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1. I N S R O D U C T I O N  

Modeling of  the electrical  circuits  which  contain  passive  elements 
(R, L, C)- and  active  nonlinear  elements  (transistors,  diodes), 
allows  for  only very simple  circuits to be solved  using  analytical 
procedures. To solve  an electrical  .network Kirchhoff's lSt or 2nd 
law  (node  analysis  or  mesh analysis, respectively)  and Ohm's law 
are used. More  than  three  nodes  or  meshes  in  the  linear  case 
requires  a  complex  analytical  solution  since  it  leads  to  a  system 
of algebraic  equations  with  three or  more unknowns,  This  fact 
restricts  the  use of  the  analytical method. Further,  the  nonlinear 
elements  cannot  be  included  in  the  network,  because  even  the  most 
simple  circuit  with  nonlinear  elements - a  series  connection  between 
the  resistor  and  the  diode - cannot be solved by the  analytical 
procedure. Therefore,  computers  using  numerical  analysis  procedures 
are needed. This  acceptance  of  the  computer  as  a  tool  allows for 
an  extreme  increase in both  the  possibilities  and demands. The 
size of the  network  may  be  up to  or exceeding 500 nodes or meshes, 
and  the  nonlinear  elements  are  included  with  all  their  nonlinear 
characteristics. 

Assessment  begins  with  a  description of the  network,  an  understanding 
of  which  elements  it  may  contain, and the  selection of the  proper 
.mathematical  procedure  to use. Elements  which  the  network  can 
contain  are  resistors,  inductors,  capacitors,  transistors,  (BJT, 
JFET,  MOSFET),  diodes  and  voltage and current  sources  (constant, 
time  varying  and  those  which  depend  upon  some  other  branch  voltage 
or current). 

Thus,  both  linear  and  nonlinear  elements  are included. Linear 
elements  are  the  constans,  and  the  nonlinear  are  described  as 
I = f (V) of V = f (I) , An example of a  nonlinear  element is the 
diode,  where  the  diode  current is equal  to 

= (e - - kT 2vD 1) 
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The  transistor  cannot  be  described in such  a  simple  way  (with  one 
equation).  This in done  with  a  number of equations  which  lead  to 
a  transistor  model. 

The  nonlinear  elements  are  therefore  described by their  model. 
For  example,  the  bipolar  transistor  can  be  interpreted  with  Ehers- 
r.loll's model  as  shown in  Fig 1. 

p" 

C T c =  

b E O  

.1" 

F i g .  I. Ebers-Mol 2's model of t h e  
b i p o l a r   t r a n s i s t o r .  

After  the  network  elements  have  been  described  the  voltage  and 
current  sources  are  given.  The  sources  can  be  fixed,  time  varying, 
and  dependent. For example,  in  transistors, a collector  current 
generator  is  depedent  upon  the  emitter  current so, 

IC = a  I N E 

and  the  generator IC is  a  dependent  current  source. 

After  the  electrical  network  is  described, a choice of the 
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necessary  calculation  is  made.  The  following  types of analysis 
can be  done : 

1. An  operating  point  of  the  circuit, so called DC analysis - 
analysis of the  steady  state  conditions. 

2. A response  to  the  small  alternating  signal, so called AC 
analysis  which  is  executed so that  first  the DC solution of the 
network  (we  calculate  the  operating  point  for  all  nonlinear 
elements of the  network)  is  found i.e. we  linearize  every  nonli- 
near  element  about  its  operating  point. 

Fig. 2. Diode  characteristics. 

Let V1, I1 be  the  diode  operating  point.  The  linearization is 
obtained so that,  instead of the  nonlinear  characteristics 

the  tangent in the  point V1, I1 is  used : 

which  gives  the  conductance 



so, in  an  electrical  network  the  diode  is  presented  only  with 
the  conductance G. 

After  linearizing  the  network,  the  small  alternating  signal 
is  applied  and  the  response  at  a  given  frequency f is  calculated. 
In this  type  of  analysis  the  response  inside  the  frequency  band- 
width  from  fl  to  f2  is of interest. In this  case,  the  network 
calculation  is  repeated  several  times,  and  the  distance  of  the 
frequencies  between fl, f2 is  arbitrarily  divided.  Usualy,  the 
geometrical  division  is  taken, i.e. 

f = q  m fl (fl, qfl, q 2 fl 0 . .  q n fl = f2). 

For  example,  to  calculate  the  response of the  video  amplifier . 
between 1 Hz and  1,05 MHZ with  q=2  gives : 

f = 1, 2, 4, 8, ... , 524288,  1,048576. 
In the  given  example,  the  calculation  will  be  repeated 20 times. 

As a  result,  the  frequency  and  phase  amplifier  characteristics 
are  obtained. 

3 .  The  third  type of analyisis  is  the  time  domain  analysis or 
transient  analysis. In this  type  of  analysis  the DC network  state 
is  calculated  and  then  the  analysis is begun.  This  type  is  the 
most  complex  and  involves  the  use  of  elaborate  mathemetical  and 
programming  procedures. 

Nonlinear  elements  are  presented  with  their  linear  models  as  in 
Fig 3 .  
After  the  nonlinear  elements  are  linearized,  the  network,  which  now 
represents  a  number  of  resistors  and  fixed  voltage  and  current 
sources,  is  solved.  When  the DC condition  is  determined,  due  to 
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t h e  reactive elements  C,L.and the   changeable   s igna l   source ,   the  
state of  the  network  must  be  forseen a t  some t i m e  t = t + A t .  

A f t e r   t h i s  i s  accompl ished   ( th i s  w i l l  he  covered l a t e r ) ,  t h e  
network is l i n e a r i z e d   a g a i n ,   b u t  now wi th  t h e  new cond i t ions ,  
s ince   vo l tages   and   cur ren ts   th rough the non l inea r  elements have 
changed.  This  procedure i s  r e p e a t e d   s t e p  by s t e p   u n t i l  t i m e  
t =  stop is  reached, a t  which t i m e  t he   ana lys i s   ends .  

b 

or  

b 
b 

F i g .  3 .  L i n e a r i z e d   d i o d e   m o d e l .  
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2. NETWORK ANALYSIS  NODAL  APPROACH 

Network  analysis  can  be  performed  using  either  Kirchhoff's 1 st 

or 2nd Law  (nodal  analysis  or  mesh  analysis,  respectively).  The 
nodal  analysis is more  convenient  and  will  be  applied  below  using 
a simple  resistive  network  (Fig. 4 ) .  

kss 
n 

F i g .  4 .  O r i e n t e d   l i n e a r   n e t w o r k .  

The  network  description  must  be  done  in a simple  and  definite  way, 
Nodes  and  branches of the  network  are  assigned symbols. One  node 
is  called  the  reference  node 0. In the  given  example  the  network 
is  described  as in Fig. 5. 

R1 1 0 l k  
R2 2 0 2 k  
R3  3 0 5 k  - 
R4 1 2 l k  
R5 2 3 l k  
IS1 0 1 1 A 1, J 1-1s 
IS5 3 2 .1 A \ 

-r  +I 

F i g .  5 .  N e t w o r k   d e s c r i p t i o n   a n d  
n e t w o r k   b r a n c h   d e f i n i t i o n .  
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The g i v e n   d e s c r i p t i o n   i n   F i g .  5 comple te ly   def ines   the   ne twor l~  
so tha t   t he   ne twork  may be r econs t ruc t ed  and  solved.  Solution of 
t h e   v a r i o u s   e q u a t i o n s  is  done by computer  analysis.  Obviofisly, 
such a program i s  large  and  has 2000 - 10 000 i n s t r u c t i o n s .  

2 . 1. Conductance  Matrix 

Af te r   the   ne twork  i s  desc r ibed  all t h e   r e l e v a n t   e q u a t i o n s  are 
w r i t t e n .  All mathematical   equat ions  should be i n  the  matrix  form, 
because t h i s  form i s  very  convenient   for   mathematical   manipulat ion 
and  programming. 

For  the  network i n  Fig.  4, the   fo l lowing   nodal   equa t ions   a re  
w r i t t e n  : 

node 1 I1 + 0 + 0 + I4 + 0 = Isl 

node 2 0 + I2 + 0 - I4 + I5 - - Is5  (1) 

node 3 0 + 0 + I3 + 0 - I5 - - -Is5 

and f u r t h e r  

node 1 G1 v1 + G, (V1 - V2) - Is1 

2 5 2 3  Is5 

- 'Is5 

- 

node 2 -G4 (V1-V2) + G2 V +C (V -V ) = 

node 3 -G (V2-V3) + G3  V3 5 - 

and  rearranged \ 

node 1 (G,+G4)V1 - G4 V2 + 0 - - Is1 

node 2 -G 4 1  V +(G2+G4+G5)V2-G5V3 - - Is5  (2) 

node 3 0 - G5V2+ (G3+G5)V3 - - -Is5 

7 
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I n   t h e   m a t r i x   f o r n ,  t e r m  ( 2 )  is  g iven  as 

node 1 

node 2 

S1+G4 -G 4 0 I 

v3 -G5 G3+G5 

v2 -G4 G2+G4+G5 -G5 

VI 

node 3 0 

node 1 node 2 node 3 

o r ,   i n  a shortened  form : G V = I 
"n "sn 

IS1 

Is5 ( 3 )  

-I s5 

where is  a conductance   na t r ix  from ( 3 ) ,  v e c t o r  In is  t h e  
vol tage   vec tor   o f   the   nodes   towards   the   re fe rence  node  (node fl) , 
and Lsn o n   t h e   r i g h t   s i d e  i s  t h e   c u r r e n t   v e c t o r .   X a t r i x  5 is  made 
from the  elerr,ental  network  (Fig. 4 )  as follows : 

- a diagonal   e lement  ii is  t h e  sur?, of all t h e  
conductances  that   are   connected  with  node i, 

- o t h e r   e l e m e n t s   i n   t h e  rot7 are on  the ?laces ij, SO 

t h a t  on t h e  p l ace  ij comes t h e  conductance  which 

connects  node i w i t h  noite j , hu t   w i th  a nega t ive  
synbol , 

- conductances ,   tha t  are from  node i connected 
wi th  a r e f e r e n t  node, are o n l y   i n   t h e   d i a g o n a l .  

The cu r ren t   sou rces   vec to r   e l emen t   r ep resen t s   t he  sum of all 
c u r r e n t  sources  which e n t e r  t h a t  n0d.e. This  procedure is  very 
conven ien t   fo r   a r r ang ing  the rmt r i ces   f rom  the   t opo log ica l  
network  descriptopn  which i s  desc r ibed  i n  F ig  5 .  F u r t h e r ,   t h e  
r e l a t i o n  5 Vn = I m a y  he  der ived  usinr ;   Rirchhoff ' s   nodal  
a n a l y s i s ,  O h m ' s  Law, and t h e   d e f i n i t i ' o n  of a voltage  drop  on a 

r e s i s t o r   a s   d e m o n s t r a t e 6  helov. 

"sn 

*lSt Xirchhoff ' s  Law. 11 stanc7ard network branch is  def ined  
i n   F i g .  6 .  ?.etween nodes m and n i s  a conductance rJ- ; 

a 



p a r a l l e l   t o  it is  a c u r r e n t   s o u r c e ,  I 
S- 

F i g .  6 .  S t a n d a r d  network b r a n c h .  

The t o t a l   b r a n c h   c u r r e n t  i s  J = I - A network  branch  can 
con ta in   on ly  t h e  condudtance C ,  t h e   c u r r e n t   s o u r c e  I or both 

a t  t h e  sane t ine.  Consider ing this d e f i n i t i o n ,  tern (1) can be 
w r i t t e n  as 

Is' 
S' 

1 0 0 1 0  

' 0  1 0 -1 1 

0 0 1 0 -1 

or as 

1 0 0 1 0  

= B  13 - B 0 0 1 0 - 1  

1.2 - PI 0 1 0 - 1  1 

I1 - I Sl 

o r ,   i n   t h e   n a t r i x  form 
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. A ( L - I )  "s = 0  

N -  
.?i I = i; I 

"s 

p t  K.L. 

t h e  node ::here t h e  branch 

c u r r e n t   e n t e r s .  

- i a t r i x  $a i s  t h e  cor.Flete 
r e fe rence  node: 

branch 

node 1 

node 2 

node 3 

no ie  4=p 

c u r r e n t   e x i t s ,  and  -1 :\?here t h e  

incidencr-   z :z t r ix ,   and  a lso  contains   the 

1 2 3 4 5  

1 0 0 1 9  

0 1 0 - 1  1 

3 0 1 0 - 1  

""""-""""" 
-1  -1  -1 0 0 

The f o u r t h  row of   Izatr ix  2, nay he r econs t ruc t ed  fron t h e   f i r s t  
t h r e e  and i s  therefore   unnecessary.  For  example, i n  t he  f i rs t  
column (branch 1) we f i n d   o n l y  +l. T h i s  rr-eans t h a t  -1 i s  i n  the 
f o u r t h  rot;, s i g n i f y i n g  tha t  t h e   f i r s t   b r a n c h  is connectet!  between 
node I and t h e   r e f e r e n t e  node pI. 

Fig. 4 i n d i c a t e s   t h a t   t h e   n e t w o r k  has four nodes.   Since  the  zero 
va lue  may b e   a s s o c i a t e d   t o  anl7 s ing le   node ,   t he  r ea l  n m b e r  of 
unknowns i s  t h r e e .  

O h m ' s  Law. For  every  network  branch  the  connection  between 
t h e   v o l t a g e  and t h e   c u r r e n t  may be w r i t t e n  as follows : 

10 



I 

G1 vbl = '1 

G2 vb2 = '2 

G3 'b3 = '3 3 
G4 vb4 = '4 

G5 vb5 = '5 

G1 

G2 0 

G3 

0 G4 

G5 

vb 1 

vb2 

vb3 

vb4 

vb5 

'1 

'2 

'3 

'4 

I5 

0 

where 2D is the  diagonal  conductance  matrix,  vector xb is the 
branch  voltage  vector,  and - I is the  branch  current vector. 

Branch  Voltaqe  Drop Definition. The voltage  drop  across 
a  resistor  is  obtained by calculating  the  branch  voltage  from  the 
difgerence  between  the PO 

vl-v2 = Vb4 

v2-v3 = Vb5 

entials of the  branch ends: 

1 0 0  

0 1 0  

0 0 1  

1 -1 0 

0 1 -1 

/J -n -b A t V  = V  

v2 

v3 

vbl 

'b 2 

vb  3 

vb4 

vb5 

A matrix  which  connects  node  and  branch  voltages  is  the 
transposed  incidence  matrix f?. . t 

or 

( 6 )  

11 



I I 1  11.1 I I1 1111 11.11111 rn I 11. 111 11111 1.1 I I I I1 

L 

A s imple   i n se r t ion   g ives :  

L 

where = A, ,SD Gt. The conductance  matrix i s  ob ta ined   u s ing  
the  incidence  matr ix   and  the  diagonal   conductance  matr ix .  

From tern ( 8 ) ,  node  vol tages  are c a l c u l a t e d   u s i n g  : 

v = G  A I  -1 
-n N w -S 

branch  vol tages  xb = 5 In 

branch   cur ren ts  I = sD xb = SD ,R In . 
t 

t - 

The ma t r ix  = 6 C& Bt fo r  t h e  network i n  Fig. 4 is  calculated as: 

A G A t =  
J" 

1 0 0 1 0  

0 1 0 - 1  1 

0 0 1 0 - 1  

G1 

G2 0 

G3 

0 G4 

G5 

1 0 0  

0 1 0  

0 0 1  

1 -1 0 

0 1 -5  

12 



G1 0 0 G4 0 

0 -  G2 0 -G4 G5 

0 0 G 3  0 -G5 

1 0 0  

0 1 0  

0 0 1  

1 -1 0 

0 1 -1 

2.2 Dependent  Current  Sources 

Any network  branch  can  contain a cu r ren t   sou rce .   Cur ren t   sou rces  
may be e i the r   dependen t  o r  independent.   Independent  current 
sources  are p l a c e d   o n   t h e   r i g h t   s i d e   v e c t o r  as a l r eady  shown. 
Dependent   current   sources  are  treated as follows : t he  source  
is  described us ing  the  independent   (cont ro l )   b ranch   vo l tage  
and i s  p l a c e d   o n   t h e   r i g h t  side vector .   Next ,   the  terms are 
switched from t h e  r i g h t  t o  t h e  l e Z t  side (Pig. 7 )  . 
The independent   branch  current  i s  given as 

and the   dependent   cur ren t   source  i s  

T h i s  k ind  of dependent   cur ren t   source  i s  c a l l e d  a c u r r e n t  
cont ro l led   dependent   cur ren t   source .  I f  t h e  source  dependens 
upon t h e  vo l t age ,  it is  called a vol tage   cont ro l led   dependent  
cu r ren t   sou rce   and  i s  expressed as 

\ 

1 3  

I 



kl 

,k2 

"kl 0 @ ."k2 

i2 = n i l  

independent  branch 

I' I 

" 

,' 
7 

I' 

* 

. 

vn 

independent  branch 
( con t ro l   b ranch)  

dependent  branch 

c u r r e n t   s o u r c e s   v e c t o r  

i = PG, Vm, 2 - "m2 

Fig. 7. Inserting of the  dependent  current 
source  into  matrix 5 .  

The dependent   cur ren t   source  i s  determined by f o u r  terms i n   t h e  
n a t r i x  5 which are not   symet r ica-1   wi th   re rJard  t o  a diagonal.  Thus, 
t h e  ma t r ix  i s  g e n e r a l l y  symmetrical; however if t h e r e  are some 
dependent   cur ren t   sources ,   mat r ix  2 w i l l  have some nonsymmetrical 
terms. I n   t h i s  case, dependent   cur ren t   sources   represented  by 

fo l lowing   mat r ix  5 terms: 

14 



c: u 
m 
c 

A 
k-m 

+J 

C 

B G 1  - BG1 

- BG1 B G 1  

t 
cont ro l   b ranch  

or  - 
G m - GIil 

zn Gm 

t t 
-G 

cont ro l   b ranch  

2.3. Vol tage   Sources   i n   t he  Network 

A vol tage  source  which i s  a l o n e   i n   t h e   S r a n c h ,   c a n n o t   b e   d i r e c t l y  
included i n  the  network  which i s  analysed by the  nodal  method. 
This  i s  no t   poss ib l e   because ,  by O h ' s  law, tern (51, makes it 
i m p o s s i b l e   t o   c a l c u l a t e   t h e   c u r r e n t   o f  t h e  branch. 

Observing a network  which  has a vol tage   source ,  it i s  obvious 
t h a t  t h e  number of t h e  unknown node v o l t a g e s  i s  decreased by one. 
The known vo l t age   sou rce  Vs, i f   a t tached   be tween  nodes  Vkl and 
Vk2,  g ives   vk l  = vk2 -k vs? Or vk2 - - This   r equ i r e s  a 
smaller nunber of unknowns i n   t h e   c a s e  of the  network  which is  
be ing   so lved  by the   nodal  method. Voltage  sources  i n  the  network 
are of two bas ic   types :   sources   connec ted   wi th   one   po le  t o  t h e  
referent node  and sources  oonnected  between  any t w o  nodes. 

a )  Voltage  sources   connected  with  one  pole  t o  t h e  

vkl - vs' 

r e f e r e n t  node 

Most v o l t a g e   s o u r c e s   t h a t   a r e   a p p l i e d   i n   t h e  network are grounded 
with  one  pole.  These are supp ly   vo l t ages   and   i npu t   s igna l   vo l t ages .  
First  desc r ibed  is t h e   i n s e r t i o n   o f   t h e s e   s o u r c e s   i n   t h e   m a t r i x  
t e r m  ( 8 ) .  We w i l l  s tar t  from  the  example i n   F i g .  8. The network 
i s  desc r ibed  below  assuming t h a t   t h e   v o l t a g e   s o u r c e   c u r r e n t  (Ix) 
is  known : 

15 



F i g .  8 .  A n e t w o r k   w i t h  a v o l t a g e  source  W i t h  
one p o l e  grounded .  

G1+G2 -G1 0 -G 2 

-G1 G1 tG3 -G 3 0 

0 -G 3 G3+G4+G5 -G5 

-G2 0 5 G2+G5 -G 

where VI = Vs. 

vS 

v2 

v3 

v4 

I X  

0 

0 

0 

S w i t c h i n g   t h e   f i r s t  column t o   t h e   r i g h t   t h e   a r r a n g e m e n t   o f   t h e  
unknowns V is changed  from Vs, V2, V3,  V4 t o  V2, V3,   V4,  Vs, i .e .  
t h e  known vo l t age  Vs is  moved t o  t h e  bottom of   t he   vec to r  In. 
A f t e r   t h i s   o p e r a t i o n ,   t h e   m a t r i x  g, is  nonsymmetrical  and  the 
c u r r e n t  I has  remained i n   t h e  same place .  The second  opera t ion  
s w i t c h e s   t h e   e n t i r e   f i r s t   e q u a t i o n   t o   t h e  l a s t  p l a c e ,  so t h a t  
the  arrangement of t h e   c u r r e n t   v e c t o r  5, is  changed: Ix, 0 ,  0 ,  0 

becomes 0 ,  0, 0, Ix. A f t r   t h i s ,   t h e   m a t r i x   h a s  become symmetrical 
again  and  the unknown c u r r e n t  I i s  placed a t  the  bot tom of t h e  
c u r r e n t   v e c t o r .  Xhen bo th   ope ra t ions  are carried o u t ,  tern (10) 
becomes : 

n 

X 

X 
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G1+G3  -G3 0 1  1 v2 
I 

I 

-G 0 

-G3  -G5 I 0 v3 G3+G4+G5 (11) 0 

0 
I 

-G5 G2+G5 I -G """~"""""""""""""------ 2 

Ix V S -G1 G2 I G1+G* 

""- ----" v4 
0 

1 
I 

I 
0 

This  term can   be   wr i t t en   i n   t he   condensed  form as 

"n 
V 

"s 
I 

I 
"x 

From t e r m  (12) w e  g e t :  

The f i r s t   e q u a t i o n  from (13) qives :  

Nnn -n G v = '2, - gns Xs' I 

and f u r t h e r  

Thus the   desc r ihed   p rocedure   e l imina te s  a numher o f   t he  unknowns 
i n  the system  and  includes  vol tage  sources .  The second  equat ion 
from (13), a f t e r   c a l c u l a t i n g   t h e  node vo l t ages  yn from (141, 
e n a b l e s   u s   t o   c a l c u l a t e   c u r r e n t s  zx which flow through  the 
vo l t age  sources. 

17 



I 1  v2 I 

I f   t h e  ne twork   conta ins   o ther   vo l tage   sources   wi th  one grounded 
pole, t hey  are e l imina ted  by switching a l l  columns  which  contain 
t h e   v o l t a g e s  Vs and   the  rows w h i c h   c o n t a i n   t h e   r e l e v a n t   c u r r e n t s  

I>; t o  t h e  r i q h t   s i d e ,  i .e.  t o  the   ho t tor?  of t h e   m a t r i x  term. 

h) Voltage  sources   connected i;e-tvreen zny 

t v o  nodes 

I n   t h i s  case, the nroccc?urc? is xor2 complicated and is r a r e l y  
aFpl ied  i l l  the e lec t r i ca l  ne tvor?  noclal anal;ysis.  Zecause of t h i s ,  

the e n t i r e  algebraic vrocedurc 1:ij-l-1 12ot he given.  T h e  b a s i c  7)rj-n- 
c i p l e  invo1vec:i i s  covered 3 r i e . f l y .  ?or a vo l t age   sou rce   such  as 
t h a t   i n   F i g .  9 ,  the netvorl;, where the   vo l t age   sou rce  V is pla.ce!.:, 

S 
' call he dcscr ihet i  as i f  it cons i s t ed  of t7;ro s e p a r a t e   v o l t a q e   s o u r -  

ces \75. A f t e r   t h i s ,   t h e r e  are two vol tage   source   h ranches  and. 
node V4 i s  eliminatec!. i'he series connect ion   bc tvcen   the   vo l taqe  
and t h e  conc?.uctance is changed  regarding  :;orton's  theore:? x i t h  

a Taral le l  connection  hetween the c u r r e n t   s o u r c e   a n d   t h e  concluc- 
t ance  as shoyrn i n   r i g .  9.  

18 



Y 
_ .  

~ i g .  9 .  A voZ tnge   source  which . i s  connec ted  
het.ueen  two nodes .  I 

19 



3.1. Gaussian  Elimination 

Chapter 2 shows hoor matrix 5 an6  vector I are  obtained,  thus 
the  network  is  described by 5 En = Isn. The  node  voltaqes 
solution  is  symbolically  written  as 

“s ~ 

V = G  I 
“n w “sn 

-1 

where g-l is  an  inverse  matrix of g. T h e  solution  will Se explai- 
ned  as it is  the  custom  in  mathematics  in  the  exan9le 

or,  rewritten  as 

x = %  b .  -1 - 

The  solution by Craner’s  rule  requires n! operations  and  cannot 
be  used  for  larger  matrices. (lo! = 3,628,800, and 20!=2.432010~~). 

Eecause  of  this,  the  systen  is  solved  by  the  Gaussian  elimination 
method, or the  modified  Gaussian  method  which  is  sometimes  called 
Crout‘s  reduction.  This  procedure  requires about n / 3  operations 
where  n is the  number of unknowns.  The  solution  of  the  Gaussian 
method  involves  eliminating  the  first  unknown  from  the  first 
equation  and  inserting  it  into  all  (n-1)  remaining  equations.  The 
procedure  will  be  described  in  an  example  of  three  equations  with 
three  unknowns  using  the  modifiel!  Gaussian  nethod. In the  original 
Gaussian  elimination,  the x1 is  eliminated  from  the  first  row,  and 
according  to  the  modified  method  term all x1 is eliminated. So, we 
have 

3 
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I 

all a12  a13 

a21  a22  a23 

bl x1 

X 2 
= 

b2 
a 31 a32  a33 I b3 x3 

which  can be r e w r i t t e n  as 

all a12  a13 

a 
a a32  a33 
31 
11 
- 

3 

a a 11 12  a13 

1 
a21  a22  a23 

a31 ' a  32  a33 

(17) 

El imina t ion   of  allxl from t h e   f i r s t   e q u a t i o n   g i v e s  : 

all x1 = bl - a12  x2 - a13  x3 . 
By i n s e r t i o n   t h a t   i n t o   t h e   s e c o n d   a n d   t h e   t h i r d   e q u a t i o n  w e  have: 

- 
all 

(bl-a12 x2 - a13 x3) + a 22 x2 + a23 x3  = b2 

a 

a (bl-a12 x2 - a13 x3) + a32 x2 + a33 x3 = b3 , 31 
11 
- 

21 



a n d ,   a f t e r   r e d u c t i o n ,  

a 2 1  a21 a 2 1  

' 11 a12)X2 + !a23 - a13) x 3  = h2 - - a % 

a 
all a12)x2 + (a33 - a a 13  ) x 3 = h j - -  

11 11 

31 
" a31  31 a 

a bl 

or ,  i n  a s h o r t e r  form 

1 1 1 a22 x2 + a23 x 3  = b2 

1 1 1 a32 x2 + a33 x 3  = b3 . 

The desc r ibed   p rocedure   e l imina te s   t he  unknown xl,  i .e. t h e  
o rde r  of the   sys tem i s  reduced  from n t o  (n-1).   Continuing 
t h i s  proced-ure  by  eliminating  x2 gives: 

1 a 1 
3 2  1 

2 2  

1 32 al 1 - -  1 2 3 ) " 3  = b3 - - 
a 

a (a33 1 h2 
"22 

or 
2 2 

a33 x3  = b3 . 
A f t e r   t h e   e l i m i n a t i o n  

all "1 

0 

0 

has  ended, t he  r e s u l t  is: 

+ a12 x2 + a13 x3  = b1 

+ a22 1 x2 + a Z 3  1 x3 = b2 1 

+ o  2 2 + "33 x3 = b3 . 

The unknowns may be e a s i l y   c a l c u l a t e d  from term ( 1 9 ) .  Prom 

2 2  



equat ion  (19.c) : 

x3 = b / a  2 2  
3 33 

I n s e r t i n g  x i n t o   e q u a t i o n  (19.b) g i v e s  : 3 

Note t h a t   t h e   e l i m i n a t i o n  

which g ives :  

The ! t  

is done i n   t h e   f o l l o w i n g  sray : 

"11 a a 12 

0 

0 

a 1 22 

a 1 32 

a 1 23 

1 
33 a 

X 1 
/ 

x2 

"3 

X 1 

x 2  

3 

z l imina t ion  i s  r e p e a t e d   u n t i l   t h e   l a s t  unknown i s  reached. 

The impor tan t   in format ion  i s  t h e  number of o p e r a t i o n s   r e q u i r e d  
f o r  t h e  Gaussiam e l imina t ion .  

According t o  the descr ihed  proced-ure  the  fol lowing is  needed 
( D : d i v i s i o n ,  M : m u l t i p l i c a t i o n ,  and S : s u h t r a c t i o n  ) :  
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ELIMII.IRTION F I R S T  REDUCED VECTOR 
COLUMN MATRIX 3 

D rt  S M 

SOLUTION 
X 

S 1.1 S D  

Xn-l 

n-  1 n-1 n- 1 n-1 n-1 n-1 n-1 

i=l i=l i=l i=l i=l i=l i=l 
c i2 c i2 c i2  Ci  Ci  Ci  Ci n 

APPROXIPIRTELY n2/2  n3/3  n3/3  n2/2  n2/2  n2/2  n2/2 B 

The  number of operations  is  defined with two  types  of  sums  of 
real  numbers , C i  and C i2: 

n 

i=l 
Ci ' =  (n+l)n because  the  given sum is  the  re91  number 

2 
arithmetic  series  which  gives + 7 , and 
is  approximated  with 

n n 
n2 

Ci 
i=l 
" 2  is  the sum of the  real  numbers'  squares,  and  is 

equal to 

n 3 n  2 n  
3  2 6 - + - + -  
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. 

3 1) 
which is  approximated.  with . 
Thus r educ t ion  of ma t r ix  $ r e q u i r e s  

n n 
3 2 3 

3 2 3 
“ v ! + L 3 + - S  

I 

3 
where o n l y   t h e   f i r s t  term 3 Pi i s  kept ,   because it needs  the n 

most   opera t ions   and   the   longes t   execut ion  time. Vector .- h 
rear rangement   requi res  

2 n 2 - PI + - 2 2 n S  

2 
o p e r a t i o n s  of which  only t h e  f i r s t  term, - PI, i s  kept .  To 

ob ta in   t he   so lu t ion   approx ima te ly  - M opera t ions  are needed, 

For example, a system  of 30 unknowns will need : 

n2 2 
2 

3 - + n2 = 9000 + 900 = 9900 n 
3 

3 
opera t ions .  I t  i s  obv ious   t ha t   mu l t ip l i ca t ions   r equ i r e   mos t  
of t h e  t i m e  and e f f o r t  i n  c a l c u l a t i o n s .  

A numerical  example f o r  t h e  

2 2 3  

4 5 8  

6 2 2  

Gauss ian   e l imina t ion  i s  

x 1 

I x *  2 = 

1 x 3  4 

1) 
n 

i=l 
An approximate term for  C i2 can  he  obtained from the  i n t e g r a l  
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2 2 3  

2 

x1 

x2 

1 

= o  

1 

I-;"- 
"- "- 

1 
3 1-4 -7  X 3 

2 2 3  

X 2 '\1 2 

X 1 

. 2 

3 

1 

= o  

1 

- -\ 

\ 

3 - 4 ;  1 X 

The s o l u t i o n  i s  : 

x3 = 1, 

x, = c) - 2.1  = -2 , 
x = (1-3-1 - 2(-2))/2 = 1. 
1 

Checking i s  done by i n s e r t i n 9   t h e   s o l u t i o n s   i n t o  t h e  g iven  
equat ions  : 

2 - 4  + 3 = 1  

4 - 1 0 + 5 = 2  

6 - 4  + 2 = 4 .  

2er;ardincj terrc ( 1 6 ) ,  2 = 2 11, i f   v e c t o r  11 chanqes, t h e  ma t r ix  
A r ena ins   una l t e red   and  the s o l u t i o n  x i s  ohta ined  hy a simple 
Froceclure of mul t ip ly in5   ma t r ix  3 w i t h   t h e  new v e c t o r  h. !;hen 
app ly ing   Gauss i an   e l imina t ion ,   i n s t ead  of t h e   i n v e r s e  matrix A, , 
t h e  unknown vec to r  - x is  c a l c u l a t e d  from term ( 1 9 ) .  Though i t  
appears  a t  f i r s t  t h a t  t h e   v e c t o r  - b change   requi res   the   repea t ing  
of t h e  whole  Gaussian  elimination, i .e. approximately n /3 
o p e r a t i o n s ,   t h i s  i s  n o t  necessar:.; ; and t h e  ntun.!3er of q e r a t i o n s  
i s  only n ( i f  only v e c t o r  5 is  changed). It i s  obvious t h a t  t h e  
c o z f f i c i e n t s  a do no t   have   t o  he c a l c u l a t e d   a g a i n   i n  term (19) 
hu t   on ly   vec to r  b (.bl, b,, b3, . . 1:) ; ancl f o r   v e c t o r  h 

-1 1 - - 
-1 

Iv - -1 - 
-1 

3 

2 - 
i j  1 2  n-1 - L. 12 - 
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processing  the  terms  in  the  columns  vhich are placed unc?.sr the 
diagonal  are  used.  These  terms  Zisa:?cear dur ing  the  elinination 
and  zeros  appear  in  their  ?laces. 

However,  if vre keer,  these  terms, the calculation,  because of the 
vector h change,  requires - for  solvinrJ  vector 12, and  n / 2  

operations  for  getting  the solution, totally n2 oFerations. 

n2 2 - 2 - 

This  Ga.ussian  elimination  supplenent, !)y which a l l  terms  under 
the  main  diagonal  are  kept, leads te  the so called LC' 
decomposition.  Let  the  matrFx of te.rn (19) be the  upper 
triangular  matrix 3 : 

a 12 al 3 

l o  0 2 
a33 

1 U 12 u1 3 

0 u22 "23 

0 0 u33 

I 

The  terms  which  appear  under  the  diagonal  during  the  elimination 
are  called  the  lower  triangular  matrix L, : 

1 0 0 0 0 11 

a 1 0 1 
21 
1 2 
31  a32 I '31  '32 l33 

- - l21  l22 0 - - L  

a 1 

where  diagonal  terms  vhich  are  all  equal I are  added  to  the terns 
under  the  diagonal. 

It can be  shown  that : 

Substituting  matrix X .with E U, we proceed: 
Iv 

. .  
A x = & ,  (21.a) 
w -  

27 
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which g i v e s  
(21.d) -1 

L l r = E  & .  

. Now, by i n s e r t i n g  y i n t o  (21 .6)  we o b t a i n  

x = %  y .  -1 - (21.e) 

Fur ther   examinat ion   of  terms ( 2 1 )  r e v e a l s   t h e   f o l l o w i n g  : 

term (21.a), i.e. ma t r i ces  2 a n d , g ,  are obta ined  by the  normal 
Gaussian  e l iminat ion  procedure;  tern (21.d) ,  i .e .  vector y ,  i s  
the   symbol i c   r ep resen ta t ion  of t h e   v e c t o r  - h e l imina t ion   procedure ,  
term (21.e) i s  a symbol i e   r ep resen ta t ion   o f   so lu t ion  - x f r o n   t h e  
reduced  matrix 2. 

3.2.  Improved Precision o f   t he   So lu t ion  

To inc rease   accu racy ,   t he   ob ta ined   sys t em2  x = - b s o l u t i o n  is 
c a l l e d  zl + xn. I n s e r t i n g  + x i n t o   t h e   o r i g i n a l   e q u a t i o n s  1 n 
g i v e s  : 

- - 

all  X1 + a12 X2 + .... + aln x = bl # hl  n 

- - 
a21 x + a22 x2  + .... + a2n xn = g2 # b2 

- 
1 . . . 

. . . . . . . . . - 
a x + a  

- - 
n l  1 n2  x2 + e . . .  

+ ann n x = En # bn 

By t h i s   p rocedure   t he   ca l cu la t ion   accu racy  i s  estircated.  I f  a l l  - 
x1 t o  Zn 
From t h e  

28 

are c o r r e c t l y   c a l c u l a t e d ,   t h e n   a l l   b p s  

d i f f e r e n c e   ( b l  - E l )  t o  (bn - bn) , t h e  
- must  equal b. 

c a l c u l a t i o n  



precision  is  estimated.  This  simple  control  procedure  allows 
improvement  of  the  solution  accuracy by subtracting  the  calcula- 
ted  equation  from  the  original  one: 

- 
all (x1 - x,) + a12(x2 - x2) + ... . + aln(xn 

- - - xn) = bl - 5, 

. . 

or 

. 

Axl n2 + a  Ax2 + . . .. .+ ann Axn = Abn. 

Since  matrix 5 has  remained  the  same,  and  only  term bl bn  has 
changed  (into bl - bn)  the  calculation  is  repeated  with  only  n 2 

operations  to  solve  for  the  unknowns 
are : 

Ax1 + Ax,. New values of x 

x1 = x1 + Axl - 

. 
x = x + Axn - 
n  n 

This  procedure  can  be  repeated  several  times  to  obtain  the  best 
accuracy . 
3 . 3 .  The  Inverse  Matrix 

Using  Cramer's  Rule  to  obtain  the  inverse  matrix is  a  very 
complicated  procedure.  The  Gaussian  elimination  method  requires 
approximately n3 operations  and  is  much  more  efficient. 
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It is  done as folldws : 

the  system  x = b  is  given;  the syrrholic  solution is x = & -1 b. 
The  inverse  matrix 3 elements  will he called hij (to  differ 
from  the  matrix 5 elements a ). 

SuFposing  that  matrix &-' is known, then : 

- - 
-1 

- - 

ij 

x2 = bl + aZ2  b2 + .... + a b 2n n . . 
0 

+ a  nn bn 

If all vector b elements  are  zeros,  except  the  first  one  which 
is bl = 1, then  the upper systen  is  reduced  to: 

- 

x = a  1 11 

x = azl 2 . 
x = a  n nl 

If all bi = fl except b = 1, then : 2 

x1 = u21 

. 
x = a  n n2 

Now, Gaussian  elimination will be  applied  to  the  above  system 
A x = h, where b is : 
rJ- - - 
30 



which  can  be  writ ten as : 

The f i r s t   s o l u t i o n   v a l u e s ,  x1 5 xn,  have t o  be   i nden t i ca l   w i th  
equa t ions   (23 ) ,  the  second series va lues   have   t o   be   i den t i ca l  
wi th   equat ions  ( 2 4 ) ,  etc.  The o b t a i n e d   s o l u t i o n s  (x1 4 xn) there- 
f o r e   r e p r e s e n t   t h e   i n v e r s e   m a t r i x   c o e f f i c i e n t s . T h e  number of 
needed  operat ions is  : 

- mat r ix  2 s o l u t i o n   r e q u i r e s  n / 3  opera t ions  
- so lv ing  t h e  r i g h t - s i d e  column, h, n / 2  opera t ions  2 

- c a l c u l a t i n g  x1 + x n / 2  o p e r a t i o n s  

3 

2 
n' 

Now t h e   m a t r i x   s o l u t i o n  i s  not   necessary  any more. Continuing 
from the  second column : 

- s o l v i n g   t h e   s e c o n d   r i s h t  side column  b, h u t   s t a r t i n g  
2 -  from  b2 = 1, because b = 0 ,  (n-1) / 2  opera t ions  3 - c a l c u l a t i n g  x1 + x n / 2  o p e r a t i o n s  

- s o l v i n g  the t h i r d   r i g h t  side column k, s t a r t i n g  

2 

n' 

2 from b3 = 1, (n-2) / 2  o p e r a t i o n s  
- c a l c u l a t i n g  x1 + x n / 2  opera t ions ,  etc. n'  
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Totally,  we  need : 

3 n  n  (n-1) * + (n-21~ 22 1 - + ( r +  2 + .... - + I + n - n 2 

3  2  2 2 .  

The  above  middle  term  is  equal  to : 

The  total  number  of  operations  is  therefore: 

3 n   3 n   3 3  +-+a+-=. 2 

This  requires  only  three  tines  more  calculations  than is needed 
for  the  system 5 - x = - h solution. 

3 . 4 .  Gaussian  Elinination Example 

To  illustrate  the  simplicity of the  Gaussian  elimination  the 
following FORTRAN program  for  solving  the  system  of  unknowns n 
is  given: 
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 FOR, 
C 
C 
C 
C 

C 
C 
C 

100 
101 

C 
C 
C 

16 
C 
C 
C 

18  
1 7  
1 5  

C 
C 
C 

2 
2 0  
19 

C 
C 
C 

1 

I S  

R E S E R V I N G  F I E L D  F O R   T H E   M A T R I X  A C O E F F I C I E N T S ,  
VECTOR 8 A N D   S O L U T I O N S  X 

D I M E N S I O N  A ~ 1 0 0 ~ 1 0 0 ) ~ B ( 1 0 0 ) ~ X ~ l O O ~  

R E A D I N G   M A T R I X  A C O E F I C I E N T S   A N D   V E C T O R  B 

R E A D ( 5 , l O O )  N 
R E A D ( 5 , l O l )  ~ ~ A ~ I ~ J ~ ~ I ~ l ~ ~ ~ ~ J ~ l ~ N ~ ~ ~ ~ ~ I ~ ~ I ~ l ~ N ~  
FORMAT ( 1 5 )  
FORMAT ( 10P8 r l  1 
DO 1 5  J=l ,N 
K = J + 1  

S E T T L I N G   M A T R I X  A F I R S T   C O L U M N   A N D   V E C T O R  B 

DO 16 I = K , N  
A ( I , J ) = A ( I , J ) / A ( J I J )  
B ( I ) t S ( I ) o A ( I r J ) * B ( J )  

S E T T L I N G  REDUCED (N-l)*(N-l) M A T R l X  A P A R T  

DO 1 7  L=K,N 
DO 1 8  M=K,N 
A ( L , M ) r A ( L , M ) = A ( L , J ) * ( J , M )  
C O N T I N U E  
CONT I NU€ 

CALCULATING  UNKNOWN  VECTOR X 

C = O r  
DO 19 J=l ,N 
L=N-J+l  
K = N - J  
X ( L ) = ( B ( L ) - C ) / A ( L , L )  
C=O. 
I F ( K - 1 )  1,2,2 
DO 20 M+L,N 
C = C + A ( K I M ) * X ( M )  
C O N T I N U E  

WRITING SOLUTION, VECTOR x VALUES 

W R I T E ( 6 r l O Z I   ( X ( J ) r J = l , N )  

1 

102  F O R M A T ~ l X ~ 1 O F 1 2 r 3 ~ / ~  
STOP 
END 
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3 . 5 . Sparse  xatrices 

Matr ix  g, which describes an  electrical  network has' a g r e a t  
percentage  of m a t r i x   c o e f f i c i e n t s   e q u a l  to  zero.  This  large 
number of zeros   should   be   e l imina ted  so t h a t   t h e   o p e r a t i o n  i s  
done   on ly   w i th   coe f f i c i en t s   o the r   t han   ze ro .  The small number 
of  non-zeros ( N Z )  is t h e   r e s u l t  of t h e  electrical  network na- 
tu re .   Mat r ix  5 is  c o n s t r u c t e d  as fol1Ows : 

4 
5 

I 
I 

I 

5 - -  - 
0 -G1 0 -G2 (Gl+GZ:G3+G4) 0 -G3 7 

I 
I 

I n   one  row t h e r e  i s  a d iagonal  term and as many terms as t h e  
number of   other   nodes  with  which  the  ohserved node is  connected 
(we do not   count  a connect ion to  t h e   r e f e r e n t   n o d e ) .  

I n   t h e   g i v e n   e x a m p l e ,   t h e   f i f t h  r o w  of   mat r ix  2 has 1 + 3 = 4 

elements.  Electrical  nett77orks general ly   have 2 t o  6 branches 
connected t o  one  node.  Suppose t h a t   t h e   a v e r a g e  i s  5 elements  
pe r  row and 50 nodes.  Then,  matrix G- w i l l  have 50 x 5 = 250 NZ 
e lements  and 2250 Z(zero)   e lements ,  i.e.of 2500 e lements   there  
will be 1 0 %  N Z  and 90% Z. It  is  clear t h a t   s u c h  a great number 
of  Z elements  should be e l imina ted  t o  obta in  a more e f f i c i e n t  
c a l c u l a t i o n .  

The second  property i s  t h a t   m a t r i x  i s  symmetrical   regarding 
t h e  main diagonal .  S i n c e  matr ix   does  not   contain  any  dependent  
c u r r e n t   s o u r c e ,  it is  symmetrical. However, i f   t h e  network . 

conta ins   dependent   cur ren t   sources ,   then   there  are some non- 
symmetrical terms too. This  may be  demonstrated by the  Ebers-  
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E:Ioll's t ransis tor  nodel   (Fig.  10). 

Fig. 10. Ebers-Moll's transistor  model  gives a 
symmetrical  structure  to t h e  ,G matrix. 

I n  t h e  given  example  every  dependent   source  gives   three non- 
synrnetr ical  terms. I t  is  f o r t u n a t e  t h a t  5ranch 5 ,7  and  branch 
5,11 are in te rdependent .   In   such   cases ,   vhere   there  i s  a rec ipro-  
cal  dependence  of two branches ,   the   mat r ix  i s  symmetrical;  hovever, 
s y m e t r i c a l   c o e f f i c i e n t s  do n o t  have the s a m e  values. Thus vhen 
cons ide r in9   spa r se   ma t r i ces  the i r  symnc?trical s t ruc ture   wi l l -   be  
t a k e n  in to   accoun t .  

Thus t h e r e  are over  90% zero  elements,r .atrix  has  symmetrical  
s t r u c t u r e ,  and t h e  number of non zeros i s  d i f f e r e n t  ner given row. 
Gauss ian   e l imina t ion   should  be perfom,ed i n  a way such   t ha t  it 
does not   occupy  too  nuch  of   the memory, and t h a t  it does   no t  
r e q u i r e  too many operat ions.   Furthermore  note   the  fol lowing : t h e  
ma t r ix  r; c o e f f i c i e n t   q i j  will be processed 011117 when f r o n t a l   c o e f -  
f i c i e n t s   i n   t h e  row i, and  column j, d i f f e r  from z e r o , . r e g a r d l e s s  
of whether t h e  c o e f f i c i e n t   g i j  # 0 ,  o r  gij=O. I n  case gij=O 
a f t e r   p r o c e s s i n g ,   t h e   e l e m e n t  becom.es q # 0, so a net7 non-. 
zero  element is genera ted .  The f a c t  t h a t  Gaussian  e l iminat ion 

i j  
L 
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I 

g e n e r a t e s  new non-zeros  leads to  the  growing  nunher of elements  
i n   m a t r i x  g dur ing   t he   e l imina t ion .  The purpose i s  t h e r e f o r e  t o  
a r r ange  rows and  columns so t h a t  a mininun of non-zeros i s  
g e n e r a t e d   d u r i n g   t h e   e l i n i n a t i o n .   T h i s  k r i l l  occuyy  the l eas t  
amount of  words i n  memory, and will r e q u i r e   t h e  least  nvmher o f  

opera t ions .  

S ince   the   Gauss ian   e l in ina t ion   procedure   h .as   been   covered ,   s tor -  
ing  and  arranging  of  t he  mat r ix  5 elements ~7i.11 be denons t ra ted .  

a )  blatr ix  element  s t o r i n g  

Non-zero e lements   a re   read  by rows a s  follov7s 

row column va lue  

X 

x 
cr 
.r 

X 

. 

. 

R ( 1 )  = 1- C ( 1 )  = 1 

R ( 2 )  = 4 C ( 2 )  = 3 
R ( 3 )  = 

- C ( ? )  = 2 

C ( 5 )  = 3 

C ( 6 )  = 7 
C ( 7 )  = 9 
C ( 8 )  = 5 

A(1) = x 
A ( 2 )  = x 

. 

. 

. 
A ( S )  = x 

. 
0 

If ma t r ix  G, i s  n x n ,  and N Z  is  the nunher of non-zeros,   then 

n words a r e  needec! f o r  the row index, R 

NZ words are needed f o r  the column index, C 

N Z  words are needed for   the   e le inent   va lue ,  h 

i.e. t o t a l y  n + 2 N Z  words According t o  the  given  example  with I 
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n = 50  and  10% NZ elements,  this  gives  50 + 250 + 250 = 550 
words  (instead of 2500) 

b). Matrix 5 arrangement 
In general  the  matrix  is  arranged so that  the  row  and  column 
with  the  least  elements  is  in  the  first  row.  The  row  and  column 
with  the  most  elements go in  the  last  row. 20ws and  colunns  are 
used  because  in  the  matrix  with  symmetrical  structure,  row j and 
column j have  the  same  number  of  elements. 

Therefore,  switching  the  row  means  that  the  column  must  also  be 
switched  to  keep  matrix 5 structurally  syrmetrical. 

After  this  first  arrangement  is  done,  there  are  several  methods 
on  how  to  proceed  with  the 5 matrix  rearrangement,  one of which 
is given  in  reference ( 5 ) .  Let  us see one  of  the  possible  meth- 
ods  whose  principle  is  given  in  reference ( 6 )  . 
The  top  of  the  matrix 5 has  row  with  the  least  elements,  say it 
has  one  off-diagonal  element.  This  row  does  not  generate  new 
non-zeros.  Regarding  Fig. 11, after  eliminating  the  first  row 
and  column,  row IC will lose I non-zero  and  will  become  a  row 
with I off-diagonal  element  too.  Thus  row k ,  too,  should  be 
switched  to  the  top  of  the  matrix.  In  other  words,  after  the 
first  unknown  is  eliminated we treat  the  rest  of  the matrix,:, 
i.e.  (n-1)  (n-1)  matrix as follows: we  scan  (n-1)  rows  left 
and  the  row  with  the  least  elements  is  put on the  top,  and 
the  second  unlcnown  is  eliminated.  If  some  new  elementsaccording 
to  the  elimination  nature  are  generated  they  should  be  added 
into  the  proper  rows. The  same  procedure is repeated  for 
(n-2)  (n-2)  matrix  and so on. At the  end  a  row  elimination 
order  is  obtained  which  has  to  be  stored  in  a  separate file. 
This  file  is  used  when  the  Gaussian  elimination of the  same 
matrix & is  to  be  repeated.  This  procedure  gives  very  good  resu- 
lts with  respect tominimumnumber of  operations  and  minimum  number 
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of new genera ted  elements (so c a l l e d   " f i l l - i n " )  . The very m i n i m u m  
i s  not   ob ta ined   and  as f a r  as is known such  method  has  not  yet  

been  proposed a t  p re sen t .  

lk 
X I 

X 

x x  

' kl X: x x  
I 

F i g .  11. An exampZe  showing  that   row and column 
w i t h   t w o   e l e m e - n t s  do n o t   g e n e r a t e  a new 
e l e m e n t .  

An example f o r   m a t r i x   w i t h  2 4  unknowns and  an  average of 4 elem- 
e n t s   p e r  row ( inc lud ing   d i agona l  term) is  g iven .   Xat r ix  i s  gene- 
ra ted  randomly  using  the  l lonte   Carlo  l le thod (Fig. 12.a). Gaussi-  
a n   e l i m i n a t i o n   r e s u l t   e x e c u t e d   o n   t h e   o r i g i n a l l y   g i v e n   m a t r i x  
i s  shovm on  Fig. 1 2 . 5  and t h e  number of rnu l t iF l i ca t ions   ( and  
s u b t r a c t i o n s )  i s  452, number o f   d i v i s i o n  i s  86 and number of 
f i l l - i n s  i s  100 .  Khen t h e  reorderingschemedescrihed above w a s  
app l i ed ,   Gauss i an   e l imina t ion   r e su l t  i s  shown i n   F i g  1 2 . c  and  the 
number o f   m u l t i p l i c a t i o n s   ( a n d   s u b t r a c t i o n s )  is 131, number of 
d i v i s i o n s  i s  51 and number of f i l l - ins . is  30. On t h e   l e f t  column 
of   Fig.  12.c the row sequence   e l imina t ion  i s  given. 
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a )  

Fig. 12. a) Randomly  generated  24x24  matrix  with an average of 4 
nonzero  elements  per  row, 

b )  Gaussian  elimination  res,ult  executed on the  given  matrix, 
c) Gaussian  elimination  result  after  reordering. 



4. SEKSITIVITY  COEFFICIENTS 

A f t e r   t h e  node vo l t ages  are defined-, it i s  o f t e n   n e c e s s a r y   t o  
calculate t h e   s e n s i t i v i t y  of an   i nd iv idua l  voltage to the  network 
parameter  changes. A s e n s i t i v i t y   a n a l y s i s  i s  usua l ly  done €or on- 
l y  one  node, i.e. t he   ou tpu t   vo l t age .  Here, the  descr ibed  proce-  
dure   concerns   the   l inearne tworks   and  i s  des igned   for   use  of 
t h e   t o t a l   d i f f e r e n t i a l .  Let Vo = f(xl, x 2 ,  ... x ) be   an   ou tput  
vo l t age ;  xi s u p p l i e s  t h e  network  parameters - r e s i s t o r s   a n d  
cur ren t   sources .The  t o t a l  d i f f e r e n t i a l  from Vo is  

n 

- a f  a f  dXl + - dx2 + ... + - af 
dVo - ax, a x 2  axn axn . 

The s o l u t i o n   r e q u i r e s   f i n d i n g   t h e   d i f f e r e n t i a l  dVo, b u t  f r o m  t h e  
ma t r ix  t e r m  f o r  the network. 

The network i s  desc r ibed  by t h e  term 

and t h e  t o t a l   d i f f e r e n t i a l  i s  equal t o  

which, wi th  2 = gD A,L , f o l l o w s   f o r  dV -n 

L e t  the  ma t r ix  5-l A = €3 and A xn = xb. The upper term is  w r i t t e n  
i n  the   ex tended  form (n  i s  t h e  number of nodes, and h is t h e  
number of branches)  as: 

t 
- 4  cv 
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dvl . . . .  
dvr 

- - 
. 

dvn 

Matrix H represents  the  sensitivity  coefficients  matrix,  because 
yv 

is  the  voltage  sensitivity of the  the  r-th  node  in  relation 
ri 

to a current  source  in  the  branch j. S is  the  voltage  sensiti- 
G-2 

L J  
vity  of  the  r-th  node  in  the  relation  to  the  branch j conductivity. 

To find  the  matrix H = 5 .A, since  matrices G and A have heendone, 
.the  only  problem is the  matrix  inversion  which  requires 
approximately n3 operations.  The  multiplying  of  matrix g-' by 
A and  other  operations  is  not  a  big  burden  for  the  computation. 
To determine  the  sensitivity  coefficients of one  output  voltage 
(for  example  node  V  voltage),  there  is  no  need  to  calculate 
the'entire coefficient  matrix 8; but -only its  row r, because: 

-1 
.rJ N N 

..v 

r 

Ccfore  the  above  mentioned H matrix  r-th  row is  obtained,  the 
r-th row  of  the  matrix 5-l must  be  done.  The  previously  described 

r 

matrix  inversion  procedure,  using  Gaussian  elimination  (see  page 
29), gives  one  column  per  one  inversion  step. To calculate  the 
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sensitivity  coefficients of one  row,  the  matrix g inversion  should 
be  executed by rovs.  This is  possible  and  is  done  with  the  help 
of the  following  relation: 

(Gt)" = (G . -1 t 

The  purpose of this  relation is to  invert  the  transposed  matrix 
G by  the  usual  procedure, i.e. columns.  After  this,  the  inversed 
matrix 2" column  is  equal  to  the  inversed  matrix G+ row.  Thus  the 
sensitivity  coefficients  of  the  desired  output  node  voltage  are 
obtained by 3- operations. n3 

rJ 

The  sensitivity  application  and  its  connection  with  the 
error of a  very  simple  example is as follows (Fig. 13) : {I;:. Vs = 10 V, 

I? = l o r ?  G1 = 0.1 l/Q 1 
Y R 2 =  5 R  G2 = 0 .2  l/fl 

resistor  tolerance - + 
- - - 

Fig. 13. Sensitivity  computation  example. 

relative 

10%. 

Voltage V1 sensitivity  to  the paraneter GI is 

c1 
v1 - 

- 
vo G1+G2 - -10" O o l  - 3,33 v , 

0.3 

dV1 c2 
s - 

- vo G1l 
= 10 7 = 22,2 0 . 2  -" 

dC1 (C1+G2) 2 (0 . 3) 
If the  resistor fil chanrJes for  + lo%, then G1 chalzges frorn 0.1 
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to 0.091 so G1 = 0.009 l/Q , and  the  output  voltage V1 difference 
is 

AV, = S, AG, = 22.2 0,009 = 0.202 V 
I bll I 

Working  only  with  the  relative  errors 
arranged.  like  this : 

Av, - sG G1 - AG1 
G1 T- 7 AG1 ty - - 

where 

AV. AG. 
- =  1 

v1 V1' and - - 1 -  
G I  'G1 

which  gives 

pvl = 1 3,33 22,2 - 1 PG1 = 0.667 

(tolerances),  the  term is 

'G1 

This  means  that  if It1 changes by lo%, the  voltage V1 will  change 
by 6.06%, and  in  total  this  amount  gives V1Pv1=3.33*0.0606=0.202 V. 

The  observed  change  of  value V1 and  the  relative  change Pvl 

are  obtained  from  the  same  sensitivity  coefficient,  the  only 
difference is in  the  form  in  which  the  solution  is  given. 
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5. NONLINEAR DC PJETWOFXS 

The  nonlinear  network,  other  than  the  linear  elements,  contains 
nonlinear  elements  such as diodes  and  transistors. A nonlinear 
element  cannot  be  directly  presented  in  matrix 5 with a constant 
term. So, in the  nonlinear  network  the  operating  point of some 
nonlinear  element  is  defined by Newton-Raphson's  method.The.meth- 
od consists of the  following:  to  find  an  intersection of func- 
tion y = f (x )  (Fig.  14)  with  the  abcissa,  an  x1  is  chosen  and 
y1 = f (x,) is  defined  (point A). 

Fig. 14. ExampZe of Newton-Raphson*s 
method. 

A tangent y4=f  .(xl), is  drawn  through  point A. The  intersection 
of  the  tangent  and  abcissa  is x,. The  procedure  is  repeated  un- 
til  either y or  the  absolute  difference (x, - xl) = Ax becomes 
as  small  as  is  required. 

The  procedure  is  now  adjusted  for  analyzing  nonlinear  electrical 
networks  with a larger  number  of  elements. I t  is understandable 
that  in a complicated  network,  gradually  approaching  the  solution 
cannot  be  illustrated  graphically.  The  entire  procedure  will  be 



described  by  the  example of a  series  connection  between  a  diode 
and  resistor  (Fig. 15) and  then  applied  to  any  network. 

F i g .  1 5 .  A s i m p l e   n o n Z i n e a r   n e t w o r k .  

The  given  network  can  be  calculated  by  the  algebraic  procedure 
only  if it .consists  of  linear  elements.  Thus  the  diode  must  be 
linearized  (Fig. 16). 
-I- 

' 1  

The  given  network  can  be  calculated  by  the  algebraic  procedure 
only  if it .consists  of  linear  elements.  Thus  the  diode  must  be 
linearized  (Fig. 16). 

I )  

vO V 

m 
9 

m 
9 

d 
n A 

n 

F i g .  1 6 .  D i o d e   p r e s e n t a t i o n   u s i n g   t h e   l i n e a r   m o d e l .  
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With a known d iode   vo l tage ,  

vD 
= (e - 1) , vT - - kT L. 26 rnV 

cl 
- 

. .  

Through t h e   p o i n t  ID, VD a l i n e   w i t h   t h e   s l o p e  GD is drawn: 

I = GD (V - V,) + ID, i f  V=O w e  have 

IDo = ID - GD VD or 

ID+'S IDo = GD * (VT - VD) - Is = G V", (1-In -) -Is . D T  IS. 

Between  nodes rn and n, i n s t e a d  of the  diode,   the   conductance GD 

and   the   cur ren t   source  IDo are connected. 

In t h e  example of Fig.  *16, t h e   d i o d e   i n i t i a l   v a l u e s  are ID, VD, 

(Fig.   17.a) . 
The l i n e  which  corresponds t o  conductance GD i n t e r s e c t s  t h e  

conductance   l ine ,  G ,  a t   v o l t a g e  Vg. The c u r r e n t  i s  c a l c u l a t e d  
by I; = f (VG), a t angen t  i s  drawn through the new p o i n t  on t h e  
d i o d e ' s   c h a r a c t e r i s t i c ,   a n d   t h e   i n t e r s e c t i o n   w i t h   l i n e  G Is 
found. 

The procedure i s  r e p e a t e d   u n t i l   v o l t a g e  AV = (Vi - V D ) , i s  w i t h i n  ' 

t h e   s e l e c t e d  error limits. Voltage AV i s  t h e   t o l e r a n c e   ( u s u a l l y .  " .  

50 pV) because it is  n o t   p o s s i b l e  t o  c a l c u l a t e   t h e   v o l t a g e  VD. 

- .  . I .  

. .  

. I  . 

- .  
exac t ly .  

. .  

. .  



IS vD G = -  
'T e q  

Fig. 1 7 .  U e w t o n - R a p h s o n ' s   m e t h o d   a p p l i c a t i o n  
examp 1 e .  

I n  a complex  network, i n   p l a c e  of each nonl inear   e lement ,   the  
conductance GD is  p l a c e d   p a r a l l e l   t o  t h e  c u r r e n t   s o u r c e  IDo. The 
system is  so lved   u s ing   t he  node v o l t a g e s  VI 5 Vn. From t h e  node 
vo l t ages   t he   non l inea r   e l emen t ' s  (branch) v o l t a g e s  are c a l c u l a t e d  
us ing  Xb = & In. A f t e r  t he   va lue  Vb, i .e. VD, f o r   e v e r y   s i n g l e  
nonl inear   e lement  is  ob ta ined ,   t o l e rance   vo l t age  AV=(V,' - VD) is  
ca l cu la t ed   and ,  if it i s  w i t h i n   t h e  50 p V  tolerance  the  procedu-  
re is  completed. I f   n o t ,   v o l t a g e  VD for   each   nonl inear   e lement  
whose d i f f e r e n c e   v o l t a g e  AV i s  n o t   w h i t i n   t h e   g i v e n   t o l l e r a n c e  i s  
set equal  to vo l t age  V i  and new va lues  G and ID0 are c a l c u l a t e d  

t 

D 
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and  inser ted   in to   the   ne twork .  The procedure i s  r e p e a t e d   u n t i l  
t h e   d i f f e r e n c e   v o l t a g e  AV fo r   eve ry   s ing le   non l inea r   e l emen t  i s  
less than  50 p V .  

Electrical networks  nonl inear   e lements  are d i o d e s   a n d   t r a n s i s t o r s  
t h a t  are modeled us ing   d iodes .   Because   o f   th i s  w e  have t o  n o t i f y  
some exponen t i a l   func t ion  e D/VT cha rac t e r i s t i c s . .   Dur ing   t he  
e l imina t ion ,  some d i f f i c u l t i e s  can a r i s e  i n  t h e   c a l c u l a t i o n s  if 

V' and VD (new and   o ld   d iode   vo l t age   va lues )   d i f f e r  by more than  
2VT, i.e. (Vg - VD) > 2VT.This i s  e x p l a i n e d   i n   t h e   f o l l o w i n g  
example : 

V 

D 

vD 
I ~ = I  S e ? ,  

v,+2vm \ 

. 
Then IJID = e2 = 7 , 8  . 
Due t o  the  exponent ia l   dependency,  a new c u r r e n t ,  I;, i s  e i g h t  
times l a r g e r   t h a n   t h e   c u r r e n t  ID. Such a l a r g e   d i f f e r e n c e  i s  un- 
d e s i r a b l e  and  therefore   the  growth of the   d iode   vo l t age  i s  
r e s t r i c t e d   t o  2VT = 52 mV, i.e. Vg = VD + 2VT ( in s t ead   o f   t he  
c a l c u l a t e d   v o l t a g e  Vi) 

A modif ica t ion   of  Newton-Raphson's  method provides  better answers 
to t h e  p e c u l a r i t i e s  of the   d iode  characteristics. This  is shown 
i n  Fig.  17.b. 

A f t e r   o b t a i n i n g   t h e   s o l u t i o n   t h e   n o n l i n e a r   e l e m e n t   c u r r e n t  i s  
c a l c u l a t e d   u s i n g  

I = 2D xb = G A ITn, i .e, I' t - WD - -D and ,   u s ing   t hese   cu r ren t s ,  

t h e  new va lues  GD and IDo are c a l c y l a t e d .  Sy t h i s   p r o c e d u r e ,   t h e  
s o l u t i o n  with f e w e r   i t e r a t i o n s  i s  obta ined .  
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6 . LINEAR :-AC 'NETWORKS . .  

. .  

Before  beginning  linear AC network  analysis  explanation of how' 
any  nonlinear  network  may  be  linearized  must  be  given.  Generally, 
networks  are  nonlinear because;.in addition  to R, L, C,  elements 
they  also  contain  nonlinear  and  active  elements;  diodes and-tran- 
sistors.  In  this  type of,analysis,' nonlinear  elements  must  be 
linearized  about  the  operating point'and the  values  inserted 
into  the  network.  In  the  diode  linearization  example,  the  tangent 
of the  operating  point  according  to  the  known  term  is  calculated 
as  shown: 

m 

.p n 
n 

F i g .  1 8 .  D i o d e   l i n e a r i z a t i o n  f o r  A C  

a n a l y s i s .  

DC  analysis  of  a  nonlinear  network  requires  the  diode  model 
according  to  Fig. 16, while  AC  analysis  needs  only  the  conductance, 
GD (Fig. 18). Once  we  have  performed  DC  analysis,  all  models of 
nonlinear  elements  needed  for AC analysis  are  existing. 
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After  the DC state  is  defined,  all  nonlinear  elements  are 
introduced  into  matrix 5 with  adequate  conductances, GD, and 
current  sources, Conductances, GD, are kept in  the  network 
while  current  sources IDo are  removed.  After  this  procedure, 
linear AC analysis  may  begin. 

'DO' 

Generally  the  matrix  terms  of DC analysis  are  used.  This  provides 
the  admittance matrixz, instead of the  conductance  matrix s, and 
voltage xn and  current  sources Ls vectors  are  complex. So, we 
write : 

Y v* = I* e -n -snc 
1) 

where 

N Y = l~~~ + j B ~ ~ J  , -n V* = -n v + j "n , 

"sn "sn I* = I  + 

The  upper  term  could he used as it  is,  in  which  case  the  first 
row of term (27) will  be : 

This  form  is  inconvenient  for  the  work on the  computer, so it 
must  be  rearrenged.  First,  the  standard  branch  for AC networks 
is  defined  (Fig. 19) 

Mark V* represents  the  voltage  having  the  real  component V and 
the  imaginary  component 8. 
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Fig. 1 9 .  A s t a n d a r d  branch f o r  A C  

n e t w o r k s .  

A diagonal  admittance  matrix is 

Y = l~~~ + j ~~~l 
and  can be presented  as  the sum of matrices sD and SD as 
follows: 

MD W D  
Y = G  + j , E D .  

Xow, the  procedure  for  obtaining  the  adnittance  matrix can  be 
applied  usnig  the  diagonal  admittance  matrix, i.e. 

= A G  A t +jfi14D&=G+j2m t 
c "D /cr /v 

This  term  implies  that  the  admittance  matrix  can be constructed 
from  two  matrices, & and 2, where  each  one  is  calculated  independen- 
tly  using  the  incidence  matrix 2. Thus,  matrix L i s  constructed 
using  the  previously  established  rule  (see page 8 )  without  regard 
to  reactive  branches of the  network,  Xatrix $is constructed  using 
the  same  rule  without  regard  to  resistive  branches of the 
network.  Using  this  procedure,  term (27) can be written as: 
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o r  

G V  + j E V  + j G V  - B V  = I  + j f  . (31) - -n IV -n  -n rc- -n "sn -sn 

The real p a r t  is e q u a l i z e d   w i t h   t h e   r e a l  one  and the  imaginary 
with  the  imaginary  one: 

2 Xn ,- "n "sn 

B V + G- En = LSn 
4 -n 

- B F  = I  

- 

Which g i v e s   t h e  mat r ix  term: 

G -3 
"n r rJ 
V 

- 
,E- 4 G "n v 

. .  I "sn 

- 
I "sn 

The upper t e r m  i s  used   d i r ec t ly  for so lv ing  the  l i n e a r  AC 
networks. The f i r s t  row, w r i t t e n  more ex tens ive ly ,  reads: 

Bln 'n - I s n l  
Gll V1+G12 V2 +. . . + Gln Vn - Ell v, - B12 v2 . - e  - 

This  form is  much more s u i t a b l e   t h a n  t h a t  of t e r m  (28) .  

In term (32) n o t e   t h a t   t h e  number of unknowns is  t w o  times 
l a rge r   t han   t he  number of nodes  because of t h e   f a c t   t h a t  a l l  node 
vol tages   have real and  imaginary  components.Matrix $ i s  fou r  times 
la rger   than   mat r ix   because   ins tead   of   (n  x n)  elements it con- 
t a i n s  (2n x  2n)  elements.  Thus, t h e   c a l c u l a t i o n  i s  a l so  l a r g e r .  

Applying the   descr ibed  procedure  on  the  network  in   Fig.  20. 
matr ices  G and 3 are w r i t t e n  as: 

4 
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G =  

where 

G1 -G1 
0 

OG1 G1+G2 0 

0 0 G 4  

1 Gl 

B =  

0 0 0 

0 B2+B3 -B3 

-3 B3 0 

F i g .  20. The l i n e a r  A C  ne twork   example .  

B2 = w C2, -1 
B 3 - w L r  

- 
3 

I 

I1 = Il0 s i n  w t  , I3 - 130 s i n  ( u t  + $1. - 

The e n t i r e   m a t r i x  term which d-escribes the  network is: 

G1 -G 0 1 0  0 0 1 I 
-G1 G1+G2 0 0 -B2-B3 B3 

I 
0 0 G41 0 

0 0 O 1 G 1  -G1 0 

0 OB3 B31 0 0 
I G4 

I B3 -*3 """-~""""""-"""""" 
I 

I 
0 B2+B3 -B31-G1 G1+G2 0 

1 

v1 

v2 

v3 

v1 

v2 

v3 

"" 

4 

c 

Is1 

Is3 

-Is3 
""" 

0 
- 
Is3 - 

-Is3 
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or, for  the  first  two rows: 

- 
G l V l  - G1V2 - Is1 

= G,V,+(G,+G2)V2 - (B2+B3) V2 + B2 73 = Is3 , etc. 

Here , 
If we change 
the  matrix 2 

'I 

the  analysis is performed at  the  chosen Erequency. " 

the frequency,  the  matrix 5 remains  the same, while 
changes. The  terms  of matrix2 are of the form 

WC, - or  their sum and  they  change with  the frequency. I 

s 
This  means  that  for  every  frequency value, matrix gelements 
must  be  recalculated  and  inserted  into  term  (32) , and new  values 
for  node  voltages Yn = Yn + j vn - are calculated. Regarding  the 
fact  that  the  observed  frequency  area is usually large, the 
frequencies  are  shown in logarithmical scale. The frequencies change 
as  fn = lonx fo, where  x is calculated  from  the  number of 
observed  frequencies  per decade. For example, if 4 frequencies 
per  decade  in  the  same  logarithmical  increments  are  desired, 
then  4x = 1, x = 0.25 so 

fo = 10 fo 

fl = 10 

c) = 1,000 

0.25 fo = 1.780 

fa = 10 0.50 fo = 3.165 

f3 = 10 0.75 fo = 5.630 

f4 = 10 fo =10.000 1. 

Input  and  output  voltages  and  currents, (V+jV) 

fO 

fo 

fO 

fO 

fo , etc. 

and (I+jE) , can in 



For dependent  current  sources,  and  voltage  sources,  the  principle 
described  for  the DC analysis  is used, except  that  consideration 
should  be given  to  their  complex nature. 
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7. TRANSIENT ANALYSIS OF NONLINEAR NETWORKS 

In this  chapter  a  description  is  given  of  the  procedure  for 
analyzi'ng the nonlinear  electrical  networks which, in addition 
to the resistance R, contain capacitance C, and  inductance L. 
All  three  kinds  of elements, R, L, C can  be nonlinear. The input 
signal  is  the  time function. Thus  the  transient  analysis  of 
nonlinear  networks  will  be discussed. 

Up to this point, a  static  analysis of nonlinear  networks  has 
been examined. This  means  that  only  the resistor, linear  or 
nonlinear, was included.  Next, the  networks  with  constant 
capacitances C and inductances L were' included, as  well  as 
linearized  nonlinear  elements and the input signal  was sinusoidal. 

First, the  transient  analysis  of  linear  networks is described, 
the  solution  stability  relating  to  that is examined, and the 
networks  which  contain the nonlinear C and L elements  are 
analyzed. Finally,  the  nonlinear  resistances  are  added to  the 
network. 

7.1. Transient  Analysis of Linear  Networks 

Suppose  that Fig. 21 represents  one part of a  given network. 
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- b 
1 

Fig..21. A p a r t  of a linear n e t w o r k .  

For  node 2 ,  K i rchhof f t s   noda l   ana lys i s   i nF l i e s :  

- I1 - I2 - I3 = I (t). 
S 

I n  analyzing the netxork by the  noilal  method, as ear l ier  s t a t e d ,  
a l l  unknown c u r r e n t s  are presented  by nose voltages: 

IC = G VG + I = G2 (V4-V2) 2 ? 

I c = C -  uc + I   = c 3  d (V3-V2 1 
d. t 3 a t  I 

(33) 

which, when i n s e r t e d   i n t o   t h e   e q u a t i o n  of t h e  c u r r e n t   b a l a n c e   i n  
node 2 ,  y i e l d s :  
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d (V3-V2 1 
- c 3  d t  = Is( t )  . 

This  simple  example shows t h a t   t h e   o l d   s y s t e m   o f  alcJeSraic 
equat ions ,  xn = I will change to a system of i n t e g r a l  - 
d i f f e ren t i a l   equa t ions .   Us ing   t he   comyute r   t he   ana ly t i ca l  
s o l u t i o n  i s  u n o b t a i n a b l e ;   t h i s  means t h a t   t h e   i n t e g r a l - d i f f e r e n t i a 1  
equat ion   mus t   be   changed   in to   an   a lgebra ic  one and  numerical 
method should he appl ied.  The na thenat ica .1   approach   tha t  was 
used   fo r   so l -v ing   t he   r e s i s t ance  networ1:s i s  a l s o  em?loyec?. for 
so lv ing   dynanic   ( l inear   an2   nonl inear )  e lec t r ica l  networks. 
S o l v i n g   t h e   d . i f f e r e n t i a 1   e q u a t i o n s  i s  c a l l e d   i n t e g r a t i o n .   T h e r e  
are many numer ica l   in tegra . t ion  methoc!s. Three of t h e  most comon 
are described. here. !:Then choosing the i n t e T r a t i o n  method, 
the  one  which i s  simple enouTh for t h e   a n p l i c a t i o n  a n d  which 
g ives  a s t a b l e   s o l u t i o n   s h o u l d  be chosen. The f i rs t  of t h e  
t h r e e  methods i s  Euler's  method,  which i s  o f t e n   u n s t a b l e   b u t  it 
i s  t h e  least  complex. T h i s  method i s  used t o  d e s c r i b e   t h e   p r i n c i p l e  
of t h e   d i f f e r e n t i a l   e q m t i o n ' s   n u m e r i c a l   i n t e g r a t i o n .  

For an  example of Euler's  method, refer t o   F i g .  22.  

-S 

US J- 
+-?-Ic R 

Fig. 22. S i m p l e  RC  circuit. 

57 

I .- 



The mesh equa t ion  is: 

t 
= I R + A l I d t ,  C 

0 

dUC Us = RC dt + Uc . 
or 

(34.a) 

Equation (34.a) is t h e  d i f f e r e n t i a l   e q u a t i o n  which connects  the 
v a r i a b l e  Uc and i t s  d e r i v a t i v e  dUc/dt a t  any t i m e ,  t. 1 f . t h e  
s i g n a l   v o l t a g e  Us and t h e  vol tage   on  t h e  c a p a c i t o r  U are known, 
the v o l t a g e   d e r i v a t i v e  Uc can be c a l c u l a t e d  from equat ion  (34.a)  
as fol lows : 

C 

d U C '  Us uC 

d t  RC RC 
- = " -  ( 3 4  ,b) 

Now, t h e   v a r i a b l e  Uc v a l u e   i n  time t + A t  i s  c a l c u l a t e d   u s i n g  
Eu le r ' s  method: 

dUC (t) 
U C ( t + A t )  = U c ( t )  + A t  . (35) 

The vo l t age  Uc curve i s  approximated  by the tangent .  The 

approximation becomes more accura t e  as t h e  time i n t e r v a l  A t  

decreases .  A f t e r  the  c a l c u l a t i o n ,  t he  new vo l t age   va lue  Uc 

i s  i n s e r t e d   i n  term (34  .b) and t h e  new d e r i v a t i v e   v a l u e  i s  
ca l cu la t ed .  Th i s  c o n t i n u e s   u n t i l  t he  end  of t he  given time 
i n t e r v a l  i s  reached. The error which appears   accord ing  to  term 
(35) can   be   ca l cu la t ed  by us ing   Taylor ' s  series: 
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The error is ,  as is shovn i n   t h e  cornparison of terms (3s) and 
( 3 6 ) ,  equal to: 

A t 2  Thus it i s  p ronor t iona l  t o ,  u,"(t). TO avoid. Zorminq d i f f e r e n t i a l  
equat ions ,  an3 t o  l- ,ee~ t h e   n a t h e r m t i c a l   p r o c e d u r e   t h a t  vas used 
for r c s i s t i v e  net'mrks, eaua t ion  (35)  is  w r i t t e n  as: 

dun 
"n+l = Un + A t  - d t  

TJ At = - J  + -  I : .  n+l il C n  

An e q u i v a l e n t   c i r c n i t  f o r  t h e  caaac i t ance  C fo l lov inr j  
( 3 7 )  i s  sko7.m i n  ri?. 2 3  vhich i s  a vo l t aqe  source. 

Fig. 23. a )  An  equivalent  circuit f o r  the  capacitance C, 

b )  An equivalent  circuit  for  the  inductance L, 
according  to Euler's formula. 
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A ca lcu la t ion   o f   t he   example   i n   F ig . .  22  ( u s i n g   t h e   p r i n c i p l e  shown. 
i n   F i g .  23) is given  in Fig. 24. 

n At ‘n (17) (Un+l) (VI In (A)  

0 

. . 3.50 4 
3.50 0.729 2.71 3 
2.71 0.81 1.9 2 
1 .9  0 .9  1 .0  1 

1 .0  1 .0  0.0 

2 

F i g .  2 4 .  RC network e q u i v a l e n t  c i r c u i t   w i t h   t h e  
n u m e r i c a l   r e s u l t s .  

Note tha t   t he   ne twork   con ta in inq   capac i t ance  C i s  now inc luded  
i n  t he   ne tv~ork   t ha t   con ta ins   on ly   vo l t age   sou rces   and  resistors. 
-? la themat ica l ly ,   th i s  means t h a t   t h e   d i f f e r e n t i a l   e q u a t i o n  i s  now 
an   a lgebra ic   one .  

For   the  inductance L,  the   fundamental   re la t ion  between  the  vol tage 
and  c u r r e n t ,  UrJ = L d I L / d t .   E u l e r ’ s   i n t e g r a t i o n  will g ive  

T ‘In 
-n+l n = I  + A ~ T ,  r e s p e c t i v e l y  
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An e q u i v a l e n t   c i r c u i t   f o r   i n d u c t a n c e  L is ,  us ing  term ( 3 8 1 ,  a 
cu r ren t   sou rce   and  i s  shown i n   P i g .  23.b). "Jecause of t h e  
capac i tance  C,  t he   desc r ibed   p rocedure . i s   no t   conven ien t   fo r  the  

n o d a l   a n a l y s i s   a p p l i c a t i o n   s i n c e  it inc ludes   t he   vo l t age   sou rces  
i n  the  network. 

d U C  ( t + A  t) 
Uc ( t+At) = U , ( t )  + A t  a t  ? r e s p e c t i v e l y  

# 

"n+ 1 = Un + A t  Un+l 

a n d ,   a f t e r   s u b s t i t u t i n g  U c  - - I n + l / C ,  g ives  n+l 

This   p rocedure  i s  j u s t i f i e d   b e c a u s e  t h e  re la t ion   be tween  vo l tages  

'n+l 
d e r i v a t i v e  An t i m e  tn+l. From term ( 3 9 ) :  

and U; can be a d e r i v a t i v e   i n  t ine tn, j u s t  as it can he a 

- L - - u  "U L 

'n+l A t  n+l A t  n 

which leads t o  t h e   e q u i v a l e n t   c i r c u i t  as i n . F i g .  25.a. The c u r r e n t  

In+ l  i s  equa l  t o  t h e  sum of cu r ren t s   t h rough   t he   conduc tance  GC 
and t h e  c u r r e n t  IC, which s a t i s f i e s   e q u a t i o n  ( 4 0 )  
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m m m m I 
n b 

n 
n b 

n 

FCg. 25.a)  A n  e q u i v a l e n t   c i r c u i t  of t h e   c a p a c i t a n c e  C, 
b )  A n  e q u i v a l e n t   c i r c u i t  of t h e   i n d u c t a n c e  L,, 

accord ing   t o   t he   Backward   Eu ler   me thod .  

Simi lar ly ,   wi th   inductance  L: 

I n + l  - In + A t  I;+l , - 

w h i c h   g i v e s   a n   e q u i v a l e n t   c i r c u i t   a s   i n   F i g .  25.b. The  Rackward 
Euler  method i s  much more su i t ab le   because   bo th  C and L are 
presented   wi th   the  same kind of e q u i v a l e n t   c i r c u i t  and  they 
s a t i s f y  demands of the   ne twork   ca lcu la t ion  by the  nodal  method, 
i.e. there a r e  no voltage  sources.   Because of t h i s ,   t h e  Backward 
Euler  method i s  used i n  nany  programs for   dynamical  electrical  
ne twork   ca lcu la t ions .  The e r r o r   g e n e r a t e d  by t h i s  method is  t h e  
same a s   t h a t  of t he   o r ig ina l   Eu lc r ' s   me thod ,  i.e. it is  
p ropor t iona l   w i th  
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The t h i r d  method is  t h e   t r a p e z o i d a l   i n t e g r a t i o n  method  which can 
b e   e x p l a i n e d   i n  two ways: 

a) The v o l t a g e  of the   capac i t ance  C i n  time t+&t is  c a l c u l a t e d  
by 

r e s p e c t i v e l y  = TJn + 7 A t  (U' + U i + l )  'n+l  n I 

o r ,  by s u b s t i t u t i n g  
T T 

- A t  
'n+l - un + '1; + In+l) . 

( 4 2 . a )  

(42.b) 

T h i s  procedure  uses  t h e  d e r i v a t i v e  mean ari thmetical  v a l u e   i n  
time t and t + A t .  From term (42 .b )  

- 2c  2c 
'n+l A t  n+l A t  n - - u  - (- u + In) (43) 

which leads t o   t h e   e q u i v a l e n t   c i r c u i t   i n   P i g .  26.a. The c u r r e n t  

In+ l  
GC and. t h e   c u r r e n t  IC, vhich  satisfies equat ion   (43) .  

Simils-rly,  1357 manipulating  the  ind.uctance L: 

is equal  t o  t h e  suin of the   cu r ren t s   t h rough   t he   conduc tance  
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b 
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n d 
n 

F i g .  26.a) The  capacitance C equivaZent  circuit, 
b )  The inductance L equivaZent  circuit 

according  to  the  trapezoidal forumuza. 

or s u b s t i t u t i n g  

- A t  
I n + l  - In + (Un + Un+l)  

A f t e r  a r r ang ing  the  r i g h t  side terms; 

- A t  "U A t  
In+l  2L n+l + (- 2L u n + In) , 

( 4 4 )  

( 4 5 )  

which l e a d s  t o  t h e  t h e  e q u i v a l e n t   c i r c u i t   i n   P i g .  26.b. The c u r r e n t  

In+l  
GL and t h e  c u r r e n t  IL, which satisfies equa t ion  ( 4 5 ) .  

6 4  

is equal  t o  t h e  sum of t h e  cur ren ts   thorough the conductance 



The error which a p p e a r s   i n  the described In teg ra t ion   p rocedure  
(formula.42.a) i s  c a l c u l a t e d  by  comparison  using  Taylor's series: 

'n+l = un + 

'n+l = un + 

Now, using  Euler ' s  method 
time t + A t  is given as 

from which 

the term for the first d e r i v a t i v e   i n  

i n s e r t i n g  t h i s  i n t o  the 

term (46.a)   gives  

%+1 = Un + A t  Ui + -21 At2 Ui-. (46.b) 

This  i n t e g r a t i o n  method is  more accurate   than  Euler ' s   methods,  
because t h e  func t ion  is approximated w i t h  the f i r s t  three terms 
of T a y l o r %  series, i,e, it inc ludes  the square term, so t ha t  the  
error is p ropor t iona l  w i t h A t  /3 !  U i 4 .  . 3 

B) The second  approach  to  t h e  t r a p e z o i d a l   i n t e g r a t i o n   g i v e s  
t h e  same formula, 

The vo l t age  of t h e  capac i tance  C ,  a t  i m e  t + A t ,  is e q u a l   t o  

65 



t+A t 
U ( t + A t )  = U ( t )  + I I d t  = C 

or ,  s i m p l i f i e d ,  

This  i s  t h e  same as term (42.b). I n  Eq. ( 4 6 . c )  the   vo l tage   g rowth  
on   t he   capac i to r  i s  c a l c u l a t e d  by i n t e g r a t i n g   t h e   c a p a c i t o r  
c u r r e n t  by t h e   t r a p e z o i d a l   r u l e   ( F i g .  27). 

I t t +At t 

Fig. 27. TrapezoidaZ  integration. 
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7.2. I n t e q r a t i o n  Method P rec i s ion  and S t a b i l i t y  

P r e c i s i o n   a n d   s t a b i l i t y  of t h e   t h r e e  described methods will now 
be explained by a simple  example of t h e  RC c i r c u i t  (Fig. 2 8 . )  

E=E,S(t) 

I I I-., 

C 

R v 

Y 

E = U + V  

t = nAt 

F i g .  2 8 .  Simple RC circuit 

a )  Euler ' s  method (E)  

A t  any moment, t = n A t ,  

E = U  + V n  , o r U n = E -  n vn 

and a t  t + A t  = (n+ l )At  

(47 .a)  

and also 

- vn I n - r .  (47 .c)  
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The vol tage   o f  t h e  capac i to r  is 

= un + c In 'n+l 
A t  (47  .dl 

Using t h e   f i r s t  three terms (47. a ,b  and c ) ,  the correspoding 
va lues   fo r  Un+l,  Un and In are i n s e r t e d   i n t o  term (47.d)  and 
g ive  : 

= E - Vn+ Vn , A t  
E - vn+l 

I f  the vol tage ,  V,, is to be time dependent,  then (T= RC) : 

because a t  t = 0, the s t a r t i n g   v o l t a g e  Vo on t h e   r e s i s t o r   e q u a l s  
the   source   vo l tage  Eo. Then 

A t  2 = v1 (1 - f) = Eo (1 - A t  
v2 I 

and,  applying t h i s  procedure n times g ives  

b) Backward ,Euler method (B.E.) 

6 8  



Equat ions (47.a, b and c) are t h e  same, except  tha t  t h e   v o l t a g e  
o f   t h e   c a p a c i t o r  is: 

which a f t e r  the i n s e r t i o n   g i v e s ,  

1 
vn+l = vn A t  1 + -  

T 

Thus t h e  v o l t a g e   a t   t i m e  nAt fol lowing t h e  s teps   used i n  E u l e r ' s  
method is equal  to 

Vn = Eo 1 

A t )  n (1 + - T . 

c)  Trapezoidal  method (TR.) 

The equat ions  (47 .  a, b and c) a r e  t h e  same, except  tha t  t h e  
c a p a c i t o r   v o l t a g e  is 

A t  
'n+l = un + (In + In+l) ? 

which, a f t e r   t h e   i n s e r t i o n ,   g i v e s  
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At A t  - v  + - v  E 'n+l = - 'n + 2RC n 2RC n+l 

A t  

A t  
I - E  

vn+l = vn 
l + E  

Thus the  vo l t age  a t  time nAt fol lowing t h e  s t e p s  nsed i n   E u l e r ' s  
method is e q u a l   t o  

The exact a n a l y t i c a l   s o l u t i o n   f o r  t h e  observed RC c i r c u i t  is: 

= Eo e - t / T  

Vn = Eo e -nAt/T 

i.e. s u b s t i t u t i n g  t = nAt 

( 5 4 )  

Using  equations  from (48 )  to  (54 )  an estimate Of the accuracy  and 
s t a b i l i t y  of a l l  three descr ibed   in tegra t ion   methods  may be made. 
First, t h e  p r e c i s i o n  which i s  obtained i n  the case when t h e  t i m e  
i n c r e a s e s  by A t  is evaluated.  The results forAt = 0 .1T  and 
A t  =T a r e   g i v e n  i n  t h e  fol lowing table: 
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PRECISION 

A t  (1 - 7) 1 
bt 

1 - A t / 2 ~  
1 + -  1 + A t / 2 ~  

e -A t/'r 

T 

0.90000 I 0 . 90909 0.90476 0.90483 

0.0 0.368 0.333 0.5 

The t r a p e z o i d a l  method best approx ima tes   t he   exac t   so lu t ion .  The 
s t a b i l i t y   c a n  be estimated by i n c r e a s i n g   t h e  t i m e  s t e p  A t  and 
o b s e r v i n g   t h e   r e s u l t  by odd and  even  n's. The three  methods are 
compared i n   t h e   f o l l o w i n g  table: 

STABILITY 

E. 

stable f o r  

f o r   v e r y  
l a r g e  A t  

- >> 1 A t  
T 

n 
( - S) 

T 

d i v e r g e n t  
and OSC. 

B.E. 

1 

(1. + -) A t  n 
T 

1 

s t a b l e  

( - 

stable 
but .  OSC. 
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Euler's  formula is stable  when  the  time  step is At<T . When  At 
is very  large,  the  solution  oscillates  and  diverges  more  as n 
increases. This  method is called  an  "explicit"  integration  method. 
It is generally  stable  only  if  the  condition  At<.r is satisfied. 
If  the  electrical  network  has  more  time  constants,  then  time  step 
At  for  the  stable  solution  must  be  smaller  than  the  circuit's 
smallest  time  constant,  At<.rmin. 

The  Backward  Euler  method  is  stable  for  any  time  step,  At,  and 
the  solution's  precision  decreases as the  coefficient  At/T 
increases.  This  method is  an  "implicit"  integration  method  which 
is  generally  stable. 

The  trapezoidal  formula  is  the  most  precise  and is stable  even  if 
the  numerical  solution  oscillates  for  At>>.r.  This  method  is  also 
an  "implicit"  integration  method.  The  trapezoidal  formula  is 
preferrable  to  the  Backward  Euler  method,  although  Backward 
Euler  method  is a stable  one  for  any At. The  trapezoidal  method 
advantage  is  that  the  numerical  oscillations  appear at the  same 
time  as  the loss in  precision,  yet  the  result  does  not  diverge. 
This  means  that  the  appearance of the  numerical  oscillations 
provides a warning  that  the  solution  is  incorrect, so that  the 
calculation  can  be  repeated  with a smaller  time  step. In  effect, 
if  there  are  no  numerical  oscillations,  then  the  precision is 
satisfactory . The  Backward  Euler  does  not  give  such a simple 
monitor  of  accuracy. 

7.3. Equivalent  Model of Nonlinear  Storaqe  Elements 

An  element  whose  charge  does  not  change  linearly  with  the  voltage, 
i.e. Q # CV, but Q = f(V), is a nonlinear  storage  element.  The 
calculation  of  the  charge  increment AQ, which  is a consequence of 
the  voltage  growth Av in  time  At,  is  similar  to  Newton-Raphson's 
iteration  procedure  for  nonlinear  elements.  But,  instead of 
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Newton-Raphson's iteration  which  uses  the  tangent,  "regula 
falsi"  method  is  used  which  employs  the secant. In Fig. 29 the 
function  Q = f (V) is illustrated  graphically. 

""_""" 
""""" 

I 

Q=t (V), 

F i g .  29. T h e   " r e g u l a  f a l s i "  m e t h o d   a p p l i c a t i o n  on 
a n o n l i n e a r   e l e m e n t  Q = f ( V ) .  

The  nonlinear  element, Q = f ( V ) ,  is linearized  about  the  point 

The  charge  growth, AQ = Qn+l 0 - Qnr is  equal  to 

1) 
Charge Q E i  is  given  accordinq to Eq. ( 5 5 ) ;  Qn+l used in 
Eq. (58) is obtained  applying  QZ+l = f (Vz+l). The Same  holds 
for Qn+ln etc. 

0 

(1) 
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I n s e r t i n g  term ( 5 5 )  i n t o  (56) gives 

Voltage VnSl and   cu r ren t  In+l are t h e  v a l u e s   o b t a i n e d   i n  the 
first i t e r a t i o n .  The second step g i v e s  t h e  fo l lowing  term for 
(1) . 

Q n+l 

0 

0 
Qn+l - Qn 1 

vn+l - vn 
(2;:; = Qn + 0 ('n+l - Vn) and 

which gives 

1 -  2 Q0 n + l   - Q n  1 2 oo n+l  - Qn 
I n + l  - vn+l  [E v;+l n 

- v + In] 

C+1 - 'n - vn 

The i t e r a t i o n s  are c o n t i n u e d   u n t i l  t h e  d i f f e r e n c e ,  
AV = V1 - Vn+l n+l I is w i t h i n  t h e  error t o l e r a n c e ,  which, as 
earlier mentioned is  u s u a l l y  50 pV. When c a l c u l a t i n g  complex 
networks, the i t e r a t i o n s  are done together w i t h  Newton-Raphson's 
i t e r a t i o n s  for  t h e  non l inea r   r e s i s t ance   e l emen t s .  An e q u i v a l e n t  
c i r c u i t   f o r  t h e  non l inea r   s to rage   e l emen t  Q = f ( V )  is g i v e n   i n  
Fig.  30 w i t h  the conductance 

0 

74 



0 
2 Qn+l 
A t  Vz+l - Vn C n  

GC - - - - ,  On , and the current source, IC = -G V + In. 

m 
m 

V T n 

Q = f (V l  

d Q  I= - 
d t  

b n 

0 
Qn+l 

vn+ 1 - vn 
The secant slope, - Qn , can  be calculated  with second 

degree  accuracy using the  charge  derivatives  in  places v ~ + ~  
and vn: 

0 

0 
Qn+ 1 - Qn : - 
vn+l - 'n 0 

In  the  case  of semiconductor 

( 5 9 )  

devices,  capacitances  which are, by 
the charge  change  nature  in  semiconductors,  may  be  defined as 

c = m  dQ 

and the capacitance, C, is  known  in  the  form C = fc(V). As in  the 
previous case, charge Q is  obtained by defining the function 

7 5  
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Q = f (V) using 

Q = I C  dV = I fc(V) dV . (61) 

With  the  calculated  charge 0, the  method is continued  as  descr 
in  terms (57) and (58). In this  case,  when  the  capacitance  is 
already  given  as  the  function  of  voltage, it is  convenient  to  use 
term ('59) for  the  secant  slope.  Then 

Thus  the  calculation  is  simplified  and  there is no  need  to 
calculate  the  integral  from  term  (61).  Terms (57) and (58), 
become : 

0 = "- *'n o - ["n x;- vn + In ] and 
'n+l At  vn+l 

"-""-- cn v + In 
n 

ibed 

In the  case of  a  nonlinear  inductance  element,  instead  of 
@ = LI we have @ = f (I) and  the  procedure  is  the  same  as  that 
of nonlinear  capacitance.  According to this 
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Expanding A+ gives 

( 0 )  
+n+l - 9, = (v;+l +'Vn)At/2. 

By eliminating the A @  from upper  terms we obtain: 

d4 0 
n - In) = + Vn)At/2 respectively 

The second iteration step, using $n+l yields: 

(1) 
# 

+n+l - on - (Vn+l + Vn) 
- 1  At , which  gives 

An equivalent  circuit,  according  to  term (66) consists of the 
conductance 
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GL - - A t  and the c u r r e n t   s o u r c e  IL= GLvn + In, 
0 - 6,) 

- I n  

7.4,  Trans ien t   nonl inear   ne tworks-   ana lys i s   p rocedure  

T h i s  paragraph  demonstrates  t h e  p rocedure   fo r  the numerical  
c a l c u l a t i o n  of a ne twork ' s   t r ans i en t   ana lys i s   acco rd ing  t o  the 
flow  diagram of Fig.  31, The ne twork   conta ins   l inear   and   nonl inear  
r e s i s t i ve   e l emen t s ,   and   l i nea r   conduc tances   and   i nduc tances .  

From Fig.  31 t h e  fo l lowing  i s  apparent :  

a )  The network i s  def ined   and   every   nonl inear  resistive 
element i s  r ep laced  wi th  t h e  l i n e a r   e q u i v a l e n t   c i r c u i t  
(conductance G and   cu r ren t   sou rce  I ) .  Every  capaci tance 
C, and  inductance L, i s  rep laced  wi th  a n   e q u i v a l e n t   c i r c u i t  
(conductance G and c u r r e n t   s o u r c e  I). 

b) To start  a c a l c u l a t i o n ,   t h e   i n i t i a l   c a p a c i t o r s '   v o l t a g e s ,  
t h e  i n i t i a l   c u r r e n t s   t h r o u g h   i n d u c t a n c e s ,   a n d  t h e  non l inea r  
elements assumed v o l t a g e s  are given,  

c)  The non l inea r   e l emen t s   vo l t age  i s  c a l c u l a t e d   u s i n g  Newton- 
Raphson's i t e r a t i o n s   s i n c e   i n   s t e p  b) on ly  the assumed 
voltages were given.  The i n i t i a l   c a p a c i t o r s '  voltages 
and t h e  i n i t i a l   c u r r e n t s   t h r o u g h   i n d u c t a n c e s   r e m a i n  
unchanged . 

d)  Next ,   the  time is advanced  by A t .  This  is accomplished 
us ing   numer i ca l   i n t eg ra t ion  by c a l c u l a t i n g  the v o l t a g e  
increment AVc on   capac i to r s   and   cu r ren t   i nc remen t  AIL 
through t h e  inductances.  A f t e r  t h i s  is done w e  t u r n  
back t o  s t e p  c)  and   ca l cu la t e  new voltage va lues   on   the  

r e s i s t ance   e l emen t s .  



The procedure is continued by repeating  steps c) and d)  unt i l  
the  network’s t i m e  response is  calculated for the   ent ire  time 
interval .  
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Given network, 
equivalent  circuit  for  nonlinear  elements, 
equivalent  circuit  for C and L and 
independent  voltage  and  current  sources are  set up. 

. .. . ~~~ 

t = O  

I 

I Initial  values Vc on C and IL through L and 
assumed  values VNL and INL of nonlinear 
elements  are given. 

I 

Newton-Raphson's iterations  for VNL and INL of 
nonlinear  elements are executed 
(Vc and IL remain  unchanged). 

I I 
I 

c 
Integration  (time  advances  for  time  step At): 
vc = V + AVc and C 

L IL = I + AIL are calculated. 

!/ 

V 

t = t  stop 

Fig. 31. Numerical  calculation  procedure of nonlinear 
eZectricaZ  network  transient  analysis. 
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