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ABSTRACT
The interaction of electromagnetic waves of wavelength A\ with
_periodic structures of spatial period A are studied. The emphasis of
the work is on Bragg interactions where A = 2A/N and the Bragg order
N takes on the values 1,2,,.. . An extended coupled waves (ECW)
theory is developed for the case N 2 2 and the results of the theory are
found to compare favorably with the exact results of Floquet theory.
Numerous numerical results are displayed as Brillouin diagrams for
the first few Bragg orders. Moreover, explicit e:&pres'sions for
coupling coefficients,- bandgap shifts and bandgap widths are derived
for singly perio;iic media. Particular note is taken of phase speeding
effects. |
The effects of multiharmonic periodicities on the control of
feedback strength are investigated, It is found that with proper
phasing the feedback strength becomes zero and the bandgap disappears.
Coupling parameters are calculated for typical multiharmonic perio-
dicities for the first three Bragg orders. ,
For .odd Bragg orders, inverted bandgaps and phase slowing
occur when the gain or loss of the media is modulated. Also average
gain or loss atfects the bandgap shape and the spatial or temporal
growth or decay. Absolute instabilities are observed and expressions
are derived for the instability frequencies, thresholds and growth
rates. Um‘ier certain conditions, instabilities occur for structures

with average loss. The results for the first and second Bragg orders

are archetypical of all odd and even orders respectively,
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Applications of the ECW theory to higher-order DFB fiiters
involve such phenomena as transient propagation, effects of periodicity
profiles and the relative coupling due to boundaries and periodicities.
The calculation of higijxer-order DFB laser parameters shows that the
mode spectrum is asymmetrically shifted and the threshold gain is
greatly dependent upon the periodicity profile., Approximate threshold
parameters are calculated for high and low gain and for all Bragg
orders. In addition, application of the ECW theory to holographic

gratings and beam propagation is made.
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CHAPTER 1
INTRODUCTION

This report investigates Bragg intera.ctions in periodic media
by using the example of electromagnetic waves propagating in spatially -
periodic dielectrics. The main purposes of this report are to develop
physically meaningful approximate methods for higher-order Bragg
interactions, to show the mathematical foundations of the coupled
waves theory and to give physically meaningful explanations for
several previously unexplained mathematical results. Exact and
approximate theories are compared numerically and applications are
made to both bounded and unbounded media, tolossless and lossy media
and to both passive and active media. Examples are .given which
correspond both to wave-packets in space and time and to the steady-
state response of plane waves.

The history of wave propagation in periodic media started with
Mathieu's equation1 in 1868 and subsequent generalizations by Floquet2
and Hill? in' the 1880's, Although Mathieu's equation had its origin in
problems associated with elliptical boundaries, we will also show its
connection to wave propagation in periodic media., This latter problem
was first co.nsidered by Lord Rayleigh4 in 1887. He considered the
effect of periodic density variations upon the propagation of waves on
a string, In the early 1900's a different, more physical, approach
was taken by Sir William Bragg. He derived the necessary spatial
period for constructive reflection of X-rays by crystals, These ideas
were formalized for quantum mechanical applications by Bloch44 in

1928. Two books in the 1940's, one by McI.,achlan5 and the other by

?

Brillouin,6 summarized previous work with Mathieu functions and
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2

with waves in periodic media. The boéks also provide useful
bibliographies.

While most of the above work was concerned with exact
solutions of differential equations, a second, independent approach
was taken in the late 1940's and early 1950's, This approach
stressed the physical concept of wave coupling by periodic pertur-
bations. A mechanical device demonstrated this effect in 1949 by
coupling torsional energy between two bicycle wheels which were
periodically loaded with magnets.7 In 1953 Pierce9 used energy
considerations to formulate what is now known as the coupled waves
approach or the coupled mode theory. This approach has been
popular because of its simplicity and intuitive appeal. Summaries
of the coupled waves approach are given in texts by P:'Lerce10 and

14,18,26

others. Within the last twenty years the coupled waves

approach has been successfully used in such diverse areas as holo-

gram diffraction, 15 22, 68, 69, 81,82,83,84,85

12,14,16,19, 20

waveguide coupling,

17, 74

traveling-wave tubes, parametric

13,14,18, 56 X-ray diffraction, 21 distributed feedback (DFB)

14,23, 24,25, 30,35, 36, 58, 70 10,14,22,26,27,28,29,

devices,

lasers, and others.

37 Extensive bibliographies on recent applications in optics and elec-

12, 14,20, 87

tromagnetics are given in the references. We note that

the telegrapher's equations which were developed before the coupled
waves theory are of the coupled waves form. These equations are

not approximations, however, since they exactly describe one-

dimensional transmission line problems,
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The Floquet theory, which origiﬁated in the study of ordinary
differential equations with periodic coefficients, has also been useful
in the study of electromagnetic waves in periodic media. Although
this theory is more cur_nbersome than the coupled waves approach,
it provides an exact numerical solution. Extensions of the theory
to include partial differential equations and finite length media have

44, 45

also been made. Applications of Floquet theory to electro-

magnetic waves have been made in the areas of traveling-wave

11, 43, 56 integrated optics,

11,22, 40, 57, 61,

48 . T .
antennas, space-time periodic media,

32,58, 63, 64 8, 60

corrugated structures, and others.

62,75

Other exact methods that are used in plane-stratified material,
88,89

I

such as the matrix mei:hod78 or the method of invariant imbedding
will not be used here.

The second chapter of this report contains the derivation of
the first Bragg order coupled waves equations and the Floquet solution
for electromagnetic waves in longitudinally periodic media, A simple
explanation for phase speeding is given and the connection between
the Floquet and coupled waves theory is explained. The dispersion
relation is found as well as all pertinent coupling parameters.

Several Brillouin diagrams illustrate physical principles and com-
pare the approximate and exact theories.

The primary purpose of the third chapter is to extend the
coupled waves concept to higher Bragg orders. The resuiting ex-
tended coupled waves (ECW) equations provide explicit dispersion

and coupling information for every Bragg interaction. Numerical
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examples again illustrate the results of both approximate and exact
theories. A section is devoted to effects caused by perturbations
of several frequencies and the resulting disappearance of bandgaps.

Periodic media with‘loss or gain is covered in chapter four.
Inverting and non-inverting bandgaps are found which depend upon
Bragg order and coupling type. Index and gain/loss coupling are
both considered. The effect of the periodicity upon average gain or
loss near Bragg resonance is noted.

The fifth chapter discusses the stability of active periodic
media and gives explicit values for instability frequencies and
thresholds at all Bragg orders. The stability criterion also speci-
fies the correct root of the dispersion relation,

. Several applications of the ECW theory are given in successive
sections of chapter six. The reflect'ion and transmission of transients
are discussed and demonstrated with detailed numerical examples.
The extension of previous work to higher order DFB lasers is
briefly covered. Diffraction e.fﬁciencies can be found when the ECW
theory is afpplied to holographic gratings. Finally, the case of
beam propagation in longitudinally and transversely periodic media
is outlined,

Conclusions of this report are given in chapter seven,
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COUPLED WAVES AND FLOQUET THEORY

A. Bragg Reflections

In order to gain physical insight into the problem of \‘fvaves
in periodic media, we consider a plane wave incident upon a periodic
structure as shown in Figure 2.1. It is apparent that the reflecting
waves will constructively interfere if the reflections frgm successive
layers differ by an integral number of wave lengths, NX (N=1,2,3,...).

This result is usually stated as Bragg's Law,

NXA = 2 A sin® (N=1,2,...) - (2A.1)
where A = 2w/k = wavelength of plane wave
A = 20/K = spatial period of structure

N = Bragg order
and where the velocity is assumed to be that of free space. The cases
N> 2 are referred to as higher-order Bragg interactions. For media

with relative dielectric constant €, we restate the result as
1
ke?/K = N/2 (N=1,2,...) (2A.2)

for normally incident waves. Note that Bragg's Law does not account
for the reflected wave amplitude, for the type of periodicity present
or for the effect of slight variations of the wavenumber k from the
value given by Bragg's Law,

The latter effect is called phase mismatch and can be con-
sidered in a semi-quantitative way by the use of Fig. 2.2. This figure

shows an incident wave 1 which is reflected from a three layer

s
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Fig. 2.1 Bragg scattering of plane wave from periodic
media,




a) I -
<@ i -
R
b)
Increasing
Phase
Mismatch
c)
d) I .
T R v
I = Incident Wave
R = Reflected Wave

Fig, 2.2 The effect of phase mismatch upon the reflected
wave, Zero phase mismatch a) indicates
1

k v2/K = N/2.
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periodic medium to form a total reflected wave R. The wave Ris a
phasor sum of four sub-reflections each of which has phases relative
to the first sub-reflection at the incident phase. Multiple reflections
are ignored in this simple model. Parts a)-d) of Fig. 2.2 show the
relation of the strength of the reflected wave R to the phase mismatch.
Fig, 2.2a shows the constructive interference at the exact Bragg
condition (i. e. zero phase mismatch) that produces large R, It is
apparent that there is a considerable reflected wave R for slight
phase mismatch (Fig. 2.2b) whereas large phase mismatch will pro-
duce small R (Fig. 2.2d).

Therefore, from simple wave interference arguments, one
can deduce Bragg's Law and the qualitative effects of phase mismatch.
Other theories are needed, however, to account for wave amplitudes

and the effect of the form of the periodicity.

B. Coupled Waves Approach

1. TEM Waves in Passive Unbounded Media

Consider the case of a plane transverse electromagnetic (TEM)
wave that propagates in a longitudinally periodic unbounded medium
as shown in Fig., 2.3, Assume a time variation of the form e'lwt.

Starting with Maxwell's equations67 in a source-free, linear, iso-

tropic region, we find in the frequency domain that

VxE (2, w) = iw H, H(z, w) (2. Bl1)
vxH(z, ) = -iwe_€(z) E(z,w) (2. B2) ’
VeE(z,w) = 0 (2. B3)
vV.H(z,w) = 0 (2. B4)
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Fig. 2.3 TEM wave propagating in unbounded periodic media.
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where w = radian frequency
K, = free-space permeability
€y = free-space permittivity
e(z) = relative permittivity or relative dielectric

constant
and where E and H are the electric and magnetic field vectors,
By combining (2. Bl), (2. B2) and (2. B3) we find the wave equation

for no transverse variation

2
L2 41 ez) E(z) = 0 (2. B5)
dz
where E(z, w) = E(z)e"”"yc = transverse component of E(z, w)

k

e(z)

w/c = 2w/ free-space wave number

n

o0
e[1+ Y, f_ cos Kz}, £ =0, £, =1
np:O p (pKz) 0 1
N < 1 is the perturbation.
The periodic dielectric constant has been expanded in a Fourier cosine
series. Assume that the electric field can be represented by just

10,12,15,19 a forward wave F(z) and a backward wave

two waves,
B(z) which travel with positive and negative phase velocity along z.
This assumption is intuitively appealing for n << 1 since these are

the only two possible waves in the unperturbed case. Thus, we con-

sider the transverse electric field
E(z) = F(z)eP? + B(z) e P2 (2. B6)

where $ is the longitudinal wavenumber. For first-order Bragg

interactions, B/K = 1/2. Then let
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B ~ po+Ap=K/2+Ap

iABz

»

F(z) f"(z) e

B(z) = B(z)e

(2. B7)

-i8pz (2. B8)

Use equations (2. B5) - (2. B8) and the slowly varying approximation

) 2l P LI Fre \
IB” <|2(3°\B,} and I(B,,) il , Where
primes denote differentiation with respect to z, to find
1[3 z |
[-p F +2ip_F + KZe F+-——IlB]
+[p B- 213 B' +k eB+k——ﬂF] oZ
13ﬁ z
+[—112 F]e + [k en B:l
2 2 i2pB_z -i2pB z-r iB .z -if =z
=-kTe*l f[e ° te °]Fe°+Be °] (2.B9)
p=2 P

where the arguments in z have been dropped.

equations are found by equating the coefficients of e

+ipp =z

15,19 The terms proportional to e

zZero,

The coupled waves
+if =z

o
to

(p=2,3,...) are

either ignored, termed non-synchronous or averaged over time and
considered 'zero.l4 It will be shown later that these terms corre-
spond to relatively unimportant coupling to other waves when B/K>1/2.

The resulting coupled waves equations are,

F'(z) -1 6 F(z) = ix B(z) (2.B10)
"=-B'(z) - i § B(z) =ix F(z) (2.B11)
kze-pj .
where 6 = ~5—=—— = phase mismatch (2.B12)
2 ﬂo
n k2e L ea s
X*® 3 B = coupling coefficient (2.B13)

o
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These equations agree in form with those derived elsewhere.lo’ 14,15, -

18,20, 23,30 The equations account for both the wave amplitudes
and the phase mismatch as well as the interaction of the waves with
the fundamental Fourier component of the dielectric periodicity.
When § = 0, the waves F(z) and B(z) are coupled only through the
perturbation n while the change in amplitude of one wave is propor-

tional to the amplitude of the other wave. For zero perturbation,

the wavenumber of F(z) and B(z) becomes equal to the phase mismatch.

2. Coupled Waves Dispersion Relation

By differentiating the coupled waves equations, a wave equation

2
d F(z)
‘[__:dz + (82- )] 4 (2. B14)

+iABz

is constructed. Assuming a solution of the form e , the dispersion

relation is found to be

g = A 8%- P (2. B15)

The approximations for & and x are

1
2

H

bk e (2. B16)

1
= 2
6 ke -B,
X = Xk = NK/E (2. B17)
(o]

- |
when AB <<K and where k_€?/K =1 and B, = K/2.

This produces the dispersion relation

Py g2
élg - (______AkKe - (2. B18)

The following properties are evident for real ¢ and n.
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1. Waves propagate without dec;ay for lAke%/K|>|n/8|

which correspond to passbhband regions.

2. Stopbands or bandgaps occur for imaginary AB/K or for

|Ake%/K|<|n/8|. Here waves decay,

3. The coupling of waves is maximum at the bandgap

center (Ak e%/K = 0) where AB/K =in/8.

The dispersion relation (2. B18) is plotted as a Brillouin
diagram in Fig. 2.4 which clearly shows the regions of interest, ’
namely the stopbands (ellipse) and passbands (part of hyperbola).

Note that the coupled waves analysis gives much more in-
formation than Bragg's Law. However, the coupled waves approach
is only valid around the first Bragg interaction and does not describe

41, 42

important wave interactions at higher Bragg orders. Further-

more, we have assumed a solution that is based on only two waves,

F(z) and B(z). This is strictly valid only as n = 0 when F(z) and

B(z) are the two eigenmodes of the media.

C. Floquet Solution

1. TEM Waves in Passive Unbounded Media

An exact solution to the wave equation (2. B5) may be con-
structed through the application_of Floquet's theorem. A form of
this theorem is stated as follows: a linear differential equation with
coefficients periodic in z witha period A has a solution E(z) with the prop-
erty E(z+A) = eipAE(z) where fis the fundamental wave number and A is
the fundamental period; define 4(z) such that E = eiﬁz #¢(z); then

4(z) is periodic in z since d¢(z+A) = d&(z). A proof of the theorem



kvE _ wE
K cK
0.5

S

-14-

0.5 B
K

Fig. 2.4 Brillouin diagram near first Bragg interaction,

Dotted line is imaginary part of /K. Dashed

lines are for unperturbed media where n = 0,
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2,5,46,47

is given in several references.

We now expand the function ¢(z), mentioned above, in a

3,43-47

Fourier series. The resultant expansion for E(z) is

i(p+nK)z

0
E(z) = a_ e (2. Cl1)

n=-oo
which is the constructed solution for the wave equation. This solution
is made up of an infinite number of space harmonics, a, of order n,
which propagate with longitudinal wave numbers (f+nK) (see Fig. 2.6).
Substitute the solution (2. Cl) into the wave equation (2. B5) to find
{[ekz - (ﬁ+nK)2] an+l<-2£:—n— g f a L 1(BnK)z _

2 p=- P n-pJ
) (2. C2)

(n=0, %1, £2,...)
where we have defined fp = f-p' Algebraic manipulations transform
this result to

o0
D a + 2 a f =0 (2. C3)
D N p=-ge N-P P ‘

2

- 2 (B+nK
h D =—£1--%—LJ 2.C4
where n n e ( )

In matrix form this can be rewritten as

Ipll+2a = o0 (2. C5)
where :
;-2
a1
a = ag (2. C6)
2
a



-2 1 2 3 f4
£ b, f, f
£, £ Dy, £ £ 7
ol = |. | . (2.C7)
£, £, £, D, £ .
£ f, £ £, D, .

The non-triviality condition for the matrix equation requires
det|D|| =0 (2. C8)

which is the Floquet dispersion relation connecting § and k., For
singly periodi¢ media (i. e, fp = 0 for p 2 2) an expression for the

space harmonic ratios and for the dispersion relation can be found

in terms of a rapidly convergent continued fract:ion.43

2. Hill's Determinant

tin2s 30 47

suggested an alternative form for the dispersion
‘relation which is equivalent to (2. C8). The derivation for the case
under consideration has been given in a previous report42 with the

following result,

sinz(ﬂﬁ/K) = A(0) sinz(‘n',k e%/K) (2. C9)
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whére the elements of the Hill's determinant A(0) = det ||A]| are given
by 1 p=n

pn - K2 nfln-pl (2.C10)
'22 .2 P #n
P K-k ¢ 2

Figure 2.5 shows the qualitative behavior of sin2 (w B/K) and the

resulting bandgaps where 8 is complex.

Several aui:hors?’-5 suggest an approximation for the infinite
order determinant,

’ 2

1

wcot(rke?/K) {EZk ean/K
16 k €2 /K

212 r2%%¢ an/Kz]Z

A(O) =1+ +

[1%- 4%x% ¢/K®]  [2%-4Kk%c/K%]

[2k% n £,/K%)° }
M (2. C11)

* [32 - 4kze/K2]
which is valid for nfp L1 (p= 1,2; 3,000)e
Note the following points about the dispersion relation (2.C8)
and its approximation (2, Cl1).
1. This dispersion relation takes into account all Fourier
‘components fp. of the perturbation and is valid for all
k and B.
2. Away from the Bragg interaction regions ke%/K =N/2
(N=1,2,...), 4(0)>1 asn~ 0. Hencek e% >+ B, Thus,
thg periodic medium has little effect upon wave propaga-

tion in the passbands as -~ 0. This was expected from

Bragg's Law and the coupled waves approach.
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sin? (wB/K) &
Bandgap Bandgap
ir— — — _——— — — —
Bandgap
0 . ' L7 kevz/K
/2 p 3mw/2

Fig. 2.5 A sketch of the behavior of the dispersion
relation which shows the bandgap location for Bragg
orders N = 1,2, 3 whenever sin® (wp/K)>1 or

sin2 (mp/K) < 0. It is assumed that fl’ f, and i3

are significant in the perturbation.
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3, When sin® (rB/K) > 1 or sinz(-:rﬁ/K) <0, B is complex,
From (2. C9) and Figure 2.5, this occurs for k eé/K >=N/2
(N=1,2,3,...). Hence, the dispersion relation agrees
qualitativel_y with the position of the bandgaps predicted
by both Bragg's Law and the coupled waves approach.
Note that the Floquet solution provides all of the information
of the coupled waves equations with the .adciitional advantage of being
an exact solution that is valid for all § and k., However, the Floquet
solution lacks the intuitive appeal and simplicity of the coupled
waves approach, In particular, one has to use an approximation to
find the approximate bandgap placement. In addition, a truncation

of an infinite determinant must be performed.

D. Relation of Coupled Waves Solution and Floquet Solution
25,51, 52 i

The recent interest n the relation of the coupled
waves solution and the Floquet solution is important for two reasons,
First, it gives a more rigorous mathematical foundation for the
coupled waves theory., Second, it can be used to expand the coupled
waves approach to higher-order Bragg interactions, >3 This will be
shown in Chapter III,

Consider equation (2. C3) for the case of cosinusoidal per-

turbations.

Dnan+an+1+an-1 = 0 (2.D1)

2 :
= 2f, _ (BinK)" =0,t1, t2,...
D_ n[l 2 ] n=0,1%1, £2, ) (2.D2)
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For n<<1
1
ke?/K=x([B/K+n) (n=0, £1,£2,...) (2.D3)

The resulting Brillouin di'agram is shown in Fig. 2.6 to consist of an

infinite number of space harmonics a: which propagate as eti(ﬁ-l»nK)z.
From Bragg's Law, it is known that important interactions

between F(z) and B(z) occur at k C%/K >~ B/K =%} where the £ sign

comes from considering waves of both positive and negative phase

velocities. Therefore, consider only the a_l-, a:, a.; and a:i space

harmonics in the Floquet solution for the electric field

IR . _ in .
o i-Kz + iPz +ao e 1Pz Lo + e1([3+K)z

E(z) = a + ae +1

-1
(2.D4)

Let

B—B,+ 08 = (K/2 +Lp) (2.D5)

where the + sign holds for space harmonics that intersect each other

at p/K = % %
E‘(z) = (ar -iARz +at 1A|?-z)e1[3°z
- ]
8 F(z)
+ iAfz + a+I +1A[3z)) -if,z
- ~— ~ (2.D6)
8 B(z) |

E(z) = F(z)eiPo? 4 B(z)e P02 (2.D7)
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This is exactly equivalent to the assumed form of the electric field
in the coupled waves approach. The waves F(z) and B(z) are each
the sum of two space harmonics which are in agréement with pre- .
viously derived resuﬁlts. 51 However, the terms eiinﬁoz (n=3,4,5,...)
that were discarded in the coupled waves approach now have a clear
meaning, These terms correspond to coupling to higher order

space harmonics. 52 Explicitly, the terms e:ﬁ3‘3°z correspond to

space harmonics a ; and a_g which (along with a+I and a_;) couple

+
to the adjacent Bragg intersections at k ei/K =+, B/K =+ 3/2,

This truncated Floquet theory can also reproduce the coupled
waves dispersion relation. Consider the first Bragg intersection
at B/K >=%. Here only the a: and a_l- space harmonics are important.

If we truncate the relation D-a = 0 to include only these two space

harmonics, we find the dispersion relation,

D 1 1 )
det - = 0 (2.D8)
1 D0
2 Ake%
(B _+4p - K)
where D= 2 [1. PP TEV o f B ap
-1 n kze MLk e? ‘30
o]
' +4g)° 3
2 B8 | 4 |akeZ  ap
Dy =5 |1-—=72— nl. -
[o]

1
z I
koe/K-z—Bo/K

By evaluating the determinant we reproduce the results of the coupled

waves theory, namely,



il

> \2 2
Ake ®
‘/( = ) - (g) (2.D9)

Similar results are found at B/K = -1 if we use the ao- and a:l' space

harmonics.

We note the following.

1. The coupled waves expressions for F(z) and B(z)
are each the sum of two space harmonics.

2. The coupled waves approach can be viewed as a trunca-
tion of the Floquet solution. This shows that previously
discarded terms correspond to coupling to higher-order
space harmonics.

3. The coupled waves approach shows that wave coupling
in periodic media can be viewed as coupling between

the intersecting pairs of waves that make up F(z)

and B(z).

E. Numerical Results

The dispersion relations are numerically compared by using
the Hill's determinant and the coupled waves approach.

1. Limitations of Hill's Determinant

The Hill's determinant dispersion relation
. 2 . 2 1
sin (wB/K) = A(0) sin” (wke?/K) (2.E1)

is limited by the number of significant places used by the computer.
In the case of the Univac 1108 this is 9 places for.complex calcula-

tions. The smallest number that can be used which is larger than
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unity is 1 + 10°8, Thus, if

sin® (nB/K) > 1 + 10'8_ (2. E2)

'

at the first bragg order, then

sin(np_/K) cosh(np,/K) + i cos(rp_/K) sinh(rB,/K)

~1+108 (2. E3)

i

where B = B_+B. .

r 1

For wf,/K <<1 and np_/K = w/2, the above relation is approx-

imated by

1+ @)’ /@K ~ 1+ 107 (2. E4)

through trigonometric expansions. The maximum value of ﬁi/K is
n/8 from equation (2.D9). Thus, the Floquet numerical calculations

should be limited to n > 10~ %

at the first Bragg order. In this report,
ne 10"2 to account for this and any other computer errors. Similar

arguments limit the numerical calculations at higher Bragg orders.

2. Brillouin Diagrams for Lossless Passive Media

Each Brillouin diagram is a plot of normalized frequency
[k e%/K = w'e%/(cK)] versus normalized wavenumber [B/K] .
In many of the cases the diagrams are expanded around the Bragg
interaction region where A4k .and OB replace k and B.

Figure 2.7 illustrates the main features of Floquet theory for a co- -
sinusoidal perturbation (i. e. fp= O0forp# 1)withn=1., The largest effect

1
of the periodicity is in the vicinity of the Bragg wavenumberske?/K=N/2
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Fig. 2.7 Brillouin diagram for first three Bragg orders when
7N = 1.0 using Floquet theory, Dotted lines show imaginary parts of
B/K on separate scales, Dashed line represents the unperturbed -

case, A cosinusoidal perturbation is assumed.
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where the dispersion relation deviates from the unperturbed case
(dashed line) and B becomes complex. Note that the bandgap is
shifted towards the larger wavenumber and that this shift increases
with Bragg order. This causes phase speeding43 which is an in-
crease in phase velocity (= w/p) due to an effective decrease in the
dielectric constant. Physically, as the wave travels through the
periodic medium, it speeds up gnd slows down with respect to the

1

unperturbed velocity c/e2., However, if we consider an average

velocity (v) we find for singly periodic media

A
(v) = %‘f - dz (2. E5)
0 Je(l+cos Kz)

where A = 2n/K = spatial period. For 11 < 1, expand the square

root to find

A
(v) -——Er— ‘r (1 -g— cosKz + % T]Z cosZKz +e.0)dz (2. E6)
A 0

(v) 1+(3n/16)n% + O(n})] © (2.E7)

n
I K
NIJ (':gl

Hence, the phase speeding is accounted for by effects O('r]z) for n<1.
Figure 2.8 is an expansion of the first-order Bragg interaction
region of Figure 2,7, The coupled waves dispersion relatio'n (2. B19)
is superimposed. Even for 1 = 1, the coupled waves theory closely
predicts the correct coupling coefficient as indicated by the maxi-
n"xum value of B in the bandgap. However, the coupled waves theory

does not predict the bandgap shift or phase speeding for first-order

Bragg interactions,
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Fig. 2.8 Brillouin diagram of first Bragg interaction with n = 1,
This compares Floquet theory (upper curve) with

coupled waves theory {lower curve). Dotted and

heavily dashed lines are imaginary parts of /8 /K,
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The coupled waves result (lower curve of Figure 2.8) can be used

for perturbations other than 1 = 1 by multiplying each scale by 7.

Figure 2,9 shows similar results for n = 1.0, 0.1, 0.0l

~ from the Floquet theory. As n decreases, the coupled waves theory

becomes a better approximation to the Floquet theory. The curve
for n = 0.01 is aiso the -coupled waves curve for all three cases
since the Floquet theory and the coupled waves theory are graphic-
ally indistinguishable.

Results of Figures 2.8-2.9 are summarized in Table 2.1,

Coupled Waves | Floquet

n=1 n=0. 1 n=0,01 || n=1 n=0.lEJ' n=0. 01

————
————

Coupling X/K |/ 0.1250}0.01250}0,001250{{0.12670.01250{0.001249

Bandgap Shift :
BGS 0.0 0.0 0.0 0.04 0.0005 [<0.0001

Bandgap Width

W 0.250 |0.0250 |0.00250 {|0.26 0.0255 | 0.00255

Table 2.1 Summary of couple.d waves and Floquet theory at the first
Bragg order.

The-relative contz"ibutions of the different space harmonics
are shown in Figure 2.10. The upper and lower curves are the
result of matrix truncation at 3x3 and 5x5 elements respectively.
Each truncated matrix is centered around the matrix element Aoo
in equation (ZjCIO). The differences are not large and the 5x5 matrix

produces dispersion characteristics that are & 14 different than those

of the 19x19 matrices used in Figures 2. 7-2.9,
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Fig. 2.9 Brillouin diagram at first Bragg order for n = 1.0 (top
curve), N = 0,1 (middle curve); and n = 0, 01 (bottom curve) using
Floquet theory., Bottom curve also represents coupled waves
solutions for all three cases., Note difference in scale for each
case, Imaginary 8B /K values are the elliptical curves with

separate scale,
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Fig. 2,10 The effect of limiting space harmonics in the Brillouin

diagram using Floquet theory at the first Bragg interaction,
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F. Modifications and Comments

1. Arbitrary Periodicities

The coupled waves, equat1ons were derived for
€(z) = e(l+n Z; fp cos(pKz)) where only the fl term played a role
inthe first Bragg order calculations. For generality, consider the

expansion of a completely arbitrary (although smooth) €(z) as

/

. 0
e(z) = e[l +n 2 [f_cos(pKz)+g sin(pKz)]] ‘ (2. F1)
=0 P p

The é.nalysis is similar to the previous calculations which
lead to the coupled waves equations (2. B10-13), Following the

identical procedure we find

The dispersion relation (2.D9) is modified by the substitutions

2, 23
n=(n; +n;)° (2. F6)

xz_-* x"x ' (2. F7)

. F'(2) -i8F(z). = ix Bla) (2. F2)
B'(z) -i6B(z) = ix F(z) (2.F3) -
k2e-p 2
where : 5 = -—Z—L
B, (2. F4)
+ ME, 2
X = 7 5 (2. F5)
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All previous Brillouin diagrams can be used with the above substi-
tutions for the periodicity given by (2. F1). The fact that ¥ = (X+)*,
where the asterisk denotes complex conjugate, is a general result

18

which holds for lossless systems.

2. Corrugated Surfaces

The previous results are strictly valid only for volume per-
turbations. Similar results have been extended to surface perturba-

. . 20, 24
tions or corrugations,

The extension involves tl_le assumption
that the surface per;curbation can be replaced by an equivalent volume
perturbation. 'However, this assumption, known as the -Ra.yleigh
assumption, is valid only for Kd < 0,448 (where d = 'corrugat'ion
depth and K = periodicity wavenumber) as shown by Millar. 33
Physically this occurs because deep surface corrugations have
proportionately less effect on the surface waves than do shallow
corrugations. An exact Floquet analysis which solves the boundary-

63, 64

value problem has been given.

3, Comments

This chapter has 'set the groundwork for the next calculations.
In addition the differences and similarities of the Floquet and coupled
waves theory were discussed. In particular the coupled waves theory
was seen to be an approximation of the exact theory, where certain
space harmonics were retained and combined while others were
discarded. A similar process will lead to descriptions at higher-

order Bragg resonances in the succeeding chapters.
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CHAPTER 1

HIGHER -ORDER BRAGG INTERACTIONS

This chapter is an extension of the previous chapter to higher -
order Bragg interactions (i.e. N 2 2 in Bragg's Law). Present man-
made dielectric periodicities other than superlattices are limited to
the order of A ~ 1000 &, Therefore, some applications in integrated
optics require operation at higher-order Bragg interactions. Already
higher order DFB lasers have been experimentally demonstra.ted‘l.’o’70’71
Other optical applications include couplers and filters.

In section A, the coupled waves theory is extended to all Bragg

orders for singly periodic media. Explicit expressions are given

for all important parameters relating to the bandgap and coupling.

Numerical examples are given in section B for the first three Bragg
orders. Multiharmonic periodicities and a fourth-order numerical
example are given in section C. An example of disappearing band-
gaps is also shown. In some of the illustrative numerical examples,
we will use large values of the perturbation that may not be physically
realizable. However, the objective is to dramatize the effects of the ‘

perturbation on the Brillouin diagram. In addition, the extended

coupled waves (ECW) examples are easily scaled for other values of 1,

A.. Extended Coupled Waves (ECW) Theory

1. TEM Waves in Passive Unbounded Media

By extending the assumptions made in Chapter II, we state

the following assumptions for Nth order Bragg interactions:
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1. The most significant space harmonics are Fl(z) = a.: e1Bz

- -i{f -NK)z _ .- -ipz + i(f+NK)z
+ a N ¢ and Bl(z) =a_ e +a N € .

2. To provide cross-coupling between Fl('z) and Bl(z) we

account also for the following pairs of space harmonics
(a-I\-Hl’ a+; I CENIPY a.+2+ ) (a-l-’ aN-+1 ) which are
slowly varying near k €%/K = N/2. In this way we account
for the intersecting space harmonics between Fl(z) and
Bl(z) in the ;implest possible manner.

3. Self-coupling which occurs between FI(Z)’ B‘l(z) and their
adjacent space harmonics must also be included.

4, Assume M << 1 although the theory may hold for n = 1 as
in the first order case,

5. All other space harmonics are ignored.

The derivation is started i)y including the above mentioned

space harmonics of the Floquet theory in the expression for the electric

field
0 . N+l .
E{z)= 2 an- e-1(p+nK)z L3 ar-: el(ﬁ+nK)z (3. Al)
n=-(N+1) n=0

Near the Nth order Bragg interaction let

p=f, t LB = (ENK/2 +4F) (3. A2)

where the * sign is used for space harmonics that intersect each other

when B/K 2 0. The electric field becomes
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N*/2 ‘ |
_ - -iABz + iApz .
E(z) -nzl L_an-N e ta, e ]exp[1(.l -Zn/N)ﬁOZ]

. ‘ * |
N_/2 AR i i '
+ I _aI\?-n ibpz a__ e'lAﬁz]exP - Lit-2n/0p,2]

n=-1 (3. A3)

L) [ete % 2 2 ]

where

N -2

> for N even

N*/2 = {E51 for Nodd

-1 forN=1
{1 for N even

0 for N odd

This can be rewritten as

*
- N_/2
E(z)' = 21 {Fl-Zn/N(Z) exp[i(l-Zn/N)ﬁoz]
n=-
(3. Ad)

1
+ By _on/N(?) exp[ -i(1-2n/N) Boz]} + (0) 5(z)

where
.- “~i0Bz + ilBz
Fl-Zn/N(Z) = 3)-N°€ * 2, ¢
+  _ibpz - -ibgz
Bl-Zn/N(Z) = aN-n e + a_, e

S(z) = a-N/Z o iRz a;/Z 1087 F_(z) = B_(z)

Substitute the assumed form of the solution (3. A4) into the wave

equation (2, B5) and use the slowly varying approximation as before.
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We drop the arguments in z for simplicity,

{ - (1-2n/N)? ‘302F1-2/n/N+ 2i(1-2n/N)B_ F|

1-2n/N

2
+{_ (1-2n/N) ‘302 Bl-Zn/N 2i(1- Zn/N)Bo 1-2n/NJ €

+ kze

i(1-2n/NVB,z
{Fl—Zn/N ¢ °+B

1-2n/N e 1720/ Boz, S}

ke i(l-2n/N)B_z -i(1-2n/N)B
+ {Fl-Zn/N e o+ By o ne °z}

y {{3 ‘£ [einﬁoz/N+e~inﬁoz/N]} - o
p=1

}ei(l -2n/N)B =z

l -i(1 —2n/N)|3°z

(3. A5)

(n -1,0,1,2,0000)

which is analogous to (2. B9).

Next, for simplicity we limit the

Fourier coefficients of the periodicity such that f

(i.e. singly periodic media),

=0 for p#1

H(l1~2n/N)Byz

Equate the coefficients of e

to zero for each n to get the following N+3 coupled equations.

Y

2
ke-rez /Pl Jry,, p2i0 42 NB F o p = S Fy )
2 2 4 -kze
(k“e -B)F, + 2P F, 2 E ot F a2
2 2
[%e-1-2m)p 25 22 L ke (F, )y )
1,.2 1] kze
2 ’ . -kze
[kze-(l -2/N)Z[30 ]BI_Z/N-Zi(l-Z/N)ﬁOBI-z/N: (Bl + Bl-4/N)
2
Pc - pJ)B, + 218, B/ = 5B, opitB) o)
K2
[kze-(1+2/N)Zﬁi]Bl+2/N-2i(1+.’)./1\I)g50131+2/N = kée g Bl J

/

(3.46)
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-

We define interaction as meaning the region in the (ke2, B) plane near
the intersection of two space harmonics. We again note that higher -
order interactions refer to interactions with frequency greater than

that of the fundamental Bragg frequency defined by ke%/K = 3. Thus

each wave, F(z)1 -2n/N and B(z) defines an interaction. The

1-2n/N’
coupling diagram, Figure 3,1, and the above set of coupled equations
show that Fl(z) and Bl(z) are coupled through N intervening inter -
actions, Since each coupling is proportional to N, the cross-coupling
between Fl(z) and Bl(z) should be proportional to T]N. The adjacent
interactions to Fl(z) and Bl(z) contribute terms of order nz to the
phase mismatch and hence both the F(Z)I:tZ/N and B(z)liZ/N terms
need to be retained to obtain correct self-coupling. The F(z)1+2 /N
and B(z)1+2 /N terms will not contribute to the cross-coupling except
to order nN+2. This small contribution is ignored,

To show the above statements mathematically, apply the
slowly varying assumption and solve the inner N-1 and the outer
two equations of (3. A6) to get all waves F(Z)I-Zn/N’ S(z), B(Z)I-Zn/N

{n=-1,+41,2,3,...) in terms of Fl(z) and Bl(z). The outer two equa-

tions can be solved trivially for F(Z)l+2/N and B(z)1+2 /N°

We begin by using matrix manipulations on the inner N-1

equations of (3. A6)

det ||A || /aet |||l

1-2/N

(3. A7)
det [|G||/det || C||

By2/N
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whére
c, C
c, ¢ 0
ilcll = Tt (3. A8)
0 o 5
1
1
C c, C 0
lall= .. (3. A9)
0 o )
) C 1
G, ¢
C c, ¢ 0
Gl = S (3.A10)
0 c c, ¢C
G, c 1
.2 2 .2 . 22
Cn =k € -« (1-2n/N) po G2 = A, = -k enFl
'c =nx’e/2 G, = A, = -k%nB]

Instead of solving (3. A7) exactly, we approximate the determinants for

n << 1 when N 2 2, Since C << Cn’ we find
2

m

det ||| =-]T £ (n) n— (ke - (1-zn/N)? B 2 ) (3.Al11)
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(N-1)/2
TT fz(n) for N odd
n=1
N/2
where | l * fZ(n) = -[T f(n) for N even
n=1
\. 1 for N =1

Approximate det||A]] and det||G|| in a similar manner,

A
det]la]] = e—i TT* @) + (1N A, cN? (3.A12)
G
& -
det||G|| =‘C—i T*@ +-)N g, c N2 (3.A13)
The solution for F(z)l_z /N becomes
A, (1N a4, cN?
Fehayw = ) 4 T 2 (3.A14)

Near the Nth Bragg interaction we approximate the free-space wave-
number by
2 2 2 2
ke k0 € = ﬁo = (NK/2)" .
The expression for F(Z)I-Z /N San be approximated by

-M/2)F @) (kPen/2] ! B (2) 2.a15)
+ JAl5
1-a-2/° [T

F(z); /N =

Extend the above formulation to include the N=1 case by

introducing the symbol C,N.



=41 -

) Gy INEy @) DT /2" B (z) 5.a16)
A = p— ° [
1-2/N " p-1/N) IT* {4n(n-N)/N>}2
{o N=1
where (., = :
N 1 N =2
Similarly for B(Z)I-Z /N Ve find the analogous result,
- ONB () ()N (/2N E ()
B(2); /N = (3.A17)

+
8(1-1/N) T *{an(n-n)/N* 32

The expressions for_F(z)1+2 /N and B(z)1+2 /N are trivially found from
(3. A6) under the stated approximations as

F(z) = (3. Al8)
“142/N 1-(142 /N)° 8(141/N)
-C(n/2)B. (z) C..MNB,(z)
N 1 N 1
"B(z) .= = (3. A19)
1+2/N 1-(142/N)% © 8(141/N)

Expressions (3, Al6-3, Al19) are substituted into the following two -

equations from (3. Ab6) for F1 (z) and Bl(z)

2
(Fe-p IF () + 258 F () = 55D (F () o+ () 1)
(3. A20)
2

(Pe-p)B)(2)42ip, By(2) = TFD(B(2)) 5/ +B(2)) 5 )
' (3. A21)

Upon rearrangement the following extended coupled wave (ECW)

equations are formed,
4 . .
F1 (z) -1 6N Fl(z) = 1XNB1(Z) (3. A22)

-Bl'(z) -i 8 B,(z) = ixy F(2) (3. A23)
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2o - cyne? [} -

= Z(N '
where 6N = > ﬁo (3. A24)
= phase mismatch
. i (-l)(N+1) k2€ TlN 1 (3. A25)
N N+1 2,2 :
27" B, TT {4n(a-N)/N%}
= coupling coefficient
N = Bragg order
B = nK)Z

The ECW equations agree in form with other work in diffraction

22,68, 69 where the periodicity is perpendicular

or holographic gratings
to the propagation direction. However, “this is the first time that
analytic expressions have been derivéd for propagation in longitudinally
varying media where the coupling, bandgap shift and bandgap width

are given expl_icitly for all Bragg orders.

Table 3.1 presents numerical factors found in the ECW equa-

tions for the first five Bragg orders.

N [T (4n(n-N)/N“F| g () = (4/M)(1-1/N) |1-¢  (1/2)* (% / (2% 1))

1 1 0 R
2

2 1 1 g(n/Z)

3 (8/9)% 8/9 36 (n/2)?

4 (3/4)% 3/4 1 -1—8 (n/2)*"

2 o Y .28

5 (16/25) 16/25 (T]/Z)

Table 3.1 Numerical values for factors in ECW equations,
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2., ECW Dispersion Relations

The dispersion relation is derived from the ECW equations

3

as 'in the first order case.

= -/

The following approximations may be made in the interaction region

when AB. << K.

N
1 2. 2.2
by ~ bkye?.og =SSN (3.A27)
16 B_(N“-1) |
- DN kg 62 ’8
XN N+1 77% 2.2 (3.A28)
2 || {4n(n-N)/N"}
where
1
_ - 3
pky = k-pB_/e
ABN = p = Bo
B, = NK/2
th . . . .
The N~ order dispersion relation is explicitly
A bk 2% Ak e 2.3 ¢ ntnd
Pn _ (__N___ i N poN® 5N
K K N Ko jem%1)  1024(N%-1)°
) nZN( N ) (3. A29)
4N*2 Tl”\{3n(n-N)/N2}2

Note that for real € and 1, the maximum imaginary part of ApN/K

occurs when 6N/K = 0. This defines the normalized coupling in terms

of the bandgap behavior since,
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N

Ap
Ihn{_ly}max n-N)/NZ}Z

If 5N/K = 0, then maximum coupling takes place at a wavenumber

X N
JNE:
= |2N] - (3. A30)

¢

1
that is displaced from the exact Bragg condition ke2 /K = N/2 for

N 2 2, This is referred to as bandgap shift (BGSN) and is defined by

B € ¢ n’ N3
BGS - —— - —I\I.—_._
N~ K

1
2

= > (3. A31)
6,=0 32(N"-1)

N
We note that this raises the Brillouin diagram and produces phase
speeding O(nz) as expected. The bandgap occﬁrs whenever

|6N/K| < IXN/Kl which causes ABN/K to become imaginary. The
bandgap width (WN) is defined by

XN N N
W.. = z‘ ‘= N — (3. A32)

Table 3.2 summarizes some of the ECW results for the first

five Bragg orders.

3

N Coup/li?g Ban%gag shift Bandgap width
XN GSN YN
n n
1 s 0 :
2 2 2
2 N J_ n_
8 12 7]
3 2 3
5 243 27 1 243
3048 256 1024
4 2
4 _ -n_ 2n 4
9 15 3%}—
1953125 n° 125 n 1953125 n°
5 d97551eo 1M RN 1725160 M
18874368 =68 5437184

Table 3.2 Summary of the ,main features of the ECW

theory for the first five Bragg orders.
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We note the following points about the ECW theory:
1. The ECW derivation is an intuitively based theory
that gives explicit values for XN/K, 6N/K, BC.SN
and W_, for any Bragg order.

N

2, The ECW theory predicts coupling coefficients that
are proportional to (n/Z)N due to cross-coupling,
This is expected because of the N interactions be-
tween Fl(z) and Bl(z’) where each interaction couples
with strength n/2 to adjacent interactions. The sign
of the coupling coefficient alternates with Bragg
order,

3. The ECW theory predicts that maximum coupling
occurs not at exact Bragg resonance but at a shifted
frequency instead. This shift is proportional to
an for N2 2 and is due to the self-coupling of
Fl(z) and Bl(z). This bandgap shift accounts for
the phase speeding effect that was first found in the
Floquet results,

4. The bandgap width is proportional to (n/Z)N. Hence
for large N, only a small range of frequencies will
cause significant coupling between Fl(z) and Bl(z).

{ Also note that for large N, W, <2 BGSN so that the

N
longitudinal wavenumber  may be real at exact Bragg
resonance. Since bandgap width and coupling are

proportional, it is impossible to attain large coupling

and small bandgaps sijnultaneously.

e
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1
2
N €
are reduced by the same factor, then AB, /K will be
y N

5. A simple scaling rule existg such that if 1 and Ak /K
reduced by the identical factor. Thus ECW results
for large ‘perturbation can be directly applied to other
perturbations.

The extension to sinusoidal perturbations is made in the same
manner as in the first order theory. Let XN(T]Z) - xN(n 12+n22) for
periodicities of the type Ny cos(NKz) + n, sin{NKz).

The relative magnitude of the waves F(Z)I-Zn/N" S(z),
B(z)l-Zn/N n=2,3,... N*/Z) can be found from equation (3.A6) in
the same manner that' F(Z)I-Z/N and B(z)l_z/N were found, The
results are in terms of Fl(z) and Bl(z) which are in turn related by

the boundary conditions. We will not need these results now.

B. Numerical Examples

1. Second-Order Interaction

The ECW approach uses the ten space harmonics shown in

Fig. 3.2 for N = 2. The explicit dispersion relation is

1 1
2 2
Aﬁz _ /(Akze )2-(Ak2€ >ll.2.- 5 n4 6. B1)
K K K 6 576 )
and the phase mismatch and coupling are

i (1-n%/6) - B2

62 = ) po (3. BZ)
. - K 611_2 (3. B3)
X2 F 8B, .

where [30 = K



-47 -

*SUOTIORIIJUT IDPIO
-puodas 10y £109Y3 MDA 94} UT POsn 3Ie JeY3J SOTUOWIIRY

aoeds jueAd[aX U9j 9Yyj3 smoys YoIym weaderp Surpdnon z°¢ °*3rg

1 0 - - ¢€-
¥ g ¢
60
b‘
A




-48-

Note the change in sign of the coupling coefficient from that

of the first-order theory.

The coupling is provided by S(z) and the

bandgap shift is accounted for by Bz(z), S(z) and Fz(a). Phase

speeding is the result of the bandgap shift.

Figure 3.3a,b,c shows a comparison of the Floquet and ECW

theories at the second Bragg order for n = 1.0, 0.1 and 0,05 respec-

tively.

Figure 3.4 demonstrates the validity of the theory in this case.

Although one would not expect the ECW theory to hold as n = 1,

We

note that for n = 1, the Floquet theory predicts a slightly larger

bandgap than does the ECW theory.

However, in the practical case

of n 0.1, the two theories become graphically indistinguishable.

Table 3.3 summarizes these results for second order Bragg inter-

actions,
ECw Floquet
n=1.0|n=0.0 n=0.05|n=1 n=0.1 n= 0.04
Coupling .125 . 00125 |.0003125{.133],00125}.000311
X /K
Bandgap Shift . 0833 . 000833 .000208 .10 1.00080 {.00022
Bandgap Width|l .250 . 00250 {, 00625 .26 |.0025 . 00063
w
2

Table 3.3 Summary of ECW and Floquet dispersion

relations at the second Bragg order interaction.

Figures 3,4 and 3.5 show the effect of truncating the ECW

and Floquet theories,

((al-, a3+) and (a

-3

In Figure 3,4, the outermost space harmonics

Y a__;.) of Figure 3.2) are not used forn =0.1. In

this case the coupling between F) and Bj is given correctly since the
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3.4 The results of neglecting the effects of F2 and B,

in the ECW theory at the second Bragg interaction,
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Fig. 3.5 The effect of limiting space harmonics in the Brillouin

diagram using Floquet theory at the second Bragg

interaction.
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cross-coupling is only dependent on S. However, the bandgap shift
is not given correctly since S, F‘2 and BZ contribute terms of order
nz to the self-coupling and bandgap shift, Figure 3.5 shows the effect
of limiting the space Harmeonics in the Floquet theory for n = 1.0,
The upper curve has a greatly enlarged bandgap width for a 3x3 matrix
0’ af and a_:lt. The lower curve

adds the azi and a_g space harmonics. The resulting 5X5 matrix

which includes the space harmonics a

produces results that are graphically indistinguishable from the 19x19

[ matrix used for all other Floquet results,

2. Third-Order Interaction

The ECW approach has twelve space harmonics ((a 4° _2+),
+ + -+
( 3) 1) (a' ’ 0): ( 1:a ) (a' az): ( l,a ) (32,34)) forN:30
The results are similar to the N=2 case. The explicit dispersion

relation is

1 1
z 2 2
e ﬂ By € )21 (Ak3e) 314499 n° (3. B4)
K K 128\~ K /" ~ 1048576 i

and the phase mismatch and coupling are

1% (1 - 9n°/64) - B2
63 = > po (3. BS)
2 3
_ 81k™ €
X3 = Tozdp (3. Bé)
‘ O
where ﬁo = 3K/2

Figure 3. 6a,b displays the results of ECW and Floquet calcu- -
lations for n = 1.0, 0,5 at the third Bragg interaction. Note that for

the first time the half width (=WN/2) is less than the bandgap shift

14
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0.07
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0.2
0.01
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Fige 5.6 Brillouin diagram at third Bragg order for a) 1 =1,0 and
b)n =0,5 showiné Floquet and ECW results, Imaginary AB/K values

are the elliptical curves with separate scale,
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(= BSGN) which causes the entire bandga;p to be above the exact Bragg
wavenumber. This effect becomes more pronounced with increasing
order and decreasing perturbation since WN°= ('n/Z)N whereas

BSGN « (T']/Z)2 . Although the ECW theory does not approximate

the Floquet theory for N = 3 as well as it does for N = 2 (compare
Figures 3,3a and 3, 6a), the ECW approximgtion improves as 1
decreases. This is an expected result since in the ECW theory all
are assuﬁled to be slowly varying. However,

1

as N increases, more of the waves contribute to the coupling between

waves except F1 and B

Fl and Bl' Table 3.4 summarizes the results of Figure 3. 6.

ECW Floquet
n=1 n=0.5) n=1 n=20.5
Coupling . 1186 .0149 . 136 .0155
X3/ K
Bandgap Shift . 105 .0264 || .16 . 030
BGS
3
Bandgap Width ‘|| .211 . 0297 |f .27 .033
W d
3

Table 3.4 Summary of ECW and Floquet
dispersion relations at the third Bragg
order interaction.

Figure 3.7 shows the effect of increasing the matrix order
that is used in the Hill's determinant for the Floquet dispersion rela-
tion (2. El), It is apparent that space harmonics of order n > 2N+1
must be used to insure accuracy of the ququet result. Graphs are
shown for 7x7, 9x9 and 17x17 size matrices, As before, 19x19 size

matrices have been used in the Floquet theory for other figures in this
section, . ’
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Fig. 3.7 The effect of limiting space harmonics in the Brillouin

diagram using Floquet theory at the third Bragg interaction,
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C. Multiharmonic Perturbations in ECW Theory

Higher-order Bragg interactions are interactions in the region
of k e%/K =pf/K >=N/2 where N 2 2, However, there can be competing
Pprocesses between different Fourier components, fp cos (pKz), of .
multiharmonic (i.e. p=1,2,3,...) periodicities for N 2 2., In par-
ticular we may find passbands where bandgaps existed in the singly
periodic case. This latter fact has been of interest in solid-state
theory where the Saxon-Hunter theorem65 states that a forbidden level
in an infinite lattice of pure type-A potentials and in a lattice of pure
type-B potentials is also forbidden in any alloy containing both type A
and type B potentials., As applied to our problem, this theorem im-
plies that bandgaps formed by two dielectric periodicities?(Kz) and
?(Kz) are just the bandgaps caused by ?(Kz) and T(Kz) separately, A

65, 66

number of counter-examples have been given to the Saxon-Hunter
theorem, The ECW approach will show explicitly the effect of multi-
harmonic periodicities upon the bandgap.

The extension of the ECW theory is straightforward, However,

the results for arbitrary multiharmonic periodicities become cumber-

1
some. Several special cases will illustrate the general theory.

From the previous sections we know that the waves between
Fl(z) and Bl(z) are needed to couple energy from Fl(z) to Bl(z). We
also know that the waves F(Z)I+Z/N and B(z)1+2 /N have to be included
to properly account for the bandgap shift. In addition, other waves
that can couple significant energy between Fl(z) and Bl(z) or that

couple Fl(z) and Bl(z) to themselves have to be included.
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Since the Fourier component [0 f‘p cospKz] couples energy
between intersections, p intersections apart with strength approxi-
mately proportional to 1 fp’ then coupling diagrams will again help
to show the waves that should be included in the ECW theory. Figure
3.8 demonstrates some of the possible couplings for N = 2,

We list the possible couplings and strengths shown in Figure
3.8:

1. two first-order couplings « (‘nfl)2 :

2. one second-order coupling «n f2 :

3. one third- and one first-order coupling «(n fl)(r] f3);

4. one third-, one second- and one first-order coupling

= (nf;)(n £,)(n £;);

5. one fourth- and one second-order coupling «(n f4)(n fz);

6. one fourth- and two first-order couplings <« (7 £4)(n f1 )2.

The mathematical solution consists of writing a set of equa-
tions analogous to (3. A6) where the right hand terms are augmented
by all of the possible couplings by each Fourier component of the

periodicity, fp .

1. Nth Order Bragg Interaction with f; and-fy

Consider the periodicity made up of Fourier components

['nfl cosKz + nf, cosNKz] at the Nth Bragg order. We assume the

N
non-trivial case where O[(nti,)N] ~ O(an) so that contributions to the
cross-coupling from the two Fourier components are of the same .
order. The major bandgap shift is given by terms O [(nfl)z]. Figure

3.9 is the coupling diagram which shows, the important space har-

[
monics and couplings that are used in this case.
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Fig, 3.8

Coupling diagram that shows several of the possible
cross-couplings from Fl to Bl and self-couplings

for -Fl when N =2, The appro;éimate magnitude of

the coupling strangths are shown,
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Since the coupling an only affects the equations for Fl(z)
and B (z) and the coupling nf is used to couple Fl(z) to Bl(z) as
“well as the coupling F (z) F(z)1 2/N Fl(z). and Fl(z)-'F(z)1+2/N
- Fl(z), we can write by i‘nspectlon from Figure 3.9 and equation
(3. A6),

kze }

(k €~ (1+2/N) B ) 1+2/N+21(I+Z/N)B0 142/N= "2 nlel

2
2 2 . v ke
(k%e-py) Fy +2i B, F) = ——~[{)(F_5/NtFyep 0t inB]

2
(é’)kzgs - - ((1))1‘2€ n£1(F, By /) ) (3.C1)

2 2 R R A
(k"¢ - B)B; - 2ip B, 5 (M) (B) 5 /Nt Brez /NN T

2
-k"e_
2i(1+2/30p, B1+2/N —Z "By

(% - ‘i+2/N)25<>2)Bl+2/N

The only difference from the previous coupled equations (3. A6) is the

change of notation 1 —# nf. and the addition of the n f and anF

1 N 1 1
terms, It is apparent from the N+3 coupled equations (3. C1) that the
bandgap shift will be due to nfl as before but that the coupling co-
efficient will be the algebraic sum of terms involving nfl and T]fN.

Solve the coupled equations as before to find

Fl'(z) -5 6y F (2) = i xpy B (z) ' (3. C2)

- B (z)-16 B, (2) = ixy F,(2) (3. C3) )
k% {1-¢(nf,72)°0 N?/2(N -1)]} BZ

5y = 5 (3.C4)

o
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X + . (3. C5)
N 2B, 2 ZN TT {4n(n-N)/N2}2]

B S AE)

Table 3.2 may be used to find the appropriate bandgap shift, The

N+1 N

effective coupling coefficient is found by adding the values for X1 and

XN Hence the results in equations (3. C2-3. C6) could be written

down by inspection.
An interesting case arises when XN © 0. For example at the

second Bragg order, Xp = 0 implies

1
. b, 5 Ak, €2

= = L
. "'K—
X,=0

(n£})?
K TT12

(3.C7)

which occurs when nfz = (n fl)z/Z. Here the bandgap disappears but
the phase speeding effect is still given by the (n f1)2/12 term in (3.C7).
It is interesting to note that a periodic medium does not necessarily
have bandgaps but it will still have the phase speeding property.

In practical cases, if the effects of nf, and an cancel each other,

1
other periodicities in the media may still cause bandgaps.

Figure 3. 10a,b shows the ECW and Floquet results for
+ nfz = (n f1 )2/2 = 1/4 at the second Bragg order. In the first case
the effects of nfl and nfz cance_l, and the ECW theory predicts no
bandgap. The Floquet theory shows a greatly diminished bandgap
with a coupling coefficient XZ/K = 0.00568. The' Floquet theory
bandgap can be reduced by an order of magnitude, and perhaps more

by slightly adjusting the ratio f,/nf{ away from f,/nf = 0.5, For
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Fig, 3.10 Brillouin diagram at second Bragg order for a) n£1=J5:_5,
nfz = 0,25 and b) nfl =v0,5, nf, = -0, 25 showing ECW and

Floquet results for multiharmonic periodicities. Imaginary
88 /K values are the elliptical curves with separate scale,

Note the dependence of the bandgap upon the sign of nfz,
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fz/ﬁ flz = 0,55, XZ/K < 0.0002. The second case shows the large
bandgap that occurs when the effect ofnfl and nfz is additive.
The vanishing of the bandgap is due to the relative phasing

of fl and fN and is therefore dependent upon the symmetry of the

periodicity. Analogous effects have been noted in the electronic

65, 86

stopbands of crystals ™’ and in stability diagrams of transverse

magnetic (TM) wave propagation in periodic dielectrics. >

2. Fourth-Order Bragg Interaction with {;, fj and {4

In the preceding case, the resulting coupling coefficient was
a direct sum of the coupling coefficients of the two Fourier compo-
To illustrate, consider a fourth-

nents, This is not always the case,

order Bragg interaction where O(n fl)4 ~ O(n fZ)Z ~ O(n f4). That is,
the Fourier components nfl, nfz and 'qf4 contribute values of the
same order of magnitude (i.e. O(n f4)) to the cross-coupling. The
details of possible couplings and the relevant space harmonics are
shown in the coupling diagram of Figure 3.11. Weaker couplings
such as those proportional to (n f1)4n £5 have been neglected.

From Figure 3.11 and equation (3,A6) we write by inspection

the following coupled equations.
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(k% - 9/4 ;302)1«*% +3ip_ F'_% -

“(Pe - 2)F, + 21 F, =
k% - 3 aoz)F%Hao F_;; -

kze S =

k% - 3 Bf)B_é_- iﬁoB%' -

(k% - p)B, - 2ip B, =

2 2 . '
(k“e-9/4 B,)Bs-31B B;
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2

-k €N Ei)
-kze
e (Fy4Fg)+ £, S+ £, B, ]
-kze
—-——le [fl(F1+S) + f‘2 B%]
2
B0 () (Fy +By)+5, (F +B)] ) (3.C8)
-kze
——-Tl (£, (B +5)+, F1]
..k € .
—zfl [fl(B%+B%)+fZS+f4F1]
——Tl'kze (£,B,) |
2 1P . J

where the arguments with respect to z have been dropped. Solve the

coupled equations as before to find

2
F% —gnlel
2
By =3M§, Bz
F, =18F [3 3y ff2+ﬂif3]
%“91161281812 g 1
2 3 3
16 o [ 2, 2 ]
5 Bl b2 -3 L - 4
2 - 3 3
_ 16 71 2 0N 3]
By = Fl[ 16 hifx g 6Hify - 7 1
3.m> .2 3n
1[%%2 8 1 8f1fz‘8f1]
3 2 2 9n 33_ 2
3n° 9n .
S = ‘F +B)[8 2+ 1w h -2k 8f1f2]

(3. C9)

(3. C10)

(3.C11)

(3. C12)

(3.C13)
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These values are substituted into the equations for Fl(z) and Bl(z)
in (3. C8) to find the coupled equations for‘Fl(z) and Bl(z). The

resulting values for 6, and X4 are

4
2
k% [1- —3-—215 ff] - ﬁj‘
64 = > (3. C14)
Po
2
10n f f
= 4 n.2, """ 12
where By = 2K and where smaller order terms are neglected.

As expected, the above expressions reduce to the first-order

case if f1 = f, = 0, to the second-order case if fl =f, =0, and the

2 4
fourth-order case if fz = f4 = 0, However, the presence of the mixed
term fl2 fz means that the above results cannot be obtained from

simple superposition of the terms from each component. As in the

previous case, a proper choice of fl’ f2’ and f4 would allow us to

~

eliminate the bandgap. )

The different terms in the expression of X4 can be easily ex-
plained as shown in Fig. 3.11. There are four possible ways to
achieve a fourth-order coupling with the three Fourier components

f., f,, and { These are:

1’ 2 4°

1. four couplings through fl ;

2. any combination of one coupling through f2 and two

couplings through f 17

3. one coupling through f4.

The lefz term in equation (3. Cl4) has a large numerical co-

efficient because this coupling can occur in three different ways.
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Fig, 3,12 Brillouin diagram at fourth Bragg order when nfl = 0,5,
nf, = 0,2, and nfy = 0,1 showing ECW dnd Floquet results, Imaginary

AB /K values are the elliptical curves with separate scale,
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Fig. 3.12 co;ﬁpares the ECW and the Floquet solution for

the values nf, = 0.5, nf, = 0.2 and nf, = 0.05. Note the close

4
approximation of the ECW theory to the Floquet solution at the
g fourth Bragg order with several harmonic periodicities even when

the perturbation is relatively large.

D. Comments on ECW Theory

The predictive abilities of the ECW theory have been sum-
marized at the end of Section A. The numerical examples demonstrate
the accuracy of the ECW theory at higher Bragé orders and for
multiharmonic periodicities. The ECW theory is particularly attrac-
tive for smali perturbations where the Floquet theory is cumbersome
and time consuming. This is relevant to present optical applications
where often n < 10-3.

The extension to higher Bragg orders opens up the possibility
of using the many first-order results of the literature at higher Bragg

orders by the use of the proper 6, and XN Several extensions of

N
this nature v;rilli be made in a later chapter.

Two interesting results have been explained in this chapter.
First the pbase speeding effect was observed to be a result of self-
coupling and occurs regardless of the value of the higher frequency
Fourier components fp. Se;:ond, the disappearing bandgaps were
explained through simple interference effects of different periodicity
frequencies, This opens up the possibility of controlling feedback

through the relative phases of two harmonics since feedback or

coupling strength is directly proportional to bandgap width.

R
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It is anticipated that a similar analysis could be applied to
bounded media, space-time periodic media and active media. The

- latter case will be covered in detail in the next two chapters.

'

Parts of this chapter have been summarized elsewhe‘reS?’ and

the results have been confirmed through calculations that use the

method of multiple sca,les.95
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CHAPTER IV

COMPLEX PERIODIC-MEDIA

Although the study of wave propagation in périodic structures
has been a popular su:bject since late last century, most of tHe
analytical studies have dealt with simple (passive and lossless)
periodic media. The recent development of DFB laser523’ 30,58

has extended the applicability of periodic structures to the case of
complex (¢ = €. + iei, n=n, + ini) periodic media. In their analysis
of DFB lasers Kogelnik and Sha.nk23 briefly discuss the Brillouin
diagram near the first-order Bragg interaction when the gain co-
efficient is modulated. Using Floquet theory, Wangzs’ 58 presents

a more detailed analysis of the first-order Brillouin diagram for
active periodic media. Highe);'-cu'der71 and multiply-resonant70
DFB lasers have been mentioned very reéently in the literature.

In this chapter we investigate in detail both the ECW and the
Floquet theory for complex media at the first few Bragg orders,
Analogous results will hold for higher even and odd orders. In section
A we use the exact Floquet solution to plot the Brillouin diagram for
several values of the perturbation and average dielectric constant,

In section B we use the approximate but simple ECW solution to
study in detail the changes in the Brillouin diagram for the first
th.ree Bragg orders in singly periodic media. A short discussion
oi multiharmonic periodicities is giv;en in section C, and section D
summarizes the results of the chapter.

As in the previous chapter, some of the parameters in the

numerical examples will be larger than those that might be
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experimentally obtained. However, this exaggeration is again used
to dramatize the periodicity effects. The ECW examples are easily

scaled for other values of gain/loss and perturbation.

A. Floquet Solution

. We consider the case of a TEM wave propagating along the

z axis in an unbounded medium with a periodically modulated dielectric

constant;
e(z) = er + iei + er %D(nrﬁni)p fp cospKz (4. Al)
where
E:r = Re{e} e::.L = Im{e}
n, = Rein} n, = Im{n}

and f,=0, f, =1, and |nrfp|51,|nifp|51 for
P p
p=1,2,3,... . Index coupling will refer to the case where yh =-0

and gain/loss coupling will refer to the case where Ny = 0. Note
that gain (loss) media implies ei <0 (ei > 0) for e_lwt excitation,

The Hill's determinant equation
.2 .2 1
sin®(wp/K) = 4(0) sin"(nke?/K) (4. A2)

of chapter II still holds with minor changes in the matrix elements

Apn: 1 P=n

A = 5 (4. A3)

pn - ke p#n
pZKZ_kZ€ 2 €

These elements make up the Hill's determinant A(0) = det |4,
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Several examples of the Floquet solution for singly periodic
media are given in the Brillouin diagram- Figure 4.1 for real fre-
quencies, The example for simple periodic media (real € and n) was
found in chapter III and is gi‘ven in curve 1 of Figure 4. la. There
are two main characteristics. First, note the presence of bandgaps
in frequency where f becomes complex. These are known as non-
inverting bandgaps. Second, note the phase speeding that is a result
of upward bandgap shift,

The Brillouin diagram changes drastically for gain or loss
coupling where the perturbation is imaginary. In curve 2 of Figure
4. 1la we plotted the case for real frequency where € = €. and n = i‘ni.
This corresponds to media with successive amplifying and lossy
layers while the average gain (or loss) is zero, Note the inverting
bandgaps (i. e. bandgaps in longitudill'lal wavenumber) at odd Bragg
orders. The pattern of non-inverting and inverting bandgaps alternate
with Bragg order. However, bandgaps of both types are shifted
toward lower frequency. This. latter effect can be understood from
the averagé velocity which was given by

(v) = -—;— (1 +-i—z n? + o(n%)] (4. A4)
€
for ln | < 1. It is apparent that phase speeding (positive bandgap
shift) occurs for n = e and phase slowing (negative bandgap shift)
occurs for n = in i This also follows naturally fron'f the definition

of BGS,, that was given in the previous chapter (3.A31).

N

Let us now consider the case of complex media where only

the real part of the dielectric constant is sinusoidally perturbed
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but .average gain or loss is present (i.e. € = e.t iei’ n= nr). The
corresponding Brillouin diagram for real frequency is shown in
curve 1 of Figure 4.1b. For ¢, # 0, we observe that Re{ﬁ/K} is no
longer a constant across the Bragg region and the effective spatial
gain or loss increases appreciably near the Bragg frequencies.zs' 76
The unperturbed value (n=0) is shown by the light dashed lines.

When the gain or loss is sinusoidally perturbed, the spatial
gain or loss diminishes near the odd-order Bragg resonances and is
enhanced near the even-order resonances, This c'ase is illustrated
in curve 2 of Fig. 4. 1b where there is an average imaginary dielectric
constant and imaginary perturbation. Again the light dashed lines
represent the unperturbed values.

We see that the spatial gain can be either enhanced or
diminished near Bragg resonances. ‘This behavior depends upon
Bragg order and perturbation or coupling type.

The sign of Im{p/K} and Im{k EE/K} (not shown) have not
been specified because the cor;'ect root of the dispersion relation is
dependent upon the stability of the wave, For passive media, €5 >0
and the correct signs are chosen to indicate spatially and temporally
decaying waves since no sources are present, Hence, the media
does not support instabilities. However, instabilitiés may arise
in active periodic media where € < 0 for some (or all) z, In this
case an analysis of wavepackets in the periodic medium must be

3 This case is taken up in the following chapter. For the ’

made.
present we will only examine monochromatic waves and will not

specify the correct sign of the dispersion relation roots.
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B, ECW Theory for Complex Media

-

1. Analytic Expressions

Since we again assume a solution to the wave equation of the

4

form -

%
N /2
E(z) = Z{l [F(Z)I-Zn/N exp[i(l-Zn/N)Boz]
n=-

+B(2)) 21 /N exp[-i(l-zn/N)poz] + ((1)) S(z)] (4. B1)

where the symbols have the same meaning as in chapter III. This
implies that the gain/loss and the pertu}bation of the media are

small, Hence for a singly periodic effective dielectric constant
e(z) = er+1 ei + er('r]r+ 1ni) cos Kz , (4.B2)
we assume

|Tlrl. |ni| , Iei/erl << 1

However, as in the case of simple media, we might expect the ECW
dispersion relations to be a good approximation to the Floquet results

even as

In Il leg/e | = 1.

Following the identical analysis that led to the ECW expressions

(3. A20-3,. A25) we find immmediately that for the Nth Bragg order

kzer(l+i€i/€r){1—-€ N[(T\r + ni)/ZJZ [Z(N
(4. B3)

N ~ ' Z B,
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N+1 2 . N
- (-1) k™€ _(n_ +in,) 1 4. B4)
N ZN+1 B -n—*{‘ln(n-N)/NZ]Z

o

NK/2. Note that the coupling coefficient XN is not

where fio

affected by €, The dispersion relation as before is

AR 2 6. \2 2
CORRRCONCS -

2, First-Order Interactions

At the first order Bragg interaction we have the approximate

expressions
1 .
61 l\k1 e:r2 i €
X &P
K - 8 (4.B7)
which give
- l l‘
AR 2 Ak e?2 €. \2 Ak, €2 e, ,
1Y . ir i ) . 1 'r i
(K/ = K (4er “( K >Ze
‘ 2 _pn2 i
e - M
T T 64 T 732 - (4.B8)
where
1
- - 2
Akl = k L30/e:r
Aﬁl = B - ﬁo

Note that at the first Bragg order, ei only affects the phase mismatch

ﬁl,and N only affects the coupling X;. For index coupling, the

maximum value of Im{Aﬁl /K} occurs exactly at Bragg resonance
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1
Akl €rZ/K = 0, The value is

A 2 2 .1
N T S I | Gl
“max 16€ 64

Hence, near Bragg resonance, the effect of spatial gain or loss and
the perturbation add as the sum of their squares for index coupling.
This enhancement of spatial gain or loss has been observed in the
Floquet solution of Figure 4.1b and is shown in Figure 4, 2a for the
ECW solution for several values of eti/e:r when 1 = 0.1, Far from
the Bragg resonance Im{ABl/K} =% 61/K, the unperturbed value.

1
The temporal gain or loss, Im{Ak1 GrZ/K}, remains constant across

the bandgap with value ei/ 4e .

For gain or loss coupling, xlz changes sign and therefore
AﬁI/K is real if €, = 0. This produces an inverted bandgap as shown
in the previous Floquet results, The ECW results are shown in
Figure 4.2b for several values of ei/er when n =1 0.1. Two classes

of behavior appear that depend upon the sign of
A = [leg/e | - In /217,

For A < 0, a bandgap of width 2[nf/64 - eiZ/(Z}er)]% appears in
Re{AﬁI/K}, and Im{Aﬁl/K} ="0 at Bragg resonance. The two roots
of Im{Akl sé_/K} are of opposite sign, For A > 0, there is no band-
gap and the gain or loss coupling diminishes the average spatial

gain or loss near Bragg resonance. This is due to the fact that the
coefficients of nf and €i2 have opposite sign in ‘(4. B8). In this case,

1
the two roots of Im{Ak C:/K} are of the same sign.

1

Thus, the effect of finite e, can either enhance (1 = nr) or

reduce (n = i7;) the effective spatial gain or loss near the first Bragg
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Fig. 4.2 Brillouin diagram at first Bragg
order using: a) index coupling; b) gain/loss

coupling; and c), d) both couplings in the ECW

theory.
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resonance, For both cases of coupling, increased €i/€r tends to
mask the effect of the coupling or perturbation.

Figures 4,2c, d show the effect of hav*ing complex coupling
(n= n, + ini) in a media with no average gain or loss, As the ratio
T‘i/nr is increased, the bandgap region changes from the shape
typical of index coupling to the shape typical of gain or loss coupling
for Re{ApI/K} and Re{AkIef/K}. The values of Im{ABI/K} and

1 .
Im{Ak1 S:IK} tend to peak in the Bragg interaction region.

3. Secqnd-Order Interaction

The second-order Bragg interaction and all even-order inter-
actions produce very different dispersion relations from those of
the first-order for gain or loss coupling. This was seen in the
Floquet results of Figure 4.1. The change is due to the term (i ni)ZN
in the dispersion relation which takes on different signs depending
upon the oddness or evenness of N, In the second-order Bragg region,

the approximate relations are

1 .2 . L2
62 + Ak, €2 -(nr+1ni) ie, [1 _(nr+1ni) :l

2 r
K 27K 2 tze, 2 (4. B9)
. \2
XZ (nr+1'ﬂi)
X = C 8 ' . (4.B10)
%-_

where Ak2=k-ﬁo/€r ; ﬁo = K,
Note that the perturbation affects not only the coupliﬁg Xp

but also the phase mismatch 6,. In fact, M now acts to modify the .

gain or loss from €i/(2 er) to the effective value ei(l-nz/é)/(Zer).

The Brillouin diagram for the case of index coupling is shown

in Figure 4, 3a for various values of €;/€; with 1 = 0.1, The result
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is similar to the first-order case with the exception of the bandgap
shift, Again, at the center of the bandgap, the effective gain or loss
and the perturbation add as the sum of their squares. The spatial
gain or loss is greatly enhanced near Bragg resonance when

|ei/erl << |n|2 whereas the temporal gain or loss remains constant,

In the case of gain or loss coupling, a difference occurs since
xz is proportional to n4 in (4. B10) and the bandgap shift changes sign
which causes the Brillouin diagram to be a mirror image of the index
coupling case about the axis 62/K = 0, That is, at the second Bragg
order, the difference between index and gain or loss coupling is a
matter only of positive or negative bandgap shift. This is demon-
strated in Figure 4,3b for 1 =i 0,1 and several values of ei/er.

This dependence of the phase mismatch upon nz accounts for the
phase speeding and slowing effects shown by previous Floquet re-
sults, The temporal gain or loss is constant as in the index coupling
case,

Figures 4.3c,dare similar mirror images about Re{Akzer%/K} =0
for eiler = 0 and various ratios ni/nr. The symmetry is expected
since 1 always enters as an even power in the dispersion relation,
From (4.B9-10) it is evident that Im{A BZ/K} = 0 at Bk, ef/K =0
only when Ini] = Inr |. This corresponds to curve 5 and is similar
in shape to the gain or loss coupling Brillouin diagram at the first
Bragg order. For Irn{Ak2 er%/K} = % . ni/IZ, Im{AﬁZ/K} = 0 for
N, s T Thus for complex coupling, the perturbation will mask the
spatial gain or loss for some frequency near Bragg resonance, while

a large spatial gain or loss will occur for nearby frequencies. In
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Fig. 4.3 Brillouin diagram at second Bragg

order using: a) index coupling; b) gain/loss

coupling; and c), d) both couplings in the ECW

theory.
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all cases of both index and gain or loss coupling, the temporal gain

or loss is peaked in the vicinity of Bragg-resonance.

4, Third-Order Interaction

From the structure of the dispersion relation it is apparent
that odd Bragg order interactions will exhibit similar Brillouin
diagrams for index and gain or loss coupling. To exemplify this,

consider the third Bragg order approximate parameters,

1
& Ak_n2 €. 2 i3e.
3 3'r 27 .L) . RS
K = K 256 (1+er <nr+1ni) 7e, (4. B11)
X
3 243 .3
® = zodg (M+imy) (4. B12)
1
= k- 3
where Ak3 ?’O/e:r
B, = 3K/2

Figure 4, 4a, b demonstrates the dispersion characteristics
for index and gain or loss coupling respectively, Except for the
bandgap shift, the results are nearly identical to the first-order case.
That is, the perturbation and gain or loss add at the center of the
bandgap to enhance the spatial gain or loss for index coupling, In
the case of gain or loss coupling the Brillouin diagram exhibits two
distinct behaviors which depend upon strength of the gain or loss
relative to the perturbation, For small average loss or gain, the
effective spatial loss or gain is zero at the bandgap center.

The case of both index and gain or loss coupling is shown in
Figure 4,4c,d, In all third-order cases, the temporal gain or loss

is peaked in the Bragg region just as for the first-order case,
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Fig, 4.4 Brillouin diagram at third Bragg
order using: a) index coupling, b) gain/loss

coupling and ¢/, d) both couplings in the ECW

theory.
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C. Multiharmonic Periodicities

Recent experimental work in higher-order DFB laser s41’ 1

an;i in multiply -periodic DFB la.sers70 make the results of multi-
harmonic ECW theor’yfimely. As in thepassive-lossless case, ECW
theory cannot give explicit dispersion relations for arbitrary Bragg
order N, since the number of significant Fourier components (fp)
have to be specified. However, the extension is straightforward,
although laborious, for any specific case.

Consider the case where f1 and f . are the significant Fourier

N

components of the periodicity and
e(z) = €r+i €; + er[nlfl cosKz +nN£N cos(Nkz +6)] (4. Cl1)
- : - N
where Np = (nr +1 ni)P ,  P=(, N) and O(nlfl) ~ O(anN).

Following the derivation of the previous chapter we find the slightly

modified ECW equations:

F,(z) -i 6y Fy(2) =1 %y B, (2)

' ) (4. C2)
-Bl(z) -1 6N Bl(z) =i XN Fl(z)
where
o efgn g P2 1) el
6y = 75 ¢ -1) (4. C3)
s 1o )My fylcos® isind] (-1)N+1(n1f1)N .
XN 25, 2 + SN T lanm 22 ]

(4. C4)
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The resulting dispersion relation is

(P iy Xy XN
K

VK Kz . (4. C5)
By varying the phase between the Fourier components, Xy €an be
varied while §,. remains constant, This allows control of the coupling

N
1
and bandgap width [= %(Xl\: XI\; )2 ] without change in the bandgap
shift,

For N = 2, the explicit dispersion relation is
i 2 4
1 2
K/ K 12 T A L

- (nl fl )2 4Py fz cos 9] (4. C6)

Figure 4.5 shows two examples of multiharmonic Brillouin diagfams
at the second Bragg order, In Figure 4.5a, the index coupling case
is shown when (n; £;)°/2 =1, f, = 0.1 and ¢, = 0, The bandgap width

and Im{AﬁZ/K}m < both vary as sin(6/2). Figure 4,5b represents

a
the case of index coupling with spatial wavenumber K and gain/loss
coupling with wavenumber 2K. The result shows not only the
Re{AﬁZ/K} typical of gain/loss coupling, but also the effective
gain/loss typical of index coupling, In both cases shown,

1
Im{ln%e:r2 /JK} =0 for Re{AﬁZ/K}. The results for lossy media are

s . 2 + =2
similar if (ei/er) <Xy Xy /K",

D. Comments on Complex Periodic Media

The extension of chapter III results to complex media has
been mathematically straightforward for both the Floquet and the

ECW results. However, interesting new features appeared in this

A AT
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chapter:

l, Even and odd Bragg orders produce non-inverting
and inverting bandgaps, respecti;rely, for gain/loss
coupling, Index coupling always produces the usual
non-inverting bandgaps.

2, ©Phase speeding and positive bandgap shifts are pro-
duced by index coupling while gain/loss coupling
produces phase slowing and negative bandgap shifts,

3. The average effective spatial gain or loss (i.e.
IIn[ABN/K}) is seignificantly enhanced or diminished
near Bragg resonance whénevgr lei/e:rl(!n"N. En-
hancement or reduction depends upon coupling type
a:nd Bragg order.

4, Temporal gain/loss (i. e, Im{Ak_N Qr%/K}) is either
constant or is peaked at the bandgap center.

5. .Multiharmonic periodicities offer great flexibility
in changing the bandgap shape through phase and

| coupling vari?.tions. If the Fourier components fp
‘are dynamically generated, this opens the possibility
of quickly controlling the feedback strength in DFB
lasers or filters., Possible applications. are in the
areas of microwave and optical filters, switches
and modulators.
In this chapter, Floquet and ECW results were not directly

compared because little or no graphjcal differences appear whenever
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f01" the first few Bragg orders, Tﬁe accuracy of the ECW results is
similar to that of the passive -loésless case, The only notable differ-
ence occurred in the first order gain/loss coupling case where the
ECW results' predict Im{Aﬁl/K} = 0 at exact Bragg resonance. The
Floquet result gives a small but finite value here for Im{ABi/K}.

Portions of this chapter have been summarized elsewhere.
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CHAPTER V
STABILITY OF BRAGG INTERACTIONS

IN ACTIVE PERIODIC MEDIA

The problem of wave stability was briefly mentioned in the
pPrevious chapter with regard to choosing the correct root of the
dispersion relation for the frequency and longitudinal wavenumber,
It is evident that the preceding monochromatic plane wave analysis
is inadequate to predict the correct spatial and temporal behavior
of waves in periodic media in all but the simplest (passive and loss-
less) cases, Owur purpose is to formulate the stability problem in
such a way that the preceding ECW equations can unambiguously
define wave characteristics,

The problem of wave stability was greatly clarified through
the original work of Sturrock72 which provided a2 method for distin-
guishing between growing waves (unstable media) and decaying waves
(stable media) through the dispersion relation. Sturrock further
divided unstable media into convectively unstable and absolutely un-
stable media, The former referred to waves which grew and then
decayed at a given point in space like waves in traveling-wave ampli-
fiers. The latter referred to waves which grow everywhere in space
as those waves found in backward wave oscillators, This work was
extended by Briggs73 and was formulated as a mathematical pre-
scription which unambiguously classified waves according to their
stability. A large number of electron-stream interactions demon-

strated the usefulness of Briggs' method in plasma physics. The
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stability criterion was again extended to include time-varying media
by Ca.ssedy56 who examined the stability of parametric interactions
due to space-time periodicities,

In this chapter, the stability of time-independent active
periodic media is studied at the first- and higher-order Bragg reso-
nances. The stability classification depends only upon the dispersion
relation or the Brillouin diagram and hence the ECW theory of the
previous two chapters will be used, We will follow the procedure
suggested by Briggs., This requires the formulation of the field
response as a function of a source, localized in space and time.

In section A the ECW equations are developed with sources
present and the stability criterion is stated, The application of
the criterion to the first two Bragg resonances is carried out in
detail in section B, These resonances are the archetypes for all
odd- and even-order Bragg interactions. Explicit values for insta-
bility threshold, frequency and growth rate are given, Section C
contains a brief expl‘anation of the effects of complex coupling (i. e.
n= ‘nr + ini) and multiharmonic periodicities upon instability param- .

eters. A short discussion of the results is given in section D,

A, ECW Equations with Sources

We carry out the usual manipulations with the Maxwell equa-
tions that include a current density source J(z). The resulting in-
homogeneous wave equa.tion67 for a TEM wave in longitudinally

periodic media is
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82 2
— t k7e(z) {E(z, w) = -iwuo J{z, &) (5. Al)
oz -
here [E(z @)1 _ ‘f E(z,t)] iwt

where IJ(z. w)f - . J(z, t) dt

=00

€(z) = er-l—i ei + er Ep(nr+i‘ni)p fp cos pKz

Assume that E(z) is made up of the N+3 waves F(z)1+2n/N’ Fl(z), eves
Bl(z), B(Z)1+2n/N that are used in the ECW formulation, We then
find the following N+3 ECW equations for singly periodic media at

the Nth Bragg order,

2 . ,
e -(142 /N)%p ]1+2N+2i(1+2/N)(3 1+2/N ke nF,lw#J -1(1+2N)B =
2
2 2 . 1 _ =-k“¢ . + _-ﬁ z
(k°e-p 1F, + 2ip F, = -—2—T](F1 2 /N Fropn) Tis T] e *Fo
L] 2 ?
2 2 i 'L ke . - if =z
(k"¢ -p 1B, - 2ip_B, = _2_'1.(131_2/1\I+Bl+2m)-1wpojle o
2
2 2 . 1
(e ~(L+2NI" 1B, p~28(142N)B B o0 = __k?_TJB iwp J1+2/N J0+2/mp o )

(5. A2)
where the arguments with respect to z and t have been dropped and
the primes denote differentiation with respect to z, The current

‘ps + . . .
densities J (z)1 -2n/N 2% the portions of J(z) which are in phase
synchronism with the rest of the equation, We accomplish this by

truncation in wavenumber space such that

Jli_zn/N(ﬁ;(l -2n/N)B _)=J(B 1(1-20/N)B ) rect {[B(1 —Zn/N)ﬁo]/Aﬁ } (5. A3)

(n= -1,0, 1:2:0")
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where
4 -ipz
I@) = [ Jz)e dz
-00
1 lel < %
rect(B) =
0 ] >4
Aﬁ << ﬁo

As we shall see, the exact truncation details are unimportant since
the current will only contribute to the field at wavenumber £ = ﬁo.
Since we are particularly interested in the waves Fl(z) and Bl(z),
assume that the current is slowly varying in wavenumber over the
N+3 significant waves. Thus, we consider only the current contribu-
tions J-l'-(z) and Jl-(z) and ignore current contributions O(n). Using the
above approximation and the other usual ECW approximé.tions we find

the coupled equations,

' : s _WHgo Lt -iB, z
Fy(z w@)-18y F)lz, @) =ixg By (2,00 - 252 Ty (2, 0)e 70 (5. Ad)
1 . W - . hd
-B, (2, w) -6, B, (2z,0) =ix F (2w -E"ﬁf 3] (2, w)dPo?

These equations can be solved by taking Fourier transforms with

respect to z and solving for Fl(Ap, w) and Bl(Aﬁ, ). The inverse

transforms produce the time and space variation,

iy © w{(8B+8)TT (0P HR, 0 -x3 (88 -6, 1P P arpac

F,(z,t) =——
1 NK° _fw D(48, «) 2m°

(5. A5)
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in o w{BB+8)T (8B -B,w)-x T (app, w1 PPF W) drpan

B.(z, t)=—2-
1 NKZ 22 DB, w) (2")7
\ (5. A6)
where , 2 2
D(48, w) =-(%%) - (%) +(12§)2 =0 (5. A7)

is the dispersion relation and the radian frequency wis related to the
wavenumber by w = c(ko+Ak)/eé— and [3—[30 = AB as before. All sub-
scripts N have been dropped for simplicity. Assume that the current
is turned on at t = 0, hence J(z,t) = 0 for t < 0,

It is apparent that the integrand of (5. A5-6), excluding the
currents, is the Green's function for a periodic medium in the ECW
approximation., It is of similar form to an exact expression which
accounts for all space harmonics and current components, 5

As pointed out by both Sturrock and Briggs, it is necessary
to investigate wave packets in space and time due to localized sources,
Therefore, the previous ECW equations (5. A4) with a source turned
onatt = 0are a useful start, The remaining problem is to find how
Fl(z, t) and Bl(z, t) behave asymptotically by choosing the contours
of integration correctly and unambiguously. Note that the poles of
the integrand, or the roots of D(AB, w), determine the field response.

For causality, it is necessary to carry out the frequency
integration above all singulari-ties. The integration contour is shown
in Figure 5,1a. Note that no roots appear in the region enclosed by
the contour for t < 0, This contour is the rotated Bromwich contour
that is used for Laplace transforms. The contour in the wavenumber

plane is ambiguous since the roots of D(AB, w) may cross the real A8
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axis for different values of w(= w_tiw;). This difficulty has been
remedied by Briggs73 by use of the following physical criterion:

for a source with sufficiently large temporal growth rate (i.e. large
w; =8 > 0), the waves aw,ay from the source must spatially 'decay.
Therefore, if the contour is chosen in the w plane to satisfy causality
for w; =, the roots of D(4B, w) will determine the response for F(z,t)
and B(z, t) and must represent spatially decaying waves, Figure 5.1b
shows this condition. Since it is convenient to integrate along the
axis wi =0, we dep;ess the contour around singu'lariti,es down to the
real waxis (Fiygure 5.1c). As w, - 0 for fixed W, the roots of

D(AB, w) will: 1) stay in the same half plane of AB; 2) cross the real

Ap axis; or 3) merge from ppposite sides of the real AR axis in pairs
for some w, =0 > 0. As shown by Briggs, the above cases lead re-
spectively to: 1) decaying waves (stable media); 2) amplifying waves
(convectively unstable media); or 3) time growing waves (absolutely
unstable media), In the first case, the contour in the AR plane along
real AB axis is not deformed (i. e. decaying roots) while in the second
case the contour is deformed (i. e. amplifying roots) by root crossings
(Figure 5.1d), In the third case, as wi - 0 for some w, = W, (Figure
5.1e), the merging root behavior in the A plane (Figure 5. 1f) pre-
vents the distortion of the c;)ntour since the integration must be
carried out between the merging roots, The details of the integration
are carried out in Appendix A for absolute instabilities with the

proper contours shown in Figure A, 1. It can be shown (equation (A. 7))

that the field varies as
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. . .w.
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, Roots of
D(A B,w)=0

i) iAB;

c) '{ d) [
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z>0
X
= ot X AB
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x Wo Merging<l, /A8’
X
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Fig. 5.1 Integration contours in a) w plane for causality, b)wplane

for t > 0 and time growing source, c¢) w plane with deformation to

w. axis, d) 4B plane which corresponds to ¢) with changing roots,

e) w plane for absolute instability at w, =0 f) B plane corre-

sponding to e),
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* Note that the frequency and wavenumber of the instability are just
that of the merging roots (i.e. AB = 4B ', w= w' = w, +1i0). Therefore;
the waves grow in time as et . The absolute instability parameters
are determined from the mapping of the dispersion equation roots in

the A plane for variable w; and different constant values of w .

B. Application of Stability Criteria to Bragg Resonances

e . .
The Brillouin diagrams take on different characteristics for

even andL odd Bragg orders in the case of index (1 = nr) and gain
(n=1 ni) coupling, Thus, we will examine ir; detail t'he first and
second Bragg resonances for singly periodic media since they are
the archetypes of all even and odd Bragg order n interactions.

The first-order Brillouin diagrams are repeated in Figure
5.2a, b for the case of index and gain coupling respectively with
various values of average gain or loss. Figures 5.3 and 5.4 show
a mapping of the roots of D(AB, w) in theAB plane as w varies from
large positive values to zero for several values of w_. Normalized
frequency A.k er%/K is used instead of w». Figure 5,3a shows the case
of no average gain or loss (é:i = 0) and index coupling which corre-
sponds to curve 1 of Figure 5,2a, The merging root behavior is
noticed for Re{Ak er‘;?/x} =m_/8 when Im{Aker%/K] = 0, Thus, the
instability has no temporal growth and the medium is actually stable,

1
This is also noted from the fact that Im{Akef_/K} = 0 for all Re{ARK]}

and hence no instability is possible.’ Therefore, the physical notion

(5. A8)
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of the stability of passive periodic media is confirmed, Since there
are no root crossings, the proper choice.of the sign of Im{A3/K} is
that which indicates spatially decaying waves. Figure 5,3b shows

the case of index coupling withaverage loss (€1> 0) which corresponds to
curve 3 of Figure 5,2a, There are no root crossings or mergings N
and hence the media is stable. The proper signs for Im{Ak er%/K}

and Im{AB8 /K} indicate temporally and spatially decaying outgoing
waves, The case of index coupiing with average gain (e:i < 0) which
corresponds to curve 3 of Figure 5.2a is shown in Figure 5.3c. In

all cases, similar curves exist for Re{AkCE—/K} < 0 which are mirror
images about the imaginary A3 /K axis. Note that the root crossing
occurs for Ak ef/K =i e /4 €. * T]r/S. Thus, absolute instabilities
occur for index coupling with (the threshold condition) positive average
gain at the bandgap edges corresponding to Re{Ak er%/K} = £ nr/S.

The normalized temporal growth rate is Im{Ak er%/K] = - ei/4er and
the longitudinal wavenumber § = [30 is real, (Bandgap edges will refer
to the lossless case for this chapter.)

Figure 5.4 shows similar mappings of the dispersion equation
roots for gain coupling. In Figure 5,4a, b, c the merging root be-
havior occurs at the value Ak e}_/K = -i ci/4 €. + ilni|/8. Thus, for
gain modulation, absolute instﬁ.bility occurs at the center of the band-
gap for average gain (e.l < 0) and average loss (e:i > 0) whenever the
threshold €i/€r < |ni|/2 is satisfied, The result for zero average
gain is not surprising since the inverted Ybandgaps are similar to
those of parametric instabilities and backward wave oscillators,

However, note that gain-coupled media may also have instabilities
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when the average gain is negative as lonlg as the gain periodically takes
on positive values (i. e. the average loss is less than some fraction of
the variation).

As evidenced by the structure of the dispersion relations of
chapters III and IV and the repeated Brillouin diagram of Figure 5.5, *
index and gain coupling at the second Bragg resonance display similar
characteristics, to the first-order index coupling diagrams (i. e. no
inverted bandgaps appear). Thus., the stability of both index and gain
coupling atthe second Bragg resonance should be similar to that of the first
order index coupling case since the stability criteria is dependent only upon
the dispersion relatio;'l. The only difference should be in the sign of the
bandgap shiftand hence the relative instability frequency, whichis positive
or negative for index or gain coupling respectively. Indeed this is true.
The mapping of the complex roots (1;101: shown) of D(AB, w) as w;~ 0 resembles
Figure 5.3. The absolute instability occurs atthe bandgap edges for index
or gain coupling with temporal growth rate given by Im{Ak ef/K} at the
bandgap. | The threshold condition requires positive gain (ei<0) for abso-
lute instabalities at the second Bragg resonance for both coupling types.

The results of odd and even Bragg resonances -show different
stability characteristics as exemplified by the specific cases of N=1,2
discussed above. The mathematical conditions for absolute instabiiity
parameters can be found from the above considerations and the ECW
dispersion relation. ‘For any Bragg order N, oscillation takes place at

Re{6,/K} = + Re{x/K] (5. B1)

with temporal growth rate
Im{ &, /K]

+ Im{xN/K} (5. B2)

at or above the threshold
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Im{Akbfr%/K} = 0 . (5. B3)

-

The results for the first few Bragg resonances are summarized in
Table 5.1. It is noted that with increasing Bragg order, the
threshold approaches zero for all couplings since m is usually small,
Also the instability frequencies tend to cluster above (index coupling)
or below (gain coupling) the exact Bragg resonance for higher Bragg
orders. This is due to the bandgap shift,

The first two Bragg resonances have been shown to be arche-
typical of all Bragg resonances, In particular we found that for index
coupling, absolute instabilities occur for positive average gain at
both bandgap edges with temporal growth rates given by w, =0 at the
bandgap. For gain coupling, the behavior is identical to the index
coupling case for N even, with the exception of the instability fre-
quency which is shifted due to the bandgap shift, For gain coupling
with odd N, absolute instabilities occur only at the center of the band-
gap with temporal growth rates equal to the value of W, at the bandgap.

The correct choice for the sign of Im{A8/K} depends upon the
position of the roots of the dispersion relation as w, ~ 0 or at the |
merging root point w; = C. If the roots have crossed the real A3 /K
axis the outgoing waves are amplifying and if they do not cross, the
outgoing waves are decaying. Thus, for the case of absolute instabil-
ities, there will be both amplifying and decaying waves at frequencies
adjacent to the instability (see Figure 5.3-4). However, this behavior

is overshadowed by the absolute instability and is not important for

infinite media. The proper sign of Im{6/K} is chosen by the fact that
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the dominant time behavior is controlled by the highest root in the
w plane. This is equal to the value wi =_o that occurs when the
roots of AB/K merge.

In all cases where'the gain is not large enough to support
absolute instabilities, the medium is stable and the outgoing waves
decay spatially due to coupling and losses, Thus, because there are
no axis crossings of the roots of D(AB, W) in the 4B /K plane, the sign
of Im{AB/K} > 0 is specified for outgoing waw)es. The sign of
Im{ﬁlk} is chosen tp correspond to the least 1oss’y wave (i.e,
Im{§/K} > 0) s?nce this root produces the dominant field contribution. A
Thus, for stable media the periodicity will enhance the spatial decay
and not affect the temporal decay for index and even-order gain

coupling. For odd-order gain coupling the spatial and temporal

decay are both diminished.

C., Complex Coupling and Multiharmonic Periodicities

In px:agtical cases, both index and gain periodicity will occur
together (n:nr +ini). "This cas.e, referred to as complex coupling,
will usually cause absolute instabilities to occur at two frequencies
due to finite~nr. The expiicit conditions are involved for arbitrary
Bragg order but reduce to the following form at first order: absolute
instabilities will occur inpairs at the bandgap edges (Re {Ak1 e:r%/K} =t nr/8)
with a growth rate Irn{Ak1 GI_%/K} = -ei/4er+|‘ni|/8; the threshold is
(.;:,l/e:r = |ﬂil/2 and thus cannot be reduced below the gain coupling value.

At even Bragg resonances, where the threshold was pre-
viously zero, a reduction in thresholc} can take place for the case

of cgmplex couplings. As an example consider the second Bragg
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resonance. Figure 5,6 repeats the Brillouin diagram for complex
coupling and e:i/E:r = 0. For equal amounts of index and gain -
coupling (i. e. n, = ‘ni) thg curves give inverted bandgaps. Thus,
one expects absolute instabilities at exact Bragg resonance. It
can be shown that the instability threshold is reduced to
€i/€r = SIni nrl/6 (average loss). Two absolute instabilities occur
for n. # n, and G:i/e:r = 0 at the frequencies where Im{AﬁZ/K} is
zero and where it is maximum., Thus, as the ra:tio ‘r]i/'r]r approaches
zero or infinity, the instability frequencies merge to the center of
the bandgap and as 'qi/'r]r = 1 the instability frequencies tend to
merge in pairs toward exact Bragg resonance. The growth rates
are found from the value of Im{llk2 GI_%/K] at the bandgap center.

The application of the stability criteria to multiharmonic
periodicities is similar to the previous analysis (chapters III, IV)

with the proper phase mismatch 6. and coupling XN substituted into

N
the disperlsiqn relation, Although there is little or no effect at the
first Bragg order for cha.nges‘ from sinusoidal periodicities to other
typical periodicities, the effects at higher Bragg orders (N 2 2) may
be significant due to Fourier components fN. It can be shown
(Appendix B) that the coupli:ng is increased from values O(T]Z) for
sinusoidal periodicities to values O(n) for sawtooth periodicities
at the second Bragg resonance,

At the third Bragg order, the coupling can be increased

from values O(‘n3) to values O(n) for square=-, triangular- or

sawtooth-wave periodicities. This implies that instability

o sam = bt .
R Tk SR
SRl AN TR I 31
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thresholds can be changed at higher Bragg orders by the use of non-

2

sinusoidal periodicities. Typically, |n|-~ O(10~ -10-5) in integrated

optics applications.

i/

D. Comments on Stat;ility

In this chapter we have found the stability criteria for time-
independent periodic media, This media may support either decay-
ing (stable) or temporally growing (absolutely unstable) waves in
basically dispersionless dielectrics. The ECW equatiqns provided
explicit values of threshold, instability frequency and temporal
growth rates for absolute instabilities. Average positive gain was
required for oscillation at the bandgap edges for index coupling and
even-order gain coupling, For odd-order gain coupling, the average
gain could be negative if the gain periodically took on positive values
and the oscillation took place at the bandgap center., In some cases
both types of coupling or multiharmonic periodicities could reduce
thresholds.

There has been some question as to the effect of boundaries
upon DFB oscillation. It is apparent from the preceding sections
that instability takes place when certain modes of the active peri-
odic media achieve threshold. No boundaries are needed since
feedback action is produced by_ the periodicity,

It appears that for frequencies other than the instability
frequencies, waves may either decay or be convectively amplified -
if the structure is short enough such that the absolute instabilities

do not occur. In this case, the active periodic structure might be

’
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.

used as a filter -amplifier. However, each individual system must

be considered along with the boundary conditions to determine sta-
35,73, 74 ' : .

The results of this chapter have been summarized. 97
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CHAPTER VI

APPLICATIONS OF ECW THEORY

The results of previous chapters have depended only upon
the dispersion diagram of unbounded periodic media. In this chapter
several cases of bounded media will be discussed. The use of the
ECW equations allows behavior at all Bragg orders to be approxi-
mated easily, The purpose of this chapter is not an exhaustive
coverage cof periodic structures but rather an indication of a wide
range of problems which may be solved by the use of the previous
theory.

In section A, longitudinally bounded passive media (i.e. DFB
filters) will be covered along with examples of transients in a periodic
slab., In section B the characteristics of higher-order DFB lasers
will be given. Section C will cover the case of holographic grating
diffraction and the last section will characterize the propagation of

Gaussian beams in periodic media.

A. DFB Filters

1. Effect of Longitudinal Boundaries

We consider waves in a periodic slab of length £, The ECW
equations account for Bragg coupling or scattering from the perio-
dicities but not for the coupling_or scattering due to the boundaries.
The equations can be easily modified. The relative dielectric con-
stant is now

€(z) = € +ie, + rect(z/4) ¢ _ Z(n.rﬁni)p fp cosp Kz

P
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where
1 |z] <#£/2
rect(z/L) =
0 |z|>4/2

For simplicity, consider singly periodic media with no average loss
or gain (i. e. fp =0forp#l, €, = 0). The additional Fourier com-

ponents available for coupling or scattering arise from rect(z/%) and
have not been accounted for previously. These components are pro-

portional to the Fourier transform,

w -
n I rect(z/4) cos Kz elpz dz
-0 ' (6. A1)
_né [sin(B+K)L/2 sin(B-K)£/2
= { (B+RIE/2. T T(B-R)L/2

Thus, the additional available perturbation per unit length is propor-
tional to the right-hand side of (6. Al) divided by the length £. As in
the case of multiharmonic periodicities, only the strongest effect

(i. e. first order in n) of the bo@dary perturbation of (6.Al) upédn Fl

and Bl are considered., For higher-order Bragg interactions, the
coupling diagram of Figure 6.1 is helpful. Not only is there the usual
cross-coupling through terms O(nN) and self-coupling through terms

O(nz), but there is cross- and self-coupling proportional to n¢ and 18,

respectively, where

-
" c sin(B+K/2)4 . sin(B-K/2)4
- °N (B+K/2)4 (B-K/2)4
] (6.A2)
_ sin(B+K)£/2 | sin{B-K)L/2
& = (n { B+KE/2 | T (B-K)i/2 )

are the boundary effects. This is due to the terms [-kzer‘n(@Fl-i- QBI)/ZJ

and [-kze r1r1(®B1+§ Fl)/z] which are added respectively to the F1

and B1 equations of the ECW equations (3.A6), Consequently, the

[ 4
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modified ECW equations become identical to the former ECW equations
with the changes oy~ 'B'N and Xp; ™ ')E'N where

-~

R &

N _ N' N

K - K % ®

- (6.A3)

XN _ XN, Nm, »
K - K 8

In each case the first term of the above equation expresses the effect
of the periodicity while the second term expresses the effect of the
boundary. For higher-order interactions, the latter effect predomi-
nates in coupling whe;1 K& << ('r]/Z)l'N while the opposite is true for
K4 >> (n/Z)l-N.l This is expected since for thick slabs the extra
Fourier components introduced by the truncated periodic media are
tightly clustered arounéi.the components introduced by the periodicity
of the iﬁfinite media and no new effects are observed. However, for
thin slabs, the truncation produces Fourier components at many
multiples of the Bragg wavenumber which are capable of directly
f:o.B . In this case the boundary coupling (x n$) predomi-

1 1

nates. Note that the above inequalities denote the region where the

coupling F

results of the infinite media can be directly applied to the longitudi-
nally bounded case. Also note that the boundary effects can be reduced

if the perturbation is gradually truncated at the slab ends. A similar

79

effect has been noted in quantum mechanical scattering, The

boundary effect seldom affects the phase mismatch since it is negli-

gible when K& >> ™1, \ ,
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2. ECW Reflection and Transmission Ccefficients

In this subsection we consider the general case of transversely
and longitudinally bounded structures where each coupled wave repre-
sents a different mode. Hence, the longitudinal wavenumbers may be

~.,
31 For simplicity the numerical examples

different for each mode.
will correspond to the special case of coupling between waves of
identical modes in thick slabs although the analytic results are given
for the general case using the ECW approximations,
Figure 6.2 schematically shows the-%onﬁguration. Consider
ip =z

a positive phase velocity wave Fl(z) U (x)e P which couples to a
i _=z

negative phase velocity wave Bl(z) Uq(x) e . The subscripts p,q

refer to the mode number of the transverse distribution U(x). The
phase match condition for significant coupling at the Nth Bragg order
is

B, * By = NK (6.A4)

where K = 27/A and A is the fundamental spatial period. The
boundary conditions are found from Figure 6.3 by use of the ECW
equations which correspond to continuity of the electric field at

z =+ £/2.

£
. N2
BL/2 _ 5" pla=-4/2
RNe n=-~1 l(-zZn/I\/I)

eTiBL/2 o~ i(1-2n/N)e/2

+Bl(zz=n_/f\{2)ei(l-2n/N)£/2 (6. A5)

+ () Stz=-£/2)
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INCIDENT PULSE

Cale e e

Py i fm. 77 TRANSMITTED
REFLECTED PULSE . , . . TR PULSE
- i

PERIODIC STRUCTURE

/2 =]~ L= 1,2

Fig. 6.2 Configuration of pulses and periodic slab,
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N2
T eiB2/2 L Blatfo)e i(1-2n/N)2/2
N n=-1 1-2n/N
r Bjaz 1/2) 6 -i(1-2n/N)2/2 (6. 46)
+ (é) S(z::f;/Z)
N-2
where " 35 for N even
N /2= Bd for N odd
1 for N=1
1) 1 for N even
(0 = { 0 for N odd

and RN and TN are the reflection and transmission coefficients.
Similar equations result from matching the derivatives (or the mag-
netic field) at z = + £/2, The only additional equations needed are the

ECW equations modified for trahsversely bounded media,

Fl(z) - i6p Fl(z) = iqu Bl(z) \ 6. A7)
-B,(z) - i’a‘qu(z) = is(‘qp F,(2)

where the coupling and phase mismatch are assumed to be known,
Instead of solving the above equations exactly, a perturbation scheme
is introduced which significantly simplifies the calculation and elimi-
nates the boundary coupling which has been accounted for previously.
Introduce the ordering parameter A which will eventually be set to

unity. L Consider a power series solution of the form

. F, = F(1°)+xF1(”+x F(Z)
(0) (1) , 2 o (2) (6.48)
B1 = Bl +)\B1 + ) B1 +teue



-120-

€(z) \

J\IWVV\N\NV\J\/

Fip e(172/N)Boz
F, e'Po?
eiBZ >
&
Ty eiBz
Ry €F?
<
Bi-o/N e i(1-2/N) Byz
B, e‘iBoz
z2=-4/2 py z2=+4/2

Fig. 6.3 ECW waves 1in periodic slab for coupling

between identical modes (i.e. Bp = pq = B).
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for the waves and let the smallness be specified by An. If all the

waves are solved in terms of Fl and B1 (see equation (3.A6)), then

the electric field continuity equation becomes,

y . [ (0), (1), 2 (2) -iBot/2
B2, g P LL2 =[F O ar Defr oo ] ze=_z°/2 [1+0(An)]
‘ (6.A10)
+ B{Dmp i B+ :} Pt/ 211100m)]
z=-2/2
Iy LB £/2 [F_,(O)m,?(l)er F(z) ]‘ ePo?/201 60m)]
2= 4/2 (6.A11)
+[B DB NnZp@)* -J|s#Po 2 1000m)]
z=4/2
where B = Byt APy
pO = NK/Z

near the Nth Bragg resonance. By equating terms O()\) and phase

19

matching, the approximate boundary conditions become

Fl(-L/Z) = 1 Fl(z/z) = Ty

(6.A12)
The reflection and transmission coefficients are solved using the
boundary conditions and the ECW equations, The details are carried

out in Appendix C. We find

iy
Ry = gp — (6.A13)
. B! +8&AN
DNcothD L - 1<—Lq-2 )
”6 -5 )2/2
T . = (6.A14)

’5 +56,
DNcosh DNJ?,- i(—P—Z——SL>sinhDN£

[ 4
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o & +T %
where Dy = [qu qu- ('—q_R\Z )]

~

If the two coupled modes are identical, then Aé'p = gq =6 and
7pq = ?{qp =Y. The subscript N has been dropped on 3 and X for
convenience.

From the above equations for R’N and T, we observe the

N

following:

1. maximum reflection
~ o~ 1
-3 2 9. ’
R'Nl ax =1 tanh()(pq qu) 4 (6. A15)

2. minimum transmission

1
- e z .
TN|min = 1/cosh(§pqxqp) 4 (6.A16)
3. R’N =0 and TN =1 for
o + = + £ =1,2,... LAL17
P q qu qu (n1-r ) (n 2 &, ) ( )

where the corresponding phase of Ry is (2n-1)n/2;
2 2
4. IRNI + I'I‘NI = 1 for passive and lossless media. ‘

These results are demonstrated in Figure 6.4 for the case Y £ = 2
where the boundary effects are neglected. The magnitudes of the
reflection and transmission coefficients are shown as a function of
64(i. e. frequency deviation from bandgap center)., Note that the
half-width of the main reflection maximum is equal to the bandgap
width, Hence, there is significant reflection outside of the bandgap

due to the deviation of Re{AB/K} as well as Im{AB/K]} away from their
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unperturbed values. Figure 6.5 shows tile equimagnitude and equi-

phase curves of the reflection coefficient plotted as a function of x4

and ‘84 where again the boundary effects are neglected. Note that

Figure 6.5a corresponds to a horizontal line (x4 = 2) across Figure

6.4, If the coupled modes are different (i.e. p # q), the curves in »
Figure 6.4 and 6.5 are valid if § is replaced by (6p + 5q)/2 and yx by

(qu qu)%' Similar results for media with average gain have been

discussed for the first-order inde'x coupling case when the modes are

identical, 35

It is of interest to note the change in the reflection coefficient

with Bragg order. For small coupling ?(NZ K1,

=~ iSZNz ' (6.A18)

max

R

Thus, the variation of Ry, with N is

Ry| = i{n/2)N Ka+n sinlNe1K 223} (6.A19)

max

N

where the first term expresses the dependence upon the periodicity
perturbation and the second term expresses the effect of the boundary
perturbation, )

For other typical periodicities, the results of Appendix B will
provide appropriate coupling or p}‘xase mismatch, In particular, note
that for thick slabs, the coupling is constant at odd Bragg orders for
square-wave periodicities. This implies that the maximum reflection
coefficient is also constant at odd Bragg orders. These results are

in agreement with well-known exact results that use matrix calcula-

t::lons.78 Figure 6.6 exemplifie;‘s theese concepts for three typical
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Reflection Coefficient Amplitude —

L‘m
/2 / / l .

K2 K2 3KL/2
kve 4 —»

Fig., 6.6 Sketches of reflection coefficient amplitude for X£&~ 0.5
for a) sinusoidal, b) square-wave and c) sawtooth-wave perio-
dicities. In all cases the boundary effects are neglected. Note

small reflection at Nth Bragg order when f . = 0. The bandgap

N
shift is too small to observe on this scale.
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periodicities with index coupling. Note that periodicities with large

Fourier components f . will have large coupling and reflection co-

N

efficients at the Nth Bragg order. Thus, periodicities with odd

Fourier components (e.g. square-~ or triangular-wave) will have

large reflection coefficients only at odd Bragg orders. »
The use of dynamically generated (e.g. acoustic waves or

electro-optic effect) multiharmonic periodicities opens up the possi-

bility of controlling the feedback strength in D¥B filters, This, in

turn, varies the passband, From the results of chapter IV it is ap-

parent that the passband could vary as sin(8/2) where 8 is the relative

phase between Fourier components of the periodicity at the second

Bragg resonance (see Figure 4.5). If the boundary effects are sig-

nificant or predominant, then the previous results will be modified.

That is, for thin slabs, the reflection will be significantly increased

1
at higher Bragg orders when {nsin[(N*1)K + Aha‘: J£/2} is no longer

negligible.

3. Born Approximation Reflection Coefficient

In order to summarize the properties of reflections from both
thick and thin slabs, it is useful to find the Born approximation to the
reflection coefficient, Consider the wave equation for some transverse

component of the electric field E(z).

2
[(;122 + kzer]E(Z) = -)\nkzercous E(z)=-\S(z) E(z) (6.A20)

where the ordering parameter X\ has again been used to show the
smallness of N, Assuming a solution

E(z) = EQz) + x EW(z) + 22 @) (2) + ...



T

14 mrs s e

gz -

B .t

DT L I L SRS W AT ST PNt St T 7 3 a1 o s s

-128-
we find
[+e}
™) - [ s glz,2) E® @)z (6. A21)
-0
where E(o)(z) = oP?
ieiﬁlz-z'l

glz, z'")
1 Zﬁ

and where B = k E:E for this computation. A straightforward calculation

shows,
sin(B+K/2)4 , sin(B-K/2)4 (6.422)

eMz) = ﬂ}lﬂ e‘ipz[ BIKR/2)E | (B-K/2)E

Thus E(l) represents a wave traveling to the left which is produced
by the wave E(o) traveling to the right. The approximation which uses
the terms E(O) and E(l) is known as the Born approximation. The

Born reflection coefficient is then the coefficient of e Pz in E(l), or

R( 1) ing4 [ sin(B+K/2)2 _ sin(B-K/2)%
- 4 (BtK/2)% (B-K/2)4
1
R(l) _ 17]1161? L 5 (6.A23)

1
which is valid for |n k €2 £|/4 << 1 at the first Bragg resonance
or for ln/4|<< 1 at higher Bragg resonances.

At the first Bragg order, for |x£ | << 1 and |n| << 1,
the Born approximation and the modified ECW approximation

become equal. Explicitly we find

1
3 2

max 4 max
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at the bandgap center for K£ ? 10. For higher Bragg orders, the Born
approximation produces a series in powers of 11 which accounts only

“for the depth of the perturbation (i. e. the end effects) and not the

length over which it acts. A‘ series in nKZ is needed to account for

significant periodic effects. This latter series occurs through the b
modified ECW equations. Thus, the Born approximation is useful

at the first Bragg order or at higher orders where the slab satisfies

1-N

the relation K& << 7 . For thick slabs, the ECW theory provides the

proper phase mismatch,. coupling and reflection,

4, Transients in Periodic Slabs

Consider an incident pulse f(t) with frequency spectrum

F(w) = J”mff('c)ei"’t at (6. A25)
- 00 .

where the reflected and transmitted pulses are, respectively,

[>0] .
r(t) = 5= [ Flw) Ry duw (6. A26)
’ . - 00 .
o0 .
t(t) =§%;I F(w)TN(w)e'lwtdw (6.A27)
=00

This case was shown in Figure 6.2. Numerical inversion has been
used by a number of authors to obtain time response to radiation and
scattering problems. ‘The Cooley-Tukey fast Fourier transform

N_ 2048

(FFT)80 has been used in the numerical examples with 2
samples to calculate r(t) and t(t).
The cases of reflection and transmission of rectangular and

Gaussian pulses of several center frequencies and widths have been

carried out. Normalized pulse lengths T were chosen to be 0, 25



g‘
‘@a

M i e 2 S T TP LOTL TR Y

EEK IS S A SRR RINS S ARINIAN, 100N B 4 P RO SR v, VY R

3

TN IETY ;:‘f‘:"ﬂ g S — $3 4 gt i Sl by

-130-

and 2, 0 time units where each time unit corresponds to the transit
time of the pulse across the slab length £, As in previous sections,
the numerical results are valid at the first Bragg order and all higher
Bragg orders where the boundary effects can be igxl'xored.

Figure 6.7 di(splays the envelopes of the reflected and trans-
mitted pulses which result from an incident pulse of length T = 0,25,
Several values of coupling are used and the carrier frequency is at
the bandgap center (6N = 0). In all the illustrations, the time value
t = 0 corresponds to the instant when the center of the pulse is at the
first boundary. For weak coupling, the reflected pulselis spread over
2,25 time units (Figure 6,7 a,c) because the energy is reflected from
successive striations and the echo from the last boundary has a round
trip time of 2 units. Since the successive reflections are relatively
weak, the reflected pulse is quasi-rectangular while the transmitted
pulse is similar to the time delayed incident pulse. As the coupling
is increased, multiple interference leads to transients over a longer
time period (Figure 6.7 i,j). The reflected pulse reaches a maximum
at 0.25 units when the entire incident pulse has just entered the slab.
The subsequent fall-off in the reflected pulse amplitude is due to the
fact that a large portion of the signal has already been reflected due
to the first few striations. For large coupling, the transmitted pulse
consists mainly of two peaks, 0.25 units apart, which correspond to
differentiation (i.e. high-pass filter) of the incident pulse.

The same coupling strength sequence is given in Figure 6. 8
for a rectangular pulse of length 7 = 2, For weak coupling (Figure

6.8a), the reflected pulse is similar to the autocorrelation of the

’
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Fig. 6.7 Reflected and transmitted pulses for different values of

coupling coeft:icient. Incident rectangular pulse has length 0,25
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incident pulse. This indicates that the reflection coefficient is similar
to the incident pulse spectrum. For étrong coupling, the transmitted '
* pulse is again similar to the absolute value of the derivative of the
incident pulse with characteristic interfering echos. Note that the
reflected pulse may have an amplitude larger than unity (Figure 6. 8g, i) -
due to constructive addition of successive reflections,

Figure 6.9 displays the reflected and transmitted pulses for
a Gaussian incident pulse of width T = 2 (width is taken at the 1/e
values). Since a Gaussian pulse contains sma11e1: higher frequency
spectral components, the reflected and transmitted pulses are grossly
similar to the incident pulse., For narrowed Gaussian pulses (not
shown here), the results are somewhat similar to those obtained for
a rectangular pulse of the same width.

Several examples of pulses with carrier frequencies at the
first several zeros of the reflection coefficient have been given else-
where, 29 In general, the transmitted pulse is similar to the incident
pulse. However, the reﬂectea pulse is broken up into a long pulse

train which can be considerably longer than the incident pulse width.

5. Discussion of DFB Filters

In the preceding subsections, the ECW theory was applied to
longitudinally bounded media. The ECW equations were modified to
directly account for the coupling between' Fl(z) and —Bl(z) due to the
boundary. This changed the coupling so that it consisted of two part;

with the following physical meaning. One part of the coupling, due

only to the perturbation is proportional to {nNK!&] and hence increases -
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Fig. 6.9 Reflected and transmitted pulses for incident Gaussian

pulse of width 2 time units and carrier frequency at RN . Note
difference in vertical scales. max
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with slab thickness since it is due to repeated reflections in the di-
electric. The second part of the coupling is due to the above mentioned
boundary effects and is proportional to {T{ sin[(Nil)K+Ak€§ J4/2}., This
accounts only for the interference effects due to the periodicity trun-
cation and may become zero for certain lengths at particular frequen-
cies, The application of the boundary conditions was then introduced
in such a way that end effects were not accounted for again.

The validity of this approach was tested by using the exact

89,90

results of Bedrosian, The comparison was made on periodic
media of length K& = 26w withn = 0.05. The ECW and exact invariant
imbedding technique agreed to within 1% in the two cases where the

boundary effect was insignificant (R = 2. 55X10~2) and where it

2 lmax .
had a large effect (RZ‘ = 5. 88x10'2) at the second Bragg order‘.9

Comparisons ton;;z Born approximation showed that at higher
Bragg orders, the Born approximation ignored the nNKL term of the
coupling. However, at the first Bragg order the Born and ECW ap-
proximations are in very close agreement. For cases wheren -1,
the full Floquet theory must be used. This is straightforward in
principle but laborious to carry out. The disadvantage is that lengthy’
numerical calculations have to be carried out and the intuitive appeal
of the ECW theory is lost.

We have shown that periodic slabs may be useful as edge
differentiations or multiple pulse generators, The transient re-

sults may be useful in the fields of microwave and optical filters

and for sounders of subsurface layers.,
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B. Higher-Order DFB Lasers

Ever since Kogelnik and Shank's derncmstra.tions4 and descrip-
1:i(>n23 of DFB lasers in the early 1970's there has been great interest

in this field. Since then much work has been done at the first Bragg

order, 14:24,25,30,35,36,58,70 1, 1995 Bjorkholm and Shank!

demonstrated the first higher-order DFB laser with output at the
second and third Bragg resonances. More recently there has been

further experimental work at the second Bragg resonance71 and with

multiple frequency DFB lasers. 70

In this section the approximate mode spectrum and threshold
gain are given as a function of Bragg order. The results, which use
the ECW equations, are analogous to the coupled wave results of
Kogelnik and Shank. 23 Hence, the derivation will be only briefly

sketched here. The details are given in Appendix D.

1. ECW Result for Threshold Gains and Mode Spectra

Oscillation will take place when output occurs for zero input.
This can be alternately stated as the condition where the reflection
or transmission coefficient becomes infinite., We use the ECW re-
flection coefficient discusseci in previous sections and set the denom-

inator equal to zero or

DN coth DNZ = 1A6N (6. B1)

This can be put into the form
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D,,+i 6

D, -i&._ = 2D 4 .
N N Je N -1 (6. B2)
n*1oN :

The complex solution to the ‘above transcendental equation produces
the threshold gain and the mode spectrum when solved for amplitude

and phase.

2, High-Gain Approximation

The high-gain approximation assumes that.the periodicity

has little effect on the propagation, or, for

5 BoWEL Gy PN de o CNnZ.N2
32(N“-1) “r 8(N"-1)
6 AN ig
N A _N _ N .
= 2 = 7 (6. B4)
the condition is
Xy << ey (6. B5)

This is approximated for singly periodic media by the inequality

In/ZIN <<| ei/‘erl (6.B6)
From Appendix D, the threshold gain approximation is given by
L
‘ 2 2, * ng
4(gN + AN) = XN Xy © (6.B7)

and the longitudinal mode spectrum is given by

-1 . '
tan (AN/gN) - ANE = (m+%)1r + phase(xN) m=0, *1, ¥2, ,,.
(6. B8)
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where the first term is usually small a,nd can be neglected. These
expressions neglect boundary effects which can be accounted for by
a straightforward modification as in the previous section. Equation
(6. B8) is first solved for AN’ the normalized frequency deviation from
the bandgap center and then (6,B7) is solved for gN, the normalized A
average gain. It is apparent that for singly periodic media, the
average gain will increase drastically with Bragg order. However,
boundary effects or multiharmo;xic periodicities may reduce the
threshold gain by increasing the coupling.

The mode spectrum is asymmetric and is sketched in Figure
6.10 for higher Bragg orders. For index coupling (Figure 6.10a), the
gain symmetrically pushes the modes outward from the usual two
mirror cavity case (shown by dashed lines). However, the bandgap
shift produces an asymmetry and shifts the entire spectrum toward
higher wavenumbers. As in the first order case, no oscillation
takes place at exact Bragg resonance. Figure 6.10b, c shows the
analogous information for gain coupling at odd and even Bragg orders,
respectively. For odd Bragg orders, oscillation is possible near
Bragg resonance, but the bandgap shift prevents oscillation exactly
at A ker% £ = 0. As expected from the Brillouin diagrams, even-order
gain/loss coupling is similar to even-order index coupling except for

the sign of the bandgap shift.

3. Low-Gain Approximation .

Low gain implies the inequality for singly periodic media

Iei/er\ << | n/2 N (6.B9)



e . CRn ety e

e

-139-

a) A
I I | I
- I | | -
I i
| I I |
I I I I
I I | I h
g I I
a | |
= I |
0 | ] |
m [ § § 1 4 1 {
T
¢ ! | |
] | | IT
I l | |
I I I |
I I | I
3wl -wm -wl2 0 w2 w372

AKVEL —=

Fig. 6. 10 Sketch of mode spectrum in higher-order (N iz 2) DFB

lasers for: a) index coupling (N = 2,3,4,...); b) gaia coupling
(N=3,57,...); and c) gain coupling (N'= 2,4,6,...) in the high-

gain approximation,

’
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Again the details of the approximation are given in Appendix D.
Boundary effects are neglected since low gain implies a large
coupling-length product. Hence the boundary effects are small.
Consider first the case of index coupling. We find that

the lowest-order longitudinal mode frequency is given by

AN - XN = —2 (6. BIO)

which becomes

A = &

N XN (6.B11)

for long structures. Therefore, the oscillation takes place near the
bandgap edges. This agrees with the stability analysis of the pre-
vious chapter as expected., Identical reasoning holds .for the case
of gain/loss coupling at even Bfagg orders.,

The threshold gain condition for index coupling and for even-

order gain/loss coupling is given by

3 3
gyl = —5— o (6.B12)
N B Epg (g 0)2
This is approximated by
% 1
— = 6.B13)
> (
3 (/2% (x4)>

for singly periodic media., Hence the threshold gain varies inversely
with (n/Z)ZN for singly periodic media and inversely with the length
cubed. Thus the threshold gain condition predicts that the average
gain approaches zero as the length becomes infinite, Again this is

1 4

in agrcement with the stability criteria results.
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For gain/loss coupling at odd Bragg orders the lowest-

order longitudinal oscillation takes place-at the bandgap center

Ay = O . (6.B14)

with the threshold condition onthe perturbation

Ixyl%. = V3 (6. B15)

Cc

for zero average gain, Thus for DFB oscillation to start with €, = 0,

the necessary critical length EC varies as

R . = S (6.B16)
c (In]72)N

with Bragg order. The mode spectrum (6.B14) agrees with the
stability prediction and (6.B15) implies that negative average gain
can produce oscillation of £ > .ZC. This is verified by the approximate

threshold gain condition on the average gain which is

X + gz = _——ib 3 (6.Bl7)
N N Iy 14

and becomes

eN T Ixp ! (6.B18)

as the length increases, For s_ingly periodic media the threshold
gain varies as (n/Z)N.’ This also agrees with the stability criteria
predictions since this condition is identical to equation (5. B3).

Oscillation again takes place at the bandgap center given by

A = 0 ‘ (6.B19)



e -

LR RO

-142 -

Note that only the lowest-order (m = 0) longitudinal mode

characteristics are given in the low-gain approximation.

4, Discussion of Higher-Order DFB Lasers

In all cases, the previous results are extensions of the well- N
known work of Kogelnik and Sha.nk23 to higher Bragg orders. The
ECW theory gives the correct XN and 6N to use in the theories,
Numerical results have been given at the first Bragg order for both’

23, 35 24, 30 media and so can

transversely unbounded and bounded
be used at higher orders for guided modes.

The ECW theory shows that the mode spectrum is asymmetri-
cally shifted from the exact Bragg resonance for high gain and has
characteristic differences which depend upon coupling type and Bragg
order. Note that in the low-gain case, the threshold gain and fre-
quency of the lowest-order longitudinal mode is also predicted by the
stability criteria without regard for the boundary conditions. In this.
case, enough coupling or feedback is available to produce oscillation
without boundary coupling. In general, threshold gains increase
drastically with Bragg order unless multiharmonic periodicities
are used or unless boundary perturbations play a significant role.
The low-gain threshold varies as (T]/Z)—ZN or as (T]/Z%\Ifor the case

of index and even-order gain coupling or odd-order gain coupling,

respectively, for singly periodic media,

C. Higher-Order Hologram Diffraction

There has been interest in transversely varying periodic

media (Figure 6,11). This configuration represents electromagnetic
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Fig. 6.11 Configuration of TE wave obliquely incident upon a

holographic grating. The original wave and the Bragg reflected

wave emerge as TN and RN respectively,
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wave diffraction by acoustic waves or by holographic gratings. The
former problem was solved by Chu and Ta.mir22 who used both the
Floquet and the coupled waves approach. The latter problem was
dealt with exhaustively by Kogelnik15 who developed a coupled waves
approach that was valid near the first Bragg resonance. More
recently variations of these problems have been investigated theo-
retically and experimentally by several authors. 68, 69, 81 -84

In this section the ECW equations are discussed for trans-
versely periodic media. The derivation is similar to that of chapter
III and the details are given in Appendix E, The approximate boundary
conditions are applied and the results are given for the strengths of
the undiffracted and Bragg diffracted waves in holographic gratings.
As in previous chapters, the ECW results will hold for all Bragg

orders.,

1. ECW Equations for Transversely Periodic Media

Consider solutions to the wave equation for the transverse

electric (TE) field K

2 2

0 9 2
Zr o+ Ly v e B 2 = 0 (6.C1)

ox

where

e(x) = e +ie +e_ ?(nrh n;), £, cos pKz

is the periodic relative dielectric constant. Following the example
of Kogelnik]‘5 we consider a wave of form elEﬁXH(Z z] which is suc-
cessively scattered from the periodic dielectric to a wave of form

el[“3 NK) xtk, Z]. The first wave is designated as F,(z) and the Bragg
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scattered wave as Bl(z). Using the same ECW assumptions as in

chapter IIT we let , X
E(x, z) =:I§_/: F(Z)I—Zn/N ei[(l-2n)/N)p0x'+Apx+kzoz]
-+ B)) 2n/n & (1-2n/Mpgettfxtks 2] (¢ o) h
F( é) S(z) il8Bx+ks 2]

be the assumed TE field. Substituting the above expression into the
wave equation (6.C1l) for singly periodic lossless media, we find the

following ECW equations (see Appendix E).

Fl'(z) - 16 F(z) =1 %y B, (2)

H (60 C3)
Bl(z) +1i GNBl(z) =1iXy Fl(z)
where
2
2 { 2 2 2
ke * I-CN (2 S?ne ) [2(;;; 1;!}'(50+ABN) ‘kzo
— 0 il
by = - (6. C4)
2 kz
5 o
N+1
X T e 1 (6. C5)
N2 g (ein® o )N T (4n(n-my /%y
k = ko + AkN
ﬁ = [30 + AﬁN -
k, = gy ¥k,
B, = NK/2 :
2 .2
koe = k4B
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Assuming a solution of the form e gives the dispersion relation

(M;ZN)i [(6112)2 ¥ <%)2] (6. C6)

The similarities and differences between the longitudinally periodic

(LP) and the transversely periodic (TP) case are given below.

1. The sign differences in the TP case cause the dispersion
relation to be real for real periodicities and passive
lossless dielectrics (i.e. n; = 0= ei). Hence no bandgaps
appear in the longitudinal wavenumber as in the LP case.

2, Maximum phase matching between Fl(z) and Bl(z) occurs
slightly away from the exact Bragg condition for higher -
order Bragg interactions in both the TP and LP cases.

The first Bragg order results are found from (6.C4-5) as

R 2
61 _ Aklde ) Apl s1n60 I Apl ¢
K K K cos® 2 (6.C7)
o K .
X1 n
= (6. C8)

8 cos® sin®b
o o

Small changes in frequency or angle are accounted for by the first

and second terms of the phase mismatch. The third term is negligible
away from normal incidence. Results for other Bragg orders and

for complex periodicities can be found easily from previous results,

A similar derivation for TM waves can also be made.

2. ECW Reflection and Transmission Coefficients

The slab configuration of Fig. 6.11 shows the undiffracted

wave proportional to TN and the Bragg diffracted wave proportional
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to RN. The incident wave is of unit amplitude. The appropriate

boundary conditions for the TP slab a.re\approximatelyl‘5

I
(o)

F(-4/2)

B(~£/2)

F(£/2) = T

B(£/2) = Ry (6. C9)

]
o

These equations indicate that the Bragg diffracted wave increases
in value from zero to RN while the undiffracted wave decreases from
unity to TN' Note that any reflected wave in the region z < - 2/2 is
ignored.

The ECW equations (6, C3) are solved with the boundary con-
ditions imposed by (6. C9). The method of solution is analogous to

that of the LP case (see Appendix C). The results are

i Xp sin AkzhLﬂ,

Ry = Ik (6. C10)
i
Ak . .
7. €0s Ak, - 4+i6 _ sinbk, £
Ty = —X X N (6. C11)
“N
for coupling between identical modes (i. e. 6p = 6q’ qu = qu = ¥)e

Note that for exact phase matching, the reflection and transmission
coefficients vary as sines and cosines. Hence, the energy is alter-
nately shifted between the undiffracted wave Fl(z) and the Bragg
diffracted wave Bl(z), along the z coordinate. Away from exact
phase match the energy transfer is i’ncomplete.

3. Discussion of Holographic Gratings

We note that the development of the ECW equations for the

TP case is identical to that of the LP case. The ECW equations are

19, 22, 69

of the same form as that of several other authors. The
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advantage of the present derivation is the simplicity of the explicit
expressions for phase mismatch and coupling, In particular the
deviation from the exact Bragg condition that provides maximum
coupling or highest diffraction efficiency is easily found.

In the preceding derivation we found coupling between the “
waves Fl(z) and Bl(z). This means that the diffracted and undiffracted
waves, the amplitudes of which are given by RN and TN' are sym-
metric with respect to the z axié. A similar theory could be devel-
oped for coupling between any other set of two waves. For example,
one could find a set of coupled equations for coupling between Fl(z)
and B(Z)1+2q/N where q = 0,1,2,... represents different spectral
orders. In this case the undiffracted wave propagates at the angle
§ =arcsin ([SO/kz ) whereas the diffracted wave propagates at the

o .
angle 6 2a.rcsin[ﬁo(l-!ﬂZq/N)/kzo:f with respect to the z axis, The

diffraction efficiency DE is usually defined by the relation DE = |TN |2.
The theory is approximate since only a few space harmonics
were used, only the approximate boundary conditions were applied

and because the (assumed small) reflected wave for z < -£/2 was

ignored,

D, Gaussian Beams in Periodic Media

With the advent of the laser, it is useful to consider Gaussian

beam scattering from periodic structures. Several authorsgs’ 91-94

have considered Gaussian beam scattering at dielectric interfaces

or in periodic media. The method of beam reflection at interfaces

91

was developed by Brekhovskikh. We .will use this formulation and

’
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a similar one used by Tamir and Bertoni, 92

In this section, the formulation for Gaussian beam propaga-
tion in LP and TP slabs will be outlined. The previously derived

ECW reflection and transmission coefficients will be used. Numerical

examples will be given in a future report, However, the general -
characteristics may be determined from the previous transient anal-
ysis for certain cases,
Consider the aperture Gaussian beam Eap(x, -h) of Figure 6.12
that is formed at the plane z = -h, N
o )’
Ea (x',0) = ———— (6. D1)
p m w

The propagating wave is given approximately by

‘__:-(xcosE)/w)2 eik»\/e_-[xsin9+(z+h)cosej
Eap(X, z) = T (6. D2)

2
z=-h W z==h

The incident wave Einc(x, z) is given by the Fourier transform of the

spectral amplitude ¢ (kx)

o0 .
E (xz)=— [ je ilkxx + kp(z4h)] 4 (6. D3)
inc’ 29 oo X X *
’ -h<z<0
1
where k = (k2 € - k2)2 .
A X

The spectral amplitude is given in terms of the aperture field by

- the relation

o0 .
t) = [ E, G -h)e X gy (6. D4)
~00
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!
N
v

Fig. 6.12 Gaussian beam incident upon LP or TP

slab near Bragg resonance,
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e-[w(kx-kA/_é—sineo)/Z coseo]2
¢(k) = - (6. D5)
X coseo

Two assumptions are made, First, assume that the beam

is well-collimated, or
ki€ w>> 1 (6. D6)

where w represents the beam width, This limits significant spectral
amplitude to values about k_ =k e% sineo. Hence, k_is usually real
and the contribution to surface or lateral waves can be ignored,

This is also necessary for the ECW approximations. Second, the

incident and scattered waves are near Bragg resonance, or

AY

cosfy LP media
sinf;, TP media

1
2

1
B /k €% = NK/(2k e?) = { (6. D7)

The transmitted and reflected fields ET (%, z) and ER(X, z) are

found from the integral of the product of the spectral amplitude

(at z = 0) and the appropriate coefficient;

w - ¥

Ep(x 2z) = % L T (k)8 (kx)eh[kxx+kz(z+h)]dkx (6. D8)
1 ™ 5 +i[k,x-k_(z+h)]

Eglx, z) = Z?I Rk )2 (k )e z dk_ (6. D9)

~0
where the (;:)P:s::) signs hold for (LTI;) media,
The expressions for R(kx) and T(kx) can be found from equa-
tions (6.A13, 14) and (6. C10, 11) for LP and TP media, respectively.

The values of phase mismatch and coupling have been derived for

arbitrary angle of incidence in TP media and at normal incidence for
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LP'media. The extension of the LP results to arbitrary angles of

incidence is a straightforward derivation and will not be given here.

. The explicit results near the first Bragg resonance are,

Te ‘ 2
_ o [Ak - Ak sin® _Akx for LLP and (6. D10)
co 9 TP media * .
. _a 1 for (LP) heads (6.D11
K 8cos# (coseo) Tp/ ™meda * )
© \sinb .
o
1
where ‘ kxo/k0 612 for LP media
sinf = B,/ k e_ for TP media
Ak - = k -k
x X °x
- o 1 .
[k 2c . g 2]—2' for LP media
X - o o
}.{o Bo for TP media
B = K/2

Note that for LP media the expressions for the transmitted
and reflected fields are similar to the transient analysis if the time
coordinate is replaced by the space coordinate. In particular, Figures
6. 7-9 show the spatial dispersion of pulses in space for rectangular
and Gaussian. input beams at exact Bragg frequencies and non-normal
incidence if the normalized time is replaced by normalized distance.
In this section the derivation for spatially bounded beams was
given a form that is easy to compute under the ECW assurnpt;ions.
It was shown that temporal and spatial dispersion are similar and
that the results of the transient analysis could be extended to include

beam propagation. '
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CHAPTER VI

CONCLUSIONS ~

This report establishes an approximat;a method of calculating
the properties of the Brillouin diagram at all Bragg orders for waves
in periodic media. The method is introduced in the second chapter
where the connection between the Floquet and the coupled waves
theory is shown and demonstrated with several numerical examples
at the first Bragg resonance. In the third chapter,. the idea of cross-
and self-coupling helps to extend the coupled waves thec;ry to all
Bragg resonances by the use of couplin.g diagrams. These results
explicitly show the dependence of the bandgap width, béndgap shift
and coupling upon Bragg order. The results closely match the exact
Floquet dispersion relations. Furthermore, the ECW theory accounts
for multiharmonic periodicities and demonstrates the idea of dis-
appearix&g bandgaps under certain conditions,

The fourth and fifth chapters deal with active or lossy dielec-
trics. Inveljted bandgaps occur only for certain types of coupling and
at certain Bragg orders. The stability of active periodic media has
characteristics that depended on the nature (i.e. inverting or non-
inverting) of these bandgaps. Absolute stabilities are found to occur
under certain conditions and only at certain frequencies in active
periodic media, These threshold conditions and mode spectra agree
with results found from an entirely different analysis, in the appro-
priate limit, at the first Bragg order. The advantage of the stability

analysis is that only the dispersion relation is needed to fully describe

the stability characteristics.
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The last chapter includes a few applications of the preceding
theory to finite length metiia. The topics of reflection, transmission,
transients, DFB lasers, holographic gratings-and beams in periodic
media are briefly discussed and illustrated.

The ECW theory demonstrates some of the power and versa-
tility of the coupled waves formalism. It is anticipated that space-

time periodic media and variable-frequency or almost-periodic media

may be treated in a similar manner. The case of transversely

bounded media can be treated using a previously developed approao::h32

for the guided modes. The result is that each power of 1 will be mul-
tiplied by an overlap integral, Hence the coupling will be somewhat
decreased.

Exact theories such as the Floquet theory, matrix theory or
the method of invariant imbedding will be useful for specific cases
where exact results are needed. However, the intuitively appealing
ECW theory gives results explicitly without lengthy computations

and is surprisingly accurate in the cases treated here,



-155-

APPENDIX A
ASYMPTOTIC FORM OF FIELDS FOR

ABSOLUTE INSTABILITIES IN PERIODIC MEDIA

¢

Consider the following equation for F(z,t) which is proportional

to the electric field

d(AB)d w
(21rr)2

i(0Bz- wt)’
F(z,t) = [ [ S8, (A. 1)
-0 ~c0

D(AB, w)

where S(AB, w) is the normalized source and D(4B, w) is the dispersion
relation., We are interested in the asymptotic value of ¥(z,t) for
large times when an absolute instability occurs, This happens when
the xoots of D(AB, w) merge in the AP plane from opposite ha.lf—planes'
separated by the line Im{AB}= 0. We assume that the source is
analytic in AB and that it is turned on at the time t = 0.

We follow the work of previous authors73’ 4 and expand the
dispersion relation about the instability at w= ' and AB = 8B ' in a
Taylor series.l Then the integration is first carried out in the A
plane and finally in the w plane.

The Taylor expansion of D(AB, w)/S(M, w) is,

%Egﬁ :3)) - D12 (1 - 8p")° + D2 (w-w') (A.2)
2
where Dl2 = 3 Q_(D_/ZS_Z_I
3 (bB) AR=AB
D2 - a(D/S) ' ‘
2 - ow wza?I

We rearrange the dispersion relation to find

14
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idgz ,

F(z, w) = 1 1 —° s

) 4viD) D, (w-w')? C'| AB-8p'-iD,(w-w)2/D,
. , ' . (AL3)

eiAﬁz
- Ry d(Aﬁ)
AB-0B'+iD,(w-w')2/D;
A N
where
w -
Py = [ e, w)e Wt S8

and the contour C' is shown in Figure A. la. The first pole of (A.3) is
located in the upper half plane and contributes fcr z > 0 while the
second pole is located in the lower half plane and contributes for z < 0,

For z > 0, equation (A.3) becomes

il8p'+i Dy (w- w')%/Dl]z
F(z, w) = - (A.4)
2i D} D,(w-w')z '

To carry out the integration in w, we depress the contour around the
singularities down to the real w axis. This contour C'" is shown in
Figure A, 1b where two poles at w = =* W, represent the harmonic

source contributions, This second integral is

1
RYYE e -[D2(w-w"?/Dylz ~iwt 4
F(z,t) = ——— T >
2iD; D, (w-w')? L
(A.5)

' 1
The branch cut of (w-w')2 provides the major contribution. Hence, we

approximate the integral (A.5) as t ~ « by

1 1
0Bz ¢ - [D2tw-w?/Dy]  © +Da(w-w')?/Dlz
F(z,t) = 57555 T = 1
172 o (w-w')z c (w- w')z
x glwt dw
2w (A.6)




e -ty - Y T Y
e i 1 T R S Rkt G e b i »
iy i S L e s R R A B B e e R 4

S RN 235 LTI TRARAY,

-157- . )

iAB

z2<0

o€

Vil A O i 0 B i,
N S o

Fig. A.1 a) Contour C' in )\B-plane showing poles when
AB' = 0, b) Contour C* in w-plane showing 2 poles due

to source at .tws and branch’cut at instabilaity frequency W,
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1 .
i0B'z -iupt O cosh[D,(iw-i0)2/D, )z ¥it idw.
e e 2771 1
Flz,t) = =5 — 5 (A.7)
172 o (i wi-io)z
where w'= w, * io
Let (u.)i -0) = -q
: 1 -1 o - 1
Bz miwot Ot T -at oh[Dy (-iq)2/D1 Jzdq
F(z,t) = (A. 8)
’ 2 D, D L I
172 o (-i)2 q2
Letting the upper limit tend to infinity we get
ei(Aﬁ'z- wot) ecrt
F(z,t) - T T as t- o (A.9)
272 D1 D2(~i)3 tz

Thus, the electric field is time-growing with the wavenumber and
frequency of the absolute instability, For two instabilities at
different frequencies, there will be two branch cuts in Figure A.1lb
_ and the F(z,t) will have two similar contributions, each of the form

of (A.9).
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APPENDIX B
ECW PARAMETERS FOR SQUARE-WAVE,

TRIANGULAR-WAVE AND SAWTOOTH PERIODICITIES

For applications to instabilities and DF B filters and oscillators

it is convenient to have the phase mismatch 6, and the coupling Xy 2t

N
the first three Bragg orders for square-wave, triangular-wave and
sawtooth periodicities.

It has been shown that the major contribution to Nth order
coupling is from the Fourier component fN of the periodicity, Hence
for the three periodicities under consideration, the results at first
and third orders are a straightforward application of the results of
chapter III since each wave contains odd harmonics, In addition the
sawtooth wave contains both even and odd harmonics so previous
results can be used at all Bragg orders for this periodicity. The
computation that needs to be carried out is for parameters at even-
order resonances with odd-order Fourier components, We will carry

out these computations for N = 2 in the lossless case (€=€r).

The three periodicities have the following Fourier decompo-

sition:
1 p odd
- ={ P
Square-wave fp { o p even (B. 1)
(p-1)/2, 2

. _ (-1) /p p odd

Triangular-wave f_ = (B.2)
0 P even

Sawtooth [ = -nPt g (B. 3)

with the normalization fl = 1. An appropriate sine or cosine Fourier
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series is used for periodicities that are odd or even in z, respec -
tively. -
. At the first Bragg resonance, we find that Xy /K =mn/8 and
) /K = Ak € a/K by the use of (3.A24, 3.A25) for all three periodicities. |

Th1s is identical to the sinusoidal case.

At the second Bragg resonance, we find XZ/K = -n /8 and
5, /K = Akez/K-n /12 for sinusoidal periodicities. The other perio-

dicities present need to be calculated. We consider the seventeen
waves BS’ B7, ey 5,00, F7, FS for periodicities with fp = 0 for
p even and N = 2. Thus, we need only the eleven waves B8’ B6’ coe,
S,... F6’ Fg since no significant coupling can take place through
Bq’ Fq with g odd. Using the ECW approximations, we need to

solve the following equations.

-63 Fs" ' =--Izlf7 F1
-35 F = g(f5F1+f B,)
-15 F, = -1 (£,F +B))
-3F2 = Izl(f Fl+f 1)
o
BE R+ % = - U (B +F )+ (Fg+B)
+,(F 4+B,) + fl(F2+S)]
s =-32 [fl(BlJr.Fl)]
'2‘91215 B, + 'Z‘k% = - 3 [5(By+F )+ (Bg+F)
+ (B +F,) + fl(B2+S)]
- 3B, = -2 B +1,F))

(continued on next page)
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. _.n '
15 B4 2 (f3Bl + fSFl)
- ' =-1
. 35 Bé | > (fSBl + f7F2)
- =.1
63 B8 =-3 f7 B1 (B. 4)

where self- and cross-coupling O('r]z) has been included‘. The equations

(B. 4) are solved to give the usual coupled equations for F1 and B1 with

X 2f £ .
2 _IL 13,2 2 ]
2 - [f T N R S Ao (B. 5)
2
b1
%2 _ Ak 63 [f -:‘%f _Llgl ———13f7- ] (B. 6)
K - S i - 510 " 0 (B

In (3. B6), if the terms drop off as fp = 1/p or faster, only the first two
terms need to be kept in the series for' accuracies of order 1% in phase
mismatch, In (3. B5) the series can be summed explicitly by using

Schlafli's Polynomla.ls98 Sn of order n for the square- and triangular-

wave. Two terms will again give accuracies of order 1%, For square-

waves we find

1
X, 2 6, Ake? 2
—& . r. .
g = gl1r2s,], g =— 75 (+911) (B.7)

while for triangular waves

1

X 2 & Ake 2 2

22 . onr. 2 _____ _n

2 = Lol-mes), 2 = — 1 (.990) (B. 8)
f
? where S, = lﬁig ~ 0.1168 ...

2
s, = 1‘%’%’—'— ~ 0.3736 ...,

A BRI o s e s ere e

e
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Thus, we have accounted for the major self- and cross-
coupling terms O(T]Z) which can be approximated by only considering
the seven waves B4, BZ’ Bl,’ S Fl’ FZ’ F4 for periodicities with
odd Fourier components fp. l

The case of the sawtooth-wave must be treated separately N
since it contains both even and odd Fourier components and must be
expanded in a sine series. To consider the correction to the self-
coupling from 'qfl and to the cross-coupling from nfz we consider
only the first three Fourier components fl' f2, f3 a;ld the waves
B3, BZ’ Bl’ S, Fl’ FZ’ F3 for simplicity. The equations for N = 2

in the ECW approximation are then,

- = -_-n- )
15F, = -2z F)
- = - S
8F, 21 2 F)
) ..
3 F, = -z h A
'
2i F
2 Ak 1
L) S S -4
L —r JL £ (S-F, )+, (B - F)+(B, - F,
s = -5k [£,(B)-F))] )
2 F.
1
28R+ —42 = - ok [£,(B,-S)4,(B,- F)+{, (B F)]
k €2
_ S s o
3 B, =t h B
_ -+
8 B, =t B
- | = 1 ’
15 B, = + 5= f3 B1 J
(B.9)

The solution for the coupling and phase mismatch are
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< - 1
K = 3 [fz + O(n fp)] (B. 10)
1 2 2
2
S et A [fZ_ifA_fi_ ] B 11
K K 12 L'i"T6 "To - (B.11)
*
where it is understood that ¥~ = +i ., The approximations to 1% in- A

volves keeping only the first term in (B. 10) for n << 1) and the first
two terms in the series in (B, 11). Thus, for the sawtooth-wave,
1
X 6 Ake 2 2

- 2 _ .
== = -g. , = —x 15~ (0.953) (B. 12)

™~

The approximation that uses only the first term in both (B, 10) and
(B. 11) can be gotten directly from (3.A24, 3.A25) with ~ 5% accuracy.
At the third Bragg order all three of the periodicities con-

sidered here contain the Fourier component f Hence, the major

3.
cross-coupling will be due to nf3 and the major self-coupling will be

due to 1 fl. The phase mismatch and coupling from (3.A24, 3.A25)

are
N 2
8 akez  27TM Y
K T TR T Tz (B. 13)
inf
X3 3
2 - 5 (B. 14)

The error is again on the order of 1% except for the phase mismatch
of the sawtooth-wave where the error ~ 5%, .

The results of this appendix and comparisons to the sine wave

are found in Tables B.1 and B, 2.
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~o| T AVAY, 1M1
F—_— — ——
_ n
N=1 3 3 3 3
i i -t n
N=2 cull £ (0.77)) —5—-(0.93)} 3
3

N =3 243" | n n ul
2048 8 24 3

Table B.1 Normalized coupling coefficient y /K for sine-,

square-, triangular~ and sawtooth-wave periodicities.

For
the sawtooth-wave the coupling is Xi = +iY.
AYAY. UL /v 4%
T T 1'==—1—'—==7 T
N=1 Ake ¢ Ake 2 Ake 2 Ake 2
- K K K K
T 5 I > = 2 z 2
_ Ake2 n~ |Ake? n” €2 n- Ake? n~
Noal Mke?_27mP| skez 27n° | akeZ  2mP | akeZ  n?
- K 256 K 256 K 256 K 12

Table B.2 Normalized phase mismatch 6N/K for sine- square-

triangular- and sawtooth-wave periodicities.

2
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APPENDIX C
REFLECTION AND TRANSMISSION

COEFFICIENTS OF DFB FILTER
Consider the following coupled equations

F(z) -i6_ Fz) = ix_ B,(z)
I(Z) 1 p 1 | pq 1 (C. 1)
i qu Fl(z)

1
-B,(z) - i 6q B,(z)
which describe waves in a DFB filter. The primes denote differen-

tiation with respect to the coordinate z. Differentiating (C. 1) and

eliminating Bl(z) and Fl(z) respectively, produces

11 1 » '
n) - (5) (5)
-i(6_ -6 +(6_ 6 - 3 =0 C.2
(5 8, = 8g) {5/ +(8g 8 = Xpq Xgp) \B (c.2)
where the subscripts and arguments have been dropped for simplicity
and the primes denote differentiation with respect to the coordinate z.

The solutions to (C.2) are

6 -6
N e e L D D
Fe = fye " +f,e " (C.3)
6 ~6 X
- i( )z
B e 2 - b] eDz + bz e—Dz (C. 4)
6_+6 +
where D = + qu Xgp (—E—ﬂz ) (C.5)
Apply the boundary conditions
F(£/2)=1 F(2/2)= T )
(C. 6)

B(-£/2) = R B(Z'/Z)s 0

A
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to find the following equations

§°-6
-i(—E——i)z/zl .
1 = [fl e-D'e'/2 + fz eDL/Z]e 2 (C.7)
§ -6
- i(~Ed)2/2
T = [fl PE/2 £, e D‘/z]e 2 (C. 8)
6 -6
-i( —B—3)1/2
R = [bl e’m/zﬂa2 em/z]e 2 (C.9)
. 65 -6
i(2-)e/2
o = [bl DE/2 b, e-DL/ZJe 2 (C. 10)
Use (C. 7-8) to solve for fl and use (C.9-10) to solve for b1 .
2 2
(i%2/2 1 D4/2) (-1 §2/2 £ DL/2)
- € -Te
fp= 0% Y =5Y) (C. 11)
2 e - €
(i62/2 7 D2/2)
- R :
by = % [ 57D (C.12)
2 e - e
where ?5 =

(6p-6q)/2

Two other eqﬁations for f, and b, can be found by substituting (C. 3, 4)

into the coupled equationsZ(C. 1).2 This produces the coupled equations

(iGiD)f1-15pf1=1qub1 (C. 13)
2 2 2

-(i 6% D)bl -1_6q b1=1)(Clp fl (C. 14)
2 2 2

Equations (C.11-14) provide the necessary relations to solve for T
and R, the transmission and reflection coefficients, After algebraic

manipulations, the results are,
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i qu
R = TN (C. 15)

D coth D - i(—EZ—-ﬂ)

i(6 -6 )2/2
p °q
T = D e (C. 16)

(6_+8 )
DcoshD#f -1 > sinh D&

Note that the equations hold for all Bragg orders when the
proper & and ¥ are used. Also the equations hold for coupling between
waves of different transverse modes, or in general for any coupled
system where the phase mismatch and coupling might be different for

the waves F(z) and B(z).



-168-

APPENDIX D

AFPPROXIMATIONS FOR DFB THRESHOLD AND SPECTRUM

1. High-Gain Approximation
Oscillation will occur in a DFB laser when the reflection or

transmission coefficient becomes infinite, This implies the condition

DN coth DN L = i 6N (D.1)
where DN = [Xl\? - 51\? ]2

G.N = AN -1 gN
Equation (D. 1) can be written in exponential form

DN -1 6N ZDNL

Dy *1 oy € = -1 (D.2)

which is a complex equation. Under the high-gain approximation

gN >> XN and expanding the expression for Dy we find

Dy ¥ ié6,= Dy+1i8y*ey (D.3)

Either root of (D.3) when substituted into (D.2) yields

(g Fid )2 iy
(g +1 By)e NUNTT zN (D. 4)

Taking the amplitude of (D. 4) we find the threshold gain condition

for gN

b ZgNl

2 v

N

4(gl\? + A
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where the value A, is found from equating the phase of (D. 4), or,

N

-1 -
tan (AN/gN) - ANL = (m + {)r + phase(x) (m=0, %1, £2,...) (D.6)

This latter result produces multiple values for the spectrum or oscil-
lation frequencies which are called longitudinal modes., Since

tan'l(AN/gN) << 1, the mode spectrum can be further approximated

by
ok nz N>
—% —(m+ )n-\"/2> m (D.7)

0 0 index coupling (all N), gain coupling (N even)
where ( /z) 1 «/2 gain coupling (N odd)

for index or gain coupling and singly periodic media.
The high-gain approximation yields the entire spectrum and a
transcendental equation for the threshold gain of each longitudinal

mode,

2. Low-Gain Approximation

It is more convenient to start with an alternative expression

for index coupling or even-order gain coupling. Consider the solutions

F1=f1e tf,e (D. 8)
-D4
By=b et P2 (D.9)
to the coupled equations
1
F1-16NF1=1XN
' (D.10)
-Bl-l 6NB1 _1XNF1

where D = ['Xz - 623%
N N N
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Since there are no outside sources for DFB lasers, we may use the

boundary conditions

B(-4/2) = 0 = F(4/2) ' (D. 11)

This implies the relation

fl/f2 = bz/b1 = -e (D.12)

When (D. 12) is substituted into the coupled equations (D, 10)‘a10ng with

expressions (D. 8, 9), the following equation can be derived.

XN sinh DNI; = i DN ’ (D, 13)

Either of the exact equations (D. 1) or (D. 13) may be used for threshold
calculations.
Consider the low-gain approximation where EN << XN for index

coupling and even-order gain coupling. Expand the hyperbolic func-

tion in (D. 13) to obtain

(D2’ _
Xy | Dpt — iD (D. 14)
where D2=‘ 2-A2+ZiA
N XN °°N N8N -

From the real part of the above equation,

AZ

N - XI\? = 6/4° (D. 15)

For £ large, oscillation takes place just outside the bandgap edges

given by

A (D. 16)

NS F Xy
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From the imaginary part of (D. 14) the gain condition bécomes

. gnt = 3/(><NJ%)z ‘ (D. 17)

The low-gain approximation for odd-order gain coupling is

r;qost easily derived from equation (D. 1), First consider the neces- ~
sary condition on the perturbation for no average gain (i. e. BN~ 0).
An expansion of the hyperbolic function in (D. 1) produces
D, 4 '
1 N ~ .
DN[ - * 3 ] 16N (D. 18)
. N '
Equating the real and imaginary parts produces the results
AN = 0 (D. 19)
2
| xn 2| = 3 (D. 20)

Thus oscillation takes place at the bandgap center. The necessary

length Zc for a given perturbation, is the critical length

8. = V3 Ixyl (D.21)

C

For gain perturbations or lengths less than those given by (D. 20), no
oscillation takes place.

To find the threshold condition on the average gain, equation
(D. 13) can be expanded to yield

(D

Nﬂ)3
LID, L+

Xyt | Dyt + —5p— |7+ i Dyt (D.22)

Keep all terms in DI\? to get



(D. 23)
I Xpel 2

and"

! A = 0 (D. 24)

Hence oscillation takes place at the bandgap center with the approxi-

mate gain condition

gy~ -yl (D. 25)

when £ is large.

Note that the low-gain approximation gives explicit values for
the spectrum and thresholds of the average gain and perturbation for
the lowest order (m=0) longitudinal mode only,

23 at the

All previous results match those of Kogelnik and Shank
first Bragg order. This appendix extends their results to all Bragg

orders.

A vy
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APPENDIX E

ECW EQUATIONS FOR TRANSVERSELY PERIODIC MEDIA

Consider the wave equation

d > + % + kze(x) E(x,z) = 0 (E. 1) -
dz dx
where€(x) = € (l+mcosKz) for transverse singly periodic media,

Assume a TE field of the form

*
N /2
= i[(l-zn/N)ﬁox+A[3x+kZo z]
E(x, z) -n§-1 F(2))_pn/N ©
+ B(Z)I-Zn/N 81[-(1-2NN)ﬁOX+ABX+kZO Z] (E. 2)
+ () S(a) o (OPxHHzo )
- r
where yz;z for N even
N*/Z = < ﬁé—l for N odd
9 -1 for N = 1
1y _ ’1 "for N even
(0) 0 for N odd

This accounts for positive group velocity space harmonics involved in
cross- and self-coupling of Fl(z) and Bl(z). A similar expression
exists for negative group velocity space harmonics.

The following set of N+3 coupled equations exist when (E. 2)

is substituted into (E. 1) for higher-order Bragg interactions.
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{k ek (14208 +0812)F, ' k%e
z 1+2/N Zlkz F1+2 = - > FI =
2
K2 - A i b ke
%ok, 7 - (B, +0p) ?} Fy  +2ik, F ."_TTL(Fi+2/I\I+Fi-2/N)

-
*

2
(o)K%e-kal- 06215 = ~(EENE, 4B, ) ) (=2

2 ' Ken
N ) ) _ k=
(®e-k,2 - (-p_+0p)* 1B, +2ik, By = 7 HantBy o
2 . 2 ' ik, B K |
{k e_kzo-[..(1+2(N)po+Aﬁ]}Bl+2/N+21kzoBl+2/.N= - 291’] Bl J
where kz = kg, t Akz
B = B, * A = NK/2+4p
k = kO + Ak
2 2 2

The primes denote differentiation with respect to the coordinate =z
and the arguments with respect to z have been dropped for simplicity.
The above equations are solved using the ECW assumptions and ap-
proximations of chapter III,

First, solve for F(z)‘l-Z/N and B(Z)I-Z/N' The result is
similar to (3.A16-17) with the change n ~ n/sinzeo where
' By
sin@ =g /k €4, Hence, -1

(o] o o N+1 /__1]__ ) BI(Z)

(-1)
- N F( \
SN NF ) _ 2sinZ8, (E. 4)

. 2
8(1-1/N)sin Go TT {4n(n-N)/N }2

Flz)) /N =
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N-1
N+1 1
-y NN B, (z): (-1) (2 e ) Fy(z)
Blzho/n = ot —= . (E.5)
8(1-1/N)sin 90 'ﬂ' {4n(n-N/N2}2
0- N =
where CN = {l Nz 2
[ (N-1)/2
TT* f*n) for N odd
n=1
* 2 N/2
TT7 ) = ¢ T[ fm)  for Neven
n=1
1 for N=1

-

Second, trivially solve for F(Z)I+Z/N and B(z)1+2/N. The result is

again identical to the previous results of (3,A18-19) with the change

. 2
n - n/sin 60.

F2) CN nN FI(Z) (E. 6)
A .
1+2/N 8(1+1/N)sin260
Cn NN B,(z)
B(z) = (E.7)
“1+2/N 8(1+1/N)sin29°

Substituting (E. 4-7) into the equations for Fl(z) and Bl(z) in (E. 3)

produces the ECW coupled equations for TP media,

F(z) - i 6 F)(z) = ixy B,(z)

(E. 8)

By(z) +1 6y By(z) = ixy F,(2)

where
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2 .
2 2T N 2.2
k Q{I'QN( 5sind ) [2 5 ]}‘(ﬁo+ApN) “kzg
5y = o (N"-1 (E.9)
2k ‘

. z
o

o 11 2 N ]
N 2N+lkzo(s.m280)N-l T { antn-) /N2 )2

(E.10)

The expressions can be further simplified by noting the equality

2 _ .2 2 , H ~ 1 o3 _
k> €= ‘3° + kzo and the relations k €2 /kg_ k€ ‘/kzo = 1/<:oseo

1 1
and ko?—?‘/ﬁo = l/sineo. The deviation from k €2 and B, represent the

changes in frequency and angle from the exact Bragg condition.
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