NASA CONTRACTOR
REPORT

NASA CR-2810

AﬁWL?ﬁCHNmMLsJé@Q@f
KIRTLAND APthhJM&?;

COMPUTER AIDED NONLINEAR
ELECTRICAL NETWORKS ANALYSIS

Petar S lﬂ[mz'mr

Pflepared by
UNIVERSITY OF SPLIT

Split, Yugoslavia
Jor Ames Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON, D. C.

84VN AUVHEIT Hogy

NN
i
®

LT g e
o T A R

« MARCH 1977



TECH LIBRARY KAFB, NM

LT

1. Report No. " | 2. Government Accession No. 3. Recit. 0061386
NASA CR- 2810
4, Title and Subtitle 5. Report Date

March 1977
6. Performing Organization Code

"Computer Aided Nonlinear Electrical Networks Analysis"

7. Author(s) 8. Performing Organization Report No.

Petar Slapnicar

10. Work Unit No.

9, Performing Organization Name and Address
University of Split
School of Electrical Engineering 11. Contract or Grant No
Engineering and Naval Architecture NSG-7163

Ribarova 4, 58000 Split, Yugoslavia -
I 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address
po § Agency Research Grant

National Aeronautics § Space Administration 14. Sponsoring Agency Code
Washington, D.C. 20546

18. Supplementary Notes

16. Abstract

This report describes techniques that are used in simulating an electrical circuit with nonlinear
elements for use in computer-aided circuit analysis programs. Elements of the circuit include
capacitors, resistors, inductors, transistors, diodes and voltage and current sources (constant
or time varying). Simulation features are discussed for DC, AC, and/or transient circuit
analysis. Calculations are based on the model approach of formulating the circuit equations.

A particular solution of transient analysis for nonlinear storage elements is described.

17. Key Words {Suggested by Author(s}) 18. Distribution Statement

Computer Simulation Techniques

Computer-Aided Circuit Analysis UNCLASSIFIED-UNLIMITED

STAR Category 33

19, Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22, Price®
UNCLASSIFIED UNCLASSIFIED 81 $5.00

* For sale by the National Technical information Service, Springfield, Virginia 22161



COMPUTER AIDED NONLINEAR ELECTRICAL
NETWORKS ANALYSIS

by Petar I. Slapnicar

Nov. 1976

Distribution of this report is provided in the interests of
information exchange. Responsibility for the contents

resides in the author or organization that prepared it.

Prepared under Research Grant No. NSG-7163 (BASIC)

Fakultet Elektrotehnike Strojarstva I Brodogradnije

(School of Electrical and Mechanical Engineering and Naval Architecture)

University of Split, Ribareva 4, 58000 Split, Yugoslavia

for

Ames Research Center

National Aeronautics and Space Administration



CONTENTS

INTRODUCTION

NETWORK ANALYSIS NODAL APPROACH

2,1, Conductance Matrix - - -
2,2, Dependent Current Sources == -
2.3. Voltage Sources in the Network ————

NUMERICAL SOLUTION OF ALGEBRAIC EQUATIONS

3.1, Gaussian Elimination eeeeecccccccccea- e —————
3.2, Improved Precision of the Solution —sececcca-aa -
3.3. The Inverse Matrix —emeeccceccccmccccccccecccme-
3.4, Gaussian Elimination Example ——eemceccceccm-—-- -
3.5. Sparse MatricesS awcaw-- S —————

SENSITIVITY COEFFICIENTS

NONLINEAR DC NETWORKS

LINEAR AC NETWORKS

TRANSIENT ANALYSIS OF NONLINEAR NETWORKS

7.1, Transient Analysis of Linear Natworks —w—ceece--
7.2. Integration Method Precision and Stability -—---
7.3. Equivalent Model of Nonlinear Storage Elements

7.4. Transient Nonlinear Networks Analysis Procedure

REFERENCES

Page

13
15

20

20
28
29
32
34

39
43
48
55

55
67
72
78

81



l. INTRODUCTTION

Modeling of the electrical circuits which contain passive elements
(R, L, C) and active nonlinear elements (transistors, diodes),
allows for only very simple circuits to be solved using analytical

st or 2nd

procedures. To solve an electrical network Kirchhoff’s 1
law (node analysis or mesh analysis, respectively) and Ohm’s law

are used, More than three nodes or meshes in the linear case
requires a complex analytical solution since it leads to a system

of algebraic equations with three or more unknowns. This fact
restricts the use of the analytical method. Further, the nonlinear
elements cannot be included in the network, because even the most
simple circuit with nonlinear elements - a series connection between
the resistor and the diode - cannot be solved by the analytical
procedure. Therefore, computers using numerical analysis procedures
are needed. This acceptance of the computer as a tool allows for .
an extreme increase in both the possibilities and demands. The

size of the network may be up to or exceeding 500 nodes or meshes,
and the nonlinear elements are included with all their nonlinear

characteristics.

Assessment begins with a description of the network, an understanding
of which elements it may contain, and the selection of the proper
mathematical procedure to use. Elements which the network can
contain are resistors, inductors, capacitors, transistors, (BJT,
JFET, MOSFET), diodes and voltage and current sources (constant,

time varying and those which depend upon some other branch voltage

or current).

Thus, both linear and nonlinear elements are included. Linear

elements are the constans, and the nonlinear are described as

I = £(V) of V = £(I). An example of a nonlinear element is the
diode, where the diode current is equal to

2VD

o D

ID = IS (e



The transistor cannot be described in such a simple way (with one
equation). This in done with a number of equations which lead to
a transistor model.

The nonlinear elements are therefore described by their model,
For example, the bipolar transistor can be interpreted with Ehers-
Moll’s model as shown in Fig 1,

c I=T,, (o T2
T ¢ )

h ] s = IES ( T‘Pg
1 T ' J_ 1 Coe=T~o(~IeW
C T ER Coc = Tz oty Le 2
R OC'N IE CTC CDC pc =Crolr Le &
B o— AWV Cop = —TC0
4 - _V_DC_
J A Ve

Fig. 1. Ebers-Moll’s model of the

bipolar transistor.

After the network elements have been described the voltage and
current sources are given. The sources can be fixed, time varying,
and dependent. For example, in transistors, a collector current -

generator is depedent upon the emitter current so,

and the generator I, is a dependent current source.

C
After the electrical network is described, a choice of the



necessary calculation is made. The following types of analysis
can be done :

1. An operating point of the circuit, so called DC analysis -
analysis of the steady state conditions.

2. A response to the small alternating signal, so called AC
analysis which is executed so that first the DC solution of the
network (we calculate the operating point for all nonlinear
elements of the network) is found i.e. we linearize every nonli-
near element about its operating point.

The linearization of a nonlinear element is shown using a diode

as an example (Fig. 2).

Lo,

I4 ______

Y/
Fig. 2. Diode characteristics.

Let V
obtained so that, instead of the nonlinear characteristics

1’ Il be the diode operating point. The linearization is

qV

o— D -
I, = Ig (e 47 1)
the tangent in the point Vl' Il is used :

T which gives the conductance



ar
— D _ q ag . 9
G=gv-"%xT Is © I

ol
w)
<
]
<

so, in an electrical network the diode is presented only with
the conductance G.

After linearizing the network, the small alternating signal

is applied and the response at a given frequency f is calculated.
In this type of analysis the response inside the frequency band-
width from f1 to f2 is of interest. In this case, the network
calculation is repeated several times, and the distance of the
frequencies between fl' f2 is arbitrarily divided. Usualy, the

geometrical division is taken, i.e.

= o0 2 n _
f - q fl (fl' qfl’ q fl CIC N ) q fl — fz)o
For example, to calculate the response of the video amplifier
between 1 Hz and 1,05 MHZ with g=2 gives :

£f=1,2, 4, 8, ... , 524288, 1,048576.

In the given example, the calculation will be repeated 20 times,

As a result, the frequency and phase amplifier characteristics

are obtained.

3. The third type of analyisis is the time domain analysis or
transient analysis. In this type of analysis the DC network state
is calculated and then the analysis is begun. This type is the
most complex and involves the use of elaborate mathemetical and

programming procedures.

Nonlinear elements are presented with their linear models as in
Fig 3.

After the nonlinear elements are linearized, the network, which now
represents a number of resistors and fixed voltage and current

sources, is solved. When the DC condition is determined, due to



the reactive elements C,L and the changeable signal source, the
state of the network must be forseen at some time t = t + At.
After this is accomplished (this will be covered later), the
network is linearized again, but now with the new conditions,
since voltages and currents through the nonlinear elements have
changed. This procedure is repeated step by step until time

t =+t Ston is reached, at which time the analysis ends,

iy

Fig. 3. Linearized diode model.



2, NETWORK ANALYSIS NODAL APPROACH

= . . t
Network analysis can be performed using either Kirchhoff’s 1s

or an

Law (nodal analysis or mesh analysis, respectively). The
nodal analysis is more convenient and will be applied below using

a simple resistive network (Fig. 4).

Fig. 4. Oriented linear network.

The network description must be done in a simple and definite way,
Nodes and branches of the network are assigned symbols. One node
is called the reference node 0, In the given example the network
is described as in Fig. 5.

R1

1 0 1k
J I G

R2 2 0 2k m o—»—p > ANWVAN——9——N ~T +I
R3 3 0 5k ————
R4 1 2 1k N\
R5 2 3 1k \_/
Is1 0 1 1A I J IT-T
IS5 3 2 Ja A .

Fig. 5. Network description and

network branch definition.



The given description in Fig. 5 completely defines the network
so that the network may be reconstructed and solved. Solution of
the various equations is done by computer analysis. Obviously,
such a program is large and has 2000 - 10 000 instructions.

2,1, Conductance Matrix

Nfter the network is described all the relevant equations are
written. All mathematical equations should be in the matrix form,
because this form is very convenient for mathematical manipulation

and programming.

For the network in Fig. 4, the following nodal equations are

written :

node 1 I, +0+0+1I,+0 = I,
node 2 0 + I2 + 0 - I4 + I5 = ISS (1)
node 3 0 + 0 + I3 + 0 - 15 = —I55
and further
node 1 Gy V1 + G4 (Vl - V2) = Isl
node 2 —G4 (Vl—Vz) + G2 V2+G5 (V2-V3) = I85
node 3 -Gy (V,~Vj) + G5 V, = =T
s5
and rearranged .
node 1 (G1+G4)Vl - G4 V2 + 0 = Isl
node 2 =G, V1+(G2+G4+G5)VZ-G5V3 = I.g (2')
node 3 0 - G5V2+(G3+G5)V3 = -ISS



In the matrix form, term (2) is given as

node 1 Gl+G4 —G4 0 V1 Isl
node 2 -G4 G2+G4+G5 -G5 V2 = ISS (3)
node 3 0 --G5 G3+G5 V3 _Is5

node 1 node 2 node 3

. - . -
or, in a shortened form : E'zn lsn

where S is a conductance matrix from (3), vector Yn is the
voltage vector of the nodes towards the reference node (node §#),
and Esn on the right side is the current vector. Matrix G, is made

from the elemental network (Fig. 4) as follows :

- a diagonal element << is the sum of all the
conductances that are connected with node <,

- other elements in the row are on the places 7j, so
that on the place 7j comes the conductance which
connects node 7 with node j, bhut with a negative
symbeol,

- conductances, that are from node 7 connected

with a referent node, are only in the diagonal.

The current sources vector element represents the sum of all
current sources which enter that node., This procedure is very
convenient for arranging the matrices from the topological
network descriptopn which is described in Fig 5. Further, the
relation § Yn = lsn may be derived using Kirchhoff’s nodal
analysis, Ohm’s Law, and the definition of a voltage drop on a
resistor as demonstrated helow,

., st . . .
1 Xirchhoff’s Law., 2 standard network branch is defined

in Fig. 6. Retween nodes m and n is a conductance G ;



Ig

Fig. 6. Standard network branch

The total branch current is J = I = Is. A networ)k branch can

contain only the condudtance G, the curre
at the same time. Considering this defini

written as

1 0o o 1 o |]J
0 1 0 -1 1 [{J,]=
o o 1 0 -1|]J,
Jq
Ig
oY as
1 0 0 1 0 I, - I
o 1 o0 -1 1 I, - ¢
o 0 1 0 -1 I, - 8
1, - ¢
I - I

or, in the matrix form
A=

nt source Is’ or both

tion, term (1) can be

s5




AL =M1 ’ 177 K. .L. (4)

flatrix A iz called the incidence matrix and can be constructed
from a tovological network descrivtion (Fig. 4). Progressing
from »ranch 1 to branch 5, a value of I is written in nlace of
the node where the branch current exits, and -1 where the

current enters.

Jatrix‘éa is the comnlete incidence matrix, and also contains the

reference nodes

branch 1 2 3 4 5
node 1 1 0 0 1 0
node 2 0 1 0 =1 1

= A
node 3 0 0 1 0 -1 ~a
node 4=¢ |-1 -1 =1 0 0

The fourth row of matrix ﬁa nay be reconstructed from the first
three and is therefore unnecessary. For example, in the first
column (branch 1) we find only +1. This means that -1 is in the
fourth row, signifving that the first branch is connected between

node 1 and the referente node §.

Fig. 4 indicates that the network has four nodes. Since the zero
value may be associated to anv single node, the real number of

unknowns is three.

Ohm’s Law. For every network branch the connection between

the voltage and the current may be written as follows :

10




€1 Vp1 = 4 Gy V11
€2 Vb2 = I G, 0 Vh2
G3 Vp3 = I3 G3 Y3 | T
Gy Vpg = I4 0 Gy Vb4
G5 Vs = Ig G5 || Vs

G, V, =I, Ohm's law,

where‘gD is the diagonal conductance matrix, vector zb is the

branch voltage vector, and I is the branch éurrent vector,

Branch Voltage Drop Definition. The voltage drop across

a resistor is obtained by calculating the branch

voltage from the

difference between the potentials of the branch ends:

Vl = Vb1 1 0 0 Vl
v, =V, é 0o 1 0 v, | -
V3 = Vb3 0 0 1 V3
Vl.—V2 = Vb4 1 -1 0
V2-V3 = Vb5 0 1 -1

}SF “n = Yb .

A matrix which connects node and branch voltages

transposed incidence matrix QF.

Now we connect the terms (4), (5), and (6)

Vb1

Vb2

Vb3

Vba

Vb5 or

(6)

is the

11



L
I
]
N
~

(7)

Q)
<
I
I+

1%+
<
It
o

A simple insertion gives:

W
Y
&
0n

Gg},tv=£, (8)

i

[ {o}
1
&2

Ig s

t

where G = %,gb A". The conductance matrix is obtained using

the incidence matrix and the diagonal conductance matrix.

From term (8), node voltages are calculated using :

(9)

All other parameters can be calculated from the known node

voltages using term (7) :

branch voltages Yb = A Xn ‘
= - t
branch currents I = ED yb QD A Xn .
The matrix G = A QD kt for the network in Fig. 4 is calculated as:
1 0 0 1 O G1 1 0 O
Agat=]0 1 0-1 1 G 0 0o 1 0
o~ A 2
0 0 1 0 -1 G3 0 0 1 =
0 G, 1 -1 0
Gg 0 1 =1

12



G1 0 0 G4 0 1 0 0O (G1+G4) - G4 _ 0
0 G2 0 -G, Gg 0 1 0O -G, (G2+G4+G5) - G5 =G
0 0 G3 0 —G5 0 0 1 = 0 (G3+G5)

1 -1 0

0 1 -1

2.2 Dependent Current Sources

Any network branch can contain a current source. Current sources
may be either dependent or independent. Independent current
sources are placed on the right side vector as already shown.
Dependent current sources are treated as follows : the source

is described using the independent (control) branch voltage

and is placed on the right side vector. Hext, the terms are
switched from the right to the left side (Fig. 7).

The independent branch current is given as

I) =6 V= Vi)

and the dependent current source is

I, =81I, =86G, (V

1 V1~ V2!

This kind of dependent current source is called a current
controlled dependent current source. If the source dependens
upon the voltage, it is called a voltage controlled dependent

current source and is expressed as

I2 = Gm (le B sz) *

13



Wﬂ1 —= ¥n2
o — AW ) independent branch
; ~ :
G1 (control branch)
\ Y
;L____{:::>_____o 2 dependent branch
12=011
independent branch current sources vector
m 4 my
N\ .
l //////1//ﬂ,/”/7/’
fk \ ’/ .
é 1 \\PGi - 7361 . =i, = - BGl Vm1+/361 sz
d
5 | N | | =
e AN l
s |
e \ )
[ ’
o I N
v k)|~ — - -pG~ - 4G ' i, =86, V_, - fG, V
2 1 1 2 1 "ml 1 "m2
\ v

Fig. 7. Inserting of the dependent current

source into matrix g.

The derendent current source is determined by four terms in the
matrix G which are not syrmetrical with regard to a diagonal. Thus,
the matrix G is generally symmetrical; however if there are some
dependent current sources, matrix G will have some nonsymmetrical
terms. In this case, dependent current sources represented by

following matrix G terms:

14



£
3)

o

s .

Q" 8G, = BGy G - G

e or

O | - -

g BGl BGl —_— Gm Gm

)

& } ! t !

T control branch control branch

2.3. Voltage Sources in the Network

A voltage source which is alone in the branch, cannot be directly
included in the network which is analysed by the nodal method.
This is not possible because, by Ohm’s law, term (5), makes it
impossible to calculate the current of the branch.

Observing a network which has a voltage source, it is obvious
that the number of the unknown node voltages is decreased by one.
The known voltage source Vs’ if attached between nodes Vkl and
sz, gives Vkl = sz + Vs’ or sz = Vkl - Vs. This reqguires a
smaller number of unknowns in the case of the network which is
being solved by the nodal method. Voltage sources in the network
are of two basic types: sources connected with one pole to the

referent node and sources gonnected between any two nodes.

a) Voltage sources connected with one pole to the

referent node

Most voltage sources that are applied in the network are grounded

with one pole. These are supply voltages and input signal voltages.

First described is the insertion of these sources in the matrix
term (8). We will start from the example in Fig. 8. The network
is described below assuming that the voltage source current (Ix)

is known :

15



1
A1,
v, S

Fig. 8. A network with a voltage source with

one pole grounded.

G1+G2 -Gl 0 —G2 VS Ix
-Gl G1+G3 -G3 0 V2 _ 0
0 —Gg G3+G4+G5 -G5 V3 0 (10)
-G2 0 -G5 G2+G5 V4 0
where V1 = Vs'

Switching the first column to the right the arrangement of the

unknowns Vn is changed from VS, V2, V3, V4 to V2' V3, V4, VS, i.e.
the known voltage Vg is moved to the bottom of the vector Y,
After this operation, the matrix G is nonsymmetrical and the
current IX has remained in the same place. The second operation
switches the entire first equation to the last place, so that

the arrangement of the current vector I is changed: IX, 0, 0, O
becomes 0, 0, O, IX. Aftr this, the matrix has become symmetrical
again and the unknown current IX is placed at the bottom of the
current vector. When both operations are carried out, term (10)

becomes:

16



I
G1+G3 G3 0 ! Gl 5 0
- ‘ - | =
G3 G3+G4+G5 G5 " 0 V3 0 (11)
|
L TGs __Ga*es t TG | Va__| |0
i
§
_Gl 0 G2 : G1+G2 Vs Ix

This term can be written in the condensed form as

|
gnn ! gns zn Es
----- deeeed fmeee | = [ (12)
gsn : gss zs =%
From term (12) we get:
G V. + G vVv. =1
~nn —n NS S =s
(13)
gsn zn + gss zs = lx *
The first equation from (13) gives:
Ean Yn = Iy ~ Gng ¥)o (14)
and further
v =¢t(z -c _v)
-n ~nn =s ~ns —s’'"*

Thus the described procedure eliminates a number of the unknowns
in the system and includes voltage sources. The second ecuation
from (13), after calculating the node voltages yn from (14),
enables us to calculate currents lx which flow through the
voltage sources.

17



Bv rearrangement of term (11) using (13) and (14) we ohtain:

C.+G -G G, Vv

G1+Gy G © Vo G Vg

- G 3 -0

C3 3+G4+(-'5 \,.5 V3 = 0

- 2 \

0 Gy G,y *C5 Ya G, V i

2 's and
= ==(3_.% = B >
Ig GiVy + GuVy + (Gy+Gy) Vo .

If the network contains other voltage sources with one grounded
pole, they are eliminated bv switching all columns which contain
the voltages VS and the rows which contain the relevant currents

Ix to the right side, i.e. to the bottom of the matrix term.

b) Voltage sources connected betueen any

two nodes

In this case, the procedure is more complicated and is rarely
aprplied in the electrical networl’ nocdal analwvsis. Recause of this,
the entire algebraic nrocedure will not he given., The basic »rin-
ciple involved is covered hrieflv. For a voltage source such as
that in Fig. 9, the network, where the voltage source Vs is placed,
can be described as if it consisted of two sevarate voltage sour-
ces Vs' After this, there are two voltage source branches and

node V4 is eliminated. The series connection between the voltage
and the conductance is changed regarding liorton’s theorem with

a rarallel connection between the current source and the conduc-

tance as shown in T'ig. 9.



Fig.

V6

9. A voltage source which.is8 connected

between two nodes.

19



3. NUMERICAL SOLUTIOM OF ALGEBRAIC EQUATIONS

3.1, Gaussian Elimination

Chapter 2 shows how matrix G and vector I _ are obtained, thus

= ES . The node voltages

the network is described by G V n

-n
solution is symbolically written as

-1 )
y-n - 2, £sn (15)

-1 . . . . . .
where G © is an inverse matrix of G. The solution will be explai-

ned as it is the custom in mathematics in the example

A x =
AT o

o

or, rewritten as

x=18"b. (16)

The solution by Cramer’s rule requires n! operations and cannot
Y : ¢

be used for larger matrices. (10! = 3,628,800, and 20!=2.432-1018

).

Because of this, the system is solved by the Gaussian elimination
method, or the modified Gaussian method which is sometimes called
Crout’s reduction. This procedure reguires about n3/3 operations
where n is the number of unknowns. The solution of the Gaussian
method involves eliminating the first unknown from the first
equation and inserting it into all (n-1) remaining equations. The
procedure will be described in an example of three equations with
three unknowns using the modified Gaussian method. In the original
Gaussian elimination, the Xy is eliminated from the first row, and
according to the modified method term ay;; ¥ is eliminated. So, we

have

20



ay, a2 a3 X b,

a1 252 az3 X | T | P2

a3y azg as3 X3 by
which can be rewritten as

a3 ¥3 * 235 X5 + 8,3 X3 = by

dy) ¥) * ay; X5 + a53 X3 = by

d3; ¥y * a3y X, + a4 X3 = by

11 %12 213 211 12 13
a
21 1 _
ar, 82 23 :i} 81 82 a3 (17)
a3y a 1 -
a aky) 33 aszz 32 233 | -
11
Elimination of a;1%, from the first equation gives :
a1y ¥ T by = a;, Xy = ay5 Xy .

By insertion that into the second and the third

7. (bymaj, x5 = aj5 X3) +oa,, X, +oayy X

7. (by=a;y x5 = ay3 X3) + ag, x5 + azy x3 =

equation we have:

21



and, after reduction,

a - a a,.,
21 21 - 21
(a - = a,,)x, + (a - —~ a.;,) Xq =hb, - —0D
22 ajy 12772 =23 ay4 13 3 2 243 1
(18)
a
31 a a
(a,, - — . 31 ) |
3235y 33p)xp * (agz - zT ay3) X3 = by - g by o
11 11
or, in a shorter form
1 1 .1
332 ¥y * 333 X3 = by
1 1 - 1
a3, Xy t a3y Xg = by .
The described procedure eliminates the unknown Xy i.e. the
order of the system is reduced from n to (n-1). Continuing
this procedure by eliminating X, gives:
al al
1 32 .1 _ .1 _ %32 .1
(@33 = =7~ 333)%3 = b3 = 1 D »
422 822
or
2 -
dy3 X = b3 .
After the elimination has ended, the result is:
ajy ¥ ta;, X, +a;5 x3 = by (19.a)
0 + a1 X, + a X, = bl (19.b)
22 72 23 73 2 *
2 .2
0 + 0 + a345 x4y = b3 . (19.c)

The unknowns may bhe easily calculated from term (19). From

22



equation (19.c):

2,2
Xy = b3/a33 .
Inserting Xq into equation (19.b) gives :

1 1

_ _ . 1
x, = (b; - a35 x3)/ay,

Next; x, and X3 are inserted into equation (19.a) and Xy is

calculated.

Note that the elimination is done in the following wayv :

= (20)

a;; <32 33 3 3
which gives:

a1 412 213 *1 by

0 aéz a;3 Xq - b;

0 a3, a3s *3 b3

The elimination is repeated until the last unknown is reached.

The important information is the number of operations required

for the Gaussian elimination.

According to the described procedure the following is needed

(D : division, M : multiplication, and S : subtraction ):

23



ELIMINATION FIRST REDUCED VECTOR SOLUTION

COLUMN MATRIX B X
D M S M S M S D
2 2
X, (n=1) (n=-2) (n-1) (n-1) (n-1) (n-1) (n-1) 1
2 2 2
X {n-2) (n-2) (n=2) (n=-2) " (n-1) (n-2) (n=2) 1
Xy 1 1 1 1 1 1 1 1
X - - - - - - - 1
n~-1 n—lv n-1 n-1 n-1 n-1 n-1
£i2 $i® £i2 Ti £i Ti i n
i=1 i=1 i=1 i=1 i=1 i=1 i=1
2 3 3 2 2 2 2
APPROXIMATELY D /2 n~/3 n~/3 n“/2 n“/2 n°/2 n®/2 @

The number of operations is defined with two types of sums of

real numbers , Zi and ZiZ:

(n+1)n

Li-= — because the given sum is the reil number
i=1 arithmetic series whlch gives 5— + E , and
is approximated with &— 2 .
22
Li is the sum of the real numbers’ squares, and is
i=1
equal to
n3 n2 n
R R
\\

24



3 1)
which is approximated with %— .

Thus reduction of matrix A requires

-3—_M+TD+-3_-S’

3
where only the first term %— M is kept, because it needs the

most operations and the longest execution time. Vector b

rearrangement requires
n2 n2
—e M a—
5 M + > S

. 2
operations of which only the first %erm, %— M, is kept. To

obtain the solution approximately %— M operations are needed.
For example, a system of 30 unknowns will need :

n3 2

3= +n = 9000 + 900 = 9900

3
operations. It is obvious that %— multiplications require most

of the time and effort in calculations.

A numerical example for the Gaussian elimination is

2 2 3 %4y 1
4 5 8 X, = 2
6 2 2 l X4 4
1)
12
An approximate term for r i can be obtained from the integral
i=1
3
‘?12 di = ii " =0 _ 1
1 3 1 3 3
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2 2 3 b4 1

__ 1
| —_— —_ ——
2,1 2 X, = 0
| .
31-4 =7 x3 1
2 2 3 xl 1
=T\
2 \\% 2 X, = 0
3 —4: 1 X3 1
The solution is
Xy = 1,

»
!

(1-3.1 - 2(-2))/2 = 1,

Checking is done by inserting the solutions into the given

equations :

6 - 4 + 2

]
2

AT

Regarding terxrm (16), x = h, if vector b changes, the matrix

o

~
A remains unaltered and the solution x is obtained by a simple

procedure of multiplying matrixlgfl with the new vector b. When
applying Gaussian elimination, instead of the inverse matrix é:l,
the unknown vector x is calculated from term (19). Though it
appears at first that the vector b change requires the repeating
of the whole Gaussian elimination, i.e. anproximately n3/3
operations, this is not necessarv ; énd the numher of ownerations
is only n2 (if only vector b is changed). It is obvious that the
coefficients aij do not havezto be ciiiulated again in term (19)
b

1 1 1,
but onlv vector b (bl, k5, b3, ces b Y3 and for vector b
had '+ 1 -
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processing the terms in the columns which are placed under the
diagonal are used. These terms disanrear during the elimination

and zeros appear in their places.

However, if we keen thesec t%rms, the calculation, because of the
vector b change, requires %— for solving vector b, and n2/2
operations for getting the solution, totally n2 onerations.

This Gaussian elimination supplenment, hv which all terms under
the main diagonal are kept, leads te the so called LU
decomposition. Let the matrix of term (12) be the upper

triangular matrix J :

411 %12 213 Y1 W2 W13
1 1 - - T
0 a2 43 | T | O Uy U3 | T F
0 0 2 0 0 u
a33 33

The terms which appear under the diagonal during the elimination

are called the lower triangular matrix L, s

1 0 0 1, 0 0

al 1 0 = |1 1 0 =L
21 21 22 L
1 2

az; a3, 1 137 13; 133 ’

where diagonal terms which are all egual 1 are added to the terms

under the diagonal,

It can be shown that :

LU=A.,
- I~ e
Substituting matrix A with L U we proceed: .
Ax=b, R (21.3)
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(21.b)

Lux=2,
Ugx=y,
- (21.¢)
Ly=5b.,
which gives
-1
o= ’I;., lg_ . (21.4)
Now, by inserting y into (21.6) we obtain
~1
1{. = HI :./. * (21.8)

Further examination of terms (21) reveals the following :

term (21.a), i.e. matrices L and Y, are ohtained by the normal
Gaussian elimination procedure; term (21.d), i.e. vector y, is

the symbolic representation of the vector b elimination procedure,
term (21,e) is a symbolicé representation of solution x from the

reduced matrix ’%.

3.2. Improved Precision of the Solution

To increase accuracy, the obtained system A x = b solution is
called x

gives:

+ in’ Inserting x, + in into the original equations

1 1

a x1 + a12 x2 + .00 + A

L
It
o’

[
S
o

[

In "n

+ Ayg Xp t oeeen + a X, = b2 #Db

21 71 2n 2
anl ] + an2 X2 toeeee F ann xn = bn # bn

By this procedure the calculation accuracy is estimated. If all
il to in are correctly calculated, then all b’s must equal b.
From the difference (b, - b;) to (b = En), the calculation
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precision is estimated. This simple control procedure allows
improvement of the solution accuracy by subtracting the calcula-
ted equation from the original one:

2y (%) = x) +a (%, = %X5) +oeeee +ay (%) - X)) = Dby = by
an; (g - %) + A%y = %) + ceee +oa (x, - x)) =Db = Db,
or

Il
>
o

ajy A%y +aj, Axy 4ol +oay Axy 1

a., Axl + an2 Ax2 + ceee t+ ann Axn = Abn.

Since matrix A has remained the same, and only term b1 + bn has

changed (into b1 - bn) the calculation is repeated with only n2

operations to solve for the unknowns Axl < Axn. New values of x

are:

+ Ax

S 1 1

»
1

X = xX_ + Ax
n n

This procedure can be repeated several times to obtain the best

accuracye.

3.3. The Inverse Matrix

Using Cramer’s Rule to obtain the inverse matrix is a very
complicated procedure. The Gaussian elimination method requires

approximately n3 operations and is much more efficient.
29



It is done as folloéws :

the system A x = b is given; the symbolic solution is x =A " b.
The inverse matrix Qfl elements will be called oij (to differ

from the matrix A elements a,.).
r~ ]_J

Supposing that matrix Qfl is known, then :

Xl = all bl + a12 b2 + teee + aln bn
Xy = Oyp by #0559 by + weee + 0y by
. ] (22)

n a1l °1 by + c6ee + 0 b

If all vector b elements are zeros, except the first one which

is b1 = 1, then the upper system is reduced to:
17 %1y
X2 T %21
. (23)
*n T "m
If all bi = @ except b2 = 1, then :
*1 7 %2
*2 T %22
*n T %n2

Now, Gaussian elimination will be applied to the above system

A x =Db, where b is
AEz =2 =
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0 0 0-
1 0 .
0 0 1 * .
El = 3 r 22 = . [4 23 = 0 [ AL O. En = . 14 (25)
[ ] L] L J 0
0 0 0 1
which can be written as :
all ® & o 9 00 aln Xl 1 0 O
L] L] l [ Y
. . = - 0 ) (26)
. . - « o
anl o900 00 ann xn 0 r 0 14 1 hd

The first solution values, Xy Z X0 have to be indentical with
equations (23), the second series values have to be identical
with equations (24), etc. The obtained solutions (xl = xn) there-
fore represent the inverse matrix coefficients.The number of

needed operations is :

- matrix leolution requires n3/3 operations
- solving the right-side column, b, n2/2 operations

~ calculating x, X n2/2 operations

1
Now the matrix A solution is not necessary any more. Continuing
from the second column : '

- solving the second right side column b, but starting
from b2 = 1, because b, = 0, (n-1)2/2 operations

1 < n’
-~ solving the third right side column b, starting

- calculating x b4 n“/2 operations

from b3 =1, (n-2)2/2 operations

= calculating Xy ¥ Xy n2/2 operations, etc.
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Totally, we need :

This requires only three times more calculations than is needed

for the system Ax= b solution.

3.4. Gaussian Elinination Example

To illustrate the simplicity of the Gaussian elimination the
following FORTRAN program for solving the system of unknowns n

is given:
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AFOR»

(aNaXS nnonnN

[aNaNA

NnNnn

aNaka!

(aNaXh]

100
101

le6

18
17
15

20
19

102

1S

RESERVING FIELD FOR THE MATRIX A COEFFICIENTS
VECTOR B AND SOLUTIONS X

DIMENSION A(100+100)¢B(100)sX1(100)
READING MATRIX A COEFICIENTS AND VECTOR B

READ(55100) N

READ(59101) ((A(LaJ)slmloN)oeJd=lsN)s(B(I)sI=1sN)
FORMAT (15)

FORMAT (10F8.1)

DO 15 J=19N

K=J+1l

SETTLING MATRIX A FIRST COLUMN AND VECTOR B

DO 16 I=KsN
AllsJd)=A(1sJd)/A0JIs )
B(I)=B(I)=A(leJ)¥*B(J)

SETTLING REDUCED (N-l)*(N=1) MATRIX A PART

DO 17 L=KsN

DO 18 M=KsN
AlLoMIzA(LeM)=A(LsJ)%(JIM)
CONTINUE

CONTINUE

CALCULATING UNKNOWN VECTOR X

C=0e

DO 19 J=1»N

L=N=J+]

K=N=J
X(L)=(B(L)=C)/A(LsL)
C=20.,

IF(K=1) 19292

DO 20 M=LosN
C=C+A(KsM) %X (M)
CONTINUE

WRITING SOLUTIONs VECTOR X VALUES

WRITE(6+102) (X{(J)sJ=1sN)
FORMAT(1X»10F1l2e3s/)

STOP

END
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3.5. Sparse Matrices

Matrix G, which describes an electrical network has a great
percentage of matrix coefficients equal to zero. This large
number of zeros should be eliminated so that the operation is
done only with coefficients other than zero. The small number
of non-zeros (NZ) is the result of the electrical network na-

ture. Matrix g is constructed as follows :
5
I
1
]
0 -G 0 --G2 (G1+G2TG3+G4) 0 -G3

I
)

In one row there is a diagonal term and as many terms as the
number of other nodes with which the ohserved node is connected

(we do not count a connection to the referent node),

In the given example, the fifth row of matrix G has 1 + 3 = 4
elements. Electrical networks generally have 2 to 6 branches
connected to one node. Suppose that the average is 5 elements
per row and 50 nodes. Then, matrix G will have 50 x 5 = 250 NZ
elements and 2250 Z(zero) elements, i.e.of 2500 elements there
will be 10% NZ and 90% Z. It is clear that such a great number
of Z elements should be eliminated to obtain a more efficient

calculation.

The second property is that matrix G is symmetrical regarding
the main diagonal. Since matrix G does not contain any dependent
current source, it is symmetrical. However, if the network
contains dependent current sources, then there are some non-

symmetrical terms too, This may be demonstrated by the Ebers-
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Moll’s transistor model (3ig. 10).

5:; ——dNGe-CfI’GC>——<lIGC +dNGe
7—0*"‘(1”6& —QNGe
“wb +alb€_—_—'—d16c :\\\\

Fig. 10. Ebers-Moll’s transistor model gives a

symmetrical structure to the G matrix.

In the given example every dependent source gives three non-
syrmetrical terms. It is fortunate that branch 5,7 and branch

5,11 are interdependent, In such cases, wvhere there is a recipro-
cal dependence of two branches, the matrix is symmetrical; however,
symmetrical coefficients do not have the same values. Thus when
considering sparse matrices their symmetrical structure will ke

taken into account,

Thus there are over 90% zero elements, matrix ¢ has symmetrical
structure, and the number of non zeros is different rer given row.
Caussian elimination should be performed in a way such that it
does not occupy too much of the memory, and that it does not
require too many operations. Furthermore note the following : the
matrix G coefficient qij will be processed only when frontal coef-.

ficients in the row %, and column j, differ from zero, regardless

ij~
after processing, the element becomes gij # 0, sO a nevw non-
zero element is generated. The fact that Gaussian elimination

of whether the coefficient g.. # 0, or g,.=0., In case g,.=0
13 ij
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generates new non-zeros leads to the growing number of elements
in matrix G during the elimination. The purpose is therefore to
arrange rows and columns so that a minimum of non-zeros is
generated during the elinination. This will occupy the least
amount of words in memoryv, and will require the least number of

operations.

Since the Gaussian elimination procedure has been covered, stor-

ing and arranging of the matrix S elements will be demonstrated.

a) Matrix G element storing

Non=-zero elements are read by rows as follows :

rovy column value

1 1 X R(1) = 1— C(1) =1 A(l) = x
3 X R(2) = 4 c(2) = 3 A(2) = x
b4 R(3) = 8\\\\0(3) =7 .
. - C(4) = 2 .
. C(5) = 3 .
2 2 X . c(6) =7 .
3 X c(7) =9 .
7 X C(8) = 5 A(8) = x
9 X . .
3 5 b . .

If matrix % is n x n, and N2 is the nunber of non-zeros, then

n words are needed for the row index, R
N%Z words are needed for the column index, C

NZ words are needed for the element value, A

i.e. totaly n + 2NZ words, According to the given example with
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n = 50 and 10% NZ elements, this gives 50 + 250 + 250 = 550

words (instead of 2500)

b) Matrix G arrangement

In general the matrix g is arranged so that the row and column
with the least elements is in the first row. The row and column
with the most elements go in the last row. Rows and columns are
used because in the matrix with symmetrical structure, row J and
column j have the same number of elements.

Therefore, switching the row means that the column must also be
switched to keep matrix G structurally symmetrical.

After this first arrangement is done, there are several methods
on how to proceed with the G matrix rearrangement, one of which
is given in reference (5). Let us see one of the possible meth-

ods whose principle is given in reference (6).

The top of the matrix G has row with the least elements, say it
has one off-diagonal element. This row does not generate new
non-zeros. Regarding Fig. 11, after eliminating the first row
and column, row k will lose I non-zero and will bhecome a row
with I off-diagonal element too. Thus row k, too, should be
switched to the top of the matrix. In other words, after the
first unknown is eliminated we treat the rest of the matrix.g,
i.e. (n-1) (n=-1) matrix as follows: we scan (n-1) rows left

and the row with the least elements is put on the top, and

the second unknown is eliminated. If some new elements according
to the elimination nature are generated they should be added
into the proper rows. The same procedure is repeated for

(n-2) (n-2) matrix and so on. At the end a row elimination

order is obtained which has to be stored in a sepmarate file,
This file is used when the Gaussian elimination of the same
matrix G is to be repeated. This procedure giwves very good resu-
lts with respect to minimum number of operations and minimum number
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of new generated elements (so called "fill-in"). The very minimum
is not obtained and as far as is known such method has not yet

been proposed at present.

1k
X X
X
.. > S
zkl x; x X
,” X
X

Fig. 11. An example showing that row and column
with two elements do not generate a new

element.

An example for matrix with 24 unknowns and an average of 4 elem-
ents per row (including diagonal term) is given. Matrix is gene-
rated randomly using the Monte Carlo !Method (Fig. 12.a). Gaussi-
an elimination result executed on the originally given matrix

is shown on Fig. 12.b and the number of multiplications (and
subtractions) is 452, number of division is 86 and number of
fill~ins is 100. When the reordering scheme described above was
applied, Gaussian elimination result is shown in Fig 12.c and the
number of multiplications (and subtractions) is 131, number of
divisions is 51 and number of fill-ins. is 30. On the left column

of Fig. 12.c the row sequence elimination is given,
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Be-8¢

1234855789012345678901234
lx'............x‘..........
2¢Yssvrcencfeesecossencnse
SCQXJXQOO..oXo..o-oo.x...
BeoaXeesoveosssecnscsaXaoe
DeoXeXXoooeYXoooXeoXXene)Xe
BeesoXXonooXeoosesneXoosooe
TeeseseXossscesoselocsncne
Be oo onveXosevoeXoeoasoeXooooe
Geesescse)XoeoXeXoeoonsee

10ceocoscoXXoooaoXeosXosnse
11ox.oxXo.oJx-oo.x.-oo.-.-
12‘.x;.‘.....x‘m..x'.‘.l..
13ccccnceecsoa) e ooasconcns
18X ecccecs)ooooXYosooXeanoXe
ISocooXt...-.oXXX...-..oQo
16avecncsec)XXoosnXsencoooe
17csccnscoccafocoseXXeX) XNee
18cvsoeXeXecvoonvaeXXXnoXoeo
19 csc e XeXesoosaXeos)YeXooe
20...----orX.o.-.oXoox.oo-
21caeXXoonosscsccsreXeXeXooe
22¢0ecsssssscsccscsns)XneoXeo

23{...x...p-...x........xx

2B, eeesesescvsscscancancX)

a)l

123456578%012345678901234
lx.... ..I.....Y'.........
2eXo aeaessaYveseosansoanse
ZaeX oY esosooYossaoossXane
YoseXessvossosenscassXoone
SoeXoXXooooXXooXoeXXoXaXe
Coes e Xeooo¥YooYoa¥XeXoaXe
7. ee o0 .x.....-.' ..X......
Beeose oo XoeoeoaXsssoaXenssoe
Ty es v ee e XseoXeXasesaase

10.0..oacoXXo..X-Xoth.-..
llnx-aXXooocYXotYX-XX.X.X.
12.-X.XX-..-XX--XXXYX-X-X-
13ecocsoeXeooaeXoeXoeoXonooe
14X oo sseeoXYXonoXYXoaXYaeXe
15aeneXXeaa s Y XY XX XXXAX XX X o
16..-o--onX*YXaXXYXXXXX.X.
17.--orolcc.oX.oXXXXXXXXX'
IQ-OOQXXXG-OXXO'XXXXXXXXX'
190-0OXX'X'CXYYXXXXXXXXXX'
20.........X...XYXXXXXXXX-
2leaX XX XooaoX Yoo X XXXAXX XX
22-.0.0:.oo-o--oo-XXXXXXX'
230 cvaXNo oo o XN XX XUXNX XX XXX

2“. ..,.I...Q..-'. .......XX

b)

124674 82302336546817990158
1XeecosnnocecoaYosccosacnse
ZQXo.--oooooom.-.-o...d!o
B,eXososescrcacnceonsnse
TooseXaeneossooososXensssane
ZﬂunooX.-dcoXokx.c;.o-oo.o

P O I I I
IZ.QOQQQXQ.QoXoo-o.ox.boo.
13.(.tnX.XoooooX--.oooXooo
20........x....-....x..x..
22.o-ooooooXooobochX.oooo
23..--X-.;opx.iox'i-.c.o.x

3...o.oXooocx-luo-xx.ooox

6.o-ooooooo.oXobo.o-chxx
1550.ooooX-o.-.XXo.oo.Xoox
b1 ) PTRTIPS PR T TTS ¢ &7 1
16;o.ouo-o.cooo..Xoo.thx.
18}ooXoo-o.Xoo.oo‘X.X-Xo.x
21..x:oo.ooo.x-.. seXXeXouX
l?.o.o.oXoXXiX....XXX.XXox

9.o.duc.oco.on.XX-o.xxxxx
19...icX-Xf--oXXX-XXXXXXXX
10........x.;....x.oxXXXXX
11.x..........x&bx-n.xxxxx

Seecsccnce o X XXXX « XXX XX XXX

e)

Fig. 12. a) Randomly generated 24x24 matrix with an average of 4

nonzero elements per row,

b) Gaussian elimination result executed on the given matriz,

e) Gausstan elimination result after reordering.



4, SENSITIVITY COEFFICIENTS

After the node voltages are defined, it is oftenm necessary to
calculate the sensitivity of an individual voltage to the network
parameter changes. A sensitivity analysis is usually done for on-
ly one node, i.e. the output voltage. Here, the described proce=~
dure concerns the linear networks and is designed for use of

the total differential. Let VO = f(xl, o
voltage; X5 supplies the network parameters - resistors and

cee xn) be an output

current sources.The total differential from Vo is

_ of CES of
dVO = 3xe Xm + FrToN dX2 + eeo + T an "
1 2 n
The solution requires finding the differential dVo, but from the

matrix term for the network.
The network is described by the term

A G AtV = AT
~ D~ e ~ -5

and the total differential is egual to

t

AdG, A V. _+AG, A dv_ =344l
~ ~D ~ - ~ ~D ~ - ~ -5
which, with G = A G At , follows for 4v
7 — -1 - -1 ; t
v, = ¢ AdI, - € 245, A7V,
_ -1 _ t
dy1 = lG AI ldI dGD A -zn .
Let the matrix G"1 A = H and At V_ = V.. The upper term is written
~ — —~ ~ =N =hH

in the extended form (n is the number of nodes, and b is the

number of branches) as:
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av, Rygeee Byy coee Byy dIg; = Vpp 96,
. . 4l . - V.. 4G
- . 3 bj

dv = hrl... hrl B 3 N ] hr‘k) [ ] [ ]

av, hipeee Bpy eees By dIoy, = Vyp 96,

o _ dVr _
Irj dIsj rj
dVr
S = = =h_. V, .
G_ . aG. r by *©
rj 3 3 J
SI is the voltage sensitivity of the the r-th node in relation
rj

to a current source in the branch j. SG is the voltage sensiti-
rj
vity of the r-th node in the relation to the branch j conductivity.

To find the matrix §/=‘S ié, since matrices‘grand A have been done,

the only problem is the matrix G inversion whizh requires
approximately n3 overations. The multiplving of matrix %—l by
é and other operations is not a big burden for the computation.
.To determine the sensitivity coefficients of one output voltage
(for example node Vr voltage), there is no need to calculate
the entire coefficient matrix H, but only its row r, because:

dVr= h (dx_,-V dGl)+hr2 (dISZ-V

s1 Vb1 dG2)+...+hrb(dISb-Vbb dGb).

rl b2

Before the above mentioned’ﬁ matrix r-th row is obtained, the
r-th row of the matrix g;l must be done. The previously described
matrix inversion procedure, using Gaussian elimination (see page

29), gives one column per one inversion step. To calculate the
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sensitivity coefficients of one row, the matrix’g inversion should
be executed by rows. This is possible and is done with the help
of the following relation:

t,~1

cH ! = (¢!

) &,

The purpose of this relation is to invert the transposed matrix
G by the usual proeedure, i.e. columns, After this, the inversed
matrix ﬁF column is equal to the inversed matrix E'row. Thus the
sensitivity coefficients of the desired output node voltage are

obtained by %— operations,

The sensitivity application and its connection with the relative

error of a very simple example is as follows (Fig., 13):

v, = 10 V,
R, = 10 Q G, = 0.1 1/
R, = 5@ Gy = 0.2 1/0

. +
resistor tolerance - 10%,

Fig. 13. Sensitivity computation example.

Voltage V., sensitivity to the parameter G, is

1
) _av,
= ot ,
Gy d&y
G
1 0.1
vV, =V = 10 == = 3,33 V
1 (o] G1+G2 0.3 ?
) ) .
5o = _Z;1 _y 2 5 =10 =222 = 22,2
11 1 ° (G,+G,) (0.3)

If the resistor R changes from 0.1

changes for + 10%, then G

1 1
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to 0.091 so G1 = 0,009 1/2 , and the output voltage vy difference

is

11

Gl =

22,2 0.009 = 0.202 V

Working only with the relative errors (tolerances), the term is

arranged 1like this

where

which

AVl

vy

gives

Py1 =

’22,2

3,33

|

ot

Gl

= 0,667 P

Gl

This means that if R1 changes by 10%, the voltage Vl will change

by 6.06%, and in total this amount gives V

1Pv1

=3,33-0.0606=0,202 V.,

The observed change of value Vl and the relative change PVl

are obtained from the same sensitivity coefficient, the only

difference is in the form in which the solution is given,
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5. NONLINEAR DC NETWORKS

The nonlinear nétwork, other than the linear elements, contains
nonlinear elements such as diodes and transistors. A nonlinear
element cannot be directly presented in matrix G with a constant
term. So, in the nonlinear network the operating point of some
nonlinear element is defined by Newton—-Raphson’s method.The meth-
od consists of the following: to f£ind an intersection of func-
tion y = £(x) (Fig. 14) with the abcissa, an X, is chosen and

¥y = £(x;) is defined (point A),

Fig. 14. Example of Newton-Raphson’s
method.

A tangent y’=f’(xl), is drawn through point A. The intersection
of the tangent and abcissa is Xy The procedure is repeated un-
til either y or the absolute difference (x2 - xl) = AX becomes

as small as is required,

The procedure is now adjusted for analyzing nonlinear electrical
networks with a larger number of elements. It is understandable
that in a complicated network, gradually approaching the solution
cannot be illustrated graphically. The entire procedure will be
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described by the example of a series connection bhetween a diode

and resistor (Fig. 15) and then applied to any network.

I 4
Vo
Yo
Ig (eV, —1)
R
——— MW ——
I - /IO\

* + |
: Vs =T oY |
|
' -
!
Vb \% Vv

Fig. 15. A simple nonlinear network.

The given network can be calculated by the algebraic procedure
only if it consists of linear elements. Thus the diode must be
linearized (Fig. 16).

I

DY

Fig. 16. Diode presentation using the linear model,

44



With a known diode voltage,

v

I =1. (e %2 - 1) v, =XL . 26 mv

p = Is T v Ve =g ¢ :
dID XQ’ .

S = T (Ig/Vp) e T = (I + Ig) /v,

a line with the slope G is drawn:

Through the point ID, \Y D

D

(I - I) =Gy (V=-V,),

I =G, (V- VD) + ID’ if V=0 we have

IDO = ID - GD VD or

ID+IS

Ig

I

]
9
*
<

T " VD) - IS = GD V& (1-1n

po - %p )-Ig -
Between nodes m and n, instead of the diode, the conductance Gp

and the current source IDO are connected.

In the example of Fig. '16, the diode initial values are I
(Fig. 17.a).

DI VDI

The line which corresponds to conductance GD intersects the

conductance line, G, at voltage Vﬁ. The current is calculated
by IS = f(VB), a tangent is drawn through the new point on the
diode’s characteristic, and the intersection with line G is

found.

the procedure is repeated until voltage AV = (Vs - V5 is.witﬁ{n

the selected error limits. Voltage AV is the tolerance (usuallvi'"’

50 pV) because it is not p0551ble to calculate the voltage V

exactly.
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I I
N S -
}
| ]
| ID Y,
! |
| 1 G
| [
ID ------ : Il G ID ______ ] f
! < ; ! .
i §
ot % Y s V I004/ v % % Y
AV = IVD - VDI AV = lvD - VDI
I, D
GD = % e V‘ GD = (ID + IS)/VT
I _+T
I =G, (V, = V] - I _ D °S
DO D T D S IDO GD VT(l 1n Is ) IS
a) b)
Fig. 17. Newton-=Raphson®s method application
example.
In a complex network, in place of each nonlinear element, the
conductance GD is placed parallel to the current source IDO' The

system is solved using the node voltages Vl o Vn' From the node
voltages the nonlinear element’s (branch) voltages are calculated

t

using Zb = A zn' After the value Vb' i.,e. V for every single

14
nonlinear element is obtained, tolerance volzage AV=(V5 - VD) is
calculated and, if it is within the 50 pV tolerance the procedu-
re is completed. If not, voltage VD for each nonlinear element
whose difference voltage AV is not whitin the given tollerance is

set equal to voltage V6 and new values GD and IDO are calculated
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and inserted into the network. The procedure is repeated until
the difference voltage AV for every single nonlinear element is
less than 50 AV

Electrical networks nonlinear elements are diodes and transistors
that are modeled using diodes. Because of this we have to notify
some exponential function e vb/VT characteristics.. During the

elimination, some difficulties can arise in the calculations if .
VS and V. (new and old diode voltage values) differ by more than

D D
ZVT, i.e. (Vs - VD) > ZVT.This is explained in the following

example:
rd N
i A
ID = Is e VT ’ ID = IS e VT = IS e VT ’
Then ) I/T. = e% = 7,8
D™D ' ¢

Due to the exponential dependency, a new current, 15, is eight

times larger than the current I Such a large difference is un-

D.
desirable and therefore the growth of the diode voltage is
restricted to 2VT = 52 mV, i.e. VB = VD + ZVT (instead of the
calculated voltage Vé)

A modification of Newton-Raphson’s method provides better answers
to the pecularities of the diode characteristics., This is shown

in Fig., 17.b.

After obtaining the solution the nonlinear element current is

calculated using

_ _ t .
L=8y Y, =5 2 Y, 2.e.

the new values GD and I

ID and, using these currents,
po are calculated. By this procedure, the
solution with fewer iterations is obtained.
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6. LINEAR:'AC NETWORKS

Before beginning lineér AC network analysis explanatidn of how
any nonlinear network may>be linearized must be given. Generally,
nétworks are nonlinear because, in addition to R, L, C, elements
they also contain nonlinear and active elements; diodes and: tran-
sistors. In this type of' analysis, nonlinear elements must be
linearized about the operating point and the values inserted
into the network. In the diode linearization example, the tangent
of the operating point according to the known term is calculated

as shown:

dIl I D

w)
0
I

<l

Fig. 18. DZiode linearization for AC

analysis.

DC analysis of a nonlinear network requires the diode model
according to Fig. 16, while AC analysis needs only the conductance,
G. (Fig. 18). Once we have performed DC analysis, all models of

D
nonlinear elements needed for AC analysis are existing.
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After the DC state is defined, all nonlinear elements are
introduced into matrix’g,with adeguate conductances, GD' and

current sources, I Conductances, G are kept in the network

Dl
are removed. After this procedure,

Do’

while current sources IDo

linear AC analysis may begin,
Generally the matrix terms of DC analeis are used., This provides.
the admittance matrix Y, instead of the conductance matrix G, and

voltage zn and current sources ls vectors are complex. S0, we

write :
1)
* = *
:y-'y-n -:Esn' (27)
where
= + . * = v
Y= 1635+ 3Byl 4 Y=Y, +3T
* - s T
1sn E-sn + 3 lsn *

The upper term could be used as it is, in which case the first

row of term (27) will be :

Isnl
(28)

(Gy1%3 By) (Vy+3 V) + (Gyo+F Byp) (Vytd Vo)t v = I, .

This form is inconvenient for the work on the computer, so it
must be rearrenged. First, the standard branch for AC networks
is defined (Fig. 19)

1)
Mark V* represents the voltage having the real component V and

the imaginary component V,
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Yt' = G(+j B;

[y

si
Fig. 19. A4 standard branch for AC
networks,

A diagonal admittance matrix is

and can be presented as the sum of matrices ED and BD as

follows:

I = Cp v I35 .

Now, the procedure for obtaining the admnittance matrix can be

applied usnig the diagonal admittance matrix, i.e.

_ t _ . t _
T=AY A =2 (G, +1By)) 4" =
(29)
_ t o, . t_ .
é.gn A+ 1éED.é.—,E.+ 3)% *

This term implies that the admittance matrix can be constructed

from two matrices, G and B, where each one is calculated independen-
tly using the incidence matrix A. Thus, matrix G, is constructed
using the previouslyv established rule (see page 8) without regard

to reactive branches of the network. Matrix B, is constructed using
the same rule without regard to resistive branches of the

network. Using this procedure, term (27) can be written as:
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(£-+ J E)(zn + 3 zn) = (lsn + 3 zsn)' (30)

or

g‘zn + 3 zn + ](g yn -Fg yn = 1 + 3 I . (31)

B
o~ -Sn —SI

The real part is equalized with the real one and the imaginary

with the imaginary one:

i<
]

W

1<l
I

W W
o]

é<

+ GV =TI
~J

Which gives the matrix term:

G -B v
r~ ~ -n -3
| = (32)
B G v T
~ ~ —n =sn
The upper term is used directly for solving the linear AC
networks., The first row, written more extensively, reads:
Gp1 Va*Gip Vy #eee + G Vi = B3 V3 = B Vo ovr = By Y0 T Ism
(32.a)

This form is much more suitable than that of term (28).

In term (32) note that the number of unknowns is two times

larger than the number of nodes because of the fact that all node
voltages have real and imaginary components,Matrix ¥ is four times
larger than matrix G because instead of (n x n) elements it con-
tains (2n x 2n) elements. Thus, the calculation is also larger.

Applying the described procedure on the network in Fig. 20.
‘matrices G and B are written as:
~ ~
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where

The entire matrix

52

Gl -Gl 0 0 0 0
—Gl G1+G2 0 B = 0 B2+B3 -B3
0 0 G, 0 -B, Byl ,
I, + il
=)
G
1 «Mwbw, 2 ~_ )3
By
—
Isq (?) ) T B2 G,

Fig. 20.
B2 = w C2, B3
I1 = I10 sin wt ,

-G, 0 ! 0

G *G, O E 0
0 G4: 0

0 0,06
B,+B, —B3E-G1
By Byl 0

=1
wL3

I3

[4

= I3

4l < < <«
[l 1w

!

<

<l

The linear AC network example.

sin (wt + ¢).

term which describes the network is:

sl




or, for the first two rows:

G,V, = G,V =1

171 12 sl

= G1V1+(G1+G2)V2 - (B2+B3) V2 + B2 V3

Is3 » etc.

Here, the analysis is performed at the chosen frequency.
If we change the frequency, the matrix G remains the same, while
the matrix}Q changes. The terms of matrixag'are of the form

wC, E% or their sum and they change with the frequency.

This means that for every frequency value, matrix‘g,elements

must be recalculated and inserted into term (32), and new values

for node voltages Yn = Yn + 3 in are calculated. Regarding the

fact that the observed frequency area is usually large, the
frequencies are shown in logarithmical scale. The frequencies change
as fn = 10™ fo' where x is calculated from the number of

observed frequencies per decade. For example, if 4 frequencies

per decade in the same logarithmical increments are desired,

then 4x =1, x = 0.25 so '

£ =10° £, =1.000 f_
£, = 100025 o = 1,780 £,
£, = 10°°°0 £_= 3,165 f_
£, =10°7% £_=5.630 £,
£, = 100 £ =10.000 f_, etc.

Input and output voltages and currents, (V+35V) and (I+ji), can in
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some programs be changed to V2 + 52 /% and VIZ + 12 A
Thus by changing the input signal frequency as a result of AC
analysis, the amplitude and phase network characteristics in

any node are obtained,

For dependent current sources, and voltage sources, the principle
described for the DC analysis is used, except that consideration
should be given to their complex nature.
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7. TRANSIENT ANALYSIS OF NONLINEAR NETWORKS

In this chapter a description is given of the procedure for
analyzing the nonlinear electrical networks which, in addition
to the resistance R, contain capacitance C, and inductance L,
All three kinds of elements, R, L, C can be nonlinear. The input
signal is the time function. Thus the transient analysis of
nonlinear networks will be discussed.

Up to this point, a static analysis of nonlinear networks has
been examined. This means that only the resistor, linear or
nonlinear, was included. Next, the networks with constant
capacitances C and inductances L were included, as well as
linearized nonlinear elements and the input signal was sinusoidal,

First, the transient analysis of linear networks 1s described,
the solution stability relating to that is examined, and the
networks which contain the nonlinear C and L elements are
analyzed., Finally, the nonlinear resistances are added to the

network.

7.1, Transient Analysis of Linear Networks

Suppose that Fig. 21 represents one part of a given network.
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3
=
R &
21w )
G, — I

Fig. 21. A part of a linear network,
For node 2, Kirchhoff’s nodal analysis implies:

In analvzing the network by the nodal method, as earlier stated,

all unknown currents are presented by node voltages:

t t
1. =L o dat » 1, = 2+ I (V.-V_)dt
L L L 1 Ty 1 27 ’
(@] Q
IG = G vG > 12 = G2 (v4-<-.72) ’ (33)
7 -
r oo a U b 1o-c d(\3 J2)
C dt 3 37 4t ’

which, when inserted into the equation of the current balance in

node 2, vields:
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L

Iy

(V.-v.)dt - G, (V,-V.) - C 3 2)
1 72 2471

3 dt

t a(v.-v
j “n
(o]

This simple example shows that the 0ld svstem of algebraic
equations,‘g,zn = zs' will change to a svstem of integral -
differential equations. Using the computer the analytical

solution is unobhtainable; this means that the integral-differential
equation must he changed into an'algebraic one and numerical
method should be applied. The mathematical approach that was

used for solving the resistance networlks is also emnloved for
soiving dvnanic (linear and nonlinear) electrical networks,

Solving the differential equations is called integration. There

are many numerical integration methods, Three of the most common
are described here. 7hen choosing the integration method,

the one which is simple enough for the application and which

gives a stable solution should be chosen. The first of the

three methods is Euler’s method, which is often unstable hut it

is the least complex. This method is used to describe the principle

of the differential eguation’s numerical integration.

For an example of Euler’s method, refer to Fig. 22.

dUc {t)
dt
|
ro
' i
Uc(\‘.)! U (t+at)

P _
t t+at

Fig. 22. Simple RC circutt.
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The mesh equation is:

U =1IR+ I dt , or

0n
Q=
O ¢t

du

= _C
U = RC 3T + U (34.a)

C L]

Equation (34.a) is the differential equation which connects the

variable U, and its derivative dUc/dt at any time, t. If the

signal voltage Us and the voltage on the capacitor U, are known,

C

the voltage derivative U, can be calculated from equation (34.a)

C
as follows:

=T T B8 " BE (34.b)

Now, the variable U, value in time t+At is calculated using

C
FEuler’s method:

Uc(t+At) = UC(t) + At —3 (35)

The voltage UC curve is approximated by the tangent. The
approximation becomes more accurate as the time interval At
decreases. After the calculation, the new voltage value UC
is inserted in term (34.b) and the new derivative value is
calculated. This continues until the end of the given time
interval is reached. The error which appears according to term

(35) can be calculated by using Taylor’s series:

U.(t+At) = U, (t) + At UZ (t) + -A-—2 Uz’ (t) + Aﬁ Uz’ (t)+ (36)
C B o C 2! C 31! C
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The error is, as

is shown in the commarison of tefms {(35) and
(36), equal to:
2 3
At Lo,
a7 Ve (t

2
X . . At . . . R .
Thus it is proportional to 5T Ué (t). To avoid Fforming differential
equations, and to keer the mathematical procedure that vas used
for resistive networks, eguation (35) is written as:

dUn
Uper = Un + AF =5
. At
t =U_ o+ ==
Jn+l Jn C In_ *

(37)

2n eguivalent circuit for the canacitance C following from equation
(37), is shown in Tig.

23 which is a voltage source.

- J
>

3

Fig. 23. o) An equivalent circuit for the capacitance C,
b) An equivalent eircuit for the inductance

L.’
according to Fuler?®s formula.
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A calculation of the example in Fig. 22 (using the principle shown.
in Fig, 23) is given in Fig. 24,

R=10q "R.
— MWW\, ——AMWWWAW—— I = Us-Un
n R
Us=/ : 2 :
B = U =
10\/@ i é Us@ _ @ ne  At=lus
< » h At
UnM:Un"“'c‘:“'In
n At u, (V) I () (U 41) V)
0 0.0 1.0 1.0
1 1.0 0.9 1.9
2 1.9 0.81 2,71
3 2.71 0.729 3.50
4 3.50 . .
Fig. 24,

numerical results.

RC metwork equivalent ecircuit with the -

Note that the network containing capacitance C is now included

in the network that contains only voltage sources and resistors.

Mathematically, this means that the differential equation is now
an algebraic one.

For the inductance L, the fundamental relation between the voltage

and current, U

60
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L dIL/dt. FEuler’s integration will give

-1

n+l

dIn
I —
I+ At 3T

’

respectively



_ At
=X + -5 U . (38)

An equivalent circuit for inductance L is, using term (38), a
current source and is shown in T’'ig. 23.b). Because of the '
capacitance'C, the described procedure. is not convenient for the
nodai analysis application since it includes the voltage sources

in the network.

The second integration method is a modified Euler’s method, called
Backward Euler (B. E.)}, which is more convenient and gives a stable
solution of the differential equation. Equation (35), using this

method, is written as:

dUC (t+At) )
UC (t+At) = UC(t) + At ——a ¢ respectively
U yp = U, + At U,
and, after substituting U£+1 = I_,,/C, gives
Un#1 = Up ¥ é% Ther o (39)

This procedure is justified hecause the relation between voltages
Un+l and Uﬁ can he a derivative in time tn’ just as it can he a
derivative in time tn+1' From term (39):

C
Tat1 = 2E Un (40)

which leads to the equivalent circuit as in Fig. 25.a. The current
I is equal to the sum of currents through the conductance G
and the current I,, which satisfies equation (40) .
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1+
1]
U

o

D o—

2)

Fig. 25.a) An equivalent circuit of the capacitance C,
b) An equivalent circuit of the inductance L,

aceording to the Backward Euler method.

Similarly, with inductance L:

T, = I +atIZ.
_ At
N . W Un+1 ’ (41)

which gives an equivalent circuit as in Fig. 25.b. The Backward
Fuler method is much more suitable because both C and L are
presented with the same kind of equivalent circuit and they
satisfyv demands of the network calculation by the nodal method,
i.e. there are no voltage sources. Because of this, the Backward
Euler method is used in many programs for dvnamical electrical
network calculations. The error generated bv this method is the
same as that of the original Ruler’s method, i.e. it is

proportional with
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2 2

T US7 (), respectively A! Ii'(t).

=
>

N
N

The third method is the trapezoidal integration method which can

be exprlained in two ways:

a) The voltage of the capacitance C in time t+At is calculated

by
du_(t) dau,(t+At)
_ At C C
U (E+At) = U (t) + =5 (—g + I ),
respectively U =1+ AL (uv- + U~ )
- n+1l n 2 n n+l’ ! (42,.a)
In In+l
or, by substituting Un =T Un+l = -
_ At -
Une1 = Un * 38 Ty * Ingy) - (42.B)

This procedure uses the derivative mean arithmetical wvalue in
time t and t+At. From term (42.Db)

_2cy e
In+1 = 3% Yn+1 (At Gy, * Iy (43)

‘which leads to the equivalent circuit in Pig., 26.a. The current

In+l is equal to the sum of the currents through the conductance
GC and the current IC' which satisfies equation (43).

Similarly, bv manipulating the inductance L:
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m Unaa m
* _ Ines ‘

1
CT %’Gfi—?g U o

So
3

a) b)

Fig. 26.a) The capacitance C equivalent eircuit,
b) The inductance L equivalent circutt

according to the trapezoidal forumula.

= At . .
i1 = I ¥ 53 (17 + In+1) ’
U U
: . . _ n ”. _ n+1l
or substituting In =5 In+1 = —r
_ At
Ther = Ip v 3p (U, +0,45) (44)
After arranging the right side terms;
_ At At
T#1 "3 Untr ¥ GE Uy + 1) (45)

which leads to the the equivalent circuit in Pig. 26.b. The current
In+1 is equal to the sum of the currents thorough the conductance

GL and the current Ire which satisfies equation (45).
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The error which appears in the described integration procedure

(formula 42.a) is calculated by comparison using Taylor’s series:

a
|

n+l

Un+1 = Un +

Now, using Euler’s method
time t+At is given as

from which

inserting this into the
term (46.a) gives

At

=U,+ =5 (O + U2

At U + é% (U~

the term for the first derivative in

UZ,y = U7+ AU,
n+1 - Un = At Un
2
U ~uU_+ At U+ & g-- (46.b)
n+l n n n ° *

This integration method is more accurate than Euler’s methods,
because the function is approximated with the first three ternms
of Taylor’s series, i.e. it includes the square term, so that the

- .

error is proportional withAt3/3! Un N

B) The second approach to the trapezoidal integration gives

the same formula.

The voltage of the capacitance C, at ime t+At, is equal to
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t+At

U(t+At) = U(t) + -Cl- J I dt
t
_ 1l
= U(t) + o
or, simplified,
_ At
Upt1 = Uy t 3¢ (In + In+1)'

(I(t+at) + I(r)) 55,

This is the same as term (42.b). In Egq. (46.c) the voltage growth
on the capacitor is calculated by integrating the capacitor

current by the trapezoidal rule (Fig., 27).

I ’(_t__et_)\
I(t)
T
il i

t t +At t

Fig. 27. Trapezoidal integration.
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7.2, Integration Method Precision and Stability

Precision and stability of the three described methods will now
be explained by a simple example of the RC circuit (Fig. 28,)

\ u -
| 1
R =0 +V
C
t = nAt
\
Fig. 28. Simple RC circuit
a) Euler’s method (E)
At any moment, t = nAt,
E=U0_+YV , Or U =E -V
n n n n
and at t+At = (n+l)At
E=Upsr ¥ Voer 7 9% Upyy =B = Voo
and also
Vn
In=x% -

(47.a)

(47.Db)

(47.c)

67



The voltage of the capacitor is
u = Un + r In ' (47.d)

Using the first three terms (47, a,b and c), the correspoding
values for U .., U, and I_ are inserted into term (47.d) and

give:
_ - At
_ _ At
Varr = Vn 4 - (48)

If the voltage, V_, is to be time dependent, then (1= RC):

n’

v, = Y% (1 =) = B (a T ’

because at t = 0, the starting voltage Vo on the resistor equals

the source voltage Eo' Then

2
v,=V, -2 =E Q-2 ,

and, applying this procedure n times gives
At ?

Vn = EO (¥ - a . (49)

b) Backward Euler method (B.E.,)
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Equations (47.a, b and c¢) are the same, except that the voltage

of the capacitor is:

v R (50)

Thus the voltage at time nAt following the steps used in Euler’s

method is equal to

V. =E i (51)

n (o)
(1 +%E)’n .

c) Trapezoidal method (TR,)

The equations (47. a, b and c¢) are the same, except that the

capacitor voltage is

_ At
U1 =0 t 3 (r, + In+1) ’

which, after the insertion, gives
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At At

E=-Vo1 “E-V . *3r¢ Yn * 37C Vnt1 7
v v . (52)
n+l n 1 + A:

Thus the voltage at time nAt following the steps msed in Euler’s
method is equal to

Vn = EO ——Tt- . ° (53)

The exact analytical solution for the observed RC circuit is:

-t/T

V(it) = Eo e i.e. substituting t = nAt

* (54)

Using equations from (48) to (54) an estimate of the accuracy and
stability of all three described integration methods may be made.
First, the precision which is obtained in the case when the time
increases by At is evaluated. The results forAt = 0,11 and

At =1 are given in the following table:
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PRECISION

E. B.E, TR, exact
T 1+ 5 1 + At/2T
At = 0,17 0,90000 0.90909 0.90476 0.90483
At = T 0.0 0.5 0.333 0.368

The trapezoidal method best approximates the exact solution., The

stability can be estimated by increasing the time step At and
observing the result by odd and even n’s. The three methods are

compared in the following table:

STABILITY
E. B.E. TR.
1 - At
X 7T
e T Ty
stable for 0 < At < 1 0 < At 0 < At < 21
for very Ae, 1 - n
(=~ ?—) o ( 1)
large At At
(?—)
At ., divergent stable stable
T and osc, but. osc.
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Euler’s formula is stable when the time step is At<t ., When At
is very large, the solution oscillates and diverges more as n
increases, This method is called an "explicit" integration method.
It is generally stable only if the condition At<t is satisfied.

If the electrieal network has more time constants, then time step
At for the stable solution must be smaller than the circuit’s

<
smallest time constant, At Tmin®

The Backward Euler method is stable for any time step, At, and
the solution’s precision decreases as the coefficient At/7t
increases. This method is an "implicit" integration method which

is generally stable.

The trapezoidal formula is the most precise and is stable even if
the numerical solution oscillates for At>>T., This method is also
an "implicit" integration method. The trapezoidal formula is
preferrable to the Backward Euler method, although Backward
Euler method is a stable one for any At. The trapezoidal method
advantage is that the numerical oscillations appear at the same
time as the loss in precision, yet the result does not diverge.
This means that the appearance of the numerical oscillations
provides a warning that the solution is incorrect, so that the
calculation can be repeated with a smaller time step. In effect,
if there are no numerical oscillations, then the precision is
satisfactory . The Backward Euler does not give such a simple

monitor of accuracy.

7.3. Equivalent Model of Nonlinear Storage Elements

An element whose charge does not change linearly with the voltage,
i.e. 0 # CV, but Q = £(V), is a nonlinear storage element, The
calculation of the charge increment AQ, which is a consequence of
the voltage growth Av in time At, is similar to Newton-Raphson’s
iteration procedure for nonlinear elements, But, instead of
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Newton-Raphson’s iteration which uses the tangent, "regula
falsi" method is used which employs the secant, In Fig. 29 the
function Q = £(V) is illustrated graphically.

0 |
Ohet |
et
Qner | 1Y
Ohes |
0 Q=t(V),
n i I'-EI_Q_
| “dt
! .
A Viveq Vit v

Fig. 29. The "regula falsi'" method application on

a nonlinear element Q@ = f(V).

The nonlinear element, Q = £(V), is linearized about the point

1)
Qs Vp bY

%+1 = % * @ n Vo T Vn) . (55)

(o]

The charge growth, AQ = Q41

=~ Q0 1is equal to

(o) _ _ o
O+ = 9 = @

o o * I NAt/2 . (56)

1)
Charge Qéii is given according to Eg. (55); Q§+1 used in
Eg. (58) is obtained applying Q§+l = f(Vg+1). The same holds

for Qéii, etc.
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Inserting term (55) into (56) gives

lo}

agQ =
T n Vner = Vo) = Ty + I)AE/2,
o _ do
I, = 2/At (a— n Vo - (278t (a—) +1]. (57)
Voltage v° n+1 and current I° n+1 2re the values obtained in the
first iteration. The second step gives the following term for
(1)
0 ntl °
o -—
(1) _ n+1 n 1 _
Ont1 = 9 v© - v (Va1 ~ Vy) and
n+l n
(1) _ _ 1 .
Qn+1 Qn = (In+1 + In)At/z ’ which gives
o (o}
a2 7% 2 T % (58)
ntl ~ B o, ntl Bt 0 _ nj °
n+1 n n+l n

The iterations are continued
- vl - uv°

AV v e+l Vn+1 '

earlier mentioned is usually

networks, the iterations are

is within

iterations for the nonlinear

circuit for the nonlinear storage element Q =

Fig. 30 with the conductance
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until the difference,

the error tolerance, which, as

50 uV., When calculating complex
done together with Newton-Raphson’s
resistance elements. An equivalent
£(V) is given in



2 Qn+1 Q -
G, = — s+ and the current source, I, =G, V_ + I_,
C At VO -V (o C n n
n+1l n
m m
- V,
| I+44
I Q=£(V) .
v 1-99 = & IC
~d

—_— n

Fig, 30. An equivalent circuit of the nonlinear

storage element, Q = £(V).

Q41 — @

le)
n+l

degree accuracy using the charge derivatives in places v§+1

The secant slope, s can be calculated with second

v -V
n

and v_:
n

O

Q -0
n+1l n 1 dQ, o aQ

o -v 2 [(a—z)nﬂ * ‘av’n] . (59)
n+l n

In the case of semiconductor devices, capacitances which are, by
the charge change nature in semiconductors, may be defined as

— dg
C =% (60)

and the capacitance, C, is known in the form C = fc(V). As in the
previous case, charge Q is obtained by defining the function
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Q = £(V) using

Q= I C av = I fc(V) av . (61)

With the calculated charge Q, the method is continued as described
in terms (57) and (58). In this case, when the capacitance is
already given as the function of voltage, it is convenient to use
term (59) for the secant slope. Then

Q -0

n+l n _ 1 o

o =3 Cpn * G (62)
\Y -V

n+l n

Thus the calculation is simplified and there is no need to
calculate the integral from term (61). Terms (57) and (58)
become:

0 2Cn o 2Cn
In+1 = At Vn+1 - ZE- Vn + In and (63)
o o
1! = EEil-t-EE vl - SEil-t-SE V +T (64)
. n+l At n+l At nj*

In the case of a nonlinear inductance element, instead of
¢ = LI we have ¢ = £(I) and the procedure is the same as that
of nonlinear capacitance., According to this

¢ = £(I),

(o) _ a¢ o _
b1 = O t @0 Ton I .
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Expanding A¢ gives

839) = ¢, = (VO +v )At/2.

By eliminating the A$ from upper terms we obtain:

d¢

o _ 0
T Tpyy - I = Vg t Vn)At/2 , respectively

o - At o At
et = 5@ Vnt1 7@ Yt In (63)
2gh 2,

The second iteration step, using ¢(1) vields:

n+l
o
¢ - ¢
(1) _ n+l n 1 _
b1 = %n t ;3———:—;— (In+1 I.), and
n+l n
(1) _ R | At g
¢ 41 ¢n = (Vn+1 + V) —5 , which gives
1 At 1 At '
Th+l = - Varr * 6% . - o Vp ¥ In|- (66
“n¥l "n n+l n
2 () 2(-—6-——-—-)
I - I - I
n+l "n n+1l n

An equivalent ciréuit,'according to term (66) consists of the
conductance
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GL = S and the current source IL= GLvn + In'

7.4, Transient nonlinear networks analysis procedure

This paragraph demonstrates the procedure for the numerical
calculation of a network’s transient analysis according to the
flow diagram of Fig., 31, The network contains linear and nonlinear
resistive elements, and linear conductances and inductances,

From Fig. 31 the following is apparent:

a) The network is defined and every nonlinear resistive
element is replaced with the linear equivalent circuit
(conductance G and current source I). Every capacitance
C, and inductance L, is replaced with an equivalent circuit
(conductance G and current source I).

b) To start a calculation, the initial capacitors’ voltages,
the initial currents through inductances, and the nonlinear
elements assumed voltages are given.

c) The nonlinear elements voltage is calculated using Newton-
Raphson’s iterations since in step b) only the assumed
voltages were given. The initial capacitors’ voltages
and the initial currents through inductances remain

unchanged,

d) Next, the time is advanced by At. This is accomplished
using numerical integration by calculating the voltage
increment AVc on capacitors and current increment AIL
through the inductances. After this is done we turn
back to step c) and calculate new voltage values on the

resistance elements,
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The procedure is continued by repeating steps c) and 4) until
the network’s time response is calculated for the entire time

interval.
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Given network,
equivalent circuit for nonlinear elements,
equivalent circuit for C and L and

independent voltage and current sources are set up.

Y

Initial values VC on C and IL through L and

assumed values VNL and INL of nonlinear

elements are given,

\4

>

A

Newton-Raphson’s iterations for V and INL of

NL
nonlinear elements are executed

(VC and IL remain unchanged).

Y

Integration (time advances for time step At):

VC = VC + AVC and

IL = IL + AIL are calculated.

Y

Y

t = t stop

electrical network transient analysis.

Fig. 31. Numerical calculation procedure of nonlinear




8. REFERENCES

1. Donald A.Calahan: Computer - Aided Network Desing,
Revised Edition, Mc Graw-Hill, 1972,

2, Dr. Stanko Turk; Mr. Leo Budin: Computer Aided Analysis,
Elektrotehni&ki Fakultet Sveuéilista u Zagrebu, Zavod za
Elektroniku, Zagreb,1972,

3. F.B. Hildebrand: Introduction to Numerical Analysis,
Mc Graw-Hill, 1956.

4, W.J. Mc Calla and D.O, Pederson: Elements of Computer-
Aided Circuit Analysis, IEEE Trans. on CT, Vol. CT-18,
January 1971, pp. 14-27,

5. R.D. Berry: An Optimal Ordering of Electronic Circuit
Equations for a Sparse Matrix Solution, IEEE Trans. on
ct, Vol. CT-18, January 1971, pp. 40-50,

6. H.M. Markowitz: The Elimination Form of the Inverse
and its Application to Linear Programming, Management
Science, Vol, 3, April 1957, pp. 255-269.

BIBLIOGRAPHY

An application of the computer-aided network analysis
described in this report is given in the following article:

R.E. Dannenberg and P.I. Slapnicar: Development of Dynamic

Discharge Arc Driver with Computer-Aided Circuit Simulation,
AIAA Journal, Vol. 14, No. 9, Sept. 1976, pp. 1183-1188.

NASA-Langley, 1977 81



