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APPLICATION OF NASA-ARC _
DELAYED FLAP APPROACH PROCEDURES
TO BOEING 727 AIRPLANE

Robert L. Allison
Boeing Commercial Airplane Company

1.0 SUMMARY

Boeing has been participating in a NASA Ames Research Center (ARC) program to develop
an approach energy management system (AEMS) concept and associated delayed flap
approach (DFA) procedures for the Boeing 727. The purpose of the procedures is to reduce
approach time, fuel, and community noise during routine airline operation. The AEMS con-
sists of an airborne digital computer and cockpit displays that indicate when to manually
set the flaps, gear, and throttles to follow the desired DFA profile. Configuration manage-
ment rather than throttle modulation is used to control speed during the deceleration phase.
A DME ground station collocated with the VASI or ILS glide slope is required.

The AEMS concept was developed and flight tested by the ARC on a CV-990. The objec-
tives of the Boeing study were to adapt the NASA concept to the 727; to provide data
regarding the time, fuel, and noise benefits; to assess systems compatibility and aircrew
workload; and to prepare a preliminary avionic specification. No hardware development or
flight testing were involved.

Flight profiles were developed that provide substantial benefits with reasonable initial
approach speeds and with minimum pitch attitude variations during the deceleration. The
preferred 727 DFA flight profile for nonicing conditions begins in a clean configuration at
220 kn. However, flaps 2 and reduced speeds can be used with little reduction in benefits,
and the AEMS will adjust to any initial flap/speed combination that might be required in
the operational environment. Thrust is reduced to near idle at a point determined by the
AEMS. Flaps, gear, and thrust are sequenced as indicated by the displays to stabilize at a
target altitude selected by the pilot. The AEMS compensates for wind and other operational
variables to consistently hit the target. Minimum stabilization heights of 152 m (500 ft) for
VFR conditions and 305 m (1000 ft) for IFR conditions are considered realistic.

Approach time, fuel, and noise were computed for several types of procedures in still air,
headwind, and tailwind conditions. Relative to current ATA airline procedures, the DFA
procedure for still air, VFR conditions reduces approach time by 2 min, fuel by 1420 N
(320 1b) or more, and centerline noise (prior to the stabilization point) by 10 EPNdB
untreated nacelles, 6 EPNdB for quiet nacelles. The reduction in the 90 EPNdB ground-
level-noise contour is comparable to that provided by quiet nacelles.



With the 152-m (500-ft) stabilization altitude. pilot comments indicate the workload is
higher than for current ILS procedures but reasonable, being comparable to an IFR non-
““preécision approach.” Glide slope and speed control were acceptable, and the landing check-
list was completed above 152 m (500 ft).

The procedures are compatible with current systems. No modifications would be required to
the current autopilot or flight director, except for installation of a fast/slow indicator.
Current autopilot trim motor rates are adequate. Compatibility with icing conditions is pro-
vided by automatically selecting alternate flight profiles using higher power settings
(Nj > 55%) when the inlet ANTI-ICE switch is activated. The profile compensates for wind
velocity (computed onbouard using DME ground speed) so there need be no operational
restrictions on usage in tailwinds.

Assuming the required DME ground stations will be installed, the AEMS concept appears
practical for application to the 727. However, no conclusions can be drawn by Boeing
regarding acceptability to airlines for routine operational use. The data provided by this
study can be used to assess the benefits and to obtain a preliminary estimate of the possible
impact on pilot workload and air traffic control (ATC) procedures. Cost estimates for the
avionics and ground facilities are reported separately.

If further development of the concept appears warranted, close coordination with ATC, the
FAA, and the airlines, including simulator evaluations by airline pilots early in the program,
is recommended. The algorithm should be modified to incorporate nonstandard day provi-
sions and other improvements not included in this conceptual study. A complete detailed .
design cycle with airline and avionics vendor participation would be required prior to build-
ing flight hardware. Alternative mechanization approaches, and safety aspects such as the
need for redundancy, failure detection, or independent speed monitoring should be pursued
at that time.



2.0 INTRODUCTION

NASA-ARC is investigating the application of an AEMS concept to jet transport aircraft in
order to increase the fuel conservation and noise abatement benefits attainable from DFA
procedures. The resultant procedures are similar, in principle, to the Air Transport Associa-
tion (ATA) noise abatement approach procedures described by reference 1. The ATA proce-
dures suggest remaining in a clean configuration as long as possible, delaying final landing
flap extension until about 305 m (1000 ft) above field elevation, using the lowest permis-
sible landing flap setting, and stabilizing the final approach at not less than 152 m (500 ft)
above field elevation. By providing precision energy management guidance, including com-
pensation for winds, the AEMS allows more of the approach to be flown in a low drag
configuration while still allowing stabilization above 152 m (500 ft). The AEMS concept
was developed by ARC for the NASA CV-990 research airplane (as described in ref. 2) and
has been flight demonstrated to a number of airline and industry pilots.

The purpose of this NASA/Boeing study is to determine applicability of the CV-990 con-
cept to the 727 for possible introduction into routine airline service. Specific study objec-
tives were to:

e Develop flight profiles, airborne computer algorithm, and cockpit display concepts for
the 727 using the NASA CV-990 AEMS as a baseline

° Determine the time, fuel, and noise benefits

e  Evaluate systems compatibility and Boeing pilot acceptance considering performance,
crew workload, and safety

e  Provide a preliminary avionic specification

The contract tasks are outlined in table 1. The work consisted of engineering analyses and
fixed-base simulator studies with consideration limited to nominal 727-200/¥T8D-9 charac-
teristics (i.e., no system tolerances) for standard days only. Although this Boeing study
program did not include flight testing, preliminary qualitative checks of the flight profiles
were obtained on a no-cost, noninterference basis during other scheduled test flights.

Because this was a very austere program a feasibility study approach was adopted. The
intent was to provide the scoping level information needed to determine whether further,
more detailed development is warranted. Although there are a number of ways to imple-
ment the AEMS concept on the 727, time and budget constraints required that only one be
selected for study. The selected concept was implemented on the simulator and developed
only to the extent necessary to provide a representative working system suitable for evaluat-
ing flight profiles, pilot workload, fuel/noise benefits, and systems compatibility (autopilot,
etc.). There was no time to investigate alternate concepts, to resolve detailed design ques-
tions, or to fully develop the computer logic necessary to cope with all situations that might
occur during operational use.



Table 1.—Contract Tasks

N wDeveVloD727Eng;neermgvsmulatlon at Boémg S
© Complete six DOF low-speed model, flaps 0 — 30

e Pitch and roll flight director/autopilot

o Engine dynamics and fuel flow

o Centerline noise—untreated and ON

2. Validate simulation against flight data

3. | Develop flight profiles and computer algorithm

e Criteria

¢ Trend data (attitude/drag/noise) and computed profiles
o FCT minicomputer (NOVA) developrﬁent of algorithm
e Simulator—EAI-8400 and VARIAN

4. Engineering and pilot evaluation

e Definition of current procedures

o Fuel/noise comparisons

e Hardware implementation concept

e Simulation—safety, workload, FD/AP 'compatibility

5. Specification
e Computer

® Displays

A majority of the contract time and effort went into the development phase, first to
develop the basic airplane simulation and the AEMS algorithm concept, and then to imple-
ment and further develop the algorithm on the simulator. Consequently, the evaluation
phase was quite limited and was oriented toward assuring that there were no major problem
areas of a conceptual nature rather than evaluating hardware design details. Heavy reliance
was placed on pilot and engineering judgment.

The preliminary AEMS avionic specification defines a baseline system for use in obtaining
preliminary estimates of hardware implementation costs, and serves as a reference for
further discussion and development. It should not, however, be interpreted as a final pro-
duction specification for airline retrofit. A complete detailed design and evaluation cycle,
involving the airlines and the avionic vendor, would be required before releasing such a
specification.



ADI
AEMS
AFCS
AGL

ALPA
AP

APP
ARB
ARC
ARINC
ATA
ATC
ATR

AVG
CADC

deg
DFA
DME
DOF
dot
dVg/dt
dVg/dx
EAI-8400
EPNdB
EPNL
EPR
FAA
FAR

3.0 SYMBOLS AND ABBREVIATIONS

attitude director indicator

approach energy management system
automatic flight control system
above ground level

Airline Pilot’s Association

autopilot

approach

Air Registration Board

Ames Research Center

Aeronautical Radio, Incorporated (electronic equipment standards)
Air Transport Association

air traffic conrol

Austin Trumbull Radio (ARINC designation for electronic case sizes per
ARINC spec 404A)

average
central air data computer

drag coefficient

center of gravity

lift coefficient

drag

degree

delayed flap approach

distance measuring equipment

degrees of freedom

GSE index mark on ADI

derivative of groundspeed with respect to time (longitudinal acceleration)
derivative of groundspeed with respect to distance

computer used for piloted simulation

effective perceived noise, decibels

effective perceived noise level

engine pressure ratio

Federal Aviation Administration

Federal Air Regulation



FCT Boeing Flight Controls Technology Staff

F

FD/AP Flight Director/Autopilot
T T T metthrust T T T T T
FORTRAN computer language
FSAA flight simulator for advanced aircraft (at ARC)
ft feet
g gravity
GS glide slope
GSE glide slope error (angular displacement from GS)
GW gross weight, landing gross weight
h altitude above field elevation
hic initial value of altitude used in profile prediction
hin target altitude for stabilizing DFA
IC initial conditions for profile calculations
IFR instrument flight rules
ILS instrument landing system
INOP ' inoperative
1P initial point—the desired point for generating the first flap command
IPGS initial point glide slope
- KCAS knots, calibrated airspeed
KEAS " knots, equivalent airspeed
kn knots
KTAS knots, true airspeed
L lift
b pound—the U.S. engineering unit for weight and force
LE | leading edge
m meter
max maximum
min minimum, minute
N newton—the SI unit for force (Throughout this document, airplane and
fuel weights (gravity forces) are expressed in N where 1 1b = 4.448 N.)
NASA National Aeronautics and Space Administration
NAVAIDS navigational aids
nmi nautical mile
NOVA computer used for AEMS algorithm development



Nl engine compressor speed (low pressure stages)

OM outer marker
OPS operations
ON quiet nacelle
ref. reference
rms root mean square
RNAV area navigation
RTAC NASA Research and Technology Advisory Council
s second
std standard
A" speed
VARIAN minicomputer used for AEMS algorithm development
VASI visual approach slope indicator
VFR visual flight rules
Vcas calibrated airspeed
Ve equivalent airspeed
Vsinal final approach speed
Vg groundspeed
Vic initial value of speed for profile prediction
VMo maximum operating speed
Vplacard flap placard speed
Vief reference approach speed(1.3 V)
Vief 30 Vs for flaps 30
vVt true airspeed
vwre ¢ reference windspeed at tower height
VW windspeed; varies with altitude
X horizontal distance from touchdown
Xfinal target distance for stabilizing approach—derived within the computer
from the pilot input h ;.
Xic initial value of X for X - V profile prediction
Al pitch attitude variation
Ah attitude deviation from GS—used in energy compensation
vy flightpath angle
YGS glide slope angle
20) flightpath angle prior to GS capture



atmospheric pressure ratio

pitch attitude

~-—--longitudinal- turbulence rmsvelocity -~ -~

vertical turbulence rms velocity




4.0 CONCEPT

4.1 OVERVIEW

The concept of using the AEMS to assist the pilot in flying delayed flap approaches is out-
lined in figure 1.

Airplane Pilot
sensors inputs

i '

Energy management
computer

Configuration control
displays
in cockpit Start with:

o Low drag configuration

e Higher than normal speed

{C:: —r————— i Delayed fiap approach
“"%:9 ® Conserves fuel
L e Reduces noise
Stabilized at

oW
E) safe altitude

G L il Z

Figure 1.—727 AEMS Concept

4.1.1 PROCEDURE

The initial approach is flown in a low drag configuration at a speed considerably higher than
the final approach speed. At the appropriate time, power is reduced to idle! and the flaps
and gear are extended while decelerating to the final approach speed. The throttles are
partially advanced to initiaté engine acceleration prior to selecting final approach flaps and
are further advanced to normal approach power as the final approach speed is reached. The
configuration and power changes are scheduled so as to stabilize in the landing configuration
at a target altitude above 152 m (500 ft), selected by the pilot. The remainder of the

approach is conventional.



4.1.2 PURPOSE OF THE AEMS

_ Procedures of this type could be flown by experienced pilots using rule-of-thumb techni-

ques that would not require additional equipment. However, the target altitude for stabi-
lizing the approach would have to be higher to allow a margin for expected deviations.
These deviations would result from the lack of precise range information in the cockpit and
from the many operational variables such as wind, weight, initial approach speeds, glide
slope (GS) capture altitudes, etc. Without energy management guidance, it would be imprac-
tical to expect a pilot to consistently hit a target altitude while following an optimized
deceleration schedule in an operational environment. The purpose of the AEMS is to pro-
vide the equipment needed to make it operationally practical to use optimized delayed flap
approach procedures in routine airline service.

4.1.3 FUNCTIONAL DESCRIPTION

The system employs computer-driven cockpit displays to assist the pilot in following opti-
mized speed schedules and in consistently stabilizing at a minimum target altitude. An
annunciator panel indicates the proper time to set throttles, flaps, and gear, while a fast/
slow indicator on the attitude director indicator (ADI) displays energy deviations relative
to the desired flight profile. The aircrew set the throttles and extend flaps and gear man-
ually. The airplane is controlled in the normal manner, except configuration changes rather
than throttle inputs are used to modulate energy during the deceleration phase. The AEMS
is strictly an advisory system which can be used, ignored, or turned off at the discretion of
the pilot.

4.2 EQUIPMENT

The 727 AEMS resulting from this study includes the following avionic components, which
are defined by reference 3.

.o Digital computer and interface equipment

e Control panel

® Annunciator panel

" A fast/slow indicator on the ADI is used as an energy monitor. Installation of the avionics
requires additional parts and wiring which would be supplied in an airplane retrofit kit. In

addition to the airborne equipment, operational use of the AEMS requires a flightpath ref-
erence (ILS, VASI, or other) with collocated DME ground station.

1 Idle power was used for this feasibility study, which considered only standard day condi-
tions. An engine pressure ratio (EPR) setting slightly above idle would be used in an opera-
tional system.

10



4.2.1 AVIONICS

The AEMS avionic components and the required airplane sensor inputs are indicated sche-
matically in figure 2. The proposed locations for the cockpit displays and the physical
arrangements of the control panel and annunciator panel are shown in figures 3 and 4. These
locations and arrangements are as defined in the preliminary avionic specification prepared
as part of this study. The final configuration for an airline installation could be tailored to
meet individual airline requirements. Simulation cockpit displays used during delayed flap

procedures development are described in section 6.4.2.

Annunciator
panel

Control
panel

Digital
computer

and

interface’
equipment
3/8-ATR-long

Existing fast/slow
commands

Ship’s power ———/-\———

Figure 2.—727 AEMS Schematic
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® Throttie (No. 1) position
‘ transducer (new sensor)

Outboard flap position
Landing gear handle position
Engine anti-ice switch position
DME receiver

o Range

e Range rate

e Off fiag
CADC, airspeed
Altimeter (baro-corrected
altitude)
Cabin pressure controlier
{landing field elevation set)
Flight director go-around mode
select



Fast/slow indicator

Annunciator panel

Pilots’ light shield

Fast/slow indicator on ADI
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Captain
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Figure 3.—-727 AEMS Cockpit Displays



EPR

GEAR

FLAPS

INOP

PUSH TO RESET

-

Annunciator Panel

Vs Digital display

Digital display

IDLE
1.1
APP

18
25

/

/ ‘
1000 g g 1 3
© HE08080
4 6
VFINAL 1
VREF 30 FIELDEL 7 9
WEIGHT H MIN
@ TEST G/S ANGLE COMP CLEAR @
J/ OFF J
Selector switch —/ Control Panel

Figure 4.—727 AEMS Annunciator and Control Panels
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4.2.2 PATH GUIDANCE AND NAVIGATION

The AEMS avionics make no inputs to existing path | guldance or navigation equipment.
‘However, approach path Ouldance must be available to the pilot, and accurate values of
groundspeed and distance from touchdown must be supplied continuously to the airborne
computer.

The 727 AEMS concept is- defined for use in airplanes not equipped with area navigation
(RNAYV) or inertial navigation systems. Consequently, a DME station, not currently avail-
able at most airports, is required adjacent to the aim point for each runway.

Although the computer algorithm contains energy compensation for deviations away from
the intended glide slope, the pilot must maintain a nominal path reasonably close to the
glide slope angle entered in the AEMS computer. The path reference can be provided by
an ILS, a VASI, or any other system such as an airborne optical sight, which assists the pilot
in maintaining a predetermined approach path.

4.3 COMPUTER ALGORITHM

The computer algorithm predicts speed versus distance profiles, which are continuously up-
dated at least once per second, and uses the predicted profiies for generating the EPR, flap,
and gear commands and the fast/slow indication. As indicated in figure 5, the computation
and display concepts vary with approach phase.

4.3.1 PHASE 1

In Phase I (initial approach), the computer first locates an initial point (IP) defined as the
point at which the first flap command occurs on the desired deceleration profile. The com-
puted profile follows a predetermined speed schedule for sequencing EPR, flaps, and gear
and terminates at the altitude selected by the pilot for stabilizing in the landing configura-
tion. The speed schedule is tailored to minimize pitch attitude variations on final approach
and to maximize fuel/noise benefits. After locating the IP, the computer predicts a profile
starting with the actual airplane position, speed, and configuration, and terminating at the
IP distance. This portion of the prediction assumes that the throttles have just been retarded
to idle and that the current flap configuration (e.g., clean) and idle power are maintained

. all the way to the IP with speed brakes retracted. The difference between the predicted

~ speed and the desired speed at the IP is displayed on the fast/slow indicator. This assists the
" pilot in hitting the IP at the desired energy level. The EPR IDLE command is given on the
annunciator panel when the predicted speed at the IP equals or exceeds the desired speed.
The first flap command (normally FLAPS 2) is also generated using the Phase I logic.

4.3.2 PHASEII

After the first flap command has been generated, the computer switches to the Phase II
logic. In Phase 11, the complete profile is predicted starting with the actual airplane position,

14



Viinal

Vfinal

(a) Phase |—Prior to Flap Command

Step 1: Locate IP

| av
TN (e ==
Av _-"
Fast/slow P _-
display o
e
Step 2: Predict V at [P assuming power cut
————— 4 e Display AV
| \__ Stabilization e Flash IDLE for AV 2 0
| point
|
Xfinal X
(b) Phase I1—Flap/Gear Commands®
When AX = 0 Predict X at V;
o Flash command Repeat until assuming next configuration
o Store profile for . AX =0 has just been selected

fast/slow reference

7

8EPR 1.1 and APP EPR
command based on speed only.

X X

Figure 5.—Generation of Flap/Gear/Thrust Commands and Fast/Slow Display
Using Onboard Computer Algorithm
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speed, and configuration, and terminating at the final speed selected by the pilot. The pre-
diction assumes that the next EPR, flap, or gear setting has just been selected. When the
predicted profile terminates at or lower than the target altitude selected by the pilot, the
assumed command is illuminated on the annunciator panel. At this instant, the predicted
speed-versus-distance profile is stored in the computer memory for reference, and the com-
puter begins predicting a new profile assuming the next EPR, flap or gear setting has just
been selected. The fast/slow deviation is determined by entering the stored speed-versus-
distance profile with the actual airplane distance (DME) to obtain the desired speed at that
instant. After applying an energy correction to account for path deviations, the computer
compares the actual speed to the (corrected) desired speed and displays the difference as
an energy error on the fast/slow indicator. After the approach has been stabilized, the '
fast/slow display indicates energy deviations relative to the final approach speed and flight-
path selected by the pilot.

4.3.3 PROFILE PREDICTION

The profile prediction is accomplished as outlined in figure 6. Deceleration is computed
from the single-degree-of-freedom deceleration equation which assumes the airplane is in
1-g flight. The thrust and drag are computed from equations representing steady state
engine thrust tables and trimmed drag polars. These equations are entered with EPR, flap,
~and gear settings that vary along the profile in accordance with stored speed schedules.
Wind at flight altitude is derived from airspeed and DME groundspeed. The variation of
wind along the computed profile is based on a typical shear model.

Numerical integration is used to compute the speed versus distance profile in small steps.
Deceleration is integrated to obtain speed which is integrated to obtain distance. At each
point along the profile, the updated airspeed is used to update the inputs (e.g., Cy) to the
deceleration equation. The EPR, flaps, and gear are sequenced along the computed profile
at the appropriate speeds. Thrust dynamics and flap/gear extension rates are represented
in the prediction model.

4.3.4 ASSUMED PATH GEOMETRY

Prior to glide slope capture, the profiles are based on the two-segment path geometry indi-
cated in figure 7. This geometry is used only for the speed-versus-distance predictions, and
not for generating path guidance information. Since it is impossible to predict what path
will actually be flown under operational conditions prior to glide slope capture, the geome-
try represents a guess as to what is likely to occur. If above the glide slope, it is assumed
the glide slope will be intercepted at 305 m (1000 ft) of altitude. If below the glide slope,
the assumed geometry depends on whether the airplane is above or below the IPGS (the
point where the IP would be located if the entire deceleration occurred on the glide slope).
Since the geometry is updated prior to each path prediction (at least once per second), the
assumed geometry will tend to converge on the actual path being followed by the airplane.

16



{a) Basic Deceleration Equation

tored? Wind derived from
thrust tables ground speed (DME)
Stored drag® and airspeed
polars
dvg F Cp oy Xﬁ
— =g | = - T GS 1 +
St e’
Deceleration .
relative \ Pi ?"Ot
ilot input
to ground input .
Computed True airspeed
along profile computed
along profile
3profile prediction assumes EPR/flaps/gear
sequenced per desired speed scheduie.
{b) Speed/Distance Calculstion
: Variable time increment
V. = VGin + Ne At 7 corresponding to
G Ic dt 0.5-kn speed change
\
from DME av/at

X = X|c + f VG A‘
= Vg ~ Vawind~
A ARB shear profile

VT =
assumed for path
predictions

Figure 6.—Profile Prediction Concept Using Onboard Computer
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_.. _.Case 1: Above glide slope
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Figure 7.—Path Geometry Assumed for Profile Calculations—Not Used for Path Guidance .
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After the glide slope has been captured and flaps 2 commanded, the path is assumed to be
the glide slope angle (ygg) entered into the computer by the pilot. The speed-versus-
distance computation is initialized on the glide slope at the actual airplane distance, but
with the speed adjusted to account for altitude deviations from the glide slope. This type
of energy compensation (based on the phugoid approximation) was used by NASA in the
CV-990 system.

4.4 OPERATION

As part of the descent checklist, the pilot sets up the AEMS computer using the selector
switch and keyboard on the control panel (fig. 4). Actuating the TEST position checks
operation of the displays. Turning the selector switch to the other positions displays default
values which will be used by the computer if not modified by the pilot. An exception is the
weight input that must be entered before each approach. Entry of the weight input places
the computer in the standby mode.

After making the necessary inputs, the pilot leaves the computer in the standby mode until
the runway DME station has been tuned and identified and a final approach course intercept
angle of 300 or less has been established. When energy management guidance is desired, the
pilot actuates the COMPUTE switch.

Before displaying any guidance information, the computer first performs a confidence test
to determine whether the operational interlocks have been cleared and that the system is
functioning properly. If the confidence test is failed, the INOP light is illuminated on the
annunciator panel, and a status message is displayed on the control panel to indicate the
nature of the problem. If the confidence test is passed, the existing flap position will be
displayed on the annunciator panel to indicate that the system is working. The aircrew then
flies the approach using the displays to determine when to set power and to extend flaps
and gear.

Normally, a slow indication will be displayed on the fast/slow indicator when the system is
first turned on, indicating it is not yet time to cut power to idle. As the approach continues,
the slow indication slowly approaches zero, at which point the EPR IDLE command is
illuminated on the annunciator panel. If the pilot pulls the throttles to idle, the annunciator
light will go out and the fast/slow indicator should remain centered. If the light is ignored,
the indicator will continue to slowly move in the fast direction. When in a clean configura-
tion, a fast indication beyond the first index mark on the fast/slow display indicates that
airspeed will exceed the flap placard at the IP. In this case, idle power and speed brakes
should be used if it is desired to continue the approach. When the indicator recenters from
the fast direction, the speed brakes should be retracted so that the power can be left at idle.

As the approach progresses, commands will be generated on the annunciator panel in the
following sequence: EPR IDLE, FLAPS 2, FLAPS 5, FLAPS 15, GEAR, FLAPS 25,
EPR 1.1, FLAPS 30, EPR APP. The aircrew should set the throttles, flaps, and gear as soon "
as the annunciator light comes on. The appropriate light is extinguished when the AEMS
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sensors indicate that throttles have been set, flaps have started to move from the last posi-
tion, or the gear is in transit. An exception is the digital display of flap position which

~remains illuminated at the last commanded setting until the final approach and landing flap _

) posmon (FLAPS 30) is achieved. The throttle settings used to extinguish the EPR light are
selected to give the approximate steady state EPR indicated. When advancing power, the
pilot should readjust the throttles as required after the EPR has stabilized.

Prior to the FLAPS 2 command, the fast/slow indicator provides energy information based
on predicted speed at the IP. After the FLAPS 2 command, the fast/slow display indicates
deviations from a desired profile stored after the last flap or gear command. Since the stored
profiles begin at existing flight conditions, the fast/slow indication will normally be centered
after each flap or gear command. If the airplane energy level deviates from the stored pro-
file, the fast/slow needle will indicate the deviation. Normally, the pilot need not take any
corrective action other than to recheck that EPR, flaps, and gear are set properly. The com-
mand logic will advance or delay the next configuration change to get back on the energy
schedule. A low energy situation would result in delaying the next flap or gear command,
or could be corrected by adding power if necessary. If power is not added and energy gets
too low to be compensated by delaying the next command, successive flap extensions will
be commanded as speed approaches 1.3 V for the existing flap setting. In this case the
approach will be stabilized at a higher altitude. The AEMS, when fully developed, should
provide a clear-cut indication of a minimum energy limit, below which the pilot should add
power. The present 727 AEMS computer algorithm is deficient in this regard, but this could
be corrected in the next design cycle.

If an overspeed situation develops (after the first flap command) so that the approach
cannot be stabilized at the target altitude using the above EPR, flap and gear sequence
(even by extending flaps at the placard speeds), the INOP light will be flashed on the annun-
ciator panel. A FAST message will also be displayed on the control ‘panel, and the computer
will automatically revert to the standby mode. The pilot may be able to complete an ap-
proach by extending the gear sooner. Logic for changing the gear sequence in overspeed
situations could be added to the algorithm, if desired, in a subsequent development
program.

To maximize the fuel and noise benefits, it is desirable to initiate the deceleration from a
clean configuration. However, if it is necessary to extend flaps during the initial approach
phase (e.g., ATC requests a speed reduction), the computer is programmed to reset itself
to generate the remaining configuration commands in sequence. In other words, it provides
guidance for optimizing as much of the approach as possible, starting from the existing
conditions.

4.4.1 PILOT INPUTS

The pilot is required to enter WEIGHT for every approach. The computer determines

VREF 30 from WEIGHT for display and check by the pilot. When the selector switch is-

turned to the other positions, a default value will be displayed as indicated in table 2. The
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Table 2.—Pilot Inputs

Parameter Definition Default value
Weight Airplane landing weight -
VREF 30 1.3 Vg at flaps 30 For display only
VFINAL Desired final approach speed 1.3Vg +5kn
Field el Runway elevation As input from the cabin pressure
controller
HMIN Desired height above the runway for 500 ft—the pilot can set a higher
stabilizing at VFINAL with flaps 30 (but not a lower) value
GS angle Glide slope angle 3° '

default values will be used by the computer unless corrected by the pilot. When the airplane
passes the threshold on a missed approach or touch-and-go landing, WEIGHT will be auto-
matically reset to zero and the computer returned to the standby mode. The other param-
eters will be retained at the last approach values.

4.4.2 INTERLOCKS

Since the 727 AEMS can be used without an ILS glide slope, no beam interlocks are pro-
vided. The pilot actuates the COMPUTE switch manually when on a final approach course
intercept heading. The computer will return to the standby mode and will not display the
flap position when COMPUTE is actuated unless the following interlocks are cleared:

e  DME signal reliable

° Range decreasing;i.e., inbound

o  Range rate greater than 50 kn

The last item provides a gross check for reasonable airspeed, wind measurement, and inter-
cept heading. For example, if the localizer were approached on a 90° intercept heading, the

range rate interlock would prevent AEMS engagement until a shallower intercept angle was
established.

4.4.3 SELF-TEST
The computer will perform limited self-tests before generating energy management informa-
tion for display. However, it will not be possible to cover all possible sources of error, so

the pilot will have to use his judgment to decide if the system is giving correct information
on a given approach.
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4.4.4 ICING CONDITIONS

nate schedule using EPR 1.2 rather than idle for the deceleration sequence. This maintains
the engine compressor speed (N| = 55%) required for operation of the anti-ice system.
With this alternate schedule, the AEMS does not become operable until FLAPS 15 and
gear have been extended. The resulting procedures would be quite similar to those currently
flown by ATA airlines. and were not implemented in the AEMS computer for this feasibility
study. '

4.5 TYPICAL APPROACHES

The nominal profile computed by the onboard computer when locating the IP (FLAPS 2
command point) is shown in figure 8 for a typical landing weight of 578 000N (130 000 1b).
Operational speed limitations are shown for reference. The target altitude of 152 m (500 ft)
is the minimum recommended for visual flight rules (VFR) operation. The pilot could
select a higher altitude (e.g., for IFR) and/or a faster final approach speed (e.g., for head-
winds and/or turbulence) if desired, and the profile would be adjusted accordingly.

A typical delayed flap approach profile recorded during a piloted simulator run is presented
in figure 9, with the computed nominal profile from figure 8 overlayed for comparison.
Although a glide slope capture altitude of 915 m (3000 ft) was used for this run, the profile‘
computation is automatically adjusted to accommodate any capture altitude required for
each individual approach as previously discussed (paragraph 4.3.4).

The same delayed flap procedure is compared in figure 10 to one of the current airline
procedures used for the fuel/noise comparisons. The higher initial speed for the DFA proce-
dure provides additional energy, relative to current airline procedures, which allows power
to be reduced to idle for several miles. The AEMS concept uses drag modulation for energy
control. Hence, the thrust modulation that is apparent for the current airline procedure is
not necessary for the DFA approach until the target altitude is reached. This tends to offset
the otherwise increased pilot workload, and would eliminate engine transient noise effects
for part of the approach.
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5.0 BENEFITS

When jet transports were first introduced into airline service, stabilized approach procedures
were adopted in the interest of safety and crew workload. With these procedures, the air-
plane was stabilized in the landing configuration shortly after glide slope capture. In that
time period, glide slope intercept altitudes were typically 457 m (1500 ft) above the terrain.
In response to the FAA “keep ‘em high” program for reducing low altitude traffic conges-
tion in terminal areas and the increased emphasis on noise abatement and fuel conservation
in recent years, glide slope capture altitudes have been increased and various modifications
to the stabilized approach procedures have been investigated. The primary reasons for
developing the DFA procedures were to reduce approach fuel consumption and noise. By
maintaining higher speeds until closer to the runway, the procedures also reduce total flight
time. '

Evaluation of the potential benefits of the DFA procedure was an essential part of both the
engineering and piloted simulator studies. Approach time, fuel, and noise were compared
for a wide range of procedures and wind conditions, using an unpiloted digital computer
routine that represents airplane performance along nominal preselected profiles. The un-
piloted computer analyses provided an economical means to rapidly compare a large number
of cases without introducing variations due to path tracking deviations, speed/thrust con-
trol, or pilot delays in making configuration changes. The unpiloted routine also facilitated
starting the fuel comparisons at an altitude of 3048 m (10 000 ft), which would have been
'very time consuming on the piloted simulator. Piloted simulation data were then obtained
for the engineering reference, A-1 and DFA-1 procedures for comparisons with the com-
puted data to determine if any adjustments should be made to the unpiloted results to
account for dynamic variations not represented in the unpiloted computer routine. Correla-
tion between the two sets of data proved to be good, and therefore no adjustments were
required.

| Using the unpiloted computer routine, approach time, fuel, and noise were compared for
the following procedures (illustrated in fig. 11 and further defined in paragraph 5.1):

° Engineering reference (Eng ref)
e  Typical airline, type 1 (A-1)
e Typical airline, type 2 (A-2)
e Delayed flap, type 1 (DFA-1)
e Delayed flap, type 2 =~ (DFA-2)

o Two segment (Two-seg)
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® 727-200
o Flaps 30, landing

9 Procedure Intermediate approach configuration
®© Engref Stabilized at GS CAP, flaps 30, gear down

e A-1 Gear down, flaps 25, 140 kn at GS cap,
flaps 30 at OM
e A2 Gear up, flaps 15, 150 kn to 1 nmi from OM

DFA-1,-2 See computed profiles

e Two-seg Flaps 30, gear down at 6° path capture

Altitude, Level Off Point 905 m (3000 ft) altitude: Sommon
m (fr) Procedure  Flaps  Speed, kn Cruise increment reference
9144 + (30 000) |- — — — l‘__ (40 nmi)
e DFA-1 0 220
s DFA-2 2 200
e All others 15 150
| S| 250-kn
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e All others 2 200
» v oM
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Final Approach, flaps 30, stabilized; speeds as follows:
) Final Approach Speed
Procedure (still air & tailwind) 30-kn headwind
e Engref, A-1, A-2 Viet + 10 Viet + 20
e DFA-1, DFA-2, Two-seg vref +5 vref + 20

Figure 11.—Flight Profiles for Benefits Comparisons
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Data were computed for all of the procedures under the following conditions:

i 'o’ Flaps 30 Tanding
° Average landing weight of 578 000-N (130 000-1b)

e Midc.g.

° Standard day (except noise data for FAR 36 conditions)
e 3°9ILS glide slope

° 915-m (3000-ft) glide slope intercept altitude

° 30-kn headwind, still air, 10-kn tailwind

The wind velocities are at 10-m (33-ft) tower height and increase with altitude (ARB shear
profile). Data are shown for the two-segment procedure in still air and headwind conditions
only since reference 4 recommends against use of the procedure in tailwinds.

Fuel and noise data were obtained from the piloted simulation runs for the Eng ref, A-1,
and DFA-1 procedures to confirm the computed data. '

5.1 PROCEDURES DEFINITIONS
5.1.1 TYPICAL AIRLINE PROCEDURES (A-1 AND A-2)

Before defining procedures for use in the benefits comparisons, a request for data was
submitted to the ATA for transmittal to several major airlines. Detailed information was
supplied by five airlines concerning typical speed/configuration/altitude/distance profiles
for ILS approaches under VFR and IFR conditions. The principal difference between
VFR and IFR procedures is that some airlines delay landing flap extension to a lower
altitude for VFR; others use the same procedures for both. The airline data were reviewed
in an attempt to define one typical procedure representative of all airlines for VFR opera-
tions. Because of variations between airlines, it was concluded that two general types of
procedures should be shown. As defined for this study, the two types of procedures are
identical except for the gear, flaps 25 and flaps 30 extension points, as follows:

Type Gear/flaps 25 Flaps 30 .
A-1 At glide slope capture At outer marker
A-2 1 nmi from outer marker At 140 kn
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These procedures are composites that do not exactly match the data submitted by any
one airline. However, three of the five reported airline procedures are similar to A-1, while
the other two are similar to A-2.

To provide a realistic comparison of fuel benefits, it was decided to include the terminal
area descent phase as well as the final approach phase. The defined procedures begin at
3048-m (10 000-ft) altitude at the 250-kn maximum speed allowed by ATC. The descent
to 1524 m (5000 ft) is made at idle power with a flightpath angle selected so as to pass
through 1524 m (5000 ft) at 200 kn, at which point flaps 2 is selected.

The airline data indicated that an approximately constant descent angle is maintained from
1524 m (5000 ft) to capture the glide slope (from below) at a typical altitude of 915 m
(3000 ft). To facilitate computations and simulator setup, a distinct level off at 915-m
(3000-ft) altitude 3 nmi prior to glide slope intercept (about 12.5 nmi from touchdown) is
shown for the defined procedure. Deceleration and flap sequencing during the descent
from 1524 m (5000 ft) to 915 m (3000 ft) are defined to occur on a 3° glide slope with
flaps extended at the currently published approach maneuvering speeds and with power
set so as to arrive at the level off point at flaps 15, 150 kn. Power is reset at the level off
point to maintain flaps 15, 150 kn until approaching glide slope capture. With the A-1l
procedure, gear and flaps 25 are extended during glide slope capture with flaps 30 delayed
until outer marker (OM). With the A-2 procedure, the glide slope is captured in a gear up,
flaps 15 configuration, with gear and flaps 25 extended 1 nmi from the outer marker,
and flaps 30 selected at 140 kn. A final approach speed of Vg ¢+ 10 kn is defined for both
procedures, as typical of routine airline practices for light wind conditions. For the 30-kn
headwind case, VR ¢ *+ 20 kn was used.

5.1.2 ENGINEERING REFERENCE PROCEDURE (ENG. REF.)

The engineering reference procedure is the same as the typical airline procedures, except
the landing configuration and final approach speed are established during glide slope cap-
ture. This was the stabilized approach procedure formerly used with low glide slope cap-
ture altitudes. It is doubtful that any domestic airlines use this procedure with a 915-m
(3000-ft) glide slope capture altitude. However, it is convenient as an engineering reference
since a number of prior reports have shown noise data relative to such procedures. It is
called an engineering reference procedure rather than a stabilized approach procedure
because all current airline procedures comply with the stabilized approach concept in that
they are stabilized at a safe altitude.

5.1.3 TWO-SEGMENT APPROACH (2-SEG)
The two-segment approach procedure is identical to the engineering reference procedure
except that 6°/3° two-segment path geometry and final approach speeds defined by the

NASA/UAL/Collins program are used. In computing data for the 30-kn headwind case,
VRes T 20 kn was maintained on both the upper and lower segments.
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The upper segment intercept altitude of 915 m (3000 ft) was selected to be the same as
the ILS glide slope intercept altitude for the other procedures. It was assumed that ATC
---clearance-restrictions determined-the-intercept altitude; and that these would-be-the-same -
regardless of the final approach path geometry. The benefits of two-segment approaches
relative to other types of procedures might vary as a function of the upper segment inter-
cept altitude. However, this was not investigated.

Because of the two-segment path geometry, the final approach path intercept point is
closer to the runway than for the other procedures. The 915-m (3000-ft) level off point
and the 3048-m (10 000-ft) descent points are shifted accordingly.

5.1.4 DELAYED FLAP APPROACHES (DFA-1 AND DFA-2)

The two delayed flap procedures differ from each other only in the initial approach speed
and configuration and the resulting difference in the power cut point. The DFA-2 procedure
is the same as the typical airline procedures from 3048 m (10 000 ft) through 1524 m
(5000 ft). However, 200 kn is then maintained with flaps 2 through glide slope capture.
Power is cut to idle (on glide slope) when determined by the AEMS (varies with wind,
weight, etc.) so as to decelerate and stabilize at the target altitude selected by the pilot.

The DFA-1 procedure maintains 220 kn (preferred) in a clean configuration through the
level off at 915 m (3000 ft). Power is cut to idle sooner than for the DFA-1 procedure, and
flaps 2 is selected at 200 kn. Thereafter, the approach is identical to DFA-2. Since the
DFA-1 procedure requires less speed reduction during the descent from 3048 m (10 000 ft)
to 1524 m (5000 ft), a slightly steeper descent angle is used. The 3048-m (10 000-ft)
descent point is shifted accordingly.

The delayed flap approach speed is stabilized at the target altitude at Vgor + 5 kn for still
air or light wind conditions, and at Vp.¢+ 20 kn for the 30-kn headwind. A target altitude
of 152 m (500 ft) was used as a baseline for comparing the DFA procedures against other
procedures. In addition, the effects of variations in the target altitude also were computed
for the DFA-1 procedures.

5.2 COMPUTED TIME AND FUEL COMPARISONS

The delayed flap approach procedures require a higher total airplane energy level on initial
approach than the other procedures. To account for possible differences in the fuel burned
prior to initial approach (in order to maintain the higher energy level) it was concluded that
the most realistic reference point for computing fuel comparisons would be the 3048 m
(10 000 ft) 250-kn descent point, adjusted to a common reference distance (40 nmi).
While suitable for calculations, use of this reference point would be inconvenient for simula-
tor and flight test evaluation. Therefore, data are also presented relative to other reference
points along the profile.
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The fuel consumption data in figure 12 and table 3 show the fuel required from the 250-kn
descent point to the runway threshold, plus an additional increment computed at cruise
conditions. The cruise increment makes up the difference in the descent and approach
distance for the various procedures and wind conditions, so that all fuel comparisons are
made for the same total ground distance of 40 nmi. :

The effect on fuel consumption of parametric variations in the final approach stabilization
target altitude is illustrated in figure 12 for the DFA-1 procedure in still air. The 152-m
(500-ft) target altitude is used throughout this report when comparing the DFA procedures
against other types of procedures. This is the minimum target altitude recommended for
VFR conditions.

e Still air
® DFA-1 procedure with
target altitude varied
-(700)
__ 3000
o
-4
'd -
g - (600) - -
2 -
g - Nominal for procedures
- comparisons (VFR)
(=]
5 -(500)
.33
2
2000 -
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I'L L] 4 L] T 1
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Target altitude, m (ft)

Figure 12.—Effect of Target Altitude On Fuel Burned

Elapsed time and fuel consumption for the various procedures in three wind conditions are
compared in table 3. The delayed flap procedures require less time and fuel than any of the
other procedures, particularly in strong headwinds. The AEMS delays initiation of flap
sequencing in headwinds, so the cleaner configuration and associated higher speeds and
lower power settings are maintained until closer to the runway.

Fuel comparisons are presented in table 4 relative to three other points along the defined
727 flight profiles. Approach time and fuel computed from the initial conditions specified
by NASA ARC for comparison with their CV-990 flight data are presented in table 5.
In computing data from the CV-990 reference, all procedures were initiated in a clean
configuration with the same total energy, and all were allowed to decelerate in level flight
at idle power until reaching the speed and configuration shown in figure 11 for level off at
915 m (3000 ft) prior to GS capture. Thereafter, the previously computed profiles were
used.
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Table 3.—Time and Fuel Comparisons from 250-kn Descent Point

"7 e ‘Data computed from 3048 m (10 000 ft) altitude, 250-kn point to threshold, with cruise
increment to common {40-nmi) distance reference

¢ Wind given at 10-m (33-ft) tower height

Procedure Weight of fuel burned Elapsed time
N LB min:sec
Eng ref 4050 : SN 10:52
A-1 3880 873 10:56
10-knot
tailwind A2 3580 805 10:53
DFA-1 2460 556 9:26
DFA-2 2860 644 10:01
Eng ref 4700 1058 11:49
A-1 . 4480 1009 11:565
A-2 4150 934 11:52
Still air
DFA-1 2725 , 614 9:58
DFA-2 3210 723 10:35
Two-Seg 3550 799 10:54
Eng ref 7700 1733 15:46
A1 ’ 7400 1662 16:46
30-knot A-2 6910 1554 15:36
headwind
DFA-1 3640 820 11:41
DFA-2 4560 1029 12:45
Two-Seg 5880 1322 14:00

‘Computed fuel profiles are shown in figure 13 for the various procedures in still air condi-
tions. These data are useful in visualizing the effects of certain key features in the profile
definition; e.g., stabilization height and level flight at 915 m (3000 ft).

The time and fuel benefits of the DFA-1 procedure relative to current ATA airline proce-
dures (A-1 and A-2) and two-segment approach procedures are summarized in table 6. )
These estimated benefits are based on the data computed from the 250-kn descent point
(table 3).
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Table 4.—Fuel Comparisons for Alternative Reference Points

Note:

e Still air

e Computed along defined profile from reference point to threshold

Weight of fuel burned from:
1524 m 915 m 9156 m
Reference Point —» {5000 ft) (3000 ft) (3000 ft)
descending level off GS capture
Procedure Newtons Pounds Newtons Pounds Newtons Pounds

Eng ref 3720 839 3260 734 2520 569
A 3510 790 3040 685 2300 520
A-2 3170 714 2700 609 1970 444
DFA-1 1730 390 1350 305 1010 228
DFA-2 2240 504 1710 384 1160 262
Two-Seg 2300 518 1830 414 1110 250

Table 5.—Time and Fuel Comparisons from NASA Reference Point

® Still air

® |nitial conditions:

220 kn airspeed
15 nmi from threshold

Level flight, 915 m (3000 ft) altitude

Clean configuration

Weight of fuel burned
Elapsed time
Procedure N Lb min:sec
Eng ref 3410 769 6:02
A-1 3200 720 5:53
A2 2850 642 5:49
DFA-1 1720 388 4:41
DFA-2 2050 462 4:51
Two-Seg 2890 650 5:49
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Figure 13.—Computed Fuel Profiles

-Table 6.—-Computed Time and Fuel Benefits of DFA-1 Procedure

= Benefits of DFA-1 procedure relative to baseline procedure
Weight of fuel saved,
Time reduction, min:sec N {Ib)
Baseline 30-kn Still 10-kn 30-kn Still 10-kn
procedure headwind air tailwind headwind air tailwind
Current airline, A-1 4:04 1:57 1 :30 3750 1750 1410
(842) (395) {317)
Current airline, A-2 3:55 . 1:54 1:27 3250 1420 1100
(734) (320) {249)
Two-Seg 2:19 :56 a 2230 820 @
(502) (185}

3 Two-seg approach should not be used in tailwinds.

Note: Benefits based on profiles beginning at 250 kn descent point with
cruise increment (fig. 11)
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5.3 COMPUTED NOISE DATA

The computed flight profiles were loaded into existing noise computation programs to
obtain ground level 90-EPNdB contour areas and centerline noise plots. The noise data are
for total airplane noise including the combined effects of airframe and engine noise as com-
puted for FAR 36 ambient conditions.

The noise differences between still air. headwind, and tailwind conditions reflect only the
differences in airspeed, configuration scheduling, and thrust levels resulting from the winds.
While noise propagation may be influenced by winds, the noise computation programs
available at the time of this study did not include such effects.

5.3.1 90 EPNdB CONTOURS

Computed 90 EPNdB contours (ground level) are compared in figure 14(a) for the delayed
flap (DFA-1), two-segment, and current airline (A-1) procedures. The contour closure
distance is similar for the DFA and. two-segment procedures, being much closer to the
runway than for the current airline procedure. The relative areas enclosed within the con-
tours are compared in figure 14(b), using the contour area for current airline procedures
(the same for both A-1 and A-2 )as a normalizing factor. With untreated nacelles, the
90 EPNdAB contour area for the DFA procedures is about one-third that of the current
airline procedures. The contour area for current airline procedures flown with quiet nacelles
(QN) is about the same as for the DFA procedures flow with untreated nacelles. Due to
the airframe noise contribution, nacelle treatment is less effective at the low power settings
used with the DFA procedures. Conversely, the DFA procedures are less effective for
airplanes equipped with quiet nacelles.

Noise contour area comparisons for all of the previously defined procedures are presented
in figure 15 as computed for three wind conditions. In this figure, the 90 EPNdB contour
area for the Eng ref procedure is used as a reference for normalizing the data. The results
_apply to untreated nacelles, except for the still air conditions where the effect of nacelle
treatment is indicated by shading. The stabilization altitude for the DFA procedures is
152 m (500 ft).

In still air conditions, the two-segment approach procedure, which stabilizes on the 3° glide
slope at an altitude of 152 m (500 ft), offers benefits comparable to the delayed flap
approach procedure with a 152-m (500-ft) target altitude. However, the two-segment proce-
dure is less effective in headwinds. Reference 4 recommends against the use of the two-
segment approach in tailwinds.

The effect of parametric variations in the DFA stabilization altitude on the 90 EPNdB
contour area is illustrated in figure 16. Here again, the contour area for the Eng ref pro-
cedure in still air is used as a reference for normalizing the data. It is seen that the stabiliza-
tion altitude has a powerful effect on the noise contour area for the DFA procedures.
Comparison with the still air data in figure 15 shows that the DFA procedures provide some
contour area reduction, relative to current airline procedures, even with a 305-m (1000-ft)
stabilization altitude (both with untreated nacelles).
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5.3.2 CENTERLINE NOISE

- Plots of ‘computed noise levels diréctly under the flightpath are presented in figures 17

through 22. All except figure 19 apply to untreated nacelles. The Eng ref procedure is
shown on all plots as an aid in visualizing the noise benefits of various procedures.

The noise plots begin at the 3000-ft level off point which is about 12 nmi from the thres-
hold for all procedures except the two-segment (see fig. 10). Thrust, altitude, and speed
are held constant for a distance of 3 nmi from this point for all procedures except DFA-1,
which requires an earlier power cut. The glide slope intercept distance is about 9 nmi for
the 3% ILS and about 6 nmi for the two segment.

The DFA-1 procedure is compared to the current airline procedures and engineering refer-
ence in figure 17. The different noise levels following glide slope capture reflect the dif-
ferent intermediate approach configurations.

Procedure Gear Flaps
Eng ref Down 30
A-1 Down 25
A-2 Up 15
DFA-1 Up 0

The delayed flap and two-segment approach procedures are compared in figure 18. Power
is cut to idle about 1 nmi prior to glide slope capture for DFA-1. The DFA-2 procedure
requires a large thrust reduction to maintain constant speed during glide slope capture (at
9 nmi). The DFA-2 thrust later is cut to idle at about 6 nmi, which is the flaps 2 selection
point for DFA-1. Thereafter the delayed flap procedures are identical. The two-segment
approach is noisier in the 5.5- to 8.5-nmi range because the airplane is still in level flight
(thrust set for flaps 15, gear up, 150 kn) awaiting upper segment capture. The two segment
is a little noisier than the DFA in the 2- to 3-nmi range because of the slightly higher
nominal thrust level. Since the two-segment procedure relies on thrust modulation for speed
control, the upper path angle (6°) is established so as to require trimmed thrust levels above
idle (thrust margin equivalent to about 1.5° Avy). The lower thrust for the DFA offsets the
altitude advantage of the two segment.

Figure 19 compares the same procedures as figures 17 and 18, but for airplanes equipped
with quiet nacelles (QN).

Comparison of the two figures shows that the noise level for the idle power deceleration
phase of the DFA procedure is nearly the same for untreated and quiet nacelles. This occurs
due to the predominance of airframe noise when the engines are at idle. Following applica-
tion of normal approach power, the- quiet nacelle again becomes effective for the final
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approach phase from the stabilization point to touchdown. Since the quiet nacelles reduce
centerline noise at normal approach power but have little effect at idle power, the DFA
procedures provide less noise reduction for QN equipped airplanes. Conversely, when DFA

procedures are used the extent of the community that would benefit from QN installation
is reduced.

The effects of headwinds and tailwinds on centerline noise are illustrated in figures 20 and
21. The Eng ref and two-seg procedures require additional thrust (relative to still air thrust
levels) to track the glide slope in a headwind. The DFA procedures also require higher thrust
immediately after glide slope capture. However, the power cut to idle is delayed so as to
retain the benefits of the procedure in the higher noise regions closer to the runway.

" The preceding centerline noise data for the DFA procedures were based on a 152-m (500-ft)
' ‘target altitude for stabilizing in the final approach configuration. The effect of stabilization
height on centerline noise is illustrated in figure 22. These data were obtained for the DFA-1
~ ‘procedure by parametrically shifting the target altitude to lower and higher altitudes. Also
shown for reference is an idle power deceleration to touchdown. Stabilization altitudes
below 152 m (500 ft) are not recommended for 727 operational use. In addition to increasing
pilot workload, lower altitudes would result in gear extensions below 305 m (1000 ft) unless
the DF A profile was modified, would probably require autopilot and/or flight director modi-
fications; and could adversely affect go-around capability.
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5.4 SIMULATOR COMPARISONS

The Eng ref, A-1, and DFA-1 procedures were flown on the simulator by two Boeing pilots
to confirm the computed fuel and noise data. To minimize costs, the Eng ref procedure
was spot-checked on one run only, and the remaining time was spent obtaining a number
of runs for the A-1 and DFA-] procedures in each of three wind conditions. About two-
thirds of the runs were flown manually, with the autopilot used for the remainder. The auto-
pilot had no effect on approach time and fuel. However, it appeared that the pilots were
able to stabilize on the final approach speed with less throttle manipulation when flying on
autopitot. This could result from the reduced path control workload which allows more
concentration on power setting and speed control. Overshoot of the stabilized thrust level
and the resulting engine transients could result in more annoying noise (than the computed
nominal level) in the vicinity of the stabilization point. Hence, the autopilot might help in
realizing the potential noise benefits of the procedure in addition to reducing pilot workload.

The simulator runs were initiated from trimmed level flight on localizer at the 915-m
(3000-ft) altitude about 12.5 nmi from touchdown. The 915-m (3000-ft) altitude was main-
tained until capture of a 3° ILS glide slope which was tracked to the runway threshold
in simulated IFR conditions. Elapsed time, computed fuel consumption, centerline noise,
distance, and a number of flight parameters were recorded on magnetic tape during each
run for subsequent analyses.

Approach time and fuel consumption from the simulator runs are plotted in figure 23 for
comparison with computed values. There is very little scatter in the simulator results, and
correlation with the computed data is good.

Centerline noise for the A-1 and DFA-1 procedures is compared in figure 24 for representa-
tive runs by one pilot. Additional runs for the DFA-1 procedure illustrating noise variations
between the runs flown with manual and autopilot control are presented in figure 25.
Additional simulator data for other flight parameters (e.g., speed, engine pressure ratio
(EPR), etc.) are provided in section 7.0. Note that the touchdown point is used as the zero
distance reference for the simulator data recordings, whereas the preceding computed
centerline noise plots are referenced, by convention, to the runway threshold. The touch-
down point is 0.2 nmi from the threshold.
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6.0 DEVELOPMENT

Application of the NASA CV-990 AEMS concept to the 727 required development of flight
profiles and an airborne computer algorithm specifically tailored to 727 characteristics. In
addition, it was necessary to develop and validate a fixed-base engineering simulation of the
727 airplane to be used for evaluating the algorithm and flight procedures.

6.1 CRITERIA

Before beginning detailed development of the 727 algorithm and flight profiles, the NASA
CV-990 work was reviewed, the procedures were discussed with Boeing pilots and engineers,
and preliminary criteria were established. The criteria were updated as the work progressed.
The AEMS concept resulting from this study, as defined by reference 3, is intended to meet
the final set of criteria outlined in table 7.

6.2 FLIGHT PROFILES

Considerable attention was given to selection of flight profiles that would maximize the
fuel/noise benefits and yet be safe and acceptable to pilots. The development approach was
to (1) select preliminary schedules based on review of operating limits, aerodynamic data,
and noise trends, (2) use an unpiloted digital computer routine to check deceleration dis-
tances and refine the profiles, and (3) further refine the procedures on the simulator as
required.

6.2.1 SPEED SCHEDULES

The speed schedules selected for the 727 delayed flap approach procedures evaluation are
shown in tables 8 and 9. The airborne computer uses the equations and data shown in
table 10 to calculate these speeds based on the weight and final approach speed selected by
the pilot. Since much of the deceleration phase is flown at idle power, these schedules are
not suitable for icing conditions that require N, = 55% for engine inlet anti-icing. When the
inlet ANTI-ICING switch is turned on, interlock logic prevents engaging the AEMS compute
mode until flaps 15 and gear have been extended. In addition, a minimum power setting
of EPR 1.2 is used in lieu of the IDLE, EPR 1.1 schedule. The procedures for icing condi-
tions would be similar to current ATA airline procedures and were not investigated in this
study.

The speed schedules are used by the computer in predicting deceleration distances for the
desired flight profile. The commands displayed to the pilot will occur at the speeds shown
if the airplane decelerates exactly as predicted. The flap and gear commands are based on
the distance prediction and may be given at higher or lower speeds if the actual profile
starts to deviate from the prediction. The EPR commands are determined by speed only;
thus, flaps and gear extension will always be in the same sequence, but will not always
occur at the scheduled speeds. The EPR commands will always occur at the scheduled
speeds, but sequencing with respect to the flaps and gear commands will vary.

47



Table 7.—AEMS Design Criteria

Required NAVAIDS

e DME collocated with path reference
e Path reference (VASI, ILS, or other)
o |LS for simulator study

Wind and weather

® CAT H ceiling/visibility
e Tailwinds to 10 kn
‘@ Compatible with inlet anti-icing (stabilized approach for wing deice)

AFCS compatibility

o Suitable for coupled ILS autopilot approaches
o No change to autopilot/flight director
o Autothrottles not required

Thrust scheduling

¢ Nonicing Idle allowable to flaps 25; set EPR 1.1 prior to
flaps 30; set final EPR prior to final speed

e lcing N, >55%

o Thrust displays ALERT light remains on until throtties are reset

Landing flaps—profiles based on flaps 30

Configuration Scheduling

® Stabilized - Above 152-m (500-ft) VFR; 305-m {1000-ft) IFR
® Gear down Above 305 m (1000 ft)

Speed/path control—with normal pilot skills

® *1-dot deviation
® Stay in trim. Be able to take hands off (or A/P disconnect) at
91 m (300 ft) and stay within £5 kn/t2 dots at 61 m (200 f1)

Speed/altitude constraints—current ATC and OPS manual, except: ’

® Use 1.3 Vs reference for all fiaps (plastic bugs set manually)
® Stay 10 kn below placards
e Stay on front side of drag curve

Visibility and comfort § <5°, dV/y4, <2kn/s
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Table 8.—Speed Schedule for Winds to 10 kn

Landing weight calibrated airspeed, kn

Command
generated GW = 488 000 N GW = 578000 N GW = 686 000 N
{110 000 ib) {130 000 ib) (154 500 1b)
Flaps 2 188 200 215
Flaps 5 170 185 203
Flaps 15 160 174 191
Gear 151 165 181
Flaps 25 139 162 167
EPR 1.1 130 143 159
Flaps 30 122 134 147
APP EPR 120 131 144
a 117 128 140
3Final approach speed, (V,ef * 5 kn) no command
Table 9.—Speed Schedule for 30-kn Headwind
Landing weight calibrated airspeed, kn
Command
generated GW = 488000 N GW = 578 000 N GW = 686 000 N
(110 000 Ib) (130 000 Ib) {154 500 Ib)
Flaps 2 188 200 215
Flaps 5 170 185 203
Flaps 15 160 174 191
Gear down 156 170 186
EPR 1.1 155 169 185
Flap 25 143 155 170
Flap 30 136 148 162
APP EPR 135 147 160
a 132 143 155

3Final approach speed Vet
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Table 10.—Speed Schedule Computation Concept

v APP = V £t 5—computed from weny\t (GW)

VCOMMAND = VNOMINAL * KGw ‘GW— 130 000) .+ Ky, (VE;NAL _VAPP)

pilot inputs

Command speed V, K K.

to be computed NOMINAL Gw _ ~V
Flaps 2 o 200 7000080 o .
Flaps 5 ' 185 © 0,00075 0

 Flaps 15 B N v 000070 0

Gear ';' 165 000070 - | - 0.333
Flaps 25 152 0.00065 , 0.2
EPR1.1 143 0.00065 1.73
Flaps 30 134 0.00060 ' 0.932
APP EPR 131 0.00055 ' 1.068

The flaps versus speed schedules are selected to minimize the pitch attitude variations
~ required to maintain 1-g flight during flap extension on final approach. This.is desirable
for glide slope tracking both by the pilot and autopilot. Fortunately, the minimum A8
schedule also provides adequate speed margins from safety limits, is compatible with ATC
speed limits, and is a good compromise with respect to fuel a_nd noise benefits.

L To maximize the fuel/noise benefits, it is desirable to delay gear extension as long as pos-
o sible. The large gear drag increment dissipates energy rapidly, thus shortening the distance
v < . that can be flown at idle power. In the selected procedure, the gear is extended in sequence
following flaps 15. This is consistent with current Boeing pilot training procedures for

-normal ILS approaches and, in combination with the thrust schedule, results in gear exten-
sion slightly above 305-m (1000-ft) altitude during a delayed flap approach.

For nonicing conditions, the deceleration phase of the approach is initiated by retarding
throttles to idle. The deceleration is arrested by reapplying thrust in two steps, first to
EPR 1.1 and then to normal approach power settings. The first step to EPR 1.1 initiates
- engine acceleration to a power setting near the surge bleed valve operating point from which
further acceleration can be obtained more rapidly when required. The increased thrust at
EPR 1.1 reduces the rate of airspeed decay which lessens the likelihood of undershooting
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‘the final approach speed and extends the overall deceleration distance. The distance effect
is used to adjust the point at which the gear down speed is reached. In light wind conditions,
EPR 1.1 is set just prior to selecting landing flaps. However, in strong headwinds, the
deceleration becomes compressed with respect to ground distance, so thrust is advanced to
EPR 1.1 sooner for headwinds.

6.2.2 COMPUTED FLIGHT PROFILES

Nominal flight profiles corresponding to the selected speed schedules are shown in figures
26 and 27 for a range of weight and wind conditions. The profiles were computed on the
flight controls technology minicomputer (NOVA) using the path prediction model defined
for the airborne computer. These particular profiles were initiated from a flaps 2 configura-
tion. If initiated from a clean configuration, power would normally be cut at a higher
speed, and flaps 2 would be commanded at about the same point as the power cut points
(IDLE) indicated on curves (slight variations due to effects of flap extension rates and
engine spool downtime).

The profiles in figure 26 illustrate that weight variations have little effect on the decelera-
tion distance and general shape of the profiles in still air condition. The gear extension
altitude increases slightly with weight. However, the airspeed also increases so the time
available for accomplishing checklist items is essentially the same. As indicated in figure
27, the procedure becomes more compressed by headwinds. Contributing factors are the
reduced groundspeed and the higher airspeeds scheduled for flaps 25 and flaps 30. (Current
procedures specify increasing the final approach speed by one-half the reported wind
speed plus all of the gust; not to exceed a 20-kn total increase.) The higher final airspeeds
require less speed reduction (initial speeds not changed) and also place the airplane further
on the front side of the drag curve, resulting in more rapid deceleration. These effects
are compensated by advancing the EPR 1.1 command speed in strong headwinds.

6.2.3 PROFILE ANALYSES

Some of the factors considered in selecting the flight profiles are discussed in the following
paragraphs.

6.2.3.1 Pitch Attitude

The variation of pitch attitude with speed is shown in figure 28 for trimmed 1-g flight on
a 39 glide slope at a typical landing weight. The speed schedules for flap extension are
selected to minimize the pitch attitude variations from the final approach attitude as
indicated.

6.2.3.2 Speed Margins
The relationship of the flap versus speed schedule to various operating limits is indicated

in figures 29 through 31. Reasonable margins are provided relative to flap placards and
1.3 V..
]
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Figure 30.—DFA Speed Margins Relative to Flight Limits at Maximum Landing Weight

At high landing weights there is a slight conflict with the ATC guideline of 200-kn maxi-
mum when below an altitude of 915 m (3000 ft) in the terminal control zone. However,
if this becomes a problem, flaps 2 could be used for the initial approach phase at high
weight conditions. '

At low weight conditions, the delayed flap approach speed schedule requires speeds slower
than the approach maneuver speeds currently published in the 727 Operations Manual.
This could present an operational and/or training problem, since aircrews memorize the
speeds shown in the operations manual (based on maximum landing weight) and treat them
as minimum speeds for all landing weights. Since this is an operational as well as an engineer-
ing concern, resolution of the question has been deferred until the next phase of the AEMS
development program that would provide for airline pilot evaluations and further engineer-
ing development of the concept.

The preferred solution from an engineering and safety point of view is to implement an
independent speed monitor based on angle-of-attack information obtained from the existing
727 stick shaker system. Other less expensive possibilities are to manually set plastic “bugs”
on the airspeed indicator at 1.3 V for each flap position as part of the AEMS setup proce-
dure, or to use the published (higher) speeds and accept the larger pitch excursions. Use of
the manually set bugs was assumed in defining the avionic configuration and flight profiles
for this feasibility study.
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6.2.3.3 Fuel Trends

Fuel trends were studied using performance data and unpiloted digital computer routines
to determine if a different speed schedule would increase the fuel benefits of the procedure.
As shown in figure 32, the minimum A schedule closely approximates the speeds for maxi-
mum nautical miles per pound of fuel, assuming thrust is trimmed for a 3° glide slope. With
thrust fixed at an arbitrary value (e.g., idle), fuel consumption varies primarily with elapsed
time, so high speeds are best. It was concluded that for practical DFA speed schedules no
significant improvement could be obtained relative to the minimum A8 schedule.

6.2.3.4 Deceleration Capability

The longitudinal deceleration capability of the 727 when trimmed on a 3° glide slope in
still air is shown in figures 33 and 34 for two power settings:

o ldle (fig. 33)
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e EPR 1.2 (fig. 34); this is the minimum power setting that will ensure N; = 55%,
required for inlet anti-icing on cold day conditions '

It is apparent that the ability to decelerate on glide slope in a clean configuration is marginal,
even at idle power. When inlet anti-icing is required, a gear down, flaps 2 15 configuration
must be used.

6.2.3.5 Noise Trends

Noise trend data showing the separate effects of varying thrust, speed, and configuration
at constant altitude~304 m (1000 ft)—were developed for reference in defining the flight
profiles. Unlike a stabilized approach, the delayed flap procedure allows power settings
and speeds during the deceleration phase to be specified independently (within broad
limits) of flap position. With a range of possible profiles, the noise trend data provided
insight into the effects of individual parameter variations on the total computed noise.
The noise trends concerning three aspects of the procedure were of particular interest:

e Power Setting—Thrust levels near idle are required to initiate the decelerationina clean

configuration on a 3° glide slope. However, higher power settings are preferable with
respect to engine response time. Hence, the AEMS design criteria (table 7) require ad-
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vancing power to EPR 1.1 prior to selecting the final flaps. Except for the adverse
effect on noise, it would be desirable to select the higher power setting earlier in the
approach (e.g., immediately after gear extension). The noise trends shown in figures
35 and 36 indicate that increasing thrust from IDLE to EPR 1.] increases centerline
noise about 3 EPNdB for untreated nacelles at the speeds and configurations of
interest. This was considered to be a large enough noise increment to warrant retain-
ing idle power as long as practical. Although thrust reductions are less effective at the
higher speeds due to the airframe noise contribution, total noise decreases with thrust
reductions all the way to idle power.

Speeds—Total airplane noise is computed as the logarithmic sum of the airframe and
engine contributions. For a given thrust level, airspeed influences total noise through
the airframe noise contribution and through the time duration effect in the EPNL
calculation. An increase in airspeed tends to increase the airframe noise contribution;
but, through the time duration effect, also tends to reduce the EPNL. The overall
effect of the speed increase on the EPNL depends on which is larger, the airframe
noise effect or the time duration effect. This results in the crossover of the constant
airspeed lines that is apparent in figures 35 and 36. At high power settings where
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engine noise predominates, the total noise decreases as speed increases. The opposite
trend is apparent at lower power settings where airframe noise predominates.

The variation of noise with speed at idle power is shown in figure 37 for various flap
settings, gear up and gear down. Note that the curve is almost flat for the clean con-
figuration, so the higher initial approach speeds do not penalize the noise benefits prior
to flap sequencing.

The flap-extension speeds for the delayed flap approach speed schedule are a little
higher than the minimum-noise speeds at idle power, particularly for flaps 2. However,
the use of the higher speeds allows idle power to be maintained over a longer distance
that extends the noise benefit over more of the community. In addition, the higher
speeds reduce approach time, fuel, and pitch attitude variation.

Configuration Sequencing— From figure 37 it is obvious that noise at idle thrust is

minimized by maintaining a clean configuration as long as possible. There is a sizable
increase in noise when either the gear or the flaps are extended. When gear and flaps
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are both extended, the additional noise increment due to the gear is larger at the
higher speeds and reduced flap deflections. For the defined 727 speed schedules
(table 8) the gear is extended in sequence following flaps 15, so the noise increment
due to gear extension is less than | EPNdB.

From the noise trend data it was concluded that:
e Power settings should be the minimum consistent with safety and pilot acceptance
e The selected DFA speed schedules appear reasonable for noise abatement

e Flap and gear extension should be delayed as long as practical, and gear extension
should not be scheduled prior to flaps 5 -

6.3 COMPUTER ALGORITHM

The algorithm concept and operation are previously discussed in section 4.0. Additional
engineering details and results of the algorithm development phase of the study are pre-
sented below.

6.3.1 DEVELOPMENT SEQUENCE

After reviewing the CV-990 system, a basic algorithm was first developed for the configura-
tion sequencing phase of the approach (see fig. Sb). The flight controls technology mini-
computer (NOVA) was used to allow algorithm development to proceed in parallel with the
727 airplane simulation development. Further, the NOVA provided a convenient and
economical way to obtain computed profiles for parametric studies and simulator checkout.

The algorithm was then added to the piloted simulation for further development and evalua-
tion. Because of size and computation cycle time of the 727 airplane simulation, it was
necessary to program the profile prediction portion of the algorithm on a separate mini-
computer (VARIAN) interfaced with the main simulation computer (EAI-8400), where the
remainder of the algorithm was programmed.

The basic algorithm contained all of the elements discussed in section 6.3.4. However, the
initialization routine did not originally contain provisions for computing the IP, and the
path geometry routine initially contained only the one-segment path plus energy compensa-
tion scheme (fig. 7). This setup generated all the commands and displays necessary to fly a
complete delayed flap approach, if started from a suitable condition. Although the basic
algorithm did not provide a fast/slow indication prior to the power cut, it was complete in
all other respects and was used to evaluate flight profiles and to further develop the
algorithm.
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When the basic algorithm was functioning properly, the simulation was then modified to
incorporate the IP concept for driving the fast/slow indicator during the initial approach
phase (see fig. 5a). The complete algorithm was used-in the final simulator evaluation,
including the time/fuel/noise benefits comparisons, the NASA pilot evaluation, and subse-
quent Boeing demonstrations to ATA and ALPA pilots.

6.3.2 PROGRAM LANGUAGE

The algorithm was originally developed on the NOVA in the FORTRAN language. The
algorithm for the piloted simulation was programmed in computer assembly languages on
the VARIAN and EAI-8400 computers. Refinements developed on the simulator were then
incorporated in the NOVA program.

The FORTRAN listing attached to the AEMS avionic specification (ref. 3) was obtained
from the NOVA. While the FORTRAN listing is not precisely the same as the simulator
programs, this approach provides a working program in a common language that defines the
algorithm functions without introducing extraneous instructions peculiar to the simulation.

6.3.3 COMPARISON WITH CV-990 SYSTEM

The 727 algorithm concept is operationally similar to the CV-990 from the pilots’ view-
point. However, there are several differences in the detailed implementation. The differences
resulted primarily because of the more numerous commands to be generated for the 727
and differences in gear/flap/power sequencing;i.e.,

CV-990 commands 727 commands
Idle Idle
Gear down Flaps 2
Flaps 10 Flaps 5
Flaps 36 Flaps 15
Approach power Gear down
Flaps 25
EPR 1.1
Flaps 30
Approach EPR
. . dVg .
The CV-990 uses both forward and backward integration of = to compute the profiles,
. . dv .
whereas the 727 uses only forward integration of ?179 The CV-9900 algorithm precom-

putes and stores maximum and minimum V-X deceleration profiles based on flap extension

at maximum and minimum speeds for three preselected wind conditions. The maximum and
minimum profiles for the prevailing winds are obtained from the stored profiles by inter-
polation. The fast/slow indicator is scaled relative to these energy limits with the desired
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profile taken as midway between the two extremes. The 727 profile prediction takes the
prevailing wind into account directly and bases the prediction on the desired profile rather
than on the energy limit profiles. Although the fast/slow indicator does not provide an
indication of energy limits, this feature could be added if required;e.g., by also integrating
along maximum and minimum energy dissipation schedules. The 727 algorithm uses the
same energy correction (phugoid approximation) as the CV-990 to compensate the profile
predictions for deviations from the glide slope. However, prior to glide slope capture, the
727 concept employs an assumed path intercept geometry in lieu of the phugoid approxi-
mation.

6.3.4 COMPUTATIONAL FLOW SEQUENCE

A macroflow diagram of the algorithm is pres'ented in figure 38. A more detailed diagram is
contained in reference 3.

After the necessary inputs have been made on the pilots’ control panel, the preliminary
calculation routine computes and stores the minimum operational speed boundary (1.3 V)
for each flap position. The routine also computes and stores the configuration selection
speeds to be used in predicting the desired flight profile for the delayed flap approach. The
minimum speeds vary with airplane weight only, while the desired profile speeds also
depend on the final approach speed selected by the pilot and the status of the anti-icing
switch. This section of the algorithm also sets up all constants and flags required to do the
initialization for the V-X profile calculations.

In the nav parameter update section, the sensor information calibrated airspeed, altitude,
distance, and groundspeed are updated, and true airspeed and glide path deviations are
computed. Here, also, the warning flag (IWARN) is tested. If IWARN = 1, the computer is
inoperable and resets all displays. The warning flag can be set by system failures or by an
overspeed condition that would prevent stabilizing at the target altitude.

The path geometry routine uses airplane position, the glide slope angle set into the control
panel, and the last computed IP distance to determine the path geometry. The geometry
is updated prior to each profile prediction.

The wind reference section first computes the wind at flight altitude (Vy,) from actual
airspeed and DME groundspeed inputs. A reference wind at tower height (Vyy () is then
re

computed for an assumed shear profile. This reference wind (filtered) and the same shear
profile are later used in the V-X profile computation routine to define the assumed wind
variation as computed altitude varies along the predicted profile.

The starting conditions for the profile computation are updated in the initialization section
prior to each profile prediction. Normally, the starting conditions correspond to the actual
airplane position, speed, configuration, and thrust. However, when computing the IP loca-
tion, the prediction is initialized at the last computed IP position at the IP flight conditions.
These are outlined in section 4.3.1. The initialization routine also contains logic that deter-
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mines when an IP update is required and switches the starting conditions accordingly. The
stopping point for the profile calculations is set at the same time. Normally, the profile
calculation is stopped when the predicted speed reaches the final approach speed. However,
it may also be stopped as a function of distance, e.g., to determine predicted speed error at
the IP for display.

The profile computation loop predicts a flight profile between the beginning and end points
set by the initialization routine. When the test speed or distance for terminating the profile
computation is reached, the algorithm branches to the EPR, flap, and gear command update
section.

A new command is generated whenever the speed at the end point is greater than desired or
the distance is closer to the touchdown point than desired. However, if the airplane speed is
higher than the placard speed, the command is not displayed. If an overshoot is predicted
for the desired speed/configuration schedule, then a fast deceleration sequence is entered
within the V-X profile computation loop to test if the overshoot could be prevented by
extending flaps at the placard speeds. If so, the commands will continue to be given. If not,
the warning flag will be set (IWARN = 1) and further computations halted.

After the commands are updated, the algorithm continues with airspeed error computation
and fast/slow drive. Next the light logics for command display are updated, and the algo-
rithm is then ready to cycle back to the NAV parameter update routine to begin X compu-
tation of a new V-X profile.

The algorithm continues to cycle through these routines until the last command has been
generated, then continues to generate a fast/slow indication until the airplane reaches the
runway threshold. At this point the computer commands and displays are cleared in the
lights reset routine.

6.3.5 PROFILE PREDICTION

The profile prediction concept is depicted in figure 6. Thrust, lift, and drag are computed
first and used together with glide slope angle and wind information to find the deceleration.
The deceleration and the groundspeed are integrated numerically for step size At, using a
simple rectangular integration routine to obtain the next point of the V-X profile. Ground-
speed is converted to airspeed and the computation then cycles back to recompute thrust,
lift, and drag for the next point, etc. At the same time at the scheduled airspeeds, the flaps
and landing gear are lowered with the appropriate rates. Thrust changes are represented as
first-order lags.

6.3.5.1 Deceleration Equation

The deceleration equation is programmed in the algorithm in the form:

dv F.-D Vv
G _- 2 n W
—_— = - +— v
& g cos ’y[ L <1 Vo cos ) tan’)’] (1)

67



6.3.5.2 Configuration Sequencing

“The “thrust ‘and drag terms of equation (1) are updated as the computation progresses to

reflect the preprogrammed configuration/thrust command sequence. The starting configu-
ration normally is the same as the actual airplane configuration. (The IP calculation is an
exception.) The profile prediction then begins with the next command to be displayed to
the pilot; e.g., if at flaps 2, the prediction would begin with the flaps just starting to move
from 2 to 5.

The sequencing logic is implemented by a set of counters within the digital program, which
are first set to the desired initial condition (e.g., synchronized to match actual airplane flap
and gear position). The counters are then incremented to denote configuration changes as
the profile computation progresses. The counters are reset prior to each profile prediction,
so any configuration change made by the pilot would automatically be reflected in the
initial conditions for the next prediction.

6.3.5.3 Thrust

The thrust calculation assumes three engines operating at equal power setting. Steady state
curves converting power setting into corrected net thrust (Fn/ﬁ) are used. The atmospheric
pressure ratio (6) and Mach number are computed for the instantaneous condition to obtain

- total net thrust (Fn).

It was found necessary to include the initial power setting and the effects of engine dy-
namics to obtain sufficiently accurate modeling of the airplane deceleration profiles. The
thrust calculation for this feasibility study only provides for standard day conditions.

6.3.5.4 Lift Coefficient

The lift coefficient calculation was simplified considerably by using calibrated airspeed
instead of equivalent airspeed. This was done because the complicated conversion formulas
would slow down the profile computation, thereby losing accuracy in the timing of the
commands, while gaining little in the computation of the correct speed.

6.3.5.5 Drag Coefficient

The drag coefficient (Cpy) calculation includes polars for every flap detent that were curve-
fit with the data points used in the airplane simulation in the region between V. ef and the
flap placard.

The drag for two flap detents is used to interpolate to the actual flap position. Landing gear
drag is calculated separately; gear transition effects are included, but speed brake drag is not.
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6.3.5.6 Path Geometry

The path geometry () routine determines the initial (v5) and final (ygg) path angles and
the intersection point for switching the value of v in the deceleration equation from vy to
7Gs- The logic is depicted in figure 7.

6.3.5.7 Wind Profile

The profile prediction uses the ARB wind shear profile (ref. 5) to account for wind varia-
tions along the computed profile. The ARB profile is defined by the equation

Vw
v = 0.43 log] 0 h+0.35 2)
Wref

where Vyy is the wind at the altitude (h), which varies along the computed profile. The
logarithmic function was approximated by

Vw (2226 h +2893)

vV T (h+ 2152 3)
Wref (h )

in the algorithm, to simplify the computation.

The referenced wind velocity (VW f) at 10 m tower height (33 ft) is held constant during
re

each profile prediction. The reference wind is computed onboard (i.e., not set by the pilot)
and is updated prior to each profile prediction.

6.3.6 PROFILE MATCHING

It was found necessary to model the thrust and drag quite accurately to obtain commands
at their scheduled speeds, for the nominal no-wind case, particularly for the low drag con-
figurations. The explanation is found in the low deceleration rates and the small decelera-
tion changes between the initial configurations. A small error in the deceleration slope,
therefore, projects into a large speed change to make up for the drag error between the
modeled and the real airplane.

This error in the timing of the initial configuration change commands does not affect the
accuracy of the end point of the deceleration, but it could affect the pilots’ workload if
the commands bunch together or if the speed deviations require large attitude changes
to track the glide slope.

6.3.7 COMMAND GENERATION
The first configuration/thrust change assumed in the profile prediction (sec. 6.3.5.2) is

also used to arm the corresponding command circuit to the pilots’ annunciator panel.
Normally, the command will be illuminated when the profile prediction indicates that the
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final speed will be reached at (or below) the target altitude. An exception is the initial
power cut command that is based on predicted speed at the IP.

If exactly on the desired profile, the commands will be displayed at the desired speeds.
The algorithm will shift the commands to higher speeds to decelerate faster in case of an
overspeed condition and to lower speeds to decelerate slower in case of an underspeed
condition. However, a command that would violate placard speed is inhibited until the
placard speeds are cleared. Similarly, if during deceleration a speed equal to or less than
1.3 Vg is reached for any flap detent position, a command is generated to go to the next
flap detent.

6.3.8 FAST/SLOW SCALING

Although the fast/slow should be interpreted as meaning high or low on energy, the algo-
rithm output to the instrument is in speed units. The fast/slow displays two types of infor-
mation depending on the approach phase (fig. 5) with scaling as follows.

Half-scale indication

Phase Data displayed (to first index mark)
i Speed error predicted at the P 20 kn
I Speed deviation from desired profile® 10 kn

8Desired profile is stored when each command is given. Below the
stabilization point the desired speed is constant at the VFINAL
selected by the pilot.

The 20-kn scaling for Phase I gives the pilot an indication of whether or not to use speed
brakes prior to the IP. If the fast indication is below the first index mark (20 kn), the
airplane will arrive at the IP at less than the flap placard speed. The Phase Il scaling is
expanded for better sensitivity on final approach.

6.4 SIMULATION

A low-speed six degree-of-freedom fixed-base simulation of the 727 was implemented on the
Boeing engineering simulator at Renton, Washington. Programming and checkout of the
basic airplane simulation were initiated immediately upon contract go-ahead and proceeded
in parallel with development of the AEMS computer algorithm, which was later added to
the simulation. The simulation included a jet transport cockpit and TV display.

6.4.1 BASIC AIRPLANE SIMULATION
Existing aerodynamic, powerplant, and flight control system data for the 727 were pro-

grammed into an existing, standard simulation model. Aerodynamic data were included for
flap detents O through 30, with particular attention given to accurately representing drag,
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pitch attitude, and stabilizer trim characteristics. The flight control system models included
the pitch and roll autopilots and flight directors in addition to the manual controls and
yaw dampers.

The engine model was tailored to closely represent JT8D-9 steady state thrust and dynamic
response at low power settings. Fuel flow and centerline noise calculation routines were
included, which provided realtime outputs to the data recorders. The noise routine calcu-
lated the combined airframe and engine noise for both untreated and quiet nacelles. This
was done by computing airframe noise and engine noise independently of each other, and
summing the values logarithmically to obtain the total aircraft noise. The airframe noise
was obtained as a function of gear and flap position from data tables for reference values of
speed and altitude. The output of the tables was then adjusted by an equation that
accounted for speed and altitude variations from the reference. The engine noise was
obtained from tables that provided engine noise as a function of corrected net thrust (Fn/é)
for a family of constant altitude lines. These data were then adjusted for speed variations
from the engine noise data reference speed. The engine noises for untreated and quiet
nacelles were individually summed (logarithmically) with airframe noise to obtain the total
noise for each configuration. The output of the simulator noise model agreed within £1.5
EPNdAB of 727 certified noise levels and other Boeing noise test data.

Before conducting piloted evaluations of the DFA procedures, the basic 727 simulation was

validated against flight test data in those areas considered pertinent to this program. This
included:

® Angle of attack, stabilizer, elevator positions, and airplane drag for trimmed flight
~at several speeds, flap and gear settings, and c.g. locations

®  Airplane acceleration, deceleration, rate of climb, and rate of descent at several power
settings

e Engine fuel flow, pressure ratio (EPR), low pressure compressor speed (N1), and net
thrust (Fn) for engine transient and steady state conditions

e Engine acceleration and deceleration response at normal and low power settings

® Total airplane noise (airframe and engine) for FAR 36 certification points and for
other available flight test points

e  Stabilizer trim motor rates and position limits for manual and autopilot trim
e Flap rates/operating times
o  Gear extension times

e  Autopilot/flight director performance for localizer and glide slope capture and tracking
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e Primary flight control system characteristics in terms of column/wheel/rudder pedal
forces, gearing, limits, hysteresis, and dead zones '

Short period pitch response was compared to a computed response for a column step input
and was evaluated on the simulator by the Boeing test pilot assigned to this project. Lateral/
directional dynamic characteristics such as Dutch roll and turn coordination were not
emphasized in the DFA simulation evaluation. However, detailed comparisons with flight
data were made as part of a separate Boeing simulator improvement program, and qualita-
tive lateral/directional checks were made by the DFA simulation validation pilot.

Some deficiencies were noted during the simulation checkout and validation process, and
most were corrected as part of the separate Boeing simulator improvement program. The
completed simulation was judged to be adequate for the DFA evaluation, and, in general,
quite good. The most significant unresolved pilot complaints were that pitch control was
not as precise as in the actual airplane and that excessive column input was required to con-
trol pitch when flaps were extended from 25 to 30 and power was advanced from idle to
approach power. The Boeing evaluation pilot flew several DFA approaches (on a noninter-
ference basis) during scheduled Boeing test flights, and concluded that pitch control in the
areas noted above was easier in the airplane than on the simulator.

6.4.2 AEMS SIMULATION

The AEMS computer algorithm was simulated by programming the path prediction routine
on a VARIAN computer that was interfaced with the EAI-8400 computer containing the
basic airplane simulation and the command logic portion of the algorithm. Considerable
difficulty was encountered in debugging the algorithm simulation; but once operating, it
worked quite well. No significant changes were required to the fundamental algorithm
concept definition, although several improvements were made based on simulation results.

The cockpit displays used for the AEMS simulation are shown in figure 39. The moving
bug on the airspeed indicator was used for simulation convenience in lieu of multiple
plastic bugs but is not included in the system specification. Annunciator lights rather than
the numeric displays defined in the system specification were used to reduce simulation
hardware costs and programming time.
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Note: For engineering simulation use only.
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7.0 EVALUATION

The development and evaluation phases overlapped somewhat, in that modifications were
developed to correct significant deficiencies as they were noted. During this combined
development/evaluation process, the simulator evaluations were conducted by the test
engineers (autopilot) and by one Boeing test pilot assigned as the project pilot for this
study. When the simulation appeared satisfactory for purposes of this study, the NASA
project pilot evaluated the 727 delayed flap procedures for conformity with the NASA
CV-990 concept. The simulation was then ““frozen,” and further evaluations were conducted
by additional Boeing pilots to assess workload, checklist compatibility, and fuel/noise
benefits.

Fuel and noise data were also computed independently by unpiloted computer routines
(sec. 5.0). Correlation with simulator results was good.

Compatibility with existing systems was evaluated on the basis of simulator results and
engineering experience. Availability of required equipment (e.g., fast/slow indicator) was
briefly reviewed for the 727-200 fleet.

7.1 PILOT EVALUATION
7.1.1 FLIGHT PROFILES AND PROCEDURES

The Boeing project pilot assisted in development of the procedures and display concepts.
During the course of this development process, the speed/configuration schedules were
evaluated for a number of conditions as summarized in table 11. Both manual and auto-
pilot control were tested. To reduce costs, the simulation vision system was used only when
checking for attitude variations and for stabilization height. Otherwise, the approaches
were flown entirely IFR and terminated at the runway threshold.

A majority of the runs were made with the pilot following the commands displayed on
the annunciator panel and using normal glide slope tracking technique following capture
at an altitude of 915 m (3000 ft). Except for the strong headwind case where the configura-
tion scheduling needs improvement, the AEMS performed satisfactorily. To check opera-
tional flexibility of the system, other conditions were flown in which a different flightpath
was followed or the pilot deviated from the computed configuration sequence. Three
general types of conditions, which might be expected to occur routinely, were tested with
results as shown in table 12.

The simulation was then flown by the NASA project pilot with the technical monitor

observing. Both concluded that the 727 AEMS operation was quite similar to the CV-990
from the pilots’ point of view.
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Table 11.—Evaluation of Nominal Profiles

Test series

Conditions tested

Test pilot and engineer comments

1. Normal profile
checks

a. Weight

b. C.G.

c. Wind (with ARB
shear profile)

2. Stabilization

3. High field
elevation

- 4, Trimmability
checks

5. Turbulence

CG.
Mid
Mid
Mid

Fwd
Aft
Mid
Mid
Mid

WT

Avg

Max
Min

Avg
Avg
Avg
Avg
Avg

. Matrix of cases

Wind

Calm
Calm
Calm

Calm
Calm

10-kn tail
30-kn head
15-kn cross

. 91, 152, 244,305 m

{300, 500, 800, 1000 ft)

also,

. 1524 m (5000 ft)

. Hands off at 91 m (300 ft)

Autopilot disconnect
at several points

. Spot checked in light

turbulence

. Able to track glide siope and remain

in trim. Pitch changes and column
forces not excessive. Busy at end of
approach but OK for VFR.

a. Weight change not apparent
except for different speeds.
Below current maneuver speeds
at lighter weights.

b. C.G. variation shifts command
speeds (5-kn max).

¢. Profile OK in 10-kn tailwind.
Two problems in strong headwind.

o Gear extension below 305 m
(1000 ft)

® Commands too close together
at low altitude.

Crosswind has no apparent effect.

. Less work and better tracking precision

if stabilized higher. Pitch autopilot
tracking unsatisfactory for 91-m (300-ft)
stabilization, Suggested minimums:
152-m (500-ft) VFR; 244- to 305-m
(800- to 1000-ft) IFR.

. Deceleration starts sooner; OK,

. Requires attention but can be in trim

at 91 m (300 ft). Thrust trim more
difficult than pitch.

Acceptable autopilot disconnect

transients for worst case. In trim
at 91 m (300 fv),

. No apparent problem, but needs

more evaluation.




Table 12.—Evaluation of Other Profiles

Condition checked Comments
. Speed reduction requested by 1. OK, except the fast/slow indication is confusing. The fast/slow
ATC which requires extending is centered following the initial power cut. When flaps are
flaps prior to first flap extended prematurely, the system resets and gives a slow indi-
command cation meaning power cannot be left at idle. However, airplane

is actually fast for the selected flap.

. Glide slope capture at 2. OK.
altitudes from 457 t0 1219 m
{1500 to 4000 ft)

. High and fast 3. OK to a point, as system advances flap commands to compensate.
However, system presently will not take gear out of normal sequence
so overshoot warning will be given unnecessarily.

. Low and slow 4, OK to a point, as system delays flap commands to compensate.

At present, system commands next flap at 1.3 Vs‘ This concept
and the need for additional speed monitoring require more
evaluation.

7.1.2 FUEL/NOISE COMPARISONS

Two other Boeing pilots, one from Crew Training and one from Production Test, flew a
series of approaches for the final fuel/noise comparisons, as described in section 5.5. The
simulator data presented in this report were taken from runs by these pilots.

7.1.3 CHECKLIST COMPATIBILITY

Total crew workload and checklist compatibility were evaluated by a normal 727 three-
man crew. The crew consisted of a pilot and flight engineer from Crew Training who had
not previously flown the procedures, in addition to the Boeing project pilot who acted as
First Officer. Computer setup was accomplished as part of the descent checklist. All check-
list items and other callouts for an ILS approach to 61-m (200-ft) minimums were made as
the delayed flap approach was flown manually under IFR conditions. It was concluded that
the checklist could be completed above a 152-m (500-ft) stabilization height, but that to do
so required more crew alertness than for normal ILS procedures. However, the crew work-
load and checklist completion was considered a littleeasier than for current IFR nonprecision
approach procedures.

With current airline procedures, the landing checklist (table 13) is performed following gear

extension. The delayed flap approach delays gear extension to about 305 m (1000 ft) of
altitude which was considered marginally satisfactory in terms of crew workload. If the
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Table 13.—727 Normal Checklist (with AEMS Added)

After Takeoff
IGNIION . . . . ot i e e e OFF/ON F/E
No smokingandseatbeft . ...................... OFF/ON F/E
ANBCE. . o v ittt e e CLOSE/OPEN F/O
Gear . . . e e e e UP & OFF F/O
Flaps. . . . . . e e UP, NO LIGHTS FO
Hydraulics . . . ... ................ PRESS & QTY NORMAL F/E
Pressurization. . . .. .. .o vttt CHECKED & SET F/E
Autopack tripswitch . . . . ... ... ... ... ... CUTOUT F/E
After takeoff checklist . . .. .. ................. COMPLETE F/E
Descent Approach
Seat belt . . ... i e e e ON F/E
Anti-ice. . . .. .. e e e CLOSE/OPEN C,F/O
Landinglights. . . .. ....... ..ttt iitiennneaennnn ON F/O
Altimeters . . ... ..........0vuruennnn SET & X-CHECKED C,F/O
Radioaltimeter. . . . .. ....... . ivuri i inennnnn SET CF/O
Flight instruments, FDS and radios. . . . . . ... SET & X-CHECKED C,F/O
Go-around EPR and Vref ...................... BUGS SET ALL
B AEMS. ... e SETUP
Fuel ... ... .. .. . SET FOR LANDING F/E
Hydraulics . . . .................. PRESS & QTYS NORMAL F/E
Pressurization and coolingdoors. . . .. ...........00.... SET F/E
Circuitbreakers. . . . .. .. ... ..viviunennnennnn CHECKED F/E
Descent approachchecklist . . .. ................ COMPLETE F/E
Landing
Antiskid . ... .. ... i e e e e e NO LIGHTS F/E
gNItION . . . .. . i e e e e e e ON F/E
Speedbrakelever. . ... ............... ARM, GREEN LIGHT o
NOSMOKING . . .. v v it ittt ettt st ON F/E
Gear. ........ . e DOWN, IN, 3 GREEN C
Flaps. . .. ... i e it e e GREEN LIGHT C
Mydraulics. . . .................. PRESS & QTYS NORMAL F/E
Landingchecklist . ......................... COMPLETE F/E

Reference: B727 Operations Manual, 15 July 75
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procedures were used operationally, the checklist sequence should be reviewed; e.g., it might
be necessary to turn on the NO SMOKING sign before gear extension to give the fllght

--attendants-time to check seat belts;etc- -~ - e s -

7.1.4 OVERALL

The consensus of the Boeing pilot opinion was that the procedures are reasonable on the
simulator, provided a stabilization height of 800 to 1000 ft is used for IFR, but there are
still a lot of rough edges to be worked out before the system could be used operationally.

7.1.5 DEMONSTRATIONS

After the Boeing evaluation was complete, the 727 simulation was demonstrated to the
ATA and ALPA pilots, Captains Bob Byrd and Ray Lahr, respectively, who had also flown
the CV-990 system, and who subsequently reported their observations at the NASA RTAC
conference, May 11, 1976 at Edwards AFB.

7.2 DISPLAYS

Cockpit displays were partially evaluated using the simulation hardware (sec. 6.4.2). To
avoid the expense of building and programming the various control panel and annunciator
panel configurations, paper mockups were used in lieu of actual hardware. These were
positioned in the cockpit and discussed with the pilot. While suitable for purposes of this
study, further evaluations should be done with actual hardware.

7.2.1 ANNUNCIATOR PANEL

The configuration used in the simulator (figure 39) was too confusing and too far out of the
pilots’ normal scan range for an operational system. However, several useful conclusions were
drawn:

e  Alert Light—Because of the numerous commands, the 727 simulator display looked
too much like a pinball machine when the CV-990 concept of a steady alert plus a
flashing command were used. Pilots tended to make the configuration change as soon
as the alert light came on instead of waiting for the command. In addition, the alert
feature added considerable complexity to the 727 algorithm, and it was quite difficult
to obtain the same alert time for all commands. Consequently, the alert light was
eliminated. The current 727 concept is to wait until it is time to make the configura-
tion change, and then turn on a steady light.

o Flap Command Light—Originally, the flap command lights were programmed to stay
on until the flaps had reached the commanded position. This was annoying, so the
logic was changed to turn the light off as soon as the flaps started to move toward the
commanded position.
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e  Thrust Command Light—The first concept tried was to turn off the light when the
commanded EPR had been reached. However, because of engine lags at low power
settings, there was a tendency to push the throttles too far, resulting in an overshoot
of the desired EPR. This tendency was considerably reduced by using throttle position
rather than EPR to turn off the light. The pilot can now advance throttles until the
light goes out and then make a small adjustment, if necessary, after the engines have
spooled up.

e  Separation—Because of the sometimes simultaneous EPR and flap commands, it is
essential to configure the annunciator panel so as to easily distinguish which is which.

7.2.2 FAST/SLOW INDICATION

The fast/slow indication concept was modified several times during the study, and was
finally *‘frozen” for purposes of completing the remainder of the study. The concept. as
currently simulated and defined in the preliminary avionic specification, is still not entirely
satisfactory. The basic problem is that the one instrument is being used to present several
types of information. The result is that the pilot has to remember that the same indication
can require a different action (or nonaction) depending on the approach phase;i.e.,

Meaning of fast/slow indication and pilot action expected

Approach phase Fast Slow

Prior to first flap command Excess energy. Cut power. Not enough energy to complete approach
If more than one-half scale, at idle power. Action depends on situation.
with flaps up, extend speed Use thrust to control airspeed determined
brakes. by pilot.

Configuration éequencing Excess energy. Do nothing Low energy. Recheck configuration. Add
except recheck configura- power if beyond one-half scale.
tion and wait for next
command.

Final Too fast. Reduce power if Too slow. Add power.

out of normal speed
tolerance band.

Although complicated, this logic might be satisfactory with sufficient training and experi-
ence if the desired profile could be flown without interruption. However, the situation
becomes more confusing if it becomes necessary to extend flaps after the power has been
cut but before the first flap command has been given. The fast/slow, which was centered
(or fast) at the time of the power cut, will suddenly indicate slow when the flaps are ex-
tended prematurely. This is confusing because the flaps were probably extended to reduce
speed. If the pilot mentally “‘shifts gears” back to the start of Phase I, he will ignore the
slow indication and fly basic airspeed to determine power setting. In this case he was at idle
power, so he must advance power to hold the desired speed. When the doughnut centers
again, he can cut power again.
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Other examples could be cited, but the point is that the whole fast/slow and speed monitor-
ing concept should be carefully reviewed. While providing some indication of both energy
limitations and speed deviation, the 727 algorithm does not do a particularly good. job
with either function. The best solution may be to use the fast/slow for the more customary
function of speed monitoring and to provide a separate energy indication.

7.3 SYSTEMS COMPATIBILITY
7.3.1 AUTOPILOT/FLIGHT DIRECTOR

The autopilot and flight director were checked for compatibility with the AEMS. Particular
attention was given to the effects of glide slope and localizer captures at higher than usual
speeds and at different flap settings. Also the effect of configuration changes on glide slope
tracking was evaluated. Both autopilot and flight director were found to be compatible with
the AEMS. As illustrated by figures 40 versus 41 (flt dir) and figures 42 versus 43 (AP), the
delayed flap procedures had little effect on glide slope tracking for stabilizaton altitudes as
low as 152 m (500 ft). However, glide slope tracking became unacceptable for stabilization
altitudes below 152 m (500 ft). No autopilot/flight director modifications are expected to
be required for compatibility with the recommended procedures.

7.3.2 ENGINE AND ANTI-ICING SYSTEM

The delayed flap approach is satisfactory for nominal JT8D-9 response characteristics. The
power setting is increased from idle to EPR 1.1 well in advance of the stabilization point,
and the engine is operating at normal power settings below 152 m (500 ft)-VFR and 305 m
(1000 ft)—IFR. The EPR 1.1 setting is near the surge bleed valve operating point so reason-
ably fast acceleration can be achieved, if required.

When engine-to-engine variations (e.g., due to wear or manufacturing and maintenance
tolerances) are considered (not part of this study), it may be necessary to use a specific
EPR setting in lieu of throttles idle for the first power setting. An EPR slightly above the
nominal idle position would have two advantages: (1) the thrust could be predicted more
accurately, which would give better profile matching, and (2) engine acceleration following
prolonged dwell at the specified EPR would be more consistent than if allowed to stabilize
at throttles idle. This would not alter the concept, and the increase in noise and fuel consump-
tion would probably be imperceptible.

In the case of icing conditions, the profiles must be modified to maintain N; = 55% for
inlet anti-icing. An EPR of 1.2 is the minimum that would ensure this. When wing deicing
is needed, the required power setting (N; = 80%) is so high that a stabilized approach must
be flown.

7.3.3 EQUIPMENT AVAILABILITY
The AEMS requires a fast/slow indicator on the ADI. Equipment lists for 825 airplanes

operated by 14 domestic airlines were reviewed for fast/slow indicator availability. Results
were:
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Fast/slow Percentage of fleet

instrument {so equipped)
None : 38%
Unscaled 44%
Scaled 18%

The unscaled indicator has a fast/slow pointer but no index marks other than zero. Imple-
mentation of the CV-990 concept, which uses a scaled indicator, would require modification
or replacement of most of the existing ADIs. An alternative is to implement a separate
energy indicator.

The AEMS also requires inputs from existing airplane systems (fig. 2). The required inputs
are available on all aircraft as noted:

Airspeed Calibrated airspeed is obtained from the CADC.

Altitude Barometrically corrected altitude is obtained from the altimeter
output that also serves the altitude alert system.

DME DME range is available on all aircraft. Later models with the newer
digital systems covered by ARINC Spec. 568 have both digital
range and range rate signals available.

Flap position Flap position information is available from the outboard position
transmitter.
Gear Landing gear position information can be provided from a switch

on the gear lever.

Anti-icing Anti-icing switch status can be provided from additional contacts
on the switch.

Field elevation Field elevation is obtained from the electronic cabin pressure con-
trol system, available on some B727 models.

7.4 PERFORMANCE AND SAFETY
7.4.1 AEMS PERFORMANCE
The AEMS system was demonstrated to give consistent guidance in assisting the pilot to

execute the delayed flap approach and to stabilize the airplane at the target altitude. This is
evidenced by the simulation traces of figures 40 through 49.
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Figure 44.—Simulator Data for DFA-1, Autopitot On, 10-kn Tailwind
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For nominal, no disturbance, on glide slope conditions, the actual flap and gear command
speeds matched the flap and gear speed schedule to within 1 kn. The first flap command
may deviate slightly from the scheduled speed for conditions where the actual glide slope

~intercept geometry differs considerably from the assumed geometry of the prediction of the
deceleration profiles. However, the remaining commands would compensate.

The AEMS airspeed signal is taken from the CADC, which uses the same pitot-static system
as the captain’s airspeed indicator. Small differences between the CADC and the airspeed
indicator may contribute to an apparent shift of the AEMS commands from their scheduled
speeds, but this should not significantly affect performance.

7.4.2 EFFECT OF WINDS

The AEMS was demonstrated to handle strong headwinds (figs. 46 and 47) and tailwinds
(figs. 44 and 45) with little effect on the stabilization point. However, the simulation shear
profile was the same as that assumed in the algorithm. Effects of various shear profiles
should be considered if the system is further developed. The fuel conservation benefit of the
DFA procedure in a strong headwind is evident from comparison of figures 47 and 48. Effects
of turbulence briefly spotchecked in this study (fig. 49) should be further evaluated.

7.4.3 FLIGHT DIRECTOR/AUTOPILOT

The AEMS is compatible with both manually flown flight director and autopilot approaches.
The flight director performed satisfactorily in spite of higher approach speeds and changing
flap configurations; no deficiencies were noted. The pitch autopilot glide slope capture and
tracking performance were at least as good as for standard approaches, and possibly slightly
better during the deceleration phase when thrust stays constant.

7.4.4 LATERAL AUTOPILOT

The lateral autopilot localizer captures were found to exhibit larger overshoots for delayed
flap approaches when compared to standard captures at the same distance and localizer
intercept angle. This is due to the increased turning radius for the higher speeds associated
with delayed flap approaches and the limited autopilot bank angle. However, equivalent
localizer capture performance is obtained when the capture distance is increased by the
square of the velocity increase factor, approximately 4.83 km (3 miles).

7.4.5 MANUAL APPROACHES

Speed and path control during manual delayed flap approaches using the AEMS compared
well with standard approaches. Simulator comparisons are presented in figures 40 and 41.
Note the additional throttle activity for standard approaches, which results from using
throttles for speed control. On the other hand, there is less trim activity and pitch attitude
variation for the normal approach.
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7.4.6 TRIM

As a result of speed, configuration and thrust sequencing, the trim continually changes
during the delayed flap approach until the airplane is stabilized in the final approach con-
figuration. The autopilot trim motor rate (0.1°/s) was adequate to keep the airplane ap-
proximately trimmed at all times. The autopilot was disconnected at various points along
the delayed flap approach profile, with no significant autopilot disengage transients. The
trim motor actuated by the pilots’ trim button has a higher rate (0.5°/s) than the autopilot,
so trim rates for manual flight are also no problem.

As a further check that the airplane would be in trim for final appraoch and landing, the
pilot took hands off at 91 m (300 ft), and the speed and glide slope deviation were checked
at 61 m (200 ft). It was found that the criteria (21/2 dot, +5 kn) could be met. However,
it took some practice and considerable pilot attention to get the thrust exactly trimmed by
91 m (300 ft) when the stabilization altitude was 152 m (500 ft). Pitch trim was not much
of a problem except when thrust mistrims resulted in speed changes.

For autopilot approaches, mistrim was checked likewise by disconnecting at 91 m (300 ft)
and checking the deviation at 61 m (200 ft). Here also, the criteria could be met with much
less pilot effort.

7.4.7 SAFETY
It is difficult to fully evaluate safety of procedures on a simulator, primarily because the
pilot usually is concentrating exclusively on the task at hand. Real-life distractions and the

inattention that sometimes results from long periods of uneventful flight are hard to simu-
late. Some of the more obvious safety-related items can be, and were checked;e.g.,

e Speeds—At no time did speed inadvertently go below 1.3 V or above placards. The
final speed was controlled within +10 to -5 kn. Proximity to placards is illustrated in

figure 8 for a nominal run.

e  Path Control-Except on familiarization runs, the pilots always stayed within 1 dot of
the glide slope.

e  Go-arounds—No difficulty was encountered in executing a go-around.

However, a great deal more evaluation is needed to determine if additional monitors or
warnings are required; e.g., independent speed monitor and additional warning for failure to
set final power.

7.4.7.1 Speed Monitoring

No provisions have presently been made for independent speed monitoring other than
reference to the airspeed indicator. This may be adequate, but the relatively fast sequencing
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of flaps could leave the pilot uncertain of the minimum speed in case the AEMS malfunc-
tions or the approach has to be aborted during the deceleration sequence. The existing stick
shaker will give independent stall warning. However, it might be desirable to provide an

“earlier indication, possibly using the same angle-of-attack signal as the stall warning system. =

The speed monitor could make use of visual (fast/slow indicator or lights) and/or aural
warnings.

7.4.7.2 Thrust Monitoring

The present system uses a steady annunciator light to indicate that throttles should be
advanced. If not advanced in 3 sec, the steady light changes to a flashing light. Possibly,
an additional warning that would operate even if the AEMS has failed should be provided.

7.4.7.3 Failure Monitors

The annunciator panel includes an INOP light that illuminates when the computer has
detected a failure. However, it is impractical for a system of this type to monitor all poten-
tial failures. Consequently, pilot judgment or the independent speed/thrust monitors (if
provided) would have to be relied on to determine when the AEMS should be ignored.

7.5 ABUSES AND FAILURES

7.5.1 ABUSES

The AEMS was tested to determine the effects of likely'abuses. The abuses and their effects
are presented in table 14.

The system has a wide enough authority range and sufficient algorithm logics to handle the
abuses in table 14 smoothly and without reaching the airplane’s operating limits (1.3 Vg or
placards). The effect of failing to set the actual glide slope angle into the computer is illus-
trated in figure 50. These data show that differences of 0.25° in the glide slope setting shift
the flap command speeds by as much as 8 kn, and the stabilization distance by about 0.2
nmi. It was concluded that the G/S input should be retained on the control panel, but that
failure to make the input would not cause an unsafe situation.

There are numerous other abuses and departures from the normal flight profiles and proce-
dures that were not evaluated. For example, the adequacy of the interlocks was not tested
to determine the effects of premature engagement of the AEMS by the pilot before inter-
cepting the final approach course. These questions should be studied in more detail in a
" future development program.

7.5.2 FAILURES

Although it is almost impossible to predict the results of computer hardware failures in
detail before the hardware is actually built and the algorithm finalized, some general failure
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Table 14.—Abuse Test Results

CondiAtion

Effect

Remarks

. Wrong weight setting.
. AEMS weight = 578 000 N
(130 000 Ib)
Airplane weight = 686 000 N
{154 000 Ib)

2. Wrong glide slope setting,

Glide slope = 3°
Setting = 2.75°

3. Wrong field elevation setting.

Field elevation = 2438 m (8000 ft)
Setting = 0 m (0 ft)

. Delayed execution of FL 15
command.

5. Skip FL 15 detent.
Go from 2°—»15° at
FL. 5 command.

6. Advance flaps 2 prematurely,
then reset.

Configuration commands at speeds
slightly above speeds for set weight.

Configuration commands at speeds
lower than scheduled VFINAL

Configuration commandds at speeds
higher than scheduled.

Next scheduled command comes at
higher than scheduled speed or
immediately after delayed command.

No FL-15 command.
Landing command delayed 2 kn.

System works normally.

All commands above 1.3 Vg .

All commands above 1.3 V.
(see fig. 50)

Deceleration 10 kn more than
computation assumes.

categories and their effects can be summarized without knowing their source. As described
in the following paragraphs, AEMS failures resulting in inadvertent deceleration below
1.3 Vg are possible. It is, therefore, recommended that an independent speed warning sys-
tem based on angle of attack be considered.

7.5.2.1 No Scheduled Commands Generated

This may occur before the power cut command has been generated. If this occurs before
the power cut command, the final approach zone might be entered at too high a speed
necessitating go-around. After power cut, the airplane will continue to decelerate until
1.3 V¢ where the minimum speed routine would generate an independent flap advance
command.

7.5.2.2 Computer Dead

The specification requires that an unserviceable computer, which fails to cycle through
the program, will have built-in hardware logics to display the INOP light.
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Figure 50.—Effect of Misset Glide Siope Angle
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7.5.2.3 Multiple Commands

If the computer generates all commands in one string, the piiot would know that the sys-
tem has failed and take appropriate action.

7.5.2.4 Annunciator Panel Light Failures

The annunciator panel has lights for EPR, flaps, and gear commands and also numerical
EPR and flap command displays. Each of these may fail independently of the computer.
Failure of either flaps or EPR light may result in the failure of the pilot to execute these
commands. In the worst case, this could result in deceleration until the stick shaker comes
on to warn against impending stall. Failure of the numerical display may cause some con-
fusion, which may lead the pilot to turn the system off and revert back to a standard
approach. Failure of the landing gear light may result in late gear extension and a possible
go-around.

7.5.2.5 Sensor Failures

Sensor failures having a sensor flag (DME and CADC) will result in a computer shutdown
and display of the INOP light. Incompatible sensor information (wrong sign, out of bounds)
will also be detected by the AEMS computer interlocks and will result in system shutdown.
Further spurious sensor failures may result in unacceptable system performance. In such
cases, the pilot is advised to shut the system off and revert to a standard approach.
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8.0 CONCLUSIONS AND RECOMMENDATIONS

The acceptability of new equipment and procedures for airline use must be evaluated by the”
airlines and airline pilots. This report presents technical data, based on engineering analyses,
fixed-base simulation, and Boeing pilot opinion for reference in making judgments concern-
ing operational acceptability. Within that context, the following conclusions were drawn
from this study:

The NASA CV-990 AEMS concept can be adapted to the Boeing 727 and is helpful in
flying optimized delayed-flap approach.(DFA) procedures.

The DFA procedures substantially reduce approach fin\e, fuel and community noise in
nonicing conditions. Alternate profiles, with reduced benefits, must be used to main-
tain N; > 55% when inlet anti-icing is required.

The procedures are acceptable to Boeing pilots on the simulator. Minimum stabiliza-
tion altitudes of 152 m (500 ft) for VFR and 305 m (1000 ft) for IFR are recom-
mended pending further evaluation. Additional evaluation is required to assess safety
aspects in an operational environment. The IFR stabilization altitude could probably
be reduced with experience, particularly for autopilot-coupled approaches.

With a 152-m (500-ft) stabilization altitude, the pilot workload is higher than for
current ILS procedures, but reasonable, being comparable to current IFR nonprecision
approaches.

With a stabilization altitude of 152 m (500 ft) or higher, the DFA procedures are com-
patible with existing systems. No flight director, autopilot, or other flight control
system modifications are required. Existing autopilot trim motor rates are adequate.

In addition to reducing pilot workload, use of the autopilot may help to avoid undesir-
able thrust transients near the approach stabilization point.

Autothrottles were not evaluated in this study. Results of the study indicate manual
thrust control is satisfactory. However, safety implications should be further evaluated.
An additional input to the autothrottle would be necessary, for airplanes so equipped,
to use autothrottles during delayed flap approaches.

Typical airline 727 instrument panel layouts can accommodate the required annuncia-
tor and control panels. Only 18% of the fleet has the desired type of fast/slow indica-
tor. An additional 44% have an unmarked indicator which might be usable. (Not
studied).

The preliminary AEMS avionic -specification is suitable for obtaining budgetary cost

estimates. A complete detailed design and evaluation cycle, involving the airlines and
avionic vendor, would be required before releasing a production specification.
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" Specific recommendations for further work include:

ATC compatibility assessment

Airline pilot evaluation of the 727 procedures and cockpit displays on the Boeing
fixed-base and/or NASA moving-base (FSAA) simulator

Further algorithm and flight profile development to include nonstandard days, incor-
porate improvements as indicated by evaluation results, and explore alternate algo-
rithm and display concepts that could simplify the system and/or increase operational
flexibility, safety, or pilot acceptance

Further consideration of safety implications, including development and evaluation of
independent monitoring and warning systems

Application of the AEMS computer and displays to other flight phases such as takeoff
and cruise

If further development of the AEMS concept appears warranted, a schedule of events involv-
ing all concerned airline, pilot, industry, and government groups should be established lead-
ing to a go-no go decision concerning flight hardware development and DME installation.
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