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ABSTRACT

The interaction of electromagnetic waves of wavelength X with '

periodic structures of spatial period A are studied. The emphasis of

the work is on Bragg interactions where X ̂  2A/N and the Bragg order

N takes on the values 1,2,... . An extended coupled waves (ECW)

theory is developed for the case N ^ 2 and the results of the theory are

found to compare favorably with the exact results of Floquet theory.

Numerous numerical results are displayed as Brillouin diagrams for

the first few Bragg orders. Moreover, explicit expressions for

coupling coefficients, bandgap shifts and bandgap widths are derived

for singly periodic media. Particular note is taken of phase speeding

effects.

The effects of multiharmonic periodicities on the control of

feedback strength are investigated. It is found that with proper

phasing the feedback strength becomes zero and the bandgap disappears.

Coupling parameters are calculated for typical multiharmonic perio-

dicities for the first three Bragg orders.

For,odd Bragg orders, inverted bandgaps and phase slowing

occur when the gain or loss of the media is modulated. Also average

gain or loss aifects the bandgap shape and the spatial or temporal

growth or decay. Absolute instabilities are observed and expressions

are derived for the instabilityfrequencies, thresholds and growth
\

rates. Under certain conditions, instabilities occur for structures

with average loss. The results for the first and second Bragg orders

are archetypical of all odd and even orders respectively.



Applications of the ECW theory to higher-order DFB filters

involve such phenomena as transient propagation, effects of periodicity

profiles and the relative coupling due to boundaries and periodicities.

The calculation of higher-order DFB laser parameters shows that the

mode spectrum is asymmetrically shifted and the threshold gain is

greatly dependent upon the periodicity profile. Approximate threshold

parameters are calculated for high and low gain and for all Bragg

orders. In addition, application of the ECW theory to holographic

gratings and beam propagation is made.
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CHAPTER I

INTRODUCTION

This report investigates Bragg interactions in periodic media

by using the example of electromagnetic waves propagating in spatially •

periodic dielectrics. The main purposes of this report are to develop

physically meaningful approximate methods for higher-order Bragg

interactions, to show the mathematical foundations of the coupled

waves theory and to give physically meaningful explanations for

several previously unexplained mathematical results. Exact and

approximate theories are compared numerically and applications are

made to both bounded and unbounded media, to lossless and lossy media

and to both passive and active media. Examples are given which

correspond both to wave-packets in space and time and to the steady-

state response of plane waves.

The history of wave propagation in periodic media started with

Mathieu's equation in 1868 and subsequent generalizations by Floquet

and Hill in'the 1880's. Although Mathieu's equation had its origin in

problems associated with elliptical boundaries, we will also show its

connection to wave propagation in periodic media. This latter problem
4

was first considered by Lord Rayleigh in 1887. He considered the

effect of periodic density variations upon the propagation of waves on

a string. In the early 1900's a different, more physical, approach

was taken by Sir William Bragg. He derived the necessary spatial

period for constructive reflection of X-rays by crystals. These ideas

44were formalized for quantum mechanical applications by Bloch in

1928. Two books in the 1940's, one 'by McLachlan and the other by

Brillouin, summarized previous work with Mathieu functions and
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with waves in periodic media. The books also provide useful

bibliographies.

While most of the above work was concerned with exact

solutions of differential equations, a second, independent approach

was taken in the late 1940's and early 1950's. This approach

stressed the physical concept of wave coupling by periodic pertur-

bations. A mechanical device demonstrated this effect in 1949 by

coupling torsional energy between two bicycle wheels which were
7 Q

periodically loaded with magnets. In 1953 Pierce used energy

considerations to formulate what is now known as the coupled waves

approach or the coupled mode theory. This approach has been

popular because of its simplicity and intuitive appeal. Summaries

of the coupled waves approach are given in texts by Pierce and

others. ' ' Within the last twenty years the coupled waves

approach has been successfully used in such diverse areas as holo-

..-, .. 15,22,68,69,81,82,83,84,85 ., ,.gram diffraction, * > > > > > > > waveguide coupling,

12,14,16,19,20 . .. ., 17,74
' traveling-wave tubes, parametric

devices, ' ' ' X-ray diffraction, distributed feedback (DFB)

lasers, 14' 23> 24' 25' 30> 35' 36« 58> 70 and others.10' 14' 22' 26' 27« 28< 29'

Extensive bibliographies on recent applications in optics and elec-

.. . ,, , 12,14,20,87 ... . ,, ,tromagnetics are given in the references. ' ' ' We note that

the telegrapher's equations which were developed before the coupled

waves theory are of the coupled waves form. These equations are

not approximations, however, since they exactly describe one-

dimensional transmission line problems.
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The Floquet theory, which originated in the study of ordinary

differential equations with periodic coefficients, has also been useful

in the study of electromagnetic waves in periodic media. Although

this theory is more cumbersome than the coupled waves approach,

it provides an exact numerical solution. Extensions of the theory

to include partial differential equations and finite length media have

44 45also been made. ' Applications of Floquet theory to electro-

magnetic waves have been made in the areas of traveling-wave

antennas, space-time periodic media, ' ' integrated optics,

32,58,63,64 . , , . 8,60 , ., 11,22,40,57,61,' ' ' corrugated structures, ' and others. ' ' ' * '

62,75

Other exact methods that are used in plane-stratified material,

78 88 89such as the matrix method or the method of invariant imbedding, '

will not be used here.

The second chapter of this report contains the derivation of

the first Bragg order coupled waves equations and the Floquet solution

for electromagnetic waves in longitudinally periodic media. A simple

explanation for phase speeding is given and the connection between

the Floquet and coupled waves theory is explained. The dispersion

relation is found as •well as all pertinent coupling parameters.

Several Brillouin diagrams illustrate physical principles and com-

pare the approximate and exact theories.

The primary purpose of the third chapter is to extend the

coupled waves concept to higher Bragg orders. The resulting ex-

tended coupled waves (ECW) equations provide explicit dispersion

and coupling information for every Bragg interaction. Numerical
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examples again illustrate the results of both approximate and exact

theories. A section is devoted to effects caused by perturbations

of several frequencies and the resulting disappearance of bandgaps.

Periodic media with loss or gain is covered in chapter four.

Inverting and non-inverting bandgaps are found which depend upon

Bragg order and coupling type. Index and gain/loss coupling are

both considered. The effect of the periodicity upon average gain or

loss near Bragg resonance is noted.

The fifth chapter discusses the stability of active periodic

media and gives explicit values for instability frequencies and

thresholds at all Bragg orders. The stability criterion also speci-

fies the correct root of the dispersion relation.

Several applications of the ECW theory are given in successive

sections of chapter six. The reflection and transmission of transients

are discussed and demonstrated with detailed numerical examples.

The extension of previous work to higher order DFB lasers is

briefly covered. Diffraction efficiencies can be found when the ECW

theory is applied to holographic gratings. Finally, the case of

beam propagation in longitudinally and transversely periodic media

is outlined.

Conclusions of this report are given in chapter seven.
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CHAPTER II

COUPLED WAVES AND FLOQUET THEORY

A. Bragg Reflections

In order to gain physical insight into the problem of waves

in periodic media, we consider a plane wave incident upon a periodic

structure as shown in Figure 2.1. It is apparent that the reflecting

waves will constructively interfere if the reflections from successive

layers differ by an integral number of wave lengths, NX (N= 1, 2,3,...).

This result is usually stated as Bragg's Law,

NX = 2 A sin9 ( N = l , 2 , . . . ) (2A. 1)

where X = 2ir/k = wavelength of plane wave

A = 2ir/K = spatial period of structure

N = Bragg order

and where the velocity is assumed to be that of free space. The cases

N:>2are referred to as higher-order Bragg interactions. For media

with relative dielectric constant e, we restate the result as

ke*/K = N/2 ( N = l , 2 , . . . ) (2A.2)

for normally incident waves. Note that Bragg1 s Law does not account

for the reflected wave amplitude, for the type of periodicity present

or for the effect of slight variations of the wavenumber k from the

value given by Bragg's Law.

The latter effect is called phase mismatch and can be con-

sidered in a semi-quantitative way by the use of Fig. 2. 2. This figure

shows an incident wave I which is reflected from a three layer
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7T

K

Fig. 2. 1 Bragg scattering of plane wave from periodic
media.
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R = Reflected Wave

Fig. 2. 2 The effect of phase mismatch upon the reflected
•wave. Zero phase mismatch a) indicates

k -r^/K = N / 2 .
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periodic medium to form a total reflected wave R. The wave R is a

phasor sum of four sub-reflections each of which has phases relative

to the first sub-reflection at the incident phase. Multiple reflections

are ignored in this simple model. Parts a)-d) of Fig. 2.2 show the

relation of the strength of the reflected wave R to the phase mismatch.

Fig. 2. 2a shows the constructive interference at the exact Bragg

condition (i. e. zero phase mismatch) that produces large R. It is

apparent that there is a considerable reflected wave R for slight

phase mismatch (Fig. 2. 2b) whereas large phase mismatch will pro-

duce small R (Fig. 2.2d).

Therefore, from simple wave interference arguments, one

can deduce Bragg1 s Law and the qualitative effects of phase mismatch.

Other theories are needed, however, to account for wave amplitudes

and the effect of the form of the periodicity.

I

B. Coupled Waves Approach

1. TEM Waves in Passive Unbounded Media

Consider the case of a plane transverse electromagnetic (TEM)

wave that propagates in a longitudinally periodic unbounded medium

as shown in Fig. 2.3. Assume a time variation of the form e

67
Starting with Maxwell's equations in a source-free, linear, iso-

tropic region, we find in the frequency domain that

vxE (z, to) = i tOJ i H(z,co) (2.B1)^ o "~

V x H ( z , to) = -itoe e(z) E(z,to) (2.B2)
•— Q •—

V- E (z, to) = 0 (2.B3)

V. H (z, to) = 0 (2.B4)
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TEM WAVE

€(z) fncos(nKz)]

Fig. 2; 3 TEM wave propagating in unbounded periodic media.
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where CO = radian frequency

\i - free-space permeability

e = free-space permittivity

e(z) = relative permittivity or relative dielectric

constant

and where E and H are the electric and magnetic field vectors.

By combining (2. Bl), (2. B2) and (2. B3) we find the wave equation

for no transverse variation

,2
•±-Mz) +k2 e(z) E(z) = 0 (2.B5)

where E(z, to) = E(z)e~ = transverse component of E(z, co)

k = tO/c = 2-ir/X = free-space wave number

e(z) = e [ ~ l + r ) £ f cos(PKz)l , f_ = 0, f. s iL p=0 P J U 1
T| ^ 1 is the perturbation.

The periodic dielectric constant has been expanded in a Fourier cosine

series. Assume that the electric field can be represented by just

two waves, • • • a forward wave F(z) and a backward wave

'B(z) which travel with positive and negative phase velocity along z.

This assumption is intuitively appealing for r\ « 1 since these are

the only two possible waves in the unperturbed case. Thus, we con-

sider the transverse electric field

E(z) = F(z)e lpz + B(z) e"l(3z (2. B6)

where P is the longitudinal wavenumber. For first-order Bragg

interactions, p/K =• 1/2. Then let
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F(z) =

A p = K/2 + A (3

, B(z) =

(2.B7)

(2.B8)

Use equations (2. B5) - (2. B8) and the slowly varying approximation

Frr

B"
/F1

and / F » \
V B"/

Z . F \o v B ;' where

primes denote differentiation with respect to z, to find

•>
F + 2i P F1 + le e F B]e

C £T|

2

,
f e 1 PP°Z][Fe +Be2 p=2

where the arguments in z have been dropped. The coupled waves

(2.B9)

equations are found by equating the coefficients of e

15 19
'

to

zero. The terms proportional to e (p = 2, 3, . . . ) are

either ignored, termed non- synchronous or averaged over time and

14considered zero. It will be shown later that these terms corre-

spond to relatively unimportant coupling to other waves when

The resulting coupled waves equations are,

F'(z) - i 6 F(z) = ix B(z)

B'(z) - i 6 B(z) = iy F(z)

where 6 = = phase mismatch

n
X ^ "4 —a — = coupling coefficient

o

(2.BIO)

(2.Bll)

(2.B12)

(2.B13)
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These equations agree in form with those derived elsewhere. ' ' '

18 20 2"? "^0
' ' ' The equations account for both the wave amplitudes

and the phase mismatch as well as the interaction of the waves with

the fundamental Fourier component of the dielectric periodicity.

When 6 = 0, the waves F(z) and B(z) are coupled only through the

perturbation r\ while the change in amplitude of one wave is propor-

tional to the amplitude of the other wave. For zero perturbation,

the wavenumber of F(z) and B(z) becomes equal to the phase mismatch.

2. Coupled Waves Dispersion Relation

By differentiating the coupled waves equations, a wave equation

= °
is constructed. Assuming a solution of the form e * "Z, the dispersion

relation is found to be

= V-2 2
Ap = V 6"- x (2.B15)

The approximations for 6 and x are

1 i
6 =- k e2-pQ s Ak e2 (2.B16)

X ~ Xlk=k = T! K/8 (2.B17)

when Ap «K and where k e^/K = \ and p = K/2.

This produces the dispersion relation

2
- (^) (2.B18)

The following properties are evident for real e and T).
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1. Waves propagate without decay for | Ake2/K|>|r)/8 |

which correspond to passband regions.

2. Stopbands or bandgaps occur for imaginary A|3/K or for

JAke 2 /K |< | r i /8 | . Here waves decay.

3. The coupling of waves is maximum at the bandgap

center (Ak e 2 /K = 0) where Ap/K = ir|/8.

The dispersion relation (2. B18) is plotted as a Brillouin

diagram in Fig. 2. 4 which clearly shows the regions of interest,

namely the stopbands (ellipse) and passbands (part of hyperbola).

Note that the coupled •waves analysis gives much more in-

formation than Bragg1 s Law. However, the coupled waves approach

is only valid around the first Bragg interaction and does not describe

41 42important wave interactions at higher Bragg orders. ' Further-

more, we have assumed a solution that is based on only two waves,

F(z) and B(z). This is strictly valid only as r\ -* 0 when F(z) and

B(z) are the two eigenmodes of the media.

C. Floquet Solution

1. TEM Waves in Passive Unbounded Media

An exact solution to the wave equation (2. B5) may be con-

structed through the application of Floquet1 s theorem. A form of

this theorem is stated as follows: a linear differential equation with

coefficients periodic in z with a period A has a solution E(z) with the prop-

erty E(z+A.) = e " E(z) where pis the fundamental wave number and A is

iBz
the fundamental period; define tf(z) such that E = e H tf(z); then

<(5(z) is periodic in z since tf(z+A) = tf(z). A proof of the theorem
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\

\
\

\
\
\

\

0.5

K

Fig. 2.4 Brillouin diagram near first Bragg interaction.

Dotted line is imaginary part of (3/K. Dashed

lines are for unperturbed media where T) = 0.
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2 5 46 47is given in several references. ' ' '

We now expand the function ^(z), mentioned above, in a

3 43-47Fourier series. ' The resultant expansion for E(z) is

E(.) = S a e4<P+nK>z ,2.C1)
00

n=-oo 'n

which is the constructed solution for the wave equation. This solution

is made up of an infinite number of space harmonics, a , of order n,

which propagate with longitudinal wave numbers (p+nK) (see Fig. 2.6).

Substitute the solution (2. Cl) into the wave equation (2. B5) to find

' {[ek2 - (P+nK)2] a +413- S f a } eW+*W* = 0LL ^ ' n 2 „=_„ p n-pJ
(2.C2)

(n= 0, ±1, ±2 , . . . )

where we have defined f = f . Algebraic manipulations transform

this result to

D a + E a f = 0 (2.C3)n n p=_00 n-p p

, „ _ 2where Dn = - T^-l (2.C4)
e j

In matrix form this can be rewritten as

||D||-a = 0 (2.C5)

where

/ MI a-i I
(2.C6)
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D-2 fl f2 £3 f4

D =

D0 fl f2

fl Dl fl

(2. C7)

f2 fl D2

The non-triviality condition for the matrix equation requires

det D ='0 (2.C8)

which is the Floquet dispersion relation connecting (3 and k. For

singly periodic media (i. e. f =0 for p s 2) an expression for the

space harmonic ratios and for the dispersion relation can be found

43in terms of a rapidly convergent continued fraction.

2. Hill's Determinant

2 3 47* 'Hill suggested an alternative form for the dispersion

relation which is equivalent to (2. C8). The derivation for the case

42under consideration has been given in a previous report with the

following result.

(2. C9)sin ( = A(0) sin2(7r.k e 2 /K)
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where the elements of the Hill's determinant A(0) = det ||A|[ are given

by r 1 p = n

V = { -k2e n'ln-pl , < 2 - C 1 0 >
' ~2~~2 - 2 - - - P ^ n

V. p K - k e 2

Figure 2. 5 shows the qualitative behavior of sin (TT (3/K) and the

resulting bandgaps where (3 is complex.

3-5Several authors suggest an approximation for the infinite

order determinant,

/K2]2 [2k2
eT1f /K2]2

[2k2e n f3/K2]2

[32 -4k 2 e /K 2 ]

which is valid for T)f «1 (p = 1, 2, 3,...).

Note the following points about the dispersion relation (2.C8 )

and its approximation (2. Cll).

1. This dispersion relation takes into account all Fourier

components f of the perturbation and is valid for all

k and p.

2. Away from the Bragg interaction regions k e 2 / K =* N/2
_

(N = 1,2,...), A(0)^ 1 as T) - 0. Hence k e2 =- ± p. Thus,

the periodic medium has little effect upon wave propaga-

tion in the passbands as T] -* 0. This was expected from

Bragg1 s Law and the coupled waves approach.
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sin2(7r/3/K)A

Bandgap

Fig. 2. 5 A sketch of the behavior of the dispersion

relation which shows the bandgap location for Bragg

orders N = 1,2,3 whenever sin (ir(3/K) > 1 or

sin (TT0/K) < 0. It is assumed that f., f~ and £_

are significant in the perturbation.
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3. When sin (irp/K) > 1 or sin (ir/3/K) < 0, |3 is complex.
i

From (2. C9) and Figure 2.5 , this occurs for k e 2 /K =" N/2

(N = 1,2,3,...). Hence, the dispersion relation agrees

qualitatively with the position of the bandgaps predicted

by both Bragg's Law and the coupled waves approach.

Note that the Floquet solution provides all of the information

of the coupled waves equations with the additional advantage of being

an exact solution that is valid for all p and k. However, the Floquet

solution lacks the intuitive appeal and simplicity of the coupled

waves approach. In particular, one has to use an approximation to

find the approximate bandgap placement. In addition, a truncation

of an infinite determinant must be performed.

D. Relation of Coupled Waves Solution and Floquet Solution

The recent interest ' ' in the relation of the coupled

waves solution and the Floquet solution is important for two reasons.

First, it gives a more rigorous mathematical foundation for the

coupled waves theory. Second, it can be used to expand the coupled

53waves approach to higher-order Bragg interactions. This will be

shown in Chapter III.

Consider equation (2. C3) for the case of cosinusoidal per-

turbations.

D a + a .. + a . = 0 (2.D1)
n n n+l n-1 x

Dn = £|l-^"^ I (n = 0.±l , i2, . . . ) (2.D2)
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k € 2 / K -*± (p/K+n) (n = 0, ±1, ±2, . . . ) (2.D3)

The resulting Brillouin diagram is shown in Fig. 2. 6 to consist of an

infinite number of space harmonics a which propagate as e .

From Bragg's Law, it is known that important interactions
i

between F(z)'and B(z) occur at k e 2 /K =* P/K =- ± \ where the ± sign

comes from considering waves of both positive and negative phase

velocities. Therefore, consider only the a . , a , a" and a . space

harmonics in the Floquet solution for the electric field

E(z) = a ~ e
-i<p-K)z

Let

p - po + Ap = (iK/2 + A p)

z

(2.D4)

(2.D5)

where the ± sign holds for space harmonics that intersect each other

at p/K = ± |.

„, . . - -iApz ^ + iApz. ip0z
E(z) = (a. e r + a e h )e r°

, - -iApz + +iApz). -ifi z
{aoe + a +l e )e °
v '

i B(z)
(2.D6)

E(z) = F(z)el(3oz + B(z)e"i(3°Z (2.D7)
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This is exactly equivalent to the assumed form of the electric field

in the coupled waves approach. The waves F(z) and B(z) are each

the sum of two space harmonics which are in agreement with pre- •

viously derived results. However, the terms e "o (n=3, 4, 5, .. . )

that were discarded in the coupled waves approach now have a clear

meaning. These terms correspond to coupling to higher order

space harmonics. Explicitly, the terms e ^"° correspond to

space harmonics a _ and a 2 which (along with a . and a , ) couple
i

to the adjacent Bragg intersections at k e 2/K =*+}, {3/K =* ± 3/2.

This truncated Floquet theory can also reproduce the coupled

waves dispersion relation. Consider the first Bragg intersection

at P/K °* \. Here only the a and a , space harmonics are important.

If we truncate the relation D-a_ = 0 to include only these two space

harmonics, we find the dispersion relation,

det

where D -1

D, •

:-} •,+AP - K)

1

(2.D8)

k2e

Ake2

O -I

kQe2 /K = po/K

By evaluating the determinant we reproduce the results of the coupled

waves theory, namely,
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(2.D9)
* }2

~y -
Similar results are found at P/K !a*,--| if we use the a and a . space

harmonics.

We note the following.

1. The coupled waves expressions for F(z) and B(z)

are each the sum of two space harmonics.

2. The coupled waves approach can be viewed as a trunca-

tion of the Floquet solution. This shows that previously

discarded terms correspond to coupling to higher-order

space harmonics.

3. The coupled waves approach shows that wave coupling

in periodic media can be viewed as coupling between

the intersecting pairs of waves that make up F(z)

and B(z).

E. Numerical Results

The dispersion relations are numerically compared by using

the Hill's determinant and the coupled waves approach.

1. Limitations of Hill's Determinant

The Hill's determinant dispersion relation

2 2 -1

sin(irf3/K) = A(0) sin (irke2/K) (2.El)

is limited by the number of significant places used by the computer.

In the case of the Univac 1108 this is 9 places forcComplex calcula-

tions. The smallest number that can be used which is larger than
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-8
xinity is 1 + 10 . Thus, if

sin2 (irp/K) =" 1 + 10"8 (2. E2)

at the first bragg order, then

sin(irp /K) cosh(ir|3./K) + i cosfrp /K) sinh(-rrp./K)

1 + 10"8 (2.E3)

where 3 = 3 + 3- •r f r

For -n-p./K « 1 and ir|3 /K = ir/2, the above''relation is approx-

imated by

1 + (irp.)2/(2K2) ~ 1 + 10"8 (2.E4)

through trigonometric expansions. The maximum value of p./K is

r\/8 from equation (2.D9). Thus, the Floquet numerical calculations
_4

should be limited to r\ > 10 at the first Bragg order. In this report,

_2
T| ^ 10 to account for this and any other computer errors. Similar

arguments limit the numerical calculations at higher Bragg orders.

2. Brillouin Diagrams for Lossless Passive Media

Each Brillouin diagram is a plot of normalized frequency
JL i

[k 6 2 /K = O)£ 2 / (cK)] versus normalized wavenumber [p/Kj .

In many of the cases the diagrams are expanded around the Bragg

interaction region where Ak and A|3 replace k and p.

Figure 2.7 illustrates the mainfeatures of Floquet theory for a co-

sinusoidal perturbation (i. e. f = 0 f o r p ^ l)withr|= 1. The largest effect
" 1

of the periodicity is in the vicinity of the Bragg wavenumber s ke 2 /K= N/2
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/\ I
/0.05 OI..XO.I5
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' 0.05 O.I ..-'0.15

' 0.05 O.I....-- 0.15

0.5 1.0 1.5 2.0

K

Fig. 2.7 Brillouin diagram for first three Bragg orders when

T) = 1. 0 using Floquet theory. Dotted lines show imaginary parts of

P/K on separate scales. Dashed line represents the unperturbed

case. A cosinusoidal perturbation is assumed.
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where the dispersion relation deviates from the unperturbed case

(dashed line) and (3 becomes complex. Note that the bandgap is

shifted towards the larger wavenumber and that this shift increases

43
with Bragg order. This causes phase speeding which is an in-

crease in phase velocity (= 60/P) due to an effective decrease in the

dielectric constant. Physically, as the wave travels through the

periodic medium, it speeds up and slows down with respect to the
i

unperturbed velocity c/e2 . However, if we consider an average

velocity (v) we find for singly periodic media

A
dz

0 A/e(l+~)cos Kz)
(2. E5)

where A = 2ir/K = spatial period. For T) < 1, expand the square

root to find

^- JA e2 0
-T:- cosKz + Q-^ o cos2Kz

[l+(3ir/!6)Ti2 +0(Ti4)]
2

(2.E6)

(2.E7)

Hence, the phase speeding is accounted for by effects O(T| ) for T| < 1.

Figure 2.8 is an expansion of the first-order Bragg interaction

region of Figure 2. 7. The coupled waves dispersion relation (2.B19)

is superimposed. Even for T) = 1, the coupled waves theory closely

predicts the correct coupling coefficient as indicated by the maxi-

mum value of P in the bandgap. However, the coupled waves theory
\

does not predict the bandgap shift or phase speeding for first-order

Bragg interactions.
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Fig. 2.8 Brillouin diagram of.first Bragg interaction with T) = 1.

This compares Floquet theory ( u p p e r c u r v e ) with

coupled waves theory ( l o w e r c u r v e ) . Dotted and

heavily dashed lines are imaginary parts of Ap/K,
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The coupled waves result (lower curve of Figure 2.8) can be used

for perturbations other than r\ = 1 'by multiplying each scale by T|.

Figure 2. 9 shows similar results for r\ = 1.0, 0. 1, 0.01

from the Floquet theory. As T) decreases, the coupled waves theory

becomes a better approximation to the Floquet theory. The curve

for T) = 0.01 is also the coupled waves curve for all three cases

since the Floquet theory and the coupled waves theory are graphic-

ally indistinguishable.

Results of Figures 2. 8-2. 9 are summarized in Table 2. 1.

Coupling X/K

Bandgap Shift
BGS

Bandgap Width
W

Coupled Waves .

T)=l

0. 1250

0.0

0.250

Ti=0. 1

0.01250

0.0

0.0250

Tl = 0.01

0.001250

0.0

0.00250

Floquet

T) = l

0.1267

0. 04

0.26

Ti=0. 1

0.01250

0.0005

0.0255

Ti=0. 01

0.001249

<0.0001

0.00255

Table 2. 1 Summary of coupled waves and Floquet theory at the first

Bragg order.

The-relative contributions of the different space harmonics

are shown in Figure 2. 10. The upper and lower curves are the

result of matrix truncation at 3x3 and 5x5 elements respectively.

Each truncated matrix is centered around the matrix element A
'»

in equation (2. CIO). The differences are not large and the 5x5 matrix

produces dispersion characteristics that are < 1$ different than those

of the 19x19 matrices used in Figures 2. 7-2.9.
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O.I 0.2 0.3 A/3
0.01 0.02 0.03 —r-

0.001 0.002 0.003 K

Fig. 2, 9 Brillouin diagram at first Bragg order for T\ - 1. 0 (top

curve), T| = 0.1 (middle curve), and r\ = 0, 01 (bottom curve) using

Floquet theory. Bottom curve also represents coupled waves

solutions for all three cases. Note difference in scale for each

case. Imaginary A(3/K values are the elliptical curves with

Separate scale.
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Fig. 2.10 The effect of limiting space harmonics in the Brillouin

diagram using Floquet theory at the first Bragg interaction.
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F. Modifications and Comments

1. Arbitrary Periodicities

The coupled waves, equations were derived for
oo

e(z) = e(l+T) 23 f cos(pKz)) where only the f, term played a role
p=0 P *

inthe first Bragg order calculations. For generality, consider the

expansion of a completely arbitrary (although smooth) e(z) as

oo
€(z) =

where fQ = 0 = g

E [f cos(pKz)+g sin(pKz)]
P=0 P P

(2.F1)

0

The analysis is similar to the previous calculations which

lead to the coupled waves equations (2.B10-13). Following the

identical procedure we find

(2.F2)

(2.F3)

F'(Z) - i 6F(z) . =

where

B (z) - i 6B(z ) =

k ze-e 2
IV C k.

6 = ^ r, °

B(z)

F(z)

k2e

(2.F4)

(2.F5)

The dispersion relation (2. D9) is modified by the substitutions

2

X -X x"

(2.F6)

(2.F7)
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All previous Brillouin diagrams can be used with the above substi-

+ #
tutions for the periodicity given by (2. Fl). The fact that x = (X ) »

where the asterisk denotes complex conjugate, is a general.result

18which holds for lossless systems.

2. Corrugated Surfaces

The previous results are strictly valid only for volume per-

turbations. Similar results have been extended to surface perturba-

tions or corrugations. ' The extension involves the assumption

that the surface perturbation can be replaced by an equivalent volume

perturbation. However, this assumption, known as the Rayleigh

assumption, is valid only for Kd < 0.448 (where d = corrugation

depth and K = periodicity wave number) as shown by Millar.

Physically this occurs because deep surface corrugations have

proportionately less effect on the surface waves than do shallow

corrugations. An exact Floquet analysis which solves the boundary-

n , , , • , , . 6 3 . 6 4value problem has been given.-

3. Comments

This chapter has set the groundwork for the next calculations.

In addition the differences and similarities of the Floquet and coupled

waves theory were discussed. In particular the coupled waves theory

was seen to be an approximation of the exact theory, where certain

space harmonics were retained and combined while others were

discarded. A similar process will lead to descriptions at higher-

order Bragg resonances in the succeeding chapters.
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CHAFTER III

HIGHER-ORDER BRAGG INTERACTIONS

This chapter is an extension of the previous chapter to higher -

order Bragg interactions (i.e. N ^ 2 in Bragg's Law). Present man-

made dielectric periodicities other than superlattices are limited to

the order of A ~ 1000 A. Therefore, some applications in integrated

optics require operation at higher-order Bragg interactions. Already-

higher order DFB lasers have been experimentally demonstrated. ' ^

Other optical applications include couplers and filters.

In section A, the coupled waves theory is extended to all Bragg

orders for singly periodic media. Explicit expressions are given

for all important parameters relating to the bandgap and coupling.

Numerical examples are given in section B for the first three Bragg

orders. Multiharmonic periodicities and a fourth-order numerical

example are given in section C. An example of disappearing band-

gaps is also shown. In some of the illustrative numerical examples,

we will use large values of the perturbation that may not be physically
i

realizable. However, the objective is to dramatize the effects of the

perturbation on the Brillouin diagram. In addition, the extended

coupled waves (ECW) examples are easily scaled for other values of r|.

A.. Extended Coupled Waves (ECW) Theory

1. TEM Waves in Passive Unbounded Media

By extending the assumptions made in Chapter II, we state

the following assumptions for N order Bragg interactions:
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1. The most significant space harmonics are F, (z) = a e

+ a^ e-i(P-NK)z and BI(Z) = &- e-iP%a_^ ei(F+NK°Z>

2. To provide cross -coupling between F. (z) and B. (z) we

account also for the following pairs of space harmonics

(a-N+l' a+l }' (a-N+2' a+2+ > ---- ' {a-l~' aN-+l > which are

1
slowly varying near k e 2 / K = N/2. In this way we account

for the intersecting space harmonics between F. (z) and

B, (z) in the simplest possible manner.

3. Self-coupling which occurs between F. (z), B'^z) and their

adjacent space harmonics must also be included.

4. Assume T| « 1 although the theory may hold for T| -* 1 as

in the first order case.

5. All other space harmonics are ignored.

The derivation is started by including the above mentioned

space harmonics of the Floquet theory in the expression for the electric

field

E ( z ) = E a- e-i(^nK)Z +^ l^

n=-(N+l) n n=0 n

Near the N order Bragg interaction let

Ap) (3. A2)

where the ± sign is used for space harmonics that intersect each other

when (3/K ̂  0. The electric field becomes
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N */2
E(z) = E

n=-l

N*/2

where

v r2-f a
n=-l L

- -iApz exp - [i(l-2n/N)p' z]
a_n e J o

-iApz -f iApz~l
N/2 e J

(3. A3)

N*/2 =

-

IN -

2*~ "• "*

N -
2

^

L

1

1

for

for

for

N

N

N

even

odd

= 1

( I ) - ( 1 for N even

0 for N odd

This can be rewritten as

N */2
E(z) ' = E

n=-l

Bl-2n/N (z )

where

F, 0 /TVT(Z) = a TVT 6 * + a e*l-2n/N n-N n

/ \ _ + iApz . ~ -i^Pz

Bl-2n/N (Z) ~ aN-n e + a-n e

(3.A4)

S(z)

-lAPz , + iApz „ . . „ .
: ' + a., /0 e = F (z) = B (N/2 ox ' o^

Substitute the assumed form of the solution (3. A4) into the wave

equation (2. B5) and use the slowly varying approximation as before.
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We drop the arguments in z for simplicity.

- ( l-2n/N)2 P 2 ^ ^ /

- ( 1-2n/N)2po
2

1 •»•• i •> /IVT e ' ' " + U. _ /1VT e ^ • "' ''o" + S>. l -2n/N l-2n/N
i(l-2n/N>(30z -

1 — "*

i(l-2n/N)Poz + B

l-2n/N
-i(l-2n/N)(30z-

= 0

(n = -1, 0, 1, 2, )
(3.A5)

which is analogous to (2. B9). Next, for simplicity we limit the

Fourier coefficients of the periodicity such that f = 0 for p 4- 1

(i. e. singly periodic media). Equate the coefficients of e ^°

to zero for each n to get the following N+3 coupled equations.

r. ' - -k2STl ^

-k
(k2e - p 2)Fl + 2i pQ F/

( ) k 2 c S

-k
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We define interaction as meaning the region in the (ke2, p) plane near

the intersection of two space harmonics. We again note that higher -

order interactions refer to interactions with frequency greater than
_i

that of the fundamental Bragg frequency defined by k e 2 / K = \. Thus

each wave, F(z). 2 , and B(z) ,, defines an interaction. The

coupling diagram, Figure 3. 1, and the above set of coupled equations

show that F. (z) and B, (z) are coupled through N intervening inter-

actions. Since each coupling is proportional to 1"|, the cross-coupling

between F.(z) and B, (z) should be proportional to r\ . The adjacent

interactions to F, (z) and B, (z) contribute terms of order T) to the

phase mismatch and hence both the F(z), ,2 ,~. and B(z).^, ,,. terms

need to be retained to obtain correct self-coupling. The F(z). , ? ANT

and B(z)1 _ , terms will not contribute to the cross-coupling except

to order T) . This small contribution is ignored.

To show the above statements mathematically, apply the

slowly varying assumption and solve the inner N-l and the outer

two equations of (3. A6) to get all waves F( z) i_2n /N» S(z)' B^zh-2n/N

(n = -1, +1, 2, 3, . .. ) in terms of F,(z) and B.(z). The outer two equa

tions can be solved trivially for F(z). .O anc* "^^

We begin by using matrix manipulations on the inner N-l

equations of (3.A6)

F l-2/N = det||A||/det||c||

(3.A7)
B l -2/N = det[|G|!/det||c||
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CM

CsJ

CM

to

CO

Z
CM
i—i

CO

I—I
CO

z
CM
+

r—«

CO



where

Hell =

A =

G =

-39-

cl
C

*

0

A

C

C2
•

•
•

•
•

•

C

C C2 C

= k2 e - (l-2n/N)2

C = T i k e / 2

0

A2

C Co2

C

C

C

G,1

C

0

G2

C

C2

*C

V
\

C 0 \

'C2 'C

c cj

(3.A8)

(3.A9)

(3.A10)

G2 = Aj = ~k2eriF2

GI = A2 = -k2enB2

Instead of solving (3. A7) exactly, we approximate the determinants for

T) « 1 when N >- 2. Since C « C , we findn'

det f ( n ) H - (1-Zn/N) (3.All)
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where | | f (n) =

TT f2(n) for N odd
n=l

N/2

n=l

1

f(n) for N even

for N = 1

Approximate det||A|| and det ||G|| in a similar manner.

det||A|| -^ TT*f2(n) + (- l )NA 2CN - 2

Cl L

det||G|| -

(3.A12)

(3.A13)

The solution for F(z). o/N becomes

F(z)
<-ir

1-2/N ~ C * ,2.
1 TT"^(n)

(3.A14)

,thNear the N"" Bragg interaction we approximate the free -space wave-

number by

k2e - k2 e = = (NK/2) .

The expression for F(z)1 _ . can be approximated by

F(z )l-2/N =
1 Z/N 1 -

- (Ti/2) F (z) ( - k e B. (z)

- 2 - :FRT2
(1-2/N)2 TT f (n)

(2.A15)

Extend the above formulation to include the N=l case by

introducing the symbol C , . .
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• TINF (z) (-i)N+1 (n/2)N~1 B,(Z)
F(Z), _, ,,T = -^ — + -=*- 2^2" (3.A16)

| r {4n(n-N)/N^}^

t O N = 1
'

1 N*2

Similarly for B(z), 2 ,-,. we find the analogous result,

- F.(Z)
B(z), , /M= — — - — + — =r= - g^y (3.A17)

!-2/N 8(1 -

The expressions for F(z) _ , and B(z). - '-vr a?e trivi-ally found from

(3. A6) under the stated approximations as

-CN(T)/2)F (z) ^nNFjz) ,
F<z) = — " - — = - ~ - (3.A18)

-CN(ri/2)B1(2) C N r ) N B (z)
B(z) . = -^ - -= -£ - i - (3.A19)

Expressions (3. A16-3. A19) are substituted into the following two

equations from (3.A6) for F,(z) and B,(z)

(k2
e.-|3

2)F1(z) 4- 2i

(3.A20)

(3.A21)

Upon rearrangement the following extended coupled wave (ECW)

equations are formed.

F^z)-! Sj^F^z) = ixNB1(z) (3.A22)

-B^z)-! 6N B j (z ) = ixN F j (z) (3.A23)
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2

where 6N
2(N -1)

2.
o

2 P ,
(3.A24)

phase mismatch

( - l ) < N + 1 > k 2 e n N

N+1 {4n(n-N)/N2}2
(3.A25)

N

coupling coefficient

Bragg order

nK/2

The ECW equations agree in form with other work in diffraction

2? £>8 AQ
or holographic gratings ' ' where the periodicity is perpendicular

to the propagation direction. However, Hhis is the first time that

analytic expressions have been derived for propagation in longitudinally

varying media where the coupling, bandgap shift and bandgap width

are given explicitly for all Bragg orders.

Table 3.1 presents numerical factors found in the ECW equa-

tions for the first five Bragg orders.

N

1

2

3

4

5

[•|*{4n(n-N)/N2}2

1

1

(8/9) 2

(3/4)2

(16/25)2

g ( N ) = ( 4 / N ) ( l - l / N )

0

1

8/9

3/4

16/25 ,

l-CN(n/2)2{N2/[2(N2-l)]}

1

i - f (n/2)2

Q ?
1 ™ ™7 (^H / 2 )

X O

A ™* ~i~c" \ ij / " /

% . 25, /9.2
i -is^/2)

Table 3. 1 Numerical values for factors in ECW equations.



^

-43-

2. ECW Dispersion Relations

The dispersion relation is derived from the ECW equations

as in the first order case.

IT =J(-ir) -(-w) <3-A26>
The following approxinaations may be made in the interaction region

when A B^ « K.

16p Q (N ' - l )
f— (3.A27)

XN ~ -N+l-fr* n ' 2.2 <3 'A28>IN *•» IN • J. II ' f . . TkT\ / -K T« T "2 [4n(n-N)/N j

where

Ak
N

Po = NK/2

The N order dispersion relation is explicitly
1 7

AS ' " -' <•
PN _
K ./ \ K / N K 1/:/1VT2 ^ 1024(N

2_1)2

J! V
(n-N)/N2}2 /

2Nf -T ' (3.A29)
4N+2 VjJ-*{3n(:

Note that for real e and r\t the maximum imaginary part of Aj
A N

occurs when S^r/K = 0. This defines the normalized coupling in terms

of the bandgap behavior since,
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N

2

N

IT* [4n(n-N) /N2)2
(3.A30)

If 6-j/K = 0, then maximum coupling takes place at a wavenumber
' 1

that is displaced from the exact Bragg condition ke 2 /K = N/2 for

N ^ 2. This is referred to as bandgap shift (BGSM) and is defined by
i

'N'

K .= 0 32(N -1)
(3.A31)

We note that this raises the Brillouin diagram and produces phase

speeding O(r\ ) as expected. The bandgap occurs whenever

| 6 N/K| < |xN/K| which causes A|3 /K to become imaginary. The

bandgap width (W,^) is defined by

N
N K (3.A32)

Table 3.2 summarizes some of the ECW results for the first

five Bragg orders.

N

1

2

3

4 „,

5

Coupling
XN/K

• n
8

" 8

243 Tl3

2048

9

1953125 r\5

18874368

Bandgap shift
X^vJ ^}«K •»

^«

0

12

27 rf
256

15

125 r\2

768

Bandgap width
WN

n
4

4

243 n3

1024

9

1953125 n5

9437184

Table 3. 2 Summary of the ,main features of the ECW
theory for the first five Bragg orders.
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We note the following points about the ECW theory:

1. The ECW derivation is an intuitively based theory

that gives explicit values for \ /K, 6 /K, BGSN

and W.. for any Bragg order.

2. The ECW theory predicts coupling coefficients that

N
are proportional to (r]/2) due to cross-coupling.

This is expected because of the N interactions be-

tween FI (z) and B (z) where each interaction couples

with strength T)/2 to adjacent interactions. The sign

of the coupling coefficient alternates with Bragg

order.

3. The ECW theory predicts that maximum coupling

occurs not at exact Bragg resonance but at a shifted

frequency instead. This shift is proportional to

Nr| for N ^ 2 and is due to the self-coupling of

F,(z) and BI (z). This bandgap shift accounts for

the phase speeding effect that was first found in the

Floquet results.

N4. The bandgap width is proportional to (T|/2) . Hence

for large N, only a small range of frequencies will

cause significant coupling between F. (z) and B.(z).

Also note that for large N, WN < 2 BGSN so that the

longitudinal wavenumber |3 may be real at exact Bragg

resonance. Since bandgap width and coupling are

proportional, it is impossible to attain large coupling

and small bandgaps simultaneously.
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5. A simple scaling rule exists such that if r\ and Ak... G 2 / K

are reduced by the same factor, then APM /K will be

reduced by the identical factor. Thus ECW results

for large 'perturbation can be directly applied to other

perturbations.

The extension to. sinusoidal perturbations is made in the same

2 2 2
manner as in the first order theory. Let XwCn ) ~* XM^I +r\? ) ^or

IN JN L £

periodicities of the type T). cos(NKz) + T|_ sin(NKz).

The relative magnitude of the waves F(z). _ , S(z),

B(z), 2 /N (n = 2 , 3, •• • N /2) can be found from equation (3. A6) in

the same manner that F(z)1 2/Tst an<^ B(z). 7/isj wel>e found. The

results are in terms of F. (z) and B..(z) v/hich are in turn related by

the boundary conditions. We will not need these results now.

B. Numerical Examples

1. Second-Order Interaction

The ECW approach uses the ten space harmonics shown in

Fig. 3.2 for N = 2. The explicit dispersion relation is

576^ <3 'B 1>

and the phase mismatch and coupling are

62 = - - I * - M /"/ KO (3.B2)

= '4^ (3.B3)

where 6 = Kro
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Note the change in sign of the coupling coefficient from that

of the first-order theory. The coupling is provided by S(z) and the

bandgap shift is accounted for by B_(z), S(z) and F7(a). Phase
L* Lt

speeding is the result of the bandgap shift.

Figure 3.3a,b,c shows a comparison of the Floquet and ECW

theories at the second Bragg order for r\ = 1.0, 0. 1 and 0.05 respec-

tively. Although one would not expect the ECW theory to hold as r\ -* 1

Figure 3. 4 demonstrates the validity of the theory in this case. We

note that for r\ = 1, the Floquet theory predicts a slightly larger

bandgap than does the ECW theory. However, in the practical case

of T) ^ 0. 1, the two theories become graphically indistinguishable.

Table 3.3 summarizes these results for second order Bragg inter-

actions.

Coupling
X2/K

Bandgap Shift
BGS2

Bandgap Width
W2

ECW '

T! = 1.0

. 125

.0833

.250

Ti = 0. 0

.00125

.000833

.00250

11=0.05

.0003125

.000208

.00625

Floquet

T)=l

. L33

. 10

.26

Ti=0. 1

.00125

.00080

.0025

Ti= 0.0!

.000311

.00022

.00063

Table 3. 3 Summary of ECW and Floquet dispersion
relations at the second Bragg order interaction.

Figures 3. 4 and 3. 5 show the effect of truncating the ECW

and Floquet theories. In Figure 3. 4, the outermost space harmonics

f (a. , a_ ) and (a _ , a . ) of Figure 3. 2j are not used for t| = 0. 1. In

this case the coupling between Fj and Bj is given correctly since the
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Fig. 3. 4 The results of neglecting the effects of F, and B^

in the ECW theory at the second Bragg interaction.
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Fig. 3. 5 The effect of limiting space harmonics in the Brillouin

diagram using Floquet theory at the second Bragg

interaction.
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cross-coupling is only dependent on S. However, the bandgap shift

is not given correctly since S, F_ and B_ contribute terms of order

T| to the self-coupling and bandgap shift. Figure 3. 5 shows the effect

of limiting the space harmonics in the Floquet theory for r\ = 1.0.

The upper curve has a greatly enlarged bandgap width for a 3X3 matrix

which includes the space harmonics a_ , a. and a . The lower curve

adds the a^ and a_2 space harmonics. The resulting 5x5 matrix

produces results that are graphically indistinguishable from the 19x19

matrix used for all other Floquet results.

2. Third-Order Interaction

The ECW approach has twelve space harmonics ((a ~ a _ ),
\ ™ Tt ~ £*

<a_3~»a-l)' te-Z'^' (ai 'al^' ( aO~'a2^' (al~'a3+)' <a2'a4"0 for N = 3.

The results are similar to the N=2 case. The explicit dispersion

relation isA y Ak ei 2 ^~~^
3 if * 3 i 2V/ 3 \3 \ 44^)^5 n

~K" . = V V K / "128 \ rT"/11 " 1048576 (3> B4)

and the phase mismatch and coupling are

k2e (1 - 9t]3/64) - p2

«3 = 2~p — (3-B5)

81k2 e Ti3 ., _,.
X3 " 1024 p (3.B6)

o

where p = 3K/2

Figure 3. 6a, b displays the results of ECW and Floquet calcu-

lations for TI = 1. 0, 0. 5 at the third Bragg interaction. Note that for

the first time the half width (=WN /2) is less than the bandgap shift
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Fig, 5. 6 Brillouin. diagram at third Bragg order for a) T) = 1. 0 and

b) T) = 0.5 showing Floquet and ECW results. Imaginary Ap/K values
a-"Q the elliptical curves with separate scale.are
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(= BSGN) which causes the entire bandgap to be above the exact Bragg

wavenumber. This effect becomes more pronounced with increasing

order and decreasing perturbation since W^. °= (Ti/Zjr' whereas

BSGN « (T)/2) . Although the ECW theory does not approximate

the Floquet theory for N = 3 as well as it does for N = 2 (compare

Figures 3. 3a and 3. 6a), the ECW approximation improves as r\

decreases. This is an expected result since in the ECW theory all

waves except F, and BI are assumed to be slowly varying. However,

as N increases, more of the waves contribute to the coupling between

F, and B . Table 3.4 summarizes the results of Figure 3.6.

Coupling
X3/K

Bandgap Shift
BGS3

Bandgap Width
w3

ECW

Tl = 1

. 1186

. 105

.211

TI = 0. 5

.0149

.0264

.0297

Floquet

TI = i

. 136

.16

.27

TI = 0.5

.0155

.030

.033

Table 3. 4 Summary of ECW and Floquet
dispersion relations at the third Bragg

order interaction.

Figure 3.7 shows the effect of increasing the matrix order

that is used in the Hill's determinant for the Floquet dispersion rela-

tion (2. El). It is apparent that space harmonics of order n > 2N+1

must be used to insure accuracy of the Floquet result. Graphs are

shown for 7x7, 9x9 and 17x17 size matrices. As before, 19x19 size

matrices have been used in the Floquet theory for other figures in this
section. • '
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Fig. 3, 1 The effect of limiting space harmonics in the Brillouin

diagram using Floquet theory at the third Bragg interaction.
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C. Multiharmonic Perturbations in ECW Theory

Higher-order Bragg interactions are interactions in the region
i.

of k 6 2 /K **• p/K ^ N/2 where N ^ 2. However, there can be competing
•

.processes between different Fourier components, f cos (pKz), of

multiharmonic (i. e. p = 1, 2, 3, . . . ) periodicities for N ̂  2. In par-

ticular we may find passbands where bandgaps existed in the singly

periodic case. This latter fact has been of interest in solid-state

theory where the Saxon-Hunter theorem states that a forbidden level

in an infinite lattice of pure type-A potentials and in a lattice of pure

type-B potentials is also forbidden in any alloy containing both type A

and type B potentials. As applied to our problem, this theorem im-

plies that bandgaps formed by two dielectric periodicities f(Kz) and

T(Kz) are just the bandgaps caused by f (Kz) and F(Kz) separately. A

number of counter-examples ' have been given to the Saxon-Hunter

theorem. The ECW approach will show explicitly the effect of multi-

harmonic periodicities upon the bandgap.

The extension of the ECW theory is straightforward. However,

the results for arbitrary multiharmonic periodicities become cumber-
i

some. Several special cases will illustrate the general theory.

From the previous sections we know that the waves between

F,(z) and B.(z) are needed to couple energy from F.(z) to B.(z). We

also know that the waves F(z)1 , ?/N
 and ^( z ) i+2/N have *° De included

to properly account for the bandgap shift. In addition, other waves

that can couple significant energy between F. (z) and B.(z) or that

couple F. (z) and B . (z ) to themselves have to be included.
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Since the Fourier component £r| f cospK ] couples energy

between intersections, p intersections apart with strength approxi-

mately proportional to T] f , then coupling diagrams will again help

to show the waves that should be included in the ECW theory. Figure

3.8 demonstrates some of the possible couplings for N = 2.

We list the possible couplings and strengths shown in Figure

3.8:

1. two first-order couplings « (Tlf ,) ;

2. one second-order coupling <*r\ £7 ;
L*

3. one third- and one first-order coupling «(n f.)(r| f _ ) ;

4. one third-, one second- and one first-order coupling

cc (n£1)(Tif z)(Ti f3);

5. one fourth- and one second-order coupling «(t) f .)(T\ f_ );

6. one fourth- and two first-order couplings « ('nf4)(r|f1) .

The mathematical solution consists of writing a set of equa-

tions analogous to (3. A6) where the right hand terms are augmented

by all of the possible couplings by each Fourier component of the

periodicity, f .

1. N Order Bragg Interaction with f j and'f^

Consider the periodicity made up of Fourier components

[r|f. cosKz + T| f^cosNKz] at the N Bragg order. We assume the

non-trivial case where O[(r|f,)^] ~ O^f..,) so that contributions to the

cross-coupling from the two Fourier components are of the same

order. The major bandgap shift is given by terms O [(T}£, ) ]. Figure

3.9 is the coupling diagram which shows, the important space har-

t

monies and couplings that are used in this case.
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-4 -3

K

Fig, 3.8 Coupling diagram that shows several of the possible

cross-couplings from F to B and self-couplings

for F. when N = 2. The approximate magnitude of

the coupling strangths are shown.
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Since the coupling T) f-, only affects the equations for F.(z)

and B,(z) and the coupling T) f is used to couple F,(z) to B.(z) as

'well as the coupling Fj(z) -, F(z) J_ 2 / N - F^z) and F J(z)-F(z)1+2 /N

-* F.(z), we can write by inspection from Figure 3.9 and equation
A «

(3.A6),

(k2
6-

(k2c-

2i

> (3. CD

The only difference from the previous coupled equations (3. A6) is the

change of notation T) -• T]^ and the addition of the T| f^B. and Tif-jF,

terms. It is apparent from the N+3 coupled equations (3. Cl) that the

bandgap shift will be due to r|f. as before but that the coupling co-

efficient will be the algebraic sum of terms involving Tjf. and T|f .

Solve the coupled equations as before to find

B1(z) = i

N2 /2(N2-1)]}- PQ
2

(3.C2)

(3.C3)

(3.C4)
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•N -? <3-
}2J

C5)

^N /f 6Nf /*N
K - V \ ' K / ~ \ K (3.C6)

Table 3.2 may be used to find the appropriate bandgap shift. The

effective coupling coefficient is found by adding the values for X1

X..T. Hence the results in equations (3. C2-3. C6) could be written

down by inspection.

An interesting case arises when x^ = 0. For example at the

second Bragg order, \? = 0 implies
1 ->

6

^K x = o
JZ_
K K (3.C7)

which occurs when T] f_ = (r\ f ) /2. Here the bandgap disappears but

the phase speeding effect is still given by the (T] f , ) /12 term in (3.C7).

It is interesting to note that a periodic medium does not necessarily

have bandgaps but it will still have the phase speeding property.

In practical cases, if the effects of T)f. and r)f.j cancel each other,

other periodicities in the media may still cause bandgaps.

Figure 3. lOa, b shows the ECW and Floquet results for

± T)f-, = C n f , ) /2 = 1/4 at the second Bragg order. In the first case
£• 1

the effects of T]f1 and r^f, cancel, and the ECW theory predicts no

bandgap. The Floquet theory shows a greatly diminished bandgap

with a coupling coefficient \?/K = 0.00568. The Floquet theory

bandgap can be reduced by an order of magnitude, and perhaps more

2 ?by slightly adjusting the ratio f?/r)f. away from f _ / T ) f " = 0. 5. For
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-0.1

-0.2

-0.3

\

\

//-FLOQUET
•r"'7yv /
.^4. 0.1226

-0.3 -0.2 -0.1 0.1 0.2 0.3

Fig. 3.10 Brillouin diagram at second Bragg order for a) rif, = JQ. 5,
1

T)f,, = 0.25 and b) rtf, = v'0. 5, Tjf, = -0.25 showing ECW and
L 1 <-

Floquet results for multiharmonic periodicities. Imaginary

Ap/K values are the elliptical curves with separate scale.

Note the dependence of the bandgap upon the sign of V\i~t
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f /Tlf = 0.55, X2/K < °-°°02. The second case shows the large

bandgap that occurs when the effect of T^f. and Tjf is additive.

The vanishing of the bandgap is due to the relative phasing

of f, and f-. and is therefore dependent upon the symmetry of the

periodicity. Analogous effects have been noted in the electronic
/ c QL

stopbands of crystals ' and in stability diagrams of transverse

magnetic (TM) wave propagation in periodic dielectrics.

2. Fourth-Order Bragg Interaction with fj, f2 and f^

In the preceding case, the resulting coupling coefficient was

a direct sum of the coupling coefficients of the two Fourier compo-

nents. This is not always the case. To illustrate, consider a fourth-

4 2order Bragg interaction where O(r)f . ) ~ O(r|f2) ~ O(r\ f , ) . That is,

the Fourier components r\ £., T| f2
 and T\ f. contribute values of the

same order of magnitude (i.e. O(r\ f . ) ) to the cross-coupling. The

details of possible couplings and the relevant space harmonics are

shown in the coupling diagram of Figure 3.11. Weaker couplings
4

such as thos.e proportional to (r\ f.) t| f_ have been neglected.

From Figure 3.11 and equation (3.A6) we write by inspection

the following coupled equations.
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(ke - 9/4 )F3 + 3 i3F 30 2 " i f
(f F.)

(k2e - p2)F, + Zip F. '

(k2e -i 0 i ' ° 2

k2e S

(k2e -

( k e - 9 / 4

> (3.C8)

where the arguments with respect to z have been dropped. Solve the

coupled equations as before to find

B.

(3.C9)

(3. CIO)

S . ^(P l+B I)[4f|+
34£1

Z-|3f2 .4f I%] (3. CIS)
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These values are substituted into the equations for F,(z) and B j (z )

in (3. C8) to find the coupled equations for,F.(z) and B.(z). The

resulting values for 6 . and \. are

(3.C14)

-> •* A ->2 3 ,4 T i < - 2 _ L _ _ _ , . ., .
911 fl 2f2 + - 9 - + f 4j (3-C15)

where p = 2K and where smaller order terms are neglected.

As expected, the above expressions reduce to the first-order

case if f . = f_ = 0, to the second-order case if f , = f. = 0, and the

fourth-order case if f_ = f . - 0. However, the presence of the mixed

term f . f_ means that the above results cannot be obtained from

simple superposition of the terms from each component. As in the

previous case, a proper choice of £., f_, and f . would allow us to

eliminate the bandgap. \

The different terms in the expression of \. can be easily ex-

plained as shown in Fig. 3. 11. There are four possible ways to

achieve a fourth-order coupling with the three Fourier components
i

f., f_, and f>. These are:

1. four couplings through f1 ;

2. any combination of one coupling through f_ and two
£*

couplings through f . ;

3. one coupling through f..

Thei.f7 term in equation (3. C14) has a large numerical co-
X Lt

efficient because this coupling can occur in three different ways.
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K

Fig« 3. 12 Brillouin diagram at fourth Bragg order when r\t^ = 0. 5,

T)f2 = 0.2, and f]f4 = 0.1 showing ECW and Floquet results. Imaginary
9

values are the elliptical curves with separate scale.
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Fig. 3. 12 compares the ECW and the Floquet solution for

the values T|f. = 0. 5, r\f^ = 0.2 and r\f . = 0. 05. Note the close

approximation of the ECW theory to the Floquet solution at the

fourth Bragg order with several harmonic periodicities even when

the perturbation is relatively large.

D. Comments on ECW Theory

The predictive abilities of the ECW theory have been sum-

marized at the end of Section A. The numerical examples demonstrate

the accuracy of the ECW theory at higher Bragg orders and for

multiharmonic periodicities. The ECW theory is particularly attrac-

tive for small perturbations where the Floquet theory is cumbersome

and time consuming. This is relevant to present optical applications

where often T| ̂  10

The extension to higher Bragg orders opens up the possibility

of using the many first-order results of the literature at higher Bragg

orders by the use of the proper &., and yL,. Several extensions of

this nature will be made in a later chapter.

Two interesting results have been explained in this chapter.

Firs^the phase speeding effect was observed to be a result of self-

coupling and occurs regardless of the value of the higher frequency

Fourier components f . Second, the disappearing bandgaps were

explained through simple interference effects of different periodicity

frequencies. This opens up the possibility of controlling feedback

through the relative phases of two harmonics since feedback or

coupling strength is directly proportional to bandgap width.
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It is anticipated that a similar analysis could be applied to

bounded media, space-time periodic media and active media. The

latter case will be covered in detail in the next two chapters.

53Parts of this chapter have been summarized elsewhere and

the results have been confirmed through calculations that use the

95method of multiple scales.
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CHAPTER IV

COMPLEX PERIOD 1C-MEDIA

Although the study of wave propagation in periodic structures

has been a popular subject since late last century, most of the

analytical studies have dealt with simple (passive and lossless)
O O o A CO

periodic media. The recent development of DFB lasers ' '

has extended the applicability of periodic structures to the case of

complex (e = £ + ie., r\ = T\ + it].) periodic media. In their analysis

23
of DFB lasers Kogelnik and Shank briefly discuss the Brillouin

diagram near the first-order Bragg interaction when the gain co-

Z *> *}8
efficient is modulated. Using Floquet theory, Wang ' presents

a more detailed analysis of the first-order Brillouin diagram for

active periodic media. Higher-order and multiply-re sonant

DFB lasers have been mentioned very recently in the literature.

In this chapter we investigate in detail both the ECW and the

Floquet theory for complex media at the first few Bragg orders.

Analogous results will hold for higher even and odd orders. In section

A we use the exact Floquet solution to plot the Brillouin diagram for

several values of the perturbation and average dielectric constant.

In section B we use the approximate but simple ECW solution to

study in detail the changes in the Brillouin diagram for the first

three Bragg orders in singly periodic media. A short discussion

of multiharmonic periodicities is given in section C, arid section D

summarizes the results of the chapter.

As in the previous chapter, some of the parameters in the

numerical examples will be larger than those that might be
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experimentally obtained. However, this exaggeration is again used

to dramatize the periodicity effects. The ECW examples are easily

scaled for other values of gain/loss and perturbation.

A. Floquet Solution

We consider the case of a TEM wave propagating along the

z axis in an unbounded medium with a periodically modulated dielectric

constant:

e(z) = e + i e . + e E(r, +iTi.) f cospKzv ' r i r p 'r Vp p c

where

e = Re{e}

= Re[r}}

e. = Im{e}

= Im{T|3

(4.A1)

and f0 50, f £ 1, and \r\ f I * 1, | T]. f I * i for
p v P p

p = 1, 2, 3, ... . Index coupling will refer to the case where T\. = 0

and gain/loss coupling will refer to the case where r\ =0. Note

that gain (loss) media implies e. < 0 (e. > 0) for e"1 excitation.

The Hill's determinant equation

sin2(Tr(3/K) = A(0) s in 2 (Trke 2 /K) (4.A2)

of chapter n still holds with minor changes in the matrix elements

pn

pn -k 2 e

P
2K2-k2e

, !ln-p| r
2 e

p = n

p i n

(4. A3)

These elements make up the Hill's determinant A(0) = det |JA||.
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Several examples of the Floquet solution for singly periodic

media are given in the Brillouin diagram-Figure 4. 1 for real fre-

quencies. The example for simple periodic media (real e and r\) was

found in chapter III and is given in curve 1 of Figure 4. la. There

are two main characteristics. First, note the presence of bandgaps

in frequency where (3 becomes complex. These are known as non-

inverting bandgaps. Second, note the phase speeding that is a result

of upward bandgap shift.

The Brillouin diagram changes drastically for gain or loss

coupling where the perturbation is imaginary. In curve 2 of Figure

4. la we plotted the case for real frequency where e = e and T| = it)..

This corresponds to media with successive amplifying and lossy

layers while the average gain (or loss) is zero. Note the inverting

bandgaps (i.e. bandgaps in longitudinal wavenumber) at odd Bragg

orders. The pattern of non-inverting and inverting bandgaps alternate

with Bragg pr.der. However, bandgaps of both types are shifted

toward lower frequency. This latter effect can be understood from

the average velocity which was given by

16 (4.A4)

for JT) J < 1. It is apparent that phase speeding (positive bandgap

shift) occurs for T] - r\ and phase slowing (negative bandgap shift)

occurs for T) = it].. This also follows naturally from the definition

of BGS-j that was given in the previous chapter (3. A31).

Let us now consider the case of complex media where only

the real part of the dielectric constant is sinusoidally perturbed
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Fig. 4.1 Brillouin diagram for first three Bragg orders using Floquet

theory and real frequency using: a) index coupling (curve 1) and gain/

loss coupling (curve 2) when e^fe = 0; b) similar results for finite

C^e . The light dashed lines are the unperturbed values (T)=0),
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but average gain or loss is present (i. e. e = e + ie., T) = r\ ). The

corresponding Brillouin diagram for real frequency is shown in

curve 1 of Figure 4. Ib. For e. 4 0, we observe that Re{(3/K] is no

longer a constant across the Bragg region and the effective spatial

gain or loss increases appreciably near the Bragg frequencies. '

The unperturbed value (T|=0) is shown by the light dashed lines.

When the gain or loss is sinusoidally perturbed, the spatial

gain or loss diminishes near the odd-order Bragg resonances and is

enhanced near the even-order resonances. This case is illustrated

in curve 2 of Fig. 4. Ib where there is an average imaginary dielectric

constant and imaginary perturbation. Again the light dashed lines

represent the unperturbed values.

We see that the spatial gain can be either enhanced or

diminished near Bragg resonances. This behavior depends upon

Bragg order and perturbation or coupling type.
i.

The sign of Im{p/K} and Im[k e 2 /K] (not shown) have not

been specified because the correct root of the dispersion relation is

dependent upon the stability of the wave. For passive media, e. > 0

and the correct signs are chosen to indicate spatially and temporally

decaying waves since no sources are present. Hence, the media

does not support instabilities. However, instabilities may arise

in active periodic media where e. < 0 for some (or all) z. In this

case an analysis of wavepackets in the periodic medium must be

made. This case is taken up in the following chapter. For the

present we will only examine monochromatic waves and will not

specify the correct sign of the dispersion relation roots.
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B. ECW Theory for Complex Media

1. Analytic Expressions

Since we again assume a solution to the wave equation of the

form

N*f2 r
E(z) = LJ F(z), _ ...T exp [i(l-2n/N)3 z]

n=-l l-2n/N o

exp[-i(l-2n/N)3 z] + (

where the symbols have the same meaning as in chapter III. This
-»

implies that the gain/loss and the perturbation of the media are

small. Hence for a singly periodic effective dielectric constant

e(z) = e +ie. +e (r\ + ir | . )cosKz (4. B2)

we assume

hrl. \\\ , l e i / e
r l « i

However, as in the case of simple media, we might expect the ECW

dispersion relations to be a good approximation to the Floquet results

even as

hrl. \\\ . l e i / e
r i - l -

Following the identical analysis that led to the ECW expressions

(3. A20-3. A25) we find immediately that for the N Bragg order

(4-B3)



-76-

TT*{4n(n-N)/N2}
2,2 (4. B4)

where (3 = NK/2. Note that the coupling coefficient XN is not

affected by e.. The dispersion relation as before is

K - (^)2 - K
(4. B5)

2. First-Order Interactions

At the first order Bragg interaction we have the approximate

expressions

_

K ~

h ~
K ~

Ak. e 2

1 r
K

i e.

which give

K i

Ak e 2

i r
K

Ak, e 2
 v e.

lr
2 - r^.2

64

K

32

where

Akx = k -

(4.B6)

(4.B7)

(4.B8)

Note that at the first Bragg order, e. only affects the phase mismatch

6., and TL only affects the coupling Xj« For index coupling, the

maximum value of Im{Ap. /K} occurs exactly at Bragg resonance
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e 2/K = 0. The value is

K max

2 i

64

Hence, near Bragg resonance, the effect of spatial gain or loss and

the perturbation add as the sum of their squares for index coupling.

This enhancement of spatial gain or loss has been observed in the

Floquet solution of Figure 4. Ib and is shown in Figure 4. 2a for the

ECW solution for several values of e./e when ri = 0. 1. Far fromi r '

the Bragg resonance I m f A p . /KJ = ± 6. /K, the unperturbed value.
1

The temporal gain or loss, Im{Ak, e 2/K.}, remains constant across

the bandgap with value e./4s .

For gain or loss coupling, Xi changes sign and therefore

A{3, /K is real if e. =0. This produces an inverted bandgap as shown

in the previous Floquet results. The ECW results are shown in

Figure 4. 2b for several values of e./e when T| = i 0. 1. Two classes

of behavior appear that depend upon the sign of

A = C |e . / e r | - |T|./2|] .

2 2 1

For A < 0, a bandgap of width 2[r). /64 - e, /(4e )]2 appears in

Re{Ap1 /K}, and Im{Af3. /K} = 0 at Bragg resonance. The two roots
_i

of ImfAk, e 2 /K] are of opposite sign. For A > 0, there is no band-

gap and the gain or loss coupling diminishes the average spatial

gain or loss near Bragg resonance. This is due to the fact that the

2 2
coefficients of t|- and e. have opposite sign in (4. B8). In this case,

i
the two roots of Im{Ak. e 2 /K] are of the same sign.

Thus, the effect of finite e. can either enhance (T] - r\ ) or

reduce (r\ = ir^) the effective spatial gain or loss near the first Bragg
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Fig. 4.2 Brillouin diagram at first Bragg

order using: a) index coupling; b) gain/loss

coupling; and c), d) both couplings in the ECW

theory.
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resonance. For both cases of coupling, increased e./e tends to

mask the effect of the coupling or perturbation.

Figures 4. 2c, d show the effect of having complex coupling

(T) = T1 + iTu) in a media with no average gain or loss. As the ratio

r\./T\ is increased, the bandgap region changes from the shape

typical of index coupling to the shape typical of gain or loss coupling

for Re{A6 /K} and R e [ A k . e 2 / K } . The values of Im{A(3./K} and
1 1 r 1

Im{Ak, e 2 /K} tend to peak in the Bragg interaction region.

3. Second-Order Interaction

The second-order Bragg interaction and all even-order inter-

actions produce very different dispersion relations from those of

the first-order for gain or loss coupling. This was seen in the
fy T<T

Floquet results of Figure 4. 1. The change is due to the term (irj.)

in the dispersion relation which takes on different signs depending

upon the oddness or evenness of N. In the second-order Bragg region,

the approximate relations are
L -> ->

6^ • Ak0 e 2
• *•*• ^ * ^ • * >•»• *i • i

(4.B9)

K ~ 8 ' (4.B10)
i

where A k _ = k - ( 3 / e 2 ; ( 3 = K .
£ . o r o

Note that the perturbation affects not onlythe coupling X->'

but also the phase mismatch 62. In fact, r\ now acts to modify the

2
gain or loss from e./(2 e ) to the effective value e.( l -T) /6) / (2e ).

The Brillouin diagram for the' case of index coupling is shown

in Figure 4. 3a for various values of e j /e r with r\ = 0.1. The result
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is similar to the first-order case with the exception of the bandgap

shift. Again, at the center of the bandgap, the effective gain or loss

and the perturbation add as the sum of their squares. The spatial

gain or loss is greatly enhanced near Bragg resonance when

|e./e I « |T| I whereas the temporal gain or loss remains constant.

In the case of gain or loss coupling, a difference occurs since

2 - 4
X is proportional to T) in (4. BIO) and the bandgap shift changes sign

which causes the Brillouin diagram to be a mirror image of the index

coupling case about the axis 62/K = 0. That is, at the second Bragg

order, the difference between index and gain or loss coupling is a

matter only of positive or negative bandgap shift. This is demon-

strated in Figure 4. 3b for T) = i 0. 1 and several values of £. /e .

This dependence of the phase mismatch upon r\ accounts for the

phase speeding and slowing effects shown by previous Floquet re-

sults. The temporal gain or loss is constant as in the index coupling

case.
i

Figures 4.3c,dare similar mirror images about Re{Ak>e2/K} = 0

for e./e =0 and various ratios r\. lr\ . The symmetry is expected

since T| always enters as an even power in the dispersion relation.
i

From (4. B9-10) it is evident that Im{A P2 /K} = 0 at Ak2 e^/K = 0

only when | T|. | = 11 !• This corresponds to curve 5 and is similar

in shape to the gain or loss coupling Brillouin diagram at the first
jt_

Bragg order. For ImfAk, e 2 /K] = ± Ti T1./12, Im{Ap /K] = 0 for
L r r i ^

T) $ T).. Thus for complex coupling, the perturbation will mask the

spatial gain or loss for some frequency near Bragg resonance, while

a large spatial gain or loss will occur for nearby frequencies. In
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Fig. 4. 3 Brillouirt diagram at second Bragg

order using: a) index coupling; b) gain/loss

coupling; and c), d) both couplings in the ECW

theory.
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Fig. 4.3
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all cases of both index and gain or loss coupling, the temporal gain

or loss is peaked in the vicinity of Bragg-resonance.

4. Third-Order Interaction

From the structure of the dispersion relation it is apparent

that odd Bragg order interactions will exhibit similar Brillouin

diagrams for index and gain or loss coupling. To exemplify this,

consider the third Bragg order approximate parameters,

6_ Ak_T| 2 77 / e ' \ / \2 i3e.
£. _. -J r _ ^ ' [ I j i_ ) ( -n 4-i n I -: !_ I A. T» 1 1 \

K K 256 \ e / V r i/ " Te ^ 'r r

where Ak, = k - P /e 23 o r

( 3 = 3 K / 2

Figure 4. 4a, b demonstrates the dispersion characteristics

for index and gain or loss coupling respectively. Except for the

bandgap shift, the results are nearly identical to the first-order case.

That is, the perturbation and gain or loss add at the center of the

bandgap to enhance the spatial gain or loss for index coupling. In

the case of gain or loss coupling the Brillouin diagram exhibits two

distinct behaviors which depend upon strength of the gain or loss

relative to the perturbation. For small average loss or gain, the

effective spatial loss or gain is zero at the bandgap center.

The case of both index and gain or loss coupling is shown in

Figure 4,4c, d. In all third-order cases, the temporal gain or loss

is peaked in the Bragg region just as for the first-order case.
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Fig. 4.4 Brillouin diagram at third Bragg

order using: a) index coupling, b) gain/loss

coupling and c/, d) both couplings in the ECW

theorye
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C. Multiharmonic Periodicities

41 71Recent experimental work in higher-order DFB lasers '

and in multiply -periodic DFB lasers make the results of multi-

harmonic EC W theory timely. As in the passive -lossless case, ECW

theory cannot give explicit dispersion relations for arbitrary Bragg

order N, since the number of significant Fourier components (f )

have to be specified. However, . the extension is straightforward,

although laborious, for any specific case.

Consider the case where f, and f^. are the significant Fourier

components of the periodicity and

e(z) = e + ie . +e [r| f cosKz ft^f cos(Nkz +9)] (4. Cl)

where Tip = (r\r + i r^p , P =(1, N) and OCn^)1^ O(T]NfN).

Following the derivation of the previous chapter we find the slightly

modified ECW equations:

F '(Z) -16 F ( z ) = i x N
+ B (z)

(4.C2)

where

•-1)

l NfN[cos9±isin93 _

2 + 2N TT*{4n(n-N)/N2}2

(4."C4)
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The resulting dispersion relation is

C5)
K ~ v K / K2 , ' C5)

By varying the phase' between the Fourier components, •% can be

varied while 6^ remains constant. This allows control of the coupling

+ -
and bandgap width [= i(XN XfJ")2 1 without change in the bandgap

shift.

For N = 2, the explicit dispersion relation is

g 2

- K

AP 2 AVg (T,
~ = - ---

(4.C6)

Figure 4. 5 shows two examples of multiharmonic Brillouin diagrams

at the second Bragg order. In Figure 4. 5a, the index coupling case

is shown when (ru f . ) /2 = ru f, = 0. 1 and e. = 0. The bandgap width

and Im{Ap_/K} both vary as sin(6/2). Figure 4. 5b represents£ m.ctx

the case of index coupling with spatial wavenumber K and gain/loss

coupling with wavenumber 2K. The result shows not only the

Re{Ap_/KJ typical of gain/loss coupling, but also the effective

gain/loss typical of index coupling. In both cases shown,
1

Im{Ake 2 /K] = 0 for Re{Ap_/K}. The results for lossy media are

,2 _ + - ,,,2
similar if (^/e^ « X2

+ X2"/K •

D, Comments on Complex Periodic Media

The extension of chapter III results to complex media has

been mathematically straightforward for both the Floquet and the

ECW results. However, interesting.new features appeared in this
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Fig. 4. 5 Brillouin diagram at second Bragg order using multiharmonic

periodicities in the ECW theory: a) index coupling with relative phase

0 between two periodicities; b) index and gain/loss coupling. Note

Im UkeJ /Kj = 0 for Re
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chapter:

1. Even and odd Bragg orders produce non-inverting

and inverting bandgaps, respectively, for gain/loss

coupling. Index coupling always produces the usual

non-inverting bandgaps.

2. Phase speeding and positive bandgap shifts are pro-

duced by index coupling while gain/loss coupling

produces phase slowing and negative bandgap shifts.

3. The average effective spatial gain or loss (i. e.

ImfAp^/Kj) is significantly enhanced or diminished

near Bragg resonance whenever |e./e \<\r \ ' \ . En^

hancement or reduction depends upon coupling type

and Bragg order.
i

4. Temporal gain/loss (i.e. ImfAk^e 2 /K}) i s either

constant or is peaked at the bandgap center.

5. , Multiharmonic periodicities offer great flexibility

in changing the bandgap shape through phase and

coupling variations. If the Fourier components f

are dynamically generated, this opens the possibility

of quickly controlling the feedback strength in DFB

lasers or filters. Possible applications are in the

areas of microwave and optical filters, switches

and modulators.

In this chapter, Floquet and ECW results were not directly

compared because little or no graphical differences appear whenever
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\ \ \ - \\\. !VeJ ̂ °-
for the first few Bragg orders. The accuracy of the ECW results is

similar to that of the passive-lossless case. The only notable differ-

ence occurred in the first order gain/loss coupling case where the

ECW results' predict I m f A p / K J = 0 at exact Bragg resonance. The

96

Floquet result gives a small but finite value here for Im{A(3./K}.

Portions of this chapter have been summarized elsewhere.
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CHAPTER V

STABILITY OF BRAGG INTERACTIONS

IN ACTIVE PERIODIC MEDIA

The problem of wave stability was briefly mentioned in the

previous chapter with regard to choosing the correct root of the

dispersion relation for the frequency and longitudinal wavenumber.

It is evident that the preceding monochromatic plane wave analysis

is inadequate to predict the correct spatial and temporal behavior

of waves in periodic media in all but the simplest (passive and loss-

less) cases. Our purpose is to formulate the stability problem in

such a way that the preceding ECW equations can unambiguously

define wave characteristics.

The problem of wave stability was greatly clarified through

72
the original work of Sturrock " which provided a method for distin-

guishing between growing waves (unstable media) and decaying waves

(stable media) through the dispersion relation. Sturrock further

divided unstable media into convectively unstable and absolutely un-

stable media. The former referred to waves which grew and then

decayed at a given point in space like waves in traveling-wave ampli-

fiers. The latter referred to waves which grow everywhere in space

as those waves found in backward wave oscillators. This work was

extended by Briggs and was formulated as a mathematical pre-

scription which unambiguously classified waves according to their

stability. A large number of electron-stream interactions demon-

strated the usefulness of Briggs1 method in plasma physics. The
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stability criterion was again extended to include time-varying media

by Cassedy who examined the stability'of parametric interactions

due to space-time periodicities.

In this chapter, the stability of time-independent active

periodic media is studied at the first- and higher-order Bragg reso-

nances. The stability classification depends only upon the dispersion

relation or the Brillouin diagram and hence the ECW theory of the

previous two chapters will be used. We will follow the procedure

suggested by Briggs. This requires the formulation of the field

response as a function of a source, localized in space and time.

In section A the ECW equations are developed with sources

present and the stability criterion is stated. The application of

the criterion to the first two Bragg resonances is carried out in

detail in section B. These resonances are the archetypes for all

odd- and even-order Bragg interactions. Explicit values for insta-

bility threshold, frequency and growth rate are given. Section C

contains a brief explanation of the effects of complex coupling (i. e.

T| = T] + iT|.) and multiharmonic periodicities upon instability param- ,

eters. A short discussion of the results is given in section D.

A. ECW Equations with Sources

We carry out the usual manipulations with the Maxwell equa-

tions that include a current density source J(z). The resulting in-

67
homogeneous wave equation for a TEM wave in longitudinally

periodic media is
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+ k e(z) |E(z, co) = -iw^Q J(z, to) (5. Al)

•T-./ » "> 00E(z, co) 1 _ f
.J(z. CO)/ ~ J

-00

where fE(z ' ** } - ? (E^^l e
iajt dtWtiere e dtJ(z,t)

e(z) = e -f ie . + e £(T) + ir|.) f cos pKz* ' r i r pv 'r Vp p r

Assume that E(z) is made up of the N+3 waves F(z). _ /N* F.(z), . . .,

B,(z), B(z). ~ /-[^ that are used in the ECW formulation. We then

find the following N+3 ECW equations for singly periodic media at

the N Bragg order.

«K.«/N)PoF1
1«*('--V-tIS'«-HAW*OWWP»

(5.A2)

where the arguments with respect to z and t have been dropped and

the primes denote differentiation with respect to z. The current

densities J (z). - ,^. are the portions of J(z) which are in phase

synchronism with the rest of the equation. We accomplish this by

truncation in wavenumber space such that

-2n/N)Po) rect {[p^l -2n/^)PQ]/Ap (5. A3)

(n = -1,0, 1,2,...)
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where

J(P) = J J(z)e-i(3z dz

As we shall see, the exact truncation details are unimportant since

the current will only contribute to the field at wavenumber (3 = (3 .

Since we are particularly interested in the waves F. (z) and B, (z),

assume that the current is slowly varying in wavenumber over the

N+3 significant waves. Thus, we consider only the current contribu-

tions Jj(z) and J,~(z) and ignore current contributions O(r|). Using the

above approximation and the other usual ECW approximations we find

the coupled equations,

yz, WLj-i^Fjfz, to) =ixNB1(z,OJ) -^fi- Jj(z,U)e~i(3°Z

(5'A4)

-Bj(z, w) -iSj^B^w) =ixNF1(z,w) -^°
o

These equations can be solved by taking Fourier transforms with

respect to z and solving for F,(Ap, w) and B.(Ap, to). The inverse

transforms produce the time and space variation,

iu

(5.A5)
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o o w f ^ + S J J A p - p ^ - x J A + w ) } ' dApdco

(5.A6)

where AQ E _ . .
D(Ap,<o) = - ( f ) - ( |) +( | ) 2 =0 <5 'A7>

is the dispersion relation and the radian frequency CO is related to the
i

wavenumber by to = c(k +Ak)/e 2 and |3-(3 = Ap as before. All sub-

scripts N have been dropped for simplicity. Assume that the current

is turned on at t = 0, hence J(z, t) = 0 for t < 0.

It is apparent that the integrand of (5. A5-6), excluding the

currents, is the Green's function for a periodic medium in the ECW

approximation. It is of similar form to an exact expression which

75accounts for all space harmonics and current components.

As pointed out by both Sturrock and Briggs, it is necessary

to investigate wave packets in space and time due to localized sources.

Therefore, the previous ECW equations (5. A4) with a source turned

on at t = 0 are a useful start. The remaining problem is to find how

F, (z, t) and B..(z, t) behave asymptotically by choosing the contours

of integration correctly and unambiguously. Note that the poles of

the integrand, or the roots of D(A|3, to), determine the field response.

For causality, it is necessary to carry out the frequency

integration above all singularities. The integration contour is shown

in Figure 5. la. Note that no roots appear in the region enclosed by

the contour for t < 0. This contour is the rotated Bromwich contour

that is used for Laplace transforms. The contour in the wavenumber

plane is ambiguous since the roots of D(Ap, to) may cross the real Ap
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axis for different values of co(= 05 Hco.). This difficulty has been
7 1

remedied by Briggs by use of the following physical criterion:

for a. source with sufficiently large temporal growth rate (i.e. large

CO- = s > 0), the waves away from the source must spatially decay.

Therefore, if the contour is chosen in the to plane to satisfy causality

for CO. = s, the roots of D(Ap, co) will determine the response for F(z, t)

and B(z, t) and must represent spatially decaying waves. Figure 5. Ib

shows this condition. Since it is convenient to integrate along the

axis CO. = 0, we depress the contour around singularities down to the

real coaxis (Figure 5. Ic). As to. ~* 0 for fixed CO., the roots of

D(Ap, co) will: 1) stay in the same half plane of A(3; 2) cross the real

Ap axis; or 3) merge from opposite sides of the real Ap axis in pairs

for some CO. = CT > 0. As shown by Briggs, the above cases lead re-

spectively to: 1) decaying waves (stable media); 2) amplifying waves

(convectively unstable media); or 3) time growing waves (absolutely

unstable media). In the first case, the contour in the Ap plane along

real Ap axis is not deformed (i. e. decaying roots) while in the second

case the contour is deformed (i.e. amplifying roots) by root crossings

(Figure 5. Id). In the third case, as CO. ~* d for some CO = CO (Figure

5« le), the merging root behavior in the Ap plane (Figure 5. If) pre-

vents the distortion of the contour since the integration must be

carried out between the merging roots. The details of the integration

are carried out in Appendix A for absolute instabilities with the

proper contours shown in Figure A. 1. It can be shown (equation (A. 7))

that the field varies as
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t <0

Roots of
D(A p,<jj)=

d)
z >0

t > 0
-Amplifying
Roots

z <0
Decaying
Roots

z>0

>0

Merging-^
Roots

-Aft

Fig. 5.1 Integration contours in a) OU plane for causality, b)odplane

for t > 0 and time growing source, c) to plane with deformation to

OJ axis, d) Ap plane which corresponds to c) with changing roots,

e)cc plane for absolute instability at CO- = <T > 0 ^P plane corre-

sponding to e).
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F(z,t) « - T - ^ - (5.A8) -
t2

Note that the frequency and wavenumber of the instability are just

that of the merging roots (i. e. Af3 = A{3 , CO = U = to + i a). Therefore,

the waves grow in time as e . The absolute instability parameters

are determined from the mapping of the dispersion equation roots in

the Ap plane for variable 60. and different constant values of to .

B. Application of Stability Criteria to Bragg Resonances
•
The Brillouin diagrams take on different characteristics for
L .

even and odd Bragg orders in the case of index (T) = r\ ) and gain

(T| = i T). ) coupling. Thus, we will examine in detail the first and

second Bragg resonances for singly periodic media since they are

the archetypes of all even and odd Bragg order n interactions.

The first -order Brillouin diagrams are repeated in Figure

5. 2a, b for the case of index and gain coupling respectively with

various values of average gain or loss. Figures 5. 3 and 5.4 show

a mapping of the roots of D(Ap, co) in theAp plane as CO- varies from

large positive values to zero for several values of CO • Normalized
i

frequency Ak e 2 /K is used instead of ox Figure 5. 3a shows the case

of no average gain or loss (e. = 0) and index coupling which corre-

sponds to curve 1 of Figure 5. Za. The merging root behavior is
j_ i

noticed for Re{Ake 2 /K} = r\ /8 when Im{Ake 2 /K] = 0. Thus, ther r r

instability has no temporal growth and the medium is actually stable.
!

This is also noted from the fact that Im{Ake 2 /K} = 0 for all Re[Ap/K}

and hence no instability is possible. ' Therefore, the physical notion
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of the stability of passive periodic media is confirmed. Since there

are no root crossings, the proper choice~of the sign of Im{A(3/K} is

that which indicates spatially decaying waves. Figure 5. 3b shows

the case of index coupling with average loss (e> 0) which corresponds to

curve 3 of Figure 5. 2a. There are no root crossings or mergings
i

and hence the media is stable. The proper signs for Im{Ake 2 /KJ

and Im{Aj3/K} indicate temporally and spatially decaying outgoing

waves. The case of index coupling with average gain (e. < 0) which

corresponds to curve 3 of Figure 5. 2a is shown in Figure 5. 3c. In
i

all cases, similar curves exist for Re[Ake 2 /K] < 0 which are mirror

images about the imaginary Ap/K axis. Note that the root crossing
I

occurs for Ak e 2/K = i e. /4e ± T) /8. Thus, absolute instabilities

occur for index coupling with (the threshold condition) positive average
i

gain at the bandgap edges corresponding to R e f A k e 2 /K3 = ± T] /8.
1

The normalized temporal growth rate is Im{Ake 2 /K] = - e./4e and

the longitudinal wavenumber (3 = (3 is real. (Bandgap edges will refer

to the lossless case for this chapter.)

Figure 5.4 shows similar mappings of the dispersion equation

roots for gain coupling. In Figure 5. 4a, b, c the merging root be-

havior occurs at the value Ake */K = -ie./4e + i|r]. |/8. Thus, for

gain modulation, absolute instability occurs at the center of the band-

gap for average gain (e. < 0) and average loss (e. > 0) whenever the

threshold e./e < |r). |/2 is satisfied. The result for zero average

gain is not surprising since the inverted bandgaps are similar to

those of parametric instabilities and backward wave oscillators.

However, note that gain-coupled media may also have instabilities
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-0.01 - -0.01

b)

4 3
\l j I

-0.01 0 0.01

Re|Aj9/K|

-0.01 0.01

0.01

3.
E

-0.01

«./«. = -0 03

i I

0.02

"5 o.oi

d)

1=0.1

-0.01 0.01 0.01 0.02

Fig. 5. 3 Locus of the roots of the dispersion relation in the A(3/K

plane at the first Bragg order for index coupling with average gain

a) e./c =0.0 , b) e./c = 0. 03 and c) e./e =-0.03. Locus ofi - r i r i r
A.k e I/K for the above is given in d). .Similar loci in the Ap/K plane

are produced for Re[Akez/K} < 0.



.........MffifiiMfaaifl̂ ^

-103-

-0.01 0.01

0.01

•0.01

_ b)

1 «./e =0.05
r r

I I 1

-0.01 0 0.01

Re|A/3/K|

0.02

I*"_> 0 01

"i"

d)

i 0.1

.0.01 0.01 0.01 0.02

Fig, 5.4 Locus of the roots of the dispersion relation in the

A|3/K plane at the first Bragg order for gain coupling with

average gain a) e../e = 0.0, b) C./er = 0. 05 and c) e^f^ r= ~°» 05»

Locus of Ak c ~* /K for the above is given in d).r *
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when the average gain is negative as long as the gain periodically takes

on positive values (i. e. the average loss is less than some fraction of

the variation).

As evidenced by the structure of the dispersion relations of

chapters III and IV and the repeated Brillouin diagram of Figure 5. 5,

index and gain coupling at the second Bragg resonance display similar

characteristics, to the first-order index coupling diagrams (i. e. no

inverted bandgaps appear). Thus, the stability of both index and gain

coupling atthe second Bragg resonance should be similar to thatof the first

order index coupling case since the stability criteria is dependent only upon

the dispersion relation. The only difference should be in the sign of the

bandgap shifty and hence the relative instability frequency, which is positive

or negative for index or gain coupling respectively. Indeed this is true.

The mapping of the complex roots (not shown) of D(Ap, to) as oo.-* 0 resembles

Figure 5.3. The absolute instability occurs atthe bandgap edges for index
i_

or gain coupling with temporal growth rate given by Im{Ake 2 /K] at the

bandgap. The threshold condition requires positive gain (e.<0) for abso-

lute instabilities at the second Bragg resonance for both coupling types.

The results of odd and even Bragg resonances show different

stability characteristics as exemplified by the specific cases of N= 1,2

discussed above. The mathematical conditions for absolute instability

parameters can be found from the above considerations and the ECW

dispersion relation. For any Bragg order N, oscillation takes place at

Re[6N/K] = ± Re(xN/K} (5.B1)

with temporal growth rate

Iml 6N/K] = + Imf XN/K] (5. B2)

at or above the threshold



-105-

0)

M .5
0) ^

§ §
° <?. 9.

HH»"

OW
60

n
-d -S
ti rt
O W)

2 -
tg a
«M X
o o>

I 3
Vt •"!•
6C ™
n»

_, *

I
«

«

o
W



^^

-106-

= 0 . (5. B3)

The results for the first few Bragg resonances are summarized in

Table 5. 1. It is noted that with increasing Bragg order, the

threshold approaches zero for all couplings since r\ is usually small.

Also the instability frequencies tend to cluster above (index coupling)

or below (gain coupling) the exact Bragg resonance for higher Bragg

orders. This is due to the band gap shift.

The first two Bragg resonances have been shown to be arche-

typical of all Bragg resonances. In particular we found that for index

coupling, absolute instabilities occur for positive average gain at

both bandgap edges with temporal growth rates given by to. = CJ at the

bandgap. For gain coupling, the behavior is identical to the index

coupling case for N even, with the exception of the instability fre-

quency which is shifted due to the bandgap shift. For gain coupling

with odd N, absolute instabilities occur only at the center of the band-

gap with temporal growth rates equal to the value of CO. at the bandgap.

The correct choice for the sign of Im{Ap/K3 depends upon the

position of the roots of the dispersion relation as CO. ~* 0 or at the

merging root point CO. = Q. If the roots have crossed the real Ap/K

axis the outgoing waves are amplifying and if they do not cross, the

outgoing waves are decaying. Thus, for the case of absolute instabil-

ities, there will be both amplifying and decaying waves at frequencies

adjacent to the instability (see Figure 5. 3-4). However, this behavior

is overshadowed by the absolute instability and is not important for

infinite media. The proper sign of Im{6/K} is chosen by the fact that
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the dominant time behavior is controlled by the highest root in the

CO plane. This is equal to the value W. =^o- that occurs when the

roots of Ap /K merge.

In all cases where the gain is not large enough to support

absolute instabilities, the medium is stable and the outgoing waves

decay spatially due to coupling and losses. Thus, because there are

no axis crossings of the roots of D(A(3, W ) in the Ap/K plane, the sign

of Im{Ap/K] > 0 is specified for outgoing waves. The sign of

Im{6/K] is chosen to correspond to the least lossy wave (i. e.

Im{5/K} > 0) since this root produces the dominant field contribution.

Thus, for stable media the periodicity will enhance the spatial decay

and not affect the temporal decay for index and even-order gain

coupling. For odd-order gain coupling the spatial and temporal

decay are both diminished.

C. Complex Coupling and Multiharmonic Periodicities

In practical cases, both index and gain periodicity will occur

together (f| = T) +ir).). This case, referred to as complex coupling,

will usually cause absolute instabilities to occur at two frequencies

due to finite- T) . The explicit conditions are involved for arbitrary

Bragg order but reduce to the following form at first order: absolute
i

instabilities will occur in pairs at the bandgap edges (Re {Ak, e Z/K ] = t T] /8)
i_

with a growth rate ImfAkj e^/k] = -e./4e + p.j/8; the threshold is

an(3 thus cannot be reduced below the gain coupling value.

At even Bragg resonances, where the threshold was pre-

viously zero, a reduction in threshold can take place for the case

of complex couplings. As an example consider the second Bragg
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resonance. Figure 5. 6 repeats the Brillouin diagram for complex

coupling and e./e = 0. For equal amounts of index and gain

coupling (i.e. r\ - r\.) the curves give inverted bandgaps. Thus,

one expects absolute instabilities at exact Bragg resonance. It

can be shown that the instability threshold is reduced to

e./e = 5\ r \ . r\ \/6 (average loss). Two absolute instabilities occur

for T| 4 T). an£l e./e =0 at the frequencies where Im{Ap /KJ is

zero and where it is maximum. Thus, as the ratio T)./T| approaches

zero or infinity, the ii^stability frequencies merge to the center of

the bandgap and as r\. lr\ -• 1 the instability frequencies tend to

merge in pairs toward exact Bragg resonance. The growth rates

are found from the value of ImfAk, e 2 /KJ at the bandgap center.

The application of the stability criteria to multiharmonic

periodicities is similar to the previous analysis (chapters III, IV)

With the proper phase mismatch 6^ and coupling \ substituted into

the dispersion relation. Although there is little or no effect at the

first Bragg order for changes from sinusoidal periodicities to other

typical periodicities, the effects at higher Bragg orders (N ^ 2) may

be significant due to Fourier components f . It can be shown

(Appendix B) that the coupling is increased from values O(T| ) for

sinusoidal periodicities to values O(T|) for sawtooth periodicities

at the second Bragg resonance.

At the third Bragg order, the coupling can be increased

from values O(r| ) to values O(r|) for square-, triangular- or

sawtooth-wave periodicities. This implies that instability
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thresholds can be changed at higher Bragg orders by the use of non-

sinusoidal periodicities. Typically, |T)p~O(10 -10 ) in integrated

optics applications.

/

D. Comments on Stability

In this chapter we have found the stability criteria for time-

independent periodic media. This media may support either decay-

ing (stable) or temporally growing (absolutely unstable) waves in

basically dispersionless dielectrics. The ECW equations provided

explicit values of threshold, instability frequency and temporal

growth rates for absolute instabilities. Average positive gain was

required for oscillation at the bandgap edges for index coupling and

even-order gain coupling. For odd-order gain coupling, the average

gain could be negative if the gain periodically took on positive values

and the oscillation took place at the bandgap center. In some cases

both types of coupling or multiharmonic periodicities could reduce

thresholds.

There has been some question as to the effect of boundaries

upon DFB oscillation. It is apparent from the preceding sections

that instability takes place when certain modes of the active peri-

odic media achieve threshold. No boundaries are needed since

feedback action is produced by the periodicity.

It appears that for frequencies other than the instability

frequencies, waves may either decay or be convectively amplified

if the structure is short enough such that the absolute instabilities

do not occur. In this case, the active periodic structure might be



-112-

used as a filter-amplifier. However, each individual system must

be considered along with the boundary conditions to determine sta-

bility, 35, 73, 74

The results of this chapter have been summarized. 97
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CHAPTER VI

APPLICATIONS OF ECW THEORY

The results of previous chapters have depended only upon

the dispersion diagram of unbounded periodic media. In this chapter

several cases of bounded media will be discussed. The use of the

ECW equations allows behavior at all Bragg orders to be approxi-

mated easily. The purpose of this chapter is not an exhaustive

coverage of periodic structures but rather an indication of a wide

range of problems which may be solved by the use of the previous

theory.

In section A, longitudinally bounded passive media (i. e. DFB

filters) will be covered along with examples of transients in a periodic

slab. In section B the characteristics of higher-order DFB lasers

will be given. Section C will cover the case of holographic grating

diffraction and the last section will characterize the propagation of

Gaussian beams in periodic media.

A. DFB Filters

1. Effect of Longitudinal Boundaries

We consider waves in a periodic slab of length JL. The ECW

equations account for Bragg coupling or scattering from the perio-

dicities but not for the coupling or scattering due to the boundaries.

The equations can be easily modified. The relative dielectric con-

stant is now

e(z) = e + ie. + rect(z/£) e D(r| +iTV) f cospKzr r i p p
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where
fl U|

rect(z/£) = /
\0 | z |> i /2

For simplicity, consider singly periodic media with no average loss

or gain (i. e. f = 0 for p ^ 1, e. = 0). The additional Fourier com-

ponents available for coupling or scattering arise from rect(z/£) and

have not been accounted for previously. These components are pro-

portional to the Fourier transform,
00

f rect(z/j&) cos Kz elpz dz
-co ' (6.A1)

Hi / sin(|3+K).a/2 sin((3-K)l/2 \
~ 2 \ (6+K)//2 ( 3 - K ) j & / 2 J(3+K),e/2

Thus, the additional available perturbation per unit length is propor-

tional to the right-hand side of (6. Al) divided by the length i. As in

the case of multiharmonic periodicities, only the strongest effect

(i. e. first order in TI) of the boundary perturbation of (6. Al) upon F,

and B, are considered. For higher*order Bragg interactions, the

coupling diagram of Figure 6.1 is helpful. Not only is there the usual

Ncross-coupling through terms O(T1 ) and self-coupling through terms

O(T| ), but there is cross- and self-coupling proportional to r\§ and T)0,

sin((3+K/2)j& sin((3-K/2)A

respectively, where

sin((3+K/2)j& ^ s
(3-K/2)A

sin(f3+K)ji/2 sin((3-K)A/2 \
(B+KU/2 (B-KU/Z J

(6.A2)

are the boundary effects. This is due to the terms [-k e T|(®F.+ $B.)/2]

and [-k e r | (®B. + $ F.)/2] which are added respectively to the F.

and B. equations of the ECW equations (3.A6). Consequently, the
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modified ECW equations become identical to the former ECW equations

with the changes 6 - "6 and XN ~* )CN where

K - K
(6. A3)

K ~ K 8

In each case the first term of the above equation expresses the effect

of the periodicity while the second term expresses the effect of the

boundary. For higher-order interactions, the latter effect predomi-

nates in coupling when KJt> « (T)/2) while the opposite is true for '

1-NKJ& » (T|/2) . This is expected since for thick slabs the extra

Fourier components introduced by the truncated periodic media are

tightly clustered around the components introduced by the periodicity

of the infinite media and no new effects are observed. However, for

thin slabs, the truncation produces Fourier components at many

multiples of the Bragg wavenumber which are capable of directly

coupling F. to Bj. In this case the boundary coupling (« T|§) predomi-

nates. Note that the above inequalities denote the region where the

results of the infinite media can be directly applied to the longitudi-

nally bounded case. Also note that the boundary effects can be reduced

if the perturbation is gradually truncated at the slab ends. A similar

79effect has been noted in quantum mechanical scattering. The

boundary effect seldom affects the phase mismatch since it is negli-

gible when KJ& » rf1.
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2. ECW Reflection and Transmission Coefficients

In this subsection we consider the general case of transversely

and longitudinally bounded structures where each coupled wave repre-

sents a different mode. Hence, the longitudinal wavenumbers may be

different for each mode. For simplicity the numerical examples

will correspond to the special case of coupling between waves of

identical modes in thick slabs although the analytic results are given

for the general case using the ECW approximations.

Figure 6. 2 schematically shows the configuration. Consider
i p z

a positive phase velocity wave F,(z) U (x)e ™ which couples to a

negative phase velocity wave B ^ z J U (x) e . The subscripts p, q

refer to the mode number of the transverse distribution U(x). The

phase match condition for significant coupling at the N Bragg order

is

P +P ~NK (6.A4)p q

where K = 2ir/A and A is the fundamental spatial period. The

boundary conditions are found from Figure 6. 3 by use of the ECW

equations which correspond to continuity of the electric field at

z = ± SL/2.

*

~n=-l l-2n/N

(6.A5)
l-2n/N

( J ) S ( z = - j t / 2 )
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INCIDENT PULSE

REFLECTED PULSE

TRANSMITTED
PULSE

A
-a t>

PERIODIC STRUCTURE

-4/2 Si/2

Fig. 6. 2 Configuration of pulses and periodic slab.
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NE2 F
n =_l l-2n/N

•l-2n/N

, 1 v

N-2

N-l

for N even

for N odd

1 for N = 1

1 for N even
3 for N odd

(6.A6)

and RN and TN are the reflection and transmission coefficients.

Similar equations result from matching the derivatives (or the mag-

netic field) at z = ± i/2. The only additional equations needed are the

ECW equations modified for transversely bounded media.

(6.A7)

where the coupling and phase mismatch are assumed to be known.

Instead of solving the above equations exactly, a perturbation scheme

is introduced which significantly simplifies the calculation and elimi-

nates the boundary coupling which has been accounted for previously.

Introduce the ordering parameter X which will eventually be set to

77unity. Consider a power series solution of the form

B

(6.A8)
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Fig. 6.3 ECW waves in periodic slab for coupling

between identical modes (i. e. (3 = (3 = P).
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for the waves and let the smallness be specified by \r\. If all the

waves are solved in terms of F, and B. (see equation (3. A6) ), then

the electric field continuity equation becomes,

where p = P + A(3N

= NK/2

.A10)

near the N Bragg resonance. By equating ternas O(X) and phase

19matching, the approximate boundary conditions become

B 1 ( - J&/2) = B1(Je/2) = 0
(6.A12)

The reflection and transmission coefficients are solved using the

boundary conditions and the ECW equations. The details are carried

out in Appendix C. We find

— «- (6.A13)

D eD e
i(

'N (6.A14)

DNcosh



-122-

r~ / u ' w \ —i ?
•L. T-. I ~ ~ f Q P \ Iwhere D-T = x X ~ ( o )N L pq qp \ "2 /J

If the two coupled modes are identical then 6 = 6* = 5" and
P q

X., = X = X- The subscript N has been dropped on 5*and )( for

convenience.

From the above equations for R-. and T^. we observe the

following:

1. maximum reflection

i
(&.A15)

2. minimum transmission

T
Nmin =

3. Rj^ = 0 and TN = 1 for

(6.A17)

where the corresponding phase of R^. is (2n-l)tr/2;

2 2
4. I^TST! + l^isri = 1 ^or Passive and lossless media.

These results are demonstrated in Figure 6.4 for the case \& = 2

where the boundary effects are neglected. The magnitudes of the

reflection and transmission coefficients are shown as a function of

6A(i. e. frequency deviation from bandgap center). Note that the

half-width of the main reflection maximum is equal to the bandgap

width. Hence, there is significant reflection outside of the bandgap

due to the deviation of Re[A(3/K] as well as Im{A(3/K} away from their
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unperturbed values. Figure 6. 5 shows the equimagnitude and equi-

phase curves of the reflection coefficient plotted as a function of x^

and '64 where again the boundary effects are neglected. Note that

Figure 6. 5a corresponds to a horizontal line (x^ = 2) across Figure

6. 4. If the coupled modes are different (i. e. p ^ q), the curves in

Figure 6.'4 and 6. 5 are valid if 6 is replaced by (6 +6 )/2 and x by
1 P q

(X X )2. Similar results for media with average gain have been

discussed for the first-order index coupling case when the modes are

•j 4.- i 35identical.

It is of interest to note the change in the reflection coefficient

with Bragg order. For small coupling X-vr^ « 1 ,

RN! ^XN* (6.A18)
I max

Thus, the variation of R^. with N is

RN| « i{(Ti/2)NIU+Tisin[(N±l)K£/Z]} (6.A19)
I max

where the first term expresses the dependence upon the periodicity

perturbation and the second term expresses the effect of the boundary

perturbation.

For other typical periodicities, the results of Appendix B will

provide appropriate coupling or phase mismatch. In particular, note

that for thick slabs, the coupling is constant at odd Bragg orders for

square-wave periodicities. This implies that the maximum reflection

coefficient is also constant at odd Bragg orders. These results are

in agreement with well-known exact results that use matrix calcula-

78 x

tions. Figure 6.6 exemplified tlvese concepts for three typical
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IT

-W W—~7^2

•"LTLP

Fig. 6. 6 Sketches of reflection coefficient amplitude for -^i ~ 0. 5

for a) sinusoidal, b) square-wave and c) sawtooth-wave perio-

dicities. In all cases the boundary effects are neglected. Note

small reflection at N Bragg order when f^ = 0. The bandgap

shift is too small to observe on this scale.
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periodicities with index coupling. Note that periodicities with large

Fourier components f^ will have large coupling and reflection co-

efficients at the N Bragg order. Thus, periodicities with odd

Fourier components (e.g. square- or triangular- wave) will have

large reflection coefficients only at odd Bragg orders.

The use of dynamically generated (e.g. acoustic waves or

electro-optic effect) multiharmonic periodicities opens up the possi-

bility of controlling the feedback strength in DFB filters. This, in

turn, varies the passband. From the results of chapter IV it is ap-

parent that the passband could vary as sin(9/2) where 9 is the relative

phase between Fourier components of the periodicity at the second

Bragg resonance (see Figure 4.5). If the boundary effects are sig-

nificant or predominant, then the previous results will be modified.

That is, for thin slabs, the reflection will be significantly increased
i_

at higher Bragg orders when {r)sin[(N±l)K + Ake 2 ]jfc/2) is no longer

negligible.

3. Born Approximation Reflection Coefficient

In order to summarize the properties of reflections from both

thick and thin slabs, it is useful to find the Born approximation to the

reflection coefficient. Consider the wave equation for some transverse

component of the electric field E(z).

~ k2e ~]E(Z) = -\r\k2e cosKz E(z)= -XS(z) E(z) (6.A20)
r-' r

where the ordering parameter X has again been used to show the

smallness of T|. Assuming a solution

E(z) = E ( 0 )(z) + X E ( 1 )(z) + X2 E (2 )(z) + . . .
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we find

E(n+1)
oo

(z) = J S(z') (z ' )dz ' (6.A21)
-co

where E<°>(.) - .«

i e ip |z-z ' |
ev^, * / - 2(5

and where (3 = k e 2 for this computation. A straightforward calculation

sin(p-K/2)jTj
+ P J

shows,

Thus E represents a wave traveling to the left which is produced

by the wave E traveling to the right. The approximation which uses

the terms E and E is known as the Born approximation. The

Born reflection coefficient is then the coefficient of e " in E , or

sin(|3+K/2)^ sin((3-K/2)j&")
"•" J

R(1) _
kc j (6.A23)

which is valid for | T) k e2 A |/4 « 1 at the first Bragg resonance

or for |r)/4|« 1 at higher Bragg resonances.
\

i

At the first Bragg order, for |x^ | « 1 and |TI| « 1,

the Born approximation and the modified ECW approximation

become equal. Explicitly we find

R(1)
max

(6.A24)
max
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at the bandgap center for Ki ^ 10. For higher Bragg orders, the Born

approximation produces a series in powers of r\ which accounts only

*for the depth of the perturbation (i. e. the end effects) and not the

length over which it acts. A series in r\KS> is needed to account for

significant periodic effects. This latter series occurs through the

modified ECW equations. Thus, the Born approximation is useful

at the first Bragg order or at higher orders where the slab satisfies

the relation KJ& « r\ . For thick slabs, the ECW theory provides the

proper phase mismatch,. coupling and reflection.

4. Transients in Periodic Slabs

Consider an incident pulse f(t) with frequency spectrum

= J°°f(t)e1Wtdt (6.A25)

where the reflected and transmitted pulses are, respectively,

r ( t )=~J F(w)RN(w)e- ia*dco (6.A26)
-00

t(t) =-± J°°F(aj)TN(w)e'iwtdco (6.A27)

This case was shown in Figure 6. 2. Numerical inversion has been

used by a number of authors to obtain time response to radiation and

scattering problems. The Cooley-Tukey fast Fourier transform

(FFT) has been used in the numerical examples with 2 = 2048

samples to calculate r(t) and t(t).

The cases of reflection and transmission of rectangular and

Gaussian pulses of several center frequencies and widths have been

carried out. Normalized pulse lengths T were chosen to be 0.25
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l and 2. 0 time units where each time unit corresponds to the transit
r

time of the pulse across the slab length i. As in previous sections,

* the numerical results are valid at the first Bragg order and all higher
t>

I
* Bragg orders where the boundary effects can be ignored.
s '
f Figure 6. 7 displays the envelopes of the reflected and trans-

I mitted pulses which result from an incident pulse of length T = 0. 25.
t
I Several values of coupling are used and the carrier frequency is at
i

I the bandgap center (6N = 0). In all the illustrations, the time value

[ t = 0 corresponds to the instant when the center of the pulse is at the
?
| first boundary. For weak coupling, the reflected pulse is spread over

| 2.25 time units (Figure 6. 7 a,c) because the energy is reflected from
i

successive striations and the echo from the last boundary has a round

trip time of 2 units. Since the successive reflections are relatively

weak, the reflected pulse is quas,i-rectangular while the transmitted

pulse is similar to the time delayed incident pulse. As the coupling

is increased, multiple interference leads to transients over a longer

time period (Figure 6. 7 i, j). The reflected pulse reaches a maximum

' at 0. 25 units when the entire incident pulse has just entered the slab.

The subsequent fall-off in the reflected pulse amplitude is due to the

fact that a large portion of the signal has already been reflected due

to the first few striations. For large coupling, the transmitted pulse

consists mainly of two peaks, 0.25 units apart, which correspond to

differentiation (i. e. high-pass filter) of the incident pulse.

The same coupling strength sequence is given in Figure 6. 8

for a rectangular pulse of length T = 2. For weak coupling (Figure

6. 8a), the reflected pulse is similar to the autocorrelation of the



-131-

REFLECTED OUTPUT TRANSMITTED OUTPUT
.030

.025

g .020

1 -015
A.

| .010

.005

0

0.12

0.10

g 0.08

? 0.06

^ 0.04

0.02

0

0.24

0.20

S 0.16

5 °-12

< 0.08

0.04

0

0.30

0.25

S 0.20

tf 0.15

< 0.10

0.05

0

1.0

0 0.8

| 0.6

1 0.4

0.2

0

-

-

X. . 0.2
0.8

0.6

0.4

0.2

l 1 0

~e) fl n s ''2XJ = 0.5 K0

0.8

—

—

—

"^ 0.6

0.4

0.2

^ l J n

1\ '-2
*' X.0 = 1.0

0.8

-

-

-

a)

-

—

—

\

0.6

0,

0.2

_! I

^ X^ = 2 1.0

\ 0.8

ll

\yu 0.2
l|r\A_ n

H) X< = 5 '•*
1.0

0.8

- 1 - 0.6

-

-

M

1 ^

~b)

-

1 IN PUT
•ft* r = 0 25

0

X^ = 0.2

1 1 1

-d)

—

-

-

-

-

"o

-
-
-
-

i

~h)

L
"

XJ = 0.5

-L 1 1

Xl = 1.0

X 1 l

Xj? = 2

1

i) l
J XJl = 5

- 1
II

- 1
- JL^

2 0 + 2 + 4 +6 -2 0 +2 +4 +6

NORMALIZED TIME

Fig. 6. 7 Reflected and transmitted pulses for different values of

coupling coefficient. Incident rectangular pulse has length 0.25

time units and a carrier frequency at R^T | . Note the difference

in vertical scales.
max



-132-

REFLECTED OUTPUT '_
0.24

0.20

£ 0.16

§ 0.12
C
| 0.08

0.04

0.48

0.40
UJ

3 0.32

5 0.24

< 0.16

0.08
0

1.2

1.0
UJ

8 0.8
)_

of 0.6
S
* 0.4

0.2

o

1.2

1.0

S 0.8
— ̂

1 0.6

| 0.4

0.2
c

1.2

1.0

S O.t
3
- 0 tK; 0><

1.2
\

°' xi = 0.2 j.o

0.8

0,

0.4

0.2

, , o
-. . 1.2
e) A v s n cA x^ = 0.5 i.o

- A- / \ °-6

- \-/ \
/, ,1, , 0

'.) X, - ,
1.0

• A- A °-6
/ \

• / \-/ \/ 1 iWi i o

r-» r\- 1 .; - 2 '.o
- / 0.8

' °'6

- \ 0.4

' \A1 , Mn I n

r, '-2

- f\y1 'I • i 1.0

- 1 0.8
\

<> - \ 0.6>

| 0.4- 1 0.4

0.
i i i

^ \ - t ' 0.2
all \r*ftrr». 0

b)
-

—

-

-

-

1 INPUT
-*£\p-r = 2

0

XJ = 0.2

^ 1 1

"d) XJ = 0.5
"~

-

-

-

-

V^

V i i

0 \jJ = i
—

-

-

—

-

VN
\
lV_L 1

h) XJ = 2

- 1
-

:\ {

- uMi y\x_j

~.\
_" XJ = 5

-
_

-

"
1

^JL^
-2 0 •! •* •« -2 0 «2 +4 +«

Fie 6 8 Reflected and t r ansmi t t ed p u l a c o for different values of

coupling coefficient. Incident r e c t ^ n t f u U r pulse has leneth 2.0

time units and a carrier f r e q u e n c y at I<N |max . Note the difference

in vertical scales.



-133-

incident pulse. This indicates that the reflection coefficient is similar

to the incident pulse spectrum. For strong coupling, the transmitted

pulse is again similar to the absolute value of the derivative of the

incident pulse with characteristic interfering echos. Note that the

reflected pulse may have an amplitude larger than unity (Figure 6. 8g,i)

due to constructive addition of successive reflections.

Figure 6.9 displays the reflected and transmitted pulses for

a Gaussian incident pulse of width T = 2 (width is taken at the 1/e

values). Since a Gaussian pulse contains smaller higher frequency

spectral components, the reflected and transmitted pulses are grossly

similar to the incident pulse. For narrowed Gaussian pulses (not

shown here), the results are somewhat similar to those obtained for

a rectangular pulse of the same width.

Several examples of pulses with carrier frequencies at the

first several zeros of the reflection coefficient have been given else-

29
where. In general, the transmitted pulse is similar to the incident

pulse. However, the reflected pulse is broken up into a long pulse

train which can be considerably longer than the incident pulse width.

5. Discussion of DFB Filters

In the preceding subsections, the ECW theory was applied to

longitudinally bounded media. The ECW equations were modified to

directly account for the coupling between F,(z) and B. (z) due to the
^>

boundary. This changed the coupling so that it consisted of two parts

with the following physical meaning. One part of the coupling, due

N ionly to the perturbation is proportional to [r\ KAj and hence increases "
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with slab thickness since it is due to repeated reflections in the di-

electric. The second part of the coupling is due to the above mentioned
X

boundary effects and is proportional to [r] sin[(N±l)K+Ake 2 ] J&/2}. This

accounts only for the interference effects due to the periodicity trun-

cation and may become zero for certain lengths at particular frequen-

cies. The application of the boundary conditions was then introduced

in such a way that end effects were not accounted for again.

The validity of this approach was tested by using the exact
QQ QQ

results of Bedrosian. ' The comparison was made on periodic

media of length KJ& = 26ir with r\ = 0. 05. The ECW and exact invariant

imbedding technique agreed to within 1$ in the two cases where the

boundary effect was insignificant (R-, i = 2. 55x10 ) and where it
^ Imax

•> 90
had a large effect (R^ i = 5.88xlO~^) at the second Bragg order.

'max
Comparisons to the Born approximation showed that at higher

N
Bragg orders, the Born approximation ignored the T| KA term of the

coupling. However, at the first Bragg order the Born and ECW ap-

proximations are in very close agreement. For cases where T| -* 1,

the full Floquet theory must be used. This is straightforward in

principle but laborious to carry out. The disadvantage is that lengthy

numerical calculations have to be carried out and the intuitive appeal

of the ECW theory is lost.

We have shown that periodic slabs may be useful as edge

differentiations or multiple pulse generators. The transient re-

sults may be useful in the fields of microwave and optical filters

and for sounders of subsurface layers.
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B. Higher-Order DFB Lasers

54Ever since Kogelnik and Shank's demonstration and descrip-

23
tion of DFB lasers in the early 1970' s there has been great interest

in this field. Since then much work has been done at the first Bragg

order.14 '24 '25 '30 '35 '36 '58 '70 In 1972 B jo rkholm and Shank41

demonstrated the first higher-order DFB laser with output at the

« second and third Bragg resonances. More recently there has been
I • 71
| further experimental work at the second Bragg resonance and with

i , 70
multiple frequency DFB lasers.

In this section the approximate mode spectrum and threshold

gain are given as a function of Bragg order. The results, which use

the ECW equations, are analogous to the coupled wave results of

23Kogelnik and Shank. Hence, the derivation will be only briefly

sketched here. The details are given in Appendix D.

1. ECW Result for Threshold Gains and Mode Spectra

Oscillation will take place when output occurs for zero input.

This can be .alternately stated as the condition where the reflection

or transmission coefficient becomes infinite. We use the ECW re-

flection coefficient discussed in previous sections and set the denom-

inator equal to zero or

DNcothDN* = iA6N (6. Bl)

This can be put into the form
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D -i 8_. - 2D..J& = -1

The complex solution to the above transcendental equation produces

the threshold gain and the mode spectrum when solved for amplitude

and phase.

2. High -Gain Approximation

The high-gain approximation assumes that-the periodicity
,

has little effect on the propagation, or, for

K K 32(N32(N2-1) £r 4 *- SfN2-!)-*

C = K K

the condition is

(6 B4)(b 'B4)

XN « gN ' (6.B5)

This is approximated for singly periodic media by the inequality

I h/2|N «| e /-e | (6.B6)
t

\ From Appendix D, the threshold gain approximation is given by
i

I 4(% + A N 2 ) = *N% e N (6 'B7)

and the longitudinal mode spectrum is given by

-1 itan (A /g^j) - A i = (m+j)ir + phase(xN) m=0, ±1, ±2, . ,.

(6. B8)
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where the first term is usually small and can be neglected. These

• expressions neglect boundary effects which can be accounted for by
j

j a straightforward modification as in the previous section. Equation

* (6.B8) is first solved for A^, the normalized frequency deviation from

the bandgap center and then (6.B7) is solved for g^, the normalized

average gain. It is apparent that for singly periodic media, the

average gain will increase drastically with Bragg order. However,

s boundary effects or multiharmonic periodicities may reduce the

. threshold gain by increasing the coupling.

The .mode spectrum is asymmetric and is sketched in Figure

: 6. 10 for higher Bragg orders. For index coupling (Figure 6. 10a), the
it

I gain symmetrically pushes the modes outward from the usual two
I
A mirror cavity case (shown by dashed lines). However, the bandgap

I shift produces an asymmetry and shifts the entire spectrum toward
{

1 higher wavenumbers. As in the first order case, no oscillation
I i
I takes place at exact Bragg resonance. Figure 6. lOb, c shows the

I analogous information for gain coupling at odd and even Bragg orders,
|
I respectively. For odd Bragg orders, oscillation is possible near

Bragg resonance, but the bandgap shift prevents oscillation exactly
_i

at A ke 2 i = 0. As expected from the Brillouin diagrams, even-order

gain/loss coupling is similar to even-order index coupling except for

the sign of the bandgap shift.

3. Low-Gain Approximation

Low gain implies the inequality for singly periodic media

|N
/eJ « 1.1/2 I (6.B9)
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Fig. 6. 10 Sketch of mode spectrum in higher-order (N U 2) DFB

lasers for: a) index coupling (N ~- 2, 3, 4, . . .); b) gain coupling

(N = 3, 5, 7, . ..); and c) gain coupling (N = 2/4, 6,. . .) in the high-

gain approximation.
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Again the details of the approximation are given in Appendix D.

Boundary effects are neglected since low gain implies a large

coupling-length product. Hence the boundary effects are small.

Consider first .the case of index coupling. We find that

the lowest-order longitudinal mode frequency i& given by

2 2
N " XN (6.BIO)

which becomes

AN (6.B11)

for long structures. Therefore, the oscillation takes place near the

bandgap edges. This agrees with the stability analysis of the pre-

vious chapter as expected. Identical reasoning holds for the case

of gain/loss coupling at even Bragg orders.

The threshold gain condition for index coupling and for even-

order gain/loss coupling is given by

N

This is approximated by

(X
(6.B12)

N

e.
i

(T!/2)2N(K£)3
(6.B13)

for singly periodic media. Hence the threshold gain varies inversely

with (r|/2) for singly periodic media and inversely with the length

cubed. Thus the threshold gain condition predicts that the average

gain approaches zero as the length becomes infinite. Again this is
9

in agreement with the stability criteria results.
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For gain/loss coupling at odd Bragg orders the lowest-

order longitudinal oscillation takes place- at the bandgap center

. (6.B14)

with the threshold condition on the perturbation

lxNUc = yr (e.Bis)

for zero average gain. Thus for DFB oscillation to start with e. = 0,

the necessary critical length H varies as

(6.B16)
(h| /2)N

with Bragg order. The mode spectrum (6.B14) agrees with the

stability prediction and (6.B15) implies that negative average gain

can produce oscillation of !> > H . This is verified by the approximate

threshold gain condition on the average gain which is

(6-B17)

and becomes

% ~ IX N I (6.B18)

as the length increases. For singly periodic media the threshold

gain varies as (r|/2) . ' This also agrees with the stability criteria

predictions since this condition is identical to equation (5. B3).

Oscillation again takes place at the bandgap center given by

\T - 0 ' (6.B19)
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Note that only the lowest-order (m = 0) longitudinal mode

characteristics are given in the low-gain approximation.

4. Discussion of Higher-Order DFB Lasers

In all cases, the previous results are extensions of the well-

23
known work of Kogelnik and Shank to higher Bragg orders. The

ECW theory gives the correct \ and 6.^ to use in the theories.

Numerical results have been given at the first Bragg order for both'

transversely unbounded ' and bounded ' media and so can

be used at higher orders for guided modes.

The ECW theory shows that the mode spectrum is asymmetri-

cally shifted from the exact Bragg resonance for high gain and has

characteristic differences which depend upon coupling type and Bragg

order. Note that in the low-gain case, the threshold gain and fre-

quency of the lowest-order longitudinal mode is also predicted by the

stability criteria without regard for the boundary conditions. In this

case, enough coupling or feedback is available to produce oscillation

without boundary coupling. In general, threshold gains increase

drastically with Bragg order unless multiharmonic periodicities

are used or unless boundary perturbations play a significant role.

The low-gain threshold varies as (Tl/2) or as (T)/2) for the case

of index and even-order gain coupling or odd-order gain coupling,

respectivelyj for singly periodic media.

C. Higher-Order Hologram Diffraction

There has been interest in transversely varying periodic

media (Figure 6.11). This configuration represents electromagnetic
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Fig. 6. 11 Configuration of TE wave obliquely incident upon a

holographic grating. The original wave and the Bragg reflected

wave emerge as T and R respectively.
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wave diffraction by acoustic waves or by holographic gratings. The

22
former problem, was solved by Chu and Tamir who used both the

Floquet and the coupled waves approach. The latter problem was

dealt with exhaustively by Kogelnik who developed a coupled waves

approach that was valid near the first Bragg resonance. More

recently variations of these problems have been investigated theo-

retically and experimentally by several authors. '

In this section the ECW equations are discussed for trans-

versely periodic media. The derivation is similar to that of chapter

III and the details are given in Appendix E. The approximate boundary

conditions are applied and the results are given for the strengths of

j the undiffracted and Bragg diffracted waves in holographic gratings.
!
| As in previous chapters, the ECW results will hold for all Bragg

: orders.

,2 .2

1. ECW Equations for Transversely Periodic Media

Consider solutions to the wave equation for the transverse

electric (TE) field

3* 2 1
+ —2 + k e(x) E(x' z) = ° (6. Cl)

Pl"V "••v *-« (JJX

where

e(x) = e + ie. + e S(ri +iri.) f cos pKzv ' r a r p 'r Vp p ^

is the periodic relative dielectric constant. Following the example

of Kogelnik we consider a wave of form e "x z which is suc-

cessively scattered from the periodic dielectric to a wave of form

e i[(p-NK)x+kzz]^ The f.rst wave .s deSignated as F (z) and the Bragg
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scattered wave as B,(z). Using the same ECW assumptions as in

chapter III we let

N*/2
E(x, z) = £

n=-l- l-2n/N
ei[(l-2n)/N)(30x+Apx+k2zJ

B<Zh-2n/N e - o ( 6 . C 2 )

be the assumed TE field. Substituting the above expression into the

wave equation (6.C1) for singly periodic lossless media, we find the

following ECW equations (see Appendix E).

Fl (z ) - i 6 N F l ( z ) = i X N B l ( z )

Bl'(z> + i 6 N B l ( z ) = i X N F l ( z )

(6.C3)

where

6 =
2 kz

N ° j
fc T] _ 1 _ ., !^_.

- *' }

k = k7 + Ak
z zo

p = NK/2

k e = k z + p <

o Z
0 o

1
sinG = p /k e2

o ro o
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iAk 2

Assuming a solution of the form e z gives the dispersion relation

(6.C6)

The similarities and differences between the longitudinally periodic

(LP) and the transversely periodic (TP) case are given below.

1. The sign differences in the TP case cause the dispersion

relation to be real for real periodicities and passive

lossless dielectrics (i.e. r\. = 0 = £.). Hence no bandgaps

appear in the longitudinal wavenumber as in the LP case .

2. Maximum phase matching between F,(z) and B, (z ) occurs

slightly away from the exact Bragg condition for higher -

order Bragg interactions in both the TP and L.P cases.

The first Bragg order results are found from (6.C4-5) as

(6.C7)

(6.C8)

61 .
K

Ak.<\/e~ AB, sin9
1 A O

K K J
1 <

cosG ..2
o K

K 8 cos 0 sin 6
o o

Small changes in frequency or angle are accounted for by the first

and second terms of the phase mismatch. The third term is negligible

away from normal incidence. Results for other Bragg orders and

for complex periodicities can be found easily from previous results.

A similar derivation for TM waves can also be"made.

2. ECW Reflection and Transmission Coefficients

The slab configuration of Fig. 6. 11 shows the undiffracted

wave proportional to T-^, and the Bragg diffracted wave proportional
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to RT^* The incident wave is of unit amplitude. The appropriate

boundary conditions for the TP slab are approximately

; F(-J&/2) = 1 F(4/2) = T.Ti N

B(-V2) = 0 B(1 /2 )=R N ( (6>C9)

I These equations indicate that the Bragg diffracted wave increases

! in value from zero to R . while the undiffracted wave decreases from

I unity to T,^. Note that any reflected wave in the region z < - Ji/2 is

I ignored.

I The ECW equations (6. C3) are solved with the boundary con-

ditions imposed by (6. C9). The method of solution is analogous to

that of the LP case (see Appendix C). The results are

i X sin Akz i
RN = "Ak **— <6-C10>

ZN
Ak

z cos AkZ7vT 4 + i 6 ^ T sinAV JL
T - _fM ZN N ZN /6 cinTN - ; g£ (6.C11)

ZN

for coupling between identical modes (i. e. 6 = 6 , X = X = X)»
P 1 PT. ^1P

Note that for exact phase matching, the reflection and transmission

coefficients vary as sines and cosines. Hence, the energy is alter-

nately shifted between the undiffracted wave F, (z) and the Bragg

diffracted wave B.(z), along the z coordinate. Away frorn~exact

phase match the energy transfer is incomplete.

3. Discussion of Holographic Gratings

We note that the development of the ECW equations for the

TP case is identical to that of the LP case. The ECW equations are

' 19 22 69
of the same form as that of several other authors. ' ' The
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advantage of the present derivation is the simplicity of the explicit

expressions for phase mismatch and coupling. In particular the

deviation from the exact Bragg condition that provides maximum

coupling or highest diffraction efficiency is easily found.

In the preceding derivation we found coupling between the

waves F. (z) and B, (z). This means that the diffracted and undiffracted

waves, the amplitudes of which are given by R,. and T-, are sym-

metric with respect to the z axis. A similar theory could be devel-

oped for coupling between any other set of two waves. For example,

one could find a set of coupled equations for coupling between F, (z)

and B(z), 2 /T\J where q = 0, 1, Z, ... represents different spectral

orders. In this case the undiffracted wave propagates at the angle

9 ^arcsin ((3 /k ) whereas the diffracted wave propagates at the
O Z •o

angle 0 —arcsin[p (l+2q/N)/kz ] with respect to the z axis. The

^diffraction efficiency DE is usually defined by the relation DE = |TN| .

The theory is approximate since only a few space harmonics

were used, only the approximate boundary conditions were applied

and because the (assumed small) reflected wave for z < -4/2 was

ignored.

D. Gaussian Beams in Periodic Media

With the advent of the laser, it is useful to consider Gaussian

85 91-94beam scattering from periodic structures. Several authors '

have considered Gaussian beam scattering at dielectric interfaces

or in periodic media. The method of beam reflection at interfaces

91was developed by Brekhovskikh. We .will use this formulation and
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; 92
a similar one used by Tamir and Bertoni.

In this section, the formulation for Gaussian beam propaga-

• tion in LP and TP slabs will be outlined. The previously derived

• ECW reflection and transmission coefficients will be used. Numerical
*

examples will be given in a future report. However, the general

characteristics may be determined from the previous transient anal-

ysis for certain cases.

Consider the aperture Gaussian beam E (x, -h) of Figure 6.12
v aP

that is formed at the plane z = -h.

-
E (x',0) = ^— r - (6.D1)

-(x'/w)2

r The propagating wave is given approximately by
i

f -(xcos9/w) ikA/e~[xsin9+(z+h)cos8]

t I n . I T 2 W.» 'z=-h
(6.D2)

z=-h

The incident wave E. (x, z) is given by the Fourier transform of theme

spectral amplitude $ (k )

-1 -_L P $fk )el!
., z; - .] * VK

v'e

- h < z < 0

me 0 ° x x£ir -oo

where k = (k e - k )2 .
z x

The spectral amplitude is given in terms of the aperture field by

the relation

*(k ) = J* E (x, -h)e"ikxx dx (6.D4)\ x/ j ap \ \ '
-00 C



LP or TP

Fig. 6. 12 Gaussian beam incident upon L,P or TP

slab near Bragg resonance.
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2-[w(kx-k-/e"sine )/2 cos9 ]
*(k ) = - - : - (6.D5)

x cos9
o

Two assumptions are made. First, assume that the beam

is well-collimated, or

k/e~ w » 1 (6. D6)

where w represents the beam, width. This limits significant spectral
j.

amplitude to values about k = k e2 sinQ . Hence, k is usually real
X O Z

and the contribution to surface or lateral waves can be ignored.

This is also necessary for the ECW approximations. Second, the

incident and scattered waves are near Bragg resonance, or

The transmitted and reflected fields E (x, z) and E (x, z) are
J. K.

found from the integral of the product of the spectral amplitude

j (at z = 0) and the appropriate coefficient;

i
! ET(x, z) = 27 J T(kx)$(kx)e^Ck*X+kz(z+h)]dkx (6. D8)'
I -oo

i 1 °°

! ER(X« z) = 27 .
i -oo

I where the ( upper) signs hold for ( _) media.

The expressions for R(k ) and T(k ) can be found from equa-

tions (6.A13, 14) and (6. CIO, 11) for LP and TP media, respectively.

The values of phase mismatch and coupling have been derived for

arbitrary angle of incidence in TP media and at normal incidence for

E ( x , z ) = R ( k )$(k ) e x - z d k (6.D9)R 2ir J x x x '
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LP'media. The extension of the LP results to arbitrary angles of

incidence is a straightforward derivation and will not be given here.

The explicit results near the first Bragg resonance are,

6.. ,-. -, f , __ ,
1 .^ r 1 _ x . Q I 1 _ x for LP and ,, ^.-.v

IT L~~K --- IT Sin9ojc^ —2 TP media <6' D10)

Tf ~ 8c^b~ /cos9 N for ( TP } m6dia (6. Dll)

where J k^ /k^e 2 for LP media
sm9o = ^ 3 /k ez for TP media

Ak •x
o

/• -> -> 1
for LP media

k
Xo I PQ for TP media

i P0
 = K/2

Note that for LP media the expressions for the transmitted
i

and reflected fields are similar, to the transient analysis if the time

i coordinate is replaced by the space coordinate. In particular, Figures •

6. 7-9 show the spatial dispersion of pulses in space for rectangular

• and Gaussian input beams at exact Bragg frequencies and non-normal

J incidence if the normalized time is replaced by normalized distance.

In this section the derivation for spatially bounded beams was

given a form that is easy to compute under the ECW assumptions.

It was shown that temporal and spatial dispersion are similar and

that the results of the transient analysis could be extended to include

beam propagation.

v
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CHAPTER VII
V

f CONCLUSIONS 'j
\
; This report establishes an approximate method of calculating

• the properties of the Brillouin diagram at all Bragg orders for waves

in periodic media. The method is introduced in the second chapter

where the connection between the Floquet and the coupled waves

• theory is shown and demonstrated with several numerical examples

at the first Bragg resonance. In the third chapter,, the idea of cross-

and self-coupling helps to extend the coupled waves theory to all

Bragg resonances by the use of coupling diagrams. These results

explicitly show the dependence of the bandgap width, bandgap shift

; and coupling upon Bragg order. The results closely match the exact
i
i. Floquet dispersion relations. Furthermore, the ECW theory accounts

; for multiharmonic periodicities and demonstrates the idea of dis-

v appearing bandgaps under certain conditions.

The fourth and fifth chapters deal with active or lossy dielec-

trics. Inverted bandgaps occur only for certain types of coupling and

at certain Bragg orders. The stability of active periodic media has

characteristics that depended on the nature (i.e. inverting or non-
x

inverting) of these bandgaps. Absolute stabilities are found to occur

under certain conditions and only at certain frequencies in active

; periodic media. These threshold conditions and mode spectra agree

I with results found from an entirely different analysis, in the appro-
\
I priate limit, at the first Bragg order. The advantage of the stability
j.

' analysis is that only the dispersion relation is needed to fully describe

the stability characteristics.
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The last chapter includes a few applications of the preceding

theory to finite length media. The topics of reflection, transmission,

•transients, DFB lasers, holographic gratings-and beams in periodic

media are briefly discussed and illustrated.

The ECW theory demonstrates some of the power and versa-

tility of the coupled waves formalism. It is anticipated that space-

time periodic media and variable-frequency or almost-periodic media

may be treated in a similar manner. The case of transversely

32bounded media can be treated using a previously developed approach

for the guided modes. The result is that each power of r\ will be mul-

tiplied by an overlap integral. Hence the coupling will, be somewhat

decreased.

Exact theories such as the Floquet theory, matrix theory or

the method of invariant imbedding will be useful for specific cases

where exact results are needed. However, the intuitively appealing

ECW theory gives results explicitly without lengthy computations

and is surprisingly accurate in the cases treated here.
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APPENDIX A

ASYMPTOTIC FORM OF FIELDS FOR

ABSOLUTE INSTABILITIES IN PERIODIC MEDIA
i

Consider the following equation for F(z,t) which is proportional

to the electric field

F(z t) - . .
{ ' } ' ' '

where S(Ap,co) is the normalized source and D(Ap,co) is the dispersion

relation. We are interested in the asymptotic value of F(z, t) for

large times when an absolute instability occurs. This happens when

the «roots of D(Ap,co) merge in the Ap plane from opposite half-planes

separated by the line Im[Ap3 = 0. We assume that the source is

analytic in Ap and that it is turned on at the time t = 0.
73 74

We follow the work of previous authors ' and expand the

dispersion relation about the instability at CO = CO1 and Ap = Ap ' in a

Taylor series. Then the integration is first carried out in the Ap

plane and finally in the CO plane.

The Taylor expansion of D(Ap, to)/S(A3, co) is,

(A.2,

Ap=Ap •
where D,

a (Ap

2 8(D/S) I
2 9 co co=co'

We rearrange the dispersion relation to find
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F(z, CO) =
4rril

1 ri j
} D2(co-co')2 C1

i

eiAPz
i

Ap~ Ap1 -iD_ ( CO - CO1 )z /]

eiApz
l_

. (A. 3)

d(Ap)

where
oo

F(z,t) = J F(z, C0)e -icot dco

-00

and the contour C1 is shown in Figure A. la. The first pole of (A. 3) is

located in the upper half plane and contributes for z > 0 while the

second pole is located in the lower half plane and contributes for z < 0.

For z > 0, equation (A. 3) becomes

F(z, w) =
i i [Ap'+iD 2(aj-a> I) 2 /D 1]z

(A. 4)
2i Dj D 2 ( co -C0 ' )2

To carry out the integration in co, we depress the contour around the

singularities down to the real CO .axis. This contour C" is shown in

Figure A. Ib where two poles at CO = ± CO represent the harmonic
• S

source contributions. This second integral is

F(z,t) = J
2 i D lDZ C"

( C 0 - C 0 ' ) 2 ZTT

(A. 5)

The branch cut of ( CO-CO')2 provides the major contribution. Hence, we

approximate the integral (A. 5) as t -^ oo by

-[D2( CO-CO1

(co-co')2

i+[D2(cO-CO')2/D]z

-iCOt dco
x e ^»2ir (A. 6)



z<0

b)

t>0

Fig. A. 1 a) Contour C' in Ap-plane showing poles when

Af}1 = 0. b) Contour Cu in co-plane showing 2 poles due

to source at t£0 and branch'cut at instability frequency COo
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iAp'z -iUfct CT cosh[D?(ico.-ia)T/D ]z e601* idto.
F(z,t) = 6

iD * - J - ^— ̂  - * -- 2— i {A'7)

1 U U ^

where CO1 = CO + iao

Let (cxJj - a) = -q

-ico0t at ° -at , rr, , . x T/n , T je P e cosh[Di(-aq)2/Dl]zdq ,
.D, J - . i i - (A'
1 2 o (-i)2 q 2

Letting the upper limit tend to infinity we get

i(A(3'z-400t) at
F(z,t)

2TT2 DjD2(-i)2

Thus, the electric field is time-growing with the wavenumber and

frequency of the absolute instability. For two instabilities at

different frequencies, there will be two branch cuts in Figure A. Ib

and the F(z, t) will have two similar contributions, each of the form

of (A. 9).
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APPENDIX B

ECW PARAMETERS FOR SQUARE-WAVE,

TRIANGULAR-WAVE AND SAWTOOTH PERIODICITIES

For applications to instabilities and DFB filters and oscillators

it is convenient to have the phase mismatch 6N and the coupling \ at

the first three Bragg orders for square-wave, triangular-wave and

sawtooth periodicities.

It has been shown that the major contribution to N order

coupling is from the Fourier component f-. of the periodicity. Hence

for the three periodicities under consideration, the results at first

and third orders are a straightforward application of the results of

chapter III since each wave contains odd harmonics. In addition the

sawtooth wave contains both even and odd harmonics so previous

results can be used at all Bragg orders for this periodicity. The

computation that needs to be carried out is for parameters at even-

order resonances with odd-order Fourier components. We will carry

out these computations for N = 2 in the lossless case (e = e ).

The three periodicities have the following Fourier decompo-

sition:

f — p odd
f 13

Square-wave f = i (B. 1)
^ p l p o«-o«

Triangular-wave f =S P °dd (B. 2)
v. 0 p even

Sawtooth f = (-l) (p+1) /p (B.3)
P

with the normalization f. = 1. An appropriate sine or cosine Fourier
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series is used for periodicities that are odd or even iri z, respec -

tively.

At the first Bragg resonance, we find that \ , /K = r|/8 and
i ' ,

5j/K = Ak £ 2 / K by the use of (3. A24, 3.A25) for all three periodicities.

This is identical to the sinusoidal case.

At the second Bragg resonance, we find Xo/K = -r\ /8 and
1 26 /K = Ake2/K-T| /12 for sinusoidal periodicities. The other perio-

£*

dicities present need to be calculated. We consider the seventeen

waves Bg, B?, . . . , S, . . . , F?, Fg for periodicities with f = 0 for

p even and N = 2. Thus, we need only the eleven waves Bg, B,, . . .,

S, . . . F/, FQ since no significant coupling can take place through

B , F with q odd. Using the ECW approximations, we need to

solve the following equations.

-63 Fc8
f F

2 7 * 1

-35 F,

-15

- 3 F.

2i F.1

k e 2
+£3(F4+B2)+fl(F2+S)]

2Ak
"IT Bl

- 3 B.

2iB :

k e*

(continued on next page)
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-15 B.

-35 B,

-63 B8

5< f 5 B l + f 7 F 2>

H. f
2 *7 (B.4)

where self- and cross-coupling O(rj ) has been included. The equations

(B.4) are solved to give the usual coupled equations for F. and B, with

K

62
~K~

2 f _ f

Ak
K

4 f 2 I f 2
I2_ i "53 ' 7 f5

13f

TTo
7 I
" " ' ' r J (B.6)

In (3. B6), if the terms drop off as f <* 1/p or faster, only the first two

terms need to be kept in the series for accuracies of order 1% in phase

mismatch. In (3. B5) the series can be summed explicitly by using

98
Schlafli's Polynomials S of order n for the square- and triangular-

wave. Two terms will again give accuracies of order 1/6. For square-

waves we find

A
2

.911) (B.7)J5L
K

2 6 A k e 2

= • -^ [-1+2 S2] , ~ =K

while for triangular waves

*22 - Hi r
~K " 8 l~

2

Ake

"rf (.990) (B.8)

, cwhere S-, = IT - 8

32-3u
64

0.1168 ...

0.3736 ... .
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Thus, we have accounted for the major self- and cross-

coupling terms O(t| ) which can be approximated by only considering

the seven waves B., B?J B,, S F,, F2, F. fdr periodicities with

odd Fourier components f .

The case of the sawtooth-wave must be treated separately

since it contains both even and odd Fourier components and must be

expanded in a sine series. To consider the correction to the self-

coupling from r\f, and to the cross-coupling from rif_ we consider
r

only the first three Fourier components f,, f?, f_ and the waves

B,, B~, B., S, F., FZ, F- for simplicity. The equations for N = 2

in the ECW approximation are then,

-15F,

-8F3

-3 F2

2 Ak
k

- - -3-f F~ 2i 3 *

- - JLf F
~ 2i 2^

- _ Jl f F
2i Jl *

2i F1

k e

2Ak
k

- 3 B 2

-8 B3

-15 By

2i F,

fi B,1 1

• 7 !i 2 1

7 B,
2i 3 1

(B.9)

The solution for the coupling and phase, mismatch are
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5 [f2 + 0(T1 fp)]

Ake* 2 ,- „ 3f2 f2

F = — - i rL f i -^ - -7o-- ' - - J ( B- n>

where it is understood that \ = ± i y. The approximations to 1$ in-

volves keeping only the first term in (B. 10) for r\ « 1) and the first

two terms in the series in (B. 11). Thus, for the sawtooth- wave,

Xo S? A k e ^ 2
IT = 8 • ir= -K--ir (°-953> <B

The approximation that uses only the first term in both (B. 10) and

(B. 11) can be gotten directly from (3. A24, 3.A25) with ~ 5$ accuracy.

At the third Bragg order all three of the periodicities con-

sidered here contain the Fourier component f_. Hence, the major

cross- coupling will be due to r\ f, and the major self-coupling will be

due to T| f,. The phase mismatch and coupling from (3.A24, 3.A25)

are

63 *k e- 27

K = K " 256 (B. 13)

IT = ~~8~^~ - {B'14)

The error is again on the order of 1$ except for the phase mismatch

of the sawtooth-wave where the error ~ 5$.

The results of this appendix and comparisons to the sine wave

are found in Tables B. 1 and B. 2.
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N = 1

N = 2

N — -3
— J

-x/x>
n
8

2in_
8 .

243 T|3

2048

1-1 JTi
n
8

2
^(0.77)

n
8

~w
n
8

2
^-(0.93)

n
24

vu
n
8

n
8

i
Table B. 1 Normalized coupling coefficient XN/-^ ^or sine-,

square-^ triangular- and sawtooth-wave periodicities. For

the sawtooth-wave the coupling is \ = ± i\.

N = 1

N o

N _ •}— J

-xyx.
Ake1

K

- 2Ake2 n
K 12

Ake^ 27n2

K ^ 256

orb
Ake2

K

Ake"2" Ti2
(0 91)

K 12 v * ' *'

Ake2 27ri
K 256

vv
Ake2

K

— "?

K 12

Ake2 27T)2

K 256

1/1-

Ake2

K

Ake2 rf ,Q 95)

K 12

Ake^ ri2

K 12

Table B. 2 Normalized phase mismatch 6^/K for sine-jSquare- ,

triangular- and sawtooth-wave periodicities.
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APPENDIX C

REFLECTION AND TRANSMISSION

COEFFICIENTS OF DFB FILTER

Consider the following coupled equations

F;(.) - 1 6p F,(.) =

-B,(z) - i «q BjU) =

which describe waves in a DFB filter. The primes denote differen-

tiation with respect to the coordinate z. Differentiating (C. 1) and

eliminating B.(z) and F,(z) respectively, produces

- V (B) (B) • °

where the subscripts and arguments have been dropped for simplicity

and the primes denote differentiation with respect to the coordinate z.

The solutions to (C. 2) are

T\» T"\ —

(C.3)

(C. 4)

[ (c-5)

Apply the boundary conditions

= T

B(-V2) = R B(J&/2) = 0
(C.6)
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to find the following equations

T -

( 2

6 -6

6 -6

R - [b,

O , [b,

-DA/2e

DA/2

Use (C. 7-8) to solve for fj and use (C. 9-10) to solve for b. .

2 2

DA/2) _ T e(-i 6 A/2 ± DA/2) *"|f (i 6 A/2 +
— I ®

1 ~ +L

bl =

Re(i 6 !L/2 I DA/2)

where 6 = (6 -6 )/2

(C. 7)

(C.8)

(C.9)

(C. 10)

(C. 11)

(C. 12)

Two other equations for f1 and b1 can be found by substituting (C. 3,4)

2 2
into the coupled equations (C. 1). This produces the coupled equations

(i 6 ± D) f j - i 6

2

= i Xpq

qp

(C. 13)

(C. 14)

2 2 2

Equations (C. 11-14) provide the necessary relations to solve for T

and R, the transmission and reflection coefficients. After algebraic

manipulations, the results are,
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1 X,qp
6 +6-

D coth DJL - i

D
(6 +6 )

D cosh D£ - i P ^ sinh DA

(C. 15)

(C. 16)

No.te that the equations hold for all Bragg orders when the

proper 6 and \ are used. Also the equations hold for coupling between

waves of different transverse modes, or in general for any coupled

system where the phase mismatch and coupling might be different for

the waves F(z) and B(z).
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APPENDIX D

APPROXIMATIONS FOR DFB THRESHOLD AND SPECTRUM

1. High-Gain Approximation

Oscillation will occur in a DFB laser when the reflection or

transmission coefficient becomes infinite. This implies the condition

(D.I)

where

JN
AN - i

Equation (D. 1) can be written in exponential form

^N- 1

_DN + i

6N
6 N j

2IV
e (D.2)

which is a complex equation. Under the high-gain approximation

g,,. » XTVT and expanding the expression for D,^ we find

N i 6N = (D.3)

Either root of (D.3) when substituted into (D.2) yields

(g N -MA N ) e (D.4)

Taking the amplitude of (D. 4) we find the threshold gain condition

f°r

2 2
N (D. 5)
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where the value AM is found from equating the phase of (D. 4), or,N

-1,tan (AN/gN) - AN£ = DTT + phase (x) (m=0, ±1, ±2 ) (D. 6)

This latter result produces multiple values for the spectrum or oscil-

lation frequencies which are called longitudinal modes. Since
_ i

tan (A-NT/g^) « 1* the mode spectrum can be further approximated

by
~) -3

,0

K

where

32(N -1)
0 index coupling (all N), gain coupling (N even)

(D.7)

u /2 / \ i r /2 gain coupling (N odd)

for index or gain coupling and singly periodic media.

The high-gain approximation yields the entire spectrum and a

transcendental equation for the threshold gain of each longitudinal

mode.

2. Low-Gain Approximation

It is more convenient to start with an alternative expression

for index coupling or even-order gain coupling. Consider the solutions

f DA JL t= f. e + f e
Jl £t

, D& + b_ e= b. e 2
-Dl

(D.8)

(D.9)

to the coupled equations

(D.10)
-Br i 6N = i X N

where DN
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Since there are no outside sources for DFB lasers, we may use the

boundary conditions

B(- A/2) = 0 = F(J&/2) (D. 11)

This implies the relation

-e (D. 12)

When (D. 12) is substituted into the coupled equations (D. 10) along with

expressions (D. 8, 9), the following equation can be derived.

>N* = ± i D N (D. 13)

Either of the exact equations (D. 1) or (D. 13) may be used for threshold

calculations.

Consider the low-gain approximation where gN « XN ^o

coupling and even-order gain coupling. Expand the hyperbolic func-

tion in (D. 13) to obtain

iD
iN 3!

where D^ - XN - A
N + ̂  A

N

From the real part of the above equation,

N (D. 14)

(D. 15)

For ^ large, oscillation takes place just outside the bandgap edges

given by

N 1N
(D. 16)
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From the imaginary part of (D. 14) the gain condition becomes

(D. 17)

The low-gain approximation for odd-order gain coupling is

most easily derived from equation (D. 1).' First consider the neces-

sary condition on the perturbation for no average gain (i. e. g ,,. = 0).

An expansion of the hyperbolic function in (D. 1) produces

N

Equating the real and imaginary parts produces the results

(D. 18)

N

- 3

(D. 19)

(D.20)

Thus oscillation takes place at the bandgap center. The necessary

length l> for a given perturbation, is the critical length

(D.21)

For gain perturbations or lengths less than those given by (D.20), no

oscillation takes place.

To find the threshold condition on the average gain, equation

(D. 13) can be expanded to yield

n
N

Keep all terms in DN to get

3 !
(D.22)
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2 , 6
'N

and'

(D.23)

(D. 24)

Hence oscillation takes place at the bandgap center with the approxi-

mate gain condition

gN (D.25)

when I is large.

Note that the low-gain approximation gives explicit values for

the spectrum and thresholds of the average gain and perturbation for

the lowest order (m=0) longitudinal mode only.

23All previous results match those of Kogelnik and Shank at the

first Bragg order. This appendix extends their results to all Bragg

orders.
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APPENDIX E

ECW EQUATIONS FOR TRANSVERSELY PERIODIC MEDIA

Consider the wave equation

dz' dx
k e(x) E(x, Z) = 0 (E.I)

where£(x) = 6 (l-H"|cosKz) for transverse singly periodic media.

Assume a TE field of the form

N*/2f
E(x,z) ^ ai[(l-2n/N)p0x

B(z)l-2n/Ne
i[-(l-2n/N)p0x+Apx+kZo z] (E.2)

where

for N = 1

for N even

for N odd

This accounts for positive group velocity space harmonics involved in

cross- and self-coupling of F,(z) and B.(z). A similar expression

exists for negative group velocity space harmonics.

The following set of N+3 coupled equations exist when (E. 2)

is substituted into (E. 1) for higher-order Bragg interactions.
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- <p

{k
2e-kz

2

where

.P

k

t2e
T

PI + 2ikz<> F

<J){k2e-k2
2-ap2)s = - (

'o + Akz

po + Ap = NK/2 +

k + Ako

zo ^o

2/N

The primes .denote differentiation with respect to the coordinate z

and the arguments with respect to z have been dropped for simplicity.

The above equations are solved using the ECW assumptions and ap-

proximations of chapter III.

First, solve for F(zL _, . . and B(z), 2/N* resu*t *

similar to (3. A16-17) with the change r| - t|/sin e where

,sin8 =6 /k e2. Hence.
0 0 0

7/1M
7 8( l - l /N)s ine {4n(n_N)/N2}2

(E.4)
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B(z)

where

'"2/N 8<l-l/N)sin2(

N

(E.5)

TT t4n(n-

N = 1

N* 2

=

TT * f^(n) for N odd
n=l

N/2
TT f(n) for N

n=l

even

for N = 1

Second, trivially solve for F( z)j+2/N anc* B^ z^l+2/N" T^e resu^ is

again identical to the previous re stilts of (3.A18-19) with the change

Ti/sin 6Q.

F(z)
1+2/N 8(l + l/N)sin2e

(E.6)

B(z)
1+2/N = 8(l + l/N)sin2e

(E.7)

Substituting (E. 4-7) into the equations for F.(z) and B.(z) in (E. 3)

produces the ECW coupled equations for TP media.

Fj(z) - i

(E.8)

where
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2

c C\ N 2sin9o L2 ( N2_1]S (P
O

2k
zo

f*(V2-k4
/TT- n\(Ji,. v;

y _ - (E10)
X N - N + 1 2 N - ' 2 2 ' '

The expressions can be further simplified by noting the equality

7 7 ? - —
ke = 6 + k z and the relations k e2/kz ~ k e2 /kz = l/cos8

o no o o o o o

and k e-^3 = l/sin9 . The deviation from k c2 and S represent theo o o . . o *o

changes in frequency and angle from the exact Bragg condition.
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