circulant approximation to obtain an

expression analogous to (D,90):

H* (m,n) Q {m,n)
L (D.96)
|smm) |24 By ™)

g(m,n) =

Qf(m,n)

where "x" denotes complex conjugate, @v is the 2-D DFT of the noise covariance,

and ®f 1s the DFT of the image covariance,

Note from (D.95), (D.96) that the problem observed with the inverse
filter has been removed -~ 1.e. the inverse in (D.95) and the denominator
in (D.96) won't blow up, since we have explicity included the effects of noise.
The Wiener filter does, however, have some difficulties and limitations as an
image processing system. To a great extent this is due to the fact that the
MMSE criterion is not particularly well-suited to thé_way in whaich the human
visual system works (see Stockham's paper [D~82] for a discussion of the
visual system). In particular, the Wiener filter 1s overly concerned with
noise suppression. In addition, i1n order to make the filter computationally
feasible, one often assumes stationarity. This in turn leads to a filter that
1s insensitive to abrupt changes =-- 1.e. 1t tends to smooth edges and reduce
contrast. On the other hand, in high contrast regions, the human vigual system

will readily accept more noise in order to obtain greater resolution. Thus,
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the Wiener filter sacrifices too much in resolution in favor of noise sup-
bression. We will return to this key image processing tradeoff later in
this section.

Another difficulty with the Wiener filter is the amount of a priori
information that is required., For the inverse filter all we need is the
PSF,23 while for the Wiener filter we need the PSF and the second order
statistics of the original image and the noise. This 1s a great deal of
information to assume to be known, and a ;erlous question here concerns the
robustness of the Wiener filter to errors in this a prioril knowledge.

Several schemes have been proposed that are awmed at trading-off
between the potentially high-resolution, poor noise performance of the

inverse filter and the lower—-resolution, good noise performance of the

Wiener filter. One of these 1s the constrawined least squares filter, sug-

gested by Sondh: [D-19] and developed and discussed by Hunt [D-46] and
Andrews and Hunt [D-81]. In this formulation, we wish to choose % to mi-

nimizZe

7(& =fcrict (p.97)

subject to the constraint

(uF-q) * (HE-q)=e (D.98)

23As discussed in [D-81], the PSF is usually assumed to be known, and for certain

types of blur, this 1s a reasonable assumption. However, in many cases, either
the entire PSF or several of its parameters are not known a priori and must be
estimated. We will discuss this shortly.
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The solution 1is

$= {H'H + 'YC'C)-IH'q (D.99)

where Y 1s a Lagrange multiplier found by iteration in order to satisfy
(D.98). Again one can cbtain transform versionsg of (D.99) in the shift-
invariant case.

Several cominents are in order concerning this approach, which has been
shown 1n several experiments to perform at a level superior to that of the
Wiener and inverse filters [D-4,8l]1. Note first of all from (D,29) that we
have eliminated the need for covariance information for £ and v. In addition,
by adjusting the size of e 1a (D.928) (or equivalently of ¥ in {D.99)), we
can effectively control the amount of noise suppression. 2Also, we have
some freedom in the choice of €, and several possibilities and their inter-—
pretations are discussed in [D-81]. For example, choosing C=I, essentially
leads to a "pseudo—-inverse" filter =< 1.e. this Ffiltér resémbles the 1nver;e
filter but avoids the illconditioning by adding YI to H'H before inverting.
In addition, one can choose C as a "finite differerice matraix," which leads
to our minimiZing some measure of the rate 6f fluctuation in the estimated

image. One cah also choose C in order to match the characteristics of the

human visual system [D-4], and the choice.

c = p +/2g1/? (p.100)

leads to a "parametric Wiener filter," closely resembling (D.95) in structure,
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Another approach, proposed by Stockham, et.al. [D-4,81,B-4], leads to
a filter that is the geometric mean of the inverse and Wiener filters (hence

i1t dairectly trades: off.between the properties of these systems):

1/2
N 1
T = IH(m;n)|2+ @v(m,n) 2dmen) (0-10)
@f(m,n)

This filter, obtained by designing a system so that the output power spectral
density eguals that of the original image, has worked extremely well in
several experiments [D-4,81,E-4]1. We note that (D.101) i1s not precisely cor-
rect, as it does not include the phase effect of the restoring filter. Since
phase 1s extremely important in image processing and viewing, one must take
1t anto account, This has been done for several specific types of PsF's,

and we refer the reader to [E~4] and the references therein, In addition, in
examining (D.101) it appears that we again require a great deal of a prior:i
information; however, this particular filter is particularly well-suited to
the use of on~line estimates of guantities such as the PSF. We will discuss
this in more detail later in this section, and we refer the reader to [E-4]
for details. —

In addition to these technaiques, a nurber of other approaches along
these lines have been developed, aiid we refer the reader to the references
for details. At this point we want to make several cbservations concerning
these processing systems. Note first of all that they are nonrecursive and

in principle require the block processing of the entire image or substantial



-208~

sections of the image [D-471. Hence the computational burden of these schemes
can be guite high. In the shift-invariant, stationary case this problem can
be somewhat alleviated with the aid of FFT techniques, but the reguired amount
of calculation is still substantial. The situation 1s even more complicated
1f the PSF 1s shaift-varying. Examples of such imaging systems are given by
Sawchuk [D-65] and Robbins and Huang [D-20]. In has paper, Sawchuk suggests
breaking the PSF into shift-invariant pieces, followed by the use of some of
the techniques we have discussed. Sawchuk and Robbins and Huang also discuss
the possibility of inverting nonlinear distortions in the imaging system,
followed by the use of shift-invariant methods. Clearly the PSF must be of a
special form for this to be possible.

The use of the FF1 or the inversion of nonlinear distortions notwith-
standing, it 1s clear that the processing methods described so far regquire
a great deal of on-line calculation. In 1-D, one finds that recursive

methods are often preferable to nonrecursive ones because of their computa-

tional advantages. Although the situation 1s not as clear in 2~D (as we

saw 1n subsection D.1), 1t certainly seems worthwhile to investigate recursive
2-D image processing methods. BAs discussed in [D-81] the 1-D Kalman filter
offers great computational savings over nonrecursive methods, and an appealing
guestion 1s the extension of such filters to 2-D. Anyone familiar with 1-D
Kalman filtering theory realizes that the design of the filter relies heavily

on a dynamc -- 1.e., recursive —— representation of the receaved signal. Hence,
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to develop such technigues in 2-D, we need more complex models of 1mages

than that provided by the mean _and covariance. The need for the use of such
models i1s an obvious drawback to this approach, but the potential gains in
computational efficiency represent a distinct advantage. We now will describe
several of the approaches taken in the application of recursive estimation
techniques to 2-D processang. This research topic 1s still in 1ts early
stages of development, and many open questions remain.

One approach to recursive processing of images involves the 1-D pro-
cessing of the scan-ordered image (see Section D.l). This work has been
developed by Nahi, Silverman, and their colleagues [D-~8,18,21,24,58,174],
Suppose we have an image £{m,n) (assumed to be zero mean for convenience)

with stationary covariance -

ri{k,%) E[f(m,n) £ (mtk,n+)] (D.102}

Suppose we observe

f(m,n} + v(m,n) (D.103)

g (m,n)

where the addative noise v 1s, for simplicity, assumed to be Zero mean

and white, with

E[V(m’n)V(k'z)] = Ram'kang‘ (D-}-04)

We now take the scan ordering of the NxN grid on which g, £, and v are

defined. ILet us use the same symbols to denote the resulting 1-D processes.
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We then have

qlk) = £(k) + v{k) {D,109
E[£)£(R)] = sk, L) (D.106)
Elvk)v(V] = Rﬁk,@ (D.107)

where 5{k,%) can be calculated from knowledge of r(m,n}.

Note that the scanned image f(k) 1s not stationary, just as in Section
D.1 we found that scanned 2-D systems did not become time-invariant 1l-D
systems. The problem is clearly due to the abrupt change that occurs when
the scanner reaches the end of one line and begins the next. For example,

1t 15 clear that one will have

S{x,1+1) = s(1+1,12+2) = r(0,1)

1f and only 21f 1, a1+l, and 142 come from the same line of the image. On
the other hand, 1t is clear that 2-D stationarity plus the periodicity
of the scanner ghould yield some structure for S, and, in fact, it is easily

seen that

Sk, R) = s(k#N,L+N) Vk,2 (D.108)

A process with this property 1is called cyclostationary, and many of 1ts

properties have been analyzed in detail [D-43,80,83],
Given the model (D.105)-(D,107), one wishes to use Kalman filtering
techniques in order to suppress the noise. In order to do this, we need a

state space model for £. That 13, we have a stochastic realization problem:
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find a finite-dimensional linear system driven by white noise that vields
an output with correlataion function given by (D,106)., Unfortunately, as
p01ﬁte& out in [b-21], 8(k,%) does not have the regquired separability that
1s needed in order for such a realization to exist. Hence, some sort of
approximation 1s needed, and several have been developed. The' simplest of
these invelves finding a stationary approximation to (D.106), much as Manry
and Aggarwal found shift-invariant approximations to the shift-varying
scanned filters they studied in [D=-56]. The basic idea here, dus to Franks

[D-43], 1s to use to stationary covariance

R(k) =

2

N
> s(m,m+k) ({D.109)
m=1

This 1s equivalent to randomizing the variable m over the scan of one line in
the computation of E[f({m)Ef(m+k}].
Having R(k), one can then use some realizZation procedure to find a

Markov model

= (k+l) = Ax(k) + w(k) {D.116)
£(k) = a*x(k) (D,111)
Elwkin(g)] = Qﬁkj (D.112)

that realizes or approximates the given correlation function. We refer the

reader to [D-18] for a method used by Nahi and Assefa,
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We can now obtain an image restoration scheme by direct application of
Kalman filtering to the model (D.105), (D.107), (D.110)-(D.112). Several
comments are in order. We first note that the filter has an artificial
causality -~ only the points above and to the left on the same line affect
the estimate of a gaiven pixel., This can be partially removed by smoothing
the data -- 1.e. by estimating each £(k) based on all the data. With the
model we have developed, this can be done efficiently with two Kalman filters,
scanning in opposite directions and starting at opposite ends of the image.
The resulting estimate still has difficulties because of the randomizing
used to obtain (P.110)-(D.112), This causes problems much like those caused
by Manry-Aggarwal's shift-invariant approximation., In this case, one can
remove some of these difficulties by transposing the image and performing the
same type of processing again (2 more Kalman falters scanning in a direction
orthogonal to the other 2 filters). This appears to be remniscent of Pistor's
four quadrant decomposition [D-42] —-- we have NE, NW, SE, and SW Kalman
filters.

A number of other comments can be made concerning this approach to image
processing. First of all, like the Wiener filter, the Kalman filter is based
on a MMSE criterion, and hence we can expect 1t to sacrifice resolution for
n01ée suppression, In addition, thig method relies heavily on a priori
knowledge of the image covariance, and the robustness of the approach in the
presence of modeling errors remains an open question. We have already com-

mented on the problems inherent in the stationary approximation of the cycle-

stationary covariance of the scanned image. In [D-21] Nahi suggests that one
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use a plecewise stationary approximaticon over various sections of eaéh
scanned line., This leads to a time-varving, plecewlse-constant state wvariable
description for the scanned process.

Several alternative methods exist for reducing the affect of the sta—"
tronary approximation. Nahia and Franco [D-58] suggest the simultaneous
scanning of a number of lines (“wector scanning”). One can then model cor-
relationsboth along the scan and along the components of the vector of the
scan. IZ one scans all lines simultaneously, we can take all of these cor-
relations i1nto account. Note that in this case we have turned a 2-D, scalar
signal into a 1-D, multivariable signal, much as we discussed 1n the preceding
subsection. Of course, this leads to problems with the dimensionality of
the resulting processor. Thus, Nahi and Franco suggest a "section-scan",
scheme which 1s in fact far more efficient than the scalar system described
breviocusly. This sectioning approach ig much like that of Manry and Aggarwal,
in which a number of lines are processed together, and different sections are
processed independently. 2n interesting point here is that Manry and Aggarwal
discussed the use overlapping sections to avoid problems at the edges. A
simirlar approach might work well in the framework developed by Nahi and Franco.
We note, however, that the vector modelling in [D-58] recuires the separability
of the image covariance. In fact, Nahi and Franco [D-58] and Franks [D-43]
argue that a good model to be used is the exponential model

r(m,n) = plmlplnl (D.113)
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The necessity for using separable covariances is clearly a limitation,
but 1t does allow one to obtain detalled results. In addition to the work
mentioned above, Powell and Silverman [D-8] used the separability assumption
on r(m,n) to develop exact dynamic models for each line of the scalar and
vector scan procesges, These models involve time-delays in the output equa-
tion (due to the nonseparability of S{(k,%)), and the dimension of the models
increases in proportion to the width of the scan. Thais last fact 1s not
sSurprising, since we saw in subsection D.1 that the dimension of the glchal
state of a 2-D system grows in proportion to the extent of the plane on
which the system is defained.

The recursive methods discussed so far have assumed that there 1s no
blurring due to a nontrivial PSF., If there is such blurring, essentially we
must develop a 1-D dynamical model for the effect of the blur along the scan.
The simplest example of this -- motion blur along the direction of the scan
~~ was considered by Aboutalib and Silverman [D-24}., In the absence of
noise, they design the line-by-line inverse system to remove the blur both an
the space—-invariant and space-variant cases. The inverse they propose 15 a
recursive one, and hence can be implemented with relatively small computational
demands. If noise 1s present, one augments the scalar or vector scan dynamic
models of Nahi, Assefi, and Franco with the dynamic model of the blur, and
uges the Kalman filter line by line (or section by section) to remove the blur
and to suppress the noise, ZAgain this system offers computational advantages

over nonrecursive schemes, but the inverse system may be very sensitaive to
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errors in the knowledge of the PSF. The robustness properties of the Kalman
filter 1n this case are not yvet known.

2ll of the recursive scan techniques have basically been cne~dimensional,
in that no 2-D model for the image (beyond the usual covariance description)
has been used. Recently, however, a nurber of researchers [D-6,22,34,35,71,96,
148,173,174,223,236]1 have considered 2-D recursive models for images. The
first work along this line was that of Habibi [D-22] vho considered the sepa-
rable covariance function given in (D-113). Habibi noted that this covariance

could be obtained from a 2-D, recursive, auto-regressive shaping filter

x({k+l, 4+1) = pzx(k+l,2) + plx{k,£+1) - plpzx(k,ﬁ) + J(l—pi)(l—pg) wik, )

(D.114)
vhere w(k,2) 18 a white, Zero mean process with
Efwk,2)wim,n)] = 6km§2n (D.115)
Assuming measurements of the form
vik,2) = x(k,2) + vig, ) (p.116)

Habibi then developed an estimator to estimate x(k+l,%+1) based on

{y(m,n)]mfk, nfﬁ} ~= 1,e. this estimator 1s a one-step NE predictor. Habiba
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chose an estimator structure of the form

X(HL 241) = p R (kL R) + p R0k, 240) = p0,R(k,2)
(D.117)

+ Fk,2) Iy (&, 2) -2 (k, %) ]

and determined a value for the gain F{k,%). Unfortunately, this estimator
is suboptimal, as pointed out by Straintzis [D-165]1., The problem is that in
1-D Kalman filtering, 1t 1s well-known that in order to cobtain the optimal
estimate recursively, one must estimate the entire state of the process.
However, as discugsed an the precedang section, the global state has dimension
Proportional to the extent of the 2-D domain under consideratzon. Hence
x(k,%) 1s not the global state, and we cannot expect its estimate alone to

suffice for recursive optimal estimation. In fact, as Morf, et.al. [D-162,

163] point out x(kx,%) 1is not the complete local state, and this makes the

meaning of (D.117) even more guestionable. Still, as Strintzis mentions, the
structure of this estimator i1s so simple and intuitively appealing, 1t would
be worthwhile to determine just how suboptimal 1t is.

The most complete study of optimal 2-D Kalman filtering has been per-
formed by Woods and Radewan [D-173,229,236], We assume that we have a one-
sided causal dynamic model (see Fig, D.5, D.6, Equation (D.12)}) for the random

field
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M +M
x(m,n} = Z E bk, ) x(m-k,n~2)
k=1 fL=-M

M (D.118)
+ Zb(O,E)x(m,n-l) + w{m,n)

8=1
This model can be assumed to be given or can be obtained from the image power
spectral density by means of 2-D spectral factorization [D-119]. This latter
method in general leads to infinite order factors which must be truncated.
A third method for obtaining the model (D,118) is by direct parameter esti~
mation using a method such as 2-D linear prediction. We will comment on
methods such as these later in thas sectaon,

Woods and Radewan consgider the observation equation

g{m,n) = x(m,n) + vim,n) (D.119)

where v 1s Zero mean and white with variance R, Suppose we want to estimate
x({n,n) «given all wvalues of g in the past, where past 1s defined relative to
the direction of recursion in (D.118) - 1.e. ...,

{g(z,7) |i§m—l, all 3}U{a(m,7) |jin}. Woods and Radewan point out that this
can be done optimally with an extremely high dimensional Kalman filter to
estimate the global state of the system, which in this case has dimension on
the order of MN (M=order of the filter, N=width of the image). In fact, a

valid global state 1s (see Figure D.10)

s(m,n)*' = [x(m,n},x(mn~1),ee.,x{1,m};x{N,n-1},c..,x{1,n-1);

ess} X(N,n"M) ro e ,X(m—M,n-M)] (DOlzo



~218-

Future Points

Past Polints

Figure D,10: Illustrating the Global State of Woods-Radewan.
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By inspection of tha state and the recursion (D.118), 1t is clear that we
can write a 1-D equation for the scan-ordered process. Note that this model
will be time-varying, since we must take into account the initiation of a new

line, We can also write a relation between g and s
g(m,n) = Hs (m,n) + v(m,n) {(p.121)

where H merely picks off the first element of s, Given this development,
a rather enormous Kalman filter can be written down. In addition, one can
obtain a more efficrent optimal estimator by processing one line of data at
a time (see [D-229]).

As developed in [D~173,229,236], this filter does not correct for image
blur. However, it does appear that one can modirfy the development so that it

can, Suppose our cobservation is

p P
tmm) = 3 3 hizkxmjmnk) + Ln,m (D.122)
je==P k=-P
where £ 1s additive white noise. Note that in terms of the ordering implied

by the recursion (D,118), t{m,n) involves values of x that occur in the future.

This can be corrected by a time delay of the observations

g{m,n} = £{m-P,n-F) (D.123)

In this case, assuming 2P<M, we may write a relation of the form of (D.121},
vhere in this case v 1s a shifted version of §, and H is such that we obtain

the proper blurring, If 2P>M, we must increase the dimension of s -- keep
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more data from the past =- in order to make sure that s contains all the
"component% of x that affect g(m,n). We 1llustrate these i1deas in Figure D.1l.
From the figure it 18 clear that H in (P.121) will not be constant, since we
mist take end-of-line effects into account, when portions of the diagonally
shaded region in Figure D,11 lie outside the range of the image. Thas
clearly can be done, and, as before, we obtain a giant Kalwman filter. Another
method for optimal Kalman filtering in the presence of blurring has been
developed by Hart, et.al. [D~71]. They also use a global state for the filter,
but they assume that the different pixels are all independent -~ 1.e. that
all of the b(i,3) are zZero in (D.118}.

Optimal line-by~line Kalman filtering for images has also been congidered
by Attasi and his colleagues {D~6,34,35,96] using a stochastic version of the
model discussed in subsection D,1. Specifically, consider noisy observations

s

of an image £{1,3)

ql{x,7) = £{1,3) + v(z,3) (D.124)

where the i1mage 1s assumed to be generated by a separable vector analog of

the model used by Habibai [D-22]

x({z,3) le(l—l,j) + F2X(i,j-l) -F F2X(l—l,j-l) + w(i-1,7-1)

- (D.125)

1

£(2,3) Hx{z,7)
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(t,n)

(m-2Pn-2P)

{m,n-2P)

(N, n-M)‘

{(m-M,n-M)

Figure D.11l:

Illustrating the Adaptation of the Woods—-Radewan Model to

Allow Blurring.
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L)
We wish to obtain the optimal estimate x(m,n) of x(m,n) gwven g(r,7) for

1<m and all j. The optimal estimate in this case consists essentially of two
1-D operations. Suppose we have ﬁ(m—l,n) for all n. We first predict ahead

one line to cobhtain

x(m,n) = F§. (m=1,n) Vn (D.126)

Note that each of these estimates is calculated independently. We now

observe the new line of measurements ¢(m,n) for all n, and we create the error

Process and the error measurement

e(m,n) = x(m,n) - x(m,n) (D.127)

yv{m,n} = g{m,n) - HX(m,n) = He(m,n) + v(m,n) (D.128)

Thus we have a 1-D estimation problem -- estimate e{m,n) for all n, given
v{m,n} for all n. Attasi shows that one can obtain a finite dimensional
1-D realization for e(m,n) as a function of n. Hence, this estimation pro-
blem reduces to the usual 1-D smoothing problem. The solution consists of
two 1-D Kalman filters starting at opposite ends of the line., The estimates

produced by these filters are then combined to produce e(m,n) and

Z(m,n) = x(m,n) + & (m,n) (D.129)

For details, we refer the reader to the references. fThe "geometry" of the
estimator is 1llustrated in Figqure D.12,
Let us make several comments concerning this estimator. First of all,

we see that the decoupled structure of the estimator yields a far more
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{a) Predicting Ahead One Column
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{b) Processing the New Column of Data with
Two Kalman Filters

Fiqure D.12: TIllustrating the Structure of Attasi's Estimator
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efficient esﬁlmator than that of Woods and Radewan. This 1is apparently due
to the separability of the underlying model (D.125). BAlso, for this model
1t 15 not clear if we can perform the same modifications in order to incor-
porate blurring. This and the separbility restriction are obvious drawbacks,
but the appealing structure of the filter 1s reason enough for further in-
vestigation, especially given the compatability of thas algorithm with parallel
processing techniques. Furthermore, we note that the optimal smoother can
again be implemented with two filters of the type devised by Attasi —— one
sweeping the columns in order of increasaing m, and the other in order of
decreasing m. Again, this is reminiscent of the decomposition of zero phase
filters into two half-plane filters [D-42,11%91,

The method of proof used by Attasi involves the taking of z-transforms
along the n direction and the treatment of m as a taime variable. Essentially

we are regarding the 2-D system as a high~daimensional (infinite if the domain

of n 1s unbounded) 1-D system, where we can use a spatial transform “along"

the 1-D state vector in order to simplify the calculations. The key step in
Attasi's development is a derivation of a set of Riccat: equations, parametrized
by the transform variable z, for the power spectral density Sm(z) of elm,n)
considered as a function of n, One ¢an then factor these spectra to obtain
the 1-D realizations of the e's, As Attasi points out, the dimension of the
realization for e{m,n) 1s on the order of m times the dimension of x -- lL.e.

1t grows linearly with m. One can avoid this dafficulty by using reduced

order estimators. For example we may choose to use the steady-state falter,
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an which case we can obtain a finite dimensional system whose spectrum
approximates §_(z}.

Let us note that Attasi's work brings out several crucial issues,
Specifically we have seen the effective use of the equivalent representations
of signals as multivariable 1-D and scalar 2-D. We have also seen that
transforms along one of these variables can be useful in obtaining solutions.
Later in this section we will discuss the relation between 2-D processing
and distributed and decentralized control. The issues just mentioned wall
be of great importance then as well.

AS we have seen, optimal 2-D Kalman filterang algorithms require large
amounts of storage and computaticn. Thus, a nurber of researchers [D—-34,148,
173,174,229,236] have developed suboptimal estimators that require less com-
putation. We will briefly describe several of these and refer the reader
to the references for more on this subject. ILet us begin with the technique
of Woods and Radewan [p-173,229,236]. They consider two types of suboptimal
filters, The first involves breaking the picture up into strips of wadth
W<N. Cne then processes across and up these strips individually, much as waith
the Manry-Aggarwal section-scan. This reduces the dimension of the global
state, as we replace N in (D.120) with W. Woods and Radewan also suggest
overlapping the strips in order to avoid the edge effects caused by incorrect
boundary condirtions between strips.

The other suboptimal filter developed an [D-229] 1s the reduced update

Kalman filter. Examining the optimal filter of Woods and Radewan, we see that
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the predict cycle i1s computationally straightforward -~ one simply uses the
recursion (D.118) assuming no noise and using preceding estimates. The
measurement update part of the optimal filter, on the other hand, involves
updating the estimates of all of the components of the state, Assuming

N>>M, we expect that a given pixel 1s most correlated only with a small per-
centage of the elements of the state vector. Therefore, it seems reasonable
only to update the estimates of those components of the state that are within
a certain distance .of the point being processed. This should greatly simplify
the falter with minimal effect on performance, In other words, we are essen-
trally designing a constrained Kalman falter in which we constrain many of
the gain elements to be zZero and essentially allow only “near neighbor updates.®
We remark that a similar 1dea was proposed by Pratt [D-17] for the Wiener fil-
ter and by Murphy and Silwerman ([D-174] in the Kalman filtering context.

In addaition, 1t is anteresting to mote that similar ideas have been proposed

for large~scale systems in whach measurements on a particular subsystem are
used to update only those subsystems that are "near" to 1t as determined by
some measure of dynamic interaction ﬁ§ee, for example, [D-201,205,208] for
related results for problems .of freeway traffic control and estimation). We
w1ll have more to say about this later.

Motivated by the simplicity of the filter proposed by Habibi [D-22] and

by the recursive local state-space model proposed by Roesser [D-110], Barry,

-

et.al. [D-148] have developed a class of .constrained filters, Specifically,

they consider a noisy version of Roesser's model (D.26)
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v{i+l,7) a, A, vix, )

= + wix,3) {D.130)
h(i,3+1) Ag A, h(x,3) -
v{1,3) = ClV(l,j) + Czh(l,j) + vy, 3) {D.131)

where w and V are white noise processes, Thelir suboptimal estimator is then

taken to be the optimum estimator of the form

(2+1,9) a, &, T,9) K, F,

~ = + ylu,m-0c;.Co0 | (p.132)
h(1,3+1) A A ﬁ(l,j) K hx,7)

3 4 2 .

All of the recursive estimators that we have examined up to thas point
have had two things in common -- they have involved discrete 2-D space and
have used recursive random field models. Recently Wong [D-172,187] reported
on some work on 2-D continuous-space estaimation. This theory inveolves the
development of a stochastic calculus in 2~D, and this in turn has led to a
number of interesting theoretical results. We defer the discussicn of this
topac until later in this subsection.

At this time it 1s worth mentioning that there has been work performed
on recursive processing of fiaelds that come from nonrecursive models.
Specifically, Jain and Angel [D-32] have considered fields described by a

nearest neighbor, interpolative equation
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% {m,n) = al[xim,n+1) + x({m,n=1)1

. + a, [x(m+l,n) + x(m~1,n)] + wim,n) (D.133)

Fields of this type have been studied by several authors and were proposed
by Woods [D-9] as the prototype of discrete, 2-D Markov fields. We will
have more to say about the properties and other uses of these fields in a

short while. For now, we concentrate on the estimation problem when we

cbserve

v{m,n} = x{m,n) + vim,n) (D.134)

Following {D-~32], let us consider the vector scan process —— l.e. we pro-
cess an entire line of data at a time. Define the resulting 1-D vector

rocesses X w and v For example
&) - Ymr o' n" 18]

x(m,1)

x = . {D.135)

% (m,N)

Then, one can write (D,134), (D.135) as

= +
Y, =X v {D.137)

where 0 1s a symmetric, tridiagonal, Toeplitz matrix
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Examining the structure of (D.138), one 1is tempted to utilize the same
type of circulant approximation as that used by Andrews and Hunt [D-81] in
order to diagonalize the system efficiently with the aid of the FFT. However,

as Jain and Angel point out, the diagonalization of Q

M'QOM = dlag(ll, ese ,AN) {D.139)

can be performed with the aid of the FFT without any approximation. Thus,

1f we define the transformed quantltles'im,'§ﬁ, etc., where, for example,

X = M'x (D.140)
m m

. we obtain a set of N decoupled estimation problems, indexed by j (whaich

indexes the components of the transformed vectors):

. —
m+l,J J ®,] m-1,3 m,3J
v =% _+¥V (D.142)

m,] m,3 mpJ



~230=-

Each of these problems can be solved using a second-order Kalman filter
(see [D-32] for an alternative method of deravation), and we obtain the
efficient implementation 1llustrated in Figqure D.13., Again, 1f one wishes
to utilize all of the data to estimate each pixel, we can implement the
smoother éy including a second bank of filters which sweeps the lines in the
opposite direction (m runs from N to 1). One can alsc implement a one step
smeoother —— whach estimates X0 based on data through line mtl, This requires
only one back of filters, as in Figure D.1l3. We refer the reader to
[D-32] for details.

The approach in [D~32] deserves some comment. Again as in Attasa's
work, we have seen that transforming variables in one dimension and processing
in the other can lead to extremely efficient processing schemes.24 Just as
with the block circulant approach of Andrews znd Hunt, the spatial stationarity
of the 1-D equation (D.136) 1s such that the FFT can be used to great advantage.
This observation leads one to seek other formulations that possess structure
that can be exploited in this manner. Jain and Angel mention -several other
random field models that lead to symmetric, tridiagonal, Toeplitz evolution
equations when scanned line by line, and an [D-30] Jain uses similar analysis
for the efficient recursive filtering of one of these models, the so-called

semicausal model:

x{m,n) = al[x(mrl,n) + x{m+l,n)l

~pay [x @+l ,n-1) + x(m-1,n-1)1 (D.143)

+ px(m,n=l) + wim,n)

24Recall that the use of a transform in one direction followed by linéar predic—
tion in the other was proposed as an i1wage coding scheme by Habibi and Robinson
[D-371.
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Fagure D.13: Illustrating the Optimal Filter of Jain and Angel
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The model was given this name since x(m,n) depends only on x{1,3) with 3<n
(note, however, that (D.143) 1is not recursive). We note that throughout
the development in [D-30,32] 1t is assumed that no blurring occurs. It is
not clear 1f the approach adopted in these references can be extended to
include the effect of a PSF, but the efficiency of the algorithms developed
by Jain and Angel indicates that it is certainly worth trying to find such
an extension. As we shall see, the use of structure an this manner can be
applied 1n a number of different settings.

We have now surveyed a number of nonrecursive and recursive estimation
methods, and the techniques discussed to this point deserve some comment.
The recursive techniques come with many of the same criticisms that were made
concerning nonrecursive filters., They require detailed models of the image
statistics and image formation process, and they are essentially based on the
MMSE criterion. Hence, they in general, will sacrlflye resolution in favor
of noise sugpre551on. In addition, these recursive techniques necessarily
affect the image because of the assumed model structure. The effect of thas
in some cases (such as in the Kalman filter based on a stationary approxima-—
tion to the scanned image) may require additional processing (of the trans-
posed image, for example), while in other cases, such as the 2-D causal
models of Woods—Radewan and Attasi or the noncausal models of Jain and Angel,
the effects may not be so noticeable. We have seen that some of the recursive
techniques allow the inclusion of image blur, while in other cases the
extensions to include blur have yet to be developed. Alsc, we have seen that

in some cases optimal Kalman filtering i1is extremely complex, and suboptimal,
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but antuitively appealing, recursive filter structures must be used. In other
gases -~- gpecifically ain the work of Attasi and Angel and Jain -- we have
observed that the use of the structure of the assumed model can lead to ex-
tremely efficient optimal estimation algorithms. In addition, although
work in thls.area has been limited in extent [D=24,174], the recursive tech-
niques are directly amenable to the analysis of space-varying and nonstationary
models. Thus, in spite of the many qualifications, we find enough positive
attributes to warrant continued study of recursive techniques for image
restoration.

Let us now comment and speculate on several aspects of i1mage processing
that we have only menticned in passing previously. First of all, we have
the problem of nonlinearities in image sensing. Consider fairst the multi-
plicative noise model (D.63),., As discussed in [D-82,E-2] and an Section E,
one can often filter signals corrupted by multiplicative noise by first

taking the logarithm, then filtering with a linear system, and then exponen-

tirating. This process —- an example of homomorphic filtering ~- 1s described

in Section E. We note here that this technigque has been applied with great
success [D-82,E-2], and in [D-82] 1t i1s argued that thas, type of processing
18 extremely compatible with the response characteristics of the human visual
systen.

Equation (D.64) i1llustrates another kind of measurement nonlinearity,
in which the noise i1s additive but the signal is distorted in a nonlinear
fashicn. Hunt [D~4,81] has studied such image processing problems in the

context of nonrecursive restoration techniques. Specifically, he has devised
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an iterative scheme for computing the maximum a posteriori image estimate
given the observations. In the case of linear measurements, this reduces to
the Wiener filter. The analog of this technique for the recursive methods
1s the extended Kalman filter (EXF), which essentially involves a continual
relinearization about the present best estimate. This method can readily
be derived for all of the recursive methods discussed. The interested reader
1s referred to [D-21] for a dlsgu551on of this method in the context of the
Nahi-Assef: scalar-scan recursive technique., There are, of course, many
other nonlinear 1-D recursive estimation techniques besides the EKF, and
most of these can be applied in this framework. For an example of one other
such technique (again applied to the Nahi-Assefi method), we refer the reader
to f[D-75].

fnother 1ssue that we have mentioned on several occasions 1s the incor-

poration of constraints, such as the positivity of the image estimate, into

the estimation procedure. As mentioned earlier {(see footnote 21) 1in many
cases we needn't worry about ;hls constraint expl--lc:r_tly.25 However, it 1is
worth understanding the implications of such constraints. BAndrews and Hunt
[D-81] consider the constrained least squares formulation together with the
additional positivity constraint. In this case there 1s no closed-form
solution, and iterative nonlinear programming methods must be used.
Mascarenhas and Pratt [D-23] also consider the incorporation of upper bounds

on pixel intensities in oxder to improve the conditioning of the restoration

problem, and similar types of bounds on the pixels and on the values of the

25And for homomorphic techniques we have no reason to worry at all, since
exponentiation at the end guarantees positivity.
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PSF (assumed unknown in this case} were considered by Machdam [D-32]., In

the case of recursive techniques, one can also include positavity constraints,.
In [D-239] Jain discusses a recursive, iterative method for incorporating this
constraint into the Nahi-Assefi model, Thus, we see that constraints such as
these can be incorporated into the methods discussed previously. The cost

15 a great increase in computational complexity, and it i1s not clear that it
18 worth the trouble.

A third problem area with many of the restoration technigues is in the
reliance on a priori information. As mentioned earlier, one often can assume
knowledge of the PSF or can determine 1t by observing known test scenes
through the imaging system. In other cases, we may not have such information
and must estimate the PSF as well as the image. Based on the assumption that
the extent of the PSF is far less than that of the image, Stockham, et.al.
[E=4] suggest a "blind homomorphic deconvolution” procedure, -in-which one
breaks the received image inte pieces, takes 2-D transforms and the logaraithm
of the transforms, and then averages,over the various pieces. Thls,'comblned
with the specification of a prototype transform (corresponding to the average
of the logarithm of the transform of the orlglnai image) allows one to ‘
estimate the PSF and the other parameters needed for the geometric mean filter
described earlier. We rvefer the reader to [E-4] for details,

The question of parameter uncertainty 1s clearly of major importance for
the various recursive techniques, all of which require a great deal of a

priori information. Thus one important question concerns the robustness of
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these technigues in the face of modelling errors. As mentioned in Section C,
techniques do exist for the sensitivity analysis of 1-D statew~space models
and i-D Kalman filters (see [2~65,C-23]). Can we extend these methods to the
2-D case, and how well do the 2-D algorithms perform? Is there any way to
make them more robust? In addition, methods abound in 1-D for on-line para-
meter i1dentification and adaptive estimaticn in the presence of unknown para-
meters (see the various techniques described in Section B). Can we apply
these methods with any -success to the 2-D problem? The successes of such
methods in 1-D and the several appealing features of 2-D recursivé estimation
technigues make these worthwhile questions for future research.

A final area of concern is the resolution~noise suppression tradeoff.
aAs mentioned earlier, the human visual system 1s willing to accept more noise
in certain regions, Such as edges, in order to improve resolution. Thus, 1in
relatively slowly varying regions of the image; we would like to remove noise,
while where there are abrupt scene changes- or other high frequency fluctuations
of interest, we would prefer to forego noise suppression in favor of resolution.
Backus and Gilbert [D-78] (see also [D-19]) have devised a nonrecursive tech-
nique for taking this tradeoff into account. They define a quantitative
measure of the blur induced in the image by filtering., Then for any given
value o% this measure, one can determine the restoration scheme that minimizes
the effects of noise subject to this constraint. We refer the reader to
[D-19,78] for details (see also {D-791). BAnderson and Netravali [D-29] have
deveioped another nonrecursive approach involving a performance index that

provides a tradeoff between blur introduced by the filter and the level of
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noise suppression. Their criterion util:zes the results of certain psycho-
visual experiments that were designed to measure the relative importance of

a unit of noise in high and low contrast conditiens, but the evidence is still
inconclusive as to whether or not a standard measure can be obtained for a large
class of images. In addition to -these methods, we refer the reader to
[D-38,44,225] for discussions of several other nonrecursive image enhancement
techniques.

In the context of simultaneous image enhancement and noise suppression,
an important problem involves the detection of edges or boundaries between
different regions in an image. Within each of these regions one may be able
to utilize one of the restoration technigues developed earliér, and in this
manner we can suppress nolse while preserving the resolution of the boundaries.
We also note that in many applications the determination of the boundaries
themselves may be the key issue [D-175]. In recent yvears a variety of tech-
nigues have been developed for detecting and recégnlzlng various types of
boundaries in 2-D data. Many of these methods are based cn pattern recognition
techniques [D~243], and we will not discuss them here. We s;mplylrefer the
reader to several references on this subject, [D-15,210,240],

In 1-b, a variety of recursive techniques have been developed for estima-
tion and detection of abrupt changes in signals (see [B-103] for a survey of
many of these). These techniques have been successfully applied in a wide
variety of applieations, including automatic detection of cardiac arrhythmias
[B~104] and the detection of sensor and actuator failures [B-103}. 2An important

question then i1s the extension of methods such as these to the detection of
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boundaries in images, To a large extent this remains an open problem, but

there has been some work along these lines, Specifically, Nahi and Habibz

[D-25] considered the problem of the detection of an object superimposed on

a background scheme. Their approach involved the modification of the methods

of Nahi [DP-18,21,58] and of Hababi [D~22] to incorporate a binary variable

that indicates whether a particular pirel 1s in the object or in the back-—

ground, The scheme devised in [D-25] involves the recursive calculation of

likelihood ratios for the existence of boundaries, and 1t also incorporates

the use of a bank of two filters (based on object and background statistics,

respectively) for the suppression of noise once the boundaries have been

determined. In [D-175] Nahi and Lopez-Mora were primarily concerned with the

estimation of the boundary. Here, the 1-D Markov scan model of [p-18,21,58]

is augmented to include several states used to model the boundary. As the

resultlﬂé model 1s nonlinear, a nonlinear estimation scheme i1s employed, and

some promising resulis are presented in [p-175]. These results notwithstanding,

a great deal of work remains to be done in the development of recursive methods

for the detection of boundaries in images. It is our feeling that this may

prove to be one of the most important uses of 2-D recursive estimation technigques
We now turn our attention to the detailed analysis of statistical and

probabilistic models for random firelds. Applications for such techniques

extend far beyond image processing into fields such as seismic signal processing

{p-68,70,199,209,216,227,245], gravity mappang [D-1,211,212,224], meteorology
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and atmospheric modelliing, [D-69,214,2311, biomedical imagery and image
reconstruction [D-11,29,213,223], modelling of scattering fields [D-222,232-
235], modelling of the distribution of earth resources [D-15,61,2461, analysis
and modelling of turbulence [D-217], and the modelling and analysis of random
transport and wave propagation phenomena [D-170,189,193,194,215,220,226]).

With such a wide variety of potential applications, there clearly is a need
for a general methodology for the analysais of random fields, Much has been
done in thas direction, but, as with all multidimensional topics, much remains
to be done. We will describe some of the work that has béen done, will touch
on several of the applications mentioned above, and will speculate on some
open questions,

Motaivated to a great extent by their utility in l1l=D, many researchers
have investigated the extension of the concept of a Markov process to several
dimensions. Perhaps the first of these was developed by Levy for continuous
parameter spaces [D-12,197,198,230]. The saituation in two dimensions 1s
depicted in Figure D.l4. Suppose we have a 2-D random field £(x,y). Then £
1s called Markov of degree p 1f 1t essentially has the following property:26
let 3G be any swmooth closed curve encircling the origin and separating the
plane into the "past" (Gb), the "present" (9G), and the "future" (GF); then,
given f and its first p-1 derivatives at the present, the wvalues of £ in the
future are independent of the values of £ in the past. The field £ 1s called
Markov 1f 1t 15 Markov of degree 1., This definition is quite aintuitive, and

one can imagine fields in a variety of physical situations that have this type

26 .
We say "essentially" here since f may not be differentiable., TFor the tech-
nically precise definition, we refer the reader to the references.
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Figure D,14: Iliustrating Levy's 2-D Markov Property
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of radial causality.
Levy also defined a multidimensional Brownian motion process x(t),

t = (tl,...,td), which is a Gaussian process with statistics

Elx{a)l =0 (D.144)

Elx(@x®] = = ([a| + [b] - |b-a]) (D.145)

(here I-l 18 the usual Euclidean daistance). McKean [D-198] showed that for
d odd, x=(t) 1s Markovian of degree (d+l)/2, and for d even, x{t) has no
Markovian property. Since Brownian ﬁbtlon and 1ts Markovian properties
proved to be so useful in developing 1-D tools of stochastic analysis, the
above result is disappointing. This disappointment 1s in fact compounded by
the analysis of Wong [D-12] who showed that there are essentially no contin-
uous Gaussian random fields in two or more dimensions that are samiltaneously
stationary, isotropic (the covariance function 1s invariant 1f we rotate the
coordinates of the parameter space), and Markov {of degree one). Thus 1t 1is
evident that this setting will not lead to a useful multidimensional stochastic
calculus for the study of random fields. To do this, we must turn to a
recursive formulation, and we shall do this shortly.

It 1s interesting to note that the analog of Levy's notion for discrete
space systems, as developed by Wocds in [D~2]1, leads to far more useful results,

Stationary Gaussian fields of this type can be generated by interpolative

filters of the form27

27
such models have been considered by several authors including Whaittle [D-61]
and Larimore and Beavers [D-1l.
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x(n,m) = P, hik,Vxln-k,m2) + uln,m) (D.146)

D
p

where u{n,m) 1s stationary, and

D, = 106, 2) |x*+2°<p?, X, not both 0} (D.147)
Elx{n,mulk,V] = 06nk6m2 {D.,148)
Ela(n,mu(0,0)] =| c me=n=0
~h(m,n)c km,n)EDP (D.149)
0 otherwise

Thus, we see that the driving noise in thais case 1s not-white but 1s
finitely correlated. .

We have already seen in the work of Jain and Angel [D-32] that inter-
polative models can be used for efflclent\recur51ve estimation of random
fields. Such models also have several other uses. One possibility 1s in
the area of spectral estimation. In [D-237] Woods proposes the fitting of
observed correlation data to an interpolative Markov model. In this case
one again cbtains a set of normal equations for the coefficients of the
model that yields the minimal interpolation error in a least squares sense.
Unfortunately, as Woods points out, ‘these equations cannot be inverted ef-

ficiently as in the 1-D linear prediction case, and Woods [D-237] proposes

a complex algoraithm for obtaining the desired spectral estimate.
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Fortunately, as we have seen an [D-32]1, nearest neighbor models have a
great deal of structure that can be exploited to obtain efficirent computa-
tional schemes. In [D=-3l] Jain proposes a nearest neighbor interpclative
filter for imaging coding. Basically, Jain assumes a separable, stationary,

1zotropic model for the image

RESER

E{x(n,m)x(0,0)1 = (D.150)

4

and in this case he finds the optimum first order (p=l in (D.1l47}) 1inter-
polative error filter. In this gimple case, one can solve tﬁe normal egqua-—
tions by inspection. Having this filtexr, one can congider a coding scheme
in which we transm:t only the interpolation error. Thus, the decoder must
esgentially.solve the interpolative, and hence nonrecursive, equétlon. In
general, this is a difficult task in 1ts own right. However, one can use
technigues analogous to those in [P~-32] to perform the reconstruction ef-
Fficiently. That i1s, we can consider reconstructing the image line by line,
and the resulting vector equations display the same type of tridiagonal
structure that was exploited earlier in the development of an efficient res-—
toration scheme. Similariy in this case we can also use FFT algorithms for
efficient reconstruction. In addition, as discussed in [D-241,2421, the use
of interpolative models leads to efficient Karhunen-Ioeve transform ccding
using the FFT.

Thus, we have seen that interpolative models have a number of appealing

properties., They also have their drawbacks, such as in efficient spectral
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est1mat10n,28 and one 1s naturally led to seek other models and stataistical
methods for fitting 2-D data to parametric forms for such models. One im-
mediate generalization from 1-D that we have mentioned before i1s the develop-
ment of 2-D linear prediction techniques —- 1.e. the ident:ification of 2-D,
causal, avtoregressive models by means of least squares pradictive error
filter design. Tmmedirately we see that one problem that arises 1s the choice
of the direction of recursion for the AR model -- 1.e. which elements of the
field will be used to predict which Sther elements. BAnother problem 1s the
stability of the resulting filter, which 15 guaranteed in 1-D but not in 2-B,
as Genin and Kamp have pointed out [P-145] (see alsc the work of Marzetta
[D-66,67))., 1In addition, even 1f stabilaty is not a problem, one faces the
cuestion of finding efficient algoxrithms for the soclution of the normal equa-
tions that specify the filter parameters -~ i.e., 1s there a fast 2D Levinson
algor:i.ﬂl:hm'iz9 In [D~145] Genin and Kamp develop sets of recurfrence relations
for 2-D orthogonal polynomials. Can these relations be used to devise fast
algorithms as they can in 1-D (see Section B)}?

The above questions remain open in general, but recently Marzetta [D~67]
developed a fast algorithm for 2-D linear prediction that involves the use of

1-D techniques and the same 2-D, scalar/1-D, vector ainterplay that we have seen

before, Consider the situation depicted in Figure D.l5a. We have a staticnary
2-D field x(k,%), and we wish to predict x(m,n) based on the array of x={1,3)

to the SW that are andicated in the figure. We do thais in two steps, First,

8

See also [D-62] for another difficulty that arises with such discrete—time,
nonrecursive, 2-D Markov models. ’
29

A related question, given the perspective of Section B, 1 the existence of
fast algorithms for the calculation of the gains of recursive 2-D Kalman
filters.
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Figure D.l5: Known and Conjectured Fast Algorithms for 2-D Linear Prediction
and Interpolation.
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regarding each column as a l-D vector, we use the preceding columns to predict
the mth column. This can be done with standard fast algorithms for vector 1-D
linear prediction. In fact, in this case we can effectively use the faster
scalar 1-D algorithm since the block Toeplitz matrix to be inverted is in

fact Toeplitz because of vertical stationarity. Having completed this step,
we compute the prediction errors in the last column and use these to predact
the error at (m,n) by performing a scalar 1-D prediction to the North. Thas
algorithm bears a striking resemblance in style to that of Attasi {see

Figure D.12). The only difference 1s that Attasi uses two 1-D Kalman filters
-~ one North, one South -- to perform a smoothing along the last column. This
observation leads us to speculate on the existence of a fast algoraithm for
linear interpolation for the semicausal [D-30] structure 1llustrated in Figure
D.15b.

Identification of parametric 2-D models has attracted the attention of
several statisticians over the years [D~1,59,61], and several of their results
are definitely worth noting. Whittle [D-€1,63] was one of the first researchers
to consider the properties of 2-D stationary processes. One of the topics
he considered was the "unilateral™ representation of a 2-D process, which 1is
simply a half-plane recursive representation of a given field. Using a method
exactly along the lines developed by Dudgeon [D-33,102], Ekstrom and Woods
[D-1319], and Marzetta [D-66], Whittle obtained an in general infinite order
representation of this type by factoring the 2-D power spectral density of
the process. In addition, in [D~61] Whitile also relates various recursive

and nonrecursive autoregressive discrete-space models to analogous stochastic
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partial differential eguations. Such equations were examined by Heine [D-60],
who examined the properties of linear stochastic equations of the parabolic,
elliptic, and hyperbolic forms., Whittle noted that the nearest neighbor model
corresponds to an elliptic equation for which Heine showed that the correlation
function takes the form of a modified Bessel function of the second kind.
Whittle then uses this fact to argue that in the discrete space -case, such
correlation function forms are preferahle éo decaying exponentials.,

In addition to considering these 1ssues, Whittle also discussed the
maximam likelihood and least squares estaimation of the parameters of a 2-D
autoregressive model. Thig subject is also considered in far greater detail
by Larimore and Beavers {D-1], and the results bring to light a rather im-

portant point. In 1-D, assuming Gaussian statistics, finding the maximum
likelihood parameter estlmatestls equivalent to finding the parameters of an
inverse filter that vields the least squares prediction error —-— 1.e., the
log=-likelihood ratio is up to an addative constant, proportional to the nega-~
tive of the sum of squared estimation errors. In the 2-D problem, this is not
the case 1f the field model 1s not causal. This 1s due to the fact that in
this case the Jacobean of the transformation from prediction errors to the
field is not unity and 1s, in general, a rather complicated function of the
parameters. This greatly compllcates parameter and spectral estimation, as

we already noted in discussing the work of Woods [D-237]., We refer the reader

to [D~1] for details of the problem of 2-~D parametric model identification and

for the consideration of other problems, such as the design of a 1-D shaping
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filter for the part of a 2~D field observed by a point tracing a path in
the plane. This problem 1s of great practical value in problems such as
accurate inertial navigation and gravity field estimation [D--l,193,194330

As discussed earlier, in 1~D the use of stochastic calculus greatly
facilitates the analysis of continucus—-time random processes. It seems na-
tural, then to attempt to extend concepts such as the Markov property,
Brownian motion, and stochastic calculus to 2-D. We have seen, however,
that the intuitively appealing approach of Levy does not provide a useful
framework, and the reason for this is the lack of causality in this framework.
Specifically, in 1-D the basic tools of analysis of Brownian moticn, Poisson
processes, stochastic differential equations, etc., essentially are based on
the principles of martingale theory (see, for example, [D-2471)., Simply put,31

a martingale M(t) 1s a 1-D random process such that for t>s the best estimate

M(t) given M(T), T<s 1s M(s}:
EMM(t) |M(T), T<s] = M(s) (D.151)

To extend these notions to 2-D, we immediately run into a problem: what

does t>s mean? That 1s, we must ‘be able to specify at least a partial order

30The problem of modelling random perturbations in gravitational fields has been
considered by a number of authors [D-211,212,224}. A common approach to this
problem 1s the use of the spatial transform most appropriate for such problems——
spherical harmonics. Wong [D-12,230]1 has considered such transform methods in
the general setting of isotropic random fields on spaces with constant curvature,
The use of geometric concepts such as spherical harmonics greatly facilitates
the analysis of random fields. We also refer the reader to the work of

Swerling [D-10}, i1n which many of the statistical properties of random contours
are discussed at some length.

31The followang discussion is greatly oversimplified, and we refer the reader
to the references for the full storv.



-249~

on the plane, and, as discussed in Subsection D.l, this can be done 1f we
impose a causal structure on the processes considered.

In recent years 2-D martingales (and higher dimensional generalizations)
with a NE causal structure have been investigated by a number of authors
[p-172, 176,179-187,191,192,196], Basically, we consider processes M(zl,zz)

defined on the NE guadrant, on which we place the partial order
<= > =
(Z1’22)>-(€l'£2) Z:L‘—‘El' i=1,2, (D.152)

Then M(Zlyz2) is a (NE) martingale 1f whenever (zl,zz)jr(El,Ez)

E[Mczl,zz)lmsl,s2>, (€ eE,) 0~ {s, 45,1 = M(E +E,) (D.153)

The relevant geometry is depicted in Faigure D.16. Heregf(glpgz) denoctes
the set of all M(sl,sz) with (sl,sz)>—(El,Ez).

Having this framework one can then begin to develop all of the tools for
a usable 2-D stochastic calculus. The results obtained indicate that such
a calculus can be developed, but i1t i1z not without 1ts surprises and
11m1tat10ns.32 One of the major surprises is that given a NE Martingale,
the lack of a total order leads directly to the construction of a second mar—

tingale, and, in fact this second martingale, which in some gsense inwvolves

products of the original martingale at unordered points, 1s essentral to the

32
The same comment can, of course, be made with regard to just about any topic

in 2-b system analysis.
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' Faigure D,16: Illustrating the Structure of a NE Martingale.
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development of a full set of stochastic differentiation rules.33 In addition,
one of the major limrtations of this approach appears to be the restriction
to guadrant causality. But 1s this really a restriction? In 1-D one of the
most important dynamic models involves the representation of a random process
as the output of a causal stochastic differential equation driven by a mar-
tingale. Perhaps in 2-D we must break the process into two parts, one driven
by a NE martingale and one by a SE martingale. Recalling Ekstrom and Woods
assertion [D-119] that any power spectral density can be created by using
white noise to drive one half-plane or two gquadrant filters, this idea may
not be that far-fetched.

In any event, there certainly appear to be enough"reasons to pursue the
utility of such a continuous parameter 2-D stochastic calculus. In 1-D one
often finds that the continuous-time solution igs far simpler computationally

)
and conceptually than the corresponding discrete~time solution and, in fact,
for digirtal systems one often solves the continuous problem and discretizes
rather than discretizing the problem at the start. Examination of the
recursive 2=D optimal estimation and detection results derived by Wong in the
continuous case [D-172,176,179,187] and comparison of them to the analogous
discrete-time results discussed earlier in this section, we gsee that the same
may be true here, In addition to applicatrons such as these, it appears that
a 2-D stochastic calculus may be of use in the analysis of processes that

evolve in both space and time, which is the next topic of discussion. It 1s

our feeling that the preceding remarks and the following development provide

‘33In {D-184] 1t 1s argued that thig second martingale arises naturally from the

deterministic rules involving Stieltjes differentials on the plane.
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ample motivation for the continued study of 2-b stochastic ecalculus.
Throughout this subsection we have seen numerous examples of 2-D signal
processing problems in which good use x5 made of the transformation of the
signals obtained by considering them to be 1-D vector time signals, in which
the other independent spatial wvariable 15 used to index components of the
vectors. We now will briefly examine several problems in which the processes

are truly of this from -- 1.e. they are space-time processes -~ or at least

in whaich one can benefit by viewing multivariable 1-D systems as systems
with two i1ndependent variables,

One of the best examples of space-time processes arises in the conside-
ration of seismic signal procesgsing (see [D-68,70,199,209,215,216,227,245]),
in which we cbserve the response of the earth to excitation through an array
of sensors. In such a system the sensors receive signals due to reflections
from different layers in the earth. In addition, there is often coherent
noise, resulting from various types of waves, and there also 1s inccherent
noise, Hence, we obtain a 2-D signal y(j,t), where & 1s time and 7 denotes
the jth sensor (here j can be thought of as a measure of distance from the
sensor to the location of the original excitation). If S(t) denotes the

response of the earth to the excitation, we can model y(j,t) as follows [D-68]:

.

v{3,t} = s(t—-rj) + N(t—ﬁj) + wiy,t) (D.154)

where T_ and 63 are the tame delays incurred by the earth response and the

coherent noise, respectively, in travelling to the jth sensor. Also w(j,t)
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1s the inccherent noise. Given this 2-D signal, we want to estimate S(t)
and the taime delay T] {(called "moveouts™).

A number of solutions have been developed for this problem. In the
context of 2-D signal processing, 1f we assume constant but different speeds

of propagation for S and N -- 1.e.

a
§ =L {D. 155}
VN "

where d:J is the distance to the jth sensor, we can use "fan" filters to
diseriminate between these signals. Basically, i1f we consider the 2-D
Fourier transfomof these space time signals (let us assume for simplicity

that we have a contirmuum of sensors)

-jmlx-wzt
Y(wl,mz) = vi{x,t)e dxdt {D.156)

then the point (wl'w2) corresponds to a plane wave traveling with velocity

wszl = glope of the line connecting this point to the origin. Hence all of

the "velocities within a given range are obtained by points in a sector in

(wlrwz)—space, and thus 1f we design a filter to pass only the frequencies

]
in the appropriate sector, we can achieve the desired velocity discrimination

(see Figure D.17).

In addition to this type of approach, one can consider the design of

optimal filters for the estimation of 8 and the Tj. In [D-68] Sengbush and



Figure D.17: BAn Ideal Fan Filter ({Passband 1s Shaded).
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Foster derive the optimal nonrecursive Wiener filter for thas problem and
analyze its properties as a 2-D filtering system. We refer the reader to
[D~68] for the details of this development and for a discussion of other 2-D
nonrecursive techniques.

An interesting question involves the development of recursive estimation
technigues for problems such ag these. Such algorithms may be particularly
useful given the apparent need for using space-varying models [D-681, We
will discuss the problem of recursive techniques very shortly.

Another class of space—-time problems is essentially 3-D. This involves
the observation of a sequence of 2-D images in order to determine motion or
scene changes. Such problems arise 1n meteorological problems such as the
tracking of cloud motion [D-69,231]., In addition, 2f one 1g performing
image processing on a seguence of images, one might expect that the use of
temporal as well as spatial correlations would improve overall processor
performance., The development of systematic recursive or nonrecursive ap-—
proaches to problems such as these 1is an appealing area for future work.

- A final area in which one finds space~time processes 1s in the conside-
ration of random vector {transport) or force fields which affect the motion
of particles or waves. BApplications for models such as these abound. How
does the statistical description of a random gravitational field affect the
motion of a satellite [D=224], and by observing the motion of the satellite,
how can we obtain better estimates of the gravitational field? Given a
statistical description of wind currents, predict the space-time distribution

of pollutants coming from some source, and determine the optimal locations for

the placement of pollution sensors,
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Techniques exist for all of the problems mentioned above, but at thas
time there 1s no systematic theory for the probabilistic analysis and recursive
estimation of general space~time stochastic processes, although major steps
have been taken in this direction for space-time point processes [D-11,223],
and some work has been done towards developing a calculus for isotropic
random vector fields [P-226], In addition, motivated by several of these
applications, Kam and Willsky [D-1923-195] and Washburn [D-196] have attempted
to utilize the tools of 1-D and 2-D stochastic calculus in order to develop
recursive techniques for space-time processes. We briefly describe several
of these results.

The results in [P-193-1951 are basically separable in nature, in -‘that
1~ stochastic models are developed separately for the spatial and temporal
variations. Motivated by time delay problems such as those that arise in

selsmic signal processing, we have considered the following problem: a

source at spatial location s=0 transmits a random signal ¢(t), t>0. This
signal is modeled as the output of a possibly time-varying linear shaping

filter

;(t) AlE)x(t) + w(t) (D.157})

¢ (t) C(t)x(t) (D.158)

The signal 1s then propagated in the positive s direction by a random
velocaty faeld v(s) with given statistics. At points Syresess We have

sensors which measure delayed versions.of the signal P
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yu¢)=mb3)+whu (D.159)
s
1
T, = f ds (D.160)
o v{s)
Given this problem formulation we consider the problem of recursive optimal
3
estimation of ¢ and of the Tl 4. This 1s an extremely daffaicult problem,

and implementable solutions have been found only in certain special cases.
However, the work in [D-193, 194] represents a useful fixst step in the
development of such techniques, and the results obtained can be used to devise
suboptimal recursive schemes. Work continues along these lines.

Another problem considered in [D=193,195] ?as certain aspects in common
with problems considered in [D-1,24], Specifically, we have a random field
and a point sensor that traces a 1-D track along the field. As considered
in [D-11, suppose we can model the spatial variations along this 1-D track

by a spatial shaping filter

x(s) = ax{s) + w(s) {D.161)

£(s) Cx(s) {D.162)

II

Let v(t) and s{t) denote the velocity and position of the point sensor as a
function of time. The time history of the observations of the point sensor

may then be modeled by

v(t) = £(s(t}) + v(t) {D.163)

4We also allow the possibility of delayed versions of § being transmitted from
other locaticns. This ¢an be used to model meltiple reflections.,
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or, 1f we include the possibilaty of blurring

i
v(t) =f h(t=T)£(s(T))aT + v{t) (D.164)
0

Although only the case of (D:163) was considered in [D-193,195], the
analysis can be readily extended to the case of (D.164). This extension
1s presently being developed.

Given this formulation, one can ask several questions. For example
one mght wish to estimate the field £ given these measurements. If the
velocity history is known, this i1s not difficult, and this problem resembles
that of [D-24] at least an spairit. If the velocity is unknown —- l.e.
we have random motion blur -- the proglem 1g more complex, Methods are
developed ain [D-193,195] for the suboptimal solution of this problem.
Note that in this case we have one more difficulty —-- the mapping problem.
At any point in taime we don't know which point s(t) we're looking at. Note
also that intuitively in all of these problems the veloecity v(t) must affect
the accuracy of our observations —— the faster we move, the less we observe.
Thus, one can consider the problem of controlling the speed of the sensor
in order to achieve certain performance specifications. 2an optimal control
problem along these lines i1s considered in [D-193,195].

A thard class of separable space-time problems, motivated by the random
force field problem, i1s presently being studied. We have a 1~D random

acceleration field a(s) which has a spatial shaping filter representation
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x(=)

a(s)

Suppose a particle is subject to this field. The equations governing its

motion are

s (£)

It

v (t)
We wish to estimate the shape of the random field from noisy cbservations

of the position of the particle

ix(s) + wis) (D.165)

Cx(s) (D.166)

vt} {D,167)

a(s(t)) (D.168)

v{t) = s(t) + v(t) (D.169)

Rasulis for problems of this type will be forthcoming.

Clearly all of these problems represent vast simplifications of real
problems, but they also represent a start. One must now consider the ex-
tension of these i1deas Eo gseveral spatial dimensions and the use of non-
separable space~time stochastic models. The use of a multidimensional
stochastic calculus such as that described earlier 1s clerly essential. As
an indication that at least in some cases the NE causal structure of thas
caleulus may not be a problem and in fact may be natural, we mention an
observation of Washburn [D-196]. Suppose we consider a space-time system
with one spatial dimension, and suppose that because of fundamental limita-
tions (due, for example, to the finite speed of laght) events at any given
spatial point can affect those at another only with a certain time delay.

This leads to the usual "light cone" descraption of the future and past of
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a given space-time point. Assuming we scale the axes appropraiately, this
cone can be assumed to have an angle of 20°, as indicated in Figure D.18.
Hence, by rotatlng‘the coordinates by 45°, we obtain a NE causal structure.
The utility of this observation when combined with 2-D stochastic calculus
and a variety of space~time analysis problems will be reported in the future
[D-~196],

As mentioned earlier, in addition to systems which truly have a space-
time character, one can view any multivariable 1-D system as a 2-D system
by considering the "space" variable to be the index of the elements of the
various vector functions of time., While this may not be particularly na-
tural in genersl, this philosophy appears to have some merit for large
scale gsystems which consist of a number of interconnected subsystems. In

this case we let the spatial variable index subsystem variables which may be

vector quantities themselves. A general linear model for such a system is
x(k+1,1) = jZAle(k,j) + ?Blju(k,j) + wik,7) (D.170)

ylk,1) = ZCljx(k,j) + v(k,7) (D.171)
J

Clearly this 1s a recursive 2-D model. Examples of large-scale systems of

this type abound in practice. Examples include power systems, communication
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PAST FUTURE

Figure D.18: The 2-D Causality Structure for Space-Time Processes
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networks, and freeway traffic systems.35 We refer the reader to [D-84-89,
- 91-94,190,201,203-208] for other examples and for some insight into the
problems associated with such systems.

The problems with these systems are of two types: (1) the analysis of
these gystems using tools such as the Lyapunov equation and the determination
of optimal filter and controller designs is far too complex to be carried
out using standard methods because of the high dimensionality of the overall
system; and (2) the implementation of standard controllers and estimators
is out of the question, since these systems require totally centralized
processing of all subsystem data in order to determaine each subsystem control;
what is needed is a decentralized scheme.

We have seen similar guestions in our study of recursive image pro-
cessing techniques. The full-state optimal Kalman filter of Woods and

Radewan [D-173,229,236] was of enormous dimension, and one would never dream

of attempting to solve the Riccati equation in this case. In addition, the
on-line Kalman filter update 1s far too complex, and, as we discussed, Woods
and Radewan suggested a "nearest neighbor" constrained Kalman filter, in which
only those pixels near the one presently being processed are themselves updated.
This clearly is a decentralization of sorts, as are the techniques proposed

by Murphy and Silverman ([D-174] and Pratt [D-17]. What these methods have in

common 1s the following: we specify some constraints on information transfer

35
Tn this last case, the subsystem index does represent a spatial variable, as

each subsystem describes the aggregate behavior of traffic on a link of a freeway
(see [D-208]). In this case, the choice of the size of each link s a type of
sampling problem, and the issues of spatial sampling, such as those raised by
Mascarenhas and Pratt [D-23] and Hunt [D-4] in the context of i1mage processing,
are clearly relevant here.



-263~

- l.e. we limit the extent of the update portion of the filter —- and then
we optimize the filter gains subject to these constraints. This same philosophy
15 precisely what is used in many decentralized control and estimation pro-
blems [D-86,201,205]1. That 1s, we specify some constraints on the 1nf§rmatlon
pattern36 —= 1.e. which data are available for each subsystem -- and then we
optimizZe the estimator and controller gains subject to these constraints.

Thus, we've seen that large-scale systems can be viewed as 2-D systems
and that constrained optimization for efficient or decentralized processing
1s common in both settings. Is there any other insight can be gained or new
results that can be obtained by examination of large scale systems as 2-D
systems? The answer 1s perhaps, and we will relate some preliminary obhserva—
tions that make us feel that the answer will ultimately be yes

First of all, suppose that the model (D.170), (D.171) falls into the class
considered by Attas: [D-6,35,96]. Then the optimal centralized Kalman filter
1s nothing more than Attasi's line by line optimal processor. In this context,
let us re-examine the structure of this processor as pictured in Figure D.12.
One may argue that this processor may not be a good 1mage restoration system,
but it certainly is an exéremely efficient centralized Kalman filter! The
predict cycles for each subsystem are carried out in a totally decoupled fashaon,
and in the update stage, each subsystem need only communicate with i1ts nearest
neighbors (we have two streams of information flowing, corresponding to the two

Kalman filters). Whether optimal centralized controllers also have this

structure remains an open question.

36The problem of choosing a good information pattern in the first place 1s am

extremely important and complex one, but 1t 1s beyond the scope of our present
discussion. We refer the reader to the references and in particular to [D-85].
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As a second example, consider the case in which (D.170), (D.171) are

. 37
spatially invariant

x{k+l,1) = EAl“jX(k,j) + ZBl_ju(k,j) + wik,3) (D.172)
J 3

yik,1) = ch_Jx(k,j) + vik,7) (D.173)
3

In the case of an infinite string of subsystems, no noise, and a spatially~-
.anvariant quadratic cost function, Melzer and Kuo [D-203] determined an ef-
ficient method for determaining the optimal centralized controller, and Chu
[D-205] used the same method to determine +the optaimal, constrained decentra-
li1zed controller. The basic idea 1s identical to that used by Hunt [D-46],
Andrews and Hunt [D-81], Jain and Angel [D-32], and Attasi [D-6,35,36] -- we
take the z-transforms of (D.172}, (D.173) an the subsystem variable to
obtain a system of decoupled optimal control problems (parametrized by 2z} of
dimension equal to that of each xl.

To make these i1deas more clear, let us consider the case in which we have
a finite string of subsystems [D-190], 1=0,...,N-1. In this case, 1f we
rewrite (D.172), (D.173) 1in terms of one grant state, input, and output vector,
we find that the resulting A, B, and C ‘matrices are block Toeplitz. 2as

Andrews and Hunt [D-81] discuss, 'we then make the block circulant approximation

38
to obtain

37
Such models arise, for example, in the longitudinal control of a string of
vehicles [D-204] such as one finds in personal rapid transit systems.

8
Approximations such as these often arise ain the discretization of partial dif-
ferential equations such as the wave eguation (see, for example, [E-311).
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N-1 N-1

xlk+l,1) = Z A x{k,1-3) + Z B_ulk,1-3) + wik,1) (D.174)
3:0 3 j=0 J
N-1

ylk,1) = Y, c_x(k,1-3) + v(k,1) (D.175)

- 3=0
with
Elw(k,2)w' (7,01 = sl_jcsk2 (D.176)
Elvik,1)v' (3,21 = 91-361«:2 (D.177)

where all subsystem indices are to be interpreted modulo N. Suppose we wish

to design a controller to minimize the criterion

® N~-1 1
J = E{Z Z [x" (k,3)}Q, _=x=(k,7) + u'(k,2)R _ U(kr:i)]; (p.178)
k=0 1,73=0 173 =]

As discussed in Appendix 2, we take subsystem transforms, For example

_ N--1 .y
x(k,8) = Y, x(,1)% (D.179)
{ N
i=0
We then obtain a set of decoupled problems, indexed by %
x(k+1,2) = A(WX(k,L) + B ulk, ) + wik,L) (D.180)
vk, =c(Vxk,0 + vk, (D.181)

Efw(k,2)w*(3,m)] = s(2) akj% m (D.182)



~266=

EIv(k, )7 (3,m] = O(%) 8eSem (D.183)
m — — — — —

I, = ;L—IEE X% (&, 2) "0 ()= (k, %) + u*(k,2) "R(Vulk, ] (D.184)
k=0

Here #* = complex conjugate. Note also that since all original variables are
real, we have A(-£) = A*(R), etc. Thus, we need only solve approximately one-—
halfof these problems to obtain the optimal centralized controller which is
efficiently implemented in Figure D.19. The reader 1s urged to compare this
figqure with Jain and Angle's optimal image restoration scheme as depicted in
Figure D.13, The similarity here i1s rather striking as i1s the similarity
in method and philosophy underlyl - both systems. Work 1nvolv1£g the system
(p.174), (D,175) 1s continuing, We are examining s;zch 1ssues as the effects
of the block carculant approximation, the use of this method for fast algorithms
for Lyapunov equations, Riccati equations, pole placement, etc., and the design
of decentralized controllers, WNote that one possible decentralization can be
obtained by spatially windowing the optimal centralized failter and control
gains. As the properties of various windows are well-known (see, for example,
fc=1]), zt may be possible to obtain detailed performance evaluations for
such schemes. .
Thus, we have seen that there are poaints of contact between 2-D processing
concepts and large-scale 1-D system analysis, Whether these points will lead

tor major new results or exciting concepts remains to be seen, but there certainly

appear to be some intriguing possibilaties,



y(k,0)

y(k,N-1)

FFT

Figure D,19:

A
y(k,0) x(k,0) [Optimai | G(k,0)
»t Kalman Filter # 0 p————p» Gain #0 S
® ® L J
® ] ®
® ® ®
- A -
y (k‘lN-l) X(R,N'I) Opﬁrnal U(k,N'”
» Kalman Filter # N-1 fe—d» GaingN-1—

FFT

Illustrataing the Optimal Circulant Feedback Systems.

u(k,0)

>

[ ]

L

»
u(k,N-1) 4
> 3




-268-

E. Some Issues in Nonlinear System Analysis: Homomorphic Filtering,
Bilinear Systems, and Algebraic System Theory

Most of the discussion to this point has dealt with the analysis and syn-
thesis of linear systems, perhaps distorted by nonlinear effects such as
quantization., However, there has been much work on the analysis and design
of systems which are fundamentally nonlinear in both digital signal processing
and in control and estamation theory. It 1s beyond the scope of this paper
to consider the research in this area at any depth, and we refer the reader to
the references and to the literature in the two disciplines for the full story.
In this section we limit ourselves‘to a brief look at two particular directions
of research that have a common thread involving the use of algebraic concepts
to study nonlinear systems possessing particular types of structure. The phi-
losophy underlying these results 1s that many of the concepts and technigues .
from linear system theory can be carried over to the analysis of certain non-
linear systems. Not only is this of use in allowing one to solve certain non-
linear problems, but 1t 15 also of value in providing insight into the properties
of linear systems -~ 1.e. one gets a clearer picture of which system properties
carry over to nonlinear systems with particular structure and whaich properties
are fundamentally tied to linearaty.

In digital signal processing, Oppenheim [C-1,E-1,2]1 abstracted the key
concept in linear system analysis —- superposition —-- and developed what he

termed homomorphic signal processing, Following [C-1], the basic idea 1s as

follows, Let X and Y be spaces with two operatloﬂé
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defined on each =- a binary operation

xl,x2€X xl*x2€X
) (2.1)
Yl'YZEY Yi?YzeY
and an operation of scalar action
cER or C, x£X c*XEX
(E.2)
CER or C, vEY C-YEY

A homomorphism 1s then a map H from X to ¥ which preserves these operations —-

l.e. 1t satisfies a "“generalized superposition pranciple"

it

H(xl*xz) H(xl)OH(xz}

(E.3}

H(c-xl) c-H(xl)

If the operations (E.1l), (E.2) satisfy the axioms of a vector space (e.g. this
means that all the operations are commutative), then (E.3) looks very much like
a linear system. In fact, one can show in this case [E~-1] that any such system

can be represented as the cascade of three homomorphic systems

H= Dy oLoDx {E.4)

where L 1s a standard linear system, and Dx and DY are called characteristic

systems. They translate the operations in X and ¥ into usual vector addition



—-270-

and scalar multiplication.

Let us take a look at an example of this. Let X be the space of input
sequences 1n which each input s strictly positive. We make X into a vector

space with the operations

(@))% (Bax )] () = x ()%, (n) ® (£.5)

and the system Dx 1s clearly seen to be the map

x(n) =———plogx(n)] (E.8)

with the inverse

E (n)-—--eg‘(n) (E.7)

One can similarly define vector space operations in which X consists of
all nonzero complex numbers or all of those of modulus one J{€-1,E-1], although
there are some difficulties due to the nonuniqueness of the complex logarithm.
We wi1ll not go into these here and refer the reader to [E~1,C-1].

Having this framework, one can consider the filteraing of signals coxrupted

by multiplicative effects., That 15, suppose we observe

z{n) = x(n)u(n) (£.8)

(all quantities assumed to be >0), and we wish to recover x from z. If we take

the logarithm of both sides
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E(n) = logz(n) = logx{n) + logu(n) (E.9)

we can use’ linear techniques to filter £{(n), yielding the output n(n), and

we then obtain the desired filtered version as
2n) = N ‘ (E.10)

For applications of multiplicative homomorphic processing, we refer the

reader to [C~1,E-2]. In the case in which log (%} and log (u) are Gaussian random
variables —— 1.e. when x and u are lognormal variables [E-9,12-16,20]1 -- the
filtering of £(n) 1s simply a Kalman filter (this result 1is developed thoroughly
in [E-20]). The continuous-time version of this multiplicative noise model has
been studied in [E-2], and its stochastic analog was developed in [E-9]. ILet

us examine this case at some length. Iet w{t) be a two-dimensional Gauss-—

Markov process satisfying theeqguation

wit) = aw(t) + v(t) (E.11)

where v(t) 1s a two-dimensional white’noise process
E(v{t))=0, E{v(t)v(T)) = Q6{t~T) (B.12)

A
Suppose we transmit the "frequency modulated signal"
t

x(t) = exp v/(.{wl(s)+jw2(s)])ds (E.13)
0

Due to some effect {(e.g. atmospheric turbulence [E-21]1), the received signal

1s corrupted by multiplicative nolse

1'Here we are allowing both the usual type of modulation on the phase and a
"homomorphic" modulation on the amplitude.
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l

r(t) u(tyx(t) (E.14)

where

I

uie) exp(nl(t)+3n2(t)) (E.15)

and N 1s a two dimensional Brownian motion process
E(n{£))=0, EMEIN(T)) = RS(t=T) (E.16)

Because of the continuity of r(t), there is no difficulty in taking the
complex logarithm (see[BE-9] ; essentially, continucus monitoraing of phase
allows one to unravel it and determine the nuwmber of revolutions, as well as

the wvalue of the phase modulo 2T). In this case r({t) 1s equivalent to the

observations
dEl(t) = wl(t)dt + dnl(t)
(E.17)
dgz(t) = wz(t)dt + dnz(t)

Using standard Kalman filtering techniques, we can obtain the least squares

~ N
estimates W, {(t) and v, (). However, the best estimate of x 1s not

t

exp f [%l(sng{;z (s)1ds
0

essentially because the integral of a best estimate 1s not the best estimate
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of the integral. However, in this case we can obtain the desired estimate as

follows:

Let

t i

o, (£) =f w (s)as 0, (¥) =[ w, (s)ds (E.18)
0 0

Then by adjoining these zntegrals to W and v, to form a four-dimensional

"state!, we can again design a Kalman filter (with measurements (E.17)) and
Y

obtain the best estimates Gi(t), aé(t), pl(t), and Bz(t). Then the desired

estimate is

2(t) = exp(Bl(t) + 30, (£)) (E.19)

The details of this development are given in [E~%,12]. &4lso, in these refe-
rences 1t 1s shown that the solution of the discrete-time version -- 1.e.
when we observe only r(kA), where r 15 as in {(E.14) —- 1s much more difficult,
esdentially due to the ambiguity in the complex logarithm which cannot be
resolved in this case,

In digatal signal processing, multiplicative homomorphic systems represent
only one half of the picture. BAs discussed in [C~1,E-1,2] one can study systems
in which vector addition is the operation of convolution and multiplication by
an integer n corresponds to convolution of a signal with itself n times
(multiplication by a non-integer 1s a generalization of this [E-1,2,22]), The
key to the development of homomorphic filtering techniques for convolutional
noise 15 the z-transform of signals. Let X be a vector space of signals under

the operations of convelution as vector addition and scalar multiplication as
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defined above. Then we have that following transform relations

+

(xl*xz) (n) etermrTrme——" Xl (z) X2 (=)

(0ox,) () < >xl(z)“

and we see that homomorphiciceonvolution systems look like multiplicative
homomorphic systems in the frequency demain, This allows one to develop a rather
complete theory of convolution-homomorphic filtering, and we refer the reader
to [C-1,E-2,22] for details. Technigues such as "homomorphic deconvolution®
have found application in speech analysis [C-1,E-3], dereverberation of signals
such as those arising in seismic applications [C-1,E-2,22,23], and in several
other disciplines ({(see [C-1,E~2]).

A recent direction of research in control and estaimation theory has been

study of bilinear systems [C-26,E-5-16], and the multiplicative homomorphic

system (E.11)-(E.16) represents one of the simplest examples. Consider (E.13).

We can easily obtain a stochastic differential equation for x:

x(t) = (w, (£} 47w, (£) ) x(E) (E.21)

17 w2 as inputs -- controls and/or noises -- we see that the

right-hand side of (E.2]l) consists of a product of inputs and the state —— x.e.

If we regard w

1t 1s a balinear function of the two. Generalizing this, we obtain the class of

bilinear systems
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[a,+ Z Alul(t)]'x(t) (E.22)

1=]

x(t)

where the Al are known nxn, possibly complex-valued matrices, the ul are scalar
inputs, and X is either an n-vector or an nxn matrix,

The question of the control, estimation, and stability of bilinear systéms
such as (E.22) has received a great deal of attention in the recent past and
has applications in a wide range of disciplines (sge [{c-26,E-5,12,14-16,24]),
We will not examine the control or stability issues here and refer the reader
to the references. Rather, we content ourselves with a brief 100% at *the
estimation problem in order to uncover scme of the main issues in “"bilinear
signal processing". WNote that in the scalar case (E.21), one can readily
obtain a representation for x(t) of the form (E.13). However, in the vector
case this i1is not true in general. In fact, the solution of (E.22) has the re-

presentation

N t
x(t) = exp Agt + zAl f ul-(s)ds x{0) (E.23)

1f and only 1f all of the matrices AO,Al,...,AN commute {a very restrictive

condition). In fact, the commutativity or noncommutativity properties of
these matrices plays a central role in the analysis of bilinear systems, and

the introduction of concepts from the theory of Lie algebras and Lie groups

allows one to study these systems in great detaxl [E-5,6,8-17,25,26].

Let us see what this noncommutativity can do by examining a problem that
AY

1s motivated by {(E.11)-(E.16)., If we examine those egquations and consider


http:E0lI)-(E.16

~-276=

only the phse effects -- 1.e. W, and n2 -—~ we see that this problem is the es-
timation of a phase given noisy measurements of that phase. By performing a
transformation on the measurement, we obtain a noisy measurement of the angular
frequency. From we can apply standard Xalman filtering techniques to estimate
the angular frequency and its integral, and then the desired phase estimate i1s
Just the complex exponential of the estimate of the integral. A natural ex-
tension of this problem 1s the consideration of rotation in three dimensions.
We follow [E-5,12,14-16]. Suppose we have a satellite, equipped with an
inertial platform. The orientation of the satellite with respect to an inertial
frame can be specified by coordinatizing a body-fixed orthonormal basis in
inertial coordinates. The resulting set of three 3-vectors 1is called the

direction cosine matrix X{(t)} and it has the property

XU ()X (x)=x, det X(t)=1 (B.24)

Let w(t) be the angular velocity of the body with respect to inert:al space,
coordinatized in the body frame. Then, 1t 1s known that the evolution of the

direction cosine matrix 1s described by the bilinear equation

3
X(t) = ZRW () | x(e) (E.25)
11
1=1
where

0 0 0 0 0 -1 0 0
Rl =10 O v R, = 0 0 0 r Ry = =X 0 0 (E.26)

0 -1 1 o0 0 0 0
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Suppose that our only observation of satellite attitude i1s from the inertial
platform -- 1.e. we observe the direction cosine matrix M(t) of the body with
respect to the platform, which is supposed to remain fixdd in inertial space
(1n which case M=X)., However, because of variocus errors {e.g. gyro draift), the

platform drifts, and our actual observation as

M{t) = X(L)V(t) (R.27)

where the "platform misalignment term", V(&) 1s the direction cosine matrix
of inertial space with respect to the platform. As described in (E-14), thas

2
can be modeled by a bilinear equation of the form

3
V() = vt ZR v_(t) (E.28)
i=) 7

where the v, represent gyreo drift and for simplicity are taken to be white,

The reader should now compare (E.25)-(E.28) with (E.13)~(8.15) (using
(E.21) and an analogous equation for ). We see that we have a direct analog
of the phase —- i1.e, one-dimensional rotation -- problem, including a
multiplicative noise model (E.27) (see [E-9] to see that 1f only one W and the
corresponding v, are nonzero, then this problem precisely reduces to the phase
estimation problem). Suppose we now assume that w obeys an equation such as
{E.11). Then, essentially by the matrix eguivalent of the complex logarithm

(again we have no "mod 27" difficulties because of our continucus observation),

Technically, one must include a "correction term” into (E.28) i1f one interprets
i1t as an Ito stechastic eguation. This i1s not difficult but it does obscure our
point with technicalities (which certainly are very important). The reader 1is
referred to [E-16,27] for the details., Note that (E.28) can be interpreted rigo=-
rously if one uses Stratonovich calculus [E-8,14].
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we can essentially differentiate M(t) to obtain noisy measurements of w cor-

rupted by the gyro drifts vl,vz,v3. The problem here 1s somewhat more complex

than the earlier one in that one must take care in-using stochastic calculus
(see footnote 2 } and, more importantly, because rotations in three~dimensions
do not commute (see [E-16,27]). However, as derived in [E-18], one can carry

the analysis through to obtain a measurement equation of the form

z{t) = wit) + M{t)v(L) (E.28)

where v‘=(vi,v2,v3). Note that the effect of the gyro drafts on our measure-
ment of angular velocity depends upon our attitude (this effect can be removed
in the one-dimensional rotation case).

Using (E.28), we can design a Kalman filter to estaimate w. However, we
run into a problem in’ estimating X. Recall that in the one~dimensional
problem, we augmented the state of our Kalman filter with the estimate of the
antegral of w, but in the three dimensional case the integrals of components
of w are not simply related to X, again because of the noncommutativity of
rotations in three dimensions. In fact, in this case the problem of optimal
estimation of X is infinite-dimensional [E-14], Thus, in the one-dimensional
case we obtain a decomposition much like (E.4). We can convert our multiplicative
process into a linear one and can operate on it with optimal linear techniques.
However, the re-injection of the resulting filtered process becomes extremely
complex. One must use approximate methods (see [E-12,14]) except in special cases.

The case when all of the Al commute 1s muach like the scalar case and involves

looking at the integrals of certain quantitires [E~9,12]. In addition, if the A:L
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obey certain {somewhat less restrictive) noncommutativity relations one can
obtain a finite dimensional optimal procedure by considering several types of
1terated integrals (see [E-14,15,17] for details).

Let us say a few more words abéut the relationship between homomorphic
failtering (HF) and bilinear signal processing (BSP). Recall that HF 1s based
on the existence of certain algebraic properties between input functions and
output functions «- i.e, the validity of a superposition rule. Alsoc, in HF,
one designs a filter consisting of three parts —— a "projection" system, which
"unravels" the signals so that one can use a linear filter as the second part,
followed by an "injection" of the resulting process to yield the desired output.
In the scalar example of BSP, as described in (E.11)-(E.19), we obtain a
system of exactly this form =- i1.e. a HF (logarithm-linear (Kalman) filterw
exponential} ~-, and as we mentioned earlier, we obtain essentially the same
results for the model (E.22),(E.27) 2f the Ai commute, However, in the general
case we canmot obtain the entire picture. Specifically, we can—"unravel" the
signal ang can perform linear (and perhaps nonlinear [E-14,15,17}) processing,
but the re-injection process is much more difficult. Perhaps one of the keys
to the difference between HF and BSP is the difference in the starting point
of the two theories. In homomorphic filtering the fundamental assumption i1nvolves
the algebrale structure of the relation between input trajectories and output
trajectories (superposition}. For bilinear systems analysis, the starting poant
1s (E.22), which can be seen to impose an algebraic (multiplicative) restriction
on the time rate of change of the state or output -- 1.e., in some sense, (E.22)
represents an "incrementally homomorphic" model, in which the fundamental

assumption involves algebraically compatible dynamics (as opposed to input-
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output relation). In the case when the Al commute (E.22) aiso yvields a
mrltiplicative X/0 relationship, and in the other special cases considered in
[E-14,15,17}, the restrictions on the Al vield other tractable I/0 relations,
but i1n these cases the optimal filters are not homomorphic (since following the
unraveling of the received signal, we perform a nonlinear filtering operation).
We should note, however, that in the general case, the algebraic structure of
(E.22) st1ll allows one to perform a great deal of analysis, and we refer the
reader to the references for details (see, for example, [E-5,10]1).

We note that the use of algebraic and geometric concepts and technidques
to study systems with algebraically compatible dynamics or input-output relations
has increased greatly over the past few years as new theories and applications
have been uncovered [E-5 through 19,24 through 361. Recently, certain n;nllneér
systems having Volterra series representations have been studied with great
success [E-6,10,11,14,17,33,34]1 using techniques and ideas that have grown out
of the study of bilinear systems [E~5,7]. In addition, motivated by many of the
same issues that motivated Oppenheim's study [E-1] of generalized superposition,
several researchers [E-18,19,28-34] have examined'systems whose state dynamics
possess some, but not all, of the algebraic structure of linear systems, Also,
several researchers [E-35,36] have studied controllability, realizability and
related properties for systems which possess particularly nice input/output
descraiptions, much along the lines of Oppenheim's generalized superposition.
By performing such analyses, new insights have been shed on the properties of
linéar systems, and many of the powerful tools of linedr system analysis are

being extended to other dynamical systems, establishing the foundations .for a

synthesis and analysis theory for special classes of nonlinear systems. It 1s
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this key i1dea =- the use of algebraic tools to synthesize and analyze nonlinear
systems with structure -~ that is the major common theme of the nonlinear systems

research in the two disciplines.
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Concludang Remarks

In this report we have examined a number of broad research areas
that have attracted workers in two disciplaines -- digital signal pro-
cessing and control and estimation theory. Our goal has been to explore
these areas in order to gain perspective on relationships among the
questions asked, methods used, and ;eneral philogophies adopted by
researchers in these disciplines., Upon undertaking thas study it was
our feelinyg that such perspective would be extremely valuable in pro-
moting collaboration and interaction among researchers in the two
fields. Upon concluding this study, we thank that our initial feelings
have been thoroughly substantiated. Not only are there numerous
exanples of questions in one discaipline that can benefit from the point
of view of the other, but alsc we have found a number of new issues
that naturally arose from combining the two points of view.

Each of the disciplines has 1ts own distinct éharacter, and
clearly these will and should be maintained. On ‘the other hand, each
discipline can gain from understanding the other. State space methods
have their lamitations, such as 1n specifying useful digital algorithms
and structures. On the other hand, state space methods provide ex-
tremely powerful computer-aided algorithms for noise analysis, optaimal
design specification, etc. State spacerdeas also allow one to con-
sider mzltivariable and time-varying systems. All of these aspects of

state space theory may prove of value to people involved in digital
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signal processing. On the other side, researchers in digital filteraing
have answered many crucial gquestions related to turning design specifi-
cations into implementable designs. The deesp understanding that workers
in digatal signal processing have concerning the problems of digital
implementation 1s something that researchers in control and estimation
would do well o gain, Thus 1t seems clear that a mutual understanding
will prove beneficial to all concerned.

We have raised numerous questions and have speculated on wvarious
possibilities throughout this report, and 1t would be an impossible
task to summarize these guestions and speculations here. Rather, we
will mention only one or two questions from each area., These may not
prove to be the most exciting or promising problems, but we feel that

they are representative and do summarize the tone of this report.

A. Stability Analysis ~~ What is the effect on overall
stability of the fainyte arithmetrc constraints of a

digrtally implemented feedback controller?

B. Parameter Identification, Linear Prediction, Least
Squares, and Kalman Filtering -- Can state space and
rec;r51ve filtering methods be applied to model and
1dentify tame-varying models of speech? Do stochastic

realization and recursive maximum likelihood methods

offer useful tools for pole~zero modelling of speech?
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Synthesis, Realization, and Implementation -~ Can state
space realiZation and filter structure concepts be combined
to obtain useful realizations for multivariable or time-
varyaing digital filters? Can state space noise analysas
methods aid i1n roundoff analysis of drgital filters? Can
we develop design technique (e.g. for feedback controller
design) that dzrectly take the constraints (storage, speed,

word length) of digatal implementation anto account?

Multiparameter Systems, Distraibuted Processes, and Random
Fields -- What role do state space methods (if they exist)
prlay in the analysis and synthesis of 2-D filters? Can
Lyapunov theory (if 1t exasts) aid in understandaing the
effects of finite arithmetic in 2-D systems? What role
should 2«D recursive esgtimation and detection technigues
have i1n 1mage processing? Can 2-D concepts provide any
wnsight and/or results for distributed parameter, space-

time, or decentralized control problems?

Some Tssues in Nonlinear System Analysis: Homomorphic
Filtering, Bilinear Systems, and Algebraic System Theory —--
Is this algebraic point of wview a useful approach to the
analysis and synthesis of nonlinear systems and filters?

Homomorphic filtering has found widespread application; can
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the same be said for other algebraic concepts?

Whether any of these issues or any of the others raised in this
report has useful answers is a question for the future. It is our
feeling that many of them do, and it as our hope that others will think

so as well.
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Appendix 1: A Lyapunov Function Argument for the Limit Cycle Problem
in a Second-Order Filier

Consader the second-order filter in Figure Ap.l. The ideal (un-

draven) dynamics of thas filter are

x(k+1) = Ax(k) (ap.1}
where
xl(k) a b
x(k) = xz(k) r A=l o (ap.2)
Suppose we implement the filter using a single magnitude truncation

quantizer [A-3] following the summation. In this case, the actual dvnamics

are

El Q('c.'.l)
x(k+l) = F{ax{k)), F = (3p.3)

& &

Iet us look for a guadratic Lyapunov function

b
11 blZ
vi{x) = x'Bx, B = (ap.4)
b12 b22
In fact, let us assume that B proves the asymptotic stability of (Ap.l) —— 1.e.

(see Section A)
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X (k) X, (k)

Delay ﬂ Delay

Figure Ap.l: A Second Order Filter



=288~

B>0, B-A'BA>0 {Ap.5)

We compute

I

Av(z) F'(Az)BF{Az) - z'Bz (Ap.6a)

(F' (Az)BF (Az) - z'A'BAz)

(Ap.6b)
+ (z'A'BAz~2'Bz)
1
From this, 1t 1s clear that we will have asymptotic stabalaty 1f
F'(Az)BF (az) - z'A'BAz<0 Yz {(2p.7)
or if the somewhat stronger condition
F' (E)BF(E) - E'BE<O VE (Ap.8)
Equation (Ap.8) i1s equivalent to
b |o®@E - |+ 2b £ o - | <0
11 |2 5075 1252 [ Q16175 | &
{Ap.9)

£k,

Using the fact that [Q(El) |_'_<_| El" we can see that (Ap.9) holds 1f and only

£ b12=0. Thus, we must f£ind conditions on A such that there exists a diagonal

B, satisfying (Ap.5) == 1.e..

1
This 1s the criterion used by Willson [A-~2] for the overflow problem,

2
This 1s not stronger 1f A 1s invertible, which 1s true 1f and only 1f b#0.
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>0 > =A TRA> .10
bll ,b220 B-A'BA>0 {ap )

Equation (Ap.10) can be further reduced to the following eguations (after we

normalize bll=l' which we can do simply by scaling B):

2
0<b22<(1-a )
(Ap.10)
2 2 2 2
- - - >0
b +{b +1-a )b22 b22
We can rewrite the second inequality as
2 2 2 2
- -— wm -
(a =b 1)b22 b22 b (Ap.1l)

2
and the possibilities are given in Figure Ap.2. If (az-b -1)>0, either we
have no region in which (Ap.l1ll)} holds (b) or the region 1s for megative values
of b22 (d), which biolates the first inequality in {(Ap.ll). Thus, we must

have -

2.2

a =b -1<0 (Ap.12)
and in fact, we must have case (¢), which means that there must be two real

solutions to (Ap.ll) when the inequality i1s made into an equality. Some

algebraic manipulations yvield the inequalitaes

2
<(1-
0<b22 (1-a") {Ap.1l3a)
o(a,b} Q az—b2—1<0 (2p.13b)
p{a,b) 2 (l-az+b2)2 - 4b2>0 (ap.13c)

..o-(a,b)-Vp(a,b) <b < -o(a,b)+VD(a,b) (Ap.13d)
= .

22 2
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{c)

=
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yi{x) = (az—bzul)x

(b)

2.2
y(x)= -x b

(a@)

Figure Ap.2:

Illustrating Inequality (Ap.l1ll)
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Using (Ap.l3b), (Ap.13c} 1s equivalent to

1-am° > 2|p|

or . {ap.14)
la|<|1-{n[]

and under thas condition, both (Ap.13b) and (Ap.l3c) hold, Then, we will have

that we can find a value of b22 1f and only 1f the inequalities (Ap.l3a) and

(ap.13d) overlap. Combinaing these, we find that the region of (a,b) -space

for which we can use thais technigque to prove stability is

%

lal< 1-|p] , |b|<1 (Ap.15)

which 1s 1llustrated in Figure Ap.3 The triangle is the region in which the
linear system (Ap.l1l) 1s asymptotically stable and the cross-hatched area 1s
{(Ap.15). In the remainang part of the triangle, one must use a non-diagonal
B, and this technique will not work. Thais is not to say that ILyapunov func-
tione can't be found that will prove stability in these regions of {a,b) space
in the one magnitude truncator case, but rather that one will have to work
harder to find them 1f they exast {either by working darectly with {(A.6a) or
by looking for nongquadratic Lyapunov functions). This derivation hopefully
11lustrates the type of argument that one can make using Lyapunov functions

and also the difficulties and the limitations of the technique.
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Figure Ap.3: TIllustrating the Stability Result
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Aggendlx 2: The Daiscrete Fourier Transform and Cirrculant Matrices

Circulant matrices appear in several places in Section D. In this

appendix we indicate some of their properties. Suppose we have a block

circulant matrix A

.AO %_1 ssennaae Al-‘
A= (Ap.16)
Al A0 Cee b oo A2

where each Al is PxQ. Consider the equation

v = Ax {2p.17)

where v 1s an NP vector, partitioned into P-vectors

¥' = (Ygreeer¥y ;) {Ap.18)

and x 15 an NQ-vector, partitioned into QO-vectors

x' = {xlreeerxy o) {(Ap.19)
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Combining (Ap.16)-(Ap.19) we obtain

N-1
v = A X {Ap.20)

e S

vhere all subscripts are to be interpreted modulo N. Hence, the raght-hand
si1de of (Ap.l7) 1s nothing more than a cyclic convolution. Let us take the

DFT of the sequences {y }, {x }, {2 }, where, for example
au 1 1 1

N-1
-1%
yi = 3 ywo , 2=0,...,N-1 (ap.21)
1=0
vhere
w, = eI2™/N (Ap.22)

N

. %

In the transformed domain, we now have N decoupled sets of equations

v(8) =a(l)x(L) ¢ 2=0,...,8~1 (Ap.23)

&

and we have effectively block diagonalized the block circulant matrix A.
If we also have that P=Q and that each of the Ai 1s circulant, then each
of the A(#) 1s circulant, and we can diagonaliZe each of them by i1terating *

the above development. Thus we can use the FFT to diagonalize A. In

addition, 1f we write


http:Ap.16)-(Ap.19
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yi= (y(O)',eoo,y(N=1)') = Ty (ap.24)

xT= (x(0)7", ..., x(N-1)') = Sx (ap.25)
(hexre s=T 1f P=Q), we observe that

TAS' = diag (A(0),...,A(N-1)) (3p.26)

Therefore, i1n this case, the calculation of Ms, where M 1is the matrix of

ergenvectors of A, can be performed using the FFT,
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