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Abstract
 

The purpose of this report is to explore a number of current 
research directions in the fields of digital signal processing and 
modern control and estimation theory. We examine topics such as 
stability theory, linear prediction and parameter Identification,
 
system synthesis and implementation, two-dimensional filtering,
 
decentralized control and estimation, image processing, and non­
linear system theory, in order to uncover some of the basic siml­
larities and differences in the goals, techniques, and philosophy 
of the two disciplines. An extensive bibliography is included in 
the hope that it will allow the interested reader to delve more 
deeply into some of these interconnections than is possible in 
this survey. 
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OUTLINE 

Introduction: Point of View, Goals, and Overview 

Section A: Stability Analysis 

'Basic Stability Problems in Both Disciplines 

1. 	Limit cycles caused by the effects of finite 
arithmetic in digital filters. 

2. Analysis of feedback control systems
 

Subsection A.I: The Use of Lyapunov Theory
 

1. 	 Basic Lyapunov theory for nonlinear and linear 
systems. 

2. 	Uses in digital filter analysis 

a. Bounds on limit cycle magnitude 

b. Pseudopower as a Lyapunov function
 
for 	wave digital filters 

3. 	Uses in control theory
 

a. Stability of optimal linear-quadratic 
controllers and linear estimators.
 

b. Use in obtaining more explicit stabi­
lity criteria.
 

Subsection A.2: Frequency Domain Criteria, Passivity, and 
Lyapunov Functions 

a. 	The use of passivity concepts to study
 
feedback systems.
 

b. 	 Frequency domain stability criteria arising 
from the study of passive systems, sector
 
nonlinearities, and positive real functions.
 

c. 	 Analogous results for the absence of limit 
cycles in digital filters . 

d. 	Relationship between input/output stability
 
and 	 internal stability. 

e. Generation of Lyapunov functions for 
dissipative systems
 

Speculation: The effect of finite 'arithmetic on digitally­
implemented feedback control systems. 
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Section B: Parameter Identification, Linear Prediction, Least
 
Squares, and Kalman Filtering 

Basic Problems in Both Disciplines 

1. 	System identification and its uses in problems
 
of estimation, control, and adaptive systems.
 

2. 	Parametric modeling of speech for digital pro­
cessing applications; the all-pole model and 
the linear prediction formulation. 

Subsection B.l: The Autocorrelation Method, Kalman Filtering
 
for Stationary Processes, and Fast Algorithms
 

1. Derivation of the Toeplitz normal equations for
 
the autocorrelation method for linear predic­
tion; stochastic interpretation.
 

2. 	Interpretation of predictor coefficients for dif­
ferent order predictors as the time-varying 
weighting pattern of the optimal predictor. 

3. The Kalman filter as a realization of the optimal 
predictor for autocorrelations which come from
 
linear, constant coefficient state equations.
 

4. 	 Levinson's fast algorithm for solving the normal 
equations, and its relation to fast methods 
for computing the Kalman gain. 

Subsection B.2: The Covariance Method, Recursive Least
 
Squares Identification, and Kalman Filters 

1. 	 Derivation of the normal equations for the 
covariance method for linear prediction; sto­
chastic interpretation.
 

2. 	Fast algorithms for the solution of the normal
 

equations.
 

3. 	 Derivation of the recursive form of the solution, 
and its interpretation as a Kalman filter. 

4. 	 Speculation on the use of this formulation to 
track time-varying speech parameters.
 

Subsection B.3: Design of a Predictor as a Stochastic
 
Realization Problem
 

1. 	The stochastic realization problem and its
 
relationship to spectral factorization.
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2. The innovations representation and the two-step 
fast algorithm for determining the optimal predictor;
 
the potential use of this method for identifying
 
pole-zero models.
 

3. 	Examination of the numerical aspects of the sto­
chastic realization problem and the difference in
 
intent between this problem and parametric model 
fitting.
 

Subsection B.4: Some Other Issues in System Identification
 

1. 	 Other Kalman filter methods for approximate least 
squares and maximum likelihood identification of 
pole-zero models.
 

2. 	The use of cepstral analysis to identify pole­
zero models.
 

Section C: Synthesis, Realization, and Implementation 

Subsection C.I: State Space Realizations and State Space 
Design Techniques 

1. 	 Fundamentals of realization theory; controllability, 
observability, and minimality. 

2. 	Use of realization techniques in order to apply
 
multivariable state space design algorithms and
 
analysis techniques; examples of observer and 
estimator design and sensitivity and covariance 
analysis. 

Subsection C.2: The Implementation of Digital Systems and 
Filters
 

1. 	Basic issues involved in digital system design.
 

2. 	Review of several design techniques.
 

3. 	Issues involved in the implementation of a
 
filter using finite precision arithmetic;
 
minimality, computational complexity, coef­
ficient sensitivity, and quantization effects.
 

4. 	Basic techniques for implementing FIR and
 
IhR filters.
 

5. 	State space realizations and filter struc­
tures; the inadequacy of state space methods
 
for specifying all structures.
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6. 	Use of state space methods to analyze the sensitivity
 
and roundoff noise behavior of digital filter
 
structures.
 

Subsection C.3: 	 Direct Design Taking Digital Implementation Into
 
Account
 

1. 	Issues involved in the digital implementation of
 
optimal control systems; the effect of algorithm
 
complexity on allowable sampling rates.
 

2. 	Designs that are amenable to modular, parallel,
 
or distributed processing.
 

Section D: 	 Multiparameter Systems, Distributed Processes, and
 
Random Fields
 

Subsection D.l: 	 Two Dimensional Systems and Filters
 

1. 	Two-dimensional shift-invariant linear systems;
 
convolution, transforms, and difference equations.
 

2. 	Computational considerations for FIR and IIR
 

filters; recursibility, quadrant and half-plane
 
causality, precedence relations and partial orders.
 

3. 	Storage requirements and their relation to
 

boundary conditions and the range of 2-D
 

space considered.
 

4. 	Half-plane 2-D causality and its relation to I-D 
distributed or multivariable systems and decen­
tralized decision making. 

5. 	Processing of 2-D data by 1-D techniques using
 
projections or scan ordering.
 

6. 	 Stability for recursive 2-D systems; algebraic 
techniques and problems caused by nonfacto­
rability of multivariable polynomials. 

7. 	Stabilization and spectral factorization to break
 
systems into stable quadrant or half-plane pieces.
 

8. 	 Problems with 2-D least-squares inverse design. 

9. 	Use of 1-D structures and design techniques for
 
2-D systems; separable systems, rotated systems,
 
and McClellan transformations.
 

10. Extension of 1-D design techniques to 2-D.
 

11. State space 	models in 2-D; local and global
 
state realizations and relations to recursible
 
2-D systems.
 



-8­

12. 	 Speculation concerning the extension of state
 

space techniques, such as Lyapunov and covariance
 

analysis, to the analysis of 2-D systems.
 

13. 	 Relations between 2-D linear systems and certain
 

l-D nonlinear systems.
 

Subsection D.2: Image Processing, Random Fields, and Space-


Time 	 Systems 

1. 	Discussion of the image formation process and
 

the point-spread function.
 

2. 	Models for recorded and stored images; density
 

and intensity images.
 

3. 	The image as a random field with first and
 

second order statistics.
 

4. 	Representation and coding of images; Karhunen-


Loeve representation and the circulant approxi­

mation for fast processing of images with 
stationary statistics. 

5. 	Nonrecursive restoration techniques
 

a. 	Inverse filter
 
b. 	Wiener filter
 

c. 	constrained least squares
 
d. 	Geometric mean filter
 

6. 	Recursive restoration techniques
 

a. I-D Kalman filtering of the scanned
 
image 

b. 	 2-D Kalman filtering for images mo­

deled using half-plane shaping filters
 
c. 	Efficient optimal estimation for
 

separable 2-D systems
 
d. 	Reduced-update, suboptimal linear
 

filtering 
e. 	Transform techniques for efficient
 

optimal processing of systems des­
cribed by "nearest neighbor" and
 
"semacausal" stochastic difference
 
equations.
 

7. 	Discussion of limitations of and questions raised
 
by recursive and nonrecursive restoration techniques
 

a. 	Need for a priori model of the image 
b. 	Limitations of recursive shaping filter
 

image models
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c. Incorporation of image blur into 
restoration schemes 

d. Effects of image sensing nonlinearities 
e. Positivity constraints on estimated 

intensities 
f. Resolution-noise suppression tradeoff, 

contrast enhancement, and edge detection. 

8. 	Statistical and probabilistic models of random fields
 

a. 	Markov field models and interpolative
 
filter models
 

b. 	Two-dimensional linear prediction
 

c. 	Statistical inference on random
 
fields; maximum likelihood para­
meter estimation
 

d. 	Multidimensional stochastic calculus
 
and martingales.
 

9. 	Space-time processes and multivariable 1-D systems
 

a. 	Seismic signal processing problems;
 
velocity and delay-time analysis as
 
2-D problems
 

b. 	Use of I-D and 2-D recursive sto­
chastic techniques to solve space­
time signal processing problems
 

c. 	Large scale systems as 2-D systems;
 
reinterpretation of 2-D image
 
processing techniques as efficient
 

centralized and decentralized esti­
mation systems for multivariable
 
1-D systems.
 

Section E: 	 Some Issues in Nonlinear Systems Analysis: Homomorphic
 
Filtering, Bilinear Systems, and Algebraic System Theory
 

Basics Concepts of Horomorphic Filtering 
Multiplicative Homomorphic Systems as a Special Case
 

of Bilinear Systems
 
Optimal Estimation for Bilinear Systems
 
Other Algebraic Techniques for the Analysis of
 

Nonlinear Systems
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Concluding Remarks
 

Appendix 1: A Lyapunov Function Argument for the Limit Cycle 
Problem in a Second-Order Filter 

Appendix 2: The Discrete Fourier Transform and Circulant Matrices 

References
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Introduction: Point of View, Goals, and Overview 

This report has grown out a series of discussions over the past 

year between the author and Prof. Alan V. Oppenheim of M.I.T. These 

talks were motivated by a mutual belief that there were enough similari­

ties and differences in our philosophies, goals, and analytical tech­

niques to indicate that a concerted effort to understand these better 

might lead to some useful interaction and collaboration. In addition,
 

it became clear after a short while that one could not accomplish this
 

by trying to understand the two fields in the abstract. Rather, we felt 

that it was best to examine several specific topics in detail in order
 

to develop this understanding, and it is out of this study that this 

report has emerged.
 

Thus the goal of this report is to explore several directions of
 

current research in the fields of digital signal processing and modern
 

control and estimation theory. Our examination will in general not be
 

result-oriented.. Instead, we are most interested in understanding the
 

goals of the research and the methods and approach used. Understanding 

the goals may help us to see why the techniques used in the two disci­

plines differ. Inspecting the methods and approaches may allow one to 

see areas in which concepts in one field may be usefully applied in the 

other. The report undoubtedly has a control-oriented flavor, since it 

reflects the author's background and also since the original purpose of 

this study was to present a control-theorist's point of view at the 1976 

Arden House Workshop on Digital Signal Processing. However, an effort 
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has been made to explore avenues in both disciplines in order to encourage 

researchers in the two fields to continue along these lines. 

It is hoped that the above comments will help explain the spirit in 

which this report has been written. In reading through the report, the 

reader may find many comments that are either partially or totally unsub­

stantiated or that are much too black and white. These points have been 

included in keeping with the speculative nature of the study. However,
 

we have attempted to provide background for our speculation and have
 

limited these comments to questions which we feel represent exciting
 

opportunities for interaction and collaboration. Clearly these issues 

must be studied at a far deeper level than is possible in this initial 

survey-oriented effort. Also, we have not been so presumptuous as to 

attempt to define the two fields (although some may feel we come danger­

ously close), since we feel that a valid mutual understanding can and 

will grow out of closer examination of the directions we describe. To
 

this end, we have included an extensive bibliography which should help.
 

the interested reader to make inroads into the various areas.
 

The following is an annotated list of the topics considered in the 

fbllowing sections. Sections are denoted by capital letters, and, for
 

ease of reference, the bibliography is coded similarly (e.g., (A-21] is 

the 21st reference for Section A -- Stability Analysis). Due to variations
 

in the author's expertise, maturity of the subject areas, and nature of 

the questions, the sections vary greatly in depth and style. Some sec­

tions are very specific, while others are more philosophical and speculative.
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A. 	 Stability Anaysis -- In this section we discuss methods used 

in both disciplines for the study of stability characteristics 

of systems. In digital signal processing one is primarily con­

cerned with the possibility of limit cycles caused by the effects 

of finite arithmetic in digital filters. In control theory, one 

is often concerned with determining conditions for stability of 

feedback systems. The techniques used in the two disciplines 

have many similarities. Lyapunov theory, frequency domain 

methods, and the concept of passivity are widely used by 

researchers in both fields. We speculate on a potential research
 

topic -- the effects of finite arithmetic on digitally imple­

mented feedback control systems. 

B. 	Parameter Identification, Linear Prediction, Least Squares, and
 

Kalman Filtering -- Identification of parametric models arises
 

in a variety of problems, from digital processing of speech to 

adaptive control. Using the speech problem as a focus, we 

explore several methods for identification. We examine the 

autocorrelation method for linear prediction and relate it to 

the determination of the time-varying weighting pattern of an
 

optimum predictor. We also discuss the efficient Levinson
 

algorithm and its relationship to recently developed fast algor­

ithms for determining optimum time-varying Kalman filter gains. 

The 	covariance method for linear prediction is discussed, as are
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its relationships with the Kalman filter structure of recursive 

least squares. Using this framework, we speculate on potential
 

recursive methods for identifying time-varying models for speech.
 

We also discuss the relationship between the parametric identi­

fication problem and the problem of stochastic realization.
 

Crucial differences in the underlying assumptions are brought
 

out, 	and we speculate on the utility of a stochastic realization
 

approach for the identification of pole-zero models of speech.
 

We also discuss other pole-zero identification techniques inclu­

ding 	recursive maximum likelihood methods, which resemble recur­

sive 	least squres (and hence the covariance method) both in form
 

and 	spirit.
 

C. 	Synthesis, Realization, and Implementation -- We discuss state
 

space models and realization theory and the uses of such realiza­

tions for direct synthesis and for "indirect synthesis", in
 

which a state space model of a process of interest allows one
 

to apply state space methods to synthesize systems for estlma
 

tion, stabilization, optimal control, etc. We also explore the
 

key issues involved in the design of digital filters meeting
 

certain design specifications. We discuss several filter design
 

methods, but the ma3or emphasis of our examination of this
 

topic is on filter structures. Minimality -- the key concept in
 

state space realization theory -- is only one of several issues.
 

Sensitivity and behavior in the presence of perturbations caused
 



by finite arithmetic are crucial questions as well. Here we 

find some limitations of state space methods. All minimal 

structures cannot be obtained from straightforward algorithmic 

interpretations of different state spaca realizations. We specu­

late 	on some recent work indicating that state space methods
 

may 	be useful in analyzing the performance of different struc­

tures, that certain factorizations of state space realizations
 

include all structures, and that state realizations combined 

with an understanding of structures issues may lead to useful
 

implementations for multivariable filters. Finally, we specu­

late 	on the possibility of designing controllers, filters,
 

or 	other systems by directly taking the constraints of digital 

implementation into account from the start. This area contains
 

some 	 intriguing, potentially very useful, and extremely difficult 

problems.
 

D. 	 Multiparameter Systems, Distributed Processes, and Random 

Fields -- We explore a number of the issues that arise in 

studying systems defined with two or more independent variables. 

We 	 see that the issues of recursion, causality, and the 

sequencing of the required computations for a filter become ex­

tremely complicated in this setting. We find that a precedence
 

relation among the computations exists and is of the same form 

and spirit as the precedence relation arising in multi-decision­
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maker control problems. A number of relationships with one­

dimensional concepts are explored. Specifically a multidimen­

sional system can be made into a (often quite complex) one­

dimensional system by totally ordering the computations in a way
 

that is compatible with the precedence relation. We also dis­

cuss the possibility of transforming distributed or multivariable 

systems to scalar, multidimensional systems, and we speculate 

on the utility of such an approach. The algebraic difficulties 

that arise in multidimensional problems lead to complications
 

in areas such as stability analysis and spectral factorization,
 

and we also point out that similar algebraic problems arise in 

considering lumped-distributed systems, certain time-varying 

systems, and specific classes of nonlinear systems. A number
 

of design methods are discussed, and many of these are closely 

related or in fact rely on one-dimensional methods. We also 

describe a number of state space models for multidimensional 

systems, and 'we run into many of the same difficulties ­

causality, nonfactorizability, etc. We speculate on the utility 

of state models for stability and roundoff noise analysis and 

for multidimensional recursive Kalman filtering. We discuss a 

number of statistical and probabilistic approaches to multi­

dimensional filtering and analyze their utility in the context 

of the problem of image processing. We also speculate on the 

utility of the two-dimensional stochastic ,ftamework for the 
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consideration of space-time and decentralized control problems.
 

This section offers some of the most exciting and difficult 

potential research directions.
 

E. 	Some Issues in Nonlinear System Analysis: Homomorphic Filtering, 

Bilinear Systems, and Algebraic System Theory -- There has been 

substantial work in both disciplines in analyzing and synthesizing 

nonlinear dynamic systems that possess certain types of algebraic 

structure. We consider the work in digital signal processing on
 

homomorphic systems and filter design, and we relate this to 

some work on state space models that possess related algebraic
 

properties.
 

Finally, we make some concluding remarks, summing up our feelings 

about the relationship of the two fields and the possibility of increased 

interaction. From the point of view of Prof. Oppenheim and the author, 

this study has been a success, since we are convinced of the benefit of 

such interaction. This report will be a success if we can convince
 

others.
 



A. stability Analysis
 

Of all of the topics that we have investigated, it is in this area that
 

we have found some of the clearest areas of intersection and interaction
 

between the disciplines. In the field of digital signal processing, stability 

issues arise when one considers the consequences of finite word length in 

digital filters. Two problems arise (not mentioning the effects due to finite 

accuracy in filter coefficients [A-12,C-l]). On the one hand, a digital filter
 

necessarily has finite range, and thus overflows can occur, while on the
 

other, one is inevitably faced with the problem of numerical quantization -­

roundoff or truncation. Since the filter has finite range (it is after all a
 

finite-state machine) the question of the state of the filter growing without
 

bound is irrelevant. However, the nonlinearites in the filter, introduced 

by whatever form of firite arithmetic is used, can cause zero-input limit 

cycles and can also lead to discrepancies between the ideal and actual res­

ponse of the filter to certain inputs. Following the discussions in [A-3,15J, 

the typical situation with which one is concerned is depicted in Figure A.l. 

The filter is described (in state-variable form) by equations of the form 

xCn+l) = AX(n) + Bu(n)
 

y(n) = Cx(n)
 

X(n) = N(x(n)) (A.)
 

where N is a nonlinear, memoryless function that accounts for the effects of
 

overflow and quantization. If these effects were not present -- i.e. if N
 

were the identity function -- equation (A.1) would reduce to a linear equation.
 

If one assumes that this associated linear system is designed to meet certain
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specifications, one would like to know how the nonlinearity N affects overall
 

performance. In particular, one important question is: assuming that the
 

linear system is asymptotically stable, can the nonlinear system (A.1) sustain
 

undriven oscillations, and will its response to inputs deviate significantly
 

from the response of the linear system? We will make a few remarks about this
 

question in a moment. We refer the reader to the survey papers [A-3,5] and
 

to the references for more detailed descriptions of known results.
 

In control theory the question of system stability has long played a
 

central role in the design and analysis of feedback systems. Following
 

[A-42J, a typical feedback system, depicted in Figure A.2, is described by
 

the functional equations
 

eI = ul-y2 , = u2+Y12 


(A.2) 
yI = G1 elI Y2 = G2 e2 

where u., u2 , el, e2, y1 " and Y2 are functions (of time -- discrete or 

continuous) and G1 and G2 are operators (possibly nonlinear) describing the
 

dynamics of the forward and feedback paths, respectively. In control theory
 

one is interested either in the analysis or the synthesis of such systems.
 

In the synthesis problem one is given an open loop system G1 and is asked to
 

define a feedback system (A.2) such that the overall system has certain
 

desirable stability properties. In the case of stability analysis, with which
 

we are most concerned here, one may be interested either in the driven or 

the undriven (u =0) characteristics. In the driven case one wishes to determine, 

for example [A-42J, if bounded inputs lead to bounded outputs and if the input­

output relationship is continuous -- i.e. if small changes in the u's lead to
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u (n) 	 Linearscete-Tim Y (n 

X(n) 	 x (n) 

N 

Figure A.1: 	 Illustrating a Digital Filter with Quantization and
 
Saturation Nonlinearities
 

Y2
 1
 

e2 CGi2 

Figure A.2: 	 Illustrating a Typical Feedback Control System
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small changes in the y's. In the undriven case, one wishes to determine
 

if the system response decays, remains bounded, or diverges when the only
 

perturbing influences are initial conditions. Again, the literature in 

this area is quite extensive, and we refer the reader to the texts 

[A-42,44,47J, the survey paper [A-43], and to the references for more on 

these problems. 

From the above descriptions one gets a clear indication about some of 

1 
the similarities and differences in the two topics . In both areas one 

wants the answe~ito some qualitative questions -- is the system stable; is 

it asymptotically stable; is the system continuous [A-42J or does it exhibit 

"jumps" when one makes small changes in the inputs [A-32,43]. In addition, 

one often wants some quantitative answers. In digital filter design one is 

often interested in determining bounds on the magnitudes of limit cycles 

and in finding out how many bits one needs to keep the magnitudes of such 

oscillations within tolerable limits. In the study of feedback control 

systems one is interested in measures of stability as provided by quantities 

such as damping ratios and eigenvalues (poles). In addition, one is often 

interested in the shapes of these modes -- i.e. in determining the state 

2 
eigenvector corresponding to a particular eigenvalue.
 

One of the most trivial of these is the fact that control theorists put minus
 

signs in their feedback loops, while there are none in the nonlinear digital
 
filter of Figure 1. The reader should be careful to make the proper changes
 
of sign in switching between results.
 
2This is of interest, for example, in the design of stability augmentation
 

systems for aircraft. in this case one is quite interested in the shape of
 
modes such as "Dutch roll", which involves both the bank and sideslip angles
 

of the aircraft [A-71].
 

1 
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In addition to the similar goals of the two problem areas, as we shall 

see, people in each area have obtained results by drawing from very similar 

bags of mathematical tricks. However, there are differences between the 

methods used and results obtained in the two areas. In the analysis of di­

gital filters the work has been characterized by the study of systems containing 

quite specific nonlinearities. In addition, much of the work has dealt with 

specific filter structures. In particular, second-order filters have received 

a great deal of attention [A-2,3,11,15,18,31] since more complex filters can 

be built out of series - parallel interconnections of such sections. Also, 

the class of wave digital filters [A-6,7,8,9,10 have been studied In some 

detail. Studies in these areas have yielded extremely detailed descriptions 

of regions of stability in parameter space (see, for example, [A-3) and 

numerous upper and lowar bounds on limit cycle magnitudes (see [A-3,4,20,26,31, 

35,56,59,60,63]). 

In control theory, on the other hand, the recent trend has been in the 

development of rather general theories, concepts, and techniques for sta­

bility analysis. A number of rather powerful mathematical techniques have 

been developed, but there has not been as much attention paid to obtaining 

tight bounds for specific problems. In addition, problems involving limit 

cycles have not received nearly as much attention in recent years as issues 

such as bounded-input, bounded-output stability and global asymptotic stability 

(although there clearly is a relationship between these issues and limit cycles) 

n the rest of this section, we briefly discuss,the relationship Between 

some of the results in the two fields. Our aim here is to point out areas in 
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which researchers have used similar techniques, obtained similar results,
 

or relied on similar concepts.
 

A.1 	The Use of Lyapunov Theory
 

The technique of constructing Lyapunov functions to prove the stability
 

of dynamical systems has been used by researchers in both fields. The basic
 

ideas behind Lyapunov theory are the following (see [A-47,48,52,64 for
 

details and further discussions): consider the dynamical system
 

x(k+l) = f(x(k)), f(O)=0 	 (A.3) 

(where x is a vector). Suppose we can find a function V(x) such that
 

V(O)=O and the first difference along solutions satisfies
 

AV(x) 	A V(f W)) - V(x) <W(x)<0 (A.4) 

Such a function is called a Lyapunov function. If this function has some
 

additional properties, we can prove stability or instability of (A.3).
 

Examples are (see[A-47,48]for proofs):
 

Theorem A.l: Suppose V is such that
 

(i) 	 It is positive definite -- i.e. these exists a continuous, 

nondecreasing scalar function a, such that a(O)=O and 

V(x) > a(0x)>O yX30 (A.5) 

(3.1) a(jxl)-c when Ixl ­*c (A.6) 

(i) AV is negative definite ­ ice. there exists a continuous, 

nondecreasing scalar function y, such that
 

Av(x) < - y(Ixl)<O 	 (A.7) 
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Then all solutions of (A.3) converge to 0.
 

In this result, we can think of V as an "energy" function, and (A.5),
 

(A.6) essentially state the intuitive idea that the larger the system state,
 

the more energy that is stored in it. With this interpretation, the theorem
 

states that if the system dissipates energy (equation (A.6)), the state will
 

converge to 0. If we allow ourselves to consider "energies" which can take
 

on negative values, we can get instability results, such as
 

Theorem A.2: Suppose V satisfies (A.4) and suppose there exists an x0 such
 

that V(x0)<0. Then the system is not asymptotically stable in the large
 

since the solution starting at x0 does not converge to 0.
 

The point here is that since energy decreases, once we arrive at a ne­

gative energy state, we can never reach the zero energy state.
 

As mentioned earlier, Lyapunov stability has been used by many researchers.
 

A crucial advantage of Lyapunov-type results is that the hypotheses for re­

sults such as Theorems A.1 and A.2 can be checked using the function V and f
 

only -- i.e. one does not have to construct explicit solutions to difference
 

or differential equations. However, the major problem with the theory is
 

the difficulty in finding Lyapunov functions in general. For linear systems,
 

however, a theory exists, and one can always find a quadratic Lyapunov function
 

V(x) = x'Qx (A.8) 

that will determine if the system is asymptotically stable (in fact a constructive
 

procedure using the Lyapunov equation [A-47,48J can be used). For nonlinear
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systems the construction of Lyapunov functions is much more difficult (see
 

[A-47,48J for several techniques).
 

With respect to the limit cycle problem, Willson [A-2,13] has utilized 

Lyapunov functions (and essentially Theorem 1) to determine conditions under 

which second order digital filters will not have overflow limit cycles and 

will respond to "small" inputs in a manner that is asymptotically close to 

the ideal response. Parker and Hess [A-26] and Johnson and Lack [A-59,60] 

have used Lyapunov functions to obtain bounds on the magnitude of limit 

cycles. In each of these the Lyapunov function used was-a quadratic form 

which in fact proved asymptotic stability for the ideal linear system. 

In Willson's work [A-13], he was able to show that his results were in some 

sense tight by constructing counterexamples when his condition was violated. 

In [A-26,59,60] the bounds are not as good as others that have been found, 

and, as Parker and Hess state, this may be due to the difficulty of determining 

which quadratic Lyapunov function to use. As pointed out by Claasen, et.al., 

[A-3], it appears to be difficult to find appropriate Lyapunov functions for
 

the discontinuous nonlinearities that characterize quantization (see
 

Appendix 1 for an example of the type of result that one can find).
 

There is a class of digital filters -- wave digital filters (WDF) [A-6,7,
 

8,9,10] -- for which one can use Lyapunov techniques to prove stability. Such
 

filters have been developed by Fettweis so that they possess many of the
 

properties of classical analog filters. Motivated by these analogies,
 

Fettweis [A-8] defines the notion of "instantaneous pseudopower", which is a
 

particular quadratic form in the state of the WDF. By defining the notion of
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"pseudopassivity" of such a filter, Fettwels introduces (in a very natural 

way for this setting) the notion of dissipativeness. With this framework, the 

pseudopower becomes a natural candidate for a Lyapunov function, and in [A-10], 

Fettweis and Meerk6tter are able to apply standard Lyapunov arguments to obtain 

quite reasonable conditions on numerical operations that guarantee the asym­

ptotic stability of pseudopassive WDF's. The introduction of the concept of
 

dissipativeness in the study of stability is an often-used idea (see the note 

of Desoer [A-36]), and a number of important stability results have as their 

basis (at least from some points of view) some notion of passivity. We will 

have a bit more to say about this in the next subsection. We note here that 

the use of passivity concepts and the tools of Lyapunov theory appear to be 

of some value in the development of new digital filter structures that behave
 

-well in the presence of quantization. As an example, we refer the reader to 

the recent paper [A-Il] in which a new second order filter structure is de­

veloped and analyzed using pseudopower-Lyapunov arguments. 

Lyapunov concepts have found numerous applications in control theory.
 

Detailed studies of their use in system analysis are described in the Important 

paper of Kalman and Bertram [A-48J and the texts [A-47J, [A-52], and [A-64]. 

As mentioned earlier the construction of quadratic Lyapunov equations for linear 

systems is well understood and is described in detail in these texts. The key
 

result in this area is the following:
 

Theorem A.3: Consider the discrete-time system
 

x(k+l) = Ax(k) (A.9) 
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This system is asymptotically stable (i.e. all of the eigenvalues of A lie 

inside the unit circle in the complex plane) if and only if for any positive 

definite matrix L, the solution Q of the (discrete) Lyapunov equation 

A'QA - Q = -L (A.10) 

is also positive definite. In this case the function 

V(x) = x'Qx (A.11) 

is a Lyapunov function satisfying the hypotheses of Theorem A.l -- i.e. it 

proves the asumptotic stability of (A.9). 

The equation (A.10) and its continuous-time analog (see [A-47]) arise in 

several contexts in control theory, and we will mention it again later in a 

different setting. Also, note that Theorem A.3 provides a variety of choices 

for Lyapunov functions(we can choose any L>0 in (A.10)). Parker and Hess 

[A.26] obtain bounds on the magnitude of limit cycles by choosing L=I (here
 

(A.9) represents the ideal linear model). Tighter bounds might be possible
 

with other choices of L, but, as they mention, it is not at all clear how one
 

would go about finding a "better" choice (other than by trial and error). We
 

also refer the reader to the paper of Kalman and Bertram [A-48] in which they
 

use Lyapunov techniques to bound the magnitude of solutions of difference
 

equations perturbed by nonlinearities.
 

For specific applications of Lyapunov theory to linear and nonlinear 

systems, we refer the reader to the references or to the literature (in par­

ticular the IEEE Transactions on Automatic Control). In the remainder of 

this subsection we concentrate on another use of Lyapunov concepts -- as 
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intermediate steps in the development of other results in control theory.
 

An example of this occurs in the analysis of optimal control and estimation
 

systems [A-64,65,66,67J. Consider the linear system
 

x(k+l) = Ax(k) + Bu(k) 
(A.12) 

y(k) = Cx(k) 

and suppose we wish to find the control u that minimizes the cost
 

3co 

y' (i)y(1) + u' (i)u(i) (A.13) 

i=o 

This is a special case of the output regulator problem (A-66]. Here the cost 

(A.13) represents atradeoff between regulation of the output (the y'y term) 

and the conservation of control energy (the u'u term). The following is 

the solution for a particular case:
 

Theorem A.4: Suppose the system (A.12) is completely controllable (any
 

state can be reached from any other state by application of an appropriate
 

input sequence) and completely observable (the state can be uniquely deter­

mined from knowledge of the input and output sequences). Then the optimal 

control in feedback form is
 

u(k) = -(R+B'KB)-l B'KA x(k) (A.14) 

where K is the unique positive definite solution of the algebraic Riccati 

equation 

- I
K = A'KA+C'C - A'KB(R+B'KB) B'KA (A.15) 
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One proof of this result proceeds along the following lines. Suppose
 

we are presently in the state x. We can then define the optimal cost to go,
 

V(x),as the, minnmum -of J in (A.13) when we start in state x. With the aid of 

dynamic programming methods [A-66], one can show that V has the form 

V(x) = 	x'Kx (A.16) 

where 	K satisfies (A.15). The finiteness of V is proven using controllability,
 

while 	observability guarantees that if x-O, then y and u cannot both be 

identically zero and thus J>O. As a final important question, consider the
 

closed loop system (A.12), (A.14). As discussed in [A-66] one can show that
 

this system is asymptotically stable, and, in fact, the cost-to-go function 

V(x) is a Lyapunov function which proves this result. Observability and 

controllability (and somewhat weaker counterparts -- detectability and stabi­

lizability) are important concepts in the development of this result and may 

others. In fact, the concept of observability allows one to prove [A-51J.
 

Theorem A.5: Consider the system (A.9) and the function V(x) = x'Qx. 

Suppose 

(W) Q>O 

(11) V(Ax)-V(x) = x'[A'QA-Q]x<x'C'Cx 

(iii) 	 The system (A.9) is observable from the output
 

y(k) = Cx(k)
 

Then (A.9) is asymptotically stable. 
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Comparing Theorems A.3 and A.5, we see that we have replaced the 

negative definiteness of A'QA-Q with negative semidefinitess and an observa­

bility condition. The intuitive idea is the following: negative definiteness 

makes it clear that V(x(k)) strictly decreases along solutions whenever xk)#0, 

and from this we can deduce asymptotic stability; negative semidefiniteness 

only says V does not increase. However, is it possible that V can remain 

stationary indefinitely at a non-zero value? The answer is no, since if it 

did, we would be able to conclude that Cx(3)=O, 3=k, k+l, k+2,...., and obser­

vability would require x(k)=0. Thus V must decrease (not necessarily at 

every single step'), and we can again deduce asymptotic stability. 

Thus,, we see that Lyapunov concepts, when combined with ideas from the
 

theory of state-space models, can lead to important results concerning optimal
 

designs of controllers ,and estimators. See [A-64,65,6,'67J for continuous
 

time analogs of these results and dual results for estimators (the reader is
 

also advised to examine [A-68] in which the interplay of many ,of-these ideas
 

is aiscussed).
 

In addition to ts use in study-ng design methods such as the regulator
 

problem, Lyapunov theory has been used as a framework for the development of
 

many more explicit stability criteria (recall, Lyapunov theory in principle
 

requires a search for an appropriate function). Examples of these are a number
 

of the frequency domain stability ,criteria that have been developed in the last
 

10 to 15 years (see [A-1,21,22,23,24,33,37,38,39,43,44,45. Several of these
 

results have analogs for the laimit cycle problem. For example, Tsypkin's
 

criteria [A-33,21,2] and [A-44, p.194], which are analogs of the circle and
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Popov criteria in continuous time (see [A-43,44J), have counterparts in the 

theory of limit cycles (A-15,16]. We note also that instability counterparts 

of the Tsypkin-Popov type of result have been developed from a Lyapunov point 

of view [A-1,39J, and a thorough understanding of the basis for these results 

may lead to analogous results for limit cycles in digital filters. 

We defer further discussion of these results to the next subsection, in
 

which we are interested in examining the interplay among a number of stability 

concepts (passivity, Lyapunov, Tsypkin, frequency domain analysis, positive 

real functions, etc.). The key point is that many stability results can and 

have 	been derived in a number of different ways, and an examination of these 

various derivations reveals an interrelationship between the various methods
 

of stability analysis. Some of the most fundamental work that has been done 

in this area has been accomplished by J.C. Willems [A-49,50,69], and the reader
 

is referred to his work for a more thorough treatment of these issues and for 

further references. 

A.2 	 Frequency Domain Criteria, Passivity, and Lyapunov Functions 

We have already mentioned that the notion of passivity is of importance 

in stability theory and have seen that Fettweis and Meerkotter have been able
 

to utilize passivity notions to study certain digital filters via Lyapunov
 

techniques. The relationship between passivity, Lyapunov functions, and 

many of the frequency domain criteria of stability theory is quite deep, and 

in this subsection we wish to illustrate some of these ideas. The interested
 

reader is referred to the references for more details.
 

In recent years the concept of passivity has become one of the fundamental
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1
notions in the study of feedback stability. This notion, which is very much an 

input/output concept, is developed in detail by J.C. Willems [A-41,42,50,69].
 

3

We follow [A-42,691 . Let U and Y be input and output sets, respectively, and 

let U and Y be sets of functions from a time set T into U and Y (T may be con­

tinuous or discrete, as discussed [A-69). Let G: U+Y be a dynamic system,
 

mapping input functions uSU into output functions GuSY (we assume that G is 

a causal map [A-69]). Intuitively, stability means that small inputs lead to 

small outputs, and the following makes this precise. 

Definition A.l: Let U, Y be subspaces of U and Y, respectively (these are 

our "small signals"). The system G is I/0 stable if uEt4 implies GuEsY. 

Furthermore, if U, Y are normed spaces, then G is finite gain I/0 stable if 

there exists K<- such that
 

lIGull < Kjjujj VUUA. 17) 

A typical example is the case T=-positrve integers, U=V= all real sequences 

of numbers, U=V= all square-sumnmable sequences. In this case I/0 stability 

means (y=Gu) 

2uo <co
 

i=i i=l
 

3Our development isby no means complete, as- our intention is to relate several
 
ideas and not to prove theorems. Thus, the reader is referred to the references
 
(in particular to [A-42J) for a thorough treatment and for precise statements of 
the results described here (for example, we have not included a discussion of 
system well-posedness, which bears some similarities to the constraints on 
feedback paths imposed by Fettweis in his development of wave digital filters)0 
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and finite-gain I/0 stability means 

u2 <W => < K (A.19) 

Note one property of this example. Let PT be the operator
 

x (t) t<T 

(PTx) (t) = t>T (A.20) 

Then for any uEU, yeY, we have PTUSCt PvsV.. In this case U, Y are called 

(causal) extensions of U, Y, and we assume this to be the case from now on. 

We now can define passive systems. 

Definition A.2: Let U=V, and assume that U-- is an inndr product space. Then 

G is passive if 

<PTU,PTGU> >0 "VuE,teT (A.21)
 

and strictly passive if there is an e>O such that
 

<PTUt PTGU> > eIIPTuII2 (A.22) 

In terms of our example, G is passive if and only if (y=Gu) 
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N 

I uly 1 0 Vu3,N (A.23) 

and is strictly passive if and only if there exists an S>O such that
 

N N 

u y > E u2 u ,N (A.24)
 

Much as with Fettweis's pseudopassive blocks, passive systems can be
 

interconnected in feedback arrangements and remain passive. The following 

result is of this type, and it, in fact, is one of the cornerstones of feed­

back stability theory [A-69]. 

Theorem A.6: Consider the feedback system of Figure A.2 with all inputs and 

outputs elements of the same space U (for simplicity). The feedback system 

is strictly passive and finite gain I/0 stable if 

(i) G1 is strictly passive and finite-gain input/output 

stable 

(11) G2 is passive
 

As outlined by J.C. Willems in [A-69J, there are three basic stability 

principles -- the one above, the small loop gain theorem (stability arises 

if the gains of G1 and G2 are each less than unity -- a result used in the 

digital filter context in EA-72J and the next result, which depends upon
 

the following
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Definition A.3: Same conditions on U, V as in Definition A.2. Let a<b 

be given real numbers. Then G is inside (outside) the sector [a,b] if 

<(G-aI)u, (G-bl)u> < 0 (>0) VueU (A.25) 

It is strictly inside the sector [a,b] if there exists an e>0 such that 

<(G-al)u, (G-bi)u> <.-ejjnj (>s11u112) ne CA.26) 

We now state a variation of Willems' third stability condition (see
 

[A-42]).
 

Theorem A.7: Consider the feedback system of Figure A.2. This system is 

finite gain stable if G2 is Lipschitz continuous -- i.e. 

JIG 2u1-s2u2'11SK11u1-u2 II yudU 

and if for some a<b>0, G2 is strictly inside the sector [a,b], I + 1(a+b)G 

has a causal inverse on U (not necessarily U), and G satisfies: 

() a<Q => G is inside the sector [ 1 1 n U 

11 a 

(ix) a>0 => G1 is outside the sector -- - on U
1 b 

1 
(iii) a=0 => G + I is passive on U.

1 b 

As develop by J.C. Willems [A-42,69], this result leads to the circle
 

criterion (in continuous time). Let us examine the third case in the Theorem
 

in order to sketch the derivation of one of Tsypkin's criteria. Consider the
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system in Figure A.3. Here G2 is a memoryless nonlinearity, and we assume 

that f is in the sector [0,k]. We also take U= all square summable sequences.
 
The system G1 is a linear time-invariant system characterized by the transfer
 

function G(z), which we assume to be stable. Condition (iii) of Theorem A.7
 

then says that (G + ) must be passive on U, and, as developed in [A-42,69],

I. k
 1
 

this will be the case if and only if G(z) + is positive real:
 

Re(G(eJw)) + 1 >0 Vw [0,27l) (A.271kk
 

which is precisely Tsypkin's condition [A-33]. The fact that 1 + I G is
 

2
 

invertible can be obtained by analogy with the continuous time results in 

[A-42, Chapter 5] (in fact, this result is a simple consequence of the Nyquist 

criterion when we observe that G is stable and take (A.27) into account). 

Consider the feedback system in Figure A.2. It is clear that the input­

output behavior of this system is the same as that for the system in Figure A.4, 

where M and N are operators (not necessarily causal). As discussed in [A-42,44],
 

one can often find appropriate multipliers so that the modified forward and 

feedback systems satisfy the criteria of Theorem A.7. This is in fact the basis
 

for Popov's criterion [A-37], for its generalizations [A-38,39,40,42,43,44,45],
 

and for Tsypkin's discrete-time version [A-23,44].
 

Consider a nonlinear feedback system as in Figure A.3 but in continuous­

time (i.e. replace G(z) with G(s)), and again suppose f is strictly inside the 

sector [0,k]. Using the multipliers 

1N=I, M 14-as 
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Figure A.3: Linear System with memoryless nonlinear feedback 
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Figure A.4: APFeedback System with MurItipliers
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we can show that the feedback path is also strictly inside the sector [O,k]
 

and hence the modified forward loop must satisfy a passivity condition.
 

Specifically, we obtain Popov's condition (see [A-38]) that the feedback
 

system is finite gain I/0 stable if G is stable (all poles in the left-hand
 

1 
plane) and if (1+cs)G(s) + 1 is positive real for some a>0 -- i.e. if 

Re[(l+jw)G(jw)] + 1>0 Vw 

To obtain Tsypkin's result [A-23,43J, we must in addition assume that f is
 

nondecreasing. In this case, the discrete-time system is finite gain I/0
 

stable if there exists a>0 such that
 

Re[(l+a(l-e - w ))G(e 3 w )] + 1 >0 we [0,27T) (A.28) 

As mentioned earlier, a number of extensions of Popov's criterion in
 

continuous-time are available, and we refer the reader to [A-42,44,45] and
 

in particular to [A-38]. As we shall see, some of the results on digital
 

filter limit cycles resemble Tsypkin-type criteria.
 

Sector nonlinearity characteristics play a major role in the study of 

digital filter limit cycles (see in particular [A-15). Specifically, con­

sider the roundoff quantizer in Figure A.5. This function is inside the 

sector [0,2J (see [A-3,15] for other quantizers and their sector characteristics).
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Using simply the sector nature of a nonlinearity, Claasen, et.al. [A-15]
 

prove the following
 

Theorem A.8: Consider the feedback system of Figure A:3, where f is in the 

sector [0,k]. Then limit cycles of period N are absent if 

Re(G(e 2/N )+1 >0 (A.29) 

for £=0,l,...,N-l. 

If one also takes the nondecreasing nature of f into account, we obtain
 

[A-15]: 

Theorem A.9: If f is inside the sector [O,k] and also is nondecreasing,
 

then limit cycles of period N are absent from the system of Figure A.3 if 

there exist a >0 such that
p­

e a (l-eJ2WP/N) G(e 2 + >0 .(A.30)P=l PIk 

If we take cN- 1 to be the only nonzero a p, we obtain the condition 

derived by Barkin [A-16] which is quite similar to Tsypkin's criterion (A.28). 

Note also the relationship between (A.29) and (A.27). The proofs given in 

[A-15] rely heavily on the passivity relations (A.29),(A.30). Theorem A.8
 

then follows from an application of Parseval's theorem in order to contradict
 

http:A.29),(A.30
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Figure A. 5: A Roundoff Quantizer 
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the existence of a limit cycle of period N. This last step involves the 

assumedoperiodicity in a crucial way, but the application of Parseval and
 

the use of the positive real relationship (A.29) is very reminiscent of
 

stability arguments in feedback control theory [A-42]. In the proof of 

Theorem A.9, the monotonicity of f is used in con3unction with a version of 

the rearrangement inequality [A-40,42J. 

Theorem A.10: Let {xn} and {yn} be two sequences of real numbers that are
 

similarly ordered -i.e.
 

xn<x => Yn<y (A.31) 

Then if Tr 's any permutation 

L Yxr(n)YynYn n (A.32) 

n n 

Corollary [A-40J : If f is a monotone function,, -then for vany sequence 

{x I and any permutation 7T 
n 

(A.33)
if (Xn) [Xn x r(n) ] ">0 

n
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We note that Theorem A.9 bears some resemblance to the multiplier-type results
 

of Popov and Tsypkin. In addition, Willems and Brockett [A-40,42] utilize the
 

rearrangement inequality to obtain a general multiplier stability result for
 

discrete-time systems with single monotone nonlinearities. A thorough under­

standing of the relationships among these results would be extremely useful, as
 

it might lead to new results on nonexistence of limit cycles. In addition,
 

Claasen, et.al. [A-15] have developed a further improvement over (A.30) if f is
 

in addition antisymmetric (f(-x) = -f(x)), and have devised linear programming 

techniques to search for the coefficients at in (A.30). This algorithmic con­p 

cept may prove to be of use in developing search techniques for other, more
 

complex multipliers. Also, Cook [A-70] has recently reported several criteria
 

for the absence of limit cycles in continuous time systems. His results bear a
 

strong relationship to those of Claasen, et.al., [A-15]. In particular, passivity
 

conditions and Parseval's theorem are used in very similar ways in the two
 

papers.
 

We now turn our attention to the relationship between input/output concepts
 

and questions of internal-stability, (i.e. the response to initial conditions).
 

Intuitively, if we have an internal, state space representation of a system with
 

specific input/output behavior G (wirh G(O)=0), we clearly cannot deduce
 

asymptotic stability from input/output stability without some conditions on the 

state space realization. For example, the map GO is input/output stable but 

the realizations
 

xr(t) =x(t), y(t) = xt) (A.34) 

and 

xct) =x(t) + u(t), Y(t)=O 
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are clearly not asymptotically stable. In the first case the state space has
 

an unstable mode, but if we start at x(O)=O (as we would to realize G), we can 

never excite this mode. Hence, I/0 stability can tell us nothing about it. 

In the second case, we can excite the mode but we cannot observe it. These are 

precisely the difficulties that can arise; however, if one imposes certain
 

controllability and observability conditions on the realization, can deduceone 

asymptotic stability from I/0 stability. Thus, controllability and observability 

play a crucial role in translating from I/0 results to Lyapunov-type stability 

results. For a precise statement of the relationship between the two, see
 

[A-49,693. 

Having established the above relationship, it is natural to discuss the
 

generation of Lyapunov functions (which deal with internal stability) for 

systems satisfying some cype of passivity condition. Some of the most important 

work in this area is that of J.C. Willems EA-49,50,691,. In [A-49,69], Willems 

discusses the generation of Lyapunov functiofisfor I/0 stable systems. For passive 

systems he defines the notions of available and required 'energy as the solution
 

of certain variational problems. If one then has a state space realization
 

satisfying certain controllability and observabilty conditions, one can use
 

these functions as Lyapunov functions. This very general, physically motivated 

theory is further developed in [A-50]. Dissipative systems and the associated 

notions of storage function (an internal variable) and supply rate (input/output 

quantity) are defined, and, much as with ?ettwei' pseudopassivity, dissipative
 

systems have many appealing properties (such as preservation under intercon­

nections). We refer the reader to [A-50,69J for details of topics such as the
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construction of storage functions and their use as Lyapunov functions. 

As mentioned at the end of the preceding subsection, many frequency domain
 

results can be derived with Lyapunov-type arguments. We have also seen in this
 

subsection that many of these results can be derived via passivity arguments.
 

Clearly the two are related, and the crucial result that leads to this rela­

tionship is the ialman-Yacubovich-Popov lemma A-61,62,69J, which relates the 

positive realness of certain transfer functions to the existence of solutions
 

to particular matrix equalities and inequalities. Kalman [A-62J utilized this 

result to obtain a Lyapunov-type proof of the Popov criterion, and Szego EA-61] 

(see also the discussion at the end of [A-33]) used a discrete-time version to 

obtain a Lyapunov-theoretic proof of Tsypkin's criterion plus several extensions 

when the derivatLve of the nonlinearity is bounded. In addition, several 

other researchers [A-l,38,39] have utilized similar ideas to relate positive 

real functions to the existence of certain Lyapunov functions. It is beyond 

the scope of this paper to discuss this problem in depth, but we refer the 

reader to the references, since this area of research provides a number of 

insights into the relationships among various stability concepts. In addition, 

these results provide examples of nonlinear problems for which there exist
 

constructive procedures for Lyapunov functions. We also note that the positive 

real lenma plays a crucial role in several other problem areas including the 

stochastic realization and spectral factorization problem [B-21] and the study 

of algebraic Riccati equations [A-67]. 

Finally, we note that many of these passivity-Lyapunov results have ins­

tability counterparts (e.g., see [A-1,39]). We refer the reader to the detailed 

development in [A-39] in which a Lyapunov-theoretic methodology for generating 
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instability results is described. Such results may ,be useful in developing 

sufficient conditions for the existence of non-zero,, undriven solutions such 

as limit cycles.
 

In this section we have iconsidered some of the aspects of stability theory
 

that we feel deserve the attention of researchers in both disciplines. We have
 

not, of course, been able to consider all of the possible topics that one-might
 

investigate. For example, the "]ump phenomenon" in which small changes in
 

input lead to large changes in output a.s of interest in digital 'filter theory
 

[A-32] and also has been considered in feedback control theory [A-4,43], where 

the concept of feedback system continuity is studied. In addition, Claasen, 

et.al. [A-31] have introduced the concept of accessible limit cycles., and ,its 

rel-ationship -to concepts of controllability and also to-the structure of the 

state transition function of the filter are intriguing questions. We also have
 

not discussed the use of describing -unctions in digital filter analysis. There 

have been several attempts'rn this area,(seei[A-5,29]),,but none of these has 

proven to be too successful'(see comments in [A-30]). Except for the work of 

Parkerland Hess [A-26] and Kalman and Bestram [A-48], wehave not spoken about 

bounds on the magnitudes of responses. 'In the digital filtering area these 

exist a number of results [A-31,35,56J, the latter two of which use an idea of
 

Bestram's [A-58] as a starting point. In control theory, the notion of I/0 

gain (A-42,44J is directly tied to response magnitude bounds, although it is not 

clear how tight these would be in-any particular case. Finally, in this section, 

we have not discussed stability criteria for systems with multiple nonlinearities. 

There do exist some results in this area for digital filters (see [A-3,15]), and 
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on the other side, the general framework allows one to adapt results such as
 

Theorem A.7 to the multivariable case with little difficulty (hence one can
 

readily obtain matrix versions of Tsypkin's criterion involving positive real
 

matrices). Also, the techniques of Lyapunov theory should be of some use in
 

obtaining stability results much like those in [A-2] for filters of higher
 

order than the second order section.
 

As we have seen many of the results in the two disciplines involve the
 

use of very similar mathematical tools. On the other hand, the perspectives
 

and goals of researchers in the two fields are somewhat different. The develop­

ment of a mutual understanding of these perspectives and goals can only benefit
 

researchers in both fields and is in fact absolutely crucial for the successful
 

study of certain problems0 For example, in the implementation of digital
 

control systems one must come to grips with problems introduced by quantization.
 

Digital controller limit cycles at frequencies near the resonances of the
 

plant being controlled can lead to serious problems. In addition, the use of
 

a digital filter in a feedback control loop creates new quantization analysis 

problems. Recall that limit cycles can occur only in recursive (infinite im­

pulse response) filters, while that do not occur in nonrecursive (finite impulse 

response) filters. However, if a nonrecursive filter is used in a feedback
 

control system, quantization errors it produces can lead to limit cycles of the
 

closed-loop system [A-72]. How can one analyze this situation, and how does
 

one take quantization effects into account in digital control system design?
 

Questions such as these await further investigation.
 



B. 	Parameter Identification, Linear Prediction, Least Squares, and
 
Kalman Filtering
 

A problem of great importance =n many disciplines is the determination 

of the parameters of a model 'given observations of the physical process being 

modeled. In control theory this problem is often called the system identifi­

cation problemr and it arises in many contexts. The reader is referred to the 

special issue of the IEEE Transactions on Automatic Control 'B-15] and to the 

a 
'survey paper of Astrom and Eykhoff [B-16] for detailed ,discussions and numerous
 

references in this problem area. One bf the most important applxcatmons 'of 

identification methods is adaptive estimation and control. Consider the situa­

tion depicted in Figure B.1. Here we have a physical process that is to be
 

controlled or whose state is to be estimated. Many of the most widely used
 

estimation and control t,chniques are based on a dynamic model (transfer
 

function, state space descriptron, ,etc.) for the system under consideration. 

,ence it as necessary to obtain ,an appropriate model in order to apply these 

techniques. Often, one can perform 'testson the process xbefore designing the 

system and ,can'apply an identificaton procedure to determine the system. On 

the other hand, there are many occasions in -which the values of certain system 

parameters cannot be determined a priori or are known to vary during system 

operation. In such cases, one may often design a controller or estimator 

"which depends explicitly on these parameters. In this manner we can adjust 

the parameters on-line as we perform real time parameter identification. A 

number of methods of this type exist, -nd, in addition to the two surrey 

references [B-15,16J, we refer the reader to [B-80,81,98] for other examples.
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Figure B.1: Conceptual Diagram of an Adaptive Estimator-Controller
 
Utilizing On-Line Parameter Identification 



The last of these, [B-98J is of interest, as it consists of a variety of
 

control of the F-8C aircraft,
adaptive control techniques all applied to the 

and thus provides some insight into the similarities, differences, advantages,
 

and disadvantages of the various techniques.
 

A little thought about the identification problem makes it clear that 

there are several issues. Before one can apply parameter identification
 

schemes, one must have a parametric model, and the determination of the appro­

priate structure for such a model is a complex question in itself. We will 

not consider this issue in much detail in this paper, and we refer the reader
 

to the references for details (see several of the papers in [B-15] on canonical
 

forms and identifiability; also see the work of Rissanen and Ljung [B-79J).
 

Parameter identification problems also arise in several digital signal
 

processing applications. Several examples of such problems are given in the
 

special issue of the Proceedings of the IEEE [B-99J, ,andthese include (see
 

[B-26]) seismic signal processing and the analysis, coding, and synthesis of 

speech. This latter application has received a great deal ,of attention in the 

past few years [B-24-26,28-30,44-55,69-71,74], and we will use this problem as 

a basis for our discussion of the adentification question. We follow the work 

Atal [B-48],Ataland Schroeder [B-70, Markel and Gray [B-44], and Makhoul [B-26J. 

Our presentation is necessarily brief and intuitive, and the reader is referred
 

to these references for details.
 

As discussed in [B-44] a popular and widely accepted model for a discretized
 

speech signal {y(k)} is as the output of -a linear system, which, over short
 

All of these pro3ects were sponsored by NASA Langley. This "'fly-by-wire"
 
adaptive control program is still in its evolutionary stages, and new methods
 
and concepts are still being developed.
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enough intervals of time, can be considered to be time-invarLant
 

y(z) = G(z)U(z) (B.l)
 

where G represents the overall transfer function and U(z) is the z-transform 

of the input, which is often taken as a periodic pulse train (whose period is 

the pitch period) for voiced sounds and as white noise for unvoiced sounds. 

In addition, a common assumption is that G is an all-pole filter 

G(z) = 1 (B.2) 
p 

a zz-k1 + 

k=l
 

This assumption has been 3ustified in the literature under most conditions,
 

although strong nasal sounds require zeroes [B-44]. Note that under condi­

tion (B.21, equation CB.1) represents an autoregressive (AR)process
 

y(k) + a y(k-l)+...+apy(k-p) = uk) (B.3) 

The problem now is to determine the coefficients a1 ,...,a p . Having
 

these coefficients, one is in a position to solve a number of speech analysis
 

and communication problems. For example, one can use the model (B.2) to
 

estimate formant frequencies and bandwidths, where the formants are the 

resonances of the vocal tract [B-55J. In addition, one can use the model
 

(B.3) for efficient coding, transmission, and synthesis of speech B-70].
 

The basic idea here is the following: as the model (B.1)-(B.3) indicates, 

the speech signal y(k) contains highly redundant information, and a straight­

forward transmission of the signal will require high channel capacity for 
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accurate reconstruction of speech. On the other hand, rearranging tertms in 

(B.3) 

p 

y~k) a y(k-i) + u(k) (B.4) 

we see that .(B.4) represents a predictor, in which
 

p 

y(k) =- 3 aI(k i) (B.5)
i=l
 

is the one-step predicted estimate of y. As discussed in [B-70], one often 

(and, in particular, in the speech problem) requires far fewer bits to code the 

prediction error u than the original signal y. Thus, one arrives at an efficient 

transmission scheme (linear predictive coding -- LPC): given y, estimate the 

a , compute u, transmit the a and u. At the receiver, we then can use1 1 

(B.4) to reconstruct y (of course, one must confront problems of quantization, 

and we refer the reader to the references (e.g., [B-119]) for discussions of 

this problem). An alternative interpretation of this procedure is the following: 

gives y, estimate G in (B.2), pass y through the inverse, all zero (moving 

average -- MA) filter l/G(z), transmit the coefficients in G and the output of 

the inverse filter. At the receiver, we then pass the received signal through 

G to recover y (thus this procedure is causal and causally invertible).
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The question remains as to how one estimates the a . The most widely 

used technique in the literature is linear prediction. Using the inter­

1 
pretation of 1 - 1 as a one-step predictor for the signal y, we wish to 

choose the coefficients al,...,a to minimize the sum of squares of the pre­

2
diction errors 

J e 2 (n) (B.6) 

n 

e(n) = y(n)-y(n) 

Here we assume that we are given y(O),...,y(N-l). Also, the range of n in 

the definition of J can be chosen in different manners, and we will see in 

the following subsections that different choices can lead to different results 

and to different interpretations. A number of these interpretations are 

given in [B-26,44J, and we will discuss several of these as we investigate 

this problem somewhat more deeply. Specifically, in the next two subsections 

we consider two linear prediction methods -- the autocorrelation and covariance 

methods -- and we relate them to several statistical notions of importance in 

control and estimation applications. Following this, we will discuss several 

other identification methods and their relationship to the speech problem. 

2 We note that one can modify the linear prediction formulation in order to take 
into account' the quasi-periodic nature of speech for voiced sounds. We refer the 
reader to [B-70] in which such a procedure is developed in which one also obtains
 
an estimate of the pitch period. An alternative approach to this problem is to 
solve the linear prediction problem as outlined in the next two subsections, pass
 
the speech through the inverse filter, and analyze the resulting signal to determine 
the pitch [B-25,44]. Recently, Steiglitz and Dickinson [B-100] have described a 
method for improving pole estimation by completely avoiding that part of a voiced 
speech signal that is driven by glottal excitation. 
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Before beginning these investigations, let us carry out the minimization
 

required in linear prediction. Taking the first derivative of J with respect
 

to the a and setting these equal to zero, we obtain the normal equations 

p 
a1c k 	= -C k 'kl'wP(B.7)
 

i=l 

where
 

cik = y(n-i)y(n-k) (B.8) 
n 

These equations are typical of the types of equations that arise in linear, 

least-squares problems, and their efficient solution has been the topic of
 

many research efforts. This issue is the central focus in the next two
 

subsections.
 

B.1 	The Autocorrelation Method, Kalman Filtering for Stationary 
Process, and Fast Algorithms 

Suppose we consider minimizing the sum-squared error in (B.6) over the 

infinite interval, -o<n<-. Here, we define y(n)=O for n<O, n>N. In this
 

case, we find that
 

C s(n)s(n+ji-jj) 4'r(I--jI) 	 (B.9) 
nI-O
 

and the normal equations become
 

Ta = 	 a (B.10) 
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where a' = (al,...,a), c' = (-r(l), -r(2),...,-r(p)), and T is a symmetric 

Toeplitz matrix [B-37,84,91] (i.e. the zjth element depends only on 11-31):
 

r(0) r(l) .... r(p-1) 

T - r(l) r(O) .... r(p-2) (B.11) 

r(2) r(l) .... r(p-3) 

r(p-l) r(p-2) . r(O) 

Before we consider the solution of (B.10), let us derive equations of the
 

very same form from a probabilistic point of view (here we follow [B-261). 

Suppose that y is a stationary random process, and, instead of (B.6), we are 

interested in minimizing 

= E(e2 ) (B.12)
 

where e and y are defined as before (although they now are random processes 

themselves). Differentiating (B.12) as before, we obtain the normal equations 

Ta = c 

where c' = (-R(l),-R(2),...,R(p)), T is the symmetric Toeplitz matrix whose 

ijth element is R(I-2 I), and R(i) is the autocorrelation 

R(i) = E(y(n)y(n+i)) (B.14) 

Examining (B.9)-(B.14), we see that the two formulations are strikingly similar,
 

and, one can view (B.9) as a method for estimating the autocorrelation of
 

http:B.9)-(B.14
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an ergodic, stationary process [B-26J (if we normalize (B.9) appropiately). 

This statistical point of view is extremely usefu in order to obtain certain 

insights into the approach and also in order to allow us to connect this method 

with certain recent results in linear estimation theory (see [B-44J for several 

other interpretation of this method). 

The solution of equations such as (B.10) and (B.13) has been the sub3ect
 

of a great deal of attention in the mathematical, statistical, and engineering
 

9 5
 
literature [B-4,7,26,34,35,36,37,50,72,84 ,91,9 4 , ,9 6J. An efficient 

algorithm was proposed by Levinson [B-34J, improved upon by Durbin [B-94J, and 

studied in the speech processing context by several authors, including Itakura 

and Saito [B-50](a version of this algorithm is given later in this subsection). 

As discussed in [B-26,44], the method essentially consists of solving forward 

and backward prediction problems- of increasing size in a recursive manner and 

is known to be extremely efficient. That is, the algorithm computes the coef­

ficients a(ljj,...,a(iji) for the best prediction of y(n) based on 

y(n-1),...,y(n-i) and the coefficients b(11),...,b(tl) for the best prediction 

of y(n-i-l) basedl on y(n-i) ,... ,y(n-l). The algorithm iterates on i. AS a 

part of this algorithm, one computes the prediction error (for both forward and 

backward prediction), and thus one can determine when to stop based on the size 

of this quantity. Also, we must compute a coefficient k , which is known as the 

partial correlation coefficient between the forward and backward prediction
 

errors (see [B-26,44,50]). We will mention this quantity again at the end of
 

this subsection0
 

Let us now examine what this algorithm means from a statistical point of
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view. The first stage of the algorithm produces a(lil) and b(ljl), which
 

are the coefficients of the best one-step predictors
 

y(1) = -a(lll)y(O) 
(B.15) 

y(O) = -b(lll)y(l) 

At thenext stage, we have a(112), a(212), b(I2), b(212)
 

y(2) = -a(1j2)y(l) - a(212)y(O) 

(n.16)
 

y(O) = -b(112)y(l) - b(212)y(2) 

Continuing, we find that after i steps we have the predictors
 

1 

y(U) = - aC31.)y(1-3) CB.17) 
3=1
 

y(O) = - b(?jl )y(n) (B.18) 
j=l 

Thus, we can think of the linear prediction solution as providing us with 

the tame-varying coefficients of the weighting pattern of the optimal one-step 

predictor (B.17) or of the optimal initial time smoother (B.18). Note that 

these coefficients are, in general, time vayilng in the following sense: 

from (B.17), we see that a( li) is the coefficient that multiplies the data 

point that occurs j units of tine before the one whose value we wish to predict. 

If the filter were time-invariant, this would not depend on a. The reason 
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for the time-varying nature of the predictor coefficients is that, although
 

the y's are a stationary process, the mechanism of prediction is time-varying
 

when one bases the prediction on only a finite set of data (recall that the
 

time-invariant Wiener filter assumes an infinite record of observations).
 

What does this mean as far as all-pole modeling via linear prediction
 

goes? The answer to that is not much. In the all-pole modeling problem, we
 

are equivalently only interested in designing a FIR filter -- i.e. a prediction
 

filter that produces the best estimate of y(n) gives the "data window"
 

y(n-l),...,y(n-p). The coefficients of such a filter are precisely
 

a(lip) ..... ,a(pjp), and it doesn't matter (except from a computational point
 

of view) that these coefficients were generated as part of a time-varying
 

filter weighting pattern.
 

On the other hand, the time-varying weighting pattern interpretation is
 

extremely important from a statistical point of view, especially if one
 

wishes to design recursive predictors that are capable of incorporating all
 

past measurements and not 3ust a data window. Clearly one inefficient way to
 

do this is to implement a nonrecursive filter that stores all past data
 

y(),...,y(n-l), multiplies by the appropriate a(in), and combines to form
 

y(n). This requires gorwing memory and is hardly appealing. How can one avoid
 

such difficulties? An answer that is popular in state-space control and
 

estimation theory arises if y has a Markovian representation3
 

x(kg-l) = Ax(k) + w(k) 
(B.19) 

y(k) = c'x(k)
 

3We will briefly discuss the problem of finding such a representation later 
in this section. 
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where x is a random n-vector (x(O) is assumed to be zero mean), A is a cons­

tant nxn matrix, c is a constant n-vector, and w is a zero-mean uncorrelated 

sequence (uncorrelated with x(O)) with 

E(w(k)w'(k)) = Q (B.20) 

The correlation coefficients of y can be computed from the equations
 

E(y y((j)) = c'E(x(k)x'(j))c (B.21) 

Ak-j P(3) k>j 

E(x(k)x'()) (B.22) 
[E(x(j)x' (k))]' k<3 

where P is the covariance of x, which satisfies
 

P(j+l) = Ap(j)A' + Q (B.23) 

Note that in general E(y(k)y(j)) will not depend on (k-)) alone. This will 

occur if and only if A is a stable matrix and P=P(O) satisfies the Lyapunov 

equation 

APA' - P -Q (B.24) 

(in which case both x and y are stationary). 

Suppose now that (B.24) holds and that 

R(Ii-jI) = c'AI'-jIPc (B.25)
 

where the RWi) are the quantities defined in (B.13)-(B.14). We now wish to
 

http:B.13)-(B.14
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design an optimal predictor for estimating (recursively) y(n) given
 

y(O) ,...,y(n-l). This is a standard state-space estimation problem [A-65] 

and the solution is the Kalman filter (which actually produces a prediction
 

for the vector x(n)): 

y(n) = c'x(n) 

A A 

x(n) = Ax(n-1) + AK(n-l)y(n-l) 

(B.26) 

y(n-l) = y(n-l) - y(n-l) 

x(O) = 0 

4 

where the time-varying gain 
satisfies

)= nn bc (B.27) 
c'P(n n-l)c 

Here P(njn-l) is the covariance of the prediction error x(n) -x(n),
 

P(n+lln) = AP(nln-l)A' + Q AP(nn-l)cc'P(nln-l)A' (B.28)
 
c'P(nln-l)c
 

Let us make a few comments about these equations. Note that the filter 

innovations y(n) is precisely the prediction error, and its covariance is
 

c'P(nin-l)c, which is nothing more than (B.12). Also, recall that in the
 

all-pole framework, we could alternatively view the prediction filter as
 

specifying an inverse filter, which took the y's as inputs and produced the
 

4Note that we require c'P(nln-l)@ 0. As discussed in [B-671, this requires the 
positivity of the covariance R(i), which is clearly related to the statement 
that y(n) is not a deterministic functions of y(0),...,y(n-1) for any n.
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uncorrelated sequence of prediction errors as the output. In the context
 

of the Kalman filter, the analogous filter is the innovations representation
 

(see representation IR-I of [B-67]), in which we view the output of (B.26)
 

as being y(n). Finally, note that one can compute the predictor coefficients
 

a(jji) as the weighting pattern of the filter:
 

a(ijl) = c'AK(O) 

a(12) = -c-AK(l) a(212) = -cA 2K(O) + c'AK(l)c'AK(O) (B.29) 

The Kalman filter and innovations representations have been the subjects of
 

a great deal of research in the last 15 years, and the technique described
 

5
 
above has been studied in discrete and continuous time , for multiple output
 

systems, for time-varying systems, and for systems in which the actual obser­

vations are noisy versions of the y's
 

z(n) = y(n) + v(n) (B.30) 

We refer the reader to the many references on this subject, including [A-65],
 

[B-7,58,67].
 

Examining (B.26)-(B.28), we see that the computation of the recursive 

filter coefficients requires the solution of the (discrete time) RJccati 

equation (B.28). If x is an n-vector, then (using the fact that P is symmetric), 

We note that in continuous time one has a somewhat more difficult time --i.e.
 
we don't consider "one-step" prediction and in fact run into difficulties if
 
we assume we observe y as opposed to a noise-corrupted version. We refer the
 
reader to [B-67] and to the references therein for more on this problem.
 

5 

http:B.26)-(B.28
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(B.28) represents n l equations. For reasonably large values of n, this
2 

can be an extreme computational load, especially given that all that is needed
 

for the filter is the gain matrix K, which in the scalar output case is an 

n-vector. Also, if there are m outputs, K is Mm, and, as is often the case, 

the number of parameters in X is much smaller than the number in P(i.e. m is 

substantially smaller than n). Thus, the question of computing K without P 

arises quite naturally, and this issue -- in both continuous and discrete tme, 

in stationary and in some nonstationary cases -- has been the subject of 

numerous papers in the recent past [B-1-8,23,39,40,56,60,64-66,72,73,77].
 

It is not our intention here to discuss these techniques in detail. What
 

we do want to do is to point out that the underlying concepts that have led
 

to these "fast algorithms" (at least in the stationary case) are the same as 

those that lead to the Levinson algorithm. For some historical and mathematical
 

perspective on this subject, we refer the reader to [B-4,7,63, and 66]. In
 

particular, the extension of the Levinson algorithm to the multavariable case
 

is discussed in these papers (see also references [B-35,36]). In this case,
 

the matrix T in (B.l0) or (B.12) is block-Toeplitz, and the extension to this 

case is decidedly nontrivial (for other methods for handling equations involving
 

block-Toeplitz matrices, we refer the reader to [B-37,56,84,91,95,96]). Also,
 

in [B-4], the derivation of the Levinson type algorithms and Kalman gain equa­

tions in discrete and continuous time are shown (in the stationary case) to 

rely on the simultaneous solution of forward and backward filtering problems 

(thus introducing a "backward innovation process," representing backward
 

prediction errors). It is also shown that both continuous and discrete algorithms
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are obtainable from the Bellman-Krein formulas [B-4,7,42,43,64,65,66], which 

describe the evolution of the weighting pattern of the optimal estimator of a 

stationary process. From this, one can obtain the Levinson algorithms (and its 

continuous analog) and some well-known relationshipswith orthogonal polynomials 

[B-4,41]. If one knows that the process y has a Markovian representation, one
 

can then take the Levinson-type equations together with the state space repre­

sentation and obtain fast algorithms for the Kalman gain. An excellent treatment
 

of this is given in [B-4], and it is recommended that the reader compare the dis­

crete-time results here to those in [B-26,44] in order to see the relationship 

between the linear prediction equations and the version of the Levinson algorithm 

derived in [B-4J. For a thorough historical perspective, we recommend the
 

survey paper [B-7].
 

In this paper we will limit ourselves to a brief outline of one of the
 

derivations in [B-4] . Let y (n) be a vector stationary, zero mean process with 

covariance 

R(t-s) = E(y(t)y(s)') (B.31) 

We observe the process
6
 

z(n) = y(n) + w(n) (B.32) 

where w is a zero mean, uncorrelated process, uncorrelated with y, with
 

covariance
 

E(w(n)w(n)')=I (B.33)
 

Let y(tir) denote the wide sense conditional mean of y(t) given z(D),...,z(r),
 

then [B-4] 

As before, one can take w=0 if R is positive definite. Lindquist discusses this 
in [B-4]. 

6 
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r 
y(tlr) s--Gr(t'S)z (S) (B.34) 

-where the weighting pattern is defined by 

(st (B.35)G (t,s) = EEY(tlr)y(sjr)] = 

(here j(i13) is the estimation error y(') - y(l1). Also, the G satisfy the
 

,(Toeplitz) equations
 

r 

r (t-,s) + G (ti)R(i-s) = R(t-s)
 

(B.36)
 
r 

GC (t,s) + R(t-i)G (i,s) = R(t-s)
 

(tlt-l) is the one-step prediction estimate,,and from (R.34) we
Note-that 


can identify (in the scalar case)
 

(B.37)
Gt_(t,s) = -a(t-sjt) 


Comparing (B.36),(B.37), we see that we have similar equations (the first 

term,on the left-hand side of'(B.36) comes from the presence of *, but these 

equations can also be obtained when w=O if we can write R7=qj + P- for some 

positive semidefinite R -- see [B-9]). Also, as pointed out in [Bw4], the 

Toeplitz equations are the counterparts of certain Fredholm resolvent equations 

that arise in the continuous case [B-64,651. 

http:of'(B.36
http:B.36),(B.37
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Lindquist's derivation of the fast algorithms for computing Gt1 (t,s)
 

(one-step prediction) and Gt (t,s) (filtering estimate) begins with the Bellman-

Krein formulas 
7 

G+ l (t,s) = r(t,s) - Gr+l (tr+l)Gr(r+l,s) 

Gr+l (t,s) = r(t,s) - Gr (tr+l)Gr+l(r+l,s) 

We next define the "backwards weighting pattern" 

* 

Gr (t,s) = Gr (r-t,r-s) (B.38) 

and the matrix polynomials 

t 

W(z) I - sGt% (S-l,-l) (B.39) 
s=l 

tW(z) = zt - ZsG l(-lI,- (B.40) 

As pointed out in [B-4], in the scalar case these polynomials are related to
 
1 

the Szega polynomials. Also, if we let 4t,) denote the coefficient of z in 

(similarly for 4 ), and if we use (B.34), (B.35), (B.38)-(B.40) we obtain the 

prediction and smoothing equations
 

:7 
We note that the existence of two such formulas is related to the existence of
 

both a one-step prediction and a filtering estimate, which is in clear distinction
 
to the continuous-tme case, in which we only have one such formula and filter. 
Indeed, the disbrete time problem leads to a number of different types of innovations
 
representations (see discussion in [B-67]) and also leads to more complex equations
 
to be solved for the weighting pattern and gain. We refer the reader to [B-4,67,
 
101,102 for more on the differences between the continuous and discrete time cases.
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t-i
 

y(tjt-1) = - Z *' z(i) (.41) 

1=0 

Thus, if we can recursively compute 4t , we can recursively solve for the 

weighting pattern of the desired predictor. Utilizing the Bellman-Krein 

equations, Lindquist derives these recursions, which yield the mltivariable 

Levinson equations:
 

t+l (Z ) 
= t(z) - z4t(z)r t , %0(z)=i (B.43) 

t+l(Z ) 
= #t(z) - ot(z)*t • 0(z)=' (B.44) 

- int *r*'(.5 
St+l = tRt t (B.4) 
R * -R-R (.6 

Rt+ 1 = t - rtt t (B.46) 

t-l 

St = R(t+l) - R(t-)Gtl(i,-l) (B.47)
i=0
 

tr (R St = Rtr t (B.48) 

Here, Rt plays the role of forward prediction error, Rt is the backwards error,
* 

and rt, Ft are the multidimensional analogs of the partial correlation
 

coefficient introduced earlier. These relationships can be seen much more
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easily if one looks at the scalar case and uses the followIng special relationships 

that hold in this case (note that these include the fact that in the scalar case the 

forward and backward predictors are essentially the same -- a statement that is not 

true in the vector case); 

t * -1 
)= z kcz )F rt (B.49) 

Then, the algorithm becomes
 

* * t (z-1).
(t+lz)=zt(z)- (Bo50) 

Ft = (B.51) 

rt = [R(t+l) - I R(t-i)G l(',-l) /R (B.52)
 

and the comparisons with the usual Levinson equations (equations (3 8 a) ­

(38q in [B-26J) are clear. 

Following this development, Lindquist next considers the case in which
 

the y's have a Markovian representation. Using the algorithm (B.43)-(B.48),
 

he is able to obtain a fast algorithm for the Kalman gain. For the details 

of this derivation, we refer the reader to [B-41. 

Finally, we note that there are numerous physical and mathematical 

relationships between fast algorithm that have been derived in a number of 

disciplines. As discussed in [B-26,44J, the auxiliary variable ki in the 
8 

scalar Levinson algorithm has an interpretation as a reflection coefficient, 

We note that in the multivariable case, the k have two matrix counterparts 

(rt and Ft in [B-4J) which in general coincide only in the scalar case. This is 

due to the fact that the covariance matrix R is only block Toeplitz. This also 
leads to the differences between the forward and backward predictors, which in 
turn leads to an increase in computational complexity in the vector case). 

http:B.43)-(B.48
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and this fact has been utilized in speech processing, in which these coef­

ficients specify certain parameters in an acoustic model of the speech process 

[B-26,44J. I addition Casti and Tse [B-40J Kailath [B-6,7] and sadhu and 

Cast EB-llJ have shown that the fast Kalman gain algorithms are closely related 

to the work of certain astrophysicists, in particular chandrasekhar [B-38], 

who devised algorithms for solving finite time Wiener-Hopf equatiorm arising in 
radiative transfer. Also, relationships between linear filtering and scat­

tering theory have been brought to light in the recent papers [B-77,101,102]. 

And finally, for a good overview of some of the mathematical relationships, 

we refer the reader to Genin and Kamp [D-145J. These ideas are of interest in 

that seeing these algorithms from several perspectives allows us to gain insight
 

into their properties, potentials, and limitations. 

B.2 The Covariance Method, Recursive Least Squares Identification, 
and Kalman Filters
 

Consider again the normal equations (B.7), (B.8). We now consider the 

range of n to be only as large as the actual data allows -- i.e., in equation 

(B.3) we will require that k, k-l,...,k-p all be within the range 0,...,N-1. 

,This leads to the following range for n
 

p < n < N-I (B.53) 

Note that in this case the normal equations become 

Sa = -d (B.54) 

where d' = (c 0 1 ,c 0 2 ,...,c 0p), and S is the symmetric matrix whose ijth 

element is c 3. Note that c, 3 is not in general a function of i-3, and thus 

S is not Toeplitz. 
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We note that this method also has several interpretations. As discussed
 

by Makhoul [B-26], one can obtain equations of identical form as the linear
 

least squares predictor for a nonstationary process. In addition, as discussed
 

in [B-44], if one makes a Gaussian assumption, then the covariance method
 

produces the conditional maximum likelihood estimate of a, given y(O),...,y(p-l).
 

We refer the reader to [B-44J for several other interpretations of the cova­

riance method. 

Turning to the solution of (B.54), we find that the fast methods described 

in the preceding section do not carry over quite so nicely, since S is not 

Toeplatz. In [B-44], however, a method analogous to the Levinson routine, 

in that it iterates on the order of the predictor filter and computes forward 

and backward predictors simultaneously, is described. This method is not 

nearly as efficient as in the autocorrelation case, and this can be traced to 

the fact that (B.49) does not hold in this case (even for the one-damensional 

problem). As discussed in [B-44], the solution to the autocorrelation and 

cpvaraance equations can be viewed as performing a Cholesky decomposition, 

or equivalently a Gram-Schmidt orthogonalization, of T and S. In the Toeplitz 

case, very fast algorithms exist for Cholesky decomposition (see the previous 

section and [B-37]), while this procedure is somewhat slower for symmetric, 

non-Toeplitz matrices. Recently, however, Morf, et.al. [B-71] have obtained 

fast algorithms for the covariance method by exploiting the fact that, although 

S is not Toeplitz, it is the product of Toeplitz matrices (see equations (B.56)­

(B.59)). We refer the reader to [B-71] for the details of several algorithms 

that essentially involve embedding the original scalar prediction problem into
 

a multidimensional one to which the fast vector Levinson algorithm can be
 

applied.
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Let us take a look at the covariance method from a slightly different
 

point of view. Recall that the algorithm mentioned above and the one in the
 

preceding subsection involve recursions on the order of the filter given a
 

fixed set of data. Suppose now we consider a recursion for updating coefficients
 

of a fixed order filter given more and more data. To do this', we refer to the
 

survey paper [B-16J, where the covariance method, termed the "least squares 

method" is discussed 9 Given the data y(0),...,y(N-l), the covariance method 

attempts to find a least squares fit to the equation 

LN-la = fN-1 (B.55) 

where
 

-y(p-1) -y(p-2) ... -y(0)
 

LN-I -y(p) -. (p-l) ... -y(l) 
 (B.56) 

-y(p+l) -y(p) ... -y(2) 

-y(n-2) -y(N-3) ... -y(N-p-l) 

a y (p)a " f - yC(p+l) (B.57) 

apj
 
y(N-l) 

9in this survey paper the autocorrelation method -- called the "correlation 
method" -- is also discussed and is compared to least squares 
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The least -squares solution is given by
 

(L1LN) a = L'- f (B.58) 

which can be seen to be identical to (B.54). Thus, the covariance method
 

computes 

a(N-l) =(%-I LN) ;-l f - (B.59) 

A 

Suppose we have a(N-l) and we now obtain the new data point y(N). We would 

A 
like to update our estimate to a (N) in a manner more efficient than re-solving 

(B.58) from scratch. Following standard recursive least squares (RLS) procedures
 

[B-16J, we note that incorporation of y(N) into (B.55) adds a new equation 

-- i.e. it adds a last row to -I
 

Zr (N) = (-y(N-l), -y(N-2) ,...,-y(N-p)) (B.57) 

and a last element, y(N), to fN-l Thus, (B.55) takes the form 

'N1 a fN-1:]y (N) (B.58)(N) 

and (B.59) becomes 

-l-1 k(N)' [; (B.59)a(N) = + (N) - i N- + 2(N)y(N) 



-72-


With the aid of the matrix inversion lemma [A-65], we can rewrite (B.59)
 

a(N) = a(N-l) + K(N) [y(N)-i'(N)a(N-1)) -	 (B.60) 

where
 

K(N) = 	 P(N-l)Z(N) (B.61) 

i+P' (N) P (N-1) £(N) 

and
 

P(N) = ( % )3 - I = P(N-l) P(N-l)Z(N)Z,'(N)P(N-1) 	 (B.62)i+' (N)P(N-l)t,(N) 

Examining these equations, we see that they represent a Kalman filter
 

(see [B-17). In fact, eferring to [B-24,47], we see that these are
 

precisely the Kalman filter equations used by Melsa, et.al. in speech processing.
 

Specifically, they consider the dynamic equations
 

a(k+l) = ak) (B.63) 

y(k) z'(k)a(k) + v(k) (B.64) 

where 

z' (k) 	 -(y(k-l),y(k-2),...,y(k-p))' (Bo65)
 

and v(k) is a zero-mean, white process with 

E(v2(k)) = T (B.66) 
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If T is set to 1, we obtain the solution to the covariance equations. Also, 

in this formulation, P(N) has the interpretation as the covariance of the 

estimation error a-a(N), 

Let us note some of the properties of the recursive solution (B.60)-

A 

(B.62). Examining (B.60), we see that the increment in our estimate a is 

proportional to the error (innovations) in predicting the latest value of y
 

using preceding values and our previous estimate of a. This suggests that a
 

monitoring of the residuals 

r(N) = y(N) - ' (N)a(N-1) (B.67) 

can be used to help detect abrupt changes in the predictor coefficients 0or 

the presence of glottal excitation in voiced sounds. In this manner one may 

be able to improve upon the estimation of a. Whether such a procedure would 

be of value is a matter for future study. We only note here that such techniques 

have been developed and have been successfully applied to a variety of problems 

including the detection of arrhythmias in electrocardiograms [B-103,104]. Also, 

it is possible to make the filter more responsive to changes in the coefficients 

by using one of several methods available for adjusting Kalman filters [A-65J.
 

These include exponentially age-weighting old data in favor of the more recent
 

pieces of information or the modeling of a as a slowly-varying Markov process
 

aCk+l) = Aa(k) + w(k) (B.68) 

where A is a stable matrix, and w is zero mean white noise with covariance Q. 

In this case, equation (B.60)-(B.62) become
 

1We note that Bergland [B-124] has suggested monitoring the residuals of a linear
 
predictor in order to determine when to update the estimates of the predictor 
coefficients.
 

10 
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a(N) = Aa(N-l) + K(N) [y(n) - 2' (N)Aa(N-l] (B.69) 

K(N) = P(NIN-)(N) (B.70)
 
1+9' (N) P (N IN-l) k (N) 

P(NIN-1) = AP(N-IN-l)A' + 
 (B.71)
 

P(NIN) =P(NIN-) - p(NINlt(N)(N)PNN-)(B.72)
 
1+9,'(N)P(NIN-1)P(N)
 

Again, the utility of such a procedure is not clear, and further thought and
 

experimentation is necessary.
 

Let us now consider the computational complexity of (B.60)-(B.62).
 

First note that one does not have to compute the correlation coefficients
 

(elements of S in (B.54)). However, one does have to calculate K(N) at every
 

stage, and if one solves for the gain from the Riccati equation (B.62), one
 
2
 

has on the order of p multiplications per stage. However, Morf, et.al. [B-71]
 

and Morf and Ljung [B-120] have exploited the structure of the equations to
 

obtain fast algorithms for the direct computation of K. Combined with the fast
 

algorithm mentioned earlier, one now has efficient recursive procedures for
 

the covariance method as one increases either the order p of the predictor or
 

the number N of data points (or both simultaneously). The most efficient 

procedure is to use p=l and process the data points successively. At the end 

of this procedure, one can then increase p until an acceptable prediction error 

is obtained. We refer the reader to [B-71,120 for details. 

http:B.60)-(B.62
http:p(NINlt(N)(N)PNN-)(B.72
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We also note that Gibson, et.al. [B-47] have proposed a filter of the 

same structure as (B.60)-(B-62) but that requires far fewer multiplications
 

per stage (the order of p). This procedure is based on stochastic approxi­

mation methods and replaces (B.6l)-(B.62) with
 

K(,) = g2I(N) (B.73)l00+Z'(N)Z(N) 

where g is a gain to be determined by experimentation (see[B-47])ll. We 

refer the reader to [B-24,47] for details and experimental results.
 

Finally, we turn to one final note concerning the relative merits of 

the autocorrelation and covariance methods. As pointed out by Makhoul 

[B-115], the autocorrelation method offers the advantage of guaranteering the 

stability of the resulting all-pole filter; however, the fact that the method
 

relies on setting y(i)=0 outside the available range of data leads to spec­

tral distortion. The covariance method, on the other hand, avoids the dis­

tortion problem by not considering points outside the given range, but it need 

not lead to a stable filter. As stability for these methods is guaranteed if 

and only if all of the reflection coefficients have magnitude less than one
 

[B-30,115], a number of modified covariance-type methbds that have this pro­

perty have been devised. We refer the reader to [B-115] for a discussion of 

the relative merits of several methods and a new fast algorithm. We also note 

that Morf, et.al. [B-71] point out that if one considers a hybrid method -­

we define y(3)=0, N+I< <N+p but do not use y(j), J<O -- we can guarantee the 

in [B-47] the gain K(N) is calculated in a slightly different way because
 
of the inclusion of quantization effects.
 

-1 
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stability of the resulting filter and can still obtain fast algorithms 

(due to the product of Toeplitz form of the covariance matrix). 

B.3 Design of a Predictor as a Stochastic Realization Problem
 

A problem that has attracted a great deal of attention in the control
 

and estimation literature is the stochastic realization problem (B-7,11,13,
 

15,20,21,22,37,63,67,72,85,90,105]. Briefly stated, (a special version of)
 

the stochastic realization problem asks the following: given a stationary
 

Gaussian random process y (taken as a scalar here for simplicity1 2) with
 

correlation function R(n), find a Markovian representation
 

x(n+l) = Ax(n) + w(n) 
(B.74)
 

y(n) = c'x(n) 

where w is a zero mean white noise process with covariance Q. Referring to
 

(B.191-(B.25), we see that this is equivalent to finding a factorization of
 

R of the form
 

RUi) = c'A% (B.75) 

where 

b = Pc 

(B.76)
APA'-P = -Q 


Examining (B.75), (B.76), we see that the algorithm falls naturally into
 

two pieces: (1) find a triple (A,b,c) satisfying (B.75); (2) find P and Q
 

satisfying (B.76). One of the best-known studies of this problem is that of
 

12We note that the various algorithms discussed in this section have been extended
 
-- in most cases nontrivially -- to the vector case.
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Faurre [B-21,57,85]. As he pointed out, the first step of the algorithm is
 

simply the well-known deterministic realization problem when one is given 

the "weighting pattern" R(O), R(1), R(2),..... This problem has been widely 

studied in the literature [B-9,10,11,12,13,14,72,106,107], and we will make a 

few comments about this aspect of the problem in a few moments. Before dis­

cussing the numerical aspects of the first step or the details of the secon4, 

let us see what the first part yields in the frequency domain (here we follow 

[B-63]). Let us define the power spectral density 

-S(Z) = I R()z ' (B.77) 
y 17-


Then, using the fact that R(-i) = R(i), we see that the factorization (B.75)
 

yields1 3
 

S (z) = c (za-A)-lzb + c' (z-1I-A)-lAb (B.78)
y 

Noting the form of (B.78), and defining
 

a(z) = det(zI-A) (B.79) 

we see that the first step in the algorithm yields 14
 

1, 

1 31f we had realized 2 R(O),R(l),R(2),..., instead of R(O),R(l),R(2),..., we
 
2 

would have a more symetrical version of (B.78)(see [B-63]). Note that equality 
of (B.77) and (B.78) is as formal power series. 

1 %ote the assumption that we can factor R as in (B.75) implies (and is 
implied by)the fact that S (z) is a rational function.y'
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S (z = p (z) (.80)
(z)ca(z - 1 ) 

That is, we have obtained a factorization of the denominator of S . If we
Y
 

can also factor the numerator
 

S (z)= i(z)8(z ) (p>O) (B.81)
Y - a(z)a(z 1 ) 

15 we will have determined the desired transfer function
 

G(z) = O(z) (B.82)
a Wz 

which, when driven by white noise with spectrum 11/2, yields the spectrum 

Sy(z). It is clear from (B.74) that it is this second part of the spectral 

factorization that is accomplished by the second step of the stochastic rea­

lization algorithm. Finally, note that the -model (B.82) contains-both poles 

and zeroes (it is an autoregressive-moving-average (ARMA) model). 

There are several methods for performing the second step of the algorithm. 

Faurre [B-21,85] showed that (B.76) could be solved for any P inside a given
 

range 
* 

P <P<P (B.83) 

(here inequality is in the matrix sense), and he -identified the smallest such 

covarnanae, P,, as that arising from an innovations representation of y -- i.e. 

isWe choose and a to consist of those poles and zeroes of S () that lie y 
within the unit circle. This will guarantee the stability of G and of its 
inverse (see [B-63]). 
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a Kalman 	 falter (see Gevers-Kallath [B-67] for a full description). This 

representation is of the form
 

(n+l) = AE(n) + KE(n+l)
 
(B.84)
 

y(n) = c'(n) 

where 6 is 	an innovations process with covariance
 

R = c - c'P*c (B.86) 

and P. is the solution of the algebraic Riccati equation 

A[b-PcJ [b-P~c] 'A' 
P, = APA' + (B.87) 

c'b-c'P*c
 

Then the 	Kalman gain is given by 

Eb-P~c] 
K = I I (B.88) 

a b-c P*c 

Comparing 	this with (B.26),we see several differences. First of all, in
 

(B.26) 	 we had an equation of the form 

x(n+l) = A (n) + AKS(n) 
(B.89) 

y(n) = c'x(n) + P-(n) 
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The differences between (B.84),(B.89) can be explained by noting that (B.84)
 

represents a representation based on the filtered estimate of x(n) 
(given
 

y(0),...,y(n)) and (B.89) is the one-step predicted estimate of x(n) 
(given
 

We also note that it is easy to pass from one of these re­y(0),...,y(n-)). 


presentation to the other (see [B-67]).
 

Thus, examining (Bo84)-(B.88), we see that the second step of the
 

algorithm consists of solving the equations defining a steady-state Kalman
 

filter, and again the most difficult step is solving for the covariance -- in
 

this case P,- from the nonlinear equation (B.87). However, note that P,
 

itself is not needed in (B.84). All we really need are R and K. Thus, an
 

alternative procedure is to use the "fast algorithms," as described in Sub­

section B.1 (see [B-63,69] for the development of this idea). These will pro­

duce the tame-varying hi tories of K and RE . If we let the transients (due to 

the finite data with which the filter must work to produce an estimate) die out,
 

we will obtain K and R . We note that although this approach involves solving
 

for K and R recursively (an time), this procedure may be much faster than direct 

solution of (B.86,)-(B.88). 

Before turning to an alternative approach, let us note that once we have
 

K, we have in fact determined the optimal recursive predictor or filter (i.e.
 

comparing (B.26) and (B.89), we can readily turn the innovations representation
 

into a one-step predictor). Note also that this model is causal and causally
 

invertible [B-67,69] and hence the method can be interpreted as an inverse
 

filter approach to the identi-fication of G(z) -- i.e.-we have equivalently
 

determined the optimal predictor or a whitening filter. Also, as mentioned
 

http:B.86,)-(B.88
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-81­

before, this method allows for zeroes in the model. A method of this type 

was proposed in [B-69]. Actually, in that reference it was proposed that one
 

might benefit from the use of the tnme-varyzng innovations representation 

(before it reaches steady-state). We refer the reader to [B-69,72] for more
 

on the time-varying problem. We will have more to say about the numerical
 

aspects of the steady-state algorithm in a moment.
 

There is an alternative approach to the Kalman filter method for finding 

a factorization of the numerator of S y (z). Examining (B.80), suppose we pass 

the process y through the all zero filter a(z). The resulting process TI has 

power spectral density p(z) -- i.e. it is finitely correlated (moving average 

(MA) process. Given its correlation function p(z), one wishes to factor it 

p(z) m P/rZ .r nM Z-n 

- I (B.90)= 0Cz)8(z 

As described in [B-11,13,37,56J, this is equivalent to obtaining a
 

factorization of the infinite symmetric Toeplitz matrix (with finitely
 

many nonzero diagonals)
 

PO Pl ... pm 0 0 ... 

P1 0". Pm-l Pm 

P (B.91) 

Pm P2 P1 P "" 

0 Pm "" P3 P2 Pl " 
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into the product of an upper triangular matrix and its transpose. Recursive
 

procedures for this are discussed in [B-37J, and clearly the Levinson-type
 

algorithm can be used in this scalar case. As the recursion proceeds, certain 

of the elements of the Cholesky factor converge to the desired 81 (see [B-13]).
 

Clearly an alternative to this procedure is to find the innovations represen­

taton of Ti using the fast algorithms described earlier. This method is 

closely related to the "fast Cholesky" algorithms, and the reader is referred
 

to [B-63] for details (see also (B-72]). For a detailed discussion and new results
 

on the use of the Riccati equation for spectral factorization, we refer the
 

reader to EB-112J. 

Let us now turn to the numerical aspects of this two-stage procedure. We 

concentrate here on the first stage -- i.e. the computation of the factori­

zation (B.75). The algorithms of Rissanen [B-l1J and Ho [B-106] are based on 

examination of the Hankel matrix 

R(O) R(l) R(2) .... R(N-l) 

H R(l) R(2) R(3) .... R(N) 
N (B.92) 

R(N-l) R(N) R(N+l) .... R(2N-2)
 

It is well-known [B-107] (see also Subsection C.1) that R admits a factorizaton
 

(B.75) if and only if there is some integer n such that
 

rank HN < n VN (B.93) 
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HOgS original algorithm yielded a minimal realization (i.e. dim A in (B.75) 

is a small as possible) if a bound n was known in advance. A far more 

critical question (from a practical point of view) is the partial realization 

question. Here we take into account that we only have available a finite 

number of correlations R(O), R(l),...,R(N-l), and one would like to obtain 

the minimal factorization that matches these. One can use Ho's algorithm for 

this, but it is not recursive -- i.e. if we incorporate R(), we must re-solve
 

the whole problem. Fortunately, Rassanen [B-ll] and Dickinson, et.al. [B-9] 

have developed efficient, recursive procedures (the latter of which is based 

on the Berlekamp-Massey algorithm [B-10], which was developed for the scalar 

casel. We note that these algorithms essentially solve the Pade approximation 

problem, and we refer the reader to the references for details. 

Thus, efficient algorithms exist for spectral factorization and one would
 

expect good results if the process y truly has a Markovian representation and 

if one has the exact values of the correlations. This points out a conceptual
 

difference between linear prediction and the above stochastic realization
 

procedure. In linear prediction, no pretense is made about exactly matching a 

model. All that is wanted is a least-squares fit, and thus one would expect 

this procedure to be relatively robust when one uses a finite record of real ­

data to generate an estimate of the correlation function which is then used in 

the linear prediction procedure. On the other hand, it can easily be seen 

that an infinitessimal perturbation of % in (B.92) can make it have full rank. 

In this case, the partial realization procedures -- which in essence are looking 

to match a model exactly -- will yield a system of extremely high dimension. 
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Thus, it appears that these algorithms are inherently sensitive to errors in
 

estimates of the correlation coefficients. In addition, if y has no Markovian
 

representation, the linear prediction approach will still work fine, but the
 

partial realization procedures, which are based on exact model matching, may
 

very well run astray as it tries to fit the data "too clsely".
 

Does this mean that the above procedure is of no use in identifying para­

meters in a speech model? The answer to that is perhaps not. What is needed 

is a modification of the first step of the stochastic realization algorithm. 

AS the version described here stands, it is too sensitive and in fact, DeJong 

(B-108] has shown that these methods are numerically unstable in that the
 

inexact minimal realization supplied by these algorithms, as implemented on a
 

finite wordlength computer, may not be a "numerical neighbor'of the sequence
 

{R(i)} that is to be factored. A great deal of the difficulty is due to the
 

iliposedness of the problem of finding the rank of the Hankil matrix. By
 

rephrasing the algorithm in terms of the E-rank -- the least rank of all sys­

tems within an "s-neighborhood" of the given sequence -- De Jong obtains a
 

slower algorithm that is similar to Rissanen's but is numerically stable. 

This approach is extremely appealing for two reasons: (1) We can, within this 

framework, seek minimal realizations in the 6-neighborhood of a sequence 

{R(i) } that itself is not realizable by a finite dimensional system; (2) We 

can seek the "nearest" reduced-order realization of given dimension of a given 

system. These two properties may help overcome some of the sensitivity problems 

with the two step procedure.
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In addition to the work of De Jong, a number of other methods have been
 

proposed for "approximate" Pade approximations, and any of these could be
 

used as the first step in the algorithm. McDonough and Huggins [B-113] propose
 

to approximate a time function f (t) by a sum of (possibly complex) exponentials
 

N st 

A e a = =1
 

They study numerical methods for the iterative determination of the A and
1 

s that minimize 

T 

f e2t)dt 
0 

where e is the signal error
 

et) = f(t) - f (t)
a 

One needs iteration4 as this is a nonlinear problem. This is clearly closely
 

related to the discrete-tme problem of finding {Ab,c} with A nxn (n fixed)
 

to minimize some function of the error
 

eCi) = R(i) - cAib 

Some effort has been put into this problem in the recent past [B-19,75,110], 

and one possibility, of course, is the all-pole approximations -- e.g. we
 

might perform linear prediction with the R(i) as the observed signal (regarded
 

as the impulse response of some filter). This would require computing the
 

correlation of R(I), or, in other words, the correlation of the correlation of
 



-86­

the y(i)! Note that the all-pole assumption for R(i) would not necessarily
 

lead to an all-pole model for G(z) in (B.82).
 

Another possible method has been proposed by Burrus and Parks [B-114].
 

They consider approximating
 

R(2)z - 2 +....R(ljz - I +r(z) = R(0) + 

by 

z-1 + -N+l
 

a(z)

Ga = +a1 '0 a,_, 


l+blZ -i +.1 +b +I
+_z -11 b(z)
 

In addition to specifying some exact realizability conditions on {R()}
 

(which can easily be reduced to Hankel matrix conditions and statements),
 

they suggest the following: we would like
 

a z)rz) 
b(z)
 

Multiplying by b(z), we obtain
 

b(z)r (z) a(z) 

and if we attempt to minimize some norm on the difference between these quan­

tities (called the equation error), we can obtain linear approximation 

algorithms. We refer the reader to [B-114] for details.
 

We close by noting that initial results ([B-109], [B-ll]) utilizing the 

two-step procedure indicate the potential of the approach. In particular, the 

work at IRIA [B-109] has produced good results for the design of whitening 



-87­

(inverse) filters. Given this limited success and the previous discussion,
 

it appears that the utility of the two-step stochastic realization procedures
 

merits further investigation.
 

B.4 	 Some Other Issues in System Identification
 

It is appropriate to mention several other identification procedures.
 

Recall that in Subsection B.2 we saw that the covariance method was equiva­

lent to a Kalman filter when we recursively update our estimates of the
 

predictor coefficients. As discussed in [B-17], several other recursive
 

identification schemes can also be considered as Kalman filter-type algorithms.
 

One of these is the instrumental variables approach, which bears some simi­

larity to the least squares algorithm and which, in fact, leads to Toeplttz
 

equations in the stationary case [B-91]. In that reference it is pointed 

out how one can devise the Toeplitz Yule-Walker equations to determine the 

poles CAR part) in an ARMA model. 1 6 This is essence requires knowledge of 

the order of the MA part and thus is much more apt to lead to the sensitivity 

problems that one confronts in using a technique that is based on the assump­

tion that the data obeys certain constraints (as in the first step of the 

stochastic realization algorithm of the preceding subsection). In addition, 

we no longer are guaranteed that the solution to the Yule-Walker equations leads
 

to a stable inverse filter. 

The methods of least squares (covariance) and instrumental variables, as 

described in [B-17] are used for all pole models of the noise (prediction error)/ 

1 6 This method is simlar in spirit to the Burrus-Parks generalazed-Pade-equation­
error approach for the determination of the denominator of a pole-zero model
 
[B-114].
 



-88­

output behavior (i.e. for AR models). However, both the usual least squares
 

and the instrumental variables can be easily modified for the identification
 

of input zeroes -- i.e. consider the model
 

y(k+l) + aly(k) +...+ apy(k-p+l) = b0u(k) + blu(k-l) +...+ bmu(k-m) + 6(k) 

(B.94)
 

where we measure both the y's and u's (here t(k) is the driving noise, or 

equivalently, the "equation error"), In this case, let
 

e, -- (-a ,.... ... )
,-a ,hp0 m,b (B.95)
 

@'Ck) = (y(k),...,y(k-p+l), u(k),...,u(k-m)) (B.96) 

Then the recursive least squares procedure reduces to a Kalman filter for
 

the system
 

6(k+l) = (k) 
(B.97)
 

y(k+l) = ' (k)(k)+ e(k) 

Although this input model is not of interest in the speech problem, it is of
 

great importance in control applications in which one is interested in
 

manipulating the system via the input u. We refer the reader to [B-17] for
 

the analogous development for the instrumental variables method.
 

There are two other algorithms in [B-17] that are of interest. These
 

methods allow zeroes both in the input/output response and in the noise/output
 

http:m,b(B.95
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response -- i.e. they can be used to identify ARMA models. Both of these
 

algorithms are recursive (in the data), approximate maximum likelihood methods, 

and both methods are of the Kalman filter type. The second of these (RML2 in 

[B-17J) is discussed in detail in [B-18]. The first of these, RMLI is, in
 

some sense, an approximation to RML2, and we outline the basic idea. Consider
 

the ARMA model 

y(k+l) + a y(k)+...+apy(k-P+l) = e(k) + c 1 e(k-l)+...+c qe(k-q) (B.98) 

We canz rewrite (B.98) as 

6(k+!) = O(k) 

(B.99) 
y(k+l) = +-'(kyO(k)ek) 

where
 

0' = (-a,...,-ap, Cl,...,C ) 

(B.100)
 

4'(k) = (y(k),...,y(k-p+l), e(k-l),...,e(k-q)) 

Having , one could again devise a Kalman-filter structure for the estimate
 

0. However, the noises, e, are not known. As suggested in (B-17,82,83] a 

natural approximation is to replace e(j) in (B.100) by its estimated value -­

i.e. the residual
 

A yS(3) = Y(3 + 1 ) - '(3) 00) (B.101) 
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If we do this, we obtain the following recursive scheme:
 

A 

e(3+1) = ecj) + K(3+) C() (B.102) 

K = A(+I) (B.103)
i+ ' (P (3)() 

P(3+l) = P(j) = A( ( ((B.104)
l+i-4 (n)P(3)4d() 

= (y(j) ,-...-,Y(j-p+l) , s(j-l) ,.--.-,s(-q)) (B.105) 

We refer the reader to [B-17] for a detailed description of this and the 

other algorithms. In addition, uniqueness of stationary points and the sta­

bility of these algorithms is considered in detail in this reference In 

particular, it is shown that RLS is stable and has a unique solution, that 

RMLI and RML2 have unique solutions for ARMA models, that RML2 always converges, 

and that RMLI converges for MA models, for first-order ARMA models, but that 

it may diverge in higher-order cases (an example is given). The reader is 

referred to [B-17] for details, further references, and for many insights into
 

the characteristics of these identification procedures. Also, we refer the 

reader to [B-120J for fast on-line algorithms for these identification schemes. 

These methods are analogous to that mentioned earlier for the covariance method. 

We note that the methods described above and in the preceding subsection in 

principle allow one to identify poles as well as zeroes. In addition, several 

other methods for zero modelling have been described in the literature [B-26,68, 
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100,113,114,123]. The method in [B-68] is based on ce~stralanalysis. Let
 

Y(z) be the z-transform of a signal y, which we wish to model as the response
 

of an ARMA model:
 

Yz) = N(z) (B.106)
D(Z) 

Usual linear prediction (with care taken to avoid the zeroes [B-26,68,100])
 
A 

will identify D. Suppose now we define the complex ceptrum y(n) so that
 

A 
Y(z) = log Yz) 

Then the z transform of ny(n) is 
AA 

dyz) D(z)N (z)-N(Z)D' (z)-z -- = -z N()()(B.107)
dz N(z)D(z) 

and thus linear prediction on,ny(n) will identify the zeroes (and the poles)
 

of y. We refer the reader to [B-26,68] for more on this technique. In
 

addition, the generalized Pade methods in [B-113,114,123 can also be used for
 

pole-zero modeling directly (as well as for the first step of the two-step
 

procedure of the preceding section). Also Atashroo and Boll [B-21] have sug­

gested a multi-step procedure in which one performs linear prediction to obtain
 

the poles, inverse filters to obtain a finitely correlated sequence, uses linear
 

prediction again to obtain a high-order all-pole model of this sequence, and
 

then performs a third linear prediction to obtain a lower order all-zero inverse
 

of the all-pole model.
 

One further issue that we have not discussed is the determination of an
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appropriate order for the parametric model to be identified, Clearly, as
 

we allow more and more free parameters, we can get a better and better fit, 

but one would expect a diminishing return beyond a certain number of parameters. 

Astrom and Eykhoff [B-16] propose one test criterion, while Akaike [B-32,92; 

B-15, p.716] (see also [B-26]) proposed an information-theoretic criterion
 

which provides a direct tradeoff between the value of the log-lkelhood func­

tion and the number of free parameters in the model. Recently, Rissanen and 

L3ung [B-79] have obtained a related criterion that incorporates the assumed
 

model structure (as well as the number of parameters).
 

In this section we have examined a number of aspects of the identification­

estimation problem, and we have pointed out a number of similarities between 

the goals and techniques of the two disciplines. We have also seen some of the 

differences, but others have not been discussed. In particular, in this section
 

we have treated identification for identification's sake. As pointed out in
 

[B-16J in control system design,, identification is often simply a means toward
 

the goal of efficient control. Thus, in many control applications, the value
 

of identification is not measured by the accuracy of the parameter estimates,
 

but rather by the performance of the overall system. This is discussed somewhat 

in [B-17] and also in the study of "self-tuning regulators" [B-80,81]. In 

addition, in control one has several types of identification problems, since one 

/ 
has the opportunity to excite the system through inputs. one finds somewhat
 

different problems if the system is operating open loop, in a tame-invariant
 

closed-loop mode, or in an adaptive closed loop mode. We refer the reader
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to [B-15,17J for more on this sub3ect and for further references. Finally, in
 

the control context, one often deals with systems for which one is interested
 

in determining system structure as well as in identifying the parameters of a
 

model. The issues involved here are complex and are discussed in [B-15,16].
 

On the digital filtering side, one is often interested in the accuracy of 

the parameter estimates. This is of importance, for example, if one is at­

tempting to design an all-pole filter that matches a given impulse response in 

a least squares sense, or if one is attempting to estimate formants from 

an all-pole speech model. On the other hand, for linear predictive coding, 

the accuracy of the parameters may be of secondary interest, while the primary 

concern is more efficient coding of speech data. In this case, accuracy is 

of importance only in so far as it makes the coding scheme more efficient. 

In this regard, a very important question involves the quantization of the pre­

dictor specifications -- that is, what is the most efficient method for trans­

mitting the specifications of the all-pole model. As discussed in [B-119], 

the reflection coefficients (from which one can construct the filter) offer 

the most efficient parametrization from a quantization point of view.
 

We note that the linear prediction approach appears to be particularly
 

well-suited to the speech problem. The all pole model is a good one in many
 

cases (from a physical point of view), the algorithms are fast, the intermediate
 

variables in the algorithm (i.e. the partial correlation coefficients) have
 

useful physical interpretations, the linear'prediction procedure tends to match
 

the spectral envelope, etc. (see [B-26 for many of the properties of linear
 

prediction and [B-116] for some of its statistical properties). Finally and
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above all, linear prediction has been proven in practice to work well on speech
 

signals, and further work is needed before one can say with confidence that
 

any of the other techniques described in this section can improve upon this
 

performance.
 

Thus, we see that there are a surprising number of relationships, simi­

larities, and differences among the techniques and goals of researchers in both 

disciplines who are concerned with parameter identification. The possibilities 

for collaboration and interaction that will benefit all involved seem particu­

larly abundant in this area. In particular, we have barely scratched the
 

surface on the question of the relative merits of the various methods or the
 

issue of precisely what problems a particular method addresses and does not
 

address. A thorough investigation of questions such as these remains for the 

future.
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C. Synthesis, Realization, and Implementation
 

In this section we consider the questo of design. However, our discus­

sion will not deal very much with design methods but rather with the question 

of trying to pinpoint what researchers in the two disciplines mean by "design" 

and what sorts of problems their techniques are equipped to handle. As we 

shall see, the issues considered in the two fields are often quite different, 

but there are many occasions in which techniques from one discipline could be 

of use in the other. Also, the problem of implementation confronts designers 

in both disciplines. 

C.1 State Space Realizations and State Space Design Techniques 

State space concepts and methods have a number of uses from a design point
 

of view. Let us first take a look at realization theory [A-64,68,B-12,C-2-13]. 

Let us recall some of the basic concepts from realization theory (see [A-64, 

B-12, C-2] for details and for further references). We will follow [B-12] and 

will state several results in the continuous-time framework, but analogous re­

sults hold for the discrete-txme problem (see the last part of Subsection B.3). 

We are interested in time-varying linear system representations of the form 

x(t) = A(t)x(t) + B(t)u(t), x(t)=x0 (.0 

y(t) Ct)x(t) 

where x(t)eR n , u(t)ERm, y(t)SRp, and A,B,C are matrices of appropriate dimension. 

from an input-output point of view, the system (C.1) is equivalent to the 

representation 
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t 

y(t) = C(t)Z(t,t 0 )x 0 + 	 f C(t)N(t,T)B(T)u(T)dT (C.2) 

to 

where ' is the nxn state-transiton matrix 

$(t,a) = A(t)O(t,a), 	 @(aa)=I (C.3) 

and the matrix
 

H(t,T) = C(t)OCt,T)B(T) 	 t>T (C.4) 

is the impulse response 	matrix. As pointed out in [B-12], in many control and 

estimation problems, we 	 are often interested in the weighting pattern matrix1 

K(t,T) C(t)0(t,T)B(T) 	 tT (C.5) 

If A,B, and C are constant, then 0 and K have particularly nice expressions:
 

A (t -T )
 I(t,T) = e , K(t,T) = CeA(tT)BF Vt,T 	 (C.6) 

and in this case, given the dependence on t-T only, we write K(t,0)=K(t),
 

H(t,O)=H(t). Also, in this case, an equivalent input-output representation
 

is provided by the Laplace transform of H(t) -- the transfer function
 

G(s) = L[4t)] = C(Is-A)- B 	 (c.7) 

1 As mentioned in [B-12,C-10], if K is real analytic in t and T (as it is if A, 
B,C are constant), then (C.4), (C.5) are equivalent, since H has a unique extens­
sion to T>to Otherwise, there can be nonunique extensions [C-10]. 
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The realization problem, then, is to obtain a recursive description of
 

the form (C.i) when we are given the weighting pattern, impulse response function, 

or transfer function. It can easily be seen that if a realization exists, then 

many solutions exist. For example, we obtain the same weighting pattern as (C.1) 

if we take C=2x to be our state variable 

t(t) = A(t)E(t) + 2B(t)u(t) 

(C.7)
 

y(t) = c(t)(t)
2 

or if we take T' (x,O) as our state
 

(t) = )(t) + B u(t) (c.8) 

(t)
1aLW0 

y(t) = [C(t),y(t)]J(t) 

where a is arbitrary and either or y is identically zero. These two examples
 

illustrate the two basic issues that arise. In the first case, E and x are in
 

some sense equivalent, since they contain identical information and one can be
 

obtained from the other via an invertible linear transformation. This is not the 

case in the second example, in which T carries superfluous information (from an
 

input-output standpoint) in its last component *n+l" If 0=0, the input can 

never affect n+1 (a controllability problem), while if y=O, the output never 
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sees n+l directly or indirectly (since qn+1 is decoupled from the other state
 

components)-- an observability problem.
 

Thus, one of the key issues in realization theory involves the characte-_
 

rization of minimal realizations -- those which contain no superfluous infor­

mation in their state variables. We refer the reader to the references (see,
 

in particular, [B-12J) for the full development of realization theory for time­

invariant multivariable systems. As one might guess from the preceding para­

graph, the concepts of controllability and observability are very closely tied 

to the munimalaty of a state space realization. For the sake of bravity, we
 

state the ma3or results only for the time-invariant case (i.e. stationary
 

weighting pattern and constant realizations of it).
 

Definition C.l: A realization (tame-varying or time-invariant) of a
 

weighting pattern or transfer function is minimal if any other realization has
 

a state vector of dimension at least as large.
 

Definition C.2: A constant linear system in state space form (C.1) is control­

lable if for every state xCRn and any T>O there exists an input function 

u(t), ts[O,T] that drives the system from x(O)=0 to x(T)=x. 

Definition C.3: A constant linear system in state space form (C.2) is observable
 

if, for any T>O, given u(t) and y(t), tE[0,T], we can uniquely determine x(t) 

2 
in this interval.
 

Theorem C.l: Suppose we are given a stationary impulse response matrix H(t) or
 

its transfer function G(s). This system has a state-space representation of the
 

form (C.1) if and only if G(s) is a matrix of rational functions of s, each of
 

For time-varying systems, the intervals over which one tries to control or
 
observe the system may vary with time (see [A-64,B-12,C-2,C-10].
 

2 



-99­

which is proper (degree (denom.)>degree (numer.)) 3 In this case, G(s) has
 

a minimal, constant realization, and, in fact, a realization
 

x(t) = Ax(t) + Bu(t) 
(C.9)


y(t) = Cx(t) 

is minimal if and only if it is controllable and observable. In addition, 

any minimal constant realization can be obtained from a given one via an in­

vertible linear transformation of the state variable, =Px, or equivalently 

(A,B,C) - (PAp-IpBCP-1 ) (C.10) 

Finally, if dim x=n, the realization (C.9) is controllable if and only if 

tank [B AB ...:An (C.) 

and it is observable if and only if 

rank [C:AC (A') C =n (C.12) 

We note that essentially the same result holds in discrete time, in 

which we have the (z transform) transfer function G(z) and we wish to represent 

it as 

G(z) = C(IZ-A)-lB (C.13) 

which is equivalent to the state space description 

x(k+l) = Ax(k) + Bu(k)
 
(c.14)
 

y (k) = cx (k) 

it is easy to allow deg(denom)-deg(num) by inoluding a feedthrough term: 
y(t) = C(t)x(t) + D(t)u(t). This is readily taken care of and leads to minor 
modifications of the results stated here. 
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Examining (c.7) and (c.13), we see that any algorithm that realizes the
 

continuous tame system G(s) also is a valid realization algorithm for the
 

discrete-time system G(z) (and vice versa). We thus will turn to the discrete­

time framework for a moment in order to gain some insight into the realization
 

question.
 

As discussed in [A-64,B-12,106,107,C-2], there are relatively sample algo­

rithms for obtaining controllable or observable realizations of G(Z), assuming 

it is given in rational form (so that we can compute the least common denominator 

of all of the elements of G). The algorithm of Ho [B-106,107] and that of 

Silverman and Meadows [C-13] provide methods for extracting minimal constant 

realizations from the Hankel matrix (see Subsection B.3). Basically, in this 

approach one writes G(z) in series form 

G(z) = Tz-1 (c.15)
i=1 

and we recognize that {T } is the impulse response sequence. Referring toi 

(C.13), the realization problem is equivalent to finding A,B,C so that
 

i-l
 
=T CA B Vi (C.16) 

As described in [A-64,B-106,107], one can find such a factorization if and 

only if the ranks of the Hankel matrices 
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T1 T2 .... TN
 
T1 
 T2 N-i 

N T2 T3 TN (C.17) 

TN-i TN ...... T2N-3 

are bounded by some integer (and then the maximal rank of the HN is the di­

mension of the minimal realization of G). If G is proper rational, one can
 

show that this is indeed the case and, given the degree of the least common 

multiple of the denominators of elements of G, can find a particular HN that
 

achieves the maximal rank. From this matrix, one can then extract the minimal 

realization [B-12,106,107,C-13]. However, if we are given G in the form (c.15) 

as opposed to in rational form, in general one cannot easily determine if G 

is rational (or equivalently if the ranks of I are bounded). In this case, 

the partial realization algorithms discussed in Subsection B.3 are of use. 

These algorithms essentially produce minimal dimension systems of the form 

-(C.14) that match the expansion (C.15) up to some specified power of (z ) -­

i.e. these systems match the impulse response out to some specified point. 

As mentioned earlier, these algorithms have numerical difficulties which must 

be-overcome. However, if G is given in rational form, the algorithms of Ho-

Kalman and Silverman-Meadows provide a procedure for determining minimal 

realizations (see also [A-64] for a procedure based on partial fraction
 

expansions).
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Thus, the realization problem can, in principle, solve certain questions
 

related to system synthesis. The input-output description (C.2) for continuous
 

systems or the analogous one for tine-invariant, discrete-time systems 

n-i 

y(n) = I T u() (C.18)i= n-i 

is non-recursive in nature -- i.e. equation (C.18) implies an algorithm in 

which at each point in time the entire past sequence of input vectors
 

u(O),...,u(n-l) are multiplied by the appropriate impulse response matrices
 

and then summed. Clearly such an approach is feasible only if the system to 

be implemented has a finite impulse response (FIR -- T =0 Vi>some integer).1 

In general, however, (C.16) requires growing memory, and even in the FER case, 

the nonrecursive implementation may require exorbitant amounts of storage.
 

In this case, recursive implementations are called for, and the state spce
 

realization (C.14) provides an answer to this question. In fact, the computa­

tion of minimal realizations allows one to find out the minimal amount of 

storage that is needed in any linear, recursive realization, and one of the most
 

important aspects of the state-space approach is that it allows one to consider
 

multiple input/multiple output systems and time-varying systems. It is this
 

last point -- the ability to handle multivarlable and time-varying systems -­

that is one of its most important assets from a synthesis point of view.
 

One field in which state space realization theory has played a ma3or role is
 

in network synthesis for both time-invariant and time-varying circuits. A 
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number of papers have been written in this area (see [C-3-9] and the references
 

therein), and, in fact in some of this work (see, for example [C-4]), realiza­

tion concepts are tied together with some concepts concerning dissipative systems
 

(see Subsection A.2) to yield useful results in network synthesis.
 

We will not discuss analog network synthesis further, since our major
 

concern is with relationships with the implementation of digital filters. This
 

topic will be looked at in some depth in the next subsection, and thus we con­

tent ourselves at present with making only a few comments. For discrete-time
 

systems, the state-space approach tells us the minimal amount of storage -- i.e.
 

the minimal number of delays -- that are needed to realize a given transfer
 

function. In addition, we know how to obtain any minimal state space realization
 

from a given one -- i.e. we apply (C.10) for any invertible P, and any recursive
 

linear realization can be written in vector difference equation (i.e. state
 

space) form by keeping track of all memory updates. Does this mean that state­

space realization solvesthe digital filter design question? The-answer to that
 

is decadely no. As we will discuss in the next section, there are many issues
 

besides minimal storage involved in choosing a "good" filter structure (i.e.
 

algorithm). However, we know that one can obtain any minimal state space rea­

lization algorithm via the choice of an invertible matrix P and the application
 

of (C.10). Does this mean that the selection of a "good" filter structure is 

equivalent to finding a "good" P? The answer to this is again no, and the pri­

mary reason for this is distinction between interpreting a state space realization 

as a description of dynamical behavior and as an algorithm. We defer the 

clarification of this cryptic comment until the next section.
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In control theory, state-space realizations play a ma3or role in a number 

of very important design problems. In these problems the part played by rea­

lization theory is indirect, in that it allows one to bring into play some 

powerful state-space design methods. We illustrate a few of these here. Con­

sider the system pictured in Figure C.1. We are given an open loop px transfer 

function G(z) and we wish to design a feedback compensator that has certain 

properties. For example, one may wish to design a feedback system so that all 

of the modes of the closed loop system have time constants in a specified 

range. For scalar systems (p=m=l) techniques (in the frequency domain) for the 

solution to this problem have been available for a number of years [A-53,C-2], 

and frequency domain techniques for single input systems are discussed in [C-2]. 

However, as discussed in [C-2], if one uses a state-variable description of the 

system, one can obtain a solution in the general, multivariable setting. We 

briefly outline a method discussed in [C-14]. Let us suppose G(z) is proper, 

rational, and reduced (no element of G has common poles and zeroes). In this 

case, let us find a realization 

x(k+l) = Ax(k) + Buk) 
(C.19)
 

y(k) = Cx(k) 

and we note that the poles of G(z) are precisely the eigenvalues of A if and
 

only if (C.19) is minimal. Suppose we implement a control law of the form
 

u(k) = -Kx(k) (C.20)
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Figure C.l: Depicting a Feedback Design Problem 

v 
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Figure C.2: Illustrating an Optimum Filtering Problem 
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Then the closed-loop poles are just the eigenvalues of (A-BK). As discussed 

in [C-14J, we can find a K to place these eigenvalues ,whereverwe want if and 

only if (C.19) is controllable. A constructive algorithm is given in [C-14]. 

Suppose we cannot implement (C.20) -- i.e. we only have u and y at our 

disposal. One might then consider the design of a system that estimates x from 

m.and y. A-natural structure for such an ",observer". IC-14,15] is 

(kAl) = x(k) + Buk) + H(y(k) - Cx(k)) 	 (c.21) 

A 	 A 

Note that if x(k) = 	 x(k), then x(n) = x(n), V-n>k, and if one looks at 

A 

the error e (k) --x (k)-X,(k), we find that it obeys the equation 

-e{k+l) = (A-HC)e (k) 	 (C.22) 

and the poles of A-HC can be placed arbitrarily if and only if (C.19) is 
4 

observable,4 f 	one then implements the control law
 

u(k) =-Kx(k9 	 (C.23)
 

one finds that the poles are just the eigenvalues of (A-BK) and (A-HC), and we
 

have solved the pole placement problem. This procedure illustrates one of the
 

crucial aspects -of many state space design methods -- the solution to design 

problems is an algorithm, which, with some eases, can be implemented on a general 

4 Note that (A,C) is observable if and only if (A',C') is controllable (see (C.11), 

(C.12)), and that the eigenvalues of A-HC are the same as for A'-C'H. Thus, we 
can use the same algorithms for-finding -H -u-that-used to -find -K-xn (C.20). 
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5 
purpose computer
 

Algorithmic, state space solutions exist to a wide variety of other
 

problems -- decoupling ("design a feedback law so that the ith input effects 

only the ith output, [C-16]), invertibility ("when can we design a system that 

will take the output of our given system and recover the input [c-17]), etc.
 

-- and we refer the reader to the special issue of the IEEE Transactions on
 

Automatic Control [A-68] for an overview of the various design methods that 

have been developed. One important aspect of some of these techniques is that 

they allow one to solve quantitative optaizataon problems. The linear-quadra­

tic optimal control problem is an example of this, as is the design of a Wiener
 

filter as a steady-state Kalman filter [A-65,68,C-18]. Consider the estimation
 

problem illustrated in Figure C.2. We have a Gaussian, stationary process y
 

with given, rational power spectral density y (s), and we observe the signal z, 

which consists of the sum of y and a Gaussian white noise process v. We wish to
 

design a causal filter that minimizes the variance of the prediction error 

e(t) = y(t) - y(t) (C.24) 

As discussed in [C-18-21J, if we assume that we have an infinite record length 

on which to operate, the solution to this problem is the Wiener filter, which
 

can be obtained by performing a certain spectral factorization. We also know,
 

however (see [C-18] and Subsection B.2), that the Kalman filter can be used to 

5 The problem of computer design algorithms is a very important one at present. 
Difficulties with ill conditioning are present in many of these, and the design of 
"robust" algorithms is a crucial research question in control theory. See [C-22J 
for references on this subject. 
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solve this problem. Given that y has a rational power spectral density, we 

can find a minimal representation ("shaping filter") 

x(t) = Ax(t) + w(t) 

y(t) = Cx(t) (C.25)
 

zt) = y(t) + vt) 

Here E(w(t)w' (T)) = Q8{t-T), E(v(t)v' (T)) = R6(t-T), and w and v are independent. 

Also, (assuming stationarity) x(0) is zero mean with covariance P0 which 

satisfies the i(continuous-time) Lyapunov equation 

(c.26)AP +PA'= -Q 

Then, it is well-known [C-18] that the optimal filter is given by 

A A 
x(t) = Ax(t) + K(t) [zCt)-Cx(t)J
 

(c.27)

A 

xCO) = 0, y(t) = Cxt) 

where
 

K(t) = P(t)C'R - i  (C.28) 

and P is the solution of the Rccati equation 

P(t) = AP(t) + P(t)A' - P(t)C'R- CP(t) + Q 
(c.29) 

P(0) = P0 

Equivalently, one could use one of the fast algorithms discussed in the preceding
 

section to obtain K(t) directly. 
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In addition to providing a framework for the specification of designs, the 

state space framework allows one to analyze the performance characteristics of
 

the overall system after it has been implemented. For example, the techniques 

described in Section A can be used to study the stability characteristics of 

the system. In addition, a subject of much interest is the sensitivity of such 

designs (see [C-23J and the references in [C-22]). The major emphasis here is 

that designs that come from state space algorithms are model-based, and deviations 

between true and assumed parameter values and the fact that the assumed model 

is often an idealization of true system behavior will inevitably lead to varia­

tions in the performance of the "optimal" design. Issues such as these have 

led to sensitivity studies and to the development of design methods which are 

adaptive (see the introduction to Section B) or inherently "robust" [C-24,25]
 

(see also the discussion in [A-65] on the methods that are used to overcome
 

sensitivity problems for Kalman filters). 

Another analytical tool used to study system performance is covariance 

analysis. For linear systems, we consider the model
 

x(k+l) = Ax(k) + w(k)
 
(c.33)
 

y(k) = Cx(k) + v(k) 

where w and v are zero mean, independent white noises,
 

E(w(k)w(j)') = (6k2 E(v(k)v(j)') = R6kJ (c.34) 

These noises may represent actual noise sources or the effects of small non­

linearities (such as quantization noise -- see the next subsection), unmodeled
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Suppose we let t-*w -- i.e. we consider the limit of an infinite record
 

length. One can show [A-65,C-18] that the algorithms for K(t) (Raccati or the 

fast algorithms) will converge to
 

K = PC'R - (c.30) 

where P. is the unique positive definite solution of the algebraic Riccati
 

equation
 

Al% +PA'-PC'R + QzO (c.31) 

Thus, the state space formulation provides several algorithms which solve the 

Wiener filtering spectral factorization problem to yield the optimal transfer 

function (from z to 

G(s) = C(Is-A+P,cs1)R-lc O-1 (c.32) 

Thus we see that realization theory -- in providing a state space model
 

for the system to be controlled or the signal to be estimated -- plays an
 

important role in allowing us to utilize rather powerful state-space algorithms
 

for the specification of designs that possess certain performance characteristics. 

Note that all of these algorithms lead to designs that are specified in state 

space (e.g. (C.27)) or transfer function (e.g. (C.32)) terms. One must then 

face the issue of implementation. If the system is to be implemented in digital 

form, the issues raised in the next subsection must be considered in evaluating 

the performances of the overall system. 
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phenomena, etc. A simple calculation yields an equation for the covarianced 

P(k) and S(k) of x(k) and y(k), respectively (assuming x(O) is zero mean with 

covariance P(0)):
 

P(k+l) = APk)Ar + Q 

(c.35) 
S(k) = CP(k)C' + R 

If A is a stable matrix, we can evaluate the steady-state covariances P and 

S by solving the Lyapunov equation
6 

APA'-P = -Q 	 (c.36) 

In the nonlinear case- a number of approximate methods exist (see [A-65, 

C-26J), and we refer the reader to [C-27] for the discussion of one widely 

used 	method based on describing functions. 

As mentioned earlier, in implementing the designs that arise from state 

space methods, one must consider a number of issues that digital signal­

processors have studied in great detail. On the other hand, it is possible 

that 	some of the analysis methods mentioned above can be of use in evaluating 

the performance of various system implementations. 

C.2 	 The Implementation of Digital Systems and Filters
 

As discussed in [C-1], the design of digital systems consists of three
 

steps
 

Specification of desired properties
 

6 
As mentioned in Section A, this equation appears in several problems in state 
space system analysis.
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* 	Approximation or realization of these by a causal,
 

discrete-time system
 

* 	Implementation of the system using finite precision
 

arithmetic.
 

From this point of view, the methods of the preceding section deal with the 

first two issues. Design procedures such as pole allocation and Kalman fil­

tering specify desired input-output behavior for feedback compensators or
 

optimal estimation. Realization procedures clearly play an indirect role in
 

these techniques in providing the state space models on which the design
 

techniques are based. But what about realizations from the point of view of
 

system synthesis and impjlementation? As we shall see, state space realizations
 

can play some role in implementation, but they are far from providing the
 

entire solution.
 

The digital filter design techniques we wish to consider are discussed
 

in 	great detail in [C-1,28-33,D-2J (see also the many references in these
 

texts and papers), and the ma]or emphasis of these methods is toward the se­

cond and third tasks in digital filter design. -Thetechniques for the second
 

task, as described in [C-1], take as their starting point the specification of
 

certain frequency response or impulse response characteristics. The role of
 

the second task is then to take these specifications and produce a scalar transfer 

function that meets these design specifications. An excellent description of 

the range of available techniques for this problem is given in (C-l, Chapter 5]. 

We will mention several of these methods but refer the.reader to thxs -and the 

other references for a thorough treatment. A number of the methods that exist
 

are based on transformation of analog filter transfer functions. One of these
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is the "impulse invariance" method in which one samples a continuous-time
 

impulse response to obtain a discrete-time impulse response. This method suffers
 

from aliasing problems if the analog frequency response i not strictly band­

limited. A somewhat more complex procedure which avoids the aliasing proble
 

is the bilinear transformation.
 

sz) = k -z (C.37)-I
 
l+z
 

which is an invertible transformation of the z-plane into the s-plane which
 

maps the inside of the unit circle in the z-plane onto the open left-half plane
 

of the s-plane (thus preserving stability). One can then transform an analog
 

transfer function H(s) into a digital function
 

;(z) 11(s(z)) (C.38) 

Note also that if H is rational, so is H. Also, this transformation introduce
 

nonlinear distortion in the frequency domain (the mapping of the unit circle
 

in z onto the imaginary axis in s), and care must be taken in achieving a design
 

with the desired frequency response.
 

In addition to these methods that yield closed form solutions, there are a 

number of computer-aided design methods. These include minimizing the mean­

squared error between the actual frequency response and the desired response at 

a selected (finite) set of frequencies. Also, as mentioned in Section B, one can 

use linear prediction to-fit an all-pole model to a desired impulse response. 

In addition, the discussion of the preceding section suggests that the Pade 

approximation-partial realization algorithms described in [B-9-12] can be used 
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to find least-order pole-zero transfer functions that match a certain number
 

of terms of a desired impulse response.
 

There are also a number of methods used to design FIR filters. Many of
 

these involve "windows", in which one multiplies a desired impulse response by
 

a finite duration window. The usual rectangular window leads to the well-known
 

Gibbs phenomenon, and the more sophisticated windows have been devised to reduced
 

this effect. The reader is referred to [C-1] for more on windowing and computer­

aided methods for FIR filter design. In addition, for a good discussion of the
 

issues involved in the overall design problem and of the design of optimum
 

filters that approximate a given frequency response in the Chebyshev (L.) sense,
 

we refer the reader to [D-2]. As these references indicate, a number of filter 

design methods are algorithmic in nature (much as the state space design methods 

discussed in the previous subsection), and the issue of efficient numerical 

design procedures is of central importance. 

Once an fR or FIR filter has been determined, these still remains the 

major problem of implementation -- the determination of a filter structure 

(algorithm) that realizes the given transfer function. One factor that does
 

enter into this design question is the number of storage elements (delays) in
 

the filter structure. Structures that contain the minimal number of delays are
 

called "canonc", and this is clearly the same as the concept of "minimal" rea­

lization. of course, in dealing with single-input, single-output transfer 

functions, one can read off the order of a canonic structure and can construct 

several quite easily by simple inspection of the specified transfer function 

([C-1,Chapter 4]). 
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The determination of the order of a canonic realization and the ability to 

construct several minimal realizations without much difficulty barely scratches
 

the surface of the structures problem. That is, the question of minimizing storage 

-- which is essentially what the state space realization problem considers -- is
 

)ust one of several problems in digital filter implementation. As pointed out in
 

[C-i], 	 the various filter structures available may be equivalent from an input­

output 	viewpoint if one didn't have to worry about computation time, the complexity 

of the 	digital architecture or algorithm required to implement a given structure, 

the effect of finite precision in representing filter coefficients, or the effects 

of overflow and quantization. These are the issues that motivate much of the 

study of various filter structures. It is not our intention to explore all of 

the various filter structures and the analytical considerations associated with 

them. 	We will mention a few, however, to illustrate several key points and refer
 

the reader to the references [C-1,28,34] and to the many papers in the IEEE
 

Transactions on Circuits and Systems.
 

For FIR filters, a number of methods exist for the implementation of the
 

finite 	convolution
 

N-1
 

y(n] = 	 I h(k)x(n-k) (C.39) 
k-0 

(here h is the FIR). Clearly, one can directly implement the product by keeping 

the last N values of the input in storage. This is the so-called "direct form" 

realization [C-1] and requires N multiplications per stage. If one is desig­

ning a linear phase network, this number can be cut in half by using the 

symmetry properties of the impulse response [C-I]. Also, the convolution (C.39) 
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can be implemented using fast Fourier transform (FFT) techniques, and this is 

particularly useful when N is large in which case one might use a sectioning 

algorithm [C-I,32,D-2]. In using FFT techniques, one often sacrifices storage
 

in order to gain computational efficiency -- e.g. we may take N to be a -power
 

of 2 or may use overlap sectioning methods [C-1] for efficient operation when
 

the length of x is long. 

For IIR filters, a number of filter structures have been developed. In this
 

case, we are attempting to realize the transfer function
 

M _
 
-_ bkz 

k=0 
H(z) = N (c.40) 

k=l 

which is equivalent to the difference equation
 

N M 

y(n) = ayn-k) + b x(n-k) (C.41) 
k
k=1ak=0 

The direct implementation of equation (C.41) -- called the direct form I
 

realization -- requires storage of the last N values of y and the last M values
 

of u. This structure is far from minimal, as it is easily seen that the minimal 

number of delays is max(N,M). However, a slight modification of direct form I
 

yields the canonic realization direct form II (see [C-l,p.1 50]).
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By examining the transfer function (C.40), one can obtain a number of other 

canonac structures. For example, if H(Z) is expanded in partial fraction form, 

we can obtain parallel form structures, while if we factor H(z) as the product
 

of simpler transfer functions, we can obtain series or cascade structures. Let
 

us give an example of the cascade structure. Suppose we have 

2+(b+d)z+bd (l+bz l (l+dz 1 
H(z) = (b( z - ) (c.42)- I ) (l-czz - (a+c)z+ac (1-az 

In Figure C.3 we have realized this filter as the cascade of two first order 

filters in direct form I. Note that the overall filter is canonic.
 

The major questions surrounding the choice of filter structure include 

the consideration of computational efficiency, the effects of finite word length
 

on filter stability and performance, and the effect of finite precision in 

representing falter parameters. We have already said a few words concerning 

computational efficiency, and refer the reader to the references for more on 

this issue (in particular, see [C-1,32] for detailed discussiqns and further 

references on the use of the FFT algorithm)7 . In addition, in Section A we
 

considered the effects of quantization and overflow on system stability. An
 

alternative, approximate method for evaluating the effect of finite word length
 

7 
An interesting question in the area of computational efficiency is the determi.­

nation of filter structures that require the smallest number of delays and multi­
plies. For second order transfer functions Lueder [C-50] has shown that there are
 
precisely 32 such structures. An intriguing related question in the state space
 
area is the determination of a realization in which A,B, and C have as few 
elements as possible that are not 0,1, or -1. As far as we are aware, no work 
exists on this problem.
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Figure C.3: A Second-order Cascade Filter Structure 
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Figure CA4: An n-th Order Cascade Filter Including Quantization Noise 
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on system performance is to model each quantization as if it introduced noise 

(representing, for example, roundoff or truncation) into the system. This
 

approach is discussed at some length in [A-3,12,C-1,33737]. The basic idea
 

is that whenever a quantization occurs, one replaces it by an "equivalent noise
 

source". Then, by assuming independence of these various sources -- a rather
 

strong and many times un3ustified assumption (as the existence of periodic ef­

fects, i.e. limit cycles, indicates) -- one can in principle evaluate the over­

all noise power at the output, and thus can obtain a measure of the size of
 

quantization effects. 8 As an example, consider the case [C-1] of fixed-point
 

arithmetic and roundoff quantazation (Figure A.5) in which the quantization 

-b9

interval q is 2 (i.e. the number of bits used to represent fractions is b).9 

In this case, the quantization error e introduced by a single multiplication
 

falls in the bound
 

-1 2-b < e < 2 b (C.43) 
2 - 2 

If one makes the assumption that e is- uniformly distributed, we find that it has 

bParker and Girard [C-55] have shown how one can take the correlation in these noise 

sources into account. Specifically, quantization noises due to multiplication of 
the same signal by two different coefficients are correlated, and the correlation 
ian be approximated by a function that depends on the coefficients. In addition, 
Parker and Garar point out that correlation increases as the number of bits decreases.
 
We also refer the reader to the work of Eckhardt and Schussler [C-56] on evaluating
 
quantization error variances.
 
9 4Here, we follow the standard faxed point procedure in which all numbers are
 
represented as fractions. One can also consider noise analysis for floating point
 
[c-l,33]. See also the work of Fettweis [C-52,53,54]in which noise analysis is 
performed with the aid of certain system sensitivity functions. ­
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zero mean and variance 

2 1 2-2b (c.44)e= - (44
 
e 12 

Using these assumptions, one can add independent noise sources to filter repre­

sentations to account for quantization effects. For example, in the cascade
 

example of Figure C.3, one could add one noise source following each of the 

four multiplications (fewer noise sources might result from a different quanti­

zation procedure -- e.g. if we add the products bx and cx2 before quantizing).
 

Another extremely important issue in filter design is the sensitivity of
 

filter performance to variation in coefficients. This is quite qentral an 

issue, since one can only represent coefficients up to a finite degree of ac­

curacy, and hence one cannot obtain filters with arbitrary pole and zero locations.
 

As described in [C-l(Chapter 4),C-28,31], the allowable poles, and zeroes and the 

sensitivity to variations in parameters depends quite significantly on the 

particular structure under consideration. For example, parallel and cascade
 

structures are often used because of their sensitivity properties, since the
 

perturbations in the poles are isolated from one another [C-lJ. 

A great deal of work [C-1,28-31,33-37] has gone into developing methods
 

for answering a variety of questions concerning various filter structures. 

Questions considered include: (1) the determination of the number of bits needed 

in a given filter structure to obtain required accuracy in overall performance 

both from the point of view of parameter sensitivity and quantization noise; and 

(2) determination of "rules of thumb" [C-33,37] for the pairing and ordering of 

poles and zeroes in a cascade structure in order to minimize the effects of
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quantization noise. The study of questions such as these for large interconnected 

networks is a complex problem, and efficient algorithms are needed to evaluate
 

overall sensitivities, effects of noise, etc. One such large-scale package in­

volves the use of techniques for the manipulation of signal flow graphs. The
 

use of such techniques is discussed in [C-1,28,31], and a detailed description of
 

a computer package to perform a number of types of analysis on digital networks
 

is contained in [C-28].
 

For the remainder of this section, we wish to examine the relationship of
 

state space techniques and concepts to some of the questions in digital filter
 

design. This discussion is a first attempt to study such relationships, and a
 

great deal more work is needed before the issues can be thoroughly understood.
 

Let us first examine the use of state space techniques to determine filter struc­

tures. As described in the preceding subsection, realization techniques can be
 

used to obtain minimal realizations -- i.e. certain canonic algorithms. Consider
 

the transfer function (C.42). In this case, state space techniques yield a
 

variety of minimal -(in this case two-) dimensional realizations of the form
 

x(k+l) = Exk) + 	gu(k) 
(C.45) 

y(k) = h'x(k) + u(k) 

where
 

h' (zI-F)- g+l = 	 z2+(b+d)z+bd (c.46) 
z -(a+c)z+ac 
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Let us interpret (C.45) as an algorithm. Assume we presently have computed
 

x(k) and receive the new input u(k)
 

PART #1: (a) Multiply h and x (k) 

(b) Multiply h2 and x2 (k) 

(c) Add these, together with u(k) to yield y(k)
 

PART #2: (a) Multiply f and xI (k)
 

(b) Multiply f21 and x (k)
 

(c) Multiply f1 2 and x2 (k)
 

(d) Multiply f22 and x2 (k) 

(e) Multiply g1 and u(k) 

(f) Multiply g2 and u(k)
 

(g) Add (a),(c), and (e) to yield xl(k-1) 

(h) Add (b), (d), and (f) to yield x2 (k+l) 

Clearly a number of these steps can be done in different orders, but the above
 

steps do indicate the basic algorithm implied by (C.45). Note that in general,
 

there are 8 multiplications and 6 additions required.
 

Now let us examine the cascade structure of Figure C.3, and let us interpret 

it as an algorithm: 
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(a) Multiply a and x (k) 
(b) Multiply b and x1 W 

(c) Multiply c and x 2 (k) 

(d) Multiply d and x2 (k)
 

(e) Add (a) and u(k) 

(f) Add (b) and (e)
 

(g) Add (c) and (f)
 

(h) Add (d) and (g)
 

Then
 

(e) = x (k+l) 

(g) - x 2 (k+l) 

(h) y k) 

Note that these algorithm requires 4 multiplications and 4 addtlon0, but this 

is not the mQst crucial difference between the two algorithms, since it is
 

possible to obtain realizations (C.45) with some zero elements in (F,g,h).
 

However, the crucial difference is the following: if one interprets a state
 

space realization as determining an,algorithm of the type indicated, then there
 

is no way that the cascade algorithm is of this type! This is not to say that
 

one cannot find a state-space description of the cascade realization. In fact
 

[1x =j [?al) x~k) + u~k)
(a+b)c1
 

(C.48) 

y(k) = [(a+b), c+d)Jx(k) + u(k) 
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is such a realization. Note that if one takes into account that one doesn't 

have to multiply by 1 and that one multiplication is used twice, then (C.48)
 

requires only 4 multiplications
 

ax Ck)
 

(a+b)x k)
 

ex 2 (k) 

(c+d)x2 (k)
 

and 5 additions.
 

The point made above may, at first glance, seems to be trivial, but it is
 

not, since it points out that although any (infinite precision) algorithm can
 

be describe dynamically in state space terms direct interpretation of a state
 

space description as an algorithm does not allow one to consider all possible
 

algorithms. That is, it is relatively easy to go from an algorithm to a state­

space description -- e.g. (C.48)-- but it is not at all natural or clear how to
 

go the other way, and hindsight is needed in order to interpret the re&lization
 

:f1 0 + uk)]=x(k)
x Ck+l) 
 [f21 [1f22 


(C.49) 

y(k) - [f21 ,h 2 ]x(k) + u(k) 

as a cascade structure with 

a-fll , b=f21-fll, c=f2 2 , d=h2-f22 (c.50)
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Recently, Chan ED-107J defined a unified framework for the consideration 

of all 1-D structures. Chan noted that if one viewed (C.45) as a map from present 

state and input to next state and present output 

then any filter structure can be viewed as a factorization of and a change of 

basis on x. Specifically, consider the example (C.46), with the realization
 

(C.48), which yields
 

ra 0 11[ (a+b) c 1 

(a+b) (c+d) 1 

Let us write 2- 0D , where
 

a 0 1 1 0 0
 

l b c 0 ,2= 1 1 0 

0 d 0 1 1 1 

Then, if we interpret this factorization as an algorithm -- perform the operations 

indicated by I first and then perform those specified by t2 -- it is clear that 

we essentially have the cascade algorithm as depicted in Figure C.3. Thus Chan's 

technique provides a conceptual framework in which to consider structures from a 

state point of view. As Chan points out, it is not yet clear how one can use this 

factorization technique in aft Algorithnnc fashion to determine useful new
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structures. At the very least, it provides a unified framework for the consi­

deration of questions related to realization structures.
 

Thus, we see that there are potential limitations to the state space frame­

work for determining new filter structures, although the ideas of Chan may provide 

a conceptual unification of these subject areas. in addition to Chan's work, there 

appear to be several other structures-related areas in which state space concepts
 

may play a role. Recall that state space realization techniques allow one to determine 

minimal realizations for systems with multiple inputs and outputs. It is possible 

that this fact, combined with a thorough understalding of the relationship between 

state-space realizations and various digital system structures will lead to the 

development of useful filter structures (possessing desirable storage, computa­

tional, sensitivity, and quantization characteristics) for multivariable systems.
 

It is hoped that the preedng treatment of a simple cascade example will help 

expose some of the issues that need to be understood.
 

Also, as mentioned in the preceding subsection, the state space framework 

is particularly useful for the analysis of the properties of dynamical systems. 

Thus, it seems natural to ask if these techniques might be useful in the analysis 

of various filter structures. We have already discussed this question in Section
 

A with respect to stability analysis techniques. It is also possible that state­

space sensitivity techniques [C-23] could be useful in the study of the sensiti­

vity of various digital filter structures, but this awaits further study. 

Finally, let us examine the utility of state-space techniques in the analysis 

of the effect of quantization noise on filter performance. We do this by example, 

although it should be clear that this approach extends to arbitrary structures. 

Consider the cascade structure in Figure C.4. Here we have included quantization
 

noise after each multiplication. A state space representation of this filter can
 

be written down by inspection.
 



-127­

x(k+l) 

y(k) = 

= Ax(k) + bu(k) + re(k) 

c'x(k) + u(k) + ®e(k) + 

+ Af(k) 

Tf(k) 
(c.51) 

where 
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Lx(k) 

1 ( +b 1 

(a+b)nf 

e =w = (1,...,1) 

a 

(al+b I) 

0 

a2 

...... 

...... 

0 

0 (C.52) 

(a+b I) (a2+b2 ) ..... an 

r = 

1 

I 

31 

0 .... 0 

I .... 0 

1~ 

1.*..1 

1... 

A = 

0 

1 

1 

0 .... 0 

0 .... 0 

1 .... 1 

0 

0 

0 



-128­

eek 1 W ffk1= 

ek f (k) 

(k)n Wf 1n 

Also, the noises el,...,e , f ,...,fn are assumed independent, identically­

distributed, zero-mean white processes with variance (C.44). Then, assuming
 

that A is a stable matrix and using the covariance analysis procedure described
 

we can compute the steady-state covariance y of y 
10
 

in Subsection C.1, 


c'Pc + n 2-2b (C.53) 

where P, the covariance cf x, is the solution of the Lyapmov equation
 

P = APA' + 1 2-2b [rr'+AA'] (c.54)
12
 

Equations (C.54) and (C.53) are perfectly suited to computer implementation.
 

Also, note that the solution of ((C.54) yields the effect of noise throughout
 

the network. The utility of an approach such as this for digital network analysis
 

needs to be examined more carefully, but it appears that it may be computationally
 

superior to other methods, such as those that require computing a number of
 

partial transfer functions (from each noise source to the output -- see [C-5J).
 

We also note that if the noise sources are correlated, as they are shown to be
 

in [C-55], one can adapt the preceding procedure by augmenting the filter state
 

Here we have assumed u=0o 
 The analysis of the deviation of y from the desired 
value when uyO is identical to the above (assuming that e and f are independent 
of U).
 

10 
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equations with a shaping filter that yields the correct correlation in the error
 

sources. We note that Parker and Giraz [C-55J used Lyapunov-type equations and
 

analysis quite similar to our development for the evaluation of output noise power
 

due to correlated quantization errors. In addition, similar analyses have been
 

undertaken by Hwang [C-64], Mullis and Roberts [C-65], and Sripad and Snyder [C-66,
 

67],Hwang uses Lyapunov-state space equations to study the effects of possible
 

structure transformations and state-amplitude scalings; Mullis and Roberts use a
 

similar framework to study what they call "minimal noise realizations"; and Sripad
 

and Snyder develop conditions under which quantization errors are in fact white,
 

and they also use Lyapunov-type analysis to compare the performance of two different
 

realizations. These references clearly indicate the potential benefits of this
 

type of analysis.
 

Within the framework described above, one can pose a number of other questions.
 

1
 
For example one can perform a similar noise analysis if random 

rounding is used.
I


Also, Schussler [C-51] has proposed a figure of merit for structures -- the required
 

number of bits to meet given noise specifications. In terms of (C.53) and (C.54)
 

this would mean determining b so that the resulting Z is less than some prescribe
 

limit. Is it possible that we can devise algorithms for the solution of such problems
 

for this and for more general structures? In addition, in the case of floating point
 

arithmetic, the quantization error depends on the size of the signal. Can state­

space procedures for analyzing "state-dependent noise" (C-57,58] be of value here?
 

Questions such as these await future investigation.
 

C.3 Direct Design Taking Digital Implementation Into Account
 

As discussed in the preceding subsections, design procedures in both dis­

ciplines consist of several parts -- determining the desired input/output
 

111
 
As Schussler [C-51] points out, one often designs filters with limit cycles, since
 

filters without limit cycles often have poor noise behavior, and one can overcome
 
the limit cycle problem by using randomized rounding (hence adding a bit more "noise"
 

to the system).
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behavior to be synthesized and the design of an algorithm that approximate 

this behavior given the constraints of digital implementation. The procedures 

as described up to this point treat these issues separately, but, as discussed
 

in [D-2J, it would be of value to consider overall design methods that take the
 

discrete nature of the computer into account during the process of developing
 

design specifications and allow the study df tradeoffs such as performance versus 

number of bits used. The development of full-fledged design procedures is 

clearly a long way off; however, in recent years some research in control and es­

timation theory has been aimed at developing designs that reflect the interaction 

of system specification and the limitations and structure of the digital system 

that is to be used to implement the system.' We will briefly described several 

of these and refer the reader to [C-38-46,D-85,86,87,88,89,91,92 for details. 

Consider the continuous time linear system
 

x(t) = Ax(t) + Bu(t) (c.55) 

m
where xRn , uR . Suppose we wish to control the system with a digital 

control system. Specifically, suppose we can observe x(k) = x(kA), k=1,2,..., 

and, based on these observations, we feedback a control 

u(t) = u(k) kA<t<(k+l)A (C.56)
 

In addition, suppose we wish to design the control law to minimize
 

J f [x'(t)Qx(t) + u'(t)Ru(t)Jdt (c.57) 

0 
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For a fixed value of A, this problem leads to an optimal discrete-time control
 

problem [C-39] with the feedback law
 

u(k) = Gx(k) (C.58)
 

Suppose this law is to be implemented in a digital system that takes T 
m 

seconds to perform a multiplication. Then (assuming add time is negligible), 

in general the control law requires
 

A>nmr (C.59)-- m 

Thus, it is clear that each control algorithm requires a minimum time 

A between successive samples, and the following question arises: suppose 
ruin 

we consider a "suboptimal" control algorithm that can be implemented at a 

faster sampling rate than the bound for the "optimal" law in (C.59); is it pos­

sable that such a law can outperform the slower, "optimal" law. This question 

is answered in the affirmative in [C-38], in which a simple example is given and 

an indication is given that one can achieve performance improvements for a class 

of large-scale, "loosely-coupled" systems. One can also interpret these results
 

as providing a method for determining the value of a faster computer, as measured
 

by the accompanying decrease in J -- i.e. for a given control law and two possible 

multiplication times T, T2 (T <T 2) the cost difference J(T2 )-J(T ) can be 

interpreted as the amount one would be willing to pay for the faster machine. 

This can provide a basis for a tradeoff analysis -- the cost of a faster computer 

versus achievable performance improvement. 
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The question of devising control and estimation designs and digital 

architectures that are especially natural for particular applications is
 

receiving more and more attention as available digital systems are being im­

proved and made less expensive. Specifically, the development of microprocessor
 

technology has led to a great increase in the design of- control and estimation 

systems that involve a number of identical modules, parallel structures, and
 

distributed processing [B-103,104,C-40-46J. In the area of decentralized control 

ED-85,86,87,88,89,91,92 one often has an extremely large and distributed system 

with many inputs and outputs, and one wishes to design a set of "local" controlle 

-- i.e. a set of several control laws, each of which uses only some of the inputs 

and some of the outputs and is perhaps implemented on a dedicated processor. 

Clearly the architecture of such a system (i.e. who gets to know what) is a major 

design variable. Again one can interpret the difference in performance of two 

different architectures as a measure of how much more one would be willing to pay 

for one system than another. Clearly a totally centralized system would perform 

best, but the cost of relaying all information to and from one central location 

may be prohibitive. 

The study of problems such as this -- i.e. the interaction of implementation 

and architecture issues (parallelism, decentralization) and the design of control 

and signal processing algorithms -- is still in its infancy, and it appears to 

offer an extremely promising avenue for research and for applications to problems 

in fields such as aircraft control [C-40,42-44] and nonlinear stochastic filtering 

[C-45,46]. We note that architectural issues have received a great deal of at­

tention in the field of digital signal processing [C-28,31,47,48], and this 

appears to be a promising direction for future interaction and collaboration. 
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We also note that there has been work [C-68,69] in digital filter design
 

aimed at developing structures and design techniques that take the constraints
 

of finite arithmetic into account at the start. In addition, the restrictions
 

of finite arithmetic have, in part, motivated the study of linear systems in 

which the vectors and scalars are all integer valued -- i.e. linear systems over
 

rings [E-28-31J. The work to this point has been quite theoretical, and its value
 

in allowing one to design digital controllers or filters has yet to be established.
 

Finally, we note that in both disciplines there is a great deal of interest 

in the development of fast on-line algorithms. In digital signal processing, 

fast Fourier Transform algorithms [C-1,59,60] have been widely used (for example, 

in the implementation of FIR filters). The FFT has also found use in control 

theory (see, for example, its use in implementing matched filters for detection 

of failures in dynamic systems [C-61] and in designing efficient optimal con­

trollers for certain large interconnected systems that possess some symmetry in 

their structure [D-93]). In addition, motivated by the algebraic-treatment of 

Nicholson [C-60], Willsky [C-62] has developed fast algorithms for several types 

of "noncommutative convolutions" that occur in certain nonlinear filtering problems 

(see also [C-63]). Also, all of the fast Kalman gain algorithms discussed in 

Section B are potentially useful in the design of efficient adaptive control 

systems. The implementation of systems along these lines and the development of 

new efficient on- and off-line procedures remains an active area of research in 

both disciplines. 
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D. 	Multiparameter Systems, Distributed Processes, and Random Fields
 

A growing interest has developed over the past few years into problems
 

involving signals and systems that depend on more than one independent va­

riable. In some cases one of these variables is time, and the others represent 

spatial dimensions -- as in the study of distributed parameter systems 

[D-157-159J or decentralized control [D-87,88,93,94] -- while for other pro­

blems -- such as image processing (D-4,6,7,20,21] -- none of the independent
 

variables can be thought of as time. 

This research area is rich in both potential application areas and in 

challenging theoretical problems. Among the areas of application are image
 

processing, seismic signal processing, meteorology, gravity field mapping,
 

pollution monitoring and control, and inertial navigation. On the theoretical
 

side, there are a number of basic conceptual questions. How does one handle 

the 	processing of distributed data in an efficient manner? What properties 

do recursive techniques have in a setting where the recursion is in more than 

one 	dimension? Do causality and state make any sense here? What about
 

stability? What are the tools for analyzing stochastic processes? How do we 

"predict" when the independent variables aren't time? What role do recursive 

estimation techniques play (what are recursive estimation techniques?)? Which 

concepts concerning signals and systems in one independent variable carry over
 

to the multiparameter case? Which do not, and why don't they? 

In this section we consider several problem areas involving multiparameter 

signals and systems in order to discuss some of the issues mentioned above in 

more detail. 
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D.e Two Dimensional Systems and Filters
 

Over the past few years, a great deal of work has been done in attempting
 

to extend one-dimensional filtering concepts to the design and analysis of
 

systems that process data that is distributed in two-dimensional (2-D) arrays. 

The consideration of 2-D systems has opened up an entirely new set of
 

questions,, and in this section we want to explore some of these design and 

analysis issues. For an excellent and thorough overview of 2-D digital fil­

tering, we refer the reader to ED-3]. 

As in 1-D, we can define a linear shft-invariant system (LSI) that
 

processes 2-D input arrays x(m,n) to produce 2-D output arrays in a linear 

fashion and so that a shift in the "time" origin for the input merely induces 

an analogous shift in the output. Such a system has a convolutional repre­

sentation, much as in I-D
 

4W 
y(m,n) = E h(m-k,n-R)x(k,) = h(m,n)*x(m,n) = x(m,n)*h(m,n) (D.1) 

- k, b=-oo 

Here h(j,k) is the unit sample response -- i.e. the response of the system 

to the input 

x(k,Z) = 6 6O (D.2) 

(here 6 is the Kronecher delta which is nonzero and equals 1 only if i=j). 

The unit sample response is sometimes referred to as the point-spread function
 

[D-4J, a tern used in image processing, where hi(j,k) has the interpretation 

as the observed image when the input illumination is a point source at the 

origin.
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Again as in the 1-D case we can take z-transforms For example, the 

system function of (D.1) is 

+-k ­
H(z1'z2) = E h (k,,)z I1 z2 (D.3) 

Pk,Z=- 1 

and a simple calculation transforms (D.l) into
 

Y(z ,z 2 ) = H(ZlZ2 z z2) (D.4) 

An important class of LSI systems arisE from rational system functions
 

H(z,Z2) = A(zZ 2 ) (D.5)
12 B(Z1 ,Z 2 ) 

A(Z ,z 2 ) = E a(k,Z)z -kz­
(k,A) 6I 

(D.6) 

B(zz 2 ) = Z b(k,) l-kz2 
(k,P)I 2 1 2 

where Il, 12 are finite sets of pairs of integers. As a strightforward
 

consequence of (D.4)-(D.6), we obtain a 2-D (partial) difference equation
 

relating y and x: 

b(k,t)y(m-k,n-) = S a(k,Z)x(m-k,n-) (D.7) 
(k,t)s12 (k, 2 

Up to this point, the mathematical steps taken follow the 1-D steps
 

very closely, but now we begin to see some of the conceptual as well as
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mathematical difficulties that arise in the 2-D case. rat us first discuss 

the problem of recursion. Given the equation (D.7), we want to use it to 

calculate the next output given previous outputs and the input. Enbedded in 

this statement is the heart of one of the problems. Unlike the l-D case, in 

which the index n has the interpretat-on~of time, in the 2-D case, in general, 
1 

it is not clear what "next" or "previous" mean. In fact, just given (D.7) 

it is not clear that there is any definition of next or previous that will 

allow us to recursively compute y(m,n). Dudgeon [D-3,5,33 Pistor [D-42], 

and Ekstrom and Woods [D-103,119] have studied this problem in great detail, 

and we now briefly overview their work. 

First note that in the nonrecursave (FIR) case -- i.e. when B=1, there 

is no problem in computing (D.7) output point by output point. There is,
 

however, an issue concerning what part of the input must be stored at any one
 

time. In l-D, we just keep the most recent input points (assuming we compute
 

y(n) sequentially), but the situation is more complex in 2-D. For example,
 

suppose we have the "nearest neighbor" filter [D-31]: 

= f(-l,0), (0,0), (1,0), (0-1), (0,i)} (D.8) 

then to compute y(m,n) we need x(m+l,n), x(m,n), x(m-l,n), x(m,n+l), x(m,n-l) 

Conversely, we must hold on to x(m,n) until we have computed y(m-l,n), y(m,n), 

y(m+l,n), y(m,n-l), y(m,n+l). Thus, depending on the order in which we compute 

the y's, we can have very different requirements for storing the x's. Here we 

get our first glimpse at the fact that the required storage depends not only 

1 Unless one of the two dimensions is time and we wish to process the input in 
real-time. We will have more to say about this later in this section. 
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on the degree of the filter but also on the sequencing of computations. Of 

course for FIR filters, as in the l-D case, we can process inputs in blocks,
 

using a 2-D FFT algorithm together with an appropriate method for taking care
 

of the overlaps in the blocks. Methods along these lines exactly parallel
 

the 1-D methods, and we refer the reader to ED-3] for further discussion and 

references.
 

Thus, we have that the right-hand side of (D.7) does not raise any
 

insurmountable obstacles for the sequential processing of inputs (although
 

there are several interesting questions as we've seen). The situation is far
 

different in the recursive case (B3 constant). Since the right-hand side of
 

(D.7) causes no difficulties, we assume that it is trivial (A=l) for conven­

ince. Let us consider one of the most widely used special cases of (D.7):
 

M N 
E E b(k,Z)y(m-k,n-i) = x(m,n) (D.9) 

k=O 2=0 

Assuming that b(0,0) F0, we have 

M N 
y(m,n) b 

1 
0b(k,Z)y(m-k,n-) + - x(mn) (D.0)

y0 (re n)= (0,0) b 


(k,Z) (0,0)
 

and we immediately see that to calculate y(m,n), we only need the values of
 

. ,, 2 
outputs to the "southwest" . Figures D.I-D.4 illustrate the situation.
 

2This terminology appears to be due to Pistor (D-42]. It seems to be particularly 
appropriate for conveying the geometry of 2-D recursions and causality. 
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Figure D.I: Support of a First Quadrant or tNortheast' (NE) Function.
 
(Possible nonzero locations are indicated by solid dots.)
 

n 

y(m-M,N) 0 0 0 0 0 & y(m,n) 
00 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 00 m 

y(m-Mn-N) 0 0 0 0 0 0 y(m,n-N) 

Figure D.2- Required Output Points (Open Dots) to Calculate y(m,n) for the
 
system given by (D.9)
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Figure D.3: 	Required Boundary Conditions for (D.9) in Order to Calculate
 
NE quadrant of y.
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Figure D.4: Several Possible Directions of Recursion for (D.9)
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In Figure D.l, we see that the support of the function b(k,Z) is in the 

first quadrant. We will call such a function a "northeast" (NE) function 

for reasons that will become clear shortly. In Figure D.2 we see the set
 

of data points to the SW that must be stored in order to enable us to calculate
 

y(m,n). A consequence of this is seen in Figure D.3.- If we are interested 

in calculating y(m,n) in the NE quadrant, we must specify initial or boundary 

conditions as shown. As we calculate and store some of the output points, we
 

can discard some of the old values, but it is clear that the amount of storage 

needed depends not only on M and N in (D.9) but also on the range of values of 

m and n for which we want to calculate y. If either of these ranges is 

infinite, the storage needed is infinite. 

In addition to this consideration, we also find that the storage require­

ments depend on the sequencing of the recursion (we had seen this earlier in 

the FIR case). Several directions of recursion are indicated in Figure D.4. 

Here (a) depicts the north recursion, (b) is the east recursion, and (c) is a 

NE recursion. We can generate- other directions of recursion as long as they 

remain within the NE quadrant. Each recursion calls for its own sequence of 

data accessing and discarding. The N and E recursions appear to have parti­

cularly simple sequencing rules, but the data must be processed serially. 

On the other hand, the NE recursion has a more complex sequencing but leads to 

the possibility of parallel computation, since, for example, points 4,5, and 6 

can be calculated simultaneously. The possible directions for recursion and 

potential uses of parallel computation can be determined with the aid of a 

conceptual device -- the precedence relation, which partially orders points 
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with the rule
 

(m,n) .4(Z,k) if y(m,n) is needed to be calculated first in order to
 

be able to calculate y(Z,k) (D.11)
 

Thus (m,n)-<(,,k) if y(m,n) is directly needed to calculate y(k,k) or if it
 

is used to calculate some y(r,s) that is used directly to calculate y(Z,k),
 

etc. A discussion of this topic has been given by Chan [D-107,152]. We
 

will come back to this issue later in this section.
 

Let us now return to the question of recursibility. Clearly the picture
 

is symmetric -- i.e. we can have NW, SE, and SW recursions, with b(k,Z) res­

tricted to be a function on the corresponding quadrant. However, as shown by
 

Dudgeon ED-5,33], this by no means exhausts the possibilities for recursion. 

In addition to the one quadrant functions, we can obtain recursive difference 

equations with b(kA) 's that are one-sided [D-5]. To illustrate the idea, 

consider the equation 

M N N 
y0O(m,n) b(, ) Ek=l N b(k,Z)y(m-k,n-Z)--- b (0,0) E (0,P)y(m,n-4)R '=I 

1 
b(0,0) x(m,n) (D.12) 

Figure D.5 illustrates the support of such a function, while Figure D.6 

indicates how points are recursed and what initial conditions are needed. 

Here we calculate the data points column by column, using data points to the 

south and to the west (not just the southwest). Hence the directions of
 

recursion are far more limited than in the single quadrant case, since -we cannot 
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o INITIAL CONDITIONS10 0o 4 

I0 0 3 POINTS TO BE
i•
 

CALCULATED
o o 2t 


0 0 . 6Q+2 
10 0 X Q+I 

! o 0 0\ 
0 0 

Figure D.6: Ilutrating the Requ red nitial Conditons and the 

S Direction of Recursion for the Filter of Equation (D.12). 



-144­

move east until all of the data points required in the present column have
 

been calculated. For more details, we refer the reader to [D-5,33,100], in
 

which related issues are discussed, such as the rotation of the support of one­

sided or one-quadrant functions to obtain recursions at various angles.
 

Thus, we have seen one place in which the 2-D case is more complex than
 

in one-dimension: the notion of recursibility and some of its geometric
 

interpretations. One can avoid many of these difficulties by sticking to
 

nonrecursive designs, but recursive techniques offer enough potential ad­

vantages in computation time and storage to warrant further detailed study. 

Let us make another connection with I-D processing. Suppose that one of
 

the two indices, say m, has the interpretation as time. Then one might think 

of y(m,n) and x(m,n) as (l-D) spatially distributed processes that evolve
 

in time. Temporal causality might then correspond to the support of b in 

Figure D.5 being modified by deleting the points on the positive n axis,
 

yielding a "strictly" one-sided function. In this case, one could define the 

"state" of the system, and it is clear that this "state" will be finite dimen­

sional only if the range of n is bounded, which is precisely when the required 

storage for the 2-D recursion is finite. This clearly shows why the order of 

a 2-D filter does not specify the storage requirements by itself, but one 

must also know the range of m and n. Hence we see that 2-D digital filtering 

of scalar (or perhaps vector) variables bears some resemblance to the 1-D 

state space framework for multi- and possibly infinite dimensional systems that 

arise in multivariable and distributed system and control theory. 

An intriguing question is: can this interrelationship be exploited to 

yield useful insights and/or results on either or both sides of the coin. 
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The answer is, of course, yes. Such problems arise in seismic signal pro­

cessing, in which the data to be processed x(m,n) varies in time m) and 

also in array sensor location (n). We refer the reader to the references for 

more on this problem. Encouraged by this example of the successful exploi­

tation of the 2-D, multivariable l-D interrelationship, one can ask a number 

of rather speculative questions. In large-scale system theory, we often 

have a number of subsystems coupled together, and one is interested in efficient 

processing of data and control of such systems. Viewing the variables as 

functions of two independent parameters -- time and subsystem index -- can we 

obtain any insights into the control and processing of large systemswith the 

aid of 2-D digital filtering concepts? Note that this would involve the con­

3 
sideration of feedback for 2-D systems, a topic that, to our knowledge, has
 

never been addressed in the digital filtering context (with good reason - it
 

is irrelevant for usual 2D processing problems). We have been somewhat vague
 

about this topic, but we shall return to this large system- 2D-filter idea
 

several times in this section, as these are a number of interesting insights 

and questions that can be raised. Another possible use of 2-D concepts for 1-D 

problems is in the analysis of time-varying 1-D systems, in which one can 

define a system function in two variables -- a transform variable and time. 

Such concepts may also have value in developing time-varying linear prediction
 

algorithms. On the other side, in order to study questions such as stability 

or roundoff noise behavior for 2-D filters, is there any benefit in viewing the 

2-D filter as a mltivariable 1-D system? Capetenakis [D-90J has begun such 

an investigation for NE filters (not strictly one-sided). Although his results 

30f course, causality constraints would have to be built in. For example the 
feedback from y to x would also have to involve a strictly one-sided recursion. 



-146­

do not yield any new results, they are very preliminary, and this also 

remains as a possible direction for further work.
 

As mentioned earlier and as discussed in [D-107,152], the ability to
 

solve a 2-D difference equation recursively leads directly to the definition 

of a partial order (D.11) on the part of the 2-D grid over which we wish to 

solve the equation. Given this partial order -- the precedence relation 

one then has some freedom in deciding how to sequence the calculations. 

Specifically, if we think of a sequence of calculations as determining a total 

order (denoted by <) on the part of the 2-D grid of interett, all we require 

is that this total order be compatible with the precedence relation. That is 

(m,n) is calculated before (G,k) (written (m,n)<(Z,k)) if (m,n)a<(,k). Manry 

and Aggarwal [D-56] have studied such order relations for NE recursive filters. 

One of their first observations is the following: given a compatible total 

order <, the first quadrant can be put into a 1-1, order preserving correspondenci 

with the nonegative integers:
 

Q(m,n) = r <=> there are precisely (r+l) points in the NE 
quadrant <(m,n) (D.13) 

Given the function Q, one can think of (D.10) as determining a l-D filter, with 

(m,n) replaced by Q(m,n), etc. Alternatively, given the ordering (D.13), we can 

think of processing the input x(m,n) with a linear time-invariant 1-D filter. 

One finds (see also Mersereau and Dudgeon [D-3,55J) that in general neither of
 

these filters -- the 1-D filter obtained from (D.10) and (D.13) or the 2-D 

filter obtained from a given LTI 1-D filter and (D.13)-- are shift-invariant
 

invariant (they are, of course, both still linear).
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Let us examine several orders. Manry and Aggarwal- suggest the order of 

Figure D-4 (c), since every point in the NE quadrant is mapped by (D.13) into 

a finite integer. The orders suggested by Figure D.4(a) or (b) are well-posed 

only if the desired range of one of the variables m or n is finite. In this 

case, we obtain several possible orders, as given in Figure D.7. In both
 

cases, the range of values is limited in the n direction. Manry and Aggarwal 

suggest the section-scan of Figure D.7(b). They then show that except for
 

effects near the bottom line or at the junctions of two-sections, the I-D
 

difference equation from (D.10) and' (D.13) looks shift-invariant. They then 

show that assuming this shaft-invariance holds throughout the entire region, 

one obtains a l-D stable filter, and one can overlap sections in order to
 

reduce the errors at section junctions, leaving substantial errors only at the 

far left and along the bottom. These errors notwithstanding, this method 

provides an extremely promising method for using l-D filter design techniques 

to design filters to process 2-D data.
 

The "scan" order of Figure D.7(a) has been widely used in processing 

images via line by line scans ED-3,21,55,58L. Nahi [D-21,58] has used this 

to develop stochastic models for image processing, and the shift-variance in­

troduced by doing 1-D processing on the scan-ordered data points causes errors
 

along the bottom (we will have more to say about this in the next subsection). 

Mersereau and Dudgeon ED-3,55] point this out, noting that only periodic unit
 

sample responses of the form h(m,n) = h(m+l,n-N) can be realized exactly by a 

I-D shift-invariant filter working on the scan-ordered data. They also spend 

a great deal of time studying this order when the data array is finite in both
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Figure D.7: Two Orders for 1-D Processing of 2-D Signals.
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directions, such as it is for a 2-D finite impulse response function. As they 

point out, in this case the Fourier transform of the 1-D scan signal is a 

"slice" of the 2-D Fourier transform of the original data array. Since the order 

is invertible, we inmediately see that we can completely recover the 2-D trans­

form from this slice (which they term a critical slice because of this property). 

Consequently with the aid of 1-D design methods, one can use this scan-ordering 

for 2-D FIR filter design: given the Fourier transform of the ideal 2-D 

filter, we take a critical slice, hence obtaining an ideal l-D filter; we use 

I-D design methods to determine an approximation to this ideal transfer function. 

We then either use this I-D filter to process the scanned data4 or we can invert 

the 1-D filter, regarded as a critical slice, to find a 2-D filter which can
 

operate directly on the 2-D array. For details we refer the reader to [D-3,55].
 

We also note that a closely related result involves the recovery of 2-D images
 

from knowledge of 1-D projections of the array. Such a technique is of great
 

interest in biomedical applications such as tomography, and we-refer the reader
 

to [D-29J for a detailed survey of the theory and available algorithms related
 

to this subject. 

We close our discussion of 2-D ordeis and precedence relations by noting
 

that these very same issues arise naturally in certain feedback control problems. 

Ho and Chu ED-87,88J consider optimal control problems in which one has a set 

of decision makers who base their decisions on certain observed data, which
 

may be affected by the decisions of others. These decisions may be specified to
 

be made at different points in time and/or by distinct decision makers at the
 

A 
4One must be careful here to pad the 1-D finite impulse response and the scan sig­
nal with zeroes. This is necessary because the extent of the convolution of two 
finite 2D arrays is larger than the original arrays. In order to be able to in­
vert ("unscan") the convolved 1-D signal to obtain the 2-D output, we must effec­
tively scan enough zeroes at the end of each of the original 2-D arrays. See 
[D-55] for details. 
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same points in time. Ho and Chu define a precedence relation among decisionw 

j 4i if the decision of j affects the observation of i (D.14) 

and they assume that this is a partial order -- i.e. that if j-<i, we cannot
 

have i-,j (this is precisely the condition needed for recursibility of 2D 

filters). Then, under a "partially nested information condition" -- if 3<i, 

then 's observation includes knowledge of 3 's observation -- they solve an
 

optimal control problem5 . When the partial order is a total order -- i.e. when 

,4is really just time ordering, this is the usual optimal control problem. In 

the non-total order case, one can have simultaneous -- i.e. incomparable -- de­

cision makers who do not affect each others observations. 

Witsenhausen [D-93,94] has also studied this partial order and has raised
 

issues analogous to those of Chan [D-107,152]. Witsenhausen points out that
 

the amount of parallelism in the control system is essentially a measure of the
 

number of incomparable decision makers (this number may vary with time). In 

addition, if one totally orders the set of decision makers in a way compatible
 

with (D.14), one can then define the state evolution of the system. Hence we
 

see that there may be many possible sets of states corresponding to different
 

compatible total orders. In fact, using a generalization of the Nerode notion
 

of state, Witsenhausen shows that the set of possible states forms a lattice.
 

5 When this condition is not satisfied, the problem- is more difficult -- essentially 
information is forgotten. In this case Chu [D-88] discusses some examples in 
which the optimal solution can be found with the aid of thd partially nested re­
sult, and he discusses some suboptimal methods. We refer the reader to [D-88J
 
for details.
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All of this is developed with certain decentralized control problems (i.e. 

involving incomparable decision makers) in mind, and Witsenhausen points out
 

that it is not clear if the notion of state he has introduced will be of use 

in solving such problems(as it is in the classical totally ordered case). He 

also mentions that the a priori partial order restriction does not hold in some 

game theory problems, in which the sequence of future decision makers can be 

affected by prior decisions. The difficulties here, as with those of nonrecur­

sible 2-D filters, are quite substantial.
 

An important problem in the study or design of 2-D recursive filters is 

stability, where, as in [D-3,16,49], we define stability as the absolute sum­

mability of the unit impulse response
 

Z Ih(m,n)I<c (D.15) 

This condition is equivalent to bounded-input/bounded-output stability. As 

one might expect from knowledge of the I-D case, the stability of a filter might 

depend on the direction of recursion -- i.e. the equation 

y(m+l,n) = 2y(m,n) + x(m+l,n) (D.16) 

is unstable if recursedto the east, but it is stable 

1 ~ 1 
y(m,n) = fy(m+l,n) - wx(m+l,n) (D.17) 

if we solve to the west. 
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Shanks, Treitel, and Justice ED-49J considered the stability of 2-D 

systems with rational transfer functions as in (D.5), (D.6), with b a NE 

function, as in (D.9). They also explicitly considered stability of the re­

cursion in the NE direction only -- i.e. we use (D.10) to compute y(m,n) from 

inputs plus outputs to the SW. In this case, they obtained a direct analog of 

the 1-D stability result: 

A rational transfer function H(z,,z 2 ) as in (D.5)
 
with b a NE function is recursivety stable in the (D.18)
 
NE direction if and only if no zero of the deno­
minator B(z1 ,Z2) lies in the region
 

{ilz1 Ifn Iz2I>} 

As in the 1-D case, we can use a NE b to define a SW recursion -- instead of 

going from (D.9) to (L.10), remove y(m-M,n-N) from the sum in (D.9); we can 

then recursively compute this quantity using outputs to the NE. Similarly, 

we can pull out the other two "corner" elements to obtain NW and SE recursions. 

Hence we have 4 possibilities as opposed to the 2 in l-D, (D.16), (D.17). As 

in the 1-D case, we obtain different stability conditions for these four cases, 

which Huang ED-50] has derived. For example, for the SW recursion, we have 

stability if and only if no zeroes of B(zl,Z 2 ) lie in {iz 1 :<l}f{Iz 2 1<l1. 

Huang showed that at most one of the four directions of recursion can lead to 

a stable filter. In addition, Justice and Shanks ED-16] extended these ideas 

to recursions in different directions for N-D filters in which B does not 

-i -i 
necessarily have to have finite degree in Zl,...,zN and z 1 ,...,N . We refer
 

the interested reader to ED-16] for a detailed statement and proof of these
 

results.
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We now turn our attention to the problem of checking conditions such as 

(D.18). As mentioned in D-3], the problem is complicated by the fact that 

the zeroes of B(zIzl2 ) are not isolated points, but rather are surfaces. This 

makes the direct checking of (D.18) quite difficult (one must map 

Izil>i into the -plane via the implicit relation B(ZIZ2)=0; we then havez 2 

stability if and only if the image lies within Iz2 1<)). Fortunately, a num­

ber of simplifications of the criterion (D.18) have been made. Huang ED-50] 

showed that (D.18) holds if and only if
 

B(z,, )30 1zl1 >_l (D.19)
 

B(zl,Z2)0 1z 1z (D.20)
 1!=l, 2 1>1 


A generalization of this type of criterion to N-dimensions has been made by
 

Anderson and Jury [D-45]. 

Let us consider the computations involved in (D.19), (D.20). First we 

note that the test of condition (D.19) is essentially a 1-D stability test, 
-I 

since B(zIa) is a polynomial in z I . On the surface, however, it appears
11 

that (D.20) requires an infinite amount of computation (again we must map 

IZ1j=1 into the z2 -plane via B(zIz2)=O). Fortunately, there are several
 

finite algorithms for testing for conditions such as (D.20). Huang himself
 

used a 2-D bilinear transformation to modify condition (D.20) in such a manner 

6
that the continuous 2-D parameter results of Ansell ED-64] could be used 

Ansell's test consisted of a Hermute test which checks for the positivity of 

the principal minors of a-symmetric matrix of polynomials in one variable 

6Two variable system functions arise in a variety of problems. We will return 
to investigate the connections among these problems at a later point in our
 
discussion.
 

http:1z1z(D.20


-154­

(this is a positive-real type of test). The positivity tests in turn can be 

performed using Sturm tests (we refer the reader to [D-50,54,64] for details).
 

Anderson and Jury [D.54J suggested another method for checking (D.20). 

Instead of using the bilinear transform plus the Hermite test, one can work
 

directly with condition (D.20), using a Schur-Cohn test (see [D-125]) that
 

replaces (D.20) with a check for the positivity of all of the minors of a 

certain Hermitian matrix of polynomials in one variable. Again one can use 

Sturm tests on the individual minors. An alternative to this approach was
 

proposed by Maria and Fahmy [D-130] who used a modified version of the Jury
 

table ED-125J to obtain a finite check of (D.20).
 

Recently, an algorithm, far simpler than these and also better suited for
 

computer implementation, was developed by Siljak [D-27]. The key to this 

algorithm is a powerfu result [D-122J on the positivity of polynomial matrices. 

This result, developed with the applications of multivarlable positive real 

functions to networks in mind (see, for example, [D-13121), replaces the sequence 

of tests of positivity of principal minors with two tests, independent of the 

dimension of the matrix. Specifically, one need only test for positivity of
 

the matrix at a single value of the independent variable and for the positivity 

of the determinant. We refer the reader to [D-27] for details and for further 

remarks on the relationship of these stability results to multivariable tech­

niques arising in network synthesis.
 

We also note that a great deal of work has been done on extending tests
 

for stability and positivity to the N-D case. Anderson and Jury [D-45] ex­

tended their use of the Schur-Cohn test to higher dimensions,, but did not 

directly propose a finite algorithm for the positivity tests one must perform 
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on polynomials in (N-I) variables (which arise as principal manors from the
 

Schur-Cohn test). Bose and Jury [D-57J developed such an algorithm in the 3-D
 

case, in which the 2-D positivity tests reduce to tests for sign variations 

of single-variable polynomials defined on the unit circle in the complex plane. 

They also develop an extremely efficient method for computing multidimensional 

bilinear transformations, which allows them to develop a stability test algo­

rithm for 3-D continuous systems. Subsequently and with the aid of results 

from decision algebra, Bose and Kamat ED-124] devised an algorithm for imple­

menting Jury table calculations for an N-D stability test which involves a 

finite number of multivariable polynomial multiplications and a finite number 

of single variable polynomial factorizations (a nontrivial numerical problem). 

In addition, Bose [D-147,148] and Bose and Modarressi [D-118,150] have used 

concepts from Jury's theory of inners ED-123] for developing tests for positivity, 

nonnegativity, and greatest conon factors of multivariable polynomials. Such 

tests are needed not only in multivariable stability and positivity tests, but
 

also find applications in applying Lyapunov's direct method to test for the
 

7 
stability of multi-state-varxable, 1-D systems. We refer the reader to the 

references. 

The issue of stability is clearly of great importance in filter design, 

but, as Mersereau and Dudgeon [D-3] point out, it is note enough to have a 

stability test. Rather, one wants a procedure for taking given frequency 

response characteristics and generating stable, recursive filters that possess 

these characteristics. One approach is to take a given transfer function and 

7This leads to the question of extending Lyapunov methods to systems with more than
 
1-D time. To do this, requires the notion of "statedfor such systems. We shall
 
discuss this problem at length later in this section.
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to stabilize it by finding a stable system function that has the same magnitude
 

function for its frequency response. In l-D, this process can easily be 

accomplished by replacing poles outside the unit circle with poles at conjugate
 

reciprocal locations. An algebraic approach to this problem does not work in
 

8
 
2-D, since in general we cannot factor 2-D polynomials. However, another 1-D
 

approach to performing this stabilization, involving the use of the discrete
 

Hilbert transform techniques, has been extended to the 2-D case by Read and
 

Treitel [D-53]. In this approach, one takes the denominator polynomial of a
 

given rational response and calculates its log-magnitude function. Then the
 

2-D discrete Hilbert transform can be used to determine the minimum phase
 

function associated with the log-magnitude function. One can then exponen­

tiate to obtain the desired stable denominator. As Mersereau and Dudgeon [D-3]
 

point out, one of the difficulties with this method is that the resulting 

denominator need not be of finite order. Read and Treitel point out that this
 

also can be traced to the lack of a fundamental theorem of algebra.
 

Another approach to stabilization is to use spectral factorization to
 

break a given system function into the product of several pieces, each of
 

which is stable with respect to a different direction of recursion. In l-D,
 

the fundamental theorem of algebra allows us to write any rational H(z) as
 

H(Z) HE (z)H (z) (D.21) 

where HE has all its poles inside the unit circle (and hence is stable if 

used to process inputs in the eastern direction) and Hw has all its poles 

outside the unit circle (stable to the west). Thus, in 2-D, one is tempted 

8his is often referred to as the "absence of the fundamental theorem of algebra' 
for multivariable polynomials (see, for example, [D-3]). 
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to seek one of several such factorizations. All of these involve the use of
 

2-D cepstral analysis to perform the factorization, and we refer the reader
 

to [D-33,42,100,119] for results on the existence and properties of 2-D
 

cepstra. Following [D-100], let us recall 3ust a few of these properties.
 

Given a 2-D signal s(m,n) and its transform S(z1 7z2 ), the complex cepstrum 

(if it exists) s(m,n) is the inverse transform of ln[S(zIz 2 )]. Thus, if we 

are given a rational system function H(Z 1 ,Z 2 ) and wish to break it up into the 

cascade of four stable quadrant filters 
[D-42] 9 

H(zl,Z 2 ) = E(zlz 2 )HNw(zIz 2 )HSw(zlz 2 )HSE(zIz 2 ) (D.22) 

or two stable half-plane filters (using Dudgeon's one-sided functions) [D-5,33J
 

H(z ,z2) = HE (z z2)HW(zlZ2 (D.23) 

this can be accomplished by additively decomposing h(m,n) into the"corresponding 

pieces." Thus, we will in principle have developed the desired spectral 

factorization algorithm once we determine the properties of cepstra of signals 

that are "minmum phase", where we define minimum phase in analogy with 1-D, 

and we follow [D-100. Specifically s(m,n) is minimum phase with respect to a 

given quadrant (NE,NW,SW,SE) or half plane (E,W) if the signal and its inverse 

s(m,n) (under convolution) are zero outside the given sector and if s(m,n) and 

s(m,n) are the impulse responses of stable filters that are rbcurszvely imple­

mented in the direction associated with the given sector. Examining (D.22), 

9'
 
Since it is only the denominator of H(zlz 2) = A(z1 ,Z2)/B(zl,Z2 ) that matters 

as far as direction of recursibility and stability, one often considers applying
 
this procedure to 1/B(zlz 2 )
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(D.23), the factorizations of interest have the property that the impulse 

response for each piece (e.g. hNE(n,m)<-> HNE(z ,z2)) is minimum phase 

(ILE(zlz 2 ) has no poles or zeroes in 1Izli }fl{Iz 2 1>l} and hNE(nm), 

hN(n,m) are NE quadrant signals). 

One then obtains the desired algorithm by using the following important 

property [D-100: 

A signal is minimum phase with respect to a given 
sector if and only if its 2-D cepstrum is zero
 
outside this sector.
 

Using this property, we can derive the 4 piece spectral factorization of
 

Pistor [D-42] or the 2 piece factorization of Dudgeon via the following 

algorithm: Given h(m,n), calculate h(m,n). Consider the restrictions of'h to 

the various (4 or 2) sectors of interest, for example 

h(m,n) = + h (m,n) + h sw(m,n) + h SE(m,n) (D.24) 

The desired spectral factors are the complex exponentials of the transforms 

of these restrictions. This, in principle, solves the spectral factorization
 

problem, but unfortunately the fundamental theorem of algebra gets in the way 

again. Unlike the 1-D case, the factors in (D.22) and (D.23) need not be 

ratios of finite order polynomials. Hence each piece, in principle requires 

an infinite amount of storage (e.g. for a NE filter we must keep all data 

points to the SW). Approximations are clearly needed, and we refer the reader 

to ED-33, 42] for details. 
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An excellent treatment of the use of cepstra for spectral factoriza­

tion is given in Ekstrom and Woods ED-119]. In addition to considering 

the 2 and 4 factor cases, they consider an 8 factor case -- 4 factors 

corresponding to signals that are strictly in the 4 quadrants (i.e. they are 

zero along the coordinate axes) plus 4 factors for the 4 pieces of the axes 

(m=O and n>O, m=0 and n<O, m>0 and n=O, m<O and n=O). These last 4 pieces 

correspond to the separable part of the system function, (H(z1 ,z2) is separable 

if and only if it is of the form HI (z )H2 (z 2)) while the other 4 pieces can be 

viewed as "totally non-separable," Using this factorization applied to a NE
 

quadrant filter, Ekstrom and Woods obtain an interesting interpretation of the
 

two conditions of Huang's ED-50] stability test (D.19), (D.20). Essentially 

we factor our system function as follows
 

BNE(z ,z2) = B (zI)B2 (z2 )BsNE (Z,Z2) (D.25) 

where "SNE" means "strictly NE". Then (D.19) corresponds to bl (m) being 

minimum phase, while (D.20) implies that b2(n)*bsNE(Zio 2 ) is NE minimum phase. 

Ekstrom and Woods also discuss the likelihood that the factors are not of 

finite order,and, in fact, if one factorization has finite order factors, this 

does not imply that either of the other two factorizations do. They also 

discuss the numerical calculation of cepstra and of the spectral factors, and
 

they in fact propose this as an algorithm to test for stability (B satisfies 

(D.19), (D.20) if and only if b is a NE quadrant function). Such a procedure 
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in principle requires an infinite amount of computation (we must check b=0
 

over all three other quadrants), but one can obtain a fast approximate test
 

by looking over a restricted part of the plane.
 

The question of stable filter design to approximate a given frequency
 

magnitude-response function is considered in (D-Il9]. They point out that 

to do this one needs two one quadrant filters (NE and NW, NW and SW, SW and SE,
 

or SE and NE), but one can make the approximation with a single half-plane
 

10 
filter. Ekstrom and Woods also consider the finite order approximation of
 

the infinite degree rational functions that arise as factors in the spectral 

factorization. Intuitively, one wants to window the denominator power series
 

to obtain a finite order series that remains stable. In (D-l19] it is shown 

that stability is preserved if one uses an exponential window.
 

In closing, let us note that in Section B we saw that one could devise
 

state space stochastic realization procedures to perform the desired spectral
 

factorization. As one might expect, in 2-D there are some difficulties with 

this type of procedure, but some results do exist. We will talk about this 

further when we discuss 2-D state space methods.
 

A final stabilization procedure is based on the guaranteed stability in 

1-D of least squares inverses. The least squares inverse (LSI) Is obtained 

using exactly the methodology one brings into play in performing linear prediction 

of speech (see Section B). Given the denominator B and its inverse transform 

b, one seeks a finite extent impulse response p that approximates the 

1 0Also, as discussed in [D-49], in order to implement a zero-phase filter by means
 

of causal, recursive filters, one needs 4 identical quadrant filters -- one for
 
each direction -- or 2 identical half-plane filters. This is the analog of the 
1-D result, in which we realize a zero-phase filter as the cascade of a given
 
filter, followed by an identical filter going backward in time.
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convolutional inverse of b. One then seeks to choose the coefficients in p
 

to minimize the sum of the squares of the difference between b*p and the unit
 

impulse. In l-D, this leads to the fast algorithms described in Section B, in 

which one iterates on the extent of p. One also has the guarantee that p is
 

minimum phase (i.e. that the all pole model 1/P is stable). In (D-49] Shanks, 

et.al., conjectured that this minimum phase property holds in 2-D. Under this 

assumption, they proposed the use of a double least squares inverse to stabi­

lize and unstable denominator. That is, given b, we calculate its LSI p, and 

we then calculate the LSI b of p. By conjecture this is minimum phase, and 

B(Zlz 2 ) hopefully is a good approximation of B(Zl,z 2) (at least in magnitude
 

on 1jll=lz2=l). Using this design procedure, numerous 2-D filters have been
 

designed (see, for example, [D-49]). Unfortunately, Genin and Kamp [D-144,145] 

have recently shown that this conjecture is false in 2-D. Not only does this 

make suspect the aforementioned design procedure, but it also makes more dif­

ficult the extension of linear prediction concepts to 2-D. We will have more 

to say about this in the next subsection. Suffice it for us to note here that 

unlike the 1-D case [B-26], in the 2-D case the linear prediction solution does 

not match the first few correlation coefficients [D-66,67,156]. 

Let us make a few final coaments concerning 2-D design and structures 

questions. Again, one fins that certain 1-D concepts and techniques do extend, 

while others do not. One of the earliest design methods proposed was by 

Treitel and Shanks [D-48J, in which they suggested approximating a desired 

impulse response h(m,n) as a sum of separable terms 
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N
 

h(m,n) = fI(m)g (n) (D.26) 
i=l 1 11 

If h is of limited extent one can in principle do this exactly, by viewing h 

as a matrix and then finding its spectral representation. In general this lead! 

to no efficiencies in implementation unless N is substantially less than the 

extent of h. Treitel and Shanks suggest a method for truncating (D.26), es­

sentially keeping only the dominant terms, corresponding to the largest eigen­

values of h'h, and they perform an error analysis for such approximate filters. 

Also having a decomposition such as (D.26) suggests several interesting struc­

tures. The summation can clearly be realized via a parallel arrangement of 

the various separable terms, and each separable term is a cascade of two 1-D 

FlR filters -- one operating vertically, the other horizontally. Thus, each 

of these can be implemented with an FFT, or, one might approximate each -l-D 

filter by a recursive filter which can be implemented even more efficiently. 

Thus we see that the separable and sum of separable cases can be handled 

--essentially with I-D techniques. We will see ,later that such cases have 

special implications in the state space framework. 

Motivated by a similar desire to use 1-D design methods for 2-D problems, 

Shanks, et.al., [D-4911 considered taking a 1-D continuous time filter F(s), 

which can be viwed as either a horizontal or vertical 2-D filter, and rotating 

it by an angle B 

F(sl'S2 F(slCOS+S2sin ) (D.27) 
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thus obtaining a I-D filter that processes data along lines at an angle
 

with the s1 axis. One can then apply the 2-D bilinear transformation to 

obtain a 2-D digital filter design. Several examples of such "rotated
 

designs" are given in [D-49]. In addition, Costa and Venetsanopoulos [D-51] 

have considered this design technique in more detal ..4 They note that since 

F is 1-D, it factors, and thus the stability test for the final 2-D filter 

can be reduced to very simple tests on the factors. They find that for given 

directions of recursion, there are constraints on the angle B for which the 

resulting filter is stable. Of course, other angles are possible if one 

rotates the data or changes the direction of recursion. In addition, they 

consider the design of filters with circular symmetry, obtained by cascading 

identical 1-D filters that have been rotated to be spaced evenly between 0* 

and 3600. Such designs have the advantages of guaranteed stability, efficient 

computer design, and cascade implementation due to the factorizability of the 

1-D prototype filter.
 

The use of transformations to take I-D designs into 2-D designs is a 

conceptually appealing idea. In addition to the methods mentioned above and 

the 1-D projections of Mersereau and Dudgeon ED-551 and Manry and Aggarwal 

[D-56] discussed earlier, several other methods have been devised for utilizing
 

1-D filter designs. One of the most powerful methods of this type for 

designing 2-D FIR filters involves the so-called McClellan transformations 

[D-2,36,127,128,129]. The original algorithm as developed in [D-2,36] involves
 

transforming a 1-D filter of the form 

M 
G(eJW) - E b(n)cosn3 (D.28) 

n=O
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into a 2-D linear phase filter
 

H(e ,e ) = expf-j(nlw-n22)}f(Wlw2 ) (D.29) 

where
 

A 2%l W 2D.30 
W(e],e ) = E a(k,p)coskw1 cospo2 (D.30) 

k=O p=O 

The specification of (D.30) is obtained from (D.28) by means of the transfor­

mation
 

cosw = Acos 1 + Bcos 2 + Ccos Icos 2 + D (D.31)
 

where choices of A,B,C,D determine the shape of contours where w=constant.
 

Clearly on such contours IHj is constant. For example, the choice A=---C-D-/2
 

yields nearly circular contours, and hence one can map a low pass filter G into
 

a low pass circularly-symmetric filter H. Thus, one can use 1-D FIR techniques
 

to design 2-D FIR filters of high order in a reasonably efficient manner. In
 

some cases, one can in fact show that transformations of l-D optimal fitlers
 

(in the Chebyshev sense -- i.e. minimizing maximum deviation from a desired
 

frequency response) are in fact the optimal 2-D designs [D-36J. In [D-128J an
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extension of this design criterion was considered, in which (D.3l) was replaced
 

by
 

q)ca = c 2 = H (e3 e (D.32) 

p=O q--=O p 

By careful choice of the parameters t(p,q), one can obtain a variety of 

contour shapes in the 2-D frequency plane, and [D-128]Jcontaans details of 

algorithms for choosing these parameters to obtain best approximations to
 

given desired contours. Having chosen the contours, the second part of the
 

design procedure involves the design of the I-D FIR filter, for which there
 

are numerous procedures [D-2].
 

One of the nice features of these transformation designs is that they 

lead directly to efficient structures. The development of these structures
 

and a study of their relative merits based on number-of multiplies, coefficient 

sensitivity, and roundoff noise is given in [D-127,129]. We briefly illustrate 

the idea by following the development of Chan and McClellan in D-127]. 

Examining (D.28), we note that
 

cosna = T [cosa] (D.33)

n 

where T is the nth Chebyshev polynomial, which satisfies the recursion 
n 

T0 (x)=1 , T(x) = x 

(D.34)
 
T(X) = 2x Tn l (x) - T n 2 (x)
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Rewriting 	(D.28) as
 

G(e03 ) = 	 E
M 

b(n)Tn[cOs] (D.35) 

n=O 

and replacing cosw by (D.32), we can directly obtain a realization of
 

A 13 	 2 3 2 
H(e ,e ) as an interconnection of M copies of H (e e ), where onep 

uses the recursion (D.34) in interconnecting the copies of H to obtain rea-


We refer the reader to [D-127]
)].
lizations 	of each of the T 

[H (e3,e 

n p
 

for details.
 

Another 2-D design method adapted from l-D was proposed by Shanks, et.al., 

[D-49], who modified the time-domain design technique of Burrus and Parks 

[B-114J. 	 As in the 1-l case, given a desired impulse response h(m,n), we
 

want to find a rational transfer function A(zlZ 2)/B(ZI,Z2 ) that yields an
 

impulse response "close" to h. We first solve for the denominator B by a
 

method quite similar to that use in computing the least-squares inverse (and 

which evidently will have the same stability problems as those mentioned 

earlier). 	 One can then solve for the numerator using the analog of the method 

described 	in [B-114] and in Section B. 

One of the most widely used FIR design methods in 1-D is the optimum
 

Chebyshev design method, where the Remez exchange algorithm leads to an 

extremely efficient computer design technique [D-21. iMmp and Thiran [D-74] 

have extended this algorithm to 2-D, but not without a number of severe com­

plications. Firstly, the Haar condition does not hold in the 2-D case and this 

can lead to degeneracies that can keep the algorithm from converging. Also, 

unlike the ordered 1-D case in which one can show [D-2J that errors between 
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the optimal design and the desired response alternate between + the maximum 

error (the Chebyshev norm), in the 2-D case one has no such alternation 

theorem. This makes the exchange algorithm far more complex, and this plus 

several other factors make the algorithm extremely slow. Hence it is limited 

to low order impulse responses. We refer the reader to [D-74] for details.
 

In the 1-D case, one can use the so-called differential correction
 

method to find optimal Chebyshev rational frequency responses [D-52] and this 

method has been extended by Bednar [D-13J to. the 2-D case. As pointed out in 

[D-3], this method requires a great deal of computation time, and also the 

algorithm produces as its output an optimal rational magnitude-squared frequency 

response. Thus, to obtain the actual filter specification, one must perform
 

a spectral factorization, which, as we have seen, leads in general to an
 

infinite order numerator and denominator. 

In addition to the design methods mentioned above, a number of other
 

methods have been proposed. These include windowing [D-133], frequency sampling
 

[D-134], transformations of (zlz 2 ) to obtain new designs from old [D-149], 

and the extension of wave digital filters [D-1511 to 2-D, with all of the 

pseudopassivity and stability properties of their 1-D counterparts. We refer 

the reader to these references for details.
 

The issue of 2-D filter structures and of their effects on required storage,
 

number of nmltiplies, coefficient sensitivity, and roundoff noise has been 

raised several times in this section and is clearly of great importance. The 

issue is complicated significantly by the fact that one cannot factor general
 

2-D polynomials. This immediately rules out cascade and parallel realizations
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unless one is dealing with one of the special classes of filters described
 

earlier. Mitra, et.a. [D-26J show, however that one can write down the ge­

neralizations of I-D direct form realizations for NE recursions. They also
 

comment as we did earlier on the dependence of storage requirements not only
 

on the order of the filter but also on the output array dimensions. In ad­

dition, for several special classes of NE rational filters, they developed
 

structures based on continued fraction expansions. We refer the reader to
 

[D-26] for details.
 

As in the I-D case, a critical question in the design of 2-D IIR filters 

is the existence of limit cycles and the effect of roundoff noise filter output. 

Maria and Fahny [D-28,73] have considered the limit cycle problem for firstorder 

2-D recursive filters, both singly [D-73 and in cascade [D-28]. The results
 

in [D-28J on the existence of horizontal, vertical, and noninteracting diagonal
 

limit cycles parallel the results of Jackson [A-20] quite closely, and their
 

method for bounding the magnitude of limit cycles is quite similar to the I-D 

result of Sandberg and Kaiser EA-4], although the bounds become far more complex 

as one looks at limit cycles on rows or columns other than the first ones. 

Open questions involve the extension of this type of result to higher order
 

filters. In addition, an intriguing question is whether one can extend any of
 

the other techniques discussed in Section A. Do the passivity-Tsypskin-positive
 

real-frequency domain results of Claasen, et.al., [A-15J and others extend to 

the 2-D case? What about the Lyapunov techniques of Willson [A-2J? Of course 

in this case one would need 2-D state space models and! a 2-D Lyapunov theory. 
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The analysis of roundoff noise in 2-D filters can be aarried out much as 

for 1-D filters, and we refer the reader to the references for examples of this 

type of analysis. Another open question concerns the extension of the Lyapunov 

equation-state covariance noise analysis method described in Section C for l-D 

roundoff analysis. Again one would need a state space model in order to consider 

this question. We will come back to this question in a moment.
 

Finally, we note that Chan [D-107J has proposed a unified state space 

framework for the study of 1-D and 2-D structures. In Section C we discussed 

the 1-D aspects of this approach, in which all structures can be viewed as fac­

torizations of the map that transforms the present state and next input into 

the next state and output. In the 2-D case, one must process inputs sequentially 

according to any order function that is compatible with the recursion precedence 

rel~ton (D.11). Also, as we have noted before, the resulting 1-D state space 

realization is finite dimensional if and only if the data is defined on a domain 

that is bounded in one direction. Using the scan order described earlier, 

Chan develops a time-varying state realization. The time-variations arise for 

precisely the reason mentioned earlier-- we must take account of the edge effects 

as we finish scanning one line and begin scanning at the start of the next. 

Chan develops a realization using the scan order for a general NE recursive filter.
 

He conjectures that this realization is minimal in the recursive case, but
 

shows that it is not in the FIR case. On the other hand, in the FIR case, we 

have mentioned earlier that one can realize the 2-D filter with the scan order 

and a time-invariant 1-D filter by padding the ends of each line with zeroes 

(this is essentially what Mersereau and Dudgeon did in [D-55). Chan show that 

he can do the same in his setting by finding a nonminimal, (caused by padded 
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zeroes) time-invariant realization. This leads to an interesting tradeoff-­

nonmnnimality of one realization versus the more complex control needed in 

order to implement the time-varying minimal one. The utility of such l-D state
 

space models and the additional degree of freedom one has in choosing the order
 

relation (and hence the state space as Witsenhausen [D-93,94] pointed out)
 

makes this an interesting area for further research.
 

In addition to the above 1-D state space descriptions for recursively
 

ordered 2-D systems, some work has been done in the past few years involving
 

the definition and analysis of 2-D state space models. Roesser ED-l10]
 

considersNE models of the form
 

v(i+l,3) = Av(i,3) + A2h(i,j) + BlX(i,3)
 

h(i,j+l) = A3v'i,)) + A4h(,3) + B2x(i,j) (D.36) 

y(i,j) = ClV(,j) + C2h(ij ) + Dx(i,j) 

here x is the input, y is the output, and v and h together play the role of a
 

"state" variable. Here v carries information vertically, and h conveys it
 

horizontally. In addition, Roesser takes (D.36) to be a NE recursion '(1,3>0).
 

Given this model, Roesser considers several issues. He solves (D.36),
 

and the solution resembles the variation of constants formula for usual finite­

dimensional 1-D linear systems. The one main difference is that boundary
 

conditions v(0,j), j>O and h(i,O), i>0 must be specified. Roesser also con­

siders a 2-D version of the Cayley-Hamilton Theorem. Taking the 2-D transform 

of (D.36), we obtain
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Y(z=,z2 
 [Z 11-A 1 A2 B 1 + D (D.37) 
X(zl'z2) 1 'C2 L-A3 Z2I-AJ4 B2
 

and hence in this setting the role the characteristic polynomial is played by- -A
 
-A2 1e
Zl1 -A1
P(2 dt 


p(z!,Z2 ) = 

-A3 z2I-A4
 

Let
 

[A1  ]1,0 0,1 

A = +A (D.38) 
A3 A4 

where
 

AI0 12 O',i (D.39) 

0 0 ,A A43 


represent the required dynamics to advance the system in the vertical and 

horizontal directions, respectively. We can then define the transition matrix 

over a number of vertical and horizontal steps 
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0,0
A =1 

A"'3 A'A - ' + A0'A'1 3 - 1 (D.40) 

Then, if we define
 

EIF3IA F2 E'A = A1 ' 3 
(D.41)
 

we have the 2-D Cayley Hamilton theorem
 

p(EF)A = 0 (D.42) 

Roesser uses this result to obtain an efficient method for computing the 

transition matrix. The result is also used to obtain finite rank tests as 

in the 1-D case for controllability and observabil--ty, which are defined in 

analogy with l-D, Specifically a state (vh)is observable if whenever it 

appears as the initial state at (0,0), with all other boundary conditions 

zero, the resulting output y(i,j), i,j>0 is not identically zero when all 

zero inputs are applied. The state is controllable if there is some 

(i,j)>(0,O) and set of inputs so that (v(i,j),h(i,j)) = (v,h) when the boundary
 

conditions are all zero.
 

Several questions and issues arise in considering Roesser's model. First
 

of all, not all NE quadrant rational transfer functions can be realized by 

systems of the form (D.36), although this can be remedied by a mddification of 

the output equations [D-164], we'refer the: reader to [D-164J for more on 

realization theory and canonical forms for these systems. Also, in obtaining 

his algorithm for recursively computing the Ai ' 3 via the Cayley-Hamilton theorem, 

Roesser used the notion of 2-D eigenvalues in a crucial manner, and in the usual
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non-factorazable case the calculation of zeroes of p(z 1 ,z 2 ) is extremely 

difficult. This is not only complicates his transition matrix algorithm, but 

it makes stability tests more difficult. One must use methods such as Siljak's 

fD-27] on p(zI,z2 ) or the direct extension of Huang's stability test to the
 

model (D.36) (see ID-164]). An interesting open question is the development of
 

Lyapunov stability methods for (D.36). Furthermore, the model (D.36) is li­

mited to quadrant-causal systems. This is perfectly reasonable for the study 

of quadrant-recursive filters, but its value for the analysis of other 2-D 

signals is unclear. For example, Roesser mentions the possibility of a 2-D 

filtering theory based on (D.36). In this case, one would want to model the 

observed signal z as 

z(i,3) = y(i,j) + N(i,j) (D.43)
 

where N is noise, and y is generated by a model as in (D.36) with x a noise
 

process. Thus (D.36) plays the role of a "spatial shaping filter." As 

Ekstrom and Woods ED-119] point out, one cannot obtain arbitrary spectra from 

a NE shaping filter. -Hence, one may need two such filters, as well as a 

method for modelling the spectra of the signal field. Also, the artificially 

imposed causality of the model (D.36) and in fact of any state space model
 

may cause difficulties. For example, in an image one would not expect light
 

intensity as a function of spatial location to have a NE causal structure. 

On the other hand, if a NE causal filter yields the proper shape for the in­

tensity correlation function, there may be no difficulty in using such a model.
 

Indeed, as Andrews and Hunt [D-81] point out, the use of such models may be
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of value in leading to efficient recursive filtering methods for image processing. 

This remains an open area for further research, and we will have more to say 

about it in the next subsection. 

Finally, we note that Roesser's "state" (v(i,j),h(i,j)) might better be
 

termed a "local state" [D-97,138]. As we saw earlier, in recursively solving
 

2-D equations, the required amount of storage in general depends on the size of
 

the arrays of interest (see Figures D.3 and D.6). Hence if the array sizes are 

unbounded, the required memory is infinite. Thus, v and h in Roesser's model 

do not represent the true state. Rather the model (D.36) can be viewed as
 

arising by reducing a scalar, high order 2-D difference equation to a vector, 

first-order equation. In this way, we see that the dimensions of v and h 

correspond to the order of the equations of interest. 

Issues of this type have been considered in more depth by Fornasini and
 

Marchesini [D-97,138]. They consider impulse responses that lie strictly in 

the NE quadrant, and for such systems they define a notion of "global state" 

using a direct generalization of the theory of Nerode; In order to define the
 

global state as containing all relevant infbrmation concerning "past" inputs, 

one needs to define "past." The definition of past inputs at the point (i,j) 

is all x(k,L) where either k<i or j<9 (see Figure D.8). In this way the state 

must summarize all needed boundary conditions, and Fornasini and Marchesini 

point out that the state is usually infinite dimensional.
 

Attention in [D-97 then shifts to local NE state space descriptions of
 

the form
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Figure D.8: Illustrating the"Past" in the Definition of Marchesini and Fornasini.
 



-176­

x(m+l,n+l) = A 0x(m,n) + A x(m+l,n) + A2x(m,n+l) + Bu(m,n) (D.44)
 

y(m,n) = Cx(m,n)
 

Note here that vertical and horizontal information is conveyed by a single
 

state vector. Having this model, it is then shown that a NE IIR filter can 

be realized as in (D.44) if and only if the transform of the impulse response 

is rational. The "if" part of this result involves a procedure for construc­

ting a realization in a form that is some type of generalization of the l-D 

"standard controllable form". 

Having such realizations, attention naturally focusses on minimality-­

obtaining a local state space model (D.44) with as small a state space as
 

possible. This leads drectly to the notions of controllability and observa­

bility, with finite rank conditions for these properties being developed in a 

manner analogous to that of Roesser. In fact, a simple proof of the 2-D Cayley-

Hamilton result is given in [D-97J for systems as in (D.44). The main mini­

mality result of Marchesini and Fornasini is that minimality implies local 

controllability and observability (an algorithm for reducing the dimension of 

uncontrollable and/or unobservable realizations is given) but that local 

controllability and observability do not imply minimality. This is done by 

means of a counterexample that we will discuss shortly. 

It should be noted that the work in ED-97] is phrased in terms of the 

algebraic-notion of formal power series (essentially (D.3) with no convergence 

properties attached to it). The most thorough treatments of the uses of this ­

theory to study topics in formal language theory, automata theory, nonlinear 
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systems analysis, and 2-D processes are the works of Fliess [D-98,139,140J.
 

11
 
Fliess studies the properties of rational power series 1n-detail using in
 

part a generalization of the Hankel matrix, and he shows that the rank of this 

matrix equals the dimension of the minimal global state space. This is infinite 

dimensional, in general, but Fliess notes [D-98] that the global state space is 

finite dimensional if and only if the formal power series is "recognizable", 

which simply means that it has a separable denominator. As we have seen one 

can do a great deal of analysis for separable 2-D systems, since many I-D con­

cepts and results directly extend in this case
 

Attasi [D-6,35,96] has studied such systems in great detail. His basic
 

model is a special case of (D.44) 

x(m+l,n+l) = Flx(m,n+l) + F 2x(m+l,n) - F F2x(m,n) + Gu(m,n) (D.45) 

y(m,n) = Hx(m,n) 

where it is assumed that
 

FrF 2 = F2F1 (D.46)
 

With these assumptions, one finds that the impulse response is strictly NE,
 

and it and its transform are given by 

h(i'3) H=1-lF2 '-G 13>0 (D.47)
 
1 2' 

H(Z1 ,Z 2 ) = H(Z I-FI)-l (z2I-F2)G (D.48) 

In general the indeterminates in this theory are taken to be noncommuting. 
However in the 2-D case, the two shifts z I and z 2 do commute. 
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Clearly any FIR filter can be realized as in (D.45), and thus any stable 

impulse response can be approximated arbitrarily closely by a system of this 

form. This, of course, is neither startling nor necessarily very useful, since
 

the dimension of the resulting state-space system may be extremely large. 

Having this framework, Attasi defines dual notions of local controllability
 

and observability and derives conditions somewhat simpler than in [D-97,110
 

because of the special nature of (D.45). Attasi also considers minimal reali­

zations of the form of (D.45), obtains a state space decomposition result and
 

minimal realization algorithm much like those in 1-D (here the 2-D Hankel matrix
 

plays a crucial role), and shows that minimality implies controllability and 

observability. He also proves the converse of this last result, but this is 

only true if one looks for the minimal realization in the class of models given 

by (D.45). Consider the example constructed by Fornasini and Marchesini [D-97J 

-I 	 -l -i -Il 

z I z 2 (l+z I +z 2 1
 

H(Z z ) = 1 2 1 2
 
1 	 2 -+l-1 1 _-1l+z	 I +z 2 +zI z2 

1 2 1 2 

1 1 	 (D.49)-zl +z _ ) 

l (~ -1+ 
(l+z

1
l) (l+z 

2 

The minimal realization of the form of (D.45) is of dimension >3, but one can 

find a realization of the form (D.44) of dimension 2. This clearly points out 

another of the many complications that arises in going from 1-D to 2-D. 

Undoubtedly the major contribution of Attasi',s work is that he did something
 

.
with his models 1 2 He was able to develop a 2-D-Lyapunov equation. More
 

1 2That may very well be because this is the one case in which one can readily
 
see what to do.
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specifically, to show northern and eastern asymptotic stability, we simply need 

to check the l-D systems along vertical or horizontal lines. This leads to 1-D
 

Lyapunov equations and nothing new. However, Attasi did obtain an "invariance 

principle" type of result (see Section A): if F1 and F2 are stable, then (D.45) 

is controllable if and only if the equation 

P-F PF' - F PF 2' + F F PF'F = GG (D.50)
1 1 2 2 12 12 

has a unique positive definite solution P. The exact implication of this 

result for 2-D stability theory and its potential utility in such areas as 

limit cycle analysis are at present unclear and remain intriguing questions 

for further work.
 

Attasi also considers systems as in (D.45) which are driven by white
 

noise. Again he obtains a 2-D Lyapunov equation for the state covariance,
 

and this result may be of some value in performing roundoff noise analysis
 

for 2-D filters (see the analogous 1-D discussion in Section C). Also,
 

Attasi shows that any 2-D stationary covariance function can be approximated
 

arbitrarily closely by a system of this type, and he develops a stochastic 

realization theory that exactly parallels the l-D case with one rather surpri­

sing exception. In the 1-D case, there are in general a whole family of 

stochastic realizations, each of which essentially factors the spectral density 

S(z) of the output process y. In the 2-D case, assuming that one can factor 

the spectrum S(z ,Z2 ) of y, the stochastic realization is essentially unique. 

This is due primarily to the additional constraints on S imposed by the fact 

that we use a single quadrant shaping filter (D.45). Specifically, in addition 
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to the constraints imposed by NE and SW correlations, an additional constraint
 

arises in considering NW and SE correlations. This constraint leads to the
 

uniquehess result.
 

We note that this stochastic realization- spectral factorization result
 

suffers from all of the numerical problems mentioned in Section B and from
 

the difficulties of 2-D factorization. The one novel feature of Attasi's de­

velopment is the use and in fact the necessity for using non-square factors -­

i.e. to perform the required factorization
 

S(z ,z 2 ) = H(z,z2 )H ' (z lz2 (D.5) 

where H is NE causal and of the form (D.48), one must consider rectangular 

factors. 1 3 For example, if y is a scalar process, then H in general must be 

Ixm, and, in fact, the aforementioned uniqueness result fixes the value of m.
 

We refer the reader to [D-6,35,96].
 

We remark that the primary motivation for Attasi's work was to develop a 

2-D stochastic framework in which to study 2-D Kalman filtering and its appli­

cation to image processing. Several other authors have consider such problems,
 

and we will consider them in the next subsection.
 

Recently, Morf, et.al., [D-162,163 have made several noteworthy contri­

butions to 2-D state space theory. In [D-162] they consider the properties of
 

polynomial and rational matrices in two variables. The motivation for this 

study, which leads naturally to multi-input, multi-output 2-D systems, is the
 

generalization of the scalar 2-D polynomial results of Bose [D-147,166] and the
 

matrix l-D polynomial results of Rosenbrock (D-168 and Wolovich [D-169J.
 

1 3 Rectangular factors are considered in the general 1-D stochastic realization 
theory described in Section B, but they are not necessary in order to factor l-D 
scalar spectra. 
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Morf, et.al., generalize the scalar notion of primitive factorization to the 

matrix polynomial case, and they provide an existence and uniqueness proof 

for such a factorization. By regarding a 2-D polynomial p(zl1,z 2 ) as a 1-D 

polynomial (say in z2) with coefficients that are rational functions in the
 

other variable and by introducing several notions from algebraic geometry,
 

they are able to use many 1-D techniques to obtain 2-D generalizations of the 

Euclidean algorithm, Hermnte and Smith forms, tests for relative coprimeness 

of polynomial matrices, matrix fraction descriptions of rational matrices, and
 

the extraction of greatest common right divisors. In 1-D Rosenbrock and 

Wolovich utilize many of these properties to study multi-input, multi-output
 

state space models. In [D-163J the results of [D-162] are used to study 

2-D state space models. The models of Roesser, Fornasini-Marchesani, and 

Attasi are reviewed, and Morf, et.al., argue in favor of Roesser's model. 

Their reasoning is that (D.36) is a true first order system, and hence v and h
 

together comprise a valid local state. The model (D.44), on the other hand is 

not first order, and hence x is not a local state -- i.e. the order of the 

system (D.44) may be larger than the dimension of x. The importance of this 

is not totally clear, since, as we've seen, the required storage depends on 

more than the order of the system. 

The concepts of local controllability and observability for the Roesser 

model are explored in [D-163], and the authors point out that these conditions 

neither imply or are implied by the mnaimality of the realization (this as 

done with several instructive examples). This difficulty can be partially 

overcome by redefining local controllability and observability for (D.36) by
 

requiring these properties to hold separately in the horizontal and vertical
 

directions (but not necessarily jointly). With this definition, minimality
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implies but is not implied by local controllability and observability.
 

To obtain notions of controllability and observability that are equivalent
 

to minimality, Morf, et.al., generalize the approach of Rosenbrock in which
 

coprimeness of polynomial matrices plays a crucial role. This leads to the 

notions of modal controllability and observability and a related concept of
 

minimality and also allows one to use the algebraic and geometric concepts
 

developed in [D-162] in order to study the 2-D realization problem. In this 

setting the existence of minimal realizations becomes a difficult problem,
 

and one may not even exist if we restrict ourselves to systems with real para­

meters (see [D-1631 for an example). In related work, Sontag (D-143,154,E-29]
 

has also found realizations of lower dimension than those proposed by 

Fornasini and Marchesini, and he has shown that minimal realizations need not
 

be unique up to a change of basis. All of these facts indicate that the 2-D 

state space model is an extremely complex one and offers some extremely difficult
 

mathematical and conceptual problems. As with all other topics concerning 2-D 

systems, there are many possible ways to generalize I-D concepts, It remains 

to be seen whether any of these state models and realization theories can
 

provide a useful framework for solving 2-D analysis and synthesis problems.
 

A number of authors have considered state space and other dynamic models 

defined with very general independent variables. Motivated to a large degree 

by the partially-ordered feedback structures of Ho and Chu [D-87,88] and 

Witsenhausen [D-93,94J, Mullans and Elliott [D-95] and Wyman [D-143,160,161 

have considered the development of an algebraic state space theory on partially
 

ordered sets. In addition, Seviora and Sablatash [D-114-116] have placed 
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algebraic (specifically, abelian group) structures on the independent variable 

in order to consider a generalized transform and digital filter theory with 

the aid of tools from the theory of abstract harmonic analysis. Their framework 

is quite abstract and general, and it includes such possible time sets as the 

integers, the usual 2-D plane of integer pairs, and a variety of 'bylindrical 

time sets." We will have occasion to use such a "time set" in the next section. 

Finally, we have noted at several points that the issues arising in the 

analysis of 2-D discrete time systems have many similarities with results in 

other areas. For example, Ansell [D-64] and Youla [D-77] studied continuous­

time transfer functions in two variables that arise in the consideration of 

networks containing lumped and distributed elements. Along similar lines, 

Kamen [E-301 has developed an algebraic theory for considering continuous-tme 

systems that contain time delays. In addition, as mentioned earlier, Sontag
 

ED-143,154,E-29J has considered a general algebraic framework of this type and
 

has tied together some of the tume delay and 2-D results. 

Other classes of systems have also been analyzed in a similar manner.
 

Kamen ED-142] has developed a theory for time-varying 1-D systems that bears 

some resemblance to the 2-D theory. Also, Fliess [D-98,139,140], Fornasini 

and Marchesini [D-138,E-36], and Bush [D-155J have noted and have taken 

advantage ef some of the rather striking relationships among certain nonlinear
 

and 2-D system results. To illustrate the basic idea, consider the following
 

three systems:
 

Volterra (single input)
 

y(m) = S h(m-k,m-t)x(k)x() (D.52)
k,k
 



Bilinear (two inputs)
 

y(m) = E h(m-k,m-)x 1(k)x2() (D.53)
k,P 

Two Dimensional (single input) 

y(m,n) = Z h(m-k,n-)x(k,2) (D.54)
k,P 

One immediately sees the striking relationship among these three classes of 

systems, and it is not surprising that similar methods of analysis can be 

used on all of them. Indeed, Fliess' formal power series formulation leads 

directly to a methodology for analyzing algebraic properties of each kind of 

system. Also, Fornasini and Marchesini were led to the study of 2-D systems
 

by their earlier results on bilinear systems. Finally, we note that in his
 

work on bilinear systems Bush considered the 2-D transform H(zlz 2 ) of the 

weighting function h that appears in (D.53). He showed that if one could 

write 

H(zl'z 2- i - (D.55)2 ql1(zl1 )q2 (Z2 )q3 (Z1z )z2 

where p is a two-variable polynomial and the q, are polynomials in a single 

variable, then the system could be realized by three finite dimensional 

linear systems and a single multiplier. Again the fundamental theorem of
 

algebra makes it difficult to find representations as in (D.55) (a condition
 

slightly weaker than separability). We refer the reader to the references
 

for details of these ideas.
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In this subsection we have surveyed a large number of issues involving 

systems over a 2-D parameter space. We have seen that a number of 1-D con­

cepts can be extended to the 2-D case (e.g. 2-D FIR implementation schemes 

using the FFT), while others cannot (e.g., cascade structures). In many cases 

there are several possible extensions from l-D to 2-D (as with the several 

notions of causality and the variety of directions of recursion), and in most 

situations the 2-D counterparts of 1-D results are far more complex (as with 

the 2-D stability tests). We have mentioned several of the reasons for dif­

ficulties in 2-D -- difficulties in defining notions of causality, recursibility, 

and "state" (local or global) in 2-D, the absence of a 2-l factorization theorem, 

and the absence of the Haar condition. Also we have speculated on a wide range 
I
 

of open problems in such areas as filter design, filter structures, the 

accompanying issues of storage, sensitivity, and roundoff effects, and the 

development of useful state space models and tools such as the 2-D Lyapunov 

equation. In the next subsection we will open up several additional issues
 

involving 2-D random processes.
 

D.2 Image Processing, Random Fields, and Space-Time Systems
 

Digital processing of images for data compression, noise removal, or
 

enhancement is one of the major areas of applications of 2-D digital signal
 

processing techniques. In addition, image processing has spurred a great deal
 

of work in the analysis of spatially-distributed stochastic variables -­

random fields. In this subsection we will discuss some of the work concerning
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image processing and random fields and will point out what we consider to
 

be several particularly intriguing areas for further work. The reader who
 

is interested in obtaining a detailed understanding of image formation and
 

processing and of the response of the human visual system should consult the
 

references. In particular, we refer the reader to the survey paper of Hunt
 

[D-4J, the book written by Andrews and Hunt [D-81], and the paper of 

Stockham [D-82]. We will refer to these references often as we sketch some
 

of the issues involved in image processing.
 

Let g(x,y) denote the image radiant energy as a function of two spatial
 

variables, where, for the time being, we will assume that the system is free
 

of noise. The image results from an image formation process that transforms 

the original object radiant energy f(x,y) into the observed image. A general
 

model that is often used for the image formation process is 

g(xY) =f I h(x,y,xl,yl,f(xl,yl)) 1dyx (D.56) 

Although in some cases the formation process may be nonlinear (see [D-81] for 

examples), in many cases it is valid to assume a linear model
 

g(x,y) -J f h(x,y,xlyl)f(xlyl)dXldy1 (D.57) 
-00 -00
 

Here h(x,y,xl,Y1 ) is called the point-spread function (PSF), as it represents
 

the image that results from a point source located at (x 1 ,y I ) 

(i.e. f(x,y) = 6(x-x)6(y-yl)).
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This function models the smoothing and blur that take place in the image 

formation process. Sources of such blur abound. See [D-4,19,24,65,81] for
 

detailed discussions of some of these. Examples include blur due to motion,
 

defocused systems, and the effects of atmospheric turbulence.
 

The model (D.57) represents a spatially-varying 2-D linear system. In
 

some cases, one can take advantage of simplifying assumptions, such as
 

shift-invariance
 

h(x,y,xl,Y ) = h(x-xl,y-y ) (D.58) 

separability 

h(x,y,x1 ,yI ) = h (x,x )h 2 (y 'y l
) (D.59)
 

or both
 

h(x,y,xlYl ) = h (x-xl)h2(y-y I )  (D.60) 

As one might expect, these simplifications lead to gains in analytical 

tractability and computational efficiency. 

It is clear that the continuous-space model of (D.57) is inappropriate
 

for digital storage or processing of images, and one usually obtains a
 

discrete model by sampling the left-hand side of (D.57) and by approximating
 

the right-hand side using some type of quadrature formula (see [D-4,23,81 

for discussions of the errors involved in this approximation). One then 

ends up with a model of the form 
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g(i,3) = I h(3, k,k)f(k,Z) (D.61)
k,P 7 

where the g(i,3) form the 2-D image array, the f(k,Z) form the object array,
 

and the h(i,j,k,t) form the discrete point-spread function. Note that the
 

simplifications (D.58)-(D.60) can also be imposed in the discrete domain.
 

For example, shift invariance yields the 2-D convolution
 

g(3,]) = E h(i-k,j-P)f(k,.) (D.62)
k,Y 

Most digital image processing schemes involve the analysis of equations (D.61)
 

or (D.62), and we will spend most of our time with them.14 As all images of
 

interest are of finite extent, we assume that the range of i,j,k, and £ in 

and (D.62) is 1,...,N. 1 5 
(D.61) 


In addition to the image formation process, one must take into account
 

the process of image recording and storing. As discussed in [D-4,81,82J, two
 

well-developed and related image models for photographic images are the
 

intensity and density images, which are related in an essentially logarithmic
 

manner. Let g,(x,y) be the intensity of light reflected from a photographic
 

film on which is stored the image represented by the intensity function g(x,y).
 

1 4We refer the reader to (D-81J in which a mixed continuous-discrete digital scheme 
is discussed. The image g is sampled, but the continuous form of the right-hand 
side of (D.57) is left intact. Spline approximations are used to estimate the im-, 
age between samples.
 

15There is no loss of generality in assuming a square picture, as we can always
 
pad a rectangular image array with zeroes in order to make it square.
 

http:D.58)-(D.60
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Then (see [D-4]) the intensity image model is 

gl(xy) = Nl (x,y)[g(x,y)J
T (D.63)
 

where y is known for the given type of film (it essentially controls contrast), 

and N(x,y) is film grain noise due to random fluctuations of silver density on 

the film. On the other hand, the density image model is essentially the
 

logarithm of (D.63)
 

(D.64)

9d(Xy) = ylog[g(x,y)] + nd(x y) 

As described in [D-4,81], the complexities of these models have been avoided
 

in most cases. Equation (D.63) has been replaced by an additive model
 

g (x,y) = g(x,y) + nI(x,y) (D.65)
 

while the low contrast assumption [D-4,81] has been used to justify replacing
 

(D.64) with 

gd(x,y) = yg(x,y) + nd(x'y) (D.66)
 

It is not our purpose here to justify these models and assumptions, and we
 

refer the reader to the references for more details of the modelling of
 

imaging systems.
 

Given the above discussion, we now have the following mathematical model:
 

a discretized object f(i,j) and "noise-free" image g(i,j), where ij=l,... ,N,
 

and f and g are related by (D.61) or (D.62); an observed image
 

q(,j) = g(a,j) + v(i,]) (D.67)
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16
 
where v is and additive noise process. We now turn our attention to the
 

analysis of this model. We will return to consider the nonlinear models
 

(D.63), (D.64) somewhat later.
 

At various points in this development, it will be more convenient to view
 

f,g,q, and v as vectors by performing a scan (lexicographic) ordering. For
 

example
 

f(l,l)
 

f (1,2)
 

f
 
1
 

f(l,N)
 
= f(2,l) (D.68) 

SfN 

f(2,N)
 

f(N,N)
 

where V = (f(i,1),...,f~i,N)). In this case the relevant equation is 

q = Hf + v (D.69) 

N2N2 
where H is an N xN matrix formed from the PSF. Examination of (D.61) and
 

(D.68) yields the following form for H
 

16This noise may include more than film grade noise. Specifically, the effects
 
of light from sources other than the object can be included in v.
 



11 H12 ..... H1N 

H - 21 H22 ..... H2N (D.70) 

..................... HNNJ
 

where H1 is NXN and its (m,n) element is h(i,m,j,n). If the imaging system
 

is shift-invariant -- i.e. if (D.62) holds, it is readily seen that H is
 

block Toeplitz -- i.e.
 

m
H 3 =H (D.71) 

and, in fact, each of the blocks is itself a Toeplitz matrix.1 7 This fact
 

wall be extremely important when we discuss the computational aspects of
 

certain processing algorithms. Note also that if H is separable, than
 

H=A A (D.72) 

where Z denotes the tensor or Kronecker product, and A, and A2 are NxN 

matrices given by 

417Note that all that is needed for (D.71) is "horizontal stationaraty"--i.e.
 
h(i,m,D,n) = h(i-j,m,n). Vertical stationarity in turn implies that each 
block as Toeplitz.
 

http:matrix.17
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h (1,l) h (1,2) .. h (l,N) 

A = hi(2,1) h (2,2) .. h (2,N) (D.73) 

h (N,l) h (N,2) .. h (N,N) 

where
 

h(i,j,m,n) = h1 (im)h2(3,n) (D.74) 

Note that horizontal stationarity implies that A1 is Toeplitz, while vertical 

stationarity implies that A2 is Toeplitz. 

It is evident from the preceding development that probabilistic and sta­

tistical methods must play some role in image processing. In this context, 

f,g,v, and perhaps h are random fields. Such a random field s(i,j) is 

characterized by some type of statistical description -- the joint density of 

the values of the field at different points or perhaps a statistical model 

such as a 2-D ARMA model. We will consider some of these more complex des­

criptions at a later point, but for now all we will use is the mean and 

covariance 

(D.75)
 

r (,j,m,n) = E{Es(a,3)-s(i,j)I [s(m,n)-s(m,n)]} (D.76) 
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The field will be called (wide-sense) stationary 
if18
 

r(i,j,m,n) = r(r-m,j-n) (D.78) 

Note that if s and s are ordered lexicographically, then
 

E[(s-)(s-s)'] =R (D.79) 

N2 2 

where R is the N x N matrix obtained from r in the same manner that 

H in (D.70) is obtained from the PSF h. We also observe that R is block
 

Toeplitz if s is stationary in the horizontal direction, and each block is
 

itself Toeplitz if we have vertical (and hence full) stationarity. In
 

addition, if the covariance is separable
 

r(l,j,m,n) = r1 (i,m)r2 (j,n) (D.80)
 

we can obtain a representation for R much as the one for H in (D.72). Note
 

that in some sense (D.80) says that correlations in the data have horizontal
 

and vertical as "preferred directions". While this may be reasonable in some
 

cases (perhaps for cases in which one variable is space and the other is time) 

and may be acceptable in others (because it leads to mathematical tractability 

and good results), in many cases the assumption of (D.80) may be totally in­

appropriate. We will comment on this further later in this section.
 

18This is not quite standard, since one usually also requires s(i,j)=constant.
 

Clearly any process which is stationary in our sense can be transformed into
 
one in this stronger sense by subtracting out the mean.
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One important problem in image processing is the efficient representation 

of images for storage or transmission [D-4,31,37,76,241J. For such applications, 

one wishes to represent the image with as few pieces of information as possible 

but with a reasonable level of accuracy. Intuitively, one then wants the 

redundancy in the pieces of information kept to a minimum. Suppose we are 

19 
given an image s with covariance R. The off-diagonal elements of R tell us 

how much correlation there is among the various pixels ("picture elements" -­

i.e., components of s), and this correlation can be interpreted as a measure 

of the redundancy in the picture. One method for obtaining a less redundant 

representation is to transform s
 

a = Ts (D.81) 

(where T-!'fl) so that the covariance of a 

Z = TRT' (D.82) 

is diagonal -- i.e. T is the matrix of eigenvectors of R and the components
 

of a are uncorrelated. This transformation is called the Karhunen-Loeve 

transform, and its use in efficient coding can be seen as follows (see, for 

example, [D-41). Let us order the eigenvalues of R in order of decreasing 

magnitude. Then we store or transmit only those components of a corresponding 

1 9 Either an NxN array or an N2 vector. We shall use these two forms inter­
changeably and without comment unless there is a chance of confusion. 
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to the M<N2 largest eigenvalues. We are guaranteed to have retained those
 

"coordinates" of the image that contain the most information, and we can obtain
 

an approximate image by inverting the transform:
 

s = T'C (D.83) 

where a is formed by setting to zero those components of a that were discarded. 

We can in fact decide how many terms to keep on the basis of the size of the 

reconstruction error
 

A 

e = s-s (D.84)
 

As discussed in [D-4,37], the Karhunen-Loeve transform leads to a very
 

efficient coding scheme. However, in general, this transform involves
 

exorbitant amounts of computation. We must find the eigenvectors and eigen­

values of R (usually 3ust once off-line for a class of images-with the same
 

covariance), and then we must perform the transform coding (D.81) or decoding
 

(D.83). This can involve a great deal of on-line computation (see [D-4,37] 

for estimates), since there is no "fast" method for performing this transform, 

in general. There are, however, several special casesin which this transform 

can be calculated efficiently. One of these [D-241] involves the use of a 

more detailed model of the image as a random field, and we will defer discussion 

of it until we begin our treatment of more detailed models for fields and
 

images. Another case, motivated by similar analysis performed by Hunt [D-4,46J
 

and Andrews and Hunt [D-81], is quite instructive, and, as we will use this
 

idea on several occasions, we will develop it here in detail.
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Suppose that s is stationary. Then R is a block Toeplitz matrix with 

Toeplitz blocks. Following [D-81J, suppose further that a particular pixel
 

is correlated with a number of surrounding pixels, but is uncorrelated with 

ones some distance d away (Andrews and Hunt cite d=20-30 pixels as a typical 

number). Then the block Toeplitz covarlance matrix takes the form
 

R .. ... o 

Rl-d "0 

R 0 " R (D.•85) 

0 .0 RI1d R0 

where each RIis an NxN Toeplitz matrix 

° 0R0 " " 

R = (D.86) 

Ri-d 
0 d-i
 

0 0 R 
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We 	 now modify R and the R to make R block earculant and R circulant. A1 	 1 

block circulant matrix is block Toeplitz with each row a cyclic shift to the
 

right of the preceding one, where the last block on the right of one row
 

becomes the first block on the left in the next row. Examining (D.85), (D.86), 

we 	see that this merely means replacing some of the zeroes with nonzero entries.
 

The reasons for doing this and its interpretation can be found in the
 

following observations:
 

1. 	Let Rc denote the circulant approximation to R, and let 

Ta be the matrix of eigenvectors of Rc . Then the product 

T s can be computed efficiently using the fast Fourier 

transform. This is shown in Appendix 2 and is the reason 

for using this approximation. 

2. 	For N large compared to d, IIR-Rc 1 is small, where 

11-11 is any matrix norm. In addition, this error
 

can be made arbitrarily small by choosing N large
 

enough (see ED-81]).
 

3. 	Let us see what the circulant approximation means.
 

For R to be block carculant, we must have that
 
c 

r(i,j,m,n) = r[(i,j)modN,m,n] 	 (D.87)
 

Intuitively, instead of thinking of the image as a 

flat array, think of it as a cylinder, so that ho­

rizontal distance matters only modulo N. Furthermore,
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if we also have that each block is itself circulant, 

we should think of the image as the surface of a torus 

(connect the two ends of the cylinder).20 See Figure 

D.9 for an illustration of this.
 

As discussed in [D-37] the Karhunen-Loeve expansion can also be per­

formed quickly if the covarlance is separable. In this case, we perform the
 

expansion separately in the horizontal and vertical directions -- essentially
 

l-D transforms on data records of length N. Hence in the stationary or
 

separable cases, there appear to be relatively efficient methods to perform
 

the transform. However, motivated by the complexity of the general Karhunen-

Loeve expansion, researchers have applied other, more efficient transform
 

techniques such as the FFT and the Hadamard transform to the problem of image
 

compression and coding (see [D-4,37,81] for a discussion of several of these).
 

Many of these work nearly as well as Karhunen-Loeve [D-4]. This is not sur­

prising given the preceding discussion concerning circulant approximations. 

As discussed in Section B, one of the most widely used coding or
 

compression schemes for 1-D time series, such as speech, is linear prediction,
 

in which we design a one-step predictor or ' inverse whitening filter (depending
 

upon your point of view) for the time series. This method has several
 

appealing features in 1-D -- it is efficient (if one uses the Levinson algorithm), 

it leads to recursive coding and decoding algorithms, and it yields excellent
 

performance. In 2-D the situation is not nearly as clear. What direction
 

20
Seviora [D-11 4J and Seviora and Sablatash [D-l15] dealt with a general frame­

work that included transforms on cylindrical and toroidal spaces for the purpose
 
of digital signal processing.
 

http:cylinder).20
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Figure D.9: Illustrating the Circulant Approximation
 



do we predict in and what old data do we use to do the prediction? Genin
 

and Kamp [D-144,1453 have shown that 2-D least-squares inverse filters need
 

not be stable; can this problem be overcome? Are there efficient 2-D algo­

rithms along the lines of Levinson's method? We will address some of these
 

questions later as we develop more detailed stochastic models. Let us point
 

out here, however, that for a particular ordering of the points in a 2-D
 

array, Habibi [D-76J and Habibi and Robinson [D-37J have obtained encouraging 

results using a predictive encoder. In comparison with transform methods,
 

they found the predictive coding scheme to be superior as far as system com­

plexity, time delay due to the coding operation, and coding performance at
 

high bit rates, but the transform methods were more robust to errors in the 

knowledge of the image covariance and required lower bit rates. In addition,
 

Habibi and Robinson [D-37J suggest a hybrid scheme in which we transform 

the data horizontally line by line and then perform 1-D linear prediction on
 

each column. They report that the performance of this system is excellent.
 

These promising results and the questions mentioned earlier concerning the
 

direction of prediction are sufficient to warrant further investigation of
 

such methods.
 

We now turn our attention to the problem of restoring blurred and noise­

corrupted images. Initially we will concentrate on the linear model (D.61),
 

(D.62), (D.67) or, equivalently (D.69). For details concerning these methods
 

we refer the reader to the references and in particular to the survey papers
 

[D-4,19, 38] and the text [D-81J.
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One of the first methods proposed for image restoration is aimed solely 

at the removal of the effects of blur and essentially ignores the presence of 

additive noise. This is the inverse filter 

= H-lq (D.88) 

In the space-invariant case, (D.62), we can take transforms 

F (Z,z2) Q(- Z)
A Q(zl1 z ' 
1 H(zlz) (D.89) 

In addition, in this case H is bl~ck Toeplitz with Toeplitz blocks, and
 

hence we can make the circulant approximation (assuming that the extent of 

the PSF is much smaller than the size of the picture -- see [D-81]) and 

hence can take the DFT of (D.62), yielding 

AF (~n) (m,n)
F(mn) = H(m,n) (D.90) 

where, for example, 

N-I -km-Pn 
H(m,n) = E h(k,)W (D.91)

Nk,Y=O 

Note that as an alternative to making the circulant approximation, we can 

use the 2-D version of a standard 1-D idea -- we embed the 2-D acyclic' 

convolution (D.62) in a larger 2-D cyclic convolution by padding each row 

and column with a sufficient number of zeroes. Equivalently, we intersperse 
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Zeroes in the appropriate places in the lexicographically ordered vectors
 
A 

q, f, etc., and in the block matrix H (D-46]. The resulting matrix H is
 

block circulant with circulant blocks (see Appendix 2 for the correspondence 

between circulant matrices and cyclic convolution). Thus, we can directly
 

apply (D.90) with no approximation to this padded image.
 

Let us make several comments concerning the inverse filter. First of
 

all, the image formation process (D.61), (D.62) may not be invertible, and 

thus, we cannot even perform the calculation indicated by (D.88). One might 

consider using a pseudo-inverse, and we will discuss this in the context of
 
) 

another restoration methodology. In addition, examining the transformed 

versions (D.89), (D.90), we see the possibility of two further problems. 

The frequency response ITusually falls off at high frequencies. Thus, as­

suming that high frequency noise is present, we may observe extreme noise
 

amplifications. In addition, the inverse filter transfer function flows up 

at the zeroes of H, and this can cause severe difficulties. Looking at these
 

equations in the space domain, Sondhi [D-191, Hunt ED-4], and Andrews and 

Hunt [D-81 argue that the difficulty arises due to the severe problems
 

encountered in a attempting to invert integral equations such as (D.57). In
 

the discrete domain, this implies the ill-conditioning of the matrix H, and
 

thus, even if its inverse exists, the solution suggested by (D.88):
 

f f +-H v (D.92) 

may be dominated by the noise. 



-203-


In order to overcome difficulties such as these, one must explicitly
 

take the presence of noise into account. This leads to the discrete Wiener
 

filter formulation ED-4,17,19,38,40,81J. Consider (D.69) with
 

E(ff')=P , E(vv)=R, E(fv')=O (D.93) 

and suppose we wish to choose our estimate f as the minimum mean square 

error (MMSE) estimate
 

mi En f-f)'(f-f)J (D.94) 
f 

If we limit ourselves to linear transformations on the data or if we assume
 

21 
Gaussian statistics, we obtain the optimal estimate
 

A -1
f= PH' (HPH'+R) q (D.95) 

22 
Again let us note that in the space-invariant, zero-mean, stationary case, 

2 1 The Gaussian assumption can clearly only be made for convenience, since we 
know a priori that all components of f must be >0. We note that although 
this eliminates the Gaussian assumption in theory, in practice one often makes 
it anyway, since it leads to tractable problem formulations and acceptable 
system performance (see, for example, [B-104], where the same type of positi­
vity assumption was encountered). 

22The zero mean assumption is included to guarantee the block-Toeplitz
 
structure of P and R. If we have nonzero means for f and v, we can subtract
 
out their effects from (D.69) and proceed with the analysis. In this case, 
the estimate produced by (D.96) is the estimate of the deviation of f from
 
its a priori mean. 
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we can perform (D.95) in the frequency domain, obtaining an expression ana­

logous to (D.89). In addition, in this case all of the matrices are block
 

Toeplitz, and we can use the same block circulant approximation to obtain an
 

expression analogous to (D.90): 

F(mn)=-H*(m,n)Q(m,n) (D.96)IH(m,n) 12+ 1v(mn) 

0f (m,n) 

where "*" denotes complex conjugate, 4 is the 2-D DFT of the noise covariance,
v 

and Df is the DFT of the image covariance. 

Note from (D.95), (D.96) that the problem observed with the inverse 

filter has been removed -- i.e. the inverse in (D.95)' and the denominator 

in (D.96) won't blow up, since we have explicity included the effects of noise. 

The Wiener filter does, however, have some difficulties and limitations as an 

image processing system. To a great extent this is due to the fact that the 

MMSE criterion is not particularly well-suited to the way in which the human 

visual system works (see Stockham's paper ED-82 for a discussion of the 

visual system). In particular, the Wiener filter is overly concerned with 

noise suppression. In addition, in order to make the filter computationally
 

feasible, one often assumes stationarity. This in turn leads to a filter that
 

is insensitive to abrupt changes_-- i.e. it tends to smooth edges and reduce
 

contrast. On the other hand, in high contrast regions, the human visual system
 

will readily accept more noise in order to obtain greater resolution. Thus,
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the Wiener filter sacrifices too much in resolution in favor of noise sup­

pression. We will return to this key image processing tradeoff later in
 

this section.
 

Another difficulty with the Wiener filter is the amount of a priori 

information that is required. For the inverse filter all we need is the 
23 

PSF, while for the Wiener filter we need the PSF and the second order
 

statistics of the original image and the noise. This is a great deal of
 
N 

information to assume to be known, and a serious question here concerns the 

robustness of the Wiener filter to errors in this a priori knowledge. 

Several schemes have been proposed that are aimed at trading-off
 

between the potentially high -resolution, poor noise performance of the 

inverse filter and the lower-resolution, good noise performance of the
 

Wiener filter. One of these is the constrained least squares filter, sug­

gested by Sondhi [D-19J and developed and discussed by Hunt ED-46] and 
A 

Andrews and Hunt (D-81]. In this formulation, we wish to choose f to mi­

nimize
 

J(f) =f'c'f (D.97) 

subject to the constraint 

(H-q) '(Hf-q)=e (D.98) 

23As discussed in ED-81], the PSF is usually assumed to be known, and for certain 
types of blur, this is a reasonable assumption. However, in many cases, either 
the entire PSF or several of its parameters are not known a priori and must be 
estimated. We will discuss this shortly.
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The solution is
 

f= (HH+ yC'C)-H'q (D.99) 

where y is a Lagrange multiplier found by iteration in order to satisfy 

(D.98). Again one can obtain transform versions of (D.99) in the shift­

invariant case. 

Several comments are in order concerning this approach which has been 

shown in several experiments to perform at a level superior to that of the 

Wiener and inverse filters [D-4,81]. Note first of all from (D.99) that we 

have eliminated the need for covariance information for f and v. In addition, 

by adjusting the size of e in (D.98) (or equivalently of y in (D.99)), we 

can effectively control the amount of noise suppression. Also, we have 

some freedom in the choice of C, and several possibilities and their inter­

pretations are discussed in [D-81]. For example, choosing C=I, essentially
 

leads to a "pseudo-inverse" filter -- i.e. this filter resembles the inverse
 

filter but avoids the illconditioning by adding yi to HI'H before inverting. 

In addition, one can choose C as a "finite difference matrix," which leads
 

to our minimizing some measure of the rate 6f fluctuation in the estimated
 

image. One can also choose C in order to match the characteristics of the
 

human visual system [D-4J , and the choice. 

=-C P-1/2R1/2 (D100) 

leads to a "parametric Wiener filter," closely resembling (D.95) in structure.
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Another approach, proposed by Stockham, et.al. (D-4,81,E-4J, leads to
 

a filter that is the geometric mean of the inverse and Wiener filters (hence 

it directly trades, off-between the properties of these systems): 

11/2 1A 

n
F(m,n) = Q(m,n) (D.101) 
[IH(mrn) 12+ :;tmn)J
 

0(m,n)f 

This filter, obtained by designing a system so that the output power spectral 

density equals that of the original image, has worked extremely well in 

several experiments [D-4,81,E-4]. We note that (D.101) is not precisely cor­

rect, as it does not include the phase effect of the restoring filter. Since 

phase is extremely important in image processing and viewing, one must take
 

it into account. This has been done for several specific types of PSF's,
 

and we refer the reader to [E-4] and the references therein. In addition, in 

examining (D.101) it appears that we again require a great deal of a priori
 

information; however, this particular filter is particularly well-suited to 

the use of on-line estimates of quantities such as the PSF. We will discuss 

this in more detail later in this section, and we refer the reader to [E-4] 

for details. 

In addition to these techniques, a number of other approaches along 

these lines have been developed, and we refer the reader to the references
 

for details. At this point we want to make several observations concerning 

these processing systems. Note first of all that they are nonrecursive and
 

in principle require the block processing of the entire image or substantial 
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sections of the image (D-47]. Hence the computational burden of these schemes 

can be quite high. In the shift-invariant, stationary case this problem can 

be somewhat alleviated with the aid of FFT techniques, but the required amount 

of calculation is still substantial. The situation is even more complicated
 

if the PSF is shift-varying. Examples of such imaging systems are given by
 

and Huang [D-20]. In his paper, Sawchuk suggestsSawchuk [D-65] and Robbins 

breaking the PSF into shift-invariant pieces, followed by the use of some of
 

the techniques we have discussed. Sawchuk and Robbins and Huang also discuss
 

the possibility of inverting nonlinear distortions in the imaging system, 

followed by the use of shift-invariant methods. Clearly the PSF must be of a 

special form for this to be possible. 

The use of the FFI or the inversion of nonlinear distortions notwith­

standing, it is clear that the processing methods described so far require 

a great deal of on-line calculation. In 1-D, one finds that recursive 

methods are often preferable to nonrecursive ones because of their computa­

tional advantages. Although the situation is not as clear in 2-D (as we 

saw in subsection D.l), it certainly seems worthwhile to investigate recursive 

2-D image processing methods. As discussed in [D-81] the I-D Kalman filter 

offers great computational savings over nonrecursive methods, and an appealing 

question is the extension of such filters to 2-D. Anyone familiar with 1-D 

Kalman filtering theory realizes that the design of the filter relies heavily 

on a dynamic -- i.e. recursive - representation of the received signal. Hence,
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to develop such techniques in 2-D, we need more complex models of images
 

than that provided by the mean and covariance. The need for the uie of such 

models is an obvious drawback to this approach, but the potential gains in
 

computational efficiency represent a distinct advantage. We now will describe
 

several of the approaches taken in the application of recursive estimation
 

techniques to 2-D processing. This research topic is still in its early
 

stages of development, and many open questions remain.
 

One approach to recursive processing of images involves the l-D pro­

cessing of the scan-ordered image (see Section D.1). This work has been
 

developed by Nahi, Silverman, and their colleagues [D-8,18,21,24,58,174]. 

Suppose we have an image f(mn) (assumed to be zero mean for convenience) 

with stationary covariance 

r(k,Z) = E[f(m,n)f(m+k,n+Z)] (D.102) 

Suppose we observe
 

q(m,n) = f(m,n) + v(m,n) (D.103)
 

where the additive noise v is, for simplicity, assumed to be zero mean
 

and white, with
 

(D.104)
E[v(m,n)v(kk)] = RSm,knZ 


We now take the scan ordering of the NxN grid on which q, f, and v are
 

defined. Let us use the same symbols to denote the resulting 1-D processes.
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We then have
 

q(k) = f(k) + v(k) (D.105) 

Elf(k)f(2)4] = S(k,Z) (D.106) 

E[v(k)v()] = R6kk (D.107) 

where S(k,Z) can be calculated from knowledge of r(m,n).
 

Note that the scanned image f(k) is not stationary, just as in Section
 

D.l we found that scanned 2-D systems did not become time-invariant l-D 

systems. The problem is clearly due to the abrupt change that occurs when 

the scanner reaches the end of one line and begins the next. For example, 

it is clear that one will have
 

S(3,+l) = S(i+l,1+2) = r(O,1) 

if and only if i, i+l, and i+2 come from the same line of the image. On 

the other hand, it is clear that 2-D stationarity plus the periodicity 

of the scanner should yield some structure for S, and, in fact, it is easily 

seen that 

S(k,) = S(k+N,t+N) V k,Y, (D.108) 

A process with this property is called cyclostationary, and many of its
 

properties have been analyzed in detail [D-43,80,83].
 

Given the model (D.105)-(D.107), one wishes to use Kalman filtering
 

techniques in order to suppress the noise. In order to do this, we need a
 

state space model for f. That is, we have a stochastic realization problem:
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find a finite-dimensional linear system driven by white noise that yields
 

an output with correlation function given by (D.106). Unfortunately, as
 

pointed out in [D-21J, S(k,i) does not have the required separability that 

is needed in order for such a realization to exist. Hence, some sort of
 

approximation is needed, and several have been developed. The simplest of
 

these involves finding a stationary approximation to (D.106), much as Manry
 

and Aggarwal found shift-invariant approximations to the shift-varying 

scanned filters they studied in [D-56). The basic idea here, due to Franks
 

[D-43J, is to use to stationary covariance 

R(k) =1 S (m,m+k) (D.109) 
mrl
 

This as equivalent to randomizing the variable m over the scan of one line in 

the computation of E[f(m)f(m+k)]. 

Having R(k), one can then use some realization procedure to find a
 

Markov model 

x(k+l) = Ax(k) + w(k) (D.1l0) 

f(k) = c'x(k) (D.11l) 

E[=(k)w(j ) ]  kj (D.112) 

that realizes or approximates the given correlation function. We refer the 

reader to [D-18] for a method used by Nahi and Assefi. 
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We can now obtain an image restoration scheme by direct application of
 

Kalman filtering to the model (D.105), (D.107), (D.ll0)-(D.112). Several
 

comments are in order. We first note that the filter has an artificial
 

causality -- only the points above and to the left on the same line affect 

the estimate of a given pixel. This can be partially removed by smoothing 

the data -- i.e. by estimating each f(k) based on all the data. With the 

model we have developed, this can be done efficiently with two Kalman filters, 

scanning in opposite directions and starting at opposite ends of the image.
 

The resulting estimate still has difficulties because of the randomizing 

used to obtain (D.II0)-(D.112). This causes problems much like those caused
 

by Manry-Aggarwal's shift-invariant approximation. In this case, one can 

remove some of these difficulties by transposing th6 image and performing the
 

same type of processing again (2 more Kalman filters scanning in a direction 

orthogonal to the other 2 filters). This appears to be reminiscent of Pistor's
 

four quadrant decomposition [D-42] -- we have NE, NW, SE, and SW Kalman 

filters.
 

A number of other comments can be made concerning this approach to image
 

processing. First of all, like the Wiener filter, the Kalman filter is based
 

on a MMSE criterion, and hence we can expect it to sacrifice resolution for
 

noise suppression. In addition, this method relies heavily on a priori
 

knowledge of the image covariance, and the robustness of the approach in the
 

presence of modeling errors remains an open question. We have already com­

mented on the problems inherent in the stationary approximation of the cyclo­

stationary covarlance of the scanned image. In [D-21] Nahi suggests that one
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use a piecewise stationary approximation over various sections of each 

scanned line. This leads to a time-varying, piecewise-constant state variable 

description for the scanned process. 

Several alternative methods exist for reducing the affect of the sta-^ 

tionary approximation. Nahi and Franco [D-58J suggest the simultaneous 

scanning of a number of lines ("vector scanning"). One can then model cor­

relationsboth along the scan and along the components of the vector of the 

scan. If one scans all lines simultaneously, we can take all of these cor­

relations into account. Note that in this case we have turned a 2-D, scalar 

signal into a I-D, multivariable signal, much as we discussed in the preceding 

subsection. Of course, this leads to problems with the dimensionality of 

the resulting processor. Thus, Nahi and Franco suggest a "section-scan", 

scheme which is in fact far more efficient than the scalar system described
 

previously. This sectioning approach is much like that of Manry and Aggarwal,
 

in which a number of lines are processed together, and different sections are
 

processed independently. An interesting point here is that Manry and Aggarwal
 

discussed the use overlapping sections to avoid problems at the edges. A
 

similar approach might work well in the framework developed by Nahi and Franco.
 

We note, however, that the vector modelling in [D-58] requires the separability
 

of the image covariance. In fact, Nahi and Franco [D-58J and Franks [D-43]
 

argue that a good model to be used is the exponential model
 

r =~np1ml p22l (D.113) 
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The necessity for using separable covariances is clearly a limitation, 

but it _does allow one to obtain detailed results. In addition to the work 

mentioned above, Powell and Silverman [D-8] used the separability assumption 

on r(m,n) to develop exact dynamic models for each line of the scalar and
 

vector scan processes. These models involve time-delays in the output equa­

tion (due to the nonseparability of S(k,2)), and the dimension of the models
 

increases in proportion to the width of the scan. This last fact is not
 

surprising, since we saw in subsection D.l that the dimension of the global
 

state of a 2-D system grows in proportion to the extent of the plane on
 

which the system is defined.
 

The recursive methods discussed so far have assumed that there is no
 

blurring due to a nontrivial PSF. If there is such blurring, essentially we
 

must develop a 1-D dynamical model for the effect of the blur along the scan.
 

The simplest example of this -- motion blur along the direction of the scan
 

-- was considered by Aboutalib and Silverman [D-24]. In the absence of
 

noise, they design the line-by-line inverse system to remove the blur both in
 

the space-invariant and space-variant cases. The inverse they propose is a 

recursive one, and hence can be implemented with relatively small computational 

demands. If noise is present, one augments the scalar or vector scan dynamic 

models of Nahi, Assefi, and Franco with the dynamic model of the blur, and 

uses the Kalman filter line by line (or section by section) to remove the blur 

and to suppress the noise. Again this system offers computational advantages 

over nonrecursive schemes, but the inverse system may be very sensitive to 
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errors in the knowledge of the PSF. The robustness properties of the Kalman 

filter in this case are not yet known.
 

All of the recursive scan techniques have basically been one-dimensional, 

in that no 2-D model for the image (beyond the usual covariance description) 

has been used. Recently, however, a number of researchers [D-6,22,34,35,71,96 ,
 

148,173,174,229,236] have considered 2-D recursive models for images. The
 

first work along this line was that of Habibi [D-22] who considered the sepa­

rable covariance function given in (D-113). Habibi noted that this covariance 

could be obtained from a 2-D, recursive, auto-regressive shaping filter
 

2 ) x(k+1,Z+l) = p2 x(k+l,Z) + plx(k,-+l) - p1 P2 x(k,Z) +J(l-p (- w(k,g) 

(D.114) 

where w(k,t) is a white, zero mean process with 

E[w(k,Z)w(m,n)] = 6km6n (D.115) 

Assuming measurements of the form
 

y(k,L) = x(k,k) + v (1,9) (D.1l6) 

Habibi then developed an estimator to estimate x(k+l,Z+l) based on 

{y(m,n) jm<k, n<Z} -- i.e. this estimator is a one-step NE predictor. Habibi 
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chose an estimator structure of the form
 

x(k+l,+l) = p2 x (k+l,Z) + plx(k,Z+ l ) - plp2x (k,Z) 

(D.117)
 
+ F(k,Y) [y(k,Y)-x(k,k) I 

and determined a value for the gain F (k,9). Unfortunately, this estimator 

is suboptimal, as pointed out by Strintzas ED-165]. The problem is that in 

I-D Kalman filtering, it is well-known that in order to obtain the optimal 

estimate recursively, one must estimate the entire state of the process.
 

However, as discussed in the preceding section, the global state has dimension
 

proportional to the extent of the 2-D domain under consideration. Hence 

x(k,Z) is not the global state, and we cannot expect its estimate alone to 

suffice for recursive optimal estimation. In fact, as Morf, et.al. (D-162, 

163J point out x(k,Z) is not the complete local state, and this makes the 

meaning of (D.117) even more questionable. Still, as Strintzis mentions, the 

structure of this estimator is so simple and intuitively appealing, it would
 

be worthwhile to determine just how suboptimal it is.
 

The most complete study of optimal 2-D Kalman filtering has been per­

formed by Woods and Radewan [D-173,229,236]. We assume that we have a one­

sided causal dynamic model (see Fig. D.5, D.6, Equation (D.12)) for the random
 

field
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M +M
 
x(m,n) = F E b(k,9)x(m-k,n-)
 

k=l £-M
 

(D.1l8)M 
+ Zb(O,)x(m,n-) + w(m,n) 

This model can be assumed to be given or can be obtained from the image power 

spectral density by means of 2-D spectral factorization ED-19]. This latter 

method in general leads to infinite order factors which must be truncated. 

A third method for obtaining the model (D.1l8) is by direct parameter esti­

mation using a method such as 2-D linear prediction. We will connent on 

methods such as these later in this section. 

Woods and Radewan consider the observation equation 

q(m,n) = x(m,n) + v(m,n) (D.119) 

where v is zero mean and white with variance R. Suppose we want to estimate 

x(m,n) given all values of q in the past, where past is defined relative to 

the direction of recursion in (D.118) -- i.e..... 

{q(i,j)Ii<m-l, all j}U{q(m,j) j<n}. Woods and Radewan point out that this 

can be done optimally with an extremely high dimensional Kalman filter to 

estimate the global state of the system, which in this case has dimension on
 

the order of MN (M=order of the filter, N--width of the image). In fact, a 

valid global state is (see Figure D.10)
 

s(m,n)' = x(m,n),x(m,n-l),...,x(,m);x(N,n-l),...,x(l,n-1); 

.. ; x(N,n-M),...,x(m-M,n-M)J (D.120 



Future Points 

(1,n) (re,n) 

(N,n-U) 
(m-M,n-M) 

Past Points 

Figure D.lO: Illustrating the Global State of Woods-Radewan. 
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By inspection of the state and the recursion (D.ll8), it is clear that we 

can write a 1-D equation for the scan-ordered process. Note that this model 

will be time-varying, since we must take into account the initiation of a new 

line. We can also write a relation between q and s
 

q(m,n) = Hs(m,n) + v(m,n) (D.121)
 

where H merely picks off the first element of s. Given this development,
 

a rather enormous Kalman filter can be written down. In addition, one can 

obtain a more efficient optimal estimator by processing one line of data at
 

a time (see [D-229J). 

As developed in [D-173,229,236], this filter does not correct for image 

blur. However, it does appear that one can modify the development so that it 

can. Suppose our observation is 

P P 
t(m,n) = > h(j,k)x-(m-j,n-k) + (n,m) (D.122) 

j=-P k=-P 

where is additive white noise. Note that in terms of the ordering implied
 

by the recursion (D.118), t(m,n) involves values of x that occur in the future.
 

This can be corrected by a time delay of the observations
 

q(m,n) = t(m-P,n-P) (D.123)
 

In this case, assuming 2P<M, we may write a relation of the form of (D.121),
 

where in this case v is a shifted version of E, and H is such that we obtain
 

the proper blurring , If 2P>M, we must increase the dimension of s -- keep
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more data from the past -- in order to make sure that s contains all the 

components of x that affect q(m,n). We illustrate these ideas in Figure D.ll. 

From the figure it is clear that HI in (D.121) will not be constant, since we 

must take end-of-line effects into account, when portions of the diagonally
 

shaded region in Figure D.11 lie outside the range of the image. This
 

clearly can be done, and, as before, we obtain a giant Kalman filter. Another 

method for optimal Kalman filtering in the presence of blurring has been 

developed by Hart, et.al. ED-71]. They also use a global state for the filter, 

but they assume that the different pixels are all independent -- i.e. that 

all of the b(i,j) are zero in (D.118). 

Optimal line-by-line Kalman filtering for images has also been considered
 

by Attasi and his colleagues [D-6,34,35,96J using a stochastic version of the
 

model discussed in subsection D.l. Specifically, consider noisy observations
 

of an image f(i,J) 

q(i,j) ; f(i,3) + v(i,3) (D.124) 

where the image is assumed to be generated by a separable vector analog of
 

the model used by Habibi [D-22] 

x(i,J) = F1X(I-l,3) + F2 x(i,3-l) - FF 2X(-,j-l) + w(i-l,3-1) 

(D.125)
f(1,3) = Hx(a,3) 
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(1,n) (m-2P,n) 	 (mn) 

(m-2P,n-2P) 	 (mn-2P) 

& (NI n-M, 

(m-M, n-m ) 

Figure D.1l: 	 Illustrating the Adaptation of the Woods-Radewan Model to
 
Allow Blurring.
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A 

We wish to obtain the optimal estimate x(m,n) of x(m,n) given q(i,j) for
 

2<m and all j. The optimal estimate in this case consists essentially of two
 
A 

l-D operations. Suppose we have x(m-l,n) for all n. We first predict ahead
 

one line to obtain
 

- A 

x(m,n) = Fx(m-l,n) Vn (D.126)
 

Note that each of these estimates is calculated independently. We now
 

observe the new line of measurements q(m,n) for all n, and we create the error
 

process and the error measurement
 

e(m,n) = x(m,n) - x(m,n) (D.127)
 

y(m,n) = q(m,n) - Hr(m,n) = He(m,n) + v(m,n) (D.128)
 

Thus we have a 1-D estimation problem -- estimate e(m,n) for all n, given
 

y(m,n) for all n. Attasi shows that one can obtain a finite dimensional
 

I-D realization for e(m,n) as a function of n. Hence, this estimation pro­

blem reduces to the usual 1-D smoothing problem. The solution consists of
 

two I-D Kalman filters starting at opposite ends of the line. The estimates
 

produced by these filters are then combined to produce e(m,n) and
 

x(m,n) = x(m,n) + e(m,n) (D.129)
 

For details, we refer the reader to the references. The "geometry" of the 

estimator is illustrated in Figure D.12. 

Let us make several comments concerning this estimator. First of all, 

we see that the decoupled structure of the estimatbr yields a far more 
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(b) 	 Processing the New Column of Data with 
Two Kalman Filters 

Figure D.12: Illustrating the Structure of Attasi's Estimator
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efficient estimator than that of Woods and Radewan. This is apparently due
 

to the separability of the underlying model (D.125). Also, for this model 

it is not clear if we can perform the same modifications in order to incor­

porate blurring. This and the separblity restriction are obvious drawbacks, 

but the appealing structure of the filter is reason enough for further in­

vestigation, especially given the compatability of this algorithm with parallel 

processing techniques. Furthermore, we note that the optimal smoother can
 

again be implemented with two filters of the type devised by Attasi -- one
 

sweeping the columns in order of increasing m, and the other in order of
 

decreasing m. Again, this is reminiscent of the decomposition of zero phase
 

filters into two half-plane filters [D-42,119].
 

The method of proof used by Attasi involves the taking of z-transforms 

along the n direction and the treatment of m as a time variable. Essentially 

we are regarding the 2-D system as a high-dimensional (infinite if the domain 

of n is unbounded) 1-D system, where we can use a spatial transform "along" 

the 1-D state vector in order to simplify the calculations. The key step in 

Attasi's development is a derivation of a set of Riccati equations, parametrized 

by the transform variable z, for the power spectra density Sin(z) of e(m,n) 

considered as a function of n. One can then factor these spectra to obtain
 

the 1-D realizations of the e's. As Attasi points out, the dimension of the
 

realization for e(m,n) is on the order of m times the dimension of x -- i.e.
 

it grows linearly with m. One can avoid this difficulty by using reduced
 

order estimators. For example we may choose to use the steady-state filter,
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in which case we can obtain a finite dimensional system whose spectrum
 

approximates S'(z).
 

Let us note that Attasils work brings out several crucial issues.
 

Specifically we have seen the effective use of the equivalent representations
 

of signals as multivariable l-D and scalar 2-D. We have also seen that 

transforms along one of these variables can be useful in obtaining solutions. 

Later in this section we will discuss the relation between 2-D processing 

and distributed and decentralized control. The issues just mentioned will
 

be of great importance then as well. 

As we have seen, optimal 2-D Kalman filtering algorithms require large
 

amounts of storage and computation. Thus, a number of researchers tD-34,148, 

173,174,229,236] have developed suboptimal estimators that require less com­

putation. We will briefly describe several of these and refer the reader
 

to the references for more on this subject. Let us begin with-the technique 

of Woods and Radewan [D-173,229,236]. They consider two types of suboptimal 

filters. The first involves breaking the picture up into strips of width 

W<N. One then processes across and up these strips individually, much as with 

the Manry-Aggarwal section-scan. This reduces the dimension of the global
 

state, as we replace N in (D.120) with W. Woods and Radewan also suggest
 

overlapping the strips in order to avoid the edge effects caused by incorrect
 

boundary conditions between strips.
 

The other suboptimal filter developed in ED-2291 is the reduced update 

Kalman filter. Examining the optimal filter of Woods and Radewan, we see that 
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the predict cycle is computationally straightforward -- one simply uses the
 

recursion (D.118) assuming no noise and using preceding estimates. The
 

measurement update part of the optimal filter, on the other hand, involves 

updating the estimates of all of the components of the state. Assuming 

N>>M, we ex]pect that a given pixel is most correlated only with a small per­

centage of the elements of the state vector. Therefore, it seems reasonable
 

only to update the estimates of those components of the state that are within
 

a certain distance of the point being processed. This should greatly simplify
 

the filter with minimal effect on performance. In other words, we are essen­

tially designing a constrained Kalman filter in which we constrain many of 

the gain elements to be zero and essentially allow only "near neighbor updates." 

We remark that a similar idea was proposed by Pratt 1D-17] for the Wiener fil­

ter and by 'Murphy and Silverman [D-174] in the Kalman filtering context. 

In addition, it is interesting to 'note that similar ideas have been proposed 

for large-scale systems in which measurements on a particular subsystem are 

used to update only those subsystems that are "near" to it as determined by 

some measure of dynamic interaction i(see, for example, [D-201,205,208] for 

related results for problems ,of freeway traffic control and estimation). We 

will have more to say about this later. 

Motivated by the simplicity of the filter proposed by Habibi [D-22J and
 

by the recursive local state-space model proposed by Roesser ED-II0, Barry,
 

et.al. [D-148J have developed a class of constrained filters. Specifically,
 

they consider a noisy version of Roesser's model (D.36)
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[:::; + W( ) (D.130)
hA , A3 Al4 h ,j)I 

y(1, 3 ) = ClV(ij) + C2h(i,j) + v(i,j) (D.131) 

where w and V are white noise processes. Their suboptimal estimator is then 

taken to be the optimum estimator of the form 

+1,3 [A1 A2 1 (. [K 113.,3)
+ Y y( ,) -EClC2 3 (D.132) 

1i1~lJ [ 3 A4 I J " + K]k3nE ) J[ 132) 

All of the recursive estimators that we have examined up to this point
 

have had two things in common -- they have involved discrete 2-D space and
 

have used recursive random field models. Recently Wong D-172,187] reported
 

on some work on 2-D continuous-space estimation. This theory involves the
 

development of a stochastic calculus in 2-D, and this in turn has led to a 

number of interesting theoretical results. we defer the discussion of this 

topic until later in this subsection. 

At this time it is worth mentioning that there has been work performed 

on recursive processing of fields that come from nonrecursive models.
 

Specifically, Jain and Angel [D-32] have considered fields described by a 

nearest neighbor, interpolative equation
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1 [x(mn+l) + x(m,n-1)]
 x(m,n) = x 

+ a 2[i(m+l,n) + x(m-l,n)] + w(m,n) (D.133) 

Fields of this type have been studied by several authors and were proposed 

by Woods tD-9] as the prototype of discrete, 2-D Markov fields. We will 

have more to say about the properties and other uses of these fields in a 

short while. For now, we concentrate on the estimation problem when we
 

observe
 

y(m,n) = x(m,n) + v(m,n) (D.134) 

Following (D-32], let us consider the vector scan process -- i.e. we pro­

cess an entire line of data at a time. Define the resulting 1-D vector 

processes xm, ym, win, and vm. For example 

x(m,l) 1 
x = (D.135)[ 

x (m,N) 

Then, one can write (D.134), (D.135) as
 

M+l = - x- + w (D.136) 

ym = x + v (D.137) 

mei m 

where Q is a symmetric, tridiagonal, Toeplitz matrix 
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0 ......... 0 -aI
 

Examining the structure of (D.138), one is tempted to utilize the same
 

type of circulant approximation as that used by Andrews and Hunt [D-81] in
 

order to diagonalxze the system efficiently with the aid of the FFT. However,
 

as Jain and Angel point out, the diagonalizatmon ofQ
 

M' QM = diag(Xi...,N ) (D.139) 

can be performed with the aid of the FFT without any approximation. Thus, 

if we define the transformed quantities xm, ym' etc., where, for example, 

= MIX (D.140)
 
m m
 

we obtain a set of N decoupled estimation problems, indexed by 3 (which
 

indexes the components of the transformed vectors):
 

+ m ,
3 m 3 FX- , w (D.141)
 

ym,3 = x m, 3 + V m,3 (D.142)
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Each of these problems can be solved using a second-order Kalman filter
 

(see [D-32J for an alternative method of derivation), and we obtain the
 

efficient implementation illustrated in Figure D.13. Again, if one wishes
 

to utilize all of the data to estimate each pixel, we can implement the
 

smoother by including a second bank of filters which sweeps the lines in the
 

opposite direction (m runs from N to 1). One can also implement a one step
 

smoother -- which estimates x based on data through line m+l. This requires
m 

only one back of filters, as in Figure D.13. We refer the reader to
 

ED-32] for details.
 

The approach in LD-32J deserves some comment. Again as in Attasl's
 

work, we have seen that transforming variables in one dimension and processing
 

24
 
in the other can lead to extremely efficient processing schemes. Just as 

with the block circulant approach of Andrews and Hunt, the spatial stationarity 

of the 1-D equation (D.136) is such that the FFT can be used to great advantage. 

This observation leads one to seek other formulations that possess structure 

that can be exploited in this manner. Jain and Angel mention -several other 

random field models that lead to symmetric, tridiagonal, Toeplitz evolution
 

equations when scanned line by line, and in [D-30] Jan uses similar analysis 

for the efficient recursive filtering of one of these models, the so-called
 

semLcausal nodel: 

x(m,n) = a 1[x(m-l,n) + x(m+l,n)] 

-Pa I [x(m+l,n-l) + x(m-ln-l)] (D.143) 
+ px(m,n-l) + w(m,n) 

24Recall that the use of a transform in one direction followed by linear predic­
tion in the other was proposed as an image coding scheme by Habibi and Robinson 
[D-37]. 



ym Xamm, x(m,1) 

S FFT * FFT 

0 0 0 

Y(mN) Ym,N .... Xm, N 
A~A( 

xmx m,N) 

Figure D.13: Illustrating the Optimal Filter of Jain and Angel
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The model was given this name since x(m,n) depends only on x(i,j) with j<n
 

(note, however, that (D.143) is not recursive). We note that throughout
 

the development in [D-30,32] it is assumed that no blurring occurs. It is
 

not clear if the approach adopted in these references can be extended to
 

include the effect of a PSF, but the efficiency of the algorithms developed
 

by Jain and Angel indicates that it is certainly worth trying to find such 

an extension. As we shall see, the use of structure in this manner can be
 

applied in a number of different settings.
 

We have now surveyed a number of nonrecursive and recursive estimation 

methods, and the techniques discussed to this point deserve some comment. 

The recursive techniques come with many of the same criticisms that were made 

concerning nonrecursive filters. They require detailed models of the image
 

statistics and image formation process, and they are essentially based on the 

MMSE criterion. Hence, they in general, will sacrifice resblution in favor
 

of noise suppression. In addition, these recursive techniques necessarily
 

affect the image because of the assumed model structure. The effect of this 

in some cases (such as in the Kalman filter based on a stationary approxima­

tion to the scanned image) may require additional processing (of the trans­

posed image, for example), while in other cases, such as the 2-D causal 

models of Woods-Radewan and Attasi or the noncausal models of Jamn and Angel,
 

the effects may not be so noticeable. We have seen that some of the recursive
 

techniques allow the inclusion of image blur, while in other cases the
 

extensions to include blur have yet to be developed. Also, we have seen that
 

in some cases optimal Kalman filtering is extremely complex, and suboptimal,
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but intuitively appealing, recursive filter structures must be used. In other
 

cases -- specifically in the work of Attasi and Angel and Jain -- we have
 

observed that the use of the structure of the assumed model can lead to ex­

tremely efficient optimal estimation algorithms. In addition, although 

work in this area has been limited in extent [D-24,174], the recursive tech­

naques are directly amenable to the analysis of space-varying and nonstationary 

models. Thus, in spite of the many qualifications, we find enough positive 

attributes to warrant continued study of recursive techniques for image 

restoration.
 

Let us now comment and speculate on several aspects of image processing
 

that we have only mentioned in passing previously. First of all, we have
 

the problem of nonlinearities in image sensing. Consider first the multi­

plicatve noise model (D.63). As discussed in [D-82,E-2] and in Section E,
 

one can often filter signals corrupted by multiplicative noise by first
 

taking the logarithm, then filtering with a linear system, and then exponen­

tiating. This process -- an example of homomorphic filtering -- is described
 

in Section E. We note here that this technique has been applied with great 

success [D-82,E-2J, and in [D-82] it is argued that this type of processing
 

is extremely compatible with the response characteristics of the human visual
 

system.
 

Equation (D.64) illustrates another kind of measurement nonlinearity,
 

in which the noise is additive but the signal is distorted in a nonlinear
 

fashion. Hunt [D-4,81] has studied such image processing problems in the
 

context of nonrecursive restoration techniques. Specifically, he has devised
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an iterative scheme for computing the maximum a posteriori image estimate 

given the observations. In the case of linear measurements, this reduces to 

the Wiener filter. The analog of this technique for the recursive methods
 

is the extended Kalman filter (EKF), which essentially involves a continual
 

relinearization about the present best estimate. This method can readily 

be derived for all of the recursive methods discussed. The interested reader
 

is referred to [D-21] for a discussion of this method in the context of the
 

Nahi-Assefi scalar-scan recursive technique. There are, of course, many
 

other nonlinear 1-D recursive estimation techniques besides the EKF, and 

most of these can be applied in this framework. For an example of one other 

such technique (again applied to the Nahi-Assefi method), we refer the reader 

to [D-75]. 

Another issue that we have mentioned on several occasions is the incor­

poration of constraints, such as the positivity of the image estimate, into
 

the estimation procedure. As mentioned earlier (see footnote 21) in many 

cases we needn't worry about this constraint explicitly. 2 5 However, it is 

worth understanding the implications of such constraints. Andrews and Hunt 

[D-81] consider the constrained least squares formulation together with the 

additional positivity constraint. In this case there is no closed-form
 

solution, and iterative nonlinear programming methods must be used.
 

Mascarenhas and Pratt [D-23] also consider the incorporation of upper bounds
 

on pixel intensities in order to improve the conditioning of the restoration
 

problem, and similar types of bounds on the pixels and on the values of the 

25And for homomorphic techniques have reason at all,we no to worry since 
exponentiation at the end guarantees positivity.
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PSF (assumed unknown in this case) were considered by MacAdam [D-39]. In 

the case of recursive techniques, one can also include positivity constraints. 

In ED-239] Jain discusses a recursive, iterative method for incorporating this 

constraint into the Nahl-Assefi model. Thus, we see that constraints such as 

these can be incorporated into the methods discussed previously. The cost 

is a great increase in computational complexity, and it is not clear that it 

is worth the trouble. 

A third problem area with many of the restoration techniques is in the 

reliance on a priori information. As mentioned earlier, one often can assume 

knowledge of the PSF or can determine it by observing known test scenes 

through the imaging system. In other cases,,we may not have such information 

and must estimate the PSF as well as the image. Based on the assumption that 

the extent of the PSF is far less than that of the image, Stockham, et.al. 

[E-4] suggest a "blind homomorphic deconvolution" procedure, -in-which one
 

breaks the received image into pieces, takes 2-D transforms and the logarithm
 

of the transforms, and then averages, over the various pieces. This, combined 

with the specification of a prototype transform (corresponding to the average
 

of the logarithm of the transform of the original image) allows one to 

estimate the PSF and the other parameters needed for the geometric mean filter
 

described earlier. We refer the reader to [E-4J for details.
 

The question of parameter uncertainty is clearly of major importance for 

the various recursive techniques, all of which require a great deal of a 

priori information. Thus one important question concerns the robustness of 
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these techniques in the face of modelling errors. As mentioned in Section C, 

techniques do exist for the sensitivity analysis of l-D state-space models 

and I-D Kalman filters (see [A-65,C-231). Can we extend these methods to the 

2-D case, and how well do the 2-D algorithms perform? Is there any way to 

make them more robust? In addition, methods abound in 1-D for on-line para­

meter identification and adaptive estimation in the presence of unknown para­

meters (see the various techniques described in Section B). Can we apply
 

these methods with any success to the 2-D problem? The successes of such 

methods in 1-D and the several appealing features of 2-D recursive estimation 

techniques make these worthwhile questions for future research.
 

A final area of concern is the resolution-noise suppression tradeoff.
 

As mentioned earlier, the human visual system is willing to accept more noise
 

in certain regions, such as edges, in order to improve resolution. Thus, in
 

relatively slowly varying regions of the imagej we would like to remove noise,
 

while where there are abrupt scene changes or other high frequency fluctuations 

of interest, we would prefer to forego noise suppression In favor of resolution. 

Backus and Gilbert [D-78] (see also [D-19J) have devised a nonrecursive tech­

nique for taking this tradeoff into account. They define a quantitative 

measure of the blur induced in the image by filtering. Then for any given 

value of this measure, one can determine the restoration scheme that minimizes
/ 

the effects of noise sub3ect to this constraint. We refer the reader to
 

ED-19,78] for details (see also [D-79]). Anderson and Netravali [D-99] have
 

deveioped another nonrecursive approach involving a performance index that
 

provides a tradeoff between blur introduced by the filter and the level of 
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noise suppression. Their criterion utilizes the results of certain psycho­

visual experiments that were designed to measure the relative importance of
 

a unit of noise in high and low contrast conditions, but the evidence is still
 

inconclusive as to whether or not a standard measure can be obtained-for a large
 

class of images. In addition to-these methods, we refer the reader to
 

ED-38,44,225] for discussions of severil other nonrecursive image enhancement 

techniques. 

In the context of simultaneous image enhancement and noise suppression,
 

an important problem involves the detection of edges or boundaries between
 

different regions in an image. Within each of these regions one may be able 

to utilize one of the restoration techniques developed earlier, and in this 

manner we can suppress noise while preserving the resolution of the boundaries.
 

We also note that an many applications the determination of the boundaries 

themselves may be the key issue [D-175]. In recent years a variety of tech­

niques have been developed for detecting and recognizing various types of
 

boundaries in 2-D data. Many of these methods are based on pattern recognition 

techniques [D-243], and we will not discuss them here. We simply refer the 

reader to several references on this subject, [D-15,210,240]. 

In l-D, a variety of recursive techniques have been developed for estima­

tion and detection of abrupt changes in signals (see [B-103J for a survey of 

many of these). These techniques have been successfully applied in a wide 

variety of applications, including automatic detection of cardiac arrhythmias 

[B-104J and the detection of sensor and actuator failures [B-103]. An important
 

question then is the extension of methods such as these to the detection of
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boundaries in images. To a large extent this remains an open problem, but 

there has been some work along these lines. Specifically, Nahi and Habibi 

(D-25J considered the problem of the detection of an object superimposed on
 

a background scheme. Their approach involved the modification of the methods 

of Nah [D-18,21,58] and of Hababi [D-22] to incorporate a binary variable 

that indicates whether a particular pixel is in the object or in the back­

ground. The scheme devised in [D-25] involves the recursive calculation of
 

likelihood ratios for the existence of boundaries, and it also incorporates 

the use of a bank of two filters (based on object and background statistics, 

respectively) for the suppression of noise once the boundaries have been
 

determined. In [D-175] Nahi and Lopez-Mora were primarily concerned with the 

estimation of the boundary. Here, the l-D Markov scan model of ED-18,21,58] 

is augmented to include several states used to model the boundary. As the 

resulting model is nonlinear, a nonlinear estimation scheme is employed, and
 

some promising results are presented in [D-175]. These results notwithstanding, 

a great deal of work remains to be done in the development of recursive methods
 

for the detection of boundaries in images. It is our feeling that this may 

prove to be one of the most important uses of 2-D recursive estimation technliqueE 

We now turn our attention to the detailed analysis of statistical and
 

probabilistic models for random fields. Applications for such techniques 

extend far beyond image processing into fields such as seismic signal processing 

[D-68,70,199,209,216,227,245J, gravity mapping [D-1,211,212,224J, meteorology
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and atmospheric modelling, [D-69,214,231], biomedical imagery and image 

reconstruction [D-11,29,213,223], modelling of scattering fields [fD-222,232­

235], modelling of the distribution of earth resources [D-15,61,246], analysis
 

and modelling of turbulence [D-217], and the modelling and analysis of random
 

transport and wave propagation phenomena [D-170,189,193,194,215,220,226].
 

With such a wide variety of potential applications, there clearly is a need
 

for a general methodology for the analysis of random fields. Much has been
 

done in this direction, but, as with all multidimensional topics, much remains
 

to be done. We will describe some of the work that has been done, will touch
 

on several of the applications mentioned above, and will speculate on some 

open questions.
 

Motivated to a great extent by their utility in l-D, many researchers 

have investigated the extension of the concept of a Markov process to several 

dimensions. Perhaps the first of these was developed by Levy for continuous 

parameter spaces [D-12,197,198,230]. The situation in two dimensions is 

depicted in Figure D.14. Suppose we have a 2-D random field f(x,y). Then f 

26
 
is called Markov of degree p if it essentially has the following property: 

let 3G be any smooth closed curve encircling the origin and separating the 

plane into the "past" (G-), the "present" (G), and the "future" (G ); then,p F 

given f and its first p-1 derivatives at the present, the values of f in the
 

future are independent of the values of f in the past. The field f is called
 

Markov if it is Markov of degree 1. This definition is quite intuitive, and
 

one can imagine fields in a variety of physical situations that have this type
 

26 
We say "essentially" here since f may not be differentiable. For the tech­

nically precise definition, we refer the reader to the references.
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Figure D.14: Illustrating Levy's 2-D Markov Property 
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of radial causality.
 

Levy also defined a multidimensional Brownian motion process x (t), 

t = (tI,...,td), which is a Gaussian process with statistics 

Ex(a)] = 0 (D.144)
 

E1x(a)x(b)J (al + bI - lb-al) (D.145) 

(here 1- is the usual Euclidean distance). McKean [D-198] showed that for
 

d odd, x(t) is Markovian of degree (d+l)/2, and for d even, x(t) has no 

Markovian property. Since Brownian motion and its Markovian properties 

proved to be so useful in developing I-D tools of stochastic analysis, the
 

above result is disappointing. This disappointment is in fact compounded by
 

the analysis of Wong [D-12] who showed that there are essentially no contin­

uous Gaussian random fields in two or more dimensions that are simultaneously 

stationary, isotropic (the covariance function is invariant if we rotate the 

coordinates of the parameter space), and Markov (of degree one). Thus it is 

evident that this setting will not lead to a useful multidimensional stochastic 

calculus for the study of random fields. To do this, we must turn to a 

recursive formulation, and we shall do this shortly.
 

It is interesting to note that the analog of Levy's notion for discrete 

space systems, as developed by Woods in [D-9], leads to far more useful results. 

Stationary Gaussian fields of this type can be generated by interpolative 

2 7
 
filters of the form


2 7Such models have been considered by several authors including Whittle [D-61
 
and Larimore and Beavers [D-l]. 
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x(n,m) = h(k,P,)x(n-k,m-Z) + u(n,m) (D.146) 
D 
p 

where u(n,m) is stationary, and
 

D = {(k,k)jk +2<P2 , k,9, not both 0} (D.147) 

Onka6d (D.148)E[x,(n,m)u(k,')] c6 m 

E[u(n,m)u(0,0)J = m=n=O 

-h(mn)c (m,n)EDp (p.149) 

otherwise
 

Thus, we see that the driving noise in this case is not-white but is
 

finitely correlated.
 

We have already seen in the work of Jain and Angel [D-32] that inter­

polative models can be used for efficient Irecursive estimation of random 

fields. Such models also have several other uses. One possibility is in 

the area of spectral estimation. In [D-237J Woods proposes the fitting of 

observed correlation data to an interpolative Markov model. In this case 

one again obtains a set of normal equations for the coefficients of the 

model that yields the minimal interpolation error in a least squares sense.
 

Unfortunately, as Woods points out, these equations cannot be inverted ef­

ficiently as in the 1-D linear prediction case, and Woods (D-237J proposes
 

a complex algorithm for obtaining the desired spectral estimate.
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Fortunately, as we have seen in [D-32], nearest neighbor models have a 

great deal of structure that can be exploited to obtain efficient computa­

tional schemes. In [D-31J Jain proposes a nearest neighbor interpolative 

filter for imaging coding. Basically, Jain assumes a separable, stationary,
 

isotropic model for the image 

+ [m l  
E[x(n,m)x(0,0)] = P n l, (D.150)
 

and in this case he finds the optimum first order (p-l in (D.147)) inter­

polative error filter. In this simple case, one can solve the normal equa­

tions by inspection. Having this filter, one can consider a coding scheme
 

in which we transmit only the interpolation error. Thus, the decoder must 

essentially-solve the interpolative, and-hence nonrecursive, equation. In 

general, this is a difficult task in its own right. However, one can use
 

techniques analogous to those in [D-32] to perform the reconstruction ef­

.ficently. That is, we can consider reconstructing the image line by line,
 

and the resulting vector equations display the same type of tridiagonal 

structure that was exploited earlier in the development of an efficient res­

toration scheme. Similarly in this case we can also use FFT algorithms for
 

efficient reconstruction. In addition, as discussed in (D-241,242], the use 

of interpolative models leads to efficient Karhunen-Loeve transform coding
 

using the FFT. 

Thus, we have seen that interpolative models have a number of appealing
 

properties. They also have their drawbacks, such as in efficient spectral
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28 
estimation, and one is naturally led to seek other models and statistical
 

methods for fitting 2-D data to parametric forms for such models. One im­

mediate generalization from l-D that we have mentioned before is the develop­

ment of 2-D linear prediction techniques -- i.e. the identification of 2-D,
 

causal, autoregressive models by means of least squares predictive error
 

filter design. Immediately we see that one problem that arises is the choice
 

of the direction of recursion for the AR model -- i.e. which elements of the
 

field will be used to predict which other elements. Another problem is the
 

stability of the resulting filter, which is guaranteed in I-D but not in 2-D,
 

as Genin and Kamp have pointed out [D-145] (see also the work of Marzetta 

[D-66,67J). In addition, even if stability is not a problem, one faces the
 

question of finding efficient algorithms for the solution of the normal equa­

tions that specify the filter parameters -- i.e., is there a fast 2-D Levinson 

algorithm 9 In [D-145] Genin and Kamp develop sets of recurrence relations 

for 2-D orthogonal polynomials. Can these relations be used to devise fast
 

algorithms as they can in I-D (see Section B)?
 

The above questions remain open in general, but recently Marzetta [D-67
 

developed a fast algorithm for 2-D linear prediction that involves the use of
 

1-D techniques and the same 2-D, scalar/l-Dvector interplay that we have seen
 

before. Consider the situation depicted in Figure D.15a. We have a stationary 

2-D field x(k,2), and we wish to predict x(m,n) based on the array of x(i,3) 

to the SW that are indicated in the figure. We do this in two steps. First,
 

28See also [D-62J 
for another difficulty that arises with such discrete-time,
 
nonrecursive, 2-D Markov models.
 

29A related question, given the perspective of Section B, is the existence of
 
fast algorithms for the calculation of the gains of recursive 2-D Kalman
 
filters.
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(m-M,n) (m,n) 
S 0 * a 0 

: Scaler 1-D Prediction 
* 0 0 * of Residual at (m,n) 

(m-M,n-N) (m,n-N) 

Vector I-D Prediction of the Lost Column 

(a) Illustrating MarzettG's Fast Algorithm 

(m-M,n+N) (m,n+N) 

* 0 0 0 

Scaler 

* 0 0 0 0 

* * * * o(m,n) 

o 5 Scalar 

* 0 0 0 0 

(m-M,n-N) _ (m,n-N) 
Vector 1-D 

(b-) Does a Fast Algotirhm Like This Exist>~ 

Figure D.15: Known and conjectured Fast Algorithms for 2-D Linear Prediction 
and Interpolation. 
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regarding each column as a l-D vector, we use the preceding columns to predict
 

the mth column. This can be done with standard fast algorithms for vector l-D 

linear prediction. In fact, in this case we can effectively use the faster
 

scalar I-D algorithm since the block Toeplitz matrix to be inverted is in
 

fact Toeplitz because of vertical stationarity. Having completed this step,
 

we compute the prediction errors in the last column and use these to predict
 

the error at (m,n) by performing a scalar l-D prediction to the North. Thi
 

algorithm bears a striking resemblance in style to that of Attasi (see
 

Figure D.12). The only difference is that Attasi uses two l-D Kalman filters
 

-- one North, one South -- to perform a smoothing along the last column. This
 

observation leads us to speculate on the existence of a fast algorithm for
 

linear interpolation for the semicausal [D-30J structure illustrated in Figure
 

D.15b.
 

Identification of parametric 2-D models has attracted the attention of
 

several statisticians over the years [D-1,59,61], and several of their results
 

are definitely worth noting. Whittle [D-61,63J was one of the first researchers
 

to consider the properties of 2-D stationary processes. One of the topics
 

he considered was the "unilateral" representation of a 2-D process, which is 

simply a half-plane recursive representation of a given field. Using a method 

exactly along the lines developed by Dudgeon [D- 3 3,102J, Ekstrom and Woods 

[D-119J, and Marzetta [D-66J, Whittle obtained an in general infinite order
 

representation of this type by factoring the 2-D power spectral density of
 

the process. In addition, in [D-61] Whittle also felrates various recursive
 

and nonrecursive autoregressive discrete-space models to analogous stochastic
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partial differential equations. Such equations were examined by Heine [D-60],
 

who examined the properties of linear stochastic equations of the parabolic,
 

elliptic, and hyperbolic forms. Whittle noted that the nearest neighbor model 

corresponds to an elliptic equation for which Heine showed that the correlation 

function takes the form of a modified Bessel function of the second kind.
 

Whittle then uses this fact to argue that in the discrete space -case, such 

correlation function forms are preferable to decaying exponentials. 

In addition to considering these issues, Whittle also discussed the 

maximum likelihood and least squares estimation of the parameters of a 2-D 

autoregressive model. This subject is also considered in far greater detail
 

by Larimore and Beavers (D-1], and the results bring to light a rather im­

portant point. In 1-D, assuming Gaussian statistics, finding the maximum
 

likelihood parameter estimates is equivalent to finding the parameters of an 

inverse filter that yields the least squares prediction error -- i.e., the 

log-likelihood ratio is up to an additive constant, proportional to the nega­

tive of the sum of squared estimation errors. In the 2-D problem, this is not 

the case if the field model is not causal. This is due to the fact that in
 

this case the Jacobean of the transformation from prediction errors to the 

field is not unity and is, in general, a rather complicated function of the 

parameters. This greatly complicates parameter and spectral estimation, as 

we already noted in discussing the work of Woods [D-237J. We refer the reader
 

to [D-i] for details of the problem of 2-D parametric model identification and 

for the consideration of other problems, such as the design of a 1-D shaping 
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filter for the part of a 2-D field observed by a point tracing a path in 

the plane. This problem is of great practical value in problems such as
 
3 0 

accurate inertial navigation and gravity field estimation 
[D-1,193,194J 


As discussed earlier, in 1-D the use of stochastic calculus greatly 

facilitates the analysis of continuous-time random processes. It seems na­

tural, then to attempt to extend concepts such as the Markov property, 

Brownian motion, and stochastic calculus to 2-D. We have seen, however, 

that the intuitively appealing approach of Levy does not provide a useful 

framework, and the reason for this is the lack of causality in this framework. 

Specifically, in 1-D the basic tools of analysis of Brownian motion, Poisson 

processes, stochastic differential equations, etc., essentially are based on 

31
Simply put,

the principles of martingale theory (see, for example, [D-247]). 


a martingale M(t) is a 1-D random process such that for t>s the best estimate 

M(t) given M(T), T<s is M(s):
 

E[M(t)IM(T), T<s] = M(s) (D.151) 

To extend these notions to 2-D, we immediately run into a problem: what
 

does t>s mean? That is, we must be able to specify at least a partial order
 

30The problem of modelling random perturbations in gravitational fields has been
 
considered by a number of authors [D-211,212,224]. A common approach to this 
problem is the use of the spatial transform most appropriate for such problems-­
spherical harmonics. Wong [D-12,230] has considered such transform methods in 
the general setting of isotropic random fields on spaces with constant curvature.
 
The use of geometric concepts such as spherical harmonics greatly facilitates
 
the analysis of random fields. We also refer the reader to the work of 
Swerling D-10], in which many of the statistical properties of random contours
 
are discussed at some length.
 

3 1 The following discussion is greatly oversimplified, and refer thewe reader 
to the references for the full story.
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on the plane, and, as discussed in Subsection D.l, this can be done if we 

impose a causal structure on the processes considered. 

In recent years 2-D martingales (and higher dimensional generalizations) 

with a NE causal structure have been investigated by a number of authors 

[D-172, 176,179-187,191,192,196]. Basically, we consider processes M(zlZ 2 

defined on the NE quadrant, on which we place the partial order 

(z lz 2 ) >C l'Y12 <=> zx> I, x=1,2, (D.152) 

Then M(Z1 ,z2 ) is a (NE) martingale if whenever (zlZ2)>-( , 2)
 

Z2 )(SlS (Isl2,E(IMz 1 2 ) , 2)>-(Ss 2 )] = M(lJ 2) (D.153) 

The relevant geometry is depicted in Figure D.16. Here5(1'E 2 ) denotes 

the set of all M(s ls 2 ) with (s ls2 )>-(E ,2). 

Having this framework one can then begin to develop all of the tools for 

a usable 2-D stochastic calculus. The results obtained indicate that such
 

a calculus can be developed, but it is not without its surprises and
 

32
 
limitations. One of the major surprises is that given a NE Martingale, 

the lack of a total order leads directly to the construction of a second mar­

tingale, and, in fact this second martingale, which in some sense involves 

products of the original martingale at unordered points, is essential to the 

The same comment can, of course, be made with regard to just about any topic 
in 2-D system analysis.
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Figure D.16: Illustrating the Structure of a NE Martingale.
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33
development of a full set of stochastic differentiation rules. In addition, 

one of the major limitations of this approach appears to be the restriction 

to quadrant causality. But is this really a restriction? In 1-D one of the 

most important dynamic models involves the representation of a random process 

as the output of a causal stochastic differential equation driven by a mar­

tingale. Perhaps in 2-D we must break the process into two parts, one driven
 

by a NE martingale and one by a SE martingale. Recalling Ekstrom and Woods 

assertion ED-119] that any power spectral density can be created by using 

white noise to drive one half-plane or two quadrant filters, this idea may
 

not be that far-fetched. 

In any event, there certainly appear to be enough reasons to pursue the
 

utility of such a continuous parameter 2-D stochastic calculus. In 1-D one
 

often finds that the continuous-time solution is far simpler computationally
 

and conceptually than the corresponding discrete-time solution and, in fact,
 

for digital systems one often solves the continuous problem and discretizes
 

rather than discretizing the problem at the start. Examination of the 

recursive 2-D optimal estimation and detection results derived by Wong in the
 

continuous case [D-172,176,179,187] and comparison of them to the analogous 

discrete-time results discussed earlier in this section, we see that the same 

may be true here. In addition to applications such as these, it appears that 

a 2-D stochastic calculus may be of use in the analysis of processes that 

evolve in both space and time, which is the next topic of discussion. It is
 

our feeling that the preceding remarks and the following development provide
 

•33
 
In [D-184] it is argued that this second martingale arises naturally from the 

deterministic rules involving Stieltjes differentials on the plane. 
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ample motivation for the continued study of 2-D stochastic calculus.
 

Throughout this subsection we have seen numerous examples of 2-D signal
 

processing problems in which good use 'is made of the transformation of the
 

signals obtained by considering them to be I-D vector time signals, in which
 

the other independent spatial variable is used to index components of the
 

vectors. We now will briefly examine several problems in which the processes
 

are truly of this from -- i.e. they are space-time processes -- or at least
 

in which one can benefit by viewing multivarable 1-D systems as systems
 

with two independent variables.
 

One of the best examples of space-time processes arises in the conside­

ration of seismic signal processing (see [D-68,70,199,209,215,216,227,245]),
 

in which we observe the response of the earth to excitation through an array 

of sensors. In such a system the sensors receive signals due to reflections
 

from different layers in the earth. In addition, there is often coherent 

noise, resulting from various types of waves, and there also is incoherent 

noise. Hence, we obtain a 2-D signal y(j,t), where t is time and j denotes 

the Jth sensor (here 3 can be thought of as a measure of distance from the 

sensor to the location of the original excitation). If S (t) denotes the 

response of the earth to the excitation, we can model y(j,t) as follows [D-68J: 

y(j,t) = S(t-T ) + N(t-6 ) + w(jt) (D.154) 

where T and 6 are the time delays incurred by the earth response and the 

coherent noise, respectively, in travelling to the jth sensor. Also w(3,t)
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is the incoherent noise. Given this 2-D signal, we want to estimate S(t) 

and the time delay T] (called "moveouts"). 

A number of solutions have been developed for this problem. In the 

context of 2-D signal processing, if we assume constant but different-speeds 

of propagation for S and N -- i.e. 

d d 
= _ , = - (D.155)

3 VVs 7N
 

where d is the distance to the 3th sensor, we can use "fan" filters to
J 

discriminate between these signals. Basically, if we consider the 2-D 

Fourier transfomof these space time signals (let us assume for simplicity 

that we have a continuum of sensors) 

Y(Wl 1,W2 ) = ff y(x,t)e 2dxdt (D.156) 

then the point (iW 2) corresponds to a plane wave traveling with velocity
 

W2to = slope of the line'connecting this point to the origin. Hence all of
 

the velocities within a given range are obtained by points in a sector in 

(w1 w2)-space, and thus if we design a filter to pass only the frequencies 

in the appropriate sector, we can achieve the desired velocity discrimination 

(see Figure D.17). 

In addition to this type of approach, one can consider the design of 

optimal filters for the estimation of S and the T . In ED-68] Sengbush and3 
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w2 

Figure D.17: An Ideal Fan Filter (Passband is Shaded). 



-255-


Foster derive the optimal nonrecursive Wiener filter for this problem and 

analyze its properties as a 2-D filtering system. We refer the reader to
 

[D-68] for the details of this development and for a discussion of other 2-D 

nonrecursive techniques.
 

An interesting question involves the development of recursive estimation
 

techniques for problems such as these. Such algorithms may be particularly 

useful given the apparent need for using space-varying models ED-68]. We
 

will discuss the problem of recursive techniques very shortly.
 

Another class of space-time problems is essentially 3-D. This involves
 

the observation of a sequence of 2-D images in order to determine motion or
 

scene changes. Such problems arise in meteorological problems such as the
 

tracking of cloud motion ED-69,231]. In addition, if one is performing 

image processing on a sequence of images, one might expect that the use of
 

temporal as well as spatial correlations would improve overall processor
 

performance. The development of systematic recursive or nonrecursive ap­

proaches to problems such as these is an appealing area for future work. 

A final area in which one finds space-time processes is in the conside­

ration of random vector (transport) or force fields which affect the motion 

of particles or waves. Applications for models such as these abound. How 

does the statistical description of a random gravitational -field affect the 

motion of a satellite [D-224J, and by observing the motion of the satellite, 

how can we obtain better estimates of the gravitational field? Given a
 

statistical description of wind currents, predict the space-time distribution
 

of pollutants coming from some source, and determine the optimal locations for
 

the placement of pollution sensors.
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Techniques exist for all of the problems mentioned above, but at this 

time there is no systematic theory for the probabilistic analysis and recursive 

estimation of general space-time stochastic processes, although major steps
 

have been taken in this direction for space-time point processes [D-II,223J,
 

and some work has been done towards developing a calculus for isotropic
 

random vector fields [D-226]. In addition, motivated by several of these
 

applications, Kam and Willsky [D-193-195] and Washburn [D-196] have attempted
 

to utilize the tools of l-D and 2-D stochastic calculus in order to develop
 

recursive techniques for space-time processes. We briefly describe several
 

of these results.
 

The results in [D-193-195] are basically separable in nature, in that
 

l-D stochastic models are developed separately for the spatial and temporal 

variations. Motivated by time delay problems such as those that arise in 

seismic signal processing, we have considered the following problem: a 

source at spatial location s=O transmits a random signal O(t), t>O * This 

signal is modeled as the output of a possibly tme-varying linear shaping 

filter
 

x(t) = A(t)x(t) + w(t) (D.157) 

0(t) = C(t)x(t) (D.158) 

The signal is then propagated in the positive s direction by a random 

velocity field v(s) with given statistics. At points s '...,snwe have 

sensors which measure delayed versxons-of the signal a 
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y(i,t) = 4(t-T ) + V(I,t) (D.159) 

S 

T j ds (D.160) 

0 V (s) 

,Given this problem formulation we consider the problem of recursive optimal 

estimation of and of the T I34 This is an extremely difficult problem,i 

and implementable solutions have been found only in certain special cases.
 

However, the work in [D-193, 194J represents a useful first step in the
 

development of such techniques, and the results obtained can be used to devise
 

suboptimal recursive schemes. Work continues along these lines.
 

Another problem considered in [D193,195] has certain aspects in common 

with problems considered in [D-1,24J. Specifically, we have a random field 

and a point sensor that traces a 1-D track along the field. As considered 

in [D-lJ, suppose we can model the spatial variations along this 1-D track 

by a spatial shaping filter 

k(s) = Ax(s) + w(s) (D I61)
 

f(s) = Cx(s) (D.162)
 

Let v(t) and s(t) denote the velocity and position of the point sensor as a
 

function of time. The time history of the observations of the point sensor
 

may then be modeled by
 

y(t) = f(s(t)) + v(t) (D.163) 

34We also allow the possibility of delayed versions of 
being transmitted from
 
other locations. This can be used to model multiple reflections.
 



or, if we include the possibility of blurring 

t 

y(t) h(t-T)f(s(T))dT + V(t) (D.164) 

Although only the case of (D-.163) was considered in [D-193,195J, the 

analysis can be readily extended to the case of (D.164). This extension 

is presently being developed. 

Given this formulation, one can ask several questions. For example 

one might wish to estimate the field f given these measurements. If the 

velocity history is known, this is not difficult, and this problem resembles 

that of [D-24] at least in spirit. If the velocity is unknown -- i.e. 

we have random motion blur -- the problem is more complex. Methods are 

developed in (D-193,195] for the suboptimal solution of this problem. 

Note that in this case we have one more difficulty -- the mapping problem. 

At any point in time we don't know which point s(t) we're looking at. Note 

also that intuitively in all of these problems the velocity v(t) must affect
 

the accuracy of our observations -- the faster we move, the less we observe.
 

Thus, one can consider the problem of controlling the speed of the sensor
 

in order to achieve certain performance specifications. An optimal control
 

problem along these lines is considered in [D-193,195].
 

A third class of separable space-time problems, motivated by the random
 

force field problem, is presently being studied. We have a 1-D random
 

acceleration field a(s) which has a spatial shaping filter representation
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A(S) = AX(s) + w(s) (D.165) 

a(s) = Cx(s) (D.166) 

Suppose a particle is subject to this field. The equatiors governing its 

motion are
 

;(t) = v(t) (D.167)
 

v(t) = a(s(t)) (D.168)
 

We wish to estimate the shape of the random field from noisy observations
 

of the position of the particle
 

y(t) = s(t) + V(t) (D.169)
 

Results for problems of this type will be forthcoming.
 

Clearly all of these problems represent vast simplifications of real
 

problems, but they also represent a start. One must now consider the ex­

tension of these ideas to several spatial dimensions and the use of non­

separable space-time stochastic models. The use of a multidimensional
 

stochastic calculus such as that described earlier is clerly essential. As
 

an indication that at least in some cases the NE causal structure of this 

calculus may not be a problem and in fact may be natural, we mention an 

observation of Washburn ED-196]. Suppose we consider a space-time system 

with one spatial dimension, and suppose that because of fundamental limita­

tions (due, for example, to the finite speed of light) events at any given 

spatial point can affect those at another only with a certain time delay. 

This leads to the usual "light cone" description of the future and past of 
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a given space-time point. Assuming we scale the axes appropriately, this
 

cone can be assumed to have an angle of 900, as indicated an Figure D.18.
 

Hence, by rotating the coordinates by 450, we obtain a NE causal structure. 

The utility of this observation when combined with 2-D stochastic calculus
 

and a variety of space-time analysis problems will be reported in the future 

[D-196]. 

As mentioned earlier, in addition to systems which truly have a space­

time character, one can view any multivariable 1-D system as a 2-D system
 

by considering the "space" variable to be the index of the elements of the 

various vector functions of time. While this may not be particularly na­

tural in general, this philosophy appears to have some merit for large 

scale systems which consist of a number of interconnected subsystems. In 

this case we let the spatial variable index subsystem variables which may be 

vector quantities themselves. A general linear model for such a system is
 

x(k+l,a) = EAiix(k, 3 ) + EB1u(k,j) + w(k,j) (D.170) 
I ] 

y(k,i) = LC x(k,)) + v(k,j) (D.171) 
3
 

Clearly this is a recursive 2-D model. Examples of large-scale systems of 

this type abound in practice. Examples include power systems, communication 
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Figure D.18~ The 2-D Causality Structure for Space-Time Processes 
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35 
networks, and freeway traffic systems. We refer the reader to [D-84-89,
 

91-9-4,190,201,203-208] for other examples and for some insight into the
 

problems associated with such systems. 

The problems with these systems are of two types: (1) the analysis of 

these systems using tools such as the Lyapunov equation and the determination 

of optimal filter and controller designs is far too complex to be carried
 

out using standard methods because of the high dimensionality of the overall
 

system; and (2) the implementation of standard controllers and estimators 

is out of the question, since these systems require totally centralized
 

processing of all subsystem data in order to determine each subsystem control;
 

what is needed is a decentralized scheme.
 

We have seen similar questions in our study of recursive image pro­

cessing techniques. The full-state optimal Kalman filter of Woods and
 

Radewan [D-173,229,236] was of enormous dimension, and one would never dream 

of attempting to solve the Riccati equation in this case. In addition, the 

on-line Kalman filter update is far too complex, and, as we discussed, Woods
 

and Radewan suggested a "nearest neighbor" constrained Kalman filter, in which 

only those pixels near the one presently being processed are themselves updated.
 

This clearly is a decentralization of sorts, as are the techniques proposed
 

by Murphy and Silverman [D-174] and Pratt [D-17J. What these methods have in 

common is the following: we specify some constraints on information transfer
 

35 n this last case, the subsystem index does represent a spatial variable, as
 
each subsystem describes the aggregate behavior of traffic on a link of a freewal
 
(see (D-208J). In this case, the choice of the size of each link is a type of 
sampling problem, and the issues of spatial sampling, such as those raised by
 
Mascarenhas and Pratt [D-23] and Hunt [D-41 in the context of image processing, 
are clearly relevant here.
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-- i.e. we limit the extent of the update portion of the filter -- and then 

- we optimize the filter gains subject to these constraints. This same philosophy 

is precisely what is used in many decentralized control and estimation pro­

blems [D-86,201,205]. That is, we specify some constraints on the information
 

36 
pattern -- i.e. which data are available for each subsystem -- and then we
 

optimize the 'estimator and controller gains subject to these constraints.
 

Thus, we've seen that large-scale systems can be viewed as 2-D systems
 

and that constrained optimization for efficient or decentralized processing
 

is common in both settings. Is there any other insight can be gained or new 

results that can be obtained by examination of large scale systems as 2-D
 

systems? The answer is perhaps, and we will relate some preliminary observa­

tions that make us feel that the answer will ultimately be yes 

First of all, suppose that the =odel (D.170), (D.171) falls into the class 

considered by Attasi [D-6,35,96]. Then the optimal centralized Kalman filter 

is nothing more than Attasi's line by line optimal processor. In this context,
 

let us re-examine the structure of this processor as pictured in Figure D.12. 

One may argue that this processor may not be a good image restoration system,
 

but it certainly is an extremely efficient centralized Kalman filter: The 

predict cycles for each subsystem are carried out in a totally decoupled fashion,
 

and in the update stage, each subsystem need only communicate with its nearest
 

neighbors (we have two streams of information flowing, corresponding to the two
 

Kalman filters). Whether optimal centralized controllers also have this
 

structure remains an open question.
 

36The problem of choosing a good information pattern in the first place is an 

extremely important and complex one, but it is beyond the scope of our present
 

We refer the reader to the references and in particular to [D-85].
discussion. 
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As a second example, consider the case in which (D.170), (D.171) are
 

37 
spatially invariant
 

x(k+l,i) = A x(k,j) + xB_]u(k,j) + w(k,j) (D.172)
i D 

y(k,i) = C x(k,) + v(k,j) (D.173) 

3 

In the case of an infinite string of subsystems, no noise, and a spatially­

,invariant quadratic cost function, Melzer and Kuo ED-203] determined an ef­

ficient method for determining the optimal centralized controller, and Chu
 

[D-205] used the same method to determine the optimal, constrained decentra­

lized controller. The basic idea is identical to that used by Hunt [D-46],
 

Andrews and Hunt (D-81], Jain and Angel {D-32], and Attasi [D-6,35,96] -- we 

take the z-transforms of (D.172), (D.173) in the subsystem variable to 

obtain a system of decoupled optimal control problems (parametrized by z) of
 

dimension equal to that of each x1 

To make these ideas more clear, let us consider the case in which we have
 

a finite string of subsystems [D-1901 , i=O,...,N-l. In this case, if we 

rewrite (D.172), (D.173) in terms of one giant state, input, and output vector, 

we find that the resulting A, B, and C matrices are block Toeplitz. As 

Andrews and Hunt [D-811 disc-uss, 'we then make the block circulant approximation 

3 8
 

to obtain
 

,37such models arise, for example, in the longitudinal control of a string of 
vehicles [D-204] such as one finds in personal rapid transit systems.
38Approximations such as these often arise in the discretization of partial dif­
ferential equations such as the wave equation (see, for example, [E-31]). 
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N-I N-I 
x(k+l,i) E3 A x(k,n- 3 ) + F, B u(k,i-3)- + w(k,i) (D.174) 

J=O 3=0 3 

N-1
 
y(k,i) E3 C x(k,i-j) + v(k,i) (D.175)3S3= 0 

with 

E[w(k,i)w'(j,i)] = s _6k (D.176) 

E[v(k,i)v'(,9Q] = e1_3 kk (D.177)
 

where all subsystem indices are to be interpreted modulo N. Suppose we wish 

to design a controller to minimize the criterion 

N-1
 

J = E >3 [x' (k,i)Q._x(k,j) + u'(k,i)R1uk,))] (D.178) 
k=O i,=O 

As discussed in Appendix 2, we take subsystemftransforms. For example 

N-I 
x(k,Z) = E=xOk, N)W (D.179)

i=0
 

We then obtain a set of decoupled problems, indexed by X
 

x(k+l,Z) =(Z)7(k,Z) + B()u(k,Z) + w(k,Z) (D.180) 

7(k,L) = C(2)x(k,2) + v(k,k) (D.181) 

E[w(kZ)w*(Jm)] = S(Z)dkj6Z m (D.182) 
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E[v(k,Z)v*(j,m)] = S'(kim)6 (D.183) 

1 

2. N EZ [x*(k, 9) 'Q(9)x(k,Z) + u*(k,k) 'R(k)u(k,90] (D.184)
k=0
 

Here * complex conjugate. Note also that since all original variables are 

real, we have A(-9Z) = A*(k), etc. Thus, we need only solve approximately one­

halfof these problems to obtain the optimal centralized controller which is
 

efficiently implemented in Figure D.19. The reader is urged to compare this
 

figure with Jain and Angle's optimal image restoration scheme as depicted in 

Figure D.13. The similarity here is rather striking as is the similarity 

in method and philosophy underlyi - both systems. Work involving the system 

(D.174), (D.175) is continuing. We are examining such issues as the effects
 

of the block circulant approximation, the use of this method for fast algorithms 

for Lyapunov equations, Riccati equations, pole placement, etc., and the design
 

of decentralized controllers. Note that one possible decentralization can be
 

obtained by spatially windowing the optimal centralized filter and control
 

gains. As the properties of various windows are well-known (see, for example,
 

C-l]), it may be possible to obtain detailed performance evaluations for
 

such schemes.
 

Thus, we have seen that there are points of contact between 2-D processing 

concepts and large-scale 1-D system analysis. Whether these points will lead 

to major new results or exciting concepts remains to be seen, but there certainli 

appear to be some intriguing possibilities. 
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E. 	Some Issues in Nonlinear System Analysis: Homomorphic Filtering,
 
Bilinear Systems, and Algebraic System Theory
 

Most of the discussion to this point has dealt with the analysis and syn­

thesis of linear systems, perhaps distorted by nonlinear effects such as
 

quantization. However, there has been much work on the analysis and design
 

of systems which are fundamentally nonlinear in both digital signal processing
 

and in control and estimation theory. It is beyond the scope of this paper
 

to consider the research in this area at any depth, and we refer the reader to
 

the references and to the literature in the two disciplines for the full story.
 

In this section we limit ourselves'to a brief look at two particular directions
 

of research that have a common thread involving the use of algebraic concepts
 

to study nonlinear systems possessing particular types of structure. The phi­

losophy underlying these results is that many of the concepts and techniques
 

from linear system theory can be carried over to the analysis of certain non­

linear systems. Not only is this of use in allowing one to solve certain non­

linear problems, but it is also of value in providing insight into the properties
 

of linear systems -- i.e. one gets a clearer picture of which system properties
 

carry over to nonlinear systems with particular structure and which properties
 

are fundamentally tied to linearity.
 

In digital signal processing, Oppenheim [C-l,E-I,2] abstracted the key 

concept in linear system analysis -- superposition -- and developed what he 

termed homomorphic signal processing, Following [C-l], the basic idea is as 

follows. Let X and Y be spaces with two operations
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defined on each -- a binary operation
 

2x2X Xl*X2EXxI 


Yl'Y2E Y  1 Y2 Y
 

and an operation of scalar action 

cCR or C, xEX c-xEX 
(E.2) 

cER or C, yEY c-yEY 

A homomorphism is then a map H from X to Y which preserves these operations -­

i.e. it satisfies a "generalized superposition principle"
 

H(Xl*X 2 H(X )OH(x2 

(E.3) 
H(c-x I ) = C.H(X 

If the operations (E.l), (E.2) satisfy the axioms of a vector space (e.g. this 

means that all the operations are commutative), then (E.3) looks very much like 

a linear system. In fact, one can show in this case [E-I] that any such system 

can be represented as the cascade of three homomorphic systems 

H = D- OLOD (E.4)
y x 

where L is a standard linear system, and D and D are-called characteristic
 

x y 

systems. They translate the operations in X and Y into usual vector addition 
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and scalar multiplication. 

Let us take a look at an example of this. Let X be the space of input 

sequences in which each input is strictly positive. We make X into a vector 

space with the operations
 

[(c.x )*( x2 )J (n) = x (n)a 2 (n )B(E.5). x 

and the system D is clearly seen to be the map 
x 

x(n) - log[x(n)] (E.6) 

with the inverse
 

e U~n )  S(n)---- (E. 7) 

One can similarly define vector space operations in which X consists of 

all nonzero complex numbers or all of those of modulus one [C-,E-l], although 

there are some difficulties due to the nonuniqueness of the complex logarithm. 

We will not go into these here and refer the reader to [E-I,C-I]. 

Having this framework, one can consider the filtering of signals corrupted 

by multiplicative effects. That is, suppose we observe 

z(n) = x(n)u(n) (E.8) 

(all quantities assumed to be >0), and we wish to recover x from z. If we take
 

the logarithm of both sides
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C(n) = logz(n) = logx(n) + logu(n) (E.9) 

we can use,' linear techniques to filter (n), yielding the output n(n), and
 

we then obtain the desired filtered version as
 

n ) x(n) =e (E.10) 

For applications of multiplicative homomorphic processing, we refer the 

reader to [C-1,E-2]. In the case in which log (0 and log (u) are Gaussian random 

variables -- i.e. when x and u are lognormal variables [E-9,12-16,20] -- the 

filtering of (n) is simply a Kalman filter (this result is developed thoroughly
 

in [E-20]). The continuous-time version of this multiplicative noise model has
 

been studied in [E-2], and its stochastic analog was developed in [E-9]. Let
 

us examine this case at some length. Let w(t) be a two-dimensional Gauss-


Markov process satisfying the equation 

w(t) = Aw(t) + vt) (E.ll) 

where v(t) is a two-dimensional white-noise process
 

E(v(t))=O, E(V(t)V(T)) = Q6(t-T) (E. 12) 

Suppose we transmit the "frequency modulated signal"'1 

x(t) = exp [f [wl(S)+jw2 (s)]?ds] (E.13) 

Due to some effect (e.g. atmospheric turbulence [E-21]), the received signal 

is corrupted by multiplicative noise 

1 Here we are allowing both the usual type of modulation on the phase and a 

"homomorphic" modulation on the amplitude. 
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r(t) = ii(t)x(t) (E.14) 

where 

= exp(T1(t)+3n1(t) 2 (t) (E.15) 

and rjis a two dimensional Brownian motion process 

E(In (t))=0, E(1(t)T(T)) = R6(t-T) (E.16) 

Because of the continuity of r(t), there is no difficulty in taking the 

complex logarithm (see[E-9] ; essentially, continuous monitoring of phase
 

allows one to unravel it and determine the number of revolutions, as well as 

the value of the phase modulo 21r). In this case r(t) is equivalent to the 

observations
 

dC(t) = w (t)dt + d I(t) 

(E.17)
 
d 2(t) = w2 (t)dt + d" 2 (t) 

Using standard Kalman filtering techniques, we can obtain the least squares 

A 

estimates w (t) and w2(t). However, the best estimate of x is not
 

t 

exp -of E(s) +jw 2 (s)]ds 

essentially because the integral of a best estimate is not the best estimate
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of the integral. However, in this case-we can obtain the desired estimate as
 

follows:
 

Let
 

t t
 

pM w1(s)s p2 Ct) =0w 2 sW s ( .2 


0 f 

Then by ad3oining these integrals to w1 and w2 to form a four-dimensional
 

"stateV, we can again design a Kalman filter (with measurements (E.17)) and
 

obtain the best estimates wl(t), %2(t), Pl(t), and P2(t). Then the desired
 

estimate is
 

x(t) = exp(P; (t) + ]P2 (t)) (E.19)
 

The details of this development are given in [E-9,12]. Also, in these refe­

rences it is shown that the solution of the discrete-time version -- i.e.
 

when we observe only r(kA), where r is as in (E.14) -- is much more difficult,
 

essentially due to the ambiguity in the complex logarithm which cannot be
 

resolved in this case.
 

In digital signal processing, multiplicative homomorphic systems represent
 

only one half of the picture. As discussed in [C-I,E-l,2] one can study systems
 

in which vector addition is the operation of convolution and multiplication by
 

an integer n corresponds to convolution of a signal with itself n times
 

(multiplication by a non-integer is a generalization of this [E-1,2,22]). The
 

key to the development of homomorphic filtering techniques for convolutional
 

noise is the z-transform of signals. Let X be a vector space of signals under
 

the operations of convolution as vector addition and scalar multiplication as
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defined above. Then we have that following transform relations
 

(x1*X2)(n)< > X1(Z)X 2 (z)
 

>X 1 (z)a
(n) <a.-(a'sx 


and we see that homomorphickconvolution systems look like multiplicative 

homomorphic systems in the frequency demaim, This allows one to develop a rather 

complete theory of convolution-homomorphic filtering, and we refer the reader 

to [C-I,E-2,22] for details. Techniques such as "homomorphic deconvolution" 

have found application in speech analysis [C-I,E-3], dereverberation of signals 

such as those arising in seismic applications [C-l,E-2,22,23], and in several 

other disciplines (see [C-l,E-2J). 

A recent direction of research in control and estimation theory has been
 

study of bilinear systems [C-26,E-5-16J, and the multiplicative homomorphic
 

system (E.Il)-(E.16) represents one of the simplest examples. Consider (E.13).
 

We can easily obtain a stochastic differential equation for x:
 

x(t) = (wl (t)+jw2 (t))x(t) (E.21) 

If we regard w, w2 as inputs -- controls and/or noises -- we see that the
 

right-hand side of (E.21) consists of a product of inputs and the state -- i.e.
 

it is a bilinear function of the two. Generalizing this, we obtain the class of
 

bilinear systems
 

http:E.Il)-(E.16
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N 

x(t) = [A 0 + Au (t)i'x(t) (E.22) 

where the A are known nxn, possibly complex-valued matrices, the u are scalar
1 1 

inputs, and x is either an n-vector or an nxn matrix. 

The question of the control, estimation, and stability of bilinear systems
 

such as (E.22) has received a great deal of attention in the recent past and
 

has applications in a wide range of disciplines (see E(C-26,E-5,12,14-16,24).
 

We will not examine the control or stability issues here and refer the reader
 

to the references. Rather, we content ourselves with a brief look at the
 

estimation problem in order to uncover some of the main issues in "bilinear 

signal processing". Note that in the scalar case (E.21), one can readily
 

obtain a representation for x(t)-of the form (E.13). However, in the vector 

case this is not true in general. In fact, the solution of (E.22) has the re­

presentation
 

xtt) = exp A0t + 1A u-(s)ds X(0) (E.23)f 
0 

if and only if all of the matrices A0,AI1o..,A N commute (a very restrictive 

condition). In fact, the commutativity or noncomrmutativity properties of 

these matrices plays a central role in the analysis of bilinear systems, and 

the introduction of concepts from the theory of Lie algebras and Lie groups
 

allows one to study these systems in great detail [E-5,6,8-17,25,26J.
 

Let us see what this noncommutativity can do by examining a problem that
 

is motivated by (E0lI)-(E.16). If we examine those equations and consider
 

http:E0lI)-(E.16
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only the phse effects -- i.e. w2 and 112 -- we see that this problem is the es­

timation of a phase given noisy measurements of that phase. By performing a
 

transformation on the measurement, we obtain a noisy measurement of the angular
 

frequency. From we can apply standard Kalman filtering techniques to estimate
 

the angular frequency and its integral, and then the desired phase estimate is
 

just the complex exponential of the estimate of the integral. A natural ex­

tension of this problem is the consideration of rotation in three dimensions.
 

We follow [E-5,12,14-16J. Suppose we have a satellite, equipped with an
 

inertial platform. The orientation of the satellite with respect to an inertial
 

frame can be specified by coordinatizing a body-fixed orthonormal basis in 

inertial coordinates. The resulting set of three 
3-vectors is called the
 

direction cosine matrix X(t) and it has the property
 

(E.24)X' (t)X(t)=I, det X(t)=l 

Let w(t) be the angular velocity of the body with respect to inertial space,
 

Then, it is known that the evolution of the
coordinatized in the body frame. 


direction cosine matrix is described by the bilinear equation
 

x(t) = Rw I (t) X(t) (E.25) 

where
 

00R240 0 01] 0 0) 
R=[ 0 0 1 2=00 0 ,R 3R= [ 0 0 (E.26) 

0-10 1 0 i 0 0 0 0
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Suppose that our only observation of satellite attitude is from the inertial
 

platform -- i.e. we observe the direction cosine matrix M(t) of the body with
 

respect to the platform, which is supposed to remain fixed in inertial space
 

(in which case M4=X). However, because of various errors (e.g. gyro drift), the
 

platform drifts, and our actual observation is
 

M(t) = X(t)V(t) (E.27)
 

where the "platform misalignment term", V(t) is the direction cosine matrix
 

of inertial space with respect to the platform. As described in (E-14), this
 

,
can be modeled by a bilinear equation of the form
2
 

V(t) = V(t) > v (t (E.28) 

where the v represent gyro drift and for simplicity are taken to be white
 

The reader should now compare (E.25)-(E.28) with (E.13)-(E.15) (using
 

(E.21) and an analogous equation for p). We see that we have a direct analog
 

of the phase -- i.e. one-dimensional rotation -- problem, including a
 

multiplicative noise model (E.27) (see [E-9] to see that if only one w and the
 

corresponding v are nonzero, then this problem precisely reduces to the phase
 

estimation problem). Suppose we now assume that w obeys an equation such as
 

(E.ll). Then, essentially by the matrix equivalent of the complex logarithm
 

(again we have no "mod 2w" difficulties because of our continuous observation),
 

2 Technically, one must include a "correction term" into 
(E.28) if one interprets
 
it as an Ito stochastic equation. This is not difficult but it does obscure our
 
point with technicalities (which certainly are very important). The reader is
 
referred to [E-16,27] for the details Note that (E.28) can be interpreted rigo­
rously if one uses Stratonovich calculus [E-8,14].
 

http:E.13)-(E.15
http:E.25)-(E.28
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we can essentially differentiate M(t) to obtain noisy measurements of w cor­

rupted by the gyro drifts v1 ,V2,V3 . The problem here is somewhat more complex
 

than the earlier one in that one must take care in-using stochastic calculus
 

(see footnote 2 ) and, more importantly, because rotations in three-dimensions
 

do not commute (see [E-16,27J). However, as derived in [E-16], one can carry
 

the analysis through to obtain a measurement equation of the form
 

z(t) = w(t) + M(t)v(t) (E.28) 

where v'=(Vlv 2 ,v3). Note that the effect of the gyro drifts on our measure­

ment of angular velocity depends upon our attitude (this effect can be removed
 

in the one-dimensional rotation case).
 

Using (E.28), we can design a Kalman filter to estimate w. However, we
 

run into a problem in'estimating X. Recall that in the one-dimensional
 

problem, we augmented the state of our Kalman filter with the estimate of the
 

integral of w, but in the three dimensional case the integrals of components
 

of w are not simply related to X, again because of the noncommutativity of 

rotations in three dimensions0 In fact, in this case the problem of optimal
 

estimation of X is infinite-dimensional [E-14]. Thus, in the one-dimensional
 

case we obtain a decomposition much like (E.4). We can convert our multiplicative
 

process into a linear one and can operate on it with optimal linear techniques.
 

However, the re-in3ection of the resulting filtered process becomes extremely
 

complex. One must use approximate methods (see [E-12,14J) except in special cases.
 

The case when all of the A commute is much like the scalar case and involves

i 

looking at the integrals of certain quantities [E-9,12]. In addition, if the A
 
i 
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obey certain (somewhat less restrictive) noncommutativity relations one can 

obtain a finite dimensional optimal procedure by considering several types of
 

iterated integrals (see [E-14,15,17] for details).
 

Let us say a few more words about the relationship between homomorphic
 

filtering (HF) and bilinear signal processing (BSP). Recall that HF is based
 

on the existence of certain algebraic properties between input functions and
 

output functions -- i.e. the validity of a superposition rule. Also, in HF,
 

one designs a filter consisting of three parts -- a "projection" system, which
 

"unravels" the signals so that one can use a linear filter as the second part,
 

followed by an "injection" of the resulting process to yield the desired output. 

In the scalar example of BSP, as described in (E.Il)-(E.19), we obtain a
 

system of exactly this form -- i.e. a HF (logarithm-linear (Kalman) filter­

exponential) --, and as we mentioned earlier, we obtain essentially the same 

results for the model (E.22),(E.27) if the Ai commute. However, in the general 

case we cannot obtain the entire picture. Specifically, we can-"unravel" the 

signal and can perform linear (and perhaps nonlinear [E-14,15,17]) processing, 

but the re-in3ection process is much more difficult. Perhaps one of the keys 

to the difference between HF and BSP is the difference in the starting point 

of the two theories. In homomorphic filtering the fundamental assumption involves 

the algebraic structure of the relation between input trajectories and output
 

trajectories (superposition). For bilinear systems analysis, the starting point
 

is (E.22), which can be seen to impose an algebraic (multiplicative) restriction
 

on the time rate of change of the state or output -- i.e., in some sense, (E.22) 

represents an "incrementally homomorphic" model, in which the fundamental 

assumption involves algebraically compatible dynamics (as opposed to input­

http:E.22),(E.27
http:E.Il)-(E.19
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output relation). In the case when the A commute (E.22) also yields a
1
 

multiplicative 1/0 relationship, and in the other special cases considered in
 

[E-14,15,17], the restrictions on the A

i 
yield other tractable I/0 relations,
 

but in these cases the optimal filters are not homomorphic (since following the
 

unraveling of the received signal, we perform a nonlinear filtering operation).
 

We should note, however, that in the general case, the algebraic structure of
 

(E.22) still allows one to perform a great deal of analysis, and we refer the
 

reader to the references for details (see, for example, [E-5,10).
 

We note that the use of algebraic and geometric concepts and techniques
 

to study systems with algebraically compatible dynamics or input-output relations
 

has increased greatly over the past few years as new theories and applications
 

have been uncovered [E-5 through 19,24 through 36]. Recently, certain nonlinear
 

systems having Volterra series representations have been studied with great
 

success [E-6,10,11,14,17,33,34] using techniques and ideas that have grown out
 

of the study of bilinear systems [E-5,7J. In addition, motivated by many of the
 

same issues that motivated Oppenheim's study [E-1J of generalized superposition, 

several researchers [E-18,19,28-34 have examinedsystems whose state dynamics 

possess some, but not all, of the algebraic structure of linear systems. Also, 

several researchers [E-35,36] have studied controllability, realizability and 

related properties for systems which possess particularly nice input/output 

descriptions, much along the lines of 0ppenheim's generalized superposition. 

By performing such analyses, new insights have been shed on the properties of 

linear systems, and many of the powerful tools of linear system analysis are
 

being extended to other dynamical systems, establishing the foundations .for a
 

synthesis and analysis theory for special classes of nonlinear systems. It is
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this key idea -- the use of algebraic tools to synthesize and analyze nonlinear 

systems with structure -- that is the ma3or common theme of the nonlinear systems 

research in the two disciplines. 
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Concluding Remarks
 

In this report we have examined a number of broad research areas 

that have attracted workers in two disciplines -- digital signal pro­

cessing and control and estimation theory. Our goal has been to explore 

these areas in order to gain perspective on relationships among the 

questions asked, methods used, and general philosophies adopted by
 

researchers in these disciplines. Upon undertaking this study it was 

our feeling that such perspective would be extremely valuable in pro­

noting collaboration and interaction among researchers in the two 

fields. Upon concluding this study, we think that our initial feelings 

have been thoroughly substantiated. Not only are there numerous 

examples of questions in one discipline that can benefit from the point
 

of view of the other, but also we have found a number of new issues
 

that naturally arose from combining the two points of view. 

Each of the disciplines has its own distinct character, and 

clearly these will and should be maintained. On the other hand, each 

discipline can gain from understanding the other. State space methods 

have their limitations, such as in specifying useful digital algorithms
 

and structures. On the other hand, state space methods provide ex­

tremely powerful computer-aided algorithms for noise analysis, optimal 

design specification, etc. State space-ideas also allow one to con­

sider multivariable and time-varying systems. All of these aspects of 

state space theory may prove of value to people involved in digital 
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signal processing. On the other side, researchers in digital filtering
 

have answered many crucial questions related to turning design specifi­

cations into implementable designs. The deep understanding that workers 

in digital signal processing have concerning the problems of digital
 

implementation is something that researchers in control and estimation 

would do well to gain. Thus it seems clear that a mutual understanding 

will prove beneficial to all concerned. 

We have raised numerous questions and have speculated on various 

possibilities throughout this report, and it would be an impossible 

task to summarize these questions and speculations here. Rather, we 

will mention only one or two questions from each area. These may not 

prove to be the most exciting or promising problems, but we feel that
 

they are representative and do summarize the tone of this report. 

A. Stability Analysis -- What is the effect on overall 

stability of the finite arithmetic constraints of a
 

digitally implemented feedback controller?
 

B. Parameter Identification, Linear Prediction, Least
 

Squares, and Kalman Filtering -- Can state space and 

recursive filtering methods be applied to model and 

identify time-varying models of speech? Do stochastic 

realization and recursive maximum likelihood methods
 

offer useful tools for pole-zero modelling of speech?
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C. 	Synthesis, Realization, and Implementation -- Can state
 

space realization and filter structure concepts be combined 

to obtain useful realizations for multivariable or time­

varying digital filters? Can state space noise analysis 

methods aid in roundoff analysis of digital filters? Can 

we develop design technique (e.g. for feedback controller 

design) that directly take the constraints (storage, speed, 

word length) of digital implementation into account? 

D. 	 Multiparameter Systems, Distributed Processes, and Random 

Fields -- What role do state space methods (if they exist)
 

play in the analysis and synthesis of 2-D filters? Can 

Lyapunov theory (if it exists) aid in understanding the 

effects of finite arithmetic in 2-D systems? What role 

should 2-D recursive estimation and detection techniques 

have in image processing? Can 2-D concepts provide any 

insight and/or results for distributed parameter, space­

time, or decentralized control problems? 

E. 	 Some Issues in Nonlinear System Analysis: Homomorphic 

Filtering, Bilinear Systems, and Algebraic System Theory --

Is this algebraic point of view a useful approach to the 

analysis and synthesis of nonlinear systems and filters? 

Homomorphic filtering has found widespread application; can
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the same be said for other algebraLc concepts? 

Whether any of these issues or any of the others raised in this 

report has useful answers is a question for the future. It is our
 

feeling that many of them do, and it is our hope that others will think 

so as well.
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Appendix 1: A Lyapunov Function Argument for the Limit Cycle Problem 
in a Second-Order Filter
 

Consider the second-order filter in Figure Ap.l. The ideal (un­

driven) dynamics of this filter are 

x(k+l) = Ax(k) (Ap.1)
 

where
 

)Se x(k)= x k(, A - (Ap.2) 

Suppose we implement the filter using a single magnitude truncation
 

quantizer [A-3] following the summation. In this case, the actual dynamics
 

are
 

x(k+l) = F(Ax(k)), F 1 (Ap.3) 

Let us look for a quadratic Lyapunov function
 

V(X) = X'x(11 b (Ap.4)
b12 b22 

In fact, let us assume that B proves the asymptotic stability of (Ap.l) -- i.e. 

(see Section A) 
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XlkW x2 (k) 

b 

Figure Ap.l: A Second Order Filter
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B>O, B-A'BA>0 (Ap.5)
 

We compute
 

AV(z) = F'(AZ)BF(Az) - z'Bz (Ap.6a) 

=(F'(AZ)BF(Az) - Z'A'BAz) 
(Ap.6b)
 

+ (z'A'BAZ-z'BZ)
 

1 
From this, it is clear that we will have asymptotic stability If 

F'(Az)BF(Az) - Z'A'BAz<O V z (Ap.7)
 

2 
or if the somewhat stronger condition 

F'(C)BF(C) - C'BC<0 YE (Ap.8) 

Equation (Ap.8) is equivalent to 

b [2 ( )- 1 [ 1 < 
11 IL + 2 2 [Q) 1 s-- (Ap.9) 

Using the fact that IQ(E I<IiI, we can see that (Ap.9) holds if and only 

If b12=0. Thus, we must find conditions on A such that there exists a diagonal 

B, satisfying (Ap.5) -- i.e.. 

iThis is the criterion used by Willson [A-2] for the overflow problem.
 

2This is not stronger if A is Invertible, which is true if and only if b/d0.
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bl>0, b22>0 B-A'BA>0 CAp.10)
 

Equation (Ap.10) can be further reduced to the following equations (after we 

normalize bll=l, which we can do simply by scaling B): 

2

0<b22 < ( -a 


(Ap.10)

2 2 2 2
 

-b +(b +1-a )b22-b22>0
 

We can rewrite the second inequality as
 

(a_2 22 2 2 
(a -b -1)b <-b2-b (Ap.ll)


22 22
 

and the possibilities are given in Figure Ap.2. If (a 2-b -1)>0, either we 

have no region in which (Ap.1l) holds (b) or the region is for negative values
 

of b2 2 (d), which biolates the first inequality in (Ap.11). Thus, we must
 

have
 

2 2 
a -b -1<0 (Ap.12) 

and in fact, we must have case (c), which means that there must be two real
 

solutions to (Ap.ll) when the inequality is made into an equality. Some
 

algebraic manipulations yield the inequalities
 

04b22 <(l-a 2 ) (Ap.13a) 

a(a,b) = a2-b2-1<0 (Ap.13b) 

p(a,b) A ( 2+1222 - 4b2>0 (Ap.13c) 

-(a,b)-P,b) < -(a,b)+I(a) (Ap.13d) 
<22 2 
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y) = (a2-b2-1)x(a) 


(b) 

2 
2 

(a)
(c) 


Figure-Ap.2: Illustrating Inequality (Ap.1l)
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Using (Ap.13b), (Ap.13c) is equivalent to
 

1-a2+b2 > 21bI
 

or (Ap.14)
 

!aI<1lbIbl
 

and under this condition, both (Ap.13b) and (Ap.13c) hold. Then, we will have 

that we can find a value of b22 if and only if the inequalities (Ap.13a) and 

(Ap.13d) overlap. Combining these, we find that the region of (a,b) -space 

for which we can use this technique to prove stability is 

jai< l-1hi , bj<l (Ap.15) 

which is illustrated in Figure Ap.3 The triangle is the region an which the 

linear system (Ap.l) is asymptotically stable and the cross-hatched area is 

(Ap.15). In the remaining part of the triangle, one must use a non-diagonal 

B, and this technique will not work. This is not to say that Lyapunov func­

tions can't be found that will prove stability in these regions of (a,b) space 

in the one magnitude truncator case, but rather that one will have to work
 

harder to find them if they exist (either by working directly with (A.6a) or 

by looking for nonquadratic Lyapunov functions). This derivation hopefully
 

illustrates the type of argument that one can make using Lyapunov functions 

and also the difficulties and the limitations of the technique. 
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b 

+1 

-2 - : I r ty 

Figure Ap.3; Illustrating the Stablity Result
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Appendix 2: The Discrete Fourier Transform and Circulant Matrices
 

Circulant matrices appear in several places in Section D. In this
 

appendix we indicate some of their properties. Suppose we have a block
 

circulant matrix A 

A0 
 , ....... 
 A1 

A A . A2 (Ap.16) 

AN-z AN.. ....... A0
 

where each A is PxQ. Consider the equation
1 

y = Ax (Ap.17) 

where y is an NP vector, partitioned into P-vectors
 

=y ... ,Y'_) (Ap.18) 

and x is an NQ-vector, partitioned into Q-vectors
 

x' = 0 Ni (Ap.19) 
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Combining (Ap.16)-(Ap.19) we obtain
 

N-i 
= E A x (Ap.20) 

3=0
 

where all subscripts are to be interpreted modulo N. Hence, the right-hand 

side of (Ap.17) is nothing more than a cyclic convolution. Let us take the 

DFT of the sequences {yl}, {x I, {A 1, where, for example 

N-I 

y YWN ,=,.N-1 (Ap.21)
3.=0
 

where
 

WN = e2w/N (Ap.22) 

In the transformed domain, we now have IT decoupled sets of equations
 

y(Z) = A(Z)x(Z) , 2=0,...,N-l (Ap.23) 

and we have effectively block diagonalized the block circulant matrix A. 

If we also have that P=-Q and that each of the A is circulant, then each 

of the A(t) is circulant, and we can diagonalize each of them by iterating 

the above development. Thus we can use the FFT to diagonalze A. In
 

addition, if we write
 

http:Ap.16)-(Ap.19
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y'= (y(O)',...,y(N-1)') Ty (Ap.24) 

x' (x(O)',...,x(N-l)') = Sx (Ap.25) 

(here S=T if P=Q), we observe that 

TAS' = diag (A(O),...,A(N-l)) (Ap.26) 

Therefore, in this case, the calculation of Ms, where M is the matrix of 

elgenvectors of A, can be performed using the FFT. 
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